

EUR 192.d,e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THREE WORKINGPAPERS
ON THE THEORY OF COMPUTATION

by

L. A. LOMBARDI

1963

Joint Nuclear Research Center
Ispra Establishment - Italy

European Scientific Information Processing Center - CETIS
(CETIS Report No 49)

ON TABLE OPERATING ALGORITHMS*

1, In this papor we gj_ve examples which show how table operating

algorithms Cc\n be repre.sented in declarative or nonprocedurnl

form. The aim of thi..s study le to mnke a prellminary test on thA

potential a.p:plica.tions of decl2.rc'.tive techniques to the design of

language e1 ements hnving a particu2.ar but co::icrete pur_pose, in

order to collect indications for the design of general purpose

data ~ystems and lon~uages. The al.gorithms exhibJ.ted in this paper

arc only 12am:J:i_cs, 2.nd no attempt to desiin the best poscibJ.e algQ

rithm for ench oreration or to achieve completeness has been made,

The methods adopted are those <liscussed in soctio~ 2 (Tables) of

(5), Throuchout this pa,er itel~cs are used loosely as descriptive

elements of publj_cation language. The repre8entRtio~s of algorithms

in the system language does not contain any italics,

The following a:podj_ctic (or primitive) functions will be utilj_zed:

i) All usual a.ri th.metic and comparison f'.mctions I denoted by the

UGual connectives. The absolute value of~ will be denoted!~~·

ii) The ~uh_~t_:h_!._1:_te functions .Sr and Sf of one argument I whose value

is the record or fie1d, respectively, located in the address

specified by the argument,

iii) The i~cl~de functions Ir and If of three arguments, which

include the record or field, respectiveli, given as third argu

meht into the set denoted by the first one by placing it into the

EUR/e-rs/1126/62 o

* Paper presented at the IFIP Congress, Munich,
Germany, August 27 - September 1, 1962

- 2 -

address given as second argument, and has the first argument

ae value.

To each table, say!>.., we shall associate a list oalled L(!>.,)

which consists of:

I. A sequence of words, whose addresses nro'referred to.as Mr(!>.,)

and whose contents, referred to as N£(!>..), are the following:

N1 (!>..) = Initial address of E.•

N2 (!>..) = Final address -of b.

N
3

(!>..) = Length of the records of b.

N4 (:£) = Name of the predicate in the address defining the

last exclusive record.

N
5

(!>..) = Internal address of the keyfield(s) within the records.

N6(!>..) = Name of the function representing the integral of the

normalized probability distribution of the key.

N7(!>..) = Lower bound of the value of the key.

N8(:£) = Upper bound of the value of the ~3Y-

N9 (!>..) = Internal address of the link field (for chained tables).

N10(!>..) = Name of the functions to be used as table scan algorithm.

N 11 (!>..) = Hame of the functions to be used as "add record to table"

algorithm,

plus others which are not directly utilized in this ,aper.

lL A sequence of alphabetic phrases, whose addresses and values

are referred to as P(!>..,£) and Q(!>..,£),respectively, such that

Q(t,£) denotes the mode of the field£ of table£•

New functions of m variables can be defined by using the notation:

l i , ~ , !!. , ~1 , • • • , a!! ii F

- 3 -

where i is an integer, A~:'!1..~ a descriptive lable of the function,

n the number of comporients of the value of the function, a.
-1.

den6tes the space (integers, rationals, addresse~, truth values,

etc) in which the i-th component ranges, and! is a form in the

~ dummy arguments b
1

, ,., , bm and their components

b-~ h·l.
1 ' ' • • ' r.1

A function value and its j-th componen~ are.denoted by writing

the function letters f. or r4, respectively, followed. by a
l. 1.

sequence of~ arr,umentsA If an argument has several components,

the forms representing the~r values arc enclosed ~n brackets and

separated by scmicolonso In pRrticular, these rules apply when

recursion occurs in F.

If an argument is a form :tn 11 cummy (:Le.t ~ -bo11nd) ve.dn'oles, these

SC~p'e's will be denoted C,
1

t • o • , C end the:i.r components cj
1
• t , , • , n

... c.i , n • (Fo~ the djscussion of the co~rcspcnding question in

the case of command structur~c.· languages see [4 J) •

~~!'.ls• Unlike most cowrenb .. onal notatj.ons, this one does not

assign a fixed nam.; to each variahle .. Here, all free and bound

variables arc denoted' y the letter band c, respectiv~ly, with

an integer subscript. The denotation of surh identifiers depends

upon the position in the repreBontation of an ~lgorithm where

they are used.

Components of the components of function values, arguments or
. 1 . 1

scopes are denoted f~·'·- 1 b~'·-1. ;;_

for higher level decomposition.

. 1
or c~•- respectively, and so on i I

2. Addre~s calculation functions generally have 3-component values,

The first is an address and, in case·the function is computable,

- 4 -

gives the address searched for. The second is truth valued, and is

T if and only if the search is succesful, that is, if a~d only it

the function is computable. The third. is an integer and gives the

number of tests which are involved by the search.

Consider a table, named table 1, with records having fixed lengtht

sequentially allocated, which is to be searched sequentially for a

record satisfying a predi?ate pred in its address. In order to do

sol we shall use the functions

r1 , TABLESCAN 1, 3, ADDRESS i TRUTH; INTiGER

11 cond(N4(b 1)(b1)~b2 , b
3

(b~) 4 [b~; T; b~], T_r1(b
1

)

[c~ + N3 (b-1) ; F ; b~ + 1] , b 3)

and

t2 , TABLE ~CAN 2, 3, ADDRESS; TRUTH INTEGEH

That is, this address is expressed by

f~ (table 1 , pred)

I! there are doubts on the exiattrnce of the record wanted, we can

utilize

f
3

, ADD HESS FUNCTION 1 , 1, ADDREm3

and

r4 , ADDRESS' FUNCTION 2, 11 ADDRESS

- 5 -

Consider now a cbatned table, }~h];_e~~~and let us design a more

efficient algorithm thnn is sequential scan to locate an item

whose keyfield contains r1~tum. The first tentative address to be

computed by using

The main algorithm is represented hy

f G, CIIAJN 1 ; 3, ADDRESS ; 'l'RU'£TI ; INTEGER

b ~fib 1 ·T·b31
-· 3 , L: 2' 1 2J '

and

r
7

, CHAIN?.., 31 ADDRESS; TRUT;H INTEGER

Then 1 the address is expresGed by

In order to consolidate these two algorithms (and other algorithms

which apply to tables which are differently organized) we shall

nse

:r8 , TABLE FUNCTION 3, 1 1 ADDRESS

In this way, provided that the system includes a wide selection of

- 6 -

table scanning functions, all table functions are represented by

f n. The appropriate nlc;ori thm is p&rt of the tc:,.ble layout descrip-
u

tion and is selected autoQatically by N
10

, while the process des-

cription, which use~ f 8 , is invariant with respect to such algo

rithm.

