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Preface 

This report describes a part of a numerical program made for the 
study of the spatio-temporal dynamics of a reactor. The time­
dependent two-group diffusion equations are transformed, by the 

finite difference method, into a system of linear equations. 

This program was written for the Reactor TESI which operates in 
condition of prompt criticality and has :fluxes which increase 
very rapidly. High accuracy is therefore required in calculating 
the fluxes at every time step. For this reason the solution of 
the system of linear equations was attempted in two ways, by an 
iterative method, as it is common practice in the nuclear codes, 
and by a direct method. 

This report describes only the two methods used and gives a corn~ 
parison of their numerical results. A complete description of the 
program and of the physical problem will be the subject of an­
other report. 

We are indebted to Dr. Guerri and Dr. Galligani for many useful 
suggestions. 
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I. The finite-difference formulation of the diff'usion equations 

In this report are described two mathematical methods to be 
employed in a program for the study of the spatio-temporal 
reactor dynamics. In this program the time dependent diff'usion 
equations are solved directly with a numerical method in order 
to study the variations of the neutronic flux as a function of 
space and time throughout the core. 

This problem is treated in the two-group approximation in order 
to better evaluate the flux distribution in the reflectors and 
their influence on the neutron economyo 

For simplicity the reactor is imagined as an infinite horizontal 
slab of finite height H. Along the z-axis the reactor consists 
of several regions Rk of different physical nature: lower 
reflector, non rodded core, rodded core, upper reflector. 

The two-group diffusion equations of the k-th region~ are 
the following: 

1 aw --
vi< at 

( 1-I) 

(2-I) 

where: 

nk and nk are the fast and thermal diffusion coetti-f t 
cients, which are assumed to be constant in each region Rk. 

"' = w(z,t) = fast flux 

~ = ~(z,r) = thermal flux 

Ak = [1:R(z,t) + B2.n}J = removal X-section anu f'ast 
radial leakage. 



7 

Bk = (1 - ~)•v•Zr(z,t) = prompt neutrons produced 
per unity of thermal flwc 

ck = l•C (z,t) = delayed neutrons produced per cm3 per sec. 

Ek = [za(z,t) + zp(z,t) + B2 •D1] = thermal absorption 

X-section, rod poison, thermal radial leakage 

pk = 4t(z,t) = number of neutrons thermalized per unity 
fast flux 

wk = neutron velocity of the fast group 

vk = neutron velocity of the tb.ermal group 

The quantities with index k are assumed to be continuous in 
each region R and may be discontinuous at the interfaces. 

k 

The fluxes~ and~ and the neutron currents Dr~ 
continuous functions everywhere. 

• D £2. 
' t az are 

of 

The fluxes~ and~ are zero at the lower and upper boundary of 
the reactor: 

~ (o,t) = ~ (H,t) = ~ (o,t) = t (H,t) = o 

The height of the reactor has been divided into mesh-points [zlJ 
(i = O, 1, 2, ••••• L, L+1) with z

0 
= O; ZL+1 = H. On each 

interface between two regions is a point of the lattice, and 
each region contains at least one point. 

'Discretizing also the time-variable t the diffusion equations 
(1-I) and (2-I) are transformed into: 

(3-I) 
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-m • W n - r ·~ n + p ·~n - r ·~ 
L L -1 t 2 L -1 t 2 L l +1 , 2 t +1 

(i = 1, 2, •••••• , L) space index 

( n = 0, 1 , 2 , • • • • • ) time index 

= \ 2 

This transformation is described in Appendix A. This is an 
implicit scheme. It has been chosen implicit in order to in­
sure the numerical stability of the finite difference method 
without limitation for the time interval 6 t. 

(4-I) 

The coefficients of the system (3-I); (4-I), which are dependent 
from the unknown fluxes wand~, have been calculated at the 
time level n - 1. The system is in such a manner linearized. 
The error introduced by such an aJ;?proximation is negligible 
only for small 6t and for coefficients which vary slowly with 
the time. The choice of ~t is based on a comJ;?romise between 
precision and time of calculation. 

At every time steI? the coefficients are given new values which 
are determined according to the temJ;?erature reaction and .the 
J?OSition of the control rods. 

