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Summary

Temperature and thermal stress distributions due to thermal neutron flux
peaking near the end plugs of fuel rods are determined for both smooth and
finned cannings.

The theory has been programmed on a digital computer. The code, named
ATEAS, handles empirical flux distributions defined at a number of discrete
points by assuming a linear flux distribution between adjacent points.
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1.

TEMPERATURE AND THERMAYL, STRESS DISTRIBUTION IN SMOOTH

AND FINNED CANNINGS DUE TO AXTAL FLUX VARTATTONS‘+)

INTRODUCTION

Axial flux variations near the end plugs of fuel rods
cause rather accentuated temperature variations, resulting
in important thermal stresses., This paper deals with the
determination of such temperature and thermal stress distri-
butions. Special attention has been paid to numerical meth-
ods in order to handle empirical thermal neutron flux dis-
tributions. For that purpose the theory has been programmed
on a digital computer (ATEAS**).

For the determination of the stresses, the classical
theory of symmetrically loaded thin cylinders has been em-
ployed. In appendix 2 a correction for finned cannings is
presented.

In chapter 6, the thermal stress distribution for
an ORGEL type of canning (G 19), as calculated by ATEAS,
is presented.

TEMPERATURE DISTRIBUTION FOR GIVEN FLUX DISTRIBUTION

The differential equation governing the axial heat
transport in the canning can be written as (see appendix 1):

q (1)

The homogeneous solution of (1) is given by:
T = A,ean+Be--nlX (2)

As can be seen from (2), the homogeneous solution
only plays a part near boundaries. The perturbation of the
temperature due to the end plug levels out very fast, and
it has been verified that only the particular integral of
(1) contributes to thermal stresses.

(+)

(++)Manuscript received on May 12, 1967.

Axial TEmperature And Stress distribution



The particular integral of (1) is given by the fol-

lowing convolution integral (see appendix 1)

+ o
o) = D -m|x=y | 4 (3)
(x) = f aly) e Ay
It ie¢ obvious that the contribution to the temperature
at a place x of a flux at a place y levels out with increasing
| x-y] and the integral can be truncated at an appropriate
value of |x-y| .

For iater convenience the following abbreviations are

introduced:
QI = .[ a(y) o (x-y) dy (4)
® - f“q(y) emy=x) 4y (5)

X

Equation (3) can now be written as:
= 4
T = 5 ( QI+ QP) (6)

The integrals QM and QP can in some cases be cal-~
culated eanalytically. The purpose of this paper, however,
is rather to develop a numerical method to handle empirical
neutron flux distributions. In chapter 5 is explained, how
by defining the flux level at discrete points X4 the temper-
ature at any point x can be computed from equation (6).



3, THERMAL STRESSES FOR A GIVEN TEMPERATURE DISTRIBUTION

In the classical theory for symmetrical loaded thin
cylinders, the analogy of the elastic embedded beam is
employed., This theory, which is given in handbooks on the
subject (ref. 1 and 2), is repeated in appendix 2, in-
cluding the correction for the temperature field and an
approximate theory for finned cannings, It turns out that
for finned cannings the differential equation governing
the radial displacement of the canning wall is the same
as for smooth cannings.

3t

__u+4ﬁ4u = 4[34aa’l‘ (1)
dx

~

The homogeneous solution of this equation is dealt
with in detail in handbooks on the subject (ref. 1 and 2).
It can be written as:

ulx) = e FX(a singx + B cosBx)+ ePX(C singx + D cospx) (2)

As can be seen from (2), it is only related with
boundary effects., The thermal stress protlem due to axial
temperature variations consists therefore rather in finding
a particular integral of (1), taking care of the right-hand-
side member. Eventually an homogeneous solution at the ends
has to be added to satisfy the boundary conditions.

The particular integral of equation (1) is given by
the convolution integral (see appendix 3):

+° 5 ;
u(x) = qaT(x) +%?[“_d__§_§:y2_) ¢ { plx = vyl } dy
(3)

¢ (gx) = e P (cosfx - sinpx)

From the displacement field, the moment M, the shear
force Q and the hoop force H are found by differentiating
(see appendix 2).



