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ABSTRACT
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SPECTRAL PARAMETER ESTIMATION FOR LINEAR SYSTEM IDENTIFICATION

INTRODUCTION *)

The techniques for determining the power and cross-power
spectral density, the Fourier transforms and the transfer functions
assume considerable importance in the identification of a system or
process 1) 2) 3). From these functions it is in fact often pos-
sible to arrive at some basic parameters of the system or process un-

der examination., For this reason it is interesting to know the

characteristics of the estimators we use and the accuracy obtainable

with them.,

This report studies the statistical properties of some
continuous estimators in general use which allow direct determination
of Fourier transforms, power and cross-power spectral densities and
transfer functions, The determination of these functions is trea-
ted categorically for the cases of random signals and of aperiodic

and periodic signals.

The estimators we deal with in this work also constitute
the algorithms by which are obtained the determinations made on the
statistical dynamics analyzer S.D.A. (a general purpose analyzer,
designed and built at the Euratom Joint Research Center of Ispra) 4).
In the sections 1.3; 2.3 and 3.2 and in the Appendix, in
which processing procedures and computing programmes are given, re-

ference is made exclusively to the S.D.A.

Manuscript received on 11 March 1970



1.) SPECTRAL ANALYSIS OF RANDOM SIGNALS

The random signals we will consider are assumed to be

stationary and ergodic, even when this is not explicity stated.

We know that in the case of random signals, no Fourier
transform (of the classic type) exists, and that for this reason the
power spectra are defined in terms of Fourier transforms of the corre-

lation functions 5) 16)

b 0) = / [ }f‘; ZT f :Tc(t) x(t+r)dt] e "9 gy (1)
bple) = —/_ I:Iim ﬁf y(t) y(tw)dt] e ar (2)
bryl0) = f f;in; ﬁfaTc(t) y(ter)at | o™ Tar (3)

Nevertheless the validity of the direct determination (by the Fourier
transform of the signals under examination) of the power and cross-power
spectral density, is demonstrated 6) 7).

The estimators by which the direct determinations can be

carried out have the following expressions:

T - 2
_12? 1T_ fx(t) o " at (&)
(o]

. 2
/Iy(t) o %t (5)

(o]

5_(w)

(o)

2
2

Hl|-~




1.1.)

T T
A 1 1 [ jwt —jwt
¢xy(w) = 5 -rf[x(t) ev dt ./y(t) e 9¥vat (6)

0

which are the estimators we are considering here; they are likewise

used in the S.D.A. for the spectral analysis of random signals 4).

Power spectral density estimation

Let expression (4):
I T

. 2
f x(t) e™%%at (4)

0

1
OB

be the estimator of the power spectral density of a stationary, ergo-
dic random signal x(t).

We will see what the properties of this estimator are, particularly
as far as the bias and the variance of the estimation are concerned,

The mathematical expectation of the estimator is:

E[&:xx(w)]= —;7%1-:[ 2] (7)

Considering the square of the modulus of the integral at the right-

T
/ x(t) e™9at
(o]

hand member of (7) as a double integral and remembering that:

El:x(t) x(6)] = R (t=0) (8)

where RXX is the autocorrelation function of x(t), we can write

E\}?n(w):i = —;7-% R (t=6) e~ 30 (t0) 54 46 (9)



9) .

El}*n(w):\ = —32—[ (1 "‘T—>R () e™¥Tar (10)

For an analysis time T tending to the infinite, wherever the auto-

which gives finally

correlation function can be integrated absolutely, we obtain from (10):

; T -t
']r.-j;iEl:wn(w):\ = 2,[3H(T)e ar = t/!xx(w) (11)

i.e. the estimator (4) 1is unbiased in the limit, but for a finite ana-
lysis time T , it is biased: that is, it contains a systematic error.

Let us now see what the variance of the estimate is:

IO R I OIS LIPNON; (12)

where the mathematical expectation of the square of the estimate is 8):

L]« #{ [ 4]0 > -

T TT T
- L ‘[ [[[2[0) x0) xtn) x@)e#01%) Jav a0 an o
(13)

-T
/ x(t) e~ Wtag
o

the expression at the third member of (13) having been deduced by con-
sidering the square of the integral as a double integral, and by using
the property of interchangeability of the operation of finding the ma-

thematical expectation and the operation of integration,



Remembering that for any four normal variables x
10) 11)_

10 %o

pe we have

X 4

3’
E(x %% )= E(xX) E(xx )+ E(x % )E(x%, )+ B(x X, )E(x%, )- 2 R, L %, =

= RigRg+ RiaBa+ Ry Ryp= 2 X X, X,5, (“0-)

where Rij is the correlation function of the ith and jth random va-

riables, we obtain from expression (13):
T T T T
" 1 1 _
E(y3 () = Y ;—fo [o /0 /o [Rxx(t-e) Rxx(n-f) +R_(t-n) R, (0-6)+

+ R (t=€) R_(6-n) -2 x :] o= d0(t+6-1¢)4, 40 dn af (15)

Taking into consideration expression (9) , expansion of the right-hand

member of (15) gives:

. T T 2
E(Y? (W) = 2 (E (4, (w)) )+ %°:.—;; / /Rn(t-e) ed0(t+0)ap g9 |
0J0
T T T T
P S o~ Ju(t+6-n-¢)
2X4T2L"’2/<)/<;/<;4/<) dt 46 dn d¢ (16)