The known terms 
the fluxes wn-i 

L 
distribution of 

q and q contain explicitly the values of 
L1 l2 

and ~?-1 of the J;?receding time step. An initial 
L 

fluxes w0 and ~0 is given at t = o. 
t t 

At every time step the problem is reduced to the solution of 
the system of 2 x L linear equations in the variables wt and ~L. 

The solution has been obtained with two me'th,ods, one iterative 
and the other direct. 
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II. Iterative method (Block Gauss-Seidel) 

The system (I-3); (I-4) may be written in matrix notation 
(see page 25 of Appendix A). 

[ Ai+ - St= qi 

-M V +A,= q 
2 2 

The iterative method is as follows: 

(II-1) 

in the source-terms, of system (II-1) we use the vector~ 

obtained from the calculation of the preceding time step; 
the system (II-1) is then solved in W• The vector t is used 
in the source-term Mt of system (II-2) and a new vector~ 
is calculated. This is used in the source terms, of (II-1) 
and so on. 

This method is the same as the block Gauss-Seidel iterative 
method. In fact let us consider the system Ax= q formed by 
the two systems (II-1) and (II-2); where x = (1) and q =~q1

), ' ~ and the matrix A of the coefficient is partitioned as 
follows: 

A=L-U= ~ ols 
~ 

(II-3) 

Applying the block Gauss-Seidel iterative method we have 

L. Xr+1 U r = • X + q 

which divides into the two subsystems 
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A 1j,r+1 = Sq>r + q 
1 1 

For a time interval sufficiently small (see Appendix A) the 
matrix of the coefficients A fulfills the -following condi­
tions: 

att > 0 

atJ ~ 0 for i -/ j 

N 

att >L !at JI 
j=1 
j,fi 

(II-4) 

(II-5) 

(II-6) 

(II-7) 

(II-8) 

which are sufficient to insure the convergence of the iterative 
method (see Appendix B). 

The solution of the systems 

A r+1 
2 cp 

must be performed at every iteration; this is obtained by 
a direct method. The systems ( II-9) and (II-10), with tri­
diagonal matrices A1 and A2 , are of the type: 

(II-9) 

(II-10) 

-r X +PX - r • X = U (1=1, ••• L) (II-11) t t -1 t t · t +1 t +1 L 

With X = XL = 0 0 +1 



11 

The known terms UL contain the source-terms. 

The solution of system (II-11) is obtained by using the re­
cursion formula: 

r 
t+1 

ex :: 
t 1\ - r ex 

t t-1 

ut + rt • '3 t -1. 

'3 t = with ex = B =0 
pt - r • 0: 0 0 

t t-1 

This recursive method is suitable for the numerical cal­
culation because ext and f3t are of the same magnitude. Only 
three multiplications, two divisions and three additions 
are necessary for·the calculation of each spatial point. 

In our case the matrix fulfills the conditions: 

rt > 0 

pt > r + r 
t L +1 

Therefore we have: 

ext < 1 

the error ej resulting from the calculation of xj is trans­
mitted by the recursive formula (II-12) according to: 

e: =ex .e 
J-1 J -1 J 

and for (II-17) we have 

e:. < e 
J-.1. J 

(II-12) 

(II-13) 

(II-14) 

(II-15) 

(II-16) 

(II-17) 

(II-18) 

(II-19) 
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The numerical stability is therefore also assured for 
lattices with a great number of points. 
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III. The direct method 

Rearranging the system (I-3), (I-4), intercalating the 
equations of (I-3) with the corresponding equations of (I-4), 
we obtain a system with a pentadiagonal matrix of the coefficients. 
This matrix can be partitioned into (2 x 2) submatrices according 
to the following scheme: 

