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Preface

This report describes a part of a numerical program made for the
study of the spatio-temporal dynamlcs of a reactor. The time-
dependent two-group diffusion equations are transformed, by the
finite difference method, into a system of linear equations.

This program was written for the Reactor TESI which operates in
condition of prompt criticality end has fluxes which increase
very rapidly. High accuracy is therefore required in calculating
the fluxes at every time step. For this reason the solution of
the system of linear equations was attempted in two ways, by an
iterative method, as it is common practice in the nuclear codes,
and by a direct method,

This report describes only the two methods used and gives a com-
parison of their numerical results, A complete description of the
program and of the physical problem will be the subject of an-
other report.

We are indebted to Dr. Guerri and Dr. Galligani for many useful
suggestions.,



I. The finite-difference formulation of the diffusion equations

In this report are described two mathematical methods to be
employed in a program for the study of the spatio-temporal
reactor dynamics. In this program the time dependent diffusion
equations are solved directly with a numerical method in order
to study the variations of the neutronic flux as a function of
space and time throughout the core, ‘

This problem is treated in the two-group approximation in order
to better evaluate the flux distribution in the reflectors and
their influence on the neutron economy,

For simplicity the reactor is imagined as an infinite horizontal
slab of finite height H. Along the z-axis the reactor consists
of several regions R, of different physical nature: lower
reflector, non rodded core, rodded core, upper reflector,

The two-group diffusion equations of the k-th region R, are
the following:

K Gl K K Kk _ oy (1-1)

DX — y = ARy + BXg + OX = — — 1-1

T 22 wt ot
o® 1 3¢

Df —— ¢ - EXg + F'y = — — (2-1)
az® vk a3t

where:
D; and DZ are the fast and thermal diffusion coeffi-

cients, which are assumed to be constant in each region R, .

v = y(z,t) = fast flux
¢ = ¢(z,r) = thermal flux
AR = [?R(Z’t) + BQ.D?] = removal X-section an. fast

radial leakage.



B* = (1 - B)ovozf(z,t) = prompt neutrons produced
per unity of thermal flux

CX = AeC (z,t) =delayed neutrons produced per cm® per sec.

EX = [Za(z,t) + Zp(z,t) + BQoDQ] = thermal absorption
X-section, rod poison, thermal radial leakage

K = ZR(z,t) = number of neutrons thermalized per unity of
fast flux

wK = neutron velocity of the fast group

v/ = neutron velocity of the thermal group

The quantities with index k are assumed to be continuous in
each reglion Rk and may be discontinuous at the interfaces.

The fluxes ¢ and ¢ and the neutron currents Df %—% 3 Dt%?:z are

continuous functions everywhere,

The fluxes § and ¢ are zero at the lower and upper boundary of
the reactor:

¢ (0,t) = o (H,t) =¥ (0,t) = ¥ (H,t) = 0

The height of the reactor has been divided into mesh-points {ZL}
(1 =0, 1, 2, eseeely L+1) with z, = 0; zp44 = H. On each
interface between two regions is a point of the lattice, and
each region contains at least one point.

Discretizing also the time-variable t the diffusion equations
(1~-1) and (2-I) are transformed into:

-r " 4 N - R - = -1
i1 wl—i pli ‘yi. 41,1 ¢L+1 L (pl. qL1 (3-1)



n no, n
=, e -r - + . - . =
™ \bi-i lz L1 P2 "% L+ ,2 (pi.+1 % 2

(4-1)

(i =1, 2, eeeeeey L) space index

(n

0, 1, 2, eeees ) time index

This transformation is described in Appendix A, This is an
implicit scheme. It has been chosen implicit in order to in-
sure the numerical stability of the finite difference method
without limitation for the time interval A t.

The coefficients of the system (3-I); (4-I), which are dependent
from the unknown fluxes ¢ and ¢, have been calculated at the
time level n - 1. The system is in such a manner linearized.

