EUR 192.d,e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THREE WORKINGPAPERS
ON THE THEORY OF COMPUTATION

by

L. A. LOMBARDI

1963

Joint Nuclear Research' Center
Ispra Establishment - Italy

European Scientific Information Processing Center - CETIS
(CETIS Report NO. 49)

SRR ETLE R . W
e g3 37 el = .M.J!.Wq.».lh.&..uuﬂl -
.L.AW.W. 2iiow TOROGR - =BT

¥ e A :

8.2 o

A

i1 108

it (8114

1o o

%’J»,: HEs
{

E-g%

3

FHIE e

EUR 192 .d,e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THREE WORKINGPAPERS
ON THE THEORY OF COMPUTATION

by

L. A. LOMBARDI

1963

Joint Nuclear Research Center
Ispra Establishment - Italy

European Scientific Information Processing Center - CETIS
(CETIS Report NO 49)

ON TABLE OPERATING ALGORITHMS =«

7. In this paper we give examples which shew how table operating
algorithms can be represented in declarative or nonprocedural
form. The aim of this study iz to make a preliminary test on the
potential applications of declaretive techniques to the design of
lenguage elements having a particular but concrete purpose, in
order to collect indications for the design of general purpose
data eyetems and languages. The algorithms exhibited in this paper
are only egamples, and no attempt to design the best poscible algo~
rithm for each operation or to achieve completeness has been made,
The methods adopted are those discussed 1n section 2 (Tables) of
(5). Throughout this paver ltalics are used locsely as descrintive
elements of publication language. The representations of alporithme
in the system language does not contalin any italics.,
The following apodictic (or primitive) functions will be utilized:
1) A11 veual arithmetic and comparison functions, denoted by the
usual connectives., The absolute value of a will be denotedi%g.
ii) The substitute functions Sr and Sf of onc argument, whose value
is the record or field, respectively, located in the address
specified by the argument,
11i) The include functions Ir and If of three arguments, which
inqlude the record or field, respectively, given as third argu-

ment into the set denoted by the first one by placing it into the

BUR/C-I8/1126/62 o

+ Paper presented at the IFIP Congress, Munich,
Germany, August 27 - September 1, 1962

-2 -

address given as second argument, and has the first argument
as value. |
To each table, say b, we shall associate a list called L(b)
which consists of:

I. A sequence of words, whose addresses ara’'referred to as Mr(g)

and whose contents, referred to as Nr(h), are the following:
N1(§) = Initial address of b.
Na(g) = Final address -of b.

NB(Q) = Length of the records of b.

Nh(h) = Name of the predicate in the address defining the
last exclusive record.
Ns(h) = Internal address of the keyfield(s) within the records.

NG(Q) = Name of the function representing the integral of the
normalized probability distribution of the key.

Lower bound of the value of the key.

1l

N_(b
7(__)
N8(§)' = Upper bound of the value of the key.

Ng(p_) = Internal address of the link field (for chained tables).
N1O(g) = Name of the functions to be used as table scan algorithm,

N11(§) Name of the functions to be used as '"add record to table"

i

algorithm,

plus others which are not directly utilized in this »raper.

1X. A sequence of alphabetic phrases, whose addresses and values
are referred to as P(b,c) and Q(b,c),respectively, such that
Q(b,c) denotes the mode of the field ¢ of table b,

New functions of m variables can be defined by using the notation:

g home, By, 8, 4 eee , & @ F

-3-

where 1 is an integer, name a descriptive lable of the fﬁnction,
n the number of components of the value of the function, 2

denotes the space (integers, rationals, addresses, truth values,
etc) in which the i—th component ranges, and F is a form in the

m dummy arguments b e bm and thelr components

10
b-%l , eee 4 bf’;

A function valne and its j-th component are denoted by writing
the function letters fi or fg , respectively, followéd_by a
sequence of m arguments. If an argument has séveral compoﬁénts,
the forms representing their values are enclosed in brackets and
separated by semicolons. In particular, these rules apply when
recursion occurs in F.