As T tends to the infinite, equation (16) becomes:

ln B({2,00) = 1im 200,00 (47)

T+ e

80 that by virtue of (12) and (17) one can write:

lin var(§ _ (w)) = Lin (B, ) ° (18)

Ts e



10

Hence from (11) :

lin var (§_ (0)) = 42 (o) (19)

T 0

which means that the random variable constituted by the estimator Jxx(w)
does not converge in the mean upon the value wxx(w) of the power
spectral density, and the accuracy of the measurement does not improve
with an increase of integration time T . The statistical error

thus remains, even with an infinite analysis-time,

Let us however repeat this measurement on successive times, and use then

the estimator:

k
2 o
= 1) @) (20)

which is unbiased in the limit, as estimator (4) was already; in fact:

k
E (@) = %) B (B s0)) (21)

X
Lin B (7, W) = 5 ) b i) = 4y (0) (22)

T> o0

As far as the variance of the new estimator is concerned, we must bear
in mind that if the initial instants ts of each integration are spa-

ced sufficiently so that the k determinations can be considered
12 13
) )

inde-

pendent, One can wrte

var (3 (@) = yver (4 ;@) (23)
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by which, for (19), we have:

im var (¢ (0)) = =¢2 (v)
sim e (o e (21)

which clearly means that:

lim var [ky (w)) = lim k ¢° (w) = 0
T © k-» >

k>

(25)

As for an infinite analysis time T , the estimator (20) 1is unbia-
sed (so that mean square arror and variance of the estimate have the
same value), expression (25) means also that estimator (20) is
consistent for infinite values of both T and k.

It will be observed that the variance of the estimator tends to zero,

when k tends to be infinite, even if T remains finite, while

the mean square error tends to a nonzero value owing to the bias of the

estimate.

Equation (25) has been deduced by considering k indepen-
dent measurements, Let us take, on the other hand, the general case

of correlated measurements:

o) ] { I (w)]}
E‘:<% ﬁxx.i(“’)x‘ {[ﬁ” } (26)

1
that is, developing the square of the summation:

ver [ ) |

~ T

|

e A Vo Y s T {2 ]
i=1 i, j=
i#j

(27,
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-~
If we consider the determinations ¢xx i(w) as random variables
b
and remember that, for two random variables z and W wa can

write 9):

E(2) = o2 + F

E(zrws) = e (28)
ay = R (1) = Zw+p (1) \/ c,, (06, . (0) = Zw+p (1)o o
where X g is the moment of order r+s, equation (27) can be ex-

pressed as:

1l

var (k&xx(w )

e [ 1)+ ([ 6] ) T 52 (=[] ) -
¢ L var szx’i(w )] Xk pys(r) - <E [k&n(w)] )2

i’j=1
i#j (29)

from which we obtain the final result:

var [k&n(w‘)] = -;-{- var E’Zn,i(w):\ [1 + J};ip“('r) ] (30)

i, J=1
i43

where pij(T) expresses the degree of correlation existing between
the ith and the jth measurement, and can assume values between zero and

one,

If the function pij(T) is supposed to be constant for
all values of i and i expression (30) of the variance of the

estimate reduces to the approximate and simplified form:
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var [kaxx(w):l T var [ ‘zxx,i(“’ ):l e )ik(T l (31)

Ir pk(T) is zero, we come back to the theoretical case considered
in equation (23). It is however sufficient that p(7) is less
than unity for the relation (25) to be valid, and the estimator to

be consistent.

It would be interesting here to examine more closely the
spectral estimator, and the physical significance of the error introdu-
ced by the finite analysis time T,

To do this, it is not necessary to take the repetitions into account;
for simplicity of notation, we will therefore refer to estimator (4)

and resume equation (10):

E@xx(w)) = ‘;‘;T'[ (1 - %|—> Rxx(T) e gy (<C)

whose second member can be interpreted as the Fourier transform of the
product of the autocorrelation function Rxx(T) of the signal  x(t)

to be analyzed, and the function:

7]
r) = - (32)
defined for |T| < T and zero elsewhere; that is, the estimated

power spectral density is the Fourier transform of the autocorrelation

function weighed by a data window  h(7).

In the frequency domain, remembering the convolution theo-
rem, the Fourier transform of the product is given by the convolution

of the factors:

B, ("))

1
[
A
N
[
S
jas)
—
€
i
£
S
N
N
N
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where:
sen w'z 2
2
i) = v (—gt) (31)
Y2

Expression (33) means that the power spectral density estimator has

an expected value which corresponds to the theoretical value wxx(w)

see through a spectral window H(w) 14).