As further example, consider a table, !ab.1.£...2, suitable for binary

(logarithmic) search. In this case we shall use

f
9

, BIN.PRY .SEAI'.CH 1 1 3, ADD:RES3 ; THUTH ; I:i'~TIEGER

and

f 10 , BINARY S:C.:AHCH 2, 31 ADDRESS THUTII INT.6GEH

Here again, if N10 (!£ble3) = f 10 , the aadress will be represented

in the form:

Lastly, consider the example of a 1£..ble 4 where the records are

allocated in buckets, with keys place~ within the records, and these

buckets are chained. In order to locate a record having E~ill as

value of the key we should use

- 7 -

f
11

, CHAIN ADDRESS 1 1 3, ADDI~:;:s.s ; TRUTH ; INTBGEH

where

f12' CHAIN f.UXII,I.ARY 1 1 3, ADDimss ; TRUTH ; INTi:.:GER

a:nd

f
13 1 CHAIN ADDHESJ 2 1 3 1 ADD RF GS ; TWJTH INV:GER

so t.1'.at, if N10 (t£'eJ .. ~~-~) = r
13

, the address required is again

r8 (tah=h.£_~,, ~t~~~).

3. A table funct::i on (see [5] 1 section[21and (3]) 1 r.,an be repre-

sented by using

and

so that the value of the field, fiel<!..J.., of the record of }.~b]~

whose keyfield contains §~t':!l!, is

- 8 -

and the value of the D::.£!-Lg of the record of .!_~}:?J:.~_§ whose key

sa. tis fies the prcdica te PCTd. _2 is

The design of table scanning algorithms, similar to r4, r7, f 10

or f
13

, able to operate on tables orcanizcd according to the

standard RAMAC allocation pattern or on threaded lists are left

to the reader as exercises.

Consider the problem of introducine; a new item E.!:2.2.!'d into

tRble 6 which is sequentially ordered with respect to its ---·---
keyfield, This ope~ation is described by means of

r16 , Tl\BLE ADD 1, 2, ADDW3SS TABLE

where

r
17

, TABLE ADD 2, 2 1 ADDRESS; TABLE

so that the above algorithm can be represented as

Again, in order to make process descriptions ir.variant with respect

to table algorithms, provided that a selection of algorithms able

to operate like r16 on tables with different structures is available,

we shall use

9 -

r17 , TABLE ADD 3, 2, ADDRESS TbBLE

The function r17 has the same level of universality as r8•

As problems for the reader we suggest to develop:

i) A function of a table and a predicate whose value is the first

e~gument without the recordc satisfying the second.

ii) A function of a table, a prcr:lcate 1 an address and a literal

whose vr,.lt:.e is the first arc;ument where the value of the fields

havinc; the thir<l argument as internal address of all records

whose addre:,s sntisf:ies tbe eccond is repla:ced by the fourth.

Another useful exercise consists cf adapt:i.ng all algorithms out_.

lined so far to the case of tables with records whose variable

length is specified in a field.

4. The implementation of the language elements described above

obviously requires the availability of a real or simulated computer

able to evaluate all apodictic functions described in i - iv

(section 1) and to link defined functioris with provision for

assigning both arguments and scopes. The design of such a computer

[2] is the main problem of modern dr::i.ta r,yr.., cem science and its

discussion cannot.be encompassed*~hin the scope of the present

communicati?n. Besides this major point, we should mention that the

implementatic:n of these language elements requires an assembler

which w~uld not differ substantially from standard assemblers for

procedural languages, which should reduce forms to the standard

Lukasiewicz format, allocate all forms of which the description

- 10 ...

of a process consists, call and allocate all system forms from the

external storage devices and replace or supplement the correspon

ding function letters with their addresses, replace all symbols

with their value derived from the layout tables, construct the

layont ta1"les 1(12) from layout descriptions, etc. The only point

which ia worth mentioning is that the assembler should not replace

the M and N with constants: instead, it should replace them with
r r

appropriate tah:.c functions, beer.use the contents of the layout

tables is subject to changes during the evPtluation of the process

descrirti.on.

During evaluation the tables L(t} should be handled.like any other

table., 1;/e should draw the attention to one of the main dj_fficul-

ties of recursiYe prozramming, wt.1ch has been pointed out by Dr.

Mauro Pacelli in 1961 and which comes up through this set of

examples: that ls, the problem of nptimizing the evaluation of sets

of forms h:i.Y:::..ng common subfC'rms which should be evaluated for the

same arguments, ~hen using command structured languages, it is often

'-<·asy to extract subprocedures from code sections in order to minimize

the time of execution: that is, programs are optimized by means of

a handtayloring of the flow of the control. In the case of declara

tive languages without recursi0n, it is easy to ~ave optimisation

performed by the machine by means of appropriate precederice analysis.

ilut when recursion occurs, then the questi.on of common evaluation

comes up in connection with a priori unbounded sets of incarnatlons

of forms, and to the best of our knowledge there is no universal

optimisation technique available. One solution to this problem, that

we have implicitly proposed in this paper by adopting it in many

instances, consists of extensively utilizing Cartesian products of

- 11 -

of ~alues of functions, and conversely, projections of such pro

ducts, thaut is, functions with multiple-component values and

single components of such values. This yields the need for multi

ple-component arguments and scopes of functions.

However, we do not Lnow of any method, but hand-tayloring, of

consolidating form evaluations in order to minimize evaluation

time. On the other hand, the corresponding problem for procedural

languages, that :Ls, the problem of the design of analysis codes,·

is also practically unsolved. From these i.ndications we aan infer

that probably one of the basio skills of the future declarative

computer designers and progr2wmers will be the-familiarity with

these set-generating and projecting techniques.

Another technique of optimizing, which applies when a subform, say

sf, occurs twice or more often within a form.£ in! arguments,

consists of designing a new form p.f in! argumentst such that

~! ~ ~f(b1 , ••• ,b!,!>..f(b1 , ••• 1br))

where mf is the form in t + 1 arguments which is obtained from f -- - -
by replacing grafically all occurrences of ~1 with bt + 1, and

using a! instead off• A simple instance of this technique can be

found in the design of ADDHESS FUNCTION 1 1 section 2~

- 12 -

References.

(1) M~Carthy John 1 A basis for a mathematical theory of computa-

Angeles, Cal., 1961).