For convenience the following abbreviations are intro-

duced:

X 2n

TCM = / —jl— e~ F (x-y) cosp (x-y) dy (4)
° 2

TCP = f _Q_Qﬁgl e—t3(y-x) cosp (y-x) &y (5)
X
*a%0(y) -p (x=y)

TSM = / -———%F e I sing (x-y) &y (6)
-0 dy

2n(y) - (y=x) \ ‘

TSP = [ 5 e sinpg (y-x) dy (7)

x dy

Furthermore, in order to facilitate the algebra, complex
functions are introduced:

s@x) = eP¥ (cospx - sinBx)
| (8)

= (Be - Im) e—ﬂx(1_3)

o (gx) = e P* (cospx + singx)
: (9)

= (Re + Im) e~Fx(1=J)
™ = TCM + jTSM (10)
TP = TCP + ;TSP (11)

The displacement field (3) can then be written as:

)

4p

u = aal + (TCM + TCP - TSM - TSP) (12)
The derivatives becomnme:

7
2 - el %¢1a (TCM - TCP) (13)



d2u 1 ‘

=% =%aap (ICM + TCP + TSM + TSP) (14)
dx

a3u 2 |

<3 = -aap (TSM - TSP) (15)
dx

a*u 3 :

—; = —aap’ (TCM + TCP - TSM - TSP) (16)
dx

In chapter 5 is explained how by defining the temper-
ature at discrete points X3 the integrals TCM, TCP,...etc.
can be computed for any value of xo

4, THERMAL STRESSES FOR GIVEN FLUX DISTRIBUTION

The relations derived in chapter 2 and 3 are combined,
The digplacement field is now given by the following con-
volution integral (see appendix 3):

+ oo
ulx) = %_%_-mf a(y) e-mlx-—YI dy

2
o am

- 1 B4 [ —
WE Tog (B {4<m) [mQ(Y)wiﬂIX y|)dy

- 2@)2[ oo (p lxyl Yoy (1)

+ 2(%)[ a(y) el x=y| dy }

For convenience the following abbreviations are

introduced:
MQM = /xq(y) o~ (x=y) dy | (2)
MQP = f°q<y> o (y=x) g4y (3)
QCM = f:q(y) o= B(x=y) cosp (x-y) dy (4)
o = [aly) T con b (yu) ay (5)

X
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QSM =‘[x q(y) e—ﬁ(x-y) ginp (x-y) dy

-}

QSP :/ q(y) e-'B(y—X) ginp (y—x) dy
X
The displacement field can then be writtenl as:
— 9__51_1@ . " \T
u o= (LIQM + MQP)

2
agm 1 B 4 - -
- am 7 [:4(m) (QCM + QCP - QSM - QSP)
1+4(m)

- 2(%)2 (QCM + QCP + QSM + QSP)
+ 2(11!11) (MQM + MQP)]

The derivatives becone:

2
u _ _ gam oy 1
= =~ S5 (MQM - MQP)
2
aam

+

1 4
1(E)* (qem — qQep
2h 1+4(§)4[ m ( )

- 2(8)® (osm - osP)

+ (MQM - MQP) ]

2 3
d=u aam (
= MQM + MQP) -
a2 2h
oca.m2

2
+ 2(1%) (QCM + QCP - QSM - QSP)

m

+ (F) (MQM + MQé) ]

m

(6)

(7)

(8)

(9)

(10)



m

4
au _ _ean®  (yoy  uop)

aam® 2 p° 4(8)* (Qsm - QsP)
*Toh 1+4(&)% o
m
(11)
+ 2(;%)2 (QCM - QCP)
- -;-(%)2 (MQM - MQP) :l
4 5
d am
ﬁ = “2h (MQM + MQP)
X

2 3
, sam’ 2 [4(.‘2)4 (QCM + GCP - QSM - QSP)
ch 1+4(§-1)4 "

- 2(%)2 (QCM + QSM + QCP + GSP)
- .12.(132)3 (MQM + KQP) :l

In chapter 5 is explained how by defining the flux
level at discrete points x; the integrals QCl, QCP etc. can
be computed for any value of x.

5. NUMERICAL METHODS

As shown in the previous chapters the determination of
the temperature and thermal stress distribution can be re-~
duced to the evaluation of the convolution integrals of the

type:

I(y) = ‘[+“q(x) e~B |x=vl cosp |x-y| @ax (1)
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This kind of integrals can be evaluated analytically
for a lot of functions, but the actual determination of the
maximum stress and the place where it occurs remains a labor-
ious algebraic computation.