As T tends to infinity, H(w) tends to a delta function centered
at w=w' ; hence the spectrum estimator gives a correct, unbiased
estimate,

In practice the spectral window is composed essentially

of a slit with a width of the order of % (in Hz); hence, for suf-
ficiently large values of T, it is reasonable to assume wxx(w)
quite constant in the frequency range % s, so that:
a re sen %; >
E *)) = ' —_— _ '
Galo™ 2 00 T (g ) P = py ) (35)
- OO 2

Once again, it becomes obvious that the error due to the finite analysis
time is less serious than, and has nothing to do with, the statistical

error, so that having a record of lenght Tt of the signal to analyze,
it is better to divide the time Tt into k intervals Ti s Sui-
tably spaced out, and to perform k measurements, rather than to per-

form one continuous analysis for the whole period Tt'

Cross-power spectral density estimation
Let us consider the estimator (6):
T T
i) = & %/ x(t) ety / y(t) e ¥tat (6)

o} o}
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The same considerations that were taken for the analogous

estimator (4) of the power spectral density ¢Xx(w) are valid for

this estimator, In fact:

T

Efczxy(Jw)] = "12_,, %/T/ E [x(t)y(ev) o J0(t=6) ] dt a6

9):

from which

T
B(J, () = —;—”—j <1 - '-2'-) R () ¢ WTar
-T

which, in the case of the absolute integrality of ny(T),

us to write:

lim E[ny(jw)]

T»> =

wxyu'w)

which means the estimator is unbiased in the limit.

Let us consider now the variance of the estimate:

var(§ () = F {:‘Z;y< 3 )] - {E [ ‘ny(j‘”)] } 2

(36)

(37)

(38)

(39)

Substituting (6) and (36) in (39) and developping the resulting

expression as we have already made in the case of power spectral den-

sity estimation (see section 1.1.), we have:
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xvar[¢7xy(.jw)] = {E [z/?xy(.jw)]} R, (¢ -6)ed ()3 ag| 4
2301 1 -J (£46-n-t)
2 xy "*”[L[ WAH+T-N1~Y)4¢ a6 an a¢
(40)
which, for T tending to infinity, gives:
() ; :
1 = i 3 = 2 2
T_l’n;var (9’f Jw ) %imm{ E [wxy(.)w)]} wxy(aw) (41)

To reduce the variance of the determination, it is better

to use an estimator of the type:

k t.+T t,+T
. 11 1N [ ot 3 ~jwt
W) = i '2?".17>f x(t) e¥at / y(t) e rat =
i i !
k
= 1-_\¢7 (Jw)
k xy,1i (42)
i=1
for which one has:
k
“ 1 - .
() = 1) By () (13)
i=1

from which, taking equation (38) into account:

lim E[kg (jw)) = wxy(jw) (&)

T 0.

that is, the estimator is unbiased in the limit.
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Proceeding in a manner similar to that employed for wxx<w) we find:

(k=1)p, (7 )+1

I () = b (3 (45)
var(kwxy(Jw)] var(¢xy,l(3w)] ,
because of which, if pk(T) is less than unity:
: ‘& ; -

lim var k¢xy<Jw)j = 0 (46)

ko>

Expression (46) is valid whatever the value of the integration time
T, while the mean square error (m.s.e.) tends to zero only if both
T and k tends to infinity:

lim m.s.e. (4 () = O (47)
T o *

k>

The considerations set out for the power spectral density concerning the
physical significance of the error due to the finite analysis time are

also valid for the cross-power spectral density.

1.3.) _Power and cross-power spectral density estimation with the statistical

dynamics analyzer S,D.A.

The estimate of the power and cross-power spectral density
of random signals is carried out in the S.D.A. statistical dynamics
4
analyzer ) 15), on the basis of estimators (20) and (42).
If x(t) and y(t) are the random signals being exami-

ned, the initial expressions are therefore:

L ‘ti+T |2
- 11 1 -]
Vo) = o X T f x(t) e % at (48)
t

i=1 i
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k ti+T
’ 101 -jwt gy )
] (w) = - -1; E‘-YI y(t) e (1.4.9
yy o — 7t

i=1 1

k ti+T ti+T .
i) - = lY[ x(t)etat [ s ¥ta  (50)
Xy 2r k T ayn .

i=1 1

where, for simplicity of notation, we have omitted the subscript k

A

at the left-hand side of ¢

The S.D.A. system calculates and supplies the following

data 4) 15) to the computer which constitutes its final element:
t,+T
-3 1
o, = 1C /. £ (0)f (t)r, at (51)
t.
i
t.+T
507
rsoo= 107 fc(t)fx(t) Tie 4t (52)
"t
i
i=1,2,. .k
t.4T
N :
¥, = 10 / fs(t)fy(t) The OF (53)
i,
i
t. +T
-3 n
§, = 10 / £ (£)f (t) 7, dt (54)
i c y ke
tﬂ'
where fs(t) and fc(t) are the frequencies, variable with time,

of the frequency modulated pulses which constitute the sine and cosine

reference signals:

f (%) K senw t
s T

m
(55)

f,(t)

Fle

K cosw t
T
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in which KT is the constant number of pulses per cycle of the
-jwt

two reference signals (thekernels. e J ).