(2) Gilmore Paul c., An abstract computer with a Lisp-like

machine lan~uagr without a label operator 1 fr.2.~Jbr.!12.P..~~..2.ll

Bla:d.c•im (Holland) October 1961 • .. :,.--..... -,.····-··- -~--~----.............. -....... ---..,....._

(3) Lombardi, Lionello. Theory of Files t Pr.oce~d:l.nr-;s '!_~60 F~.;.?te..;~!1

?2.i!JJ:._Q..2..~rmt_2.r._f.~;!.fereg_.r;_£, paper 3? 3 (New York, N, Y. , 1960).

(4) Lombardi, Lionell0. System handling of functional operators.

!h_!r!§.SS:.:!-Y..2.f!!.P_ll t •. Mas:!1..t. 8 , ,?. , j_.§§.::.1~ (1961) •

(5) Lombardi, Lionello, Ma thema t:lcnl Structure of Nonarj. thmetic

Data Processing Procedures,. J. A~.:-£?E!P.2?:.~· Ma.9.hJ. 9 1

136-159 (1962).

(6) Lomba:rdi 1 Lionello. Inexpensive punched card equipment.

l!-1!~£J!Jne_J:9..£.2.}.l-£ti:P..E 12 §. 12-18 (August 1961).

(7) Lombardi, Lionellou Logic of automation of system Communications,

THE DECLARATIVE CONTROL OF THE DATA FLOW

BY MEANS or RECURSIVE FUNCTIONS*

1. Introduct.iop

This cote is dLvbted to the discussion of algorithms for file

procensing whi.ch are represented !.a tel'.'ms of a language without

command s·c!''..~ctures, thnt is, a d.eclaruti •re language.

So far, moat of the effort in the" a~ea of declnrative lan~uages

has been :1.n t.he fieJ.d of the reprP-sentation of p~ocesses whose

results, or output, are nu~bers or small 1 well defined sets of

numbers. Consequently, such effort has been mainly directed to

wards the development of morpholcgies a!ld syntm.:es for writing

and semant1.cs for evalua.t:i.ng forms whose values .range over a set

of numbers .. F:i.le processes do not belong to this category, since

their result, or output, are large sets of :i.·ecords d1.stributed in

sets ·of output fj_les 1 and the main difficulty in achieving this

result is the proper organization of such files. Consequently,

since declarative languages consist. of methods of representing

processes as functions of the data whose values are the results,

declarative techniques to re~resent file processes must be based

on forms whose values range ever spaces of sets of files. Due to

the level of repetitivity involved by file processes, such forms

• Paper presented at the Symposium on Symbolic
Languages in data Processing, International
Computation Centre, Roma, Italy, March 26-31,
1962

14

should be designed in a way to allow for recurs1 .. on.

Wh:Ue the application of recursive functions to forms able to

represent operations on random accecs fj.les or tables is discussed

in {1;;:l , this note is concerned wlth coordinated or ccJ}.ine~

file processes [16J, that is, with the file processes which take

place in magnet.:i.c tape processors. The resuJ.ts of the the:,ry of

files [7, 16J nre extensively uaed, with special regard to the

standardization and optimization of the input and the predicate

controlled ou.tpnt [7, secU.on 3J . In fact, viitho'..lt the tool of

the filetbeoretical approach, the rrobl~m stated at the·end 0f the

preceding paragraph would be v~ry hard to solve.

Since this is a report en prelininnry invea~ications aiming to

show the po8sl~1.lity and the basic elements cf a declarative

approach to the representation of file processes, rather than a

man11al for a declnrative file processing laneunge or for a

form-evaluating file processing computer, the schemes disnussed

in [16) have been conside:r.a'bly simplified. In particular I the

~tre~B and E,1:!12,9};3.. level have nc:f:~ been cansiderorl., t.hus implying,

among other things, the r.eed for ee,ch logi..cal f:Lle f'low:i.ng through

an ind:!..v:tdual input-,,ntput uni.t I wh:i.ch is possible only if there

is a large number of such units available. Furthermore, among the

file inrtinators, only the existence and the left and right deriva

tives of the input files are considered, while the input-out.put

and validity indicators, as well as all indicators of the output

files, are provisionally dropped. In fact, these usefnl features

can be added la.ter without any need for major :theoretictl advances,

- 15 ...

w~ile their treatment here would make the discussion considerably

more comp1icated,

The f:i.le processing algorithms considered here provide for coor

dinating the input by means of the fnnctiod~finput
2

and computing

th~ contents of the output records and coordinating the output by

means of the function f These two functions are cascaded, output 2 ~

in the sense tl:at the second one, which g:tves the timing to the

whole system, calls the first one. One of the most lmportant things

that are brought u~ in connection with this, is that, when two

functions are ca:'lc8.ded 1 the flrr;t one sbould have a value with

several compon0nto. some of w~ich are the data.that it was supposed

to prod~ce and pa~s to the aecond one, and others hn?e no other

purpoae than to e:nnble the sec<nd one to as.sign parameters to the

first at the time of 1ts follo~j·~C incarnation. In other words,

the link between thcee two parti.cule.r funct.i..o!'ls is a prototype of

the nnture of cornnrnn:lcation which sho1J.ld exist between indepe~dent

moduli - o:r s1!bnwdd nes - of a computer with de0larative logic.

Input and output buffering is not discussed here; the entering and

filing of records is performed by not better specified functions

f · i t of one ,,ariable and f h . 1 t t of two phys:tcal npu 'P ys:i.co_ ou pu,

variables, whose value are the next-coming record of the inrut

unit specified by the variable and the contents of the output

unit specified by the first variable supplemented with the second

one, respectively. These two functions are somewhat eterogeneous

with respect to the remainder of the system, because, as it will

appear, in order to, be consistent, the contents of l-0 units

should be represented as lists and operated with composition and

decomposition operations. This will be done in the near future

- 16 -

probably without major diffi:ulties, while drafting a complete

recursive file processor, based on six cascaded levels: physical

output., output buffe:ring, outpnt computation and coordination,

input coordination, input buffering, physical input. However, in

this first essay we have bound our investieation to the two central

levels 1 which give rise to the main difficulties, and to the link

between them, which is the most cri:Ucal. No use is r.iade here of

the set 1.nc111si012 operator of order throe, which has been widely

used in (13), and is essentially a particular interpretation of

GiJ..more I s §_yn,2mic load operator of order two [l+ J . It has been

possible here to replace thi.s problemraising operator with

composition operations each time the opportunity of uaing it

come up.