The error introduced by such an approximation is negligible
only for small At and for coefficients which vary slowly with
the time. The choice of At is based on a compromise between
precision and time of calculation.

At every time step the coefficients are given new values which
are determined according to the temperature reaction and .the
position of the control rods,

The known terms q . and qu contain explicitly the values of
the fluxes W?“i and ¢?'1 of the preceding time step. An initial
distribution of fluxes ¢2 and ¢2 is given at t = O,

At every time step the problem is reduced to the solution of
the system of 2 x L linear equations in the variablesxyL and ¢L.

The solution has been obtained with two methods, one iterative
and the other direct.



II, Iterative method (Block Gauss-Seidel)

The system (I-3); (I-L4) may be written in matrix notation
(see page 25 of Appendix A).

{ Aill!"S(p= qi (11‘1)

-M =
] +A2cp q

The iterative method 1s as follows:

in the source-term S¢ of system (II-1) we use the vector ¢
obtained from the calculation of the preceding time step;
the system (II-1) is then solved in ¥. The vector ¥ is used
in the source-term My of system (II-2) and a new vector ¢
is calculated. This is used in the source term Sg¢ of (II—1)
and so on.

This method is the same as the block Gauss-Seidel iterative
method. In fact let us consider the system Ax = q formed by
the two systems (II-1) and (II-2); where x = (%) end q =& ,
and the matrix A of the coefficient is partitioned as %o

follows:

(11-3)

Applying the block Gauss-Seidel iterative method we have

I e xr+1 - U xr +q

which divides into the two subsystems
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AT = 8T 4 g (II-4)

+A9 T =q (11-5)

For a time interval sufficiently small (see Appendix A) the
matrix of the coefficients A fulfills the following condi-~-
tions:

a >0 (11-6)

i
2, €0 for i # j (1I-7)
N
&, > E: ,aLJI (11-8)
J=1
J#1

which are sufficient to insure the convergence of the iterative
‘method (see Appendix B).

The solution of the systéms

Aiwr“ = Sp* + q (11-9)
quar.*‘ = T 4 q (11-10)

must be performed at every lteration; this is obtained by
a direct method. The systems (II-9) and (II-10), with tri-
dlagonal matrices A; and A, are of the type:

+ PX - Y =U (i=1,...L) (I1I-11)

-r
Lx L+ t+4 L

-

with X = 0

0 = XL+1>



11

The known terms UL contain the source-terms.

The solution of system (II-11) is obtained by using the re-
cursion formula:

X, = ochH1 + BL (II-12)
I‘L-i-i
o = (11-13)
L p =-ra
t A -y

U +r, 8
L -
B = *— L%t witho =8 =0  (II-14)
L P -1 *a o o
L i l=1

This recursive method is suitable for the numerical cal=-
culation because ai and Bi are of the same magnitude., Only
three multiplications, two divisions and three additions
are necessary for the calculation of each spatial point,

In our case the matrix fulfills the conditions:

r. >0 (11-15)
II-16
pL > rL + rL+1 ( I )
Therefore we have:

o < 1 (I1-17)

the error ¢ resulting from the calculation of xJ is trans-
mitted by the recursive formula (II-12) according to:

€ = e« € (11-18)

€. < € (11-19)



12

"The numerical stability is therefore also assured for
" lattices with a great number of points,



13

III, The direct method

Rearranging the system (I-3), (I-4), intercalating the
equations of (I-3) with the corresponding equations of (I-4),
we obtaln a system with a pentadiagonal matrix of the coefficients,

This matrix can be partitioned into (2 x 2) submatrices accordihg
to the following scheme:

P -8 |-r O (111-1)
11 1 21 N
-m p | O -r P -R ]
i 12 22 i 2
-r O p -8 -1 O -Rz Pz—Rs
21 21 2 31
0O -r -m jo) 0O =-r
12 2 22 32
\\\\:::T\::?\;::?\:::\\\\ = = A
-RL-1PL-1_RL
“Tp,. O | Pry-Sg “Ry, By
0 S ~Iy, pL,z
Bhgztin A
The generic equation of the system is:
- Y . - ] = 1.= 1 se e L III"Z
R X P R KR N T Y ( ! »L) ( )
where
¥, Q.
L1
XL =< > qi = < >
@ q

and where RL and PL are non singular 2 x 2 matrices,
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The direct method of solution employed for the equations (II-11),
with the recursion formula (II—12), may be generalized for

this case of equation (III-3). In fact the matrix A, if con-
sidered as consisting of 2 x 2 submatrices, is tridiagonal.

The recursion formulae are now

X = A o X + Db (III-B)

= (P - . “t. R ITI-
A ( L RL AL-1> L+t ( k)

and the vector b is

The boundary condltions are:

N _ /0
Xo - XL+1 - 0

and therefore we have A = O and b =0
(o] o}
Starting from A and b we can calculate forwards all the

A and bL’ and with these, starting from Xp4e* W€ CEN calculate
backwards all the XL

For this method it is necessary to perform the inversion
of the L matrices (PL -R - AL 1).
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NOTE:

In order to avoid the cumbersome operation of inverting these
L {2 x 2) matrices we tried the H-method of Schechter, where it
is sufficient to invert only one matrix. The matrices RL are
diagonal and therefore directly invertible. We multiply the
system (III-2) by R

The matrix of the coefficients then becomes:

P' R ]
1 2
I P' R!
2 2
I P' R!
R*A = 8 3
1
I PL
N [~ —1. R 1] =_-1. . |= "1.
with PL = RL PL’ RL+1 RL RL+1’ a, RL q__L

The recursion formulae of the H-method are:

xg, = H v

Pad
i

"" ! - ' . i=L L) 2)
4 Pixi RL+1 XL+1 ( ’ ?ee
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il
=
L
o

i
=
et

where H,

and for the boundary conditions

H =1 H =P w =q
o 1 1 1 1

(See Schechter: "Quasi-Tridiagonal Matrices and Type-insensitive
Difference Equations")

With this method, however, we obtain unsatisfactory results

because of the propagation of the rounding errors:

€ = -P'eg = R! < ¢
L-1 i L L +1 lL+1
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IV. Numerical examples

The two methods above described are part of a numerical code

to be employed on the IBM 7090, and which is made for the

study of the spatio-temporal dynamics of the Reactor TESI,

This reactor operates in the following way: from being critical
at a very low power it is made prompt criticel. The flux rises
very rapidly, and, as the reactor is not cooled during the
transient, the temperature in the core rises accordingly. The
core has a large negatlive temperature coefficient, therefore
when a certain value of the flux is reached the reactor be-
comes undercritical and the flux decreases very rapidly.

For testing the two methods of calculation we introduce step-
wise a reactivity p = 0,1 %. The control rods in this parti-
cular case are supposed to be extracted instantaneously and 2Zp
(rod equivalent poison, see page 3) is reduced instantaneous-
ly and uniformly all over the core. This causes a transient of

the order of 0,5 sec, during which the flux changes from 1019 o
1018 gﬁ%g;g. For s given time interval At, chosen for the

numerical calculation, the increment of the flux in At is
very large.

With the iterative method the thermal flux at the time tn

is taken as a first estimate for calculating the fluxes at

the time th+1 = th + At. Therefore the choice of At influences
very much the effectiveness of this method: the greater At,
the greater is the number of inner iterations necessary to
reach the wanted precision.