The frequencies fx(t) and fy(t) are proportional respectively

to the analog input signals x(t) and y(t) according to the re-

lations:
x(¢) = h ., f (t)

X

(56)

y(t) = h, f (v)

y
h being the proportionality coefficient in the voltage to frequency
conversion,
Finally, 7 is the length of the sine and cosine pulses, Thus

ke
substitution of (55) and (56) in (51), (52), (53) and (54)

gives:
-3 w K e ,,ti+T
a, = 10 —Tr =2 x(t) sen w t dt (57)
i 4 h
2
w K 7 ti+T
g, = 1070 —I_ke (1) t dt
5 L h x cos w (58)
ti
-3 w KT Txe ti+T
3’1 = 10 __L:T_/ y(t) sen wt dt (59)
ti
_3 W KT Tre ti+T
Si = 10 -———Z—H——./t y(t) cos w t 3t (60)
i

Expressions (57) .....(60) allow to write:

t.+T

w?K2 T2 i . |2
a2+ B2 o= 10_6 T ke /. x(t) e sy |
ot 16 1? t I
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§ 2 K Ti ti+T >
¥2483 = 10 T2 / (t) e” %%t (62)
16 1? t
' i
t.+T
4076 ——T__ke ull jut : ~jwt
a. ¥ 4,8, = 16 2 x(t)e dt [ y(t)e at | (63)
Yy
6 K The w3 ’ ti+T .
«.85,-B.¥, = 10  ———— Im x(t)ertdt / y(t)e-‘)wtdt (64)
i"i Titi 16 13
by

If we now remember the relations (48), (49) and (50), we can see
that it is possible to obtain the power spectral density from the

quantities X s ﬁi ’ Xi and Si :
L1 k k
) - 11 2 =1 £ 1
bx@) = T 10-62520 2 Z(“i‘”ﬁ:i) S 2r ¥n h, “i*ﬁ?{)
T 3= i=1
(65)
k k
‘,2, (w)— B A b W (2 2)_ S S —(252)
vy = 21,', kT 10 6‘”2?1?( Kz IX.+81 21T kn h’r 3’1+ .
e
=1 =
i =1 (66)
4 h? £
~ . 1 11 . 1 £ 1
R = e—— = o— ——
e[élfxy(Jw)] o kK T 10—6"2141_2 @ z‘(aiﬁin’isi) =27 kn 13 Xaiﬁiﬂ’isi)
ke "7 1=1 r Iz
(67)
k k
S (W) clii_ W K
Im[(lrxy(,)w)] T2 k T 10-6,"3?1,;,.1@ (alsl ﬁlxl) T 21 nk 2 Xlial Bi¥s
ke'T - T i=1
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where power and cross-power spectral densities are expressed in volts
squared per unit of angular frequency and, in agreement with their theo-

retical definition, defined fot both positive and negative frequencies,

16y

If we want to express the spectral densities in squared
volts per hertz, we have to multiply expressions (65).....(68) by a

factor 2.

In the right-hand members of (65), (66), (67) and (68)
we have introduced the normalization coefficient hr for random si=-

gnal analysis:

A X
5 ke T .
- 10 (69)
hr 2 h
and we have expressed the integration time T as:
- -
T = % (70)

since in the S.D.,A. apparatus this time is defined, in the spectral

analysis of random signals, as a multiple of the period 1/f of the
frequency being examined 15).
The normalisation coefficient hr depends upon the frequency decade

under examination, but does not vary with the frequency, which means

15

that T is inversely proportional to the frequency itself ).

ke
Its value is however supplied directly from the analyzer to the final
computer, together with the quantities @ s ﬁi ’ Xi ’ Si ,
the analysis frequency f , the n number of integration cycles,

and the k  number of repetitions 15) 17).

If the signals  x(t) and  y(t) represent respective-
ly the excitation signal and the response of a linear system, it may
be interesting to obtain the transfer function G(jw) of the system

itself,
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This can be obtained on the basis of the definition 16):
¢ (o)
6(jo) = T (71)
¥ ()
and by rearranging (65), (67) and (68); we have:
Z ay¥y + By8y)
N (Jw) i=1
Re[G(J‘U)j = Re [—X'L(—-)—] = " (72)
w
PRCRE
i=1
k
(a 8 - ﬁ X.)
. (Jw) i=1
In(G(jw)) = Im|:—xy——_l = (73)

fox(w) . Zk o)
i + i

In fig. 1 1is shown a brief sequential diagram of operation,
in which the operations performed by the computer, and those performed
by that part of the S,D.A. (indicated by the name 'analyzer, ) which
processes the signals before the computer does, are listed separately

for clarity.

In Appendix A2, two computer programmes for power spectral
analysis of random signals are given in full, for cases where an Olivetti

P102 is employwed as the final computer,



Analyzer

Start
Meas,

i

Computer

Read and store

ai, 'Bi’ Xi’ 5

3

Analysis

Calculate I (a2 :
Vi i

1

End

of
analysig

Calculate T(¥? + 82)
VUi i

b

s &
Calculate E(aiki * ”iai)

‘

Calculate %(aiai - ﬁixi)

1

Fig.1

'

Pead and store
f, k, n, hr

Calculate ¢ (u)

Calculate @ (W)

Calculate Re(@ (gw )]
Xy

Calculate Imr& Jjw)
(ANET)

Calculate [¢

Print results
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SPECTRAL ANALYSIS OF APERIODIC SIGNALS

Let  x(t) and y(t) be two aperiodic signals; their

Fourier transforms are defined- 16) as:
1 ® jwt
. L -Jw
X(jw) = 21T[ x(t) e dt (74)
. 1 (7 -jwt
Y(jw) = -2-;[ y(t) e at (75)
-0

while the power and cross-power spectral densities can be obtained from

the following relations:

¢ @) = om |X(j) : (76)
b 0) = o |v() | (77)
wxy(jw) = 21 X(3w) . Y(jw) (78)

The Fourier transforms (74) and (75) are complex conti-

nuous spectra and can be divided into amplitude density spectra (|X(jw)| ,

lY(j“)l) and phase density spectra; it is clear that the amplitude den-
sity spectrum of a transient signal does not express the actual ampli-
tudes of the sinusoids composing the signal under examination (as they

are infinitesimal), but gives relative magnitudes only 16) 18).