It proved to be worthwhile to automize this kind of

computations by means of a digital computer, enabling also to

work directly with empirical flux distributions.
_ Consider for that a flux distribution defined in N
discrete points:
. - (
(x5, a3) i=1-TN (2)

. < X.
x5 i+1

Assuming a linear distribution of the flux between two

adjacent points, the function g is then represented by:

q(X) bt A + B.X

1 1
5 - M+1 T % (3)
* i+1 T ¥4
Ay =y - By xy

The flux level for x< Xy and x> Xy 1s taken equal to
Q4 respectively Qp ¢ Their contribution to the thermal stress
at points between X4 and xy decreases very rapidly with the
distance to X4 respectively X

For Xy <Y <Xy the integral QCM, for example, can

+1
then be written as:

x
QCM = / 1q1 o~Ply-x) cosf(y-x) dx

M1 Xi+a 8 )
+ §=1 Ln (Ai+Bix)-e J=X cosﬁ(y-x) dx (4)

y
+ / (Ay + Byx) o=F(y-x) cosp(y-x) dx
XM



partial integration or by introducing complex functions as

These integrals can be evaluated analytically, by
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in chaptzr 3. Introducing the abbreviations:

FC (x)

I

e BX cosp x

FS (x) = e P* sing x

F (x) = ¢

the following expressions are obtained:

QCM

QSM

‘E%T A, (FC(y-x,) ~ FS(y-x4) )

iJ

N
™

NE

N

M-1

i (Ai+Bixi+1) fFC(y—xi+1)-FS(y.xi+1))
M-

By (Ag#Byxg)  (FO(y - x;)-FS(y —=x;) )
M-~1

5 By ( FS(Y‘Xi+1) - FS(y—xi) )

(AM + By v)

(A + By xy) ( FC(y-xpy) = FS(y-xy) )

By FS (y - xy)

A, (FO(y - x4) + FS(y - x4) )

féj <Ai+Bixi+1) (FC(y-xi+1)+FS(y_xi+1))
M-1
Lo (8 + Byxy) (FC(y-x;) + FS(y-x;) - )
M-1

121 Bi( FC(y - Xi+1) - FC(y-xl)J

(&g + By ¥)
<AM + BMXM) ( FC(Y-XM) + FS(.V-XM) J

By (1= FC (y = x) )

(5)

(6)

(7)
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QCP = - 2—129— (Ay + By xy, o) (FC(xyq = 7) = FS(xy,y - ) )

+ﬁ'(AM+BM3’)

1
+ — BM FS(XM+1 - y)

28
N1
1 ) - . - 8
" TF agr (RitBy xy,q) (FO(xy,4-y) - BS(x;,, - 3))  (8)
Ly (x,- 3) = BS(x, - 3) )
Y TF e AivBixg) (PO y) - FS(xg -y
;N
2B
+ 55 Ay (Flxy - 3) = FS(xy = 7))
1
BE= - wp Uy By ) (POlayy = ) + PS(xyp,, - ) )
+ 5= (4, + B )
2B M T m Y
By
- — (Felx -y) -1
252 M+
-l S (aeBx ) (Po(n, . mg) + BS(x. o)) (9)
2 B =it 17717+ i+1™7 i+1”Y
L ( ) )
+ TF i=§+1 (Ai+Bixi) FC(xi-y, + FS(xi—y)
L 3 m (Fo ) - o ) )
- - z N X. - y - X, = y
26° izMat L 1+1 i

+og Ay (FC(xy - 3) + PS(xy = ) )
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MQM = % A F (y - x4)
’ Me1
t o1 (a3 + B4 Xi+1) Fly
’ M-1 '
L B, . B
-2 B (4 + B X3 ) (y
1 M=t
- ;5151 B, (F (y - X047 =
+ 1 (4. + B y)
m M M
-3 Chypr By oy F oy - o)
15 -7 (y - xm) )
-3 3y (1 =AY T A
22 ! A
1 n A
Mg = ~ @ (At Bwfeer) T Oty
1
+ o (hy + By ¥)
1
-5 By (T gy -y - 1)
o :
1 N-1 \
T iofled (&5 + 35 x5,4)
1 N-1 )
4 B, , F
o izﬁn (Ai MR ]
y N=1 \
- n—l—éi:hﬁﬁ Bi [ ¥ (Xi+1 R
+ 1o F(xy -~ y)
m N R g
The value of M is defined by X\

