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ABSTRACT

A finite-element procedure is presented for the determination of the
radiation damage stresses in the graphite of matrix fuel elements. The
assumption of a generalized plane strain situation is made. The graphite
is assumed to be transversely isotropic. Irradiation induced creep as well
as radiation damage and thermal strains are taken into account by using
an incremental type of analysis.

A computer program based on the developments presented in this
paper is being prepared.
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1. Introduction *)

——

It has been shown that the impregnation of graphite with sultable
molten metzls leads to an impervious material with excellent neutronio

characteristics (ref. /1_/).

A new concept of matrix fuel element for thermal reactors has been
developed based on this material. The cross-~seotion of such an element
is shown for illustrative purposes in figure 1 with fuel pellets and

cooling channels arrenged in a sauare pattern.

The fabrication of the fuel element takes place durine the impregmation
process of the graphite 1-2_7. The fuel and the graphite canning are
thus breught into contact across a thin layer of impregnating metal,

The murproce of the present paner is to describe a method of analvyain
for the determination of the radiation-damage stresses in the graphite

of such matrix fuel elements;

Steady and transient loads ere considered including the interaction
between the fuel and graphite matrix (swelling and fission gas pressure),
the coolant pressure, the axial load as well as radiation-damage and

thermal strains.

The graphite is assumed to be transversely-isotropic and irradiation
induced oreep is accounted for. The assumption of a generalized plane
strain is made, i.e. the total axial strain is a constant which in

general is non-gzero.

The finite-element method is used to solve numerically the variational
problems associated with the determination of temperatures and stresses
in the grarhite, The inclusion of non-linear strains in the finite-ele-

ment method is handled by using an incremental type of procedure, i.e.

*) Manuscript received on 17 February 1970



the life of the fuel element is divided into suitable irtervals.,

The method presented in this paper is quite general and is independent

of the type of creep law used.

2. Assumptions.

A certain number of assumptions are made in order to bring the problem

of predicting the stresses in the graphite matrix into a tractable range.

2.1 Repetitive stress field.

The fuel element is regarded as the assembly of basic ocells and it is
assumed that the stress field is repetitive from oell to cell, except
near the edge of the element, Henoe, for the determination of the
repetitive stress field, the problem reduces to the analysis of a single

cell.

2.2 Qeneralized plane strain.

The fuel element can be considered as being very long with respect to
its transverse dimensions. A ocondition of generalized plane strain ocan
thus be assumed, i.e. the total axial strain is a constant which in
general is non zero. The solutions obtained are thus wvalid over the

central region of the element.

2.7 Mranaverse igotropy of graphite.

The axial direction of the element is supposed to correspond with the
extrusion direction of graphite. It is assumed that a rotational symmetry

of graphite properties exlists within the plane perpendicular to the



i

element axis. This assumption combined with that of plans strain
reduces to four the independent elastic constants that are necessary

to define the stress-—setrain relations,

2.4 Interaction between fuel and graphite matrizx.

As already mentioned, the fuel and the graphite canning are brought

into ocontact across a thin layer of impregnating metal.

Since Young's modulus of both possible fuels (UC and UOZ) is very
large as compared to the graphite modulus, it will be assumed that
the fuel expands freely.

At the start of the life of the element, radial displacements due to
differential thermal expansion are thus imposed along the fuel-graphite
interface. During the life of the element, these bouﬁdary ocondltions
have to be adjusted to take into aoccount the irradiation effects on

the fuel (swelling or fimsion gas release, or both).

3. Method of analysis.

The 1life of the fuel element is divided into suitable intervals, At
the start of the first interval the temperature distribution in the
element is oalbulated. To simplify the analysis, the thermal con-
ductivity of graphite is taken as independent of temperature.

The thermal strains are then evaluated and since the radiation-~damage
and oreep strains are zero, the stresses in the graphite ocan be oal-
oculated. Initial boundary conditions consist of imposed thermal dis-
placements at the fuel-graphite interface and of given pressures along

the edge of the element in contact with the coolant.



During the interval, damage to the graphite causes a deorease of its °
thermal conductivity and changes of dimensions. The next step in the
calculation is thus the derivation of the thermal and radiation-~damage
strains at the ond of the interval. The boundary conditions between
fuel and graphite matrix are then adjusted td take into account the

irradiation effects on the fuel.

The creep strain increments during the interval are evaluated by an
iterative prooess. A first estimate of the sfresses at the end of the
interval is obtained using the oreep strain increments of the pre-
ceeding interval (zero for the first step). A first approximation of

the creep strain increments is then obtained by assuming that the

stresses remain oonstant, having a mean value between the known stresses
at the start of the interval and the first estimate of the final stresses,
A second estimate of the final stresses can then be obtained and the

process is continued until adequate convergence is attained.

The same steps in the calculation are repeated until either the final
neutron dose is reached or until the stress distribution does not change

anymore, i.e., a steady-state condition is established.

4. Expressions for strains and stresses.

4.1 Total strains.

Suppose the z-coordinate corresponds to the axial direotion of the fuel

element and let u,v,w be the displacement components along Ox’ Oy and Oz.