Therefore, the energy spectra (76), (77) and (78) show
relative values; in fact the total energy (expressed in volt squared-
second) over an infinite range of frequencies is finite 16), so that

the energy of each periodic component is an infinitesimal quantity.
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2.1.) Fourier transform estimation

For the spectral analysis of aperiodic signals, one can

employ formulae of the type:
t +T
1 © -Jwt
Rjw) = -2-/ x(t) e at (79)
m
t
0

where the error due to the finite analysis time becomes irrelevant if the
time T is chosen in such a way as to cover the whole period during
which the signal under examination has an amplitude too great to be igno-
red; such a time T is independent of the analysis frequencies, whe-
reas the instant ty at which the analysis starts should be chosen

appartunely during the transient in examination.

The real and imaginary parts of the Fourier transform of

x(t) and  y(t) can then be estimated from the relations:
T
> 1
Re(X(jw)) = E;'/. x(t) cos w t at (80)
0
T
Im(X(jw)) = - %;./ x(t) sen w t dt (81)
o
and from similar expressions for the signal y(t), having assumed the
instant ty as the origin of the axis of the times.

In expressions (80) and (81) measurement repetitions
are not indicated. In effect, even in the case of deterministic si-
gnals, such as the aperiodic signals, the averaging out of several mea-
surements is useful, insofar as it serves to reduce the influence of
spurious noise which sumperimposes itself upon the signal to be ana-

lyzed.
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Fourier transform estimation with the statistical dynamics analyzer

S.D.A.

The evaluation of the Fourier transforms of the aperiodic

signals x(t) and y(t) is performed, in the S.D.A. analyzer,

on the basis of relations:

k T
- 1 r :
Re(X(jw)) = '1?.12—1, y [,’ x(t) cos w t dt} | (82)
i=1 ’
k T
Im(i((gw)] = _.11.(.;_”. 7 "/ x(t) senw t dtht' (83)
L - 1
1=1 °
k T
Re(¥(w)) = 1;;—” Z [fy(t) cos w t dt]. (84)
i=1 ° *
k T
Im[‘}(gw)] =_JIZ_;_1; Z [/y(t) sen w tdt:|. (85)
1
[o]
3=

The data which the S.D.A. pre-processing system supplies to the ge-

neral purpose digital processor are L B. ¥, and Bi wvhich

1 i
(see formulae (57)..(60) ) can be expressed as:
w K T
an—D T ke 2.
@, = - 10 —_— 27 Im[X(Jw))i (86)
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wK_r Tk

4 h

™
1
—_
(@)
N

= 2 Re(X(jw)); (87)

-3 Y K'r Ty

e A
2m Im(Y(jw)).
L h i (88)

-3 w K‘r Tk

10 S 2m Re(¥(jw)). .
L h i (89)

[eg]
1

where the subscript i indicates the ith of the k repetitions.

From the preceding formulae one obtains:

k k
5 —_—
5 h 10 1 1
Re(X(jw)) = = 4 j{:. A >
(X ) ™ fr1, K k ﬂl hak - 51 (90)
ke 7 1=1 i=
3 & =
. h 10 1 > 1
Im X{ jw = - — - a ==
[ (J )j 1T2 f - K k [ 1 h k Z 11 (91)
ke 'T 31 a i="
k k
3 .
. h 10 1 j;' 1
Re( Y( g = —_—— = S = —
e( (Jw)] 7T2 £ Tk K k ‘—_‘l hak > ’81 (O/Z)
e T i=1 1=
103 1 k £
~ h —_ —_—
In(Y(jw)) = - =5 = >X, - > v
1T2 fr K k / 2 hak /- 1 (93)
ke T i=1 1=1
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where ha , called the normalization coefficient for aperiodic signals,

represents the expression:

m™=f 1. K
ke 7T
(94)

h 103

whose value is supplied directly to the final computer from the matrix
ot the normalization coetficients; 'it depends upon the frequency decade

under examination, but not upon the frequency itself,

In the case where x(t) and y(t) are respectively the
input and the output of a linear, time - invariant system, their Fourier

transforms also allow the determination of the system transfer function

defined by:
G(jw) = X(w) (95)
X(jw)

Substitution of expressions (90) to (93) in (95) allows us to write:

o
Re(G(jw)) = Rel:%g—“;—) - A= (96)
(jw) iﬁi
1=
k
m(G(4u)) = Im[ﬂjw)‘\ - —Zj-i—— (97)
() - 7“
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In fig. 2 is given a briet sequential operating diagram

for the Fourier analysis of aperiodic signals.

In Appendix A.3 the complete program for the Olivetti P102

computer is shown.