If an argument is a form in n dummy (i.e.,)t—bound) variarles, these

scopes will be denoted ¢,y oo , ¢, @nd their components c% y e
eas c% « (For the discussion of the correspcnding question in

the case of command structure® languages see (4]).

Remarlk, Unlike most conventional potations, this one does not
assign a fixed name to each variable, Here, all freé and bound
variables are denoted 'y the letter b and ¢, respectively, Qith
an integer subscript. The denotation of such identifiers depends
upon the position in the representation of an algorithm where
they are used.

Components of the components of function values, arguméhgs'or

scopes are denoted fi'l . b%’é or c%“l, respectively, and so on
whe .

e ——

for higher level decomposition.

2. Address calculation functions generally have 3-~component values.

The first is an address and, in case the function is computable,

gives the address searched for. The second is truth valued, and is
T if and only 1f the search is succesful, that is, if and only if
the function is computable. The third is an integer and gives the

number of tests which are involved by the search,

Consider a table, named table 1, with records having fixed length,
sequentlially allocated, which is to be searched sequentially for a
record satisfying a predicate pred in its address. In order to do
80, we shall use the functions

£,y TABLESCAN 1, 3, ADDRESS ; TRUTH ; INTIGER
s cond(¥, (b,) (b)) —3>b. , b, (b)) [b1 ST b3] T £ (b.)
420471020 T2 P v P00 =y a8 T3 Bp [0 T == 0900,

1 P s b
[52 + Ny(b)) 5 Fj b3+ 1] by)
and

fa, TABLE SCAN 2, 3, ADDRESS ; TRUTH ; INTEGER

PENCH [N1(b1) P F 1] . bz]

That is, this address is expressed by

£] (table 1_, pred)

If there are doubts on the existence of the record wanted, we can

utilize

f3, ADDRESS FUNCTION 1, 1, ADDRESS
= cond(b2 3 by , T 3 V)

and

2, ADDRESS FUNCTION 2, 1, ADDRESS

= 13(£2(b1,b2))

-5 -

Consider now a chkained table, table 2.and let us design a more

efficient algorithm than ls sequential scan to locate an item
whose keyfield contains datum, The first tentative address to be
computed by using

foy TENTATIVE, 1, ADDRISS

- N b ""T) I\T (o = 7. I ki
(Mg (o) =N (5)/, (0) -, (b) M (b)) (b)) 4N, (b)

The main algerithm is represented by

fG’ CiATHN 1, 3, ADDRESS ; TRUTH ; INTEGLER

5 ()] b) = 1.m..37
5,06l + M (b)) = bz...;u[b,_),T,bZJ ,

X Ty .
= cond(Sf(N9(b1)+b2) = U —3b
T e £,(b s(b1+N(b)Fb3+1] b.)
6 1! £rU2 7 9N T2 '3
and
f7, CHAIN 2, 3, ADDRE3S ; TRUTH ; INTEGER
- H T
A [f,j(oﬂbz),*n] b))
Then, the address is expressed by

£,(table 2, datum)

In order to consolidate these two algoritbms (and other algoritbms
which apply to tables which are differently organized) we shall

nse
fg , TABLE FUNCTION 3, 1, ADDRESS
= £5(0,0(b,) (byy0,))

In this way, provided that the system includes a wide selection of

-6 -

table scanning functions, all table functions are represented by
f8. The appropriate algorithm is part of the teble layout descrip-
tion and is selected automatically by N1O’ while the process des-

cription, which uses f8, is invariant with respect to such algo-

rithm.

As further example, consider a table, table 3, suitable for binary

(logarithmic) search., In this case we shall use

£9’ BINARY SLaRCH 1, 3, ADDRESS ; TRUTH ; INTLGER

= cond(b,=0 —3 b5, >; R ACHIES _—a:—b,,,T b3] T e £ (b,

I-_(b;-:-cond(sp(,bj;-:-NB(b,‘) Kb, 3T ey =1) ¥ bh;F;bzﬂ]

3

b3(b4/2‘;)+cond(b4=0 ~20,T —31))
and

f10' BINARY S&ARCH 2, 3, ADDRESS ; TRUTH ; INToSGER

= f9(b1, [(Nz(b,l)+N1(b1))/2;F;1J b, (N (b1,-N (b))/2).