- -
p -s -r 0 

11 1 21 
-m p 0 -r 

1 12 22 

-r 0 p -s -r 0 
21 21 2 31 

0 -r -m p 0 -r 
12 2 22 3~ 

~~~ 
-rL,1 0 

0 -r L,2 

-- -
The generic equation of the system is: 

-R • X + P • X -R • X 
L t -1 L L L +1 L +1 

where 

. X. 
L 

= 

p -R 
1 2 

R P -R 
2 2 3 

(1 = 1, ••• ,L) 

and where RL and PL are non singular 2 x 2 matrices. 

( III-1) 

=A 

(III-2) 
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The direct method of solution employed for the equations (II-11), 

with the recursion formula (II-12), may be generalized for 

this case of equation (III-3). In fact the matrix A, if con­

sidered as consisting of 2 x 2 submatrices, is tridiagonal. 

The recursion formulae are now 

X = A • X + b 
t t t +1 L 

where the matrix A is 
L 

A = (pt - R • A )-1 • R 
t l t-1 l +1 

and the vector b is 
L 

b = (pt - R • A )-1 • (q + R • b ) 
t t t-1 l t t-1 

The boundary conditions are: 

and therefore we have A = O and b = O 
0 0 

Starting from A and b we can calculate forwards all the 
0 0 

(III-3) 

(III-4) 

(III-5) 

At and bt, and with these, starting from XL+
1

, we can calculate 
backwards all the x 

L 

For this method it is necessary to perform the inversion 
of the L matrices (P - R • A ). 

t L t -1 
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NOTE: 

In order to avoid the cumbersome operation of inverting these 
L (2 x 2) matrices we tried the H-met.hod of Schechter, where it 
is sufficient to invert only one matrix. The matrices R are 

L 
diagonal and therefore directly invertible. We multiply the 

system (III-2) by R 

R = 

I 

' ' 

The matrix of the coefficients then becomes: 

P' R' 
1 2 

I P' R' 
2 2 

I P' R' 
3 3 

with P' = R-1
• P • 

t t L ' 
R' = -R- 1

• R • 
t +1 t t +1' 

The recursion formulae of the H-method are: 

'X. = q_' - P 'X - R' • XL +
1 t -1 l. 1 1 t +1 

(i=L, ••• ,2) 
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where H = H • pt - H • Rt 
t t-1 L t-2 t 

w = H • q - w 
t t-1 t t-1 

and for the boundary conditions 

H = I 
0 

H = pt 
1. 1. 

(See Schechter: "Quasi-Tridiagonal Matrices and Type-insensitive 
Difference Equations") 

With this method, however, we obtain unsatisfactory results 
because of the propagation of the rounding errors: 

e = -Pt • e - Rt • e: 
t -1 t t t +1 t +1 
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IV. Numerical examples 

The two methods above described are part of a numerical code 
to be employed on the IBM 7090, and which is rrade for the 
study of the spatio-temporal dynamics of the Reactor TESI. 
This reactor operates in the following way: from being critical 
at a very low power it is made prompt critical. The flux rises 
very rapidly, and, as the reactor is not cooled during the 
transient, the temperature in the core rises accordingly. The 

core has a large negative temperature coefficient, therefore 
when a certain value of the flux is reached the reactor be­
comes undercritical and the flux decreases very rapidly. 

For testing the two methods of calculation we introduce step­
wise a reactivity p = 0,1 %. The control rods in this parti­
cular case are supposed to be extracted instantaneously and Zp 
(rod equivalent poison, see page 3) is reduced instantaneous­
ly and uniformly all over the core. This causes a transient of 

10 the order of 0,5 sec, during which the flux changea from 10 to 
18 n 10 cm2sec• For a given time interval 6t, chosen for the 

numerical calculation, the increment of the flux in 6t is 
very large. 

With the iterative method the thermal flux at the time tn 
is taken as a first estimate for calculating the :n.uxes at 
the time tn+ 1 = tn + 6t. Therefore the choice of 6t influences 