Energy and cross-energy spectral density estimation
The energy spectral densities wxx(w) and wyy(w)
of the aperiodic signals  x(t) and y(t) , and the cross-energy
spectral density wxy(jw) can be calculated from (76) (77) and
(78), by using the estimated values of X(jw) and Y(jw):
t +T
. . 2 y l o} 0t |2
= 3 = — —Jw
wxx(w) = 2w lX(Jw) = o | /. x(t) e dt ’ (98)
t
o)
t 4T
( ) S/ 2 1 | /'o -jwt g
wyyw = 27 'Y(Jw) = 5 lj y(t) e dt (¢9)
t
o)
t +T t +T
~ EYINEY » 1 © Jut © Wt
; _ . . 1 -iw
¢Xy(3w) = 21 X(Jw) . Y(Jw) = o /' x(t) e dt . /‘y(t) e J at
t, t,
(100)
It is demonstrated 7) that:

lin g (@) = @ _(0)

T o
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1im ) w = w)
wyy( ) wyy(
T
(10%)
lin i, (J0) = wxy’\Jw)
T o

where, as with random signals, the physical significance of an analy-
sis time T tending to infinity is to restrict progressively the
width of the spectral line around the frequency whose spectral densi-

ty is to be calculated,

For the repetitions, what has already been said for the

Fourier transform estimation is wvalid.

Energy and cross-energy spectral density estimation with the statistical

dynamics analyzer S.D.A.

The energy and cross-energy spectral densities of the ape-
riodic signals x(t) and y(t) are calculated, in the S.D.A.,

from the expressions:

v W) = o

XX 2m

o
P~

7
¥ : |2
[j/ f(t) om0t dtw 5 (102)

H
1l
—

k "T ‘2
- S e—jwt
i) = g S P{/Oy(t) atju (103)

® >
(ﬁ/-\
[N
[S
g
I
Nl—t
3
L
b |
n =
o T
-3
b
N
+
A
o
L)
[S
o
(o7
o+
[
1
.\‘~\
o
e«
N
e
A
1
[
[S
-
(oY
o
|
s
N
o
£
A
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where, as already in (82).....(85), we have assumed the instant of
the start of analysis as the origin of the axis of the times, and where

the subscript i indicates the ith repetition.

Rearranging equations (102), (103) and (104) on the
basis of expressions (90) to (93), we obtain the relations by which
the functions we are looking for, are related to the quantities [ S

1
’ Y. and &, :
1 1

<>

Py
1>

p—
1]

£ k
~ S 2 2
i=1 2

k k
- ~ A 2 1
ORI Y CHEDIE Bi(w),) - w y) (i) oo
i=1 i=1
k : K
Re{¢xy(jw)J = 2n }ZjRe( X(jw).Y(jw))i = ;?; - ‘aixi+ﬁ.81) (107)
i=1 a i=1
k k
A =T N 2 1
Im[qlfxy(.]w)) = 27 Elm[ X(Jw).Y(Jw))i = -;,1-7- kz(aisi-ﬁixi) (108)
i=1 a =1

In practice it is often more interesting to evaluate the transfer function

G(jw) between the signals x(t) and y(t) , rather than the cross-
power spectral density. For determining the real and imaginary parts
of the G(jw) , relations (71) (72) and (73) supplied for the

case of the random signals are valid.
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The sequence of operations in the S.D.A. system for the
energy spectral analysis of transient signals is in practise the same

as that for random signals, which can be seen in fig.1.

Appendix A4 presents iIn detail the computation program-

mes for the Olivetti P102.

SPECTRAL ANALYSIS OF PERIODIC SIGNALS

When one is dealing with periodic signals, the Fourier tran-

) 16,
sforms of x(t) and v(t) are given by ).
T
.o
Lo+.‘.?
y Con = gmw T
: = x(t) e o ot
x(meO) - To/ ( (109)
T
t —m—==
o 2
T
0
to+m >
Y(gm ) = = y(t) e™™o" at (110)
o m T ;
© T
t -m==2
0
where TO represents the period of the signal under examination,
and m the order of the analyzéd harmonic, while t is an arbi-

O
trary value of the time chosen to be the central instant of the measu-

rement,

The functions X(jmwo) and Y(jmub) are complex line
spectra. Their absolute values (i.e. the amplitude spectra) are

expressed in volts.
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The power and cross-power spectral densities can be estimated from 16):

) : (111)
o = 1
yxx(mwo) X(Jm“o

2

/ = 3
uyy(mwo) Y (jmw ) (112)
Vglom) = XCmo ) o Y(m ) (113)
where, as already in (109) and (110), W is the fundamental
angular frequency of the periodic function to be analyzed.

The cross-power spectral density is a complex function;
its absolute value and the power spectral densities are expressed in
squared volts,

Expressions (109).....(113) give, also for finite mea-

surement times, determinations which correspond to the theoretical va-

lues.

In practise it is better, as before in the case of aperio-
dic signals, to repeat the measurement several times and to average out
the results in order to reduce the influence of spurious noise which

may have been superimposed upon the signal to be analyzed.

3.1.) Fourier transform estimation with the statistical dynamics analyzer S.D.A.

As we have already said, the Fourier transforms of perio-
dic signals have line spectra; therefore the analysis is only carried
out on the harmonics of the fundamental frequency w on the basis

of the expressions:
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K t4nmT
" ) 1 i o -
RefX(meo ) —— > x(t) cos m @ ot odt (114)
0] —. bt
i=1 "%

1"

1 __E ,ti+n m To
Inf Fgmw ) = - __-_—> x(t) ser = * o
o . TO ) (115)
1=1 tl
and of the similar expressions for the signal v(t).