Here again, if N1O(Egbl§ %) the address will be represented

= fio

in the form:

fo(tzble 3, datun)

Lastly, consider the example of a table &4 where the records are
allocated in buckets, with keys placed within the records, and these
buckets are chained. In order to locate a record having datum as

value of the key we should use

-7 -
f,q+ CHAIN ADDRESS 1, 3, ADDROSS ; TRUTH ; INTEGER
= cond (S s b yS (o 4N (b,)=U oy (U3 F b5 T 5 £, (b, L
g 2 ™ £17279 0y T L L b L R
. N]
(b1,uf(cq+N5\b1)-bj,uf(bz + N9(b1)),b3)
where
£

CHLIN AUXILIARY 41, 3, ADDRESS TRUTH ; INTRGER

we,

12!
= 0.,k i

= f1(oq ib Fil /b5)
and

y CHAIN ADDRES3 2, 3, ADDRESS j; TRUTH ; INTAGER

L3

= f 1(01, 1q\b“u (c —N (5)=b “6(5) (h)) b)

so that, if N o (teble b4) = £ 431 the address required is again

fq(table k4, datum).

3. A table function (see {5] , section({Z)and [3]), can be repre-

sented by using

£ TABLE FUNCTION 1, 1, Q(b1,b3)
a cond(b2 . N (b1+b), T —3U)
BOVEEEA T Re M T 0

and
f15, TABLE FUNCTION 2, 1, Q(b1,b3)
SRR S ACIRLPORLDY

so that the value of the field, field 1, of the record of table 5

whose keyfield contains datum, is

-8 -

(table 5, datum, field 1)

1

and the value of the ficld 2 of the record of table 6 whose key

PYONATEI

satisfies the predicate pred. 2 is

£ 5(table 5, pred 2, field 2)

The desigh of table scanning algorithms, similar to fq, f7, f1O
or f13' able to operate on tables crganized according to the
standard RAMAC allocation pattern or on threaded lists are left
to the reader as exercises.

Consider the problem of introducing a new item record into
Egh&g_é which is scquentially ordered with respect to its

keyfield., This operation is described by means of

f,61 TABLE ADD 1, 2, ADDRESS ; TABLE

2 [T 2,000 1,641 2,0, 1,0, b))

where
f17, TABLE ADD 2, 2, ADDRESS ; TABLE
= oond(uf(b2+N5(b1)) < bE)\/(b2#M1(b1)-a>Ir(b b2+N3(b),b)

- f17(Ir(b1,bz,sr(b2+N3(b1)),bZ—N3(b1),b3>

so that the above algorithm can be represented as

f16(table 6, record)

Again, in order to make process descriptions invariant with respect
to table algorithms, provided that a selection of algorithms able
to operate like f16 on tables with different structures is available,

- we shall use

As

‘-9—

bis TABLE ADD 3, 2, ADDRESS ; TABLE

17!

2 My (0 (b yaby)

The function f17 has the same level of universality as f8.

problems for the reader we suggest to develop:

1) A function of a table and a predicate whose value is the fifst
ergument withsut the records satisfying the second.

ii) A function of a table, a predlcate, an addfess and a literal
whose velue is the first argument where the value of the fields
having the third argument as internal address of all records

whose address satisfiles the second is replaced by the fourth.

Another useful excrcise consists of adapting all algorithms outw
lined so far to the case of tables with records whose variable

length is specified in a field.