Compositions and decompositions of lists are used extensively in

order to build compooite values and parameters of functions. Such

techniques are derived from those developed by McCarthy (3],

tho1igh they are uned here in a different way and for a different

purpose, An example of a composite value form bu.ilt in tbi.s way

is the value of f, t
2

, the fifth component of which is :i.npu

the wh6le machine status, while the oth~r eight co~ponents contain

information sufficient to control its s~,sequcnt incarnation. This

technique is also used by f 2 in order to decode the value output

of finput 2 that it receives through finput 1 •

The problem of developing semant:..ca.l elements for decomposition

and composition operators is not discussed here. The solution of

this problem will be. a particular case of a semantics able to define

elements of new spaces and operations thereon in terms of the pre

viously available spaces and operations, in a way such that

- 17 -

operation letters (or function letters) are morphologically

independent of the structure of the operands, while an appropriate

meaning is assigned to them for each allowable configuration of

such structure. A considerable effort is currently being devcted

to the solution to this last problem, which is the key question

of the theory of computation •. This author will soon report on

the results of his investigation, based on extensive development

and theorization of some features o! the B5000 and KDF9 comp~ters.

Care has been exercized here to use only the particular class of

recursive functlons called .~.r.t~~~~l-.z:..~_c_~~~ (13,15], because

a much easier syntax to evaluate them, based on the so-called

di!Jcha.El')e ~~~, is possible, as shown in the second part of [15].

2. NOTATION

Only very short explanatj_ons are given here en the notation used,

since the first part of [15) is devoted to its complete discussion.

It should be noticed that practical considerations have suggested

some very slight deviations from the notations used in the report

(13) 1 written four months ea~lier than the present one.

All function lettercl are denoted by the letter f with a subscript.

Besides speci~ying such functions, these subscripts may be

mnemonic and ccnn~te the practical use of the function letter.

However, functions w~ich are usuRlly denoted with spebial jnfixes,

such as+ or - , are here denoted as usual, for the sake of

readability.

The definition of a function of order a has the layout fA ~ £ 1

where fA is the function letter involved and bis a form in the

a variables x1 , x~, ••• , x, where x1 always denotes tbe i-th
L n

argument (free variable) of the currently defined function. The

form£ can contain calls for other functions, the one currently

defined inclusive. These calls have the layout fB (d11 d21 .,., d£tl) 1

where fB is the function letter of the function called,~ its

order, and the dj are forms in then variables xi, which have the

meaning specified above, ~henever the value of any of the dj for

gi'ven {x
1

} is a function of a finite sequence of (~ -bc>u.nd)

variables, the h-th of them is denoted yh. Unlike most languages

for representing algorithms, where each variable, free or bound,

has a fixed name assigned to it, in this language the names of

free and bound variables are always x and y, respectively, with

... 19 -

an integer subscript, and the denotation of such names depends

on the pos~tion where they are used. The reason for the adoption

of this method is its orientation towards address-free e~aluation

logics based on stack operation,(5, 18), while the conventional

approach, by means of the stan<lard gimmick of associating storage

areas with names, is oriented towards the execution of commands

on addresses (1]~

McCarthy's oondi tional function f d of three variablaa [3), who.sa con

value is x
2

or x3 , depending on whether or not x
1

is true, is

apodictic in this system and referred to sometiLles with the

redundant notation fcon/d.
1

--) a
2

, T -) a
3
), for improving

readal~ility • .A list of E. elements is represented by the integer n

foll0wed by the E: elements, all sep&rated by corr1mas. The value

of the apodictic function f of order n+1 is the list which
comp

its argun,.,nts represent I while the value of the apodictic function

of order one fd , whose argument is a list (we should rather say ec
11has the dimensions of a list"), is the set of the elements of

this list. The value of the apodictic function of order 2 fel'

whose first argument x
1

is a positive integer and whose second

argument x
2

is a list, is the x
1
-th elemen~; of x2 • By using

recursively these three basic functions, colled £ ... 90EO§i'!J.......2!!,

~composition and ~lement, respectively, j_t is easy to build two

further handy list operating functions of order two, ffiret and

flast , whose value is the set of the first or last x1 elements

of the list x21 respectively. The value of the apodictic function

f bof order one will be the number of elements composing its num

argument, which is a list.

- 20 -

Recursion is allowed in the function definitions, that is, if

such a definJ.tion has the form fA-;a £ calls for f A can be contoined

in the forri1 b.

I! we establish a weak precedence relation in the space of the

function letters involved by an algorithm, such that r0 , fm if

there is a sequence f 0 , r
1

, ••• , fm where r1 is used in the

definition of f ..
1

t.hen, if this relation yields a partial weak
].-

order, v;e shall say that the algor:. thm is based on a class of

indiv1d11al recursive functions (t.he case of the strong order

would imply the absence of recursion). As it was remarked by

Pacelli, this way of defining alc:orithms is possibly less power

ful than McCarthy's t3] 1 who explicitly introduces sets of

recursive functions defined through systems. However, since the

logical problem of comparing the two classes of recursive

functions to which this difference has given rise is open and

goes far beyond the specific scope of this essay, care has been

exercized here to base the file processing algorithm on a class

of individual recursive functions.

A handy gimmick which makes it easier to read the definitions of

recursive functions consists 0f replacing with a dash (possibly

in parentheses to avoid confusion with the minus mark) some

appearances of xj in dj in all function definitions of the type

(2, f,

or

The letter z with a subscript (possibly mnemonic or descriptive)

is called shorthand, that is, it replaces graphically the occur

rence of an arbitrary writing, which is associated with it by

... 21 -

means of a shorthand definition having the layout

z ;; d

where z is the shorthand and dis the writing that z stands for.

Such shorthand definitions have bee;;i;i already introduced in (8]

and [17), where they were called symbolso

Desp::l.te the confusion between function and shorthand definitions

that the common layout and the common use of the marl{ 11 iii II might

yield, one should keep in mind the deep semantic difference between

them: they denote functional equivalence and grapbical :l.dentity,

respectively, and the occurrence of~ is ~elated to the McCarthy's

labe~ OP,eratcr [3) :i.n the f:l.rst ~ase I wh:l.le it denotes plain

identity 6~ replacement in the second. The limited purpose of

shorthe.nds is to simplify the design of algorithms and to out

the size of the (real er simulated) computers which carry them

out.

The letter v with a descriptive subscri~t denotes an off-algorithm

dat-..un or a datum which for some reason is left unspecified. In

this example, th:i.s notation will be used to denote the elements

of the programs which the algorithm or a.h.stract machine should

execute (see section 4).

The letter w with a subscript is used loosely in this essay in

order to build explanatory examples.