In cases where the tempera
from measurements, the equations
be used,

i41/
Py - %)) (10)
v)
2\
(Xi+1 - 5) (11)
\
(xi - v)
ST Xy |

ture distribution is known

derived in chapter 3 are to
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Consider for this a temperature distribution defined

in N discrete points @

Grgr 23 e A “

Assuming a linear temperature distribution between

two adjaceént points xj and X497 the change in gradient az

a point X5 ig defined by

Ti+1 - T, . i1
DT, = —= - == (1
i+1 i i - x.

(WY

The integrals TCHM, TCP etc. as defined in chapter

become:
M
CM = D2, F - x;) |
121 27, FC (y - xy) (1
N
0P = 3 D27, FC (x.- y) (12
i=M+1 1 1
M
7SH = D27, F ;- X )
i§1 2T, S (y - xy) (1€
N
TSP = I D27, - )
i=M+1 2y > (Al 7 .

M is defined by =x3.< v <
vl

i XIL+1

Fquations (6), (7).....(11) and (14), (15), (1€) and
(17) are the basic equations of the code ATEAS.

6. NUMERICAL APPLICATION TO A G 19 FINNED CANNING

In fig. 10 is given an enlarged photograph of the
cross—section of a G 19 finned canning. Comparison wi+th

Fig. 6 yields the following values of the dimensions of the

fin:
ey = 0.094 cm b1 = 0,042 cm
e5 = 0.194 cm b2 = (0,025 cm
a = 0,78 cnm b3 = 0.038 cm
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From these values ATEAS determined the parameters m and f
B 3,234 cm_1

m o= 2,611 cm™ |
.1

m = 3,692 cm

i
Il

1.8 Wat+/cm °C)
1.8 Wats/co °c)

1 Watt/cm® °C, A
2 OC, A

(n
(h =2 Watt/cm

H

The flux distributions are chosen as given in Fig. 11:

Nominal value: a = 135 Watt/cm2 on finned surface
Flux peak varying from 0% up to 50% over a length of 6 cm.

The corresponding temperature distributions, as calcu-
lated by ATEAS, eare given in Fig. 11, respectively for h = 1

2 OC,

and h = 2 Vatt/cm and for the various flux peaks as men-

tioned before.

In Fig. 12 the temperature distribution for
h =1 Watt/cm2 °C is repeated on a larger scale. The bending
stresses respectively at the top of the fin and a*t the inner
canning wall, calculated for a Young's modulus £ = 400,CCC

kg/cmg, are also represented in Fig., 12,

In Fig. 13, the curves of Fig. 12 are repeated for zihe
2 0
case of h = 2 Watt/em“ ~C.

It is noted that the stresses are proportional to the
nominal value of the flux andralso to Young's modulus, and
can therefore easily be determined for other-values of nominel

flux and Young's modulus.

The equivalent stress at the corner of the fin, calcu-
lated according tc the Huber deformation energy criterior, is
small as compared to the bending stress (see Fig, 14). It can
therefore be ignored in the design philosopvhy. This confirms
that the deformation due tc shear stresses is small as com-
pared to the deformation cdue to bending stresses, which is one
of the assumptions of the theory.

As can be seen from figures 12 and 13, the thermal
bending stress phenomenon due to axial temperature variations
is a local one, and it does not influence eventual bending
stresses at the weld of canning to end plug, if the distance
between fuel pellets and weld is bigger than about 1 cm (for
G 19).
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It might be of interest to compare the refined theory
for finned cannings with the one for smooth cannings, and to
try to determine an equivalent canning wall thickness for the
homogenized finned canning. It will be showm that different
equivalent thicknesses are to be applied for the temperature

3

and for the stress calculation.

For h = 1 Watt/cm2 °C the parameter m for G 19 was equal
to . -1
m = 2,611 cm
According to eguation (1) of appendix 1 the equivalent
thickness for an homogenized G 19 canning becomes

e = N S 0.,0815 cm.