L. The implementation of the language elements described above
obviously requires the availability of a real or simulated computer
able to evaluate all apodictic functions described in i - 1lv
(section 1) and to link defined functions with provision for
assigning both arguments and scopes. The degsign of such a computer
[23 is the main problem of modern data syccem science and its
discussion cannot be encompassedwithin the scope of the present
communiéation. Besides this major point, we should mention that the
implementaticn of these language elements requires an assembler
which wauld nof differ substantially from standard assemblers for
procedural languages, which ghould reduce forms to the standard

Lukasiewicz format, allocate all forms of which the description

of a process consists, call and allocate all system forms from the
external storage devlices and replace or supplement the correspon-~
ding function letters with their addresses, replace all symbols

with their value derived from the layout tables, construct the
layont tahles L(h) from layout descriptions, etcs The only point
which 15 worth mentioning is that the assembler should not replace
the M and N with constants: instead, 1t should replace them with
appro;riate zable functions, because the contents of the layout
tables is subject to changes duvring the evaluation of the process
description.

During evaluation the tables L(g) should be handled like any other
table. We should draw the attention to one of the main difficul-
ties of recursive programming, which has been pointed out by Dr.
Mauro Pacelli in 1961 and which comes up through this set of
examples: thaﬁ s, the proble@ of aptimizing the evaluatlion of sets
of forms having common subferms which should be evaluated for the
same arguments, When using command structured languages, it is often
vasy to extract subprocedures from code sections in order to minimize
the time of execution: that is, programs are optimized by means of

a handtayloring of the flow of the control, In the case of declara~
tive languages without recursion, it is casy to have optinmlsation
performed by the machine by means of appropriate precedence analysis.
But when recursion occurs, then the question of common evaluation
comes up in connection with a priori unbounded sets of incarnations
of forms, and to the best of our knowledge there is no universal
optimisation technique available. One solution to this problem, that
we have implicitly proposed in this paper by adopting it in many

instances, consists of extensively utilizing Cartesian products of

of walues of functions, and conversely, projections of such pro-
ducts, that is, functions with multiple~component values and
single components of such values, This yields the need for multi-
ple-component arguments and scopes of functions.

However, we do pot know of any method, but hand-tayloring, of
consolidatiné form evaluations in order to minimize cvaluation
time, On the other hdnd, the corresponding problem for procedural
languages, that 1s, the problem of the design of analysis codes,:
is also practically unsolved. From these indications we 0an infer
that probably one of the basic skills of the future declarative
computer designers and programmers will be the. familiarity with
these set—generatiné and projecting techniques.

Another technique of optimizing, which applies when a subform, say
sf, occurs twice or morevoften within a form f in t arguments,
conglists of designing a new‘form ggAin t arguments, such that

nf = E£<b1v"°’br7§£(b1:"°|br))

where mf is the form in t + 1 arguments which is ohtained from f
by replacing grafically all occurrences of sf with bt + 1, and
using nf instead of f. Z simple instance of this tec;nique can be

found in the design of ADDRESS FUNCTION 1, section 2.

References.

(1) McCarthy John, A basis for a mathematical theory of computa=

tion, Proc. Western Joint Computer Conference 1961 (Los

Angeles, Cal., 1961).
(2) Gilmore Paul C., An abstract computer with a Lisp-like

machine languvage without a label operator, Proc. Symp. on

the relations between formal systems and computer languages,

Blaricum (Holland) October 1961.

(3) Lombardi, Lionello. Theory of Files, Proceedings 1960 Fastern

Joint Computer Conference, paper 3,3 (New York, N.Y., 1960).

(%) Lombardi, Lionello. System handling of functional operators.

J. Asscc, Comput, Mach, 8 , 2 , 168-185 (1961).

(5) Lombardi, Iionello, Mathematical Structure of Nonarithmetic

Data Processing Procedures, J. Assoc, Comput. Mach., 9 1
136-159 (1962).

(6) Lombardi, Lionello. Inexpensive punched card equipment.

Je. Machine Accounting 12 8 12~18 (August 1961),
(7) Lombardi, Lionello. Logic of automation of system Communications,

J. Machine Accounting. (13, ﬂ (1962), 18-29,

THE DECLARATIVE CONTROL OF THL DATA FLOW

BY MEANS OF RECURSIVE FUNCTIONS +

1. Introduction

This note is devated to the discussion of algerithms for file
processing which‘are represented in terms of a language without
command structures, that is, a ceclarative language.