In the sequel, 11. will denote an empty set,

- 22 -

3~ The file processing algorithm

Each ~urrentl,..y a•raiJ:.n.bl_El record is presented in the system as a

list Of seven i tem.s V raa'11ely

f (7.w d'wE,wL,wR1wpK'wCK'wFK) comp · recor '

where w dis the record represented as list of the contents of recor

its fields,wE 7 w1 and WR are values of the existence j_ndicator and

the left and r;tght derivative at this record of the file to wh:l.ch

it belones, respectively, while wPK' wCK and wFK are the keys of

the preceding, current and following record i1 the file involved,

respectively. In the sequel, the key constructing function f key

of one argument (a record) will be supposed unique for all files,

for simplicity. We chall a,lso assume that the last exclusive

records of all files will consist of the literal EOF.

Let

and

f min 1 = f d ((x3:x5) -) X4 1 T -;) f i 1 (- t - , (-) + 1 t f d con m n con

Then, f i is a function of order two, wh.ich computes the mininru..m mn

value of the function x
1

of the elements of the list x2 •

Let

f input 1

- 23 -

With reference to (17] (section 3)? x
1

will.denote the contents

of tr.e .9..1:lF.;~nt :te.L!:2..e;Jct.~~.E. (c:;rn), x2 the complete set of t!-ie

thus being the ones of a list of lists of lists of literals of

un8pecified dimensions) 1 x~ and x1 denote the contents of the
.) ~

lower and upper logical one-record buffers (required to compute

the riGht derivatives)~ x
5

is the value that the current key

register had at the previous pulse and x6 is the l.:.st of all inp"1t

files.

The function fi t 2 called above is defined as
npu

f
1

(2,f
1

(x
4

?x
2

)) ~x
1

::::f
1

(f
1

(x4 ,x
7

) ,f 1 (6if.,,1 (Y1,,x),
e. e cey e c. ~.- r c..

- ?4 -

w~e:re

and

Here, x
1

is the contents of CKR, x
2

ie the set of the available

records at the time of the preceding pulse, x
3

is a si13nal which

iG on during the firot pulse of each _phti_s_~ (cee (7J,[:7Jx1t i.s a

standard recurr.ion count, x
5

is the part of the machine otatua

elaborated until .he previous incarnation of fJ t ?I inclusive, .,.npu ._

x6 and x
7

arc the contento of the lower ,rnd uppo:!.'" buffer, respec-

tively, x8 is a signal which triggers the entrance of n reoo~d

which c~bbers another one belongin~ to the came file and hnv~ng

the same key (see [17] 1 pages 152··153) 1 x,
9

io a bit w~::1.ch

sumn,ari:rns the conditions under which a new record sho•1lci not be

entered, and x10 denotes the set of all input files.

The value of both r1 t
2

and t
1

t
1

is a list of ton elemento, npu. .n:pu

of wh.ich the fifth is the set of recor.ds available to the pulse

of which the evaluation of f input 1 is the start (17 t section 3 J .
We shall utilize the auxiliary function ft defined by o ,op

f .i. § f d(-,f 1 (x2 ,x1)~F 1T4f d((x.,) f h(x1))-)T,T-)f t s ,,op con e con c.. num~ s op

where x1 is a list and x
2

an int~~nal count, Furtheimore, we shall

- 25 -

need

where x
1

is an integer 1 x2 a function of an integer variable,

an.d

f list 2 ~f. d((x-z> x
1
)~fd (x,,)QT-,..f1; t 2 (-, i(••)+1 1 ! (x

3
, con ~' · ec •r · __ s comp

where x1

denotes the number of recursions, x
2

is a f11.nction cf a!l ·integer,

x
3

an internal count and x4 the issue of the preceding incarnati.on,

and

i:i ff'l 2<x1,11f d(i 1(1,f 1(1,x1)(x3,x,,,xc:))-}'f h . 1 file 1 e con e e ~ 7 p ysica . ~

where x1 is the group of FCE related to the current incarnation of

f
1

, x2 is t':le output file involved, x
3

is the list of aYaile.ble

records I x 1~ the l::Lst of internal variables I x
5

the stop :Lndicator

(17] and

ffile 2 f d((x.,> f b(x
1
)) ->x4 ,T ~ffil 2 (-,(-)+1,f. ,_d(f 1 (1,f 1 - con '"" nu1n e et·!.:. e_... o

where x1 has the same connotation as for ffile 1 , x
2

is a count,

x
3

is the main issue of the preceding incarnation, x4 the output file

involved, and x
5

, x6 and x
7

have the same meaning that x
3

,x4 and x
5

,

... 26 -

respectively, had in the definition of ff'l 1 o Le

The definition of the last two functions requires that the file

control predicates (17J are orga.nized ::i.n the form of a l:;.st of as

many elements as are the output files, where the i~th element is

tbe list of all the file control predicates related to the iNth

output file. Furthermore, each such predicate should be presented

as list of two elements, of which the first is the f!ow control

predicate as defined in [17] and the second is a form whose value

is the record to be filed, represented as list of the contents of its

field.El.

The basic function used to compute the contents of the records and

of the output files, that is, to control the output, is

f output 2 f d(x4 -'>x.--,T _,f t t 2 (fi , t 1(f, (fk (y1)sel(6vx1)), - con -;; -r ou pu 11pJ rvi~n .ey

f (f 1 . t
1

(f , (x6) 9 f J (y,, 1 x6)) , comp _ is nu.mo e . ,

f :i (fk (y 1) , f l (6, x1)) , m.n ey e

f t (f 1 (5 : x,) 1 1) , s op e.

f (f fx) f . (f (x)
comp numb' 5 ~ list numb 5 1

- 27 -

where x1 is the value of fi t 17 x
2

is the list of the values
npn

of the internal vari.ables at the previous incarnation, x
3

is (CKR) 1

x4 an internal signal which denotes the occurrence of the last

pulse, x5 is the list of the output files at the pre7ious inoarna

~ion1 x6 is the list of forms which assign values to the temporary

variables, x7 is the list of the flow cc,ntrol predicatos i:-17J and

x8 is the list of the input files.

In C17J the concept of pulse as atomic file processing acti0n was

presented and discussedo With the present al5orithm we can give a

sim~le formal definition of this basic concept of file processing:

The general controlling function of this algorithm, w~ich, if we

had adopted a tree structure rather than a machine-oriented linear

notation, would be at the root, ia

f output 1

where x
1

and x2 are l.tsts of input and output f-Lles, respectively,

x
3

and x 1t- are the lists of the initial values ar d of the forms

defining th8 temporary va~iables 1 respectively, Xc is the list of
:J

t!'lc flow control predicDt.es with the corresp8nd:i.ne; record value

nssociated (see above in this section), x6 is the list of the

contents of the labels of the output fiJ.e& (which, in this alcorithm,

c,re assumed independent of the input) 1 and

is the initial machi.ne status,

... 28 ...