Many tests were made using several At in the range:

5 « 107® sec < At <2 « 107 sec.
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With the direct method and with various At contained within
these limits the fluxes and temperatures have no appreciable
variation. In Fig. 1 are the curves of &(t), (& is the
thermal flux averaged throughout the core). These curves were
obtained by both the direct and the iterative method, the
iterative method with enough iterations éo obtain practically
the same results as with the direct method. For At less

than 1072 sec the curve has no appreciable variation, for

At > ‘!O'3 sec the curve tends to be deformed. This is due to
the fact that the variation of the temperature-dependent
physical parameters during the interval At is no longer
negligible.

In Fig. 2 are plotted the curves &(t) for At = 1072 sec,
calculated with the direct method and with‘the iterative
method with 2, 3, 4, 5, and 6 iterations. Table 1 contains
the numerical values of some points of these curves,

Fig. 3 contains the values of the flux calculated at a transient
time value of 0,2 sec. These are plotted against the time
interval At. The curve of the direct method remains at a con-
stant value for all At < 10™° sec. The other curves, corres-
ponding to the iterative method, tend to the same value for
decreasing At. The greater is the number of inner iterations,
the greater is the At for which the wanted precision is
obtained,
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ITERATIVE METHOD DIRECT
NUMBER OF INNER ITERATIONS METHOD
TIME 2 3 ) 5 6
0. 9.10002E N 2.13330E 11 0.12000E 1N 0.10300E N G.10000€ 1N 0.12000E 1
0.0500 0.326u45E 12 Q. u9922€ 12 J.57849E 12 0.60797E 12 0.61816E 12 0.62332€ 12
0.1000 C.100€9E 14 0.2357L4E 14 0.31651E 14 0.34959E 14 0.361T41E 14 0.367T46E 14
0.1500 0.31109E 15 C.11099E 16 0.17254E 16 0.20022€ 16 0.21043E 16 0.21572¢ 16
0.2000 0.9L310E 16 - 9.48360E 17 0.82754E 17 0.98611E 17 0.1J44L8E 18 C.13753€ 18
0.2500 0.197u6E 18 0.56132E 18 0.6u856E 18 0.66439E 18 0.66783E 18 0.66956E 18
0.320¢C 0.5u4986E 18 0.58789E 17 0.20634E 17 0.14619E 17 0.13063E 17 0.12259E 17
0.3500 0.14069€ 17 J.54414E 15 D.27T7T16E 15 0e23967E 15 0.23035E 15 0.22649E 15
0.400C 0.30090E 15 0+.15843E 15 0.15747E 15 0.1576CE 15 0.15774E 15 0.15779E 15
0.4500 0.15539€E 15 0.15541E 15 0.15626E 15 0.15663E 15 0.15684E 15 0.15690E€ 15
RESULTS OBTAINED WITH DELTA T = 0.001
TAB. 1

1¢
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V. Iterative method with variable number of inner iterations

The number of inner iterations necessary to obtain a given pre-
cision is proportional to the difference

AR = & (tn + At) = @ (tn)

But A® varies with tn during the transient. Therefore the
program was made to iterate until

3" -
L

L -1

< €
"
l

where 1 is the index of the inner iteration and ¢ is the
greatest admissible relative error. The maximum number of
allowable iterations is fixed, and when this maximum number
is reached the program stops iterating even if the wanted
precision is not yet attained. By this method it is possible
to avoid a number of useless iterations in some parts of the
transient, and, by increasing the max. number of allowable
iterations, to reach any wanted precision.

TABLE No, 2
At max, ) Ul time time
number —of direct iterative
iterations
241073 6 1074 1,066 23: 38:
2610~ 8 4ok 0,213 23“ : uu"
1072 6 107l 0,0283 14 1 03
-1 - ' " ? "
5-10 L 10 0,024 1' 15 1? 32"
107H 3 1070 0,00306 5 148 5. k.
107k 2 1070 0, 05134 5 L8 L ué
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TABLE No. 2 contains for various At:

max. ¢ The maximum number of allowable iterations,
€ : The relative error at which, when reached, the

iterations stop.