In equations (114) and (115) T, and  m repre-
sent respectively the period of the signal x(t) and the order of
the harmonic under examination, while n represents the number of
periods of integration and k the number of repetitions.

Taking equations (57) ... (60) into account, and indica-
ting by o' the angular frequency T ow and by T the period
m TO of the harmonic of order m , the values AL, A, g,
ar.q Si supplied by the S.D.A. analyzer can be expressed in the
following way:

w' T K .
a. = =070 — X T o IRt ) 1
1 L}— h

w' T K R
3. = 070 K& T Ref X(jur )" (117)
i ‘

&4 h

w' T, K

- ke T o IUENENN

¥, = - 10 > —_ a7 Im V(i) (113
1 L}— h

w' T, K R
5. = 1070 X8 T n1t Re(¥( g ) (110
1 L h

because of which, in the case of k repetitions, the real and imaginary
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parts of the Fourier transforms of the periodic signals x(t) and

y(t) are given by:

k
A 3 v
. 1 24107 h !
' - - —_— 120
Re(X(jw")) K 7nr, X Xﬁl P Zﬁl (120)
e T P
i=1 i=1
3 k k
S0y 1 _2:107-h ‘ £ ‘
m(X(")) =-% /% ;ai e Eqi (121)
ke T . P
i=1 i=1
3 k k
A 1 2107 h ‘ 1
Re(Y(Jw')) = 1 5. = T ) 35 (122)
k 7n T e KT /i kn hp / i
i=1 i=1
K k
[?( ')j _ 1 2'103'}1 u _ £ '
Tm{ St g0 "k w7, K e in (123)
e T /_ D
1=1 1=1
where hp represents the normalization coefficient for the spectral
analysis of periodic signals, and is given by:
T To K !
h = 3 (124)
P 2 10° h
where the product Tké £ is independent of the frequency.

As far as the determination is concerned, through the Fourier
transforms, of the transfer function of the system in which x(t) and
y(t) are respectively the input and the output signal, the relations

(96) and (97) are valid.
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In Appendix A5 the programmes (for Olivetti P 102)

relative to the Fourier analysis of periodic signals are shown.

Power and cross-power spectral density estimation with the statistical

dynamics analyzer S.D.A.

The power spectral densities ¢yx(w> and va(w) of
the periodic signals x(t) and y(t) , and their cross-power spec-
tral density g (jw) are calculated, in the S5.D.A. system, by

ps

virtue of the relations:

k | t,+n m T 5
- = Jmw
&Xx(mw ) = - 21> ]/. x(t) e at | (125)
nmoT g |
1=1 i
m
1 Kk | ti+n m T . ' )
- i T - jmw .
g (mw ) = T y(t) e o dt | (126)
vy o k 22?2 } |
o T t.
i=1 1
k t.+nm T tytnom T
- . { 1 Fot +jmw t —cirw t
b (dw) = T3 y x(t) e o dt/ t) e 9o at
xy k 272/ / y( )
1=7 tj_ tl
(127)
where k , n o, m , To and ti have the same meaning as in

equations (114) and  (115),

By taking equations (120) to (123) into account, we

have:
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B olw*) ) (128)

|
o B
<
e
>
-
H-
~~
€
~
1
=
=N -
<% |3
—~
=1
= »
+
e,
[XARY)

Kk Kk
- 1 N 1 fi2
Sl’y_y(w') = T(. X(ﬁyy,i( ') = -lz nﬁhﬁ? E\ (X2+82) (129)
i=A1 p i=1
Kk k
> 1 y 1 £
Rl (9)) = £ YRl (800 = §E ) (e £i) (0)
i=1 P iz
Kk k
(g, (30)) = ~ HIm(g (")) = 1.£° 7(0(8-[33’.) (131)
o wxy o Tk n xy,i J Tk 2 iTi fiTd
i=t P izt

For the determination of transfer functions from power
spectra, relations (71) (72) and (73) , given for random si-

gnals, are valid.

Appendix A6 gives the programmes for the determinations

set out above.
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APPENDTILIX

Computing programmes for the computer composing the final
element of the S.D.A. system all have a common structure, irrespec-

tive of the type of analysis to which they refer.

A typical programme can in fact be considered to be compo-

sed of four parts.

The first part (from AZ to AV , 1if an Olivetti P 102 is
being used) corresponds to the introduction of data 7., ﬁi ) {i
and Bi , into the machine, and, when the repetitions are finished,
of the values £, n, k and hn’ where the generic normalization
coefficient is indicated by hn .

The second part of the programme (AV.....2) processes

the data in order to obtain the functions for which one is looking.

The third part, (AW.....Z) is designed to carrv out a nor-
malization of the quantities calculated in the second part, and to print

the results.

The final part of the programme performs the sequence of ope-

rations linked to an overload of the S.D.A. system. Any type of
overload (for exemple in the input amplifier, or in the g« , S ¥ o,
s, counters) in fact cancels out the number of the repetitions , which
number, in normal operating conditions, is never zero. The cancella-
tion of k triggers off this part of the programme C /v, which

interrupts the calculation sequence relative to the point under examina-
tion, cancels any results relative to it which have already been obtained,

and takes the apparatus forward to the following point.