very much the effectiveness of this method: the greater 6t, 
the greater is the number of inner iterations necessary to 
reach the wanted precisiono 

Many tests were made using several 6t in the range: 

5 • 1 0-5 sec .~ 6 t ~ 2 • 1 0-3 sec. 
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With the direct method and with various ~t contained within 

these limits the fluxes and teIIl]?eratures have no appreciable 

variation. In Fig. 1 are the curves of i(t), (i is the 

thermal flux averaged throughout the core). These curves were 

obtained by both the direct and the iterative method, the 
' 

iterative method with enough iterations to obtain practically 

the same results as with the direct method. For ~t less 
than 10-3 sec the curve has no appreciable variation, for 
~t > 10-3 sec the curve tends to be deformed. This is due to 

the fact that the variation of the temperature-dependent 

physical parameters during the interval ~t is no longer 

negligible. 

In Fig. 2 are plotted the curves ~(t) for ~t = 10-3 sec, 

calculated with the direct method and with the iterative 

method with 2, 3, 4, 5, and 6 iterations. Table 1 contains 

the numerical values of some points of these curves. 

Fig. 3 contains the values of the flux calculated at a transient 
time value of 0,2 sec. These are plotted against the time 
interval ~t. The curve of the direct.nethod remains at a con­
stant value for all ~t < 10-3 sec. The other curves, corres­

ponding to the iterative method, tend to the same value for 

decreasing ~t. The greater is the number of inner iterations, 
the greater is the ~t for which the wanted precision is 
obtained. 
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·-
ITE~ATIVE METHOD DIRECT 

l NU~AER OF INNER ITERATIONS ~EThOO 
! --------·-

t TIME 2 3 4 5 6 -----
i o. O.lOOOOE 11 ~.DJOOE 11 O.lGDClOE 11 0.10000E 11 

I 
O.lOOOOE 11 o.1aoooe 11 

o.osoo 0.32645E 12 0.49922E 12 J.57849E 12 0.60797E 12 0.61816E 12 0.62332E 12 

0. 1000 C. 10069E 14 Q.23574E 14 0.31651E 14 0.34959E 14 I o.36141E 14 0.36746E 14 

0. 1500 0.31109E 15 0.11099E 16 0.17254E 16 0.20022E 16 0.21043E 16 0.21572E 16 

0.2000 Q.94310E 16 1.4S360E 17 C. 82754E 17 Q.98611E 17 0.10448E 18 C.10753E 18 

0.2500 0.19746E 18 C.56132E 18 0.64856E 18 0.66439E 18 0.66783E 18 0.66956E 18 

0. 3000 0.54986E 16 0.58789E 17 0. 20634E 17 0.14619E 17 I 0.13063E 17 0.12359E 17 

0. 3500 0.14069E 17 :).54414E 15 0.27716E 15 0.23967E 15 I 0.23035E 15 0.22640E 15 

0.4000 O. 30090E 15 0.15843E 15 I 0.15747E 15 0.1576/JE 15 0.15774E 15 0.15779E 15 

0.4500 O. 15539E 15 Q.15541E 15 0.15626E 15 0.15663E 15 0.15684E 15 0.15690E \5 

RESULTS OBTAINED WITH DELTA T = 0.001 

TAB• 1 

N ..... 
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v. Iterative method with variable number of inner iterations 

The number of inner iterations necessary to obtain a given pre­
cision is proportional to the difference 

t:. ~ = 'i ( tn + t:. t ) - i ( tn ) 

Butt:.~ varies with tn during the transient. Therefore the 
program was made to iterate until 

-n - ~ 
~L t-1 

~ 
L 

< e; 

where i is the index of the inner iteration and e: is the 
greatest admissible relative error. The maximum number of 
allowable iterations is fixed, and when this maximum number 
is reached the program stops iterating even if the wanted 
precision is not yet attained. By this method it is possible 
to avoid a number of useless iterations in some parts of the 
transient, and, by increasing the max. number of allowable 
iterations, to reach any wanted precision. 

TABLE No, 2 

,:\ t max. e; time time 
number of direct iterative 
iterations 

2• 1 o-3 10-4 
II " 6 1,066 23 38 

2•1 o-3 10-4 
tl II 