Am2

It turns out that the eguivalent thickness is about 12%
lower than th2 cylirder wall thickness of the finned canning
(e1 = 2.094 cm). Paysically it means that the additional sur-
face (wetted periphery) introduced by the fin has a greater
influence on the axial conduction process than the additional
cross~section, a phenomenon which verifies itself also for
radial conduction.

As concerns the stress calculation, an equivalent thick-
ness can be computed from equation (8) of appendix 2, in such

a way that the elastic wave length is the same:

_
o= | =2 L 052 o
_ a

(g = 3.34 e~ )

This equivalent thickness is about 2% lower than the
height of the fins (e, = 0.194). This is accidental and can-
not be taken as a general law. The wave length B is determined
by the ratio of the circumferential rigidity (tension) o the
axial rigidity (bending), both per unit length (equation 8,
appendix 2). To obtain for the same wave length equal stresses,
an eguivalent thickness should be introduced such *hat the

distances from neutral grain to grain of maximum bending stress
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are equal?

e = 2 (e2 - hn)

I

For a G 19 canning h, 0.0785 cm

e = 00'231 Clll,
This equivalent thickness is about 20% higher than the

height of the fins.

Summarizing, it seems not to be possible to homno-
genize a finned canning by introducing a kind of average
thickness, but m, f# and hq are to be determined from the

formulae of appendices 1 and 2.

CONCLUSION AND FINAL REMARKS

A theory has been develoved to determine the ten-
perature and thermal stress distribution due +to axial flux
variations for smooth and for finned cannings, assuming =2
linear stress—strain relation (Hook's law). The digital
code ATEAS handles either.empirical flux distributions or
empirical temperature distrivutions. The latter iz of
interestv for cases where the temperatvure distribution
calculated by taking into account the contribution of the
fuel in the axial conduction (see ref. 3), which is neg-

lectéd in this paper.

From the numerical examples of chapter 6 follows
that the phenomenon is local, and stresses vanish at
about 1 em distance of the flux perturbastion (G 19).

For a G 19 finned canning with

dominal flux q = 135 Watt/cm2
peak 20 %

heat fransfer h= 2 Watt/cm2 °¢
Young's Modulus & = 4000 kg/mm®

(450°¢C)

the maximum bending stress at the +top of the fin is equal
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e = 1.1 kg/mm2

Shear stresses can be neglected in the design philosophy.

If, 1ike in o*her than G 19 ORGEL %type of cannings,
spacer fins are present, it is recommended to cut them in
regions of accentuated “emperature variations, in order to

preven’ excessive bending stresses at their ouver grains.
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NOMENCLATURE

e et < e e e ) S e T et St o oy Y g g P o o i
N T S T R L L S L e S e —

radius of canning

constants in flux functions
integration constant

width

)

dimensions defining the finned
canning wall cross-section

constant in flux functions

wall thickness of smooth canning
wall thickness of finned canning
height of fin

heat transfer coefficient
coordinate of neutral grain
index indicating axial position
ST

thermal wave length

pressure

flux

Fourier transform of flux
Fourier coordinate

cross—gection of finned canning wall
imaginary coordinate in z plane
temperature

radial displacement

Fourier transform of radial displacement
axial coordinate

auxiliary axial coordinate
complex coordinate

linear thermal dilatation coefficient
elasgtic wave length

auxiliary axial coordinate

Fourier transform of temperature
conductivity of canning
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APPENDIX

DIFFERENTIAL EQUATION GOVERNING THE AXTAL TEMPERATURE

DISTRIBUTION AND ITS SOLUTION

Canning without fins

A heat balance in axial direction yields (see Fig. 1):

2
_Ae-g—q—qu—hT

dx

\}

h '
with m =‘J-775 one obtains

2
'd;"—g' - m2T = -
dx :

:TF
Q

Canning with finsg

Consider the cross section as given in Fig. 2.