oo Brle(s) - FHTo(4)
n : M = max p—
t>0 e (t)

where 5it' and Edir"are the fluxes calculated

respectively with the iterative and the direct method,
time
direct ¢ The calculating time of the direct method.
time

iterative: The calculating time of the iterative method.
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Appendix A

The diffusion equations of the Rk region are:

9? 1 ay
D?«gj; ¥ - ARy + Bo + CK = i (a-1)
Z
o 1 3¢
D‘%;—;¢—EKQ+FK¢=—;; (a=2)
Z v

The space is divided into mesh-points {zt} (i=0, 1, 2,...L, L+1),

On each interface between two regions is a point of the lattice,
and each region contains at least one point.

The mesh increment is A = Zypy” Fe For all the points i=1, 2,...L

the equations (a-1) and (a-2) must be integrated in the inter-

vals z € 2 < zL and zL £ 2Z £ Z

-3 L+ 3

i-1 i i+1

A —

j-% i+d

For the sake of brevity only the integration of equation (a=1)
is reported here:

z z
L 1
1 9y oY oy
T odz = [éf —{] - [?k —— —./ (A- Yy - Beo - C) dz
2 ot 9z z _ 9zl z " '
_ 1 l- 2 ¢ 4
2 l—'§

(a~3)
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z z
l*% 1 oV v oV [.""%
/ “"—-odz:[Df-— —[Df——] - / (A«y-Begp-C) az
w ot 0z oz 1 »
z, 1t itz
(a=L)
where

[f(z):Lt_ and [f(zi]ZL+

are respectively the left and right limit of f£(z) in z = Z .

Adding (a-3) and (a-4) and remembering that fluxes and currents
are continuous we have:

2 1 zZ
L*3 4 ay v vy i3
/ ___:[Df-- -[Df—] -/ (A +y =B oo =C) az
w ot 0z z 0z z
ZL_% L"'% L-% ZL—-%-
(a~5)
oy
The derivatives 3, are calculated with central differences;
the integrals are approximated according to the formula:
‘g A A
- l-1 + 3
/ £f(z) dz = £ o + £ o — (a=6)
L 2 i 2
Z-%
The derivatives with respect to the time are approximated
according to:
LU (zy,t) = ¥ (z;,t=-At) ] - Pt
= = (a=7)

ot ZL At , At
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Equation (a-5) then becomes:

1 \Ijn_ wn-i A 1 .q;n wn"i A- n - \If
Oz[__________:l . L~1 +[___:_____] . _L__-D . L+1 L +
w At w At

—— - K
If z;, is a point internal to R then th—é = th+% D& .

The functions A, B, C are continuous in z, and equation (a-8)
therefore becomes:

1 1 1 Ay _ + A
" ~+[é§ < +-—-> + <——————u»AF\\.<—Lli———L oo
5, A A weat b/ 2 L

(a=9)

If z; 1s a point on the interface between R,_, and R it is

- T ~1 — 17K
Dp_1 = Dp De+s = Up

- pk=1 — ak
(A)ZL—' A (A)ZH’ A

same for B, C, w,



28

Equation (a—8) therefore becomes:

D™t DK™t DX 1
- oo+ [ f L. < + AF'1> Lot ,
A L=1 A A wiiat t 2
=1 -1 i i

n=—1 N—1
=[CK‘1+ it ']A'L-u[cm—“'i-—-]ft—
¢ w-toat o2 L wt— At J2 (a=10)

Integrating equation (a-2) with the same proceedings we obtain
the two following expressions:

for ZL internal to Rk:

K n 1
2 oo _[F« Cbioat Az] R T P R (at1)
A, LH t 2 L vt-At 2
L

for z, on the interface between Rk and Rk:
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DK-1 pk—* DK 1 A
-t @: LY [ LN A < — + Et-1>o o,
A - -1,
-1 Ai—i AL VL Ay 2

. — 4+ ¢« — (a=12)

The finite-difference equations obtained by this method are of
the type:

- - - - -
rliwl—i + ptiwt tL1WL+1 SLQL qLi (a 3)

- m - T + P - = -1
Lwt L2¢L-1 L2¢L L2¢L+1 qu (a h)

(L = 15000,L)

where

and t =T and t =
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The matrix of the coefficients of the system (a-13) and (a-14)

is then:
| p -r -8
11 21 1
-r -r -5
21 Pas 2
Bk U PP iaty ) B P
S s Pp, ie?
A = =
-M | A, -m Pio "Taz
-m -r o -r
2 22 22 32
ey P P12 Pro1e TTIp
TLa P

where the entries on the main diagonal are all positive; and all

the other entries are

< O.

The tridiagonal matrices A; and A, are definite positive as they
are symmetrical and as their diagonals are dominant and with

positive entries,

The diagonal matrices S and M are non~-negative.
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In order that the entries of the main diagonal of the total
matrix A are strictly dominant it is sufficient that

"

— A% 5 B (a=15)
. t L L
w’,: A
1
- + EX > F¥ (a=16)
vh o« At L t
i

This condition is normally satisfied.,
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Appendix B

Here below are some definitions and theoremsnecessary to
demonstrate that the iterative method (Block-Gauss-Seidel)
converges.

Def, 1:

Def, 2:

It is called "Spectral Radius" p(A), the greatest
modulus of the proper values of the matrix A:

p(A) = max lkd
i=1,N
A matrix A is:

2.a Convergent if the sequence of matrices A, A%, A%,...
converges to the null matrix O.

2.b MNon negative - A > O if all the entries are

real and aL, z 0,
J

2.c Strictly diagonally dominant if for all i = 1,.ee.,N
it is

2] > Z 2] (2ee-1)
i¥3
from (2.c-1) follows evidently

2

i=1
1#3

agj

aii
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Def. 3: The splitting of a matrix A

A=E-~-PF

is a regular splitting if E is a non-singular matrix
with E-* » O and if F » O,

Theorem 1 - The necessary and sufficient condition for A
to be convergent is:

p (A) <1

Theorem 2 - The spectral radius p (A) of an arbitrary
matrix A fulfills the relation

N
) <) bl
Jj=1

Corollary -~ Let A be a strictly diagonally dominant matrix;
let D be a diagonal matrix D =(5%f), then the matrix
B = I-DA is convergent.

In fact the following relation is fulfilled:

N
at ;
p (B) < max. :T‘ = <1
i=1,N /. i
J=1
J#1
Theorem 3 - Let A be a real matrix with aij; < O (for i#j)

and aiy > O, and let D be a diagonal matrix D = (Eff)5
if the non negative matrix B = I- DA is convergent
then A is non-singular and A"t > O,
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Theorem 4 - If A =E -~ F is a regular splitting of the
matrix A and A™! > O then

p (A™1F)

p (B™*. F)

it

<1
1+ p (A7'F)

Therefore the matrix E~*« F is convergent and the
iterative method

By = mT 4 q

converges for any initial vector %°.

This last theorem is interesting for our case. In fact the
matrix A of the system in study fulfills the following
conditions:

N .
a . > :ﬁ 'a 4 (see II. page 6)
ti - LJ

J=1

J#L
therefore, for theorem 3, At > O,

The splitting A = L - U is regular, because the following
conditions are fulfilled:

u = 0 i.e. U2 0
[ ]

1LL > 0 1L‘ < 0 j#i (see II. page 5)
J

N
1 > E: ll |
ti LJ

J=1
J#1
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and, again for theorem 3, they give L™t > O,

Therefore, for theorem 4 the iterative method of II. is
convergent.

(The theorems 1, 2, 3, 4 are respectively the theorems
1.4, 1.5, 3.10, 3.13 in "Matrix Iterative Analysis" by
R. VARGA - Prentice-Hall, Inc.).
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