8 0,213 23 44 
10-3 10-4 

II ' " 6 0,0283 41 1 03 
5.1 o-4 10-4 

t " " 4 0,024 1 15 1 32 
10-4 10-4 ' " ' " 3 0,00306 5 48 5 44 
10-4 10-4 ' II t If· 

2 0,05134 5 48 4 46 
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TABLE No. 2 contains for various ~t: 

max. : The maximum number of allowable iterations. 

time 
direct 

time 

: The relative error at which, when reached, the 
iterations stop. 

: ~ = max 
t>O 

iit•(t) _ ~ir.(t) 
~ir.(t) 

where ~it. and ~ir. are the fluxes calculated 

respectively with the iterative and the direct methodo 

: The calculating time of the direct method. 

iterative: The calculating time of the iterative method. 
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Appendix A 

The diffusion equations of the Rk region are: 

1 aw 
--
vt- at 

(a-1) 

(a-2) 

The space is divided into mesh-points [zt J (i=O, 1, 2, ••• L, L+1). 

On each interface between two regions is a point of the lattice, 
and each region contains at least one point. 

The mesh increment is 6t = zt+1 - z~ For all the points 1=1, 2, ••• L 
the equations (a-1) and (a-2) must be integrated in the inter­

vals z 1 ~ z ~ zt and z ~ z ~ z + 1 
t-2 t t 2 

i-1 1+1 
• , 

1-! i+! 

For the sake of brevity only the integration of equation (a-1) 
is reported here: 

z 
t 

/ 

1 aw 
- - •dz 
w at 

Z 1 
t - 2 

- D -[ 
ch!r] 

- f az z _ 
t 

_ [.nf aw] 
az Z 1 

t - 2 

z 
t 

-J (A• \If - B•cp - C) dz 

z 1 
t- 2 

(a-3) 
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zt+i 

~ at • dz = [n aw J -[n at J - / (A • t - B • cp - c) dz 
w at f az f az 

\+! \+ zt z 
t 

where 

are respectively the left and right limit of f(z) in z = z. 
t 

(a-4) 

Adding (a-3) and (a-4) and remembering that fluxes and currents 
are continuous we have: 

ow 
The derivatives oz are calculated with central differences; 
the integrals are approximated according to the formula: 

z + 1. t 2 6. 6.l 

I f(z) f-. t-1 f:"• dz = -+ 
t 2 L 2 

z i-t 

The derivatives with respect to the time are approximated 
according to: 

(a-5) 

(a-6) 

(a-7) 
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Equation (a-5) then becomes: 

6t 1. [ J 6t • -=- + A • ljfn - B • cpn - C • -
2 z 2 

If zt is a point internal to ~ then D"" 1. = Df 1. = D';. • 
J. t -2 t +2 J. 

The functions A, B, Care continuous in zt and equation (a-8) 
therefore becomes: 

6 +6 ,,,n-1. 6 6. 
t -1 L J <pn = [ck + 'f L J ( l -1. + 1. ) 

2 t t wk. 6.t 2 
l 

If zt is a point on the interface between Rk-1.and ~ it is 

same for B, C, w. 

t+ 

(a-8) 

(a-9) 
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Equation (a-8) therefore becomes: 

+ ( --1- + A~) £\i.] ljr~-
~ -f:it L 2 L 

(a-10) 

Integrating equation (a-2) with the same proceedings we obtain 
the two following expressions: 

for z internal to R: 
t k 

Dk 
_t_ • q,~ 
6 1,.-1 
t-1 

[ 

6
t-1 + 6t] cpn - F.L.... • "1nt = 

t +1 2 
(a-11) 

for zt on the interface between Rk_
1 

and Rk: 



nk-1 
- _.L._ 0 qi" 

t-1 I::. 
t-1 

+ ( 

1 +Ek).~]· qi" 
Vk•l\t l 2 t 

= 

t 

n-1 
<pt 6 t - 1 . -+ 

2 
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1 
Ek-1) At-1 ----+ •-+ 

k-1 • l::.t L 2 vt 

AL) 
• - • "'" = 2 t. 

. - (a-12) 
2 

The finite-dirference equations obtained by this method are of 

the type: 

- r t + p t - t t - s <p 
t1 t-1 t1 t Lt t+1 t L 

(a-13) 

- m t - r m + p q> - t q> 
t t t2yt-1 t2 t L2 L+1 

(a-14) 

(i = 1, ••• ,L) 

where 

r = t = r = t = 0 
:1.1 L,:1. :1.2 L,2 

and t = r 
t , 1 L +:1 , 1 

and t = r 
t , 2 t +:1, 2 
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The matrix of the coefficients of the system (a-13) and (a-14) 

is then: 

p -r -s 
11 21 1 

-r p -r -s 
21 21 31 2 