The assumption of generalized plane strain makes w independent of x and y
and the in-plane components u and v independent of the axial coordinate.

There are thus only four non-zero components in the total strain matrix



and they are defined in terms of displacements by well-known relationss

ou t v tE  Oa v k
E'v ® A ! 63 = 2y I Jay '.;;‘ LY Ez’ constant (1)
It is assumed that during a time interval the total change in strain-
can be separated into elastic and non-linear parts
b ¢ h
{ac} = f{aed +{ae] (2)
T |
where fae} = (bes., Dgy, Ayzj , Aeg) (3)

4.2 Stress—strain relations.’

In view of the assumption of transverse irotropy the inorements of the

in-plane stresses are related to the changes of the elastic strains by

f ac) [»*] {4€3

= (4)
here T -
" {acy = (AT, ,AVJ,AT;S)
| (5)
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and

In the elastioity matrix (6) the constants T, V4 are associated with

the behaviour pervendicular to the extrusion direction and E2, 92 with

|




the behaviour parallel to that direction,

Substituting eq. (2) into eq. (4) yields the relation between the .

inocremental stress, total strain and non-linear strain.

(ac) = [9] {'{AE} —'{A'i}} | (7)
Tﬁe expression for the axialustress inoremeﬁf is given by Hooke's law
AG, » E, (Bef - Bel) 49, (D6 +AGy) (8)

The relations (7) and (8) for the stress inorements involve the change
of the total axial strain. This last ocan be eliminated by equating the
total load inorement on a transverse section of the element to the

ohange of the applied axial load AP, during the interval

AP, +ﬂ‘.At.:';‘=\“\_\, =o: - o

Suclion

4.3 Non-linear strains,

The non-linear part of the strain inorement is due to thermal dilatation,

radiation damage and oreep

(02 -~ f«at) + (a¥3 « (a3  (10)

4.3.1 Thermal strains.

A finite-element prooedure is used to derive the two-dimensional temp-
erature distribution in the fuel and in‘the graphite matrix. The oon-
tinuous body 1is replaced by a system of discrete triangular elements

into whioh the temperature field is approximated by a linear polynominal



with the corner point temperatures as parameters 1-3_7. Boundary
values of temperature and .heat flux, internal heat generation and

heat-transfer coeffioients may be a function of position.

The nodal values of the temperature are obtained by minimizing the
functional associated with Poissons's equation., The thermal

strain vector is then constructed for each finite element by multiply-
ing the appropriate coefficient of thermal expansion by the arithmetio

mean of the three nodal temperatures.

4.3.2 Radiation-damage strains.

Irrediation induced dimensional ochanges in graphite are funotions of
both the neutron dose and the irradiation temperature. Since the
thiockness of graphite canning is small, the assumption of a uniform
Wigner strains distribution can be made. Nevertheless, any expression
giving the Wigner strains as a function of dose and temperature oould

easlly be incorporated in the present analysis.

4,3.3 Creep strains.

The transient oreep of graphite is usually negleoted and the steady
oreep rate assumed to be independent of the neutron dose and directly

proportional to the applied stress.

The multiaxial creep laws for this particular case are readily obtained
by an analogy to linear elastiocity.

Since the method presented in this paper holds for any type of creep
law a more general way of expressing the multiaxial strain rates in

term of stresses is given.
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'Vit has been showh.z.“;7 10 be fruitful to introducé,the speed of
energy dissipation during the creep process and to consider this

speed as a single valued function of the state of stress.

This can be written as . .
L T .e o o
(@3 {ef) - f1e) »o (11)
vwhere {é‘} ie the creep strain rate veotor, {G] the stpess vector

and ¥l¢) the speed of energy'dissipation func tion.

The scalar function ?G) can only define a véétor by means of its
partial derivatives with respect to the components of the stress

veotor, i.e.

R ) o “ﬂ' IR -f(c‘) . | .
" L D6} {GST {‘Dglq)} ' ,
IPRTRY '
Energy disslipation functions can be obtained from monocaxial tensile

experiments by defining the creep rate for a given stress level. For

the steady creep of graphite one has

€5 = Bo, (= Gi0) . (13,)

?m - 8¢, - (13.b)

To transform this experimental result into a multiaxial state of stress,

an equivalent stress is introduced, according to von Mises oriterion

kS 1 [ 5

CIQ = G_“ 4+ G + UZ -—G';GJ -—G—JG‘Z ——qzcx + 3T

1

=y (13.0)
For the monoaxial experiment

cﬁ = C1 ‘ . _ . (130(1)
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hence

-?-(G)' - B (Ss +G§—\—V;—G,C3_C'3C2 - 2 Gx -\-31:3) (13.0)

The individual components of the oreep rate can then be obtained

from eq. (12). The result for the steady creep of graphite is
£r = glox-1 (“:\-rU_z)—_]
(

é; = 3[63 - ﬂi G -\-ci)]

(14)

5. Finite-element formulation of the stress problem.

In the present analysis the strain and stress distributions are derived
from the calculus of variations by minimizing the potential energy of

the loaded structure.