2 .
a~T _ 2 27 )
- AS ———dxg = 2q(b1+b2+b3) - 2h<b1+b3+/b2 +(62-e1)
with
A ]
2 2°
. h b1+b3+-V/b2 + (e2—e1)
A 1
b e +byent 5 b2(e2+e1)
and v
b, +b,+ v/bz + (e =o,)?
FC = 173 2 2 1
- b, + b, + b
1 2 3
one obtains:
g’g—T - m2T = e 21—2 (..g-_.)
dx2 h FC

1

(1)

(2)

(3)

(4)

(5)

(6)
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Equation (6) is similar to equation (2), if for finned
cannings the flux is divided by the finning coefficient FC,

C. Solution of the heat transport equation

The Fourier transforms of T and q are defined by:

6(g) = T(x) e99% gy (7)

7l

Q(s) alx) e % ax (8)

7

The inverse transforms are defined by:

T(x) = \/—127: /_+:8(3) e~ dSX 44 (9)
alx) = \/_;_1;‘ [_:“Q(S) e”JSX g4 (10)

If f1(s) and f2(s) represent respectively the Fourier
transform of the functions F1(x) anc F2(x), then the con-
volution integral of F1 and F2 is defined by:

+ o0

[TFyte) Tplxee) ag = [TriGee) my00) 6 -

[IEADEACRAEEE (11)

oc

Inserting the transforms into the differential sgqua-
tion (2) yields:

2
m Q
h s2 + 2

Applying the inverse transform gives:

21_2. wQ(S) o~ J5X

T(x) = ——
\/277 h -0 52 + m2

ds (13)
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Comparing (13) with (11) and calling Q(s) = f1(s) and

1 ,
= f,(s), equation(13) becomes:
s2+m® 2=
_ 1?7
T(x) = T a(¢) F, (x=¢) a¢ (14)
Vv w - e

The function F2(x) is defined from the inverse of fz(s)

]

4. 0o
~-jsx
- & . as (15)
Vven - 00 s2+m2

Fz(x)

The latter integral is calculated by contour integra-
tion. Suppose x positive and consider the contour as pre-
sented in Fig. 3. For R>» the integrand becomes zero at
the circle:

~Jzx -jsx
e e
——s dz = [ ———— ds (16)
f 72 2 52 2

R oo +m 400

The poles of the integrand are at z = + jm and it is
obgerved that only the pole z = - jm is inside the contour.

The residue at the pole z = =jm becomes
o~IX
residue = o (17)
~oe e—jsx

f —5—75 ds = 27§ I residue's (18)
+e 8° 4+ m

— e—

= 27 ( —2m)

Finally, still for positive x, one gets

P, (x) =VZT S— (19)

For physical reasons it is obvious that F2 should
be an even function and therefore:
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~m| x|

F2 (x) = vew 'e—zl'l‘—- (20)

The temperature is then given by the following convolution
integral:

2(x) = F [ ale) eIl ag (21)
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APPENDIX 2

THE DIFFERENTIAL EQUATION GOVERNING THE DISPLACEMENT

OF A THIN CYLINDER WITH SYMMETRICAL LOADING

In order to derive a correction for finned cannings,
the classical theory as presented in handbooks on the sub-
ject (ref. 1 and 2) is repeated.

A. Canning without fins

Consider an elementary part of the cylinder as de-~
picted in Fig. 4. Due to symmetry its displacement is only
in radial direction and denoted by u, positive when the
radius tends to become bigger. The elementary part is re-
garded as a cantilever, loaded by forces and moments as
given in Fig. 4. Deformations due to the shear force are
neglected, which is by the way usual for cantilevers which

are not high as compared to their length.

Application of the elementary bending theory yields:

Eedd®u _ oy vy
12 .2 T Yxe T Tex
dx
23 1 (1)
e —_— e —— - - T
12 (a a+u) - me¢ + M¢x

The change in curvature in tangential direction is small of
the second order:

1 o~ u~
- —— " = ~ 0 (2)
a+u a2

O B

Equations (1) become:

M = YN

X X

(3)
B 83 d2u (1 .Y-2) M
12 dX2 - - X
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The hoop force H is related to the displacement by

H=Ee(E-—aT) (4)

Equations (3) and (4) are the stress-displacement relations

of the problem.

The equilibrium equations follow from Fig. 4.

%}%=—p+§ (5)
%% = =Q (6)

Combination of (3), (4), (5) and (6) yields:

4 2
-3-14’% + 4p4 u = 4ﬁ4 (aaT + %&_E_) (7)
X
2
4 12(1=-7%)
48 = 5 D (8)
a €

Canning with fins

Consider the elementary part as given in Fig. 5. As
compared to Fig. 4, the equilibrium equations are not changed.
Only the relations between the displacement u and the forces
and moments have to be changed.