~~~ ~ 
-r p -r L-1,1. L-1,1 L,1 -s 

L-1 

[:f.} -rL 1 PL1. -s 
L ' ) 

A = 
-M A2 

-m 
p12 

-r 
1 22 

"'."ID -r p -r 
2 22 22 32 

~~ 
-mL-1 -rL-1,2 PL-1,2 

-mL -r L,2 

where the entries on the main diagonal are all positive; and all 
the other entries are~ o. 

The tridiagonal matrices A1 and A2 are definite positive as they 
are symmetrical and as their diagonals are dominant and with 
positive entries. 

The diagonal matrices Sand Mare non-negative. 

-r 
1,fl 

p 
L,2 
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In order that the entries of the main diagonal of the total 

matrix A are strictly dominant it is sufficient that 

1 
--- + Ak > Bk 
J: • tit l L 

L 

This condition is normally satisfied. 

(a-15) 

(a-16) 
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Appendix B 

Here below are some definitions and theoremsnecessary to 
demonstrate that the iterative method (Block-Gauss-Seidel) 
converges. 

Def. 1: It is called "Spectral Radius" p(A), the greatest 
modulus of the proper values of the matrix A: 

p(A) = max jAt I 
i = 1, N 

Def, 2: A matrix A is: 

2.a Convergent if the sequence of matrices A, A2
, A3 , ••• 

converges to the null matrix o. 

2.b Non negative 
real and a .. ~ Ov 

l. J 

A~ O if all the entries are 

2.c Strictly diagonally dominant if t'or all 1 = 1, •••• ,N 
it is 

N 

lat tl > L lat j I ' (2.c-1) 

i=1 
i/j 

from (2.c-1) follows evidently 

N 
\ latj I < 1 • L att 
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Def. 3: The splitting of a matrix A 

A= E - F 

is a regular splitting if Eis a non-singular matrix 
with E --1. ~ 0 and if F ~ O. 

Theorem 1 - The necessary and sufficient condition for A 
to be convergent is: 

p (A) < 1 

Theorem 2 - The spectral radius p (A) of an arbitrary 
matrix A fulfills the relation 

N 

p (A) ~ max. \ latJI 
i=1 ,N /__, 

j=1 

Coroll~trY - Let A be a strictly diagonally dominant matrix; 
1 let D be a diagonal matrix D =(aLL), then the matrix 

B = I-DA is convergent. 

In fact the following relation is fulfilled: 

p (B) ~ 

N 

max. \ 
i=1,N L 

j=1 
j;6i 

I :~~I < 1 

Theorem 3 - Let A be a real matrix with atJ ~ O (for i;6j) 
and att > O, and let D be a diagonal matrix D = (a~t ); 
if the non negative matrix B = I - DA is convergent 
then A is non-singular and A-1. ~ o. 
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Theorem~ - If A= E - Fis a regular splitting of the 

matrix A and A-1 ~ 0 then 

----- < 1 
1 + p (A-1 F) 

Therefore the matrix E-1 • Fis convergent and the 

iterative method 

converges ror any initial vector x0
• 

This last theorem is interesting for our case. In fact the 
matrix A of the system in study fulfills the following 

conditions: 

N 

att > \ lat JI ) 

L.i 
( see II. page 6) 

j=1 
j;ii 

therefore, for theorem 3, A-1 ~ o. 

The splitting A= L - U is regular, because the following 
conditions are fulfilled: 

u ~ 0 
t J i.e. u ~ 0 

1 > 0 1 ~ 0 j;ti (see II. page 5) t t tJ 

N 

1 >L I\JI t t 
j=1 
j;ti 
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and, again for theorem 3, they give L-1 ~ o. 

Therefore, for theorem 4 the iterative method of II. is 
convergent. 

(The theorems 1, 2, 3, 4 are respectively the theorems 
1.4, 1.5, 3.10, 3.13 in "Matrix Iterative Analysis" by 
R. VARGA - Prentice-Hall, Inc.). 
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