.fl~m~~\!.'J.c.• The usage of f ~ t "" made here is to a certain extent ou·l,pu ,

similar to the one of a special pu!"pose supervisory control or

moni.tor in systems pro~ramming for comrentional, conm1,rnd.-structurE ~

algorithms or computers. In the case of declarative representation

there is no difference between monitors and other functions, sin~e

each function monitors the .:Lncarr..ati.on rf those on the bns:i.s of which

it is defined, and each function which is used as monitor by being

at the root or lowest level in an algorithm can be on a branch of

other algorithms,

- 29 -

4. The prog:·amming lane;uae;e

The implementation of the above algorithm on a computer with wired

or simuleted stack loi;ic [5] ab::.e to evaluate on either wired or

programmed basis all apodictic functions mentioned in section 2

consists of writing the functions and shorthands defined in section

3 into its memory or of p:.."'eparing microprogramming plans consisting

of the:tr definitions. A program for this new computer cons.ists of a

function definition of the type

f some process
(4.1)

while its operation consists of letting it evaluate puch function.

The meanings of the ·; i are the following:

v1 list of the names of the j_nput files

v2 list of the names of the output files

v3 list of the initial values of the intermediate variables

V4 list of the forms which assign values to the intermediate

variables

v
5

list of lists of flow control predicates and record cvaluaticn

forms

v6 : list of labels of the output files

The pr0grammer of thfs algorithm is supp0sed to write the v1

according to the morphologicul rules of the system. For example, if

he is programming a process involving five intermediate variables,

the initial values of the first four of them being 1, fsome function'

'r Dnd BUMBLEBEE, re1::opectively, while the last one is initially not

defined; then, at the place of v
3

he should write

f (5,1,f f t· 7 T1BUMBL~BEE,U) comp some unc ion

- 30 -

For the design of '· v
1

, v a: v ~- t Y
5

and v 6 analoc;cus rules should
··'

he fcllawed. Regarding the lists v, and vc, these items stand for
LI. :J

forms in three hound vnr:J.able.s 1 nanely the Jist of the a:;atlable

records, the list o~ internal variables, and the STOP indicator.

They will be denoted y
1

, y2 and y
3

. roE]ectively. Reference to

elements of such variables while preparing the lists vh and v
5

should be made considering thi...s, For example 1 the conte!lt;s of the

third field of the fifth input file will be denoted

fe1 (3,f81 (1 1 fe1 (5,y1))), while the right derivative of the same

file is denoted. fe
1

(l~ 1 f
81

(5~y
1
)). The sixth internal vad.able is

denoted fel (6,y2).

The notation rules of the preceding paragraph hold for machine

language prosramming. However, it is easy to write a program for

mnemon.ic translation, in order to enable the programmer to use a

notation for fi~lds, variables and indicators (7, 16 J , similar

to the one of the Algebraic Data System Language. It would be an

interesting exercise to write such a program in a declarative

language similar to the one used in this paper.

In the procram (4.1), the function f has order zero, some process

Its function letter pJays a role rather similar to the one played

by program-identification cards in conventional progrnmming.

,... 31 -

Concluci0n

The main direct advn.ntae:e of this approach to file pr~,0essi.ng is

the extreme sim:plici ty of the programming language, wh:l..ch depends

on the fact that the representation of any file process is indepen

dent of the procedure by which it is carried out.

Despite the fact that the main fields of application of file

processing techniques~ which are machine accounting and linguistics,

involve little mathematics, the design of this algorithm or simi

lar ones requires some applications of formal logic. In other

words, the alleged non-mathematical nature of fil~ processes is

shcwn to depend only on the conventional procedural approach to them,

while this method, based on the analyois of the inherent logical

structure of such processes, allows for fruitful appli.cntions of

mathematics to their representation.

While conventional algorithm and computer design invol·1es the

application of nothing beyond than propositional logic, the declarative

approach based on recursion requires first order functional calculus.

So far, this author has not yet met an algorithm design problem

where second order functional logic is needed.

The need for specialized mathematical tools yielded by this

approach affects only the desi~n of algorithms. In cont~ast, no

knowledge beyond elementary Boolean operations is required. in produc

tion programming, where the level of skill that the programmer

should have is considerably lower than the one of a conventional

business programmer, such as, for example, a COBOL programmer.

- 32 -

Bibliogrnphy

p3:oblems. for_ al'l._ clect:conic .. cornpu-t;in0 i_n.si;rumen.~ 1 Inutitnte

for Advanr:ccl ,Study, Pr::'..ncc.f::on 1 N.,J.i 191~7.;

[3] McCarthy I J. - Hecu:rsive. functions_ of symbolic. cXJ~r:r"sc;.:i_ons __ .:md

!_hei..r._.compu to. tion b_y __ mnchinc I Coinm, Assoc. Cmapu t. i1:a,;h. t .3. ,

4 (1960), 184-195.

(4] Gilmore, PoC, - An o.bntract r::om12:itcr with a LISP-likfi machine

1-nnp;l!_?-g_e wi tho..it th0 _label o~a tor, IBM J. Hes. Devel., (to

appea.r).

C5] Pacelli, 111
10 - T~9n:t~hc di t}.'acJv.zicme o.ut9_:1~ntt~, Atti del

convegno sui linguaggi simbolici, Pisa 1 January 1962 (in press)

(6 J Church, A. - Introdu~tion to m;:t them:1 tir::al lop c, Prince ton Univ.

Press, Princeton, N.J., (1956).

(7] Lombardi, L. /\.. - 1'Jl~SY_2!...f3._le§., Proc. 1960 W .J .c.c. 1 paper

3.3., New Yorki N.Y. 1 1960.

[8] Lombardi, L.A. - System Ifrpdling of Functional_Operators,

J. Assoc. Comput. Mach.,~, 2 (1961), 168-185.

(9 J Lombardi, L. A. - .!!].expens~~~nched card equipmc21 t I J. Ha chine

Accounting, ~ , 8 (1961) 1 11 - 18.

(10) Lombardi 1 L. J~. - L~gj.c of automation of s_ystem comrnunica tions,

J, Machine Accounting, 12, 4 (1962) , 18 - 29.

- 33 -

11 Lombardi, L.A. - On a problem of pu~~Ji.ed tape-to=2ard

conversion, J. Machine Accounting, 1.z, 5 (1962).

12 Lomrardi, L.A. - ronprocedural data system langu,ages,

(invited paper), Proc. 16th. National Conference of A.C.M.,

Los Angeles, Calif., (1961).