As regards bending in axial direction, the inertia
moment of the complicated cross-section (Fig 6) should be
introduced. As in elementary bending theory a linear stress
distribution can be assumed.

As regards vending in tangential direction (Fig. 7)
the contribution of the fin is more difficult to calculate.
In the canning without fin, the anti~elastical bending in
tangential direction causes an increase of rigidity in
axial direction of about 10% (—1 % 0.1). It is there-

2

fore less important to know the exact elasticity in tan-
gential direction. An easy way to estimate it, is to assume
a linear stress distribution in every cross-section in @

direction.
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The hoop force H causes a displacement u, which can
be calculated by assuming an uniform stress distribution in

every cross—section in ¢ direction (Fig. 8).

Adopting the above nmentioned hypothesises yields:

2 M M
d”u-_ _Xg e 22X (9)
T I YTE T
dx X X
1 1 "Y}‘Fxrp D‘mr
X 2
X P X
I¢v
I -y £ i (11)
X <o  XP
2 .
?_ 1— I‘\"i
P (1-v") M (12
T I Ve
dx™ pd
T = ff (z-h )2 aA (see iz, 6)
X I =
14
[fz aA (12)
h, = - (see Tig. 5)
[ dA
_ 1 3 3 3 3
IX¢ = 3(b1+b2+b3)[b1 ( (e1—hn) +hy )+ by (ep-h, )7+ hlj
(14)
2] 2 g4t Sy = e 3
+ b, (((eg-h )<+ (ey-n,) > ( ) 4 hr“l):]
2 2 1 (.2 . 2
N _ % bey + 0,05 + 3b2(e1 + o4, + o2 ) (151
n 2 1 . A
b1e + §b2(e1 +e2) + b3e,
b,+bA+Db
1 .
lox = a2 3 (see Fig. 7) (16)
1?[519
83
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(see Fig. 8)

I _ 1 2 3 ) -
0% R AL
12 (= + = + =3
e1 2e1e2 82
- (v
H = 5 = aT) h1
. ) b1+b2+b3
1 db
e
. B b1 + b2 + b3
1 7 D D e D
1, _2 1ngg + Ei
€9 C27%4 1 2

4 2
__di+4ﬂ4u = 4ﬁ4(aaf+‘%i—)
dx T

y (1-v2) h,
l‘rﬁr = 5
I a
Xe

esses as function of the moments

and forces

Canning without fins

Axial bending stress
- 6 M

Tangential bending stress

g
be + e2

Hoop stress

He —

- 6 YM
X

outer wall

inner wall

outer wall

inner wall

(17)

(18)

(19)

(20)
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Shear stress in midplane |
r _ 3 8 (parabolic distribution (25)

X® 2 e according to elementary
bending theory)

2, Canning with fins

Axial bending stress in outer grain of fin:

M \\
c = = =— (e, = h_) (26
b,0,x wa 2 n

Axial bending stress at interior canning wall:

M

o, . _= =—— h (27)
b,i,x wa n
Tangential bending stress in cylinder wall:
- - Y
6 wa _ I¢X M 6 (28)
v - T “xo 2 /
+ e + X e
1 1
- outer wall
+ inner wall
Tangential hoop stress
H \
= — 2
OH,¢ ey (29)

It is noted that in the outer grain of the fin a
maximum bending stress in axial direction occurs. In this
grain no tangential bending stress exists. As othexr
critical points should be mentioned the corner of the
Tfin and the cylinder wall. The axial bending stress at
that peint is probably small:

The tangential bending stress (28) and the hoop
stress (29) might be rather big. Besides an important

shear stress occurs due to the varying bending moment in

axlal direction. As in elementary bending theory this
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shear stress is calculated from the equilibrium equation in

axial direction (see Fig. 9).

e
1
do
(b2+b3>7~ = - (b1+b2+b3> fo = aé
b,+b,+b 3
- 1 2 "3 d-u _ 1.2
Txp Tes, £ 3 (hy ey -3 e

172 dx3

4

According to the Huber rupture hypothesis the equivalent

stress 2% the corner of the fin becomes:

1

9 T T = ("1 %

e \/?