Finally, a practical consideration is made. For any kind

of processing (e-g. spectral analysis of random signals), and by using
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i i
supplied by the analyzer to the final computer, it would be possible to

the data a, 5 B. o, ¥. 5, 8., f, n , k and h
1 1 n

calculate all the interesting functions in one programme, if only the
capacity of the computer did not place limits upon the length of program-

me that can be memorized.

We therefore list here, for each function of the S.D.A. ,
different programmes, each one of which calculates some of the functions

of interest. The programmes are written for the Olivetti P 102.
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A.2. - Programmes for the power spectral analysis of random signals

Table A.2.1. describes the programme which calculates
the power spectral densities ¢ (w) and s y(u)) of the random
XX ¥
signals x(t) and y(t) being dealt with.

Results will be printed in the following order:

f in Hz (analysis frequency)
k (repetition number)
n (number of integration ciclecs)

i H
wxx(w) in v°/Hz
g (w) in v /Hz
Yy

Table A2.2. shows the programme for calculating the
power spectral density of the signal x(t) and the real and
imaginary parts and the modulus of the cross-power spectral density
Uyl

Results will be printed in the following order:

f in Hz

k

n

(’/}xx(w) in v?/Kz

Re[d‘;xy( jw)) in v?/Hz

Im[(,/;xv( w)) in v®/Hz

|q’!xy( Jw)| in v?Hz
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Table A.2.3, shows the programme concerned with the

calculation of the transfer function G(jw) of the system of

which  x(t) and y(t) represent respectively the input and the

output signal.

Results will be printed in the following order:

f in Hz
k
Re(G(jw))
In(6(ju))
HE™)
Im(G(30))
tep = -
Re(G(jw))

This last programme is the same also for periodic and aperiodic signals, .
since for the calculation of the G(Jjw) one uses power spectra ra-

tios 1in which there are no normalizations.

In effect, the values of the power and cross-power spec-
tral densities are half of the real values, because they are supplied
as bilateral spectra (i.e. also for negative frequencies),

The transfer function is calculated as a ratio of spectra and is there-

fore in effective values.
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A.3. - Programme for computation of the Fourier transforms of aperiodic
signals
Table A.3.1. shows the programme which calculates

the real and imaginary parts of the Fourier transforms X(jw)

and Y(jw) of the two aperiodic signals x(t) and y(t).

Results will be printed in the following order:

t in Hz

k

T in sec. ( analysis time )
- In(X(4u))

Re(X(0))

- In(¥(j0))

Re(¥(ju))
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A.3.1.
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A.4, - Programmes for the energy spectral analysis of aperiodic signals

In Table A.4.1. we list the programme for
the energy spectral densities wxx(w) and ¢ (w)

yy
sient signals x(t) and y(t).

The results obtained by the programme are:

f in Hz
k
T in sec (analysis time)
¢xx(w) in volt squared-second per hertz
W " 1] " n n 1"
wyy( )
Table A.b4,2, shows a programme which evaluates the energy
spectral density wxx(w) and the real part, the imaginary part and

the modulus of the cross-energy spectral density wxy(jw)'

calculating

of the tran-

The following quantities will be printed out as computing

results:

f in Hz

T in sec.

-~

wxx(w) in volt squared-second per hertz

Re(y,,(3w))
Im(wxy( jw))

|4 1y (3]
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AbL,2,

TABLE

PROGRAMME INTRODUCTIONS
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A.5. - Programme for computation of the Fourier transforms of periodic

signals

In Table A.5.1. we show the programme which calculates
the real and imaginary parts of the Fourier transforms X(jw) and
Y(jw) of two periodic signals x(t) and y(t)

Results will be printed in the following order:

f in Ez

- In( X(jw

~_/

Re(X(jw))

~_/

- Im( ¥ ( jw

~— N N N

Re(Y( jw
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A.5.1,

TABLE

PROGRAMME INSTRUCTIONS
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A.6. - Programmes for the power spectral analysis of periodic signals
Tablie AhLl. shows the programme for calculation of
the power spectral dcusities o (w) and 1 (w) of the periodic
"Txx vy
signals x(t) and y(t) under examination.

The following quantities will be printed as computing re-

sults, at every analysis frequcncy:

f in Hz
k
n
v W)
-
y W
¢y (@)
Table A.6.2. shows the programme which deals with the
calculation of the power spectral densitv of the signal x(t) and

of the real part. the imaginarv part and the modulus of the cross-power

spectral density of the signals x{(t) and v(t).

Results will be printed in the following order:

b ()
Re(y ., (Ju))
Infg,(30))
14, (39
As far as the calculation (starting from ‘Z’xx(‘“) and ¢Xy(jw))
of the transfer function between the signal x(t) and y(t) is

concerned, the programme written for randem signals, shown in Table

A2.3. , remains valid.
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A.6.1,

TABLE

INSTRUCTIONS

PROGRAMME
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A.6.2.
INTRODUCTIONS

TABLE

PROGRAMME
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FIGURE CAPTIONS

Fig. 1 - Power spectral analysis of random signals: sequential
diagram of operation of the S.D.A. system,

Fig. 2 - Estimation of the Fourier transforms of aperiodic si-
gnals: sequential diagram of operation of the S.D.A.
system,
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