13 Lombardi, L.A. - On table 012erating algori'thms) Proc. 2nd.

15

IFIPS Congress, MUnchen, Germany, August 1962 (to appear)

Lombardi, L. A. - _z_w_e_i_B_e_i_t_r_a...;:;g __ e_z_u_r __ M_o_rpholo~ie ur,d S.,yntax

deklaratJver Systemsprachen, DMV-G.AMM Tagung 1 Bonn, Germany,

April 1962.

16 Lombardi, L .. A ... Mathematical Structure of Nonarlthmetic

Data Processing Procedures, J. Assoc. Comput. Mache 1 2,

1 (1962) , 136 - 159.

ZWEI BEITRAGE ZUR MORPHOLOGIE UND SYNTAX

DEKLARATIVER SYSTEMSPRACHEN *

Vom Verfasser wird eine auf die Darstellung der Algorithmen in .
deklarativer (d~h. befehlloser) Form gegrlindcte allgemeine Theorie

der Rechnung entwickelt. Zwei ausgew~hlte Aspekte davon werden in

diesem Vortrag in verein~achter Form kurz besprocheno

1.) Der erste Beitrag betrifft die Bezeichnung der Variablen. In

gewohnlichen Sprachen ist jeder Variablen ein Name als feste

Bezeichnung zugeordnet. In unserem Fall h~ngt di~ Bezeichnung

vom Ausdruck, in welchem sie vorkommt, ab. Die Beschre:i.bung

eines beliebigen Algorithmus in unserem System besteht aus

einer Reihe von Funktionsdefinitionen, von welchen jede die

Form

(.., .1)

hat, wobei name die Bezeichnung der Funktion 1 n ihre Ordnung

(d.h., Anzahl der freien Variablen) und w einon Ausdruck in m

Namen x11 x2 •••••• xm von Variablen bedeuten; fn wird als no.me

FunE._tion~~~hstabe von (1.1) bezeichnet.

Eine Erwlihnung einer Funktion, deren Funktion~buchstabe f~
ir

ist, im Ausdruck w von (1.1), wird

t f. (w
1

,
1r w 2' • • • • • ' w)

q

* Unterlagen vorgelept bei der DMV - GAMM
Tagung in Bonn, Deutschland, vom
24-28 April 1962

(1. 2)

- 35 -

gesch~iehcn. wobei q < t. Jedes w. kann hier entwefer der , . 1

Buchf?tabe ·)1 o<ler ein A1:Pc1.:rt'.ck cein, welcher ~-;t.,Y.' i-,ten Vn.r:i.a

t
blen x 4 von f; in der Verk~rporung, die <lurch ~iese .. r

Erwahnung entstcht, nls Wert gcgeben wi.rd. Jedcr 1:c)Js~vm

Variablen xj, hei der j) q nder wj = ~ iPt 1 wird kein Wert

zug0.ord,1et, d.h. sie wt:.·d e:1.ne \rariable des V/crtes d.cs

Ausdruckes (1 Q 2). WLi~rend der Aus·nertunr.; bekam:nt s:Le cine

neue, geeignete Ee~eichnung.

Zum Beispiel, wenn

2
darm bekommt ma!l. a,~.rch Auswertung von fa C ,·1 l 3) den W crt

x
1

+ 6, <lurch die Auswertung von r2
a~ (10,rp oder f

2
('70) den

Ll

Wert 10 + 2x
1

•

Der Vcrteil diescr Notation vom Ston.dflUnkt der Darste.J.J.nng

der Algorithmen besteht darin, d2.P.i e:l..:1 kleiner \T1nia.bJ .. en.,,.

VJ o:rtocha tz ausreichend :ist.

Vom Stanc.punkt der Auswertung mi t ei.ner gewohnl:.: chen "StR:peJ.

Logik'' (stack-Logik) beRteht der wichtigste Vorteil darin,

daB der Wert jeder beliebigcn Variohlen, die x. bezeichnet
1

wird, sich 1:1:!l~..!:. im Stapel (Q,i~~}s) an dcr i-ten (::1-ngJschen)

.Stelle unter dem Parameteranzeigeregister (:e..aramcter J>J:>i!1+.

Ala Beiapiele werden hier wie in [2j Algorithmen fur die

angenaherteBerechnung des einfachen Integrals von f(x) Uber

(
lQQ. ((' (

das Intervall (a,bJ mit der FormelI = J..__ f(a+i.o). o,wo():::.i
J..c '1

(b-a)/100 und doppelter Int~gr~le durch zwcifache Integrierung

dargelegt.

- 36 -

rx2
Das einfache Integral J x~(x\)dx4 wird als Funktion dreier

x1 .,.

VnriRblen in der Form

d2srge:::-tellt, wo

(1. 4)

eine rekursive Hilfsfunktion in der in [1] erkl~rten Form ist.

Das Int~e;rnl

w:lrd

(1. 5)

ausgedrlickt, w~hrend das doppelte Integral

in de---r Form

(1. 6)

als Reduktion ~u ein~nchen Integralen dargestollt wird.

Wenn wir zum Beispiel die vom Perameter r abhangJge Fur:ktion

(sin(y1 .y2))/(y1+roy) e.uf dem ebenen Gebiet 1/2 <. Y1 ~ 1,
, ,_.,.._,,r;'f't,,.,

0 ~y2 ~v1-(y1) 2 integricren wollen 1 diirften wir die damit

erzeugte Funktion einer einzigen Variablen

r; == f~(5,1 10,f d (1-x
3

12) 1 f. (x2 ,x
3
)/(x2+(x1 .x

3
))) o - ~ q rwrz sin

schreiben~

- 37 -

In unserer allgemeinen Theorlc clcr Rechnung wird ~ie Ordnucg

der Funktionen nir,ht bei dcr D0f:.riticn 9 sondcrn m,r bei der

Erwrih:nung angegr;bon 1 co aan es n:5.cht u.nbed.i:rict in 2_1le:n Ver

kHrperuneen die gleiche 1st.

2,) Der zweite Beitrag betrifft eine syntaktische Losung eines

der f'robleme bei cler .A:uswertune vcn Ausdrilcken durch d:Le

Btapelloeik, Es lst das Problem der Beschrankung der Lange

des StapclG.

Die Definition ei!ler bel:i.cbti1:1:cn Funktion ft kann immer name

in der Form

J.. .,..,.
J. 2 P1~w1' P;, ~w;,, • • • • • • •. • I'u -,..w,, ;.1.'J.L'lO - - .,,,

(2.1)

dargeetcllt werden. ~enn irgendeiner der w1 von (2~1) mit

eincm Funktionsbuchstnben beginnt, wird die Nrw1hning der

entsprachenden Funktion als ~nBerliche ErwihnunG bezeichnct •
...