So far, most of the effort in the'érea of declarative languages
has been in the field of the representation of processes whose
results, or output, are numbers or small, well defined sets of
numbers. Consequently, such effort has been malnly directed to-
wardé the development of morpholcgles and syntaxes for writing
and semanticé for evaluafing forue whose valves range over a set
of numbers, File processes do not belong to this category, since
their result, or output, are large sets of records distributed in
sets of output files, and the main difficulty in achieving this
result is the proper organization of such files. Consequently,
since declarative languagés consist of methods of representing
processes as functions of the data whose values are the results,
declarative techniques to represent file processes must be based
on forms whose values range cver spaces of sets of files. Due to

the level of repetitivity involved by file processes, such forms

¢+ Paper presented at the Symposium on Symbolic
Languages in data Processing, International
Computation Centre, Roma, Italy, March 26-31,
1962

- 1 -

should be designed in a way to allow for récursion,

While the application of recursive functions to forms able to
represent operaticns on random access files or tables is discussed
in (13} , this note is concerned with coordinated or ¢ollirear
file precesses {16]), that is, with the file processes which take
place in magnetic tape processors. The results of the theory of
files {7 , 163 are extensively used, with speclal regard to the
standardization and optimization of the input and the predicate-
controlled outpnt [7, section 33 » In fact; without the tecol of

the filethenretical approach, the problem stated at the end of the

preceding paragraph would be very hard to solve.

Since this is a report cn prelinminary investigations aiming to
show the po=sibility and the basic elements cf a declarative
approach to the representation of file processes, rather than a
mannal for a declarative file processing lanpuage or for a
form-evaluating file processing computer, the schemes discussed

in {167) have been considerably simplified. In particular, the
gtream and bundle level have nct: been considered, thus implying,
among other things, the need for each legical file flowing through
an individual input-mmtput unit, which is possible only if there
is a large number of such units available, Furthermore, among the
file indicators, only the exis?ence and the left and right deriva=--
tives of the inpwt files are considered, while the input-output
and validity indicators, as well as ali indicators of the output

files, are provisionally dropped. In fact, these useful features

can be added later without any need for major theoretical advances,

- 15 =

while their treatment here would make the discussion considerably
more complkicated,
The file processing algorithms considered here provide for coor-

dinating the input by means of the functiorf{ and computing

input 2
the contents of the output records and coordinating the output by
means of the function foutput 5 ¢ These two functions ?re cascaded,
in the sense tkat the second one, which gives the timing to the
whole system, calls the first one., One of the most important things
that are brought up in connection with £his, is that, when two
functicns are cascaded, the first one should have a value with
scveral components, some of which are the data that 1t was supposed
to procduce and pass to the second cne, and others have no other
purpose than to enable the second one to assign parameters to the
first at the time of its fcllowing incarpation. In other wérds,

the 1link between these two particuler functions is a prototype of
the nature of communication which should exist between independent
meduli — oxr submachines — of a computer with declarative logic.
Input and output buffering is not discussed here; the entering and

filing of records is performed by not better specified functions

of one variable and f of two

fphys.{cal input physicol output

variables, whose value are the next-coming record of the input
unit specified by the variable and the contents of the output
unit specified by the first variable supplemented with the second
one, respectiveiy. These two functious are somewhat eterogeneous
with respect to the remainder 6f the system, because, as it will
appear, in order to, be consistent, the contents of I~0 units
should be represented as lists and operated with composition and

decomposition operations. This will be done in the near future

- 16 -

probably without major diffisulties, while drafting a complete
recursive file processor, based on six cascaded levels: physical
output, output buffering, outpnt computation and coordination,
input coordination, input buffering, physical input. However, in
this first essay we have bound our investigation to the two central
levels, which give rise to the main difficulties, and to the link
between them, which is the most critical, No use is made here of

the set inclusion operator of order three, which has been widely

used in [13}, and is essentially a particular interpretation of
Gilmore's dynamic lead operator of order two [4] ., It has been
possible here to replace this problemraising operator with
composition operations each time the opportunity of using it

come up.