2 2 2
)< o+ (02—03) + (03-01)

11

\ 2
J(a1+o2+o3) -3(0102+ 0203+o3o1

(31)

(32)

(33)

2

y

Xy y

4

&

o = J (oa+ot+oH)2 - 3oa(ot+aH) + 31'2

0. = axiel bending stress (30)
o, = tangential bending stress (28)
p = tangential hoop stress (29)

T = shear stress (32)

2 2 2
J (oX+o +oz) - 3(0Xoy -7 + 0 0, - Ton t 95% Ty

(34)



APPENDIX 3

SOLUTION OF THE DIFFERENTIAL EQUATION GOVERNING

THE CYLINDER' WALL DISPLACEMENT

1. Relation between displacement and temperatire

The Fourier transform of the displacement field is

defined by:

U(s) = Jz;ﬂ /_“ Ulx) e3%% ax (1)

From the differential equation one obtains:

U(s) = 4ptaa ° ; (2)
s" + 48
(N.B. The pressure term is omitted for convenience, because
it is usually constant in x direction. It is noted, that =
varying pressure term can be treated in the same way as the
temperature term).

Application of the inverse transform yields:

+o0 .
-jsx
wlx) =4 pten Lo [ SE_g (3)
V21 Jew 5T 4+ 24 B

As in appendix 2 the integrand is regarded as the oproduct
of two functions f1(s) and fz(s), which are the transforms
of two other functions F1(x) and Fg(x).

+ o»

4 1 .
alx) =4 ptea —Lof D00 2,600 a (4)

()|
~r

1 T gmdsx
F2(X) = [ "_'—"‘_—"4 4 (
vV 2m J=e g7 + 48
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The latter integral is evaluated by contour integration of
the integral:

-Jj2zx
f e 2mj % residue's (6)

2%+ gt

Por positive x the contour is taken as in Fig. 3. The integrand

becomes zero on the circle , when X = o

~jzx -® -Jsx
f oS - [ e (7)
2%rap* stiap
R - oe .
The poles are z =8 (1-3) and z = - B (1+3)
The function FZ becomes:
LIB(1+3)x —i8(1-3)x ;
P(x) =21 |—V—— + = .
2 1+ 1-3 853
= —l§ on e P¥(cosp x + sinf x) (g)
88
= —13 vVen o(B x)
88
For physical reasons it is obvious that the function FZ(X)
1s even
Fo(x) = 5 V2T o (Ipxl) (10)
38
The displacement field is thus given by the convolution
integral:
+“
ul(x) = % aﬂa]- 7€) o (B Ix~¢l) ¢ (11)

By partial integration (11) can be separated into a pure
thermal dilatation displacement and into an elastic dis-
placement.

to 5
u(x) = qal + 22 §—£K£2-¢ (Blx =¢l| ) a¢
- W e et
(12)
6 (8x) = ¢ P¥ (cosp x - sinf x)
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2., Relation between displacement and fluxes

Combining the differential equations governing the axial
heatItransport and the radial displacement, and applying
the Fourier transform yields:

U(s) = 4B o am® Q(s)

(13)
h (s4+4ﬁ4)(s2+m2) ]

The function F2(X) (see appendix 1) is now defined bys:

-isx
v*‘“ —e (" *454\<q +m?)

This integral is calculated by contour integration :

) 3
2(X) do (14/

-jzx
o J

radh) (P ©7 T 27 Bwesituets o (15)

Por positive x the contour is taken a2s in Iig. 3 and

for R+ » the integrand becomes zero on the circle

-0

§ =22 i (15)
iz = ] ds 16
(z4+4ﬁ4)(22+m2) toe (s4+4ﬁ ) (s “+n?)

The poles are at z = -im, =z = (1-3) and.z = -p{1+3).
The function F (X) becomes (still for positive x)3

iB(1+3i)x
\/ZW'[ € + e
om(m*+26%)  883(1+3) (m°+238°)

F2(X) +

—d8(1-3)x J
8ﬁ3(1 i) (m? ~23B)
s o X m2

+ B op(px) - L ¢<ﬁx>:]
mespt L oon  8p3 4 g

Finally one obtains the following convolution integral
for the displacement field wu(x):
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