\Venn ~-n rle:c rechtcn Seite 't"'O?l (2o1) .r:" e"l.t·vc11c:r n.:i.e o,ler nr:irne

ausschlieBlich i~ ~u3erlichen Zrw~hnungen vorko~mt, wird die

Funktion ft als .§inB_~rlich de_fini.e:r:_!_ bezej_chnet. Die
name

Elemente eines S~ctems Ton Funktionen 1 die alle von gGuissen

Urfunktionen und voneinander KuBerlich def~niert sind,

hei.P.ien [uB~rltch rekursive Funktione_!l.

In die:::;em Kurzvortro.g sowie in (4J und (5J, wo die in (316]

beschrlebencn deklarativen Alg9rithmen rekursiv dargestellt

werden 1 werden nuBuchlieBlich ~u.Berli~h reku~sive F~nktionen,

gebraucht.

Man kann 1':d.cht <len folgenden p,atz d~!"-' ii'e_du_kt.:.~.9..n_..X.~2.. tin!}~;:,-

J.ichen Form bewcisen: ---~,_ ... _ .. _ ... __ ._ ' -

- 38 -

Satz: "Hfnreic.hende Bedingung daflir, daf?> einem System S von
0

Funktionen, in welchem es allgemeine (den universellen

Turing-Mas chin en entsprechende) Auswertuni::~sfunl~tionen gibt,

ej_n anderes .System s
1

van auBerl:tch reJ.:ursiven Funktionen

entspricht, so daB jedes Element von S mindeatcns cinem
0

von s
1

funktionell identisch ist 1 ist, daB S
0

ein Unter-

system s
2

von auBerlich rekursivcn Funktionen cnthtilt, in

welchem es eine allc8meine Auowertungsfunkt:.on gibt".

Wenn ein Algorithmus durch Stapellogik ausgewertet w~rd, entspricht

der Erscheinung jeder Erw~hnung die Eingabe in den Stapel des

\'lertes der Eingc1.beparameter der Erwb'.hnung und der Verbindungs

daten, Die Eingabeparameter der vorhergehenden Erwi::ih:n.ung werden

normalerweise im Stapel gelassen. Aber, wenn dte Erwlihnune

iuBerlich ist, werden diese nicht mehr gebraucht werden, so daB

man sie einfach eliminieren Jn?nn (Entladun£). In die.sem FnJl

werden d.:te neuen Verbindungsdnten nicht einrsce;,·l) 1'n, wt=·il di.e der

voricen Erwlihnung an ihrer St8lle gebraucht w~:·d~~ sollcn. Diese

erweit.erte Logik flir den ,Stapel wollen wir .,,Jc; r;r.tl=H5w11rc-,Jof!:ik

bezeich:nen. Ihre Vorteile, die jm Falle der 1'.u .. ,wcrtun 1·: rc,k1irr;i.ver

Funktionen besonders w:i.chtig sind 1 bestehen darin 1 daB mnn die

Aufbewahrung im Stapel der Eingabe_t>arameter und Verbindung.s,laten

von schon verbrauchten Verk~rperungcn von Funktionen vermeidet,

Ala Beispiel werden hier zwci Algorithmen anrregeben, die beide

die Fakultat einer ganzen Zahl darstellen, von denen nur der

zweite aus auBerlich rekursiven Funktionen besteht.

(2.2)

-: 39 ..

Die Auswert11ng von (.?.. 2) ir.i t c:i..ner St"':;,eJ.lcr,ik (mi t oc1cr chne

En~ladung) ~rin~t in den Sta~el eine n~ihe von Zahlen 2 deren

kinge ::u x
1

proportional is:;; zudcrn werden UberfJ.ii.sste;e Zai1.lungen

gcmacht. Im Gegen~Rtz dazu 1 wird im Fall (2o3) eer Stapel h~ch8tens

vicr Ze.hlen enthalten 1 u.nd k~:..::1.e cinzige libcrflUssige Rec!m1.ing

ist notig ..

In unscrer Theorie der Rechnung werdcn nur auBerlich rekursi-ve

Funktionen gebraucht. D:i.e Moe;lichkei t des au.sschl:leP.i.lichen

G£brau.c.hes solc:1.er Funktionen ist vom Satz der Redu.ktion zur

i:i\1.(~erlichen Form e;esichert. Es kann aber vorkoJ.jjmcn I da!?> die

Vcrtcile 1 die man durch die Entladungslogik vom Gebrauch der

auBerlich rek'-~}~s::_vcn Funktio!'.en bekommt, nu:>:' sche:i.nbar sind: es

kann vorkmi1men, daB 1 otrnol1l die Anzahl der lord.c:01'.en Elemente im

Stapel dadurch beschr~nkt wird, die L~nge dcr cinzelnJn Ele~ente

sich vergr~Bert; im untinstigsten Fall konn sich sogar ein solohes

:Cler.1cr.\~ wie ein Sto.pel botr~zen. Dcrnhalb ist cs notv.rendig 1 bei der

Defin::i_tion der P_J.co1'.'itr::nen dies zu beachtcn.

Der :Sezri:f der AuBcrlichkeit kann ohne we:i. ter.8.s 2u rekurs:!.ven

F1 ,:-:::tionen erwe:t.terc warden, die <lurch Systeme [1] (rmstat;t

~•n~eln) definiert sind.

- 40 ..

L I T E R A T U n _ .. _»~-~-... --...... - .. ····---·-··-

[1] J .,McCA:R'l'HY.

A ba~is fer a mathematical theory of computation, Proc. Western

Joint Comp. Conf. (1961), V0rtrag 5.3.

(2] L~A• LOMBARDL

System Handling of Funtional Operations.

Jo Assoc~ Comput. Mach., (g) 2 (1961), s. 168-~85.

[-:tl L.A. LOMBAI-mr • ., .j

Mathematical Structure of Nonarithmetic Data Processing Proce

dures, ,T ~ Assoc. Comput. Mach. 1 (9) 1 (1962), ·s. 136-159.

[!+J L.A. LOMBARDI.

On the declarative Control of th~flow of data by means of

recursive functions

Proc. Symp. on "Symbolic Languages in Data P:::-ocessing", Rome

Marz 1962

[,] L. J•.. LOMBAnDL

On tho Representation of Table Operating Algorithms by means

of Recursive Functions (zur Ver~ffcntlichun3).

[6] L. A. LOMBARDI.,

Theory of Files.
;

Proc. Eastern Joint Comp. Conf. (1960), Vortrag 3a3o