The finite-eclement technique known as the diegplacement method is used
to solve numerically the variational problem associated with the
principle of minimum potential energy. For a complete description of

the method the reader is referred to Zienkiewicz's basic text 173_7.

The continuous body is divided into triangular elements interconnected
at their corner points. These elements have the advantage of being able

to fit any boundaries and, also, permit the use of a graded mesh.

5.1 Characteristics of a triangular finite element.

Within a typical triangular element (fig. 2) with nodes i,j,m numbered
in anti-olockwise order the in~plene components u and v of the dis-
placement vector are expressed by linear polynominals with the dis-

placement values at the corner points as parameters
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:L(:?!)\ = [ o N¢ o N ° N Ve (15.a)
where |
{U'}T = L B g M ,V«Ys | Pan Vo) (15.1)
Ne = 2 (a; +b, 2+ ¢ 8)
1M

a;, = Xj Yo = T 53

b - 4§ - - (... ¢yolic order i,j,m)

€ & X - Xy

At = area of t\"\anz\.e P

The continulty requirements on the displacements along the edges of

adjacent elements are thus é,utoma.tically satisfied.

The in-plane components of the total strain increment are defined in

terms of the change in displacements by eq. (1). In view of eq. (15.a)

this can be written as

. .
(Bed, Aey , Ay ) = L®) [AUS) (16)
with be o bj o bm
4
_ —_— 0 c: 0 Ca' o C

Ce) = LA® e b 3 bj  Ca b

The total axial strain inorement is given by eq. (9), i.e.
/’
Bﬁt = D———— K »
¢ El. At.t ‘\gﬂt‘ E‘ AE! -vl(A‘.z +Ac,)3A¢ - AP‘ (17)

Wl\c\'&

Aty = 2 A
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Combining egs. (7) and (16) the inorements of the in-plane siresses

can be expressed as

T ww 3 t T * g .
(OG, AGy, Atay) = TSILEI{AUS} D (Be , Ags 0) - [s*] (D] | (18)
vhere the matrixul—q;7 consists of the first three columns of the

matrix / D/ given in (5) and where

"k MV Ey

) =
(r-v - l""z‘)

The axial stress inorement is

DGy = E (Def-nel) +v, (AT +ATy) (19)

The next step in the finite-element analysis is to define element
ncdal forces which are statically equivalent to the in~plane boundary

stresses.

Using the thecrem of virtual work it is easy to show that these

forces are
' T T -
[AFEY - TRD(AUS) + Do) o A (8¢ ,05z,0) - Y LA A(AE]  (20)
with < '
v
&AF‘} = ( AF;..', ' AFSL [ AF"-J ! AFSJ ' AF"““ ! AF!'“ )
r_kej = Ahf/’hcu matbrox of Ehe t‘tinhr\‘“ 4\““¢"-t'

The first term in eq. (20) represents the forces induced by the dis-
placements of the nodes. The last two terms represent the nodal forces

required to balance the total axial strain and the non-linear strains.
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5.2 Overall equilibrium equations.

The structure is considered to be loaded incrementally by external

forces { AR\ applied at the nodes.

The equilibrium conditions of a typical node i are established by
equating each component of {ARllto the sum of the component forces

of type (20) contributed by the elements meeting at node i.

Provided the non-~linear strains and the total axial strain ocan be

considered to be known, the resulting linear equilibrium equations

(AR, = 2 (AR R (21)

contain the nodal displacements as unknowns.

Once the nodal displacements have been obtained, the element strains

and stresses are readily computed using equations (16) to (19).

5.3 Solution technigque.

The life of the fuel element is dividedlinto suitable intervals and
in each interval the total inorement of strain is divided into its
elastic, thermal, radiation-damage and creep components. If the incre-
ment of non-linear etrains during an interval ocan be considered to be
known, the change of stress can be found as an ordinary elastiocity
problem in presence of initial strains. The solution technique is thus

ag followss

1) At the start of the life of the fuel element suitable boundary

conditions are imposed and the elastic stresses are determined
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with the thermal strains considered as initial strains and with the

total axial strain constrained to satisfy eq. (17).

2) The inorements of the nodal forces required to balance the non-
linear strains that developed during a time interval are then
computed. For this purpose the creep strain changes are evaluated
from eq. (44 ) by the iterative process desoribed in section 2
and are added to the changes of the thermal and radiation-damage

strains,

3) After adjustment of the b@undary oonditions, the change in nodal
point displacements are efaluated from eq. (21) with the increment
of the total axial strain computed from eq. (17).

The total change in strain is determined by eqg. (16) and the in-

cremental stresses are obtained from eqs. (18) and (19).

4) Steps 2 and 3 are repeated for the subsequent intervals until either
the maximum neutron dose has been reached or until the stress
distribution does not change anymore, i.e. a steady-state condition

is established.

6. Conclusions.

A method has been presented for predicting the radiation-damage stresses

in the graphite of matrix fuel elements.

The proposed method of solutlon is based on the analysis of generalized
plane strain situations by a finite-element procedure. The use of an
incremental type of approach makes it easy to incorporate in the analysis

arbitrary radiation-damage and oreep laws.

A computer program based on the developments presented in this paper is

being prepared.
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