Compositions and decompositions of lasts are used extensively in
order to build composite values and parameters of functions. Such
techuiques are derived from those developed by McClarthy (2] ,
thongh they are used here in a different way and for a different
purpose., An example of a composite valuve form built in this way

is the value of f,

nput 2! the fifth component of which is
. L

the whole machine status, while the other eight components contain

information sufficient to controel its suisequent incarnation. This

technique is also used by f in order to decode the value
output 2

of that it receives through f

finput 2 input 1°

The problem of developing semant.cal elements for decomposition
and composition operators is not discussed here. The solution of
this problem will be a particular case of asemantics able to define

elements of new spaces and operations thereon in terms of the pre~

viously avallable spaces and operations, in a way such that

-17 -

overation létters (or function letters) ere morphologically
independent of the structure of the operands, while an appropriate
meaning is assigned to them for each allowable configuration of
such structure. A considerable effort is currently being devoted
to the solution to this last problem, which is the key question

of the theory of computation. This author will soon report on

the results of his investigation, based on extensive development
and theorization of some features of the B5000 and KDF9 .computersa
Care has been exercized here to use only the particular class of

recursive functions called externsl recursive {13,15] y because

a much easler syntax to evaluate them, based on the so-called

discharpe stack, is possible, as shown In the second part of [15]‘

2. NOTATION

Only very short explanations are given here en the notation used,
since the first part of [15) is devoted to its complete discussion.
It should be noticed that practical considerations have suggested
aome very slight deviations from the notations used in the report

[13] y written four months earlier than the present one.

A1l function letters are denoted by the letter f with a suhscript,.
Besides specifying such functions, these subscripts may be
mnemonic and cenncte the practical use of the function letter,
However, functions which are usually denoted with special infixes,
such as + or -~ , are here denoted as usual, for the sake of

readability.

The definition of a function of order n has the layout fA & b,
where fA is the function letter involved and b is a form in the
n variables gy X5y wes y Xy where Xy always denotes the i~th
argunent (free variable) ofmthe currently defined function. The
form b can contain calls for other functions, the one currently
defined inclusive. These calls have the layout fB(d1‘d2""'dm)’
where fB 1s the function letter of the function called, m itsm

order, and the d, are forms in the n variables X4 which have the

J
meaning specified above, “henever the value of any of the dj for
given {xi} is a function of a finite sequence of (N ~béund)

variables, the h~th of them is denoted Yy, Unlike most languages
for representing algorithms, where each variable, free or bound,

has a fixed name assigned to it, in this language the names of

free and bound variables are always x and y, respectively, with

- 19 =

an integer subscript, and the denotation of such names depends

on the position where they are used. The reason for the adoption
of this method is its orientation towards address-freé¢ evaluation
logics based on stack operation,[5 , 181, while the conventional
approach, by means of the standard gimmick of associating storage
areas with names, is oriented towards the execution of commands
on addresses [17.

McCarthy's conditionﬁl function ch'

nd

value is X, or X3 depending on whether or not x

of three variables {3}, whose

1

apodictic in this system and referred to sometimes with the

is true, is

redundant notation fcond(d1'"§ dyy T —'>d3)' for improving
readability. A list of n elements is represented by the integer n
follewed by the n elements, all separated by commas. The value

of the apodictic function fcomp of order n+1 is the list which

its arpgumsnts represent, while the value of the apodictic function

of order one fdec y whose argument is a list (we should rather say

"has the dimensions of a list'"), is the set of the elements of

this list. The value of the apodictic function of order 2 fel’

whose first argument x, is a positive integer and whose second

1

5 is a list, is the x,-th elemen® of x,. By using

recursively these three basic functions, colled ¢omposition,

argument x

decomposition and element, respectively, it is easy to build two

further handy list operating functions of order two,~ffirst and

flast y Wwhose value is the set of the first or last 21 elements

of the list X4y respectively. The value of the apodictic function

fnumbOf order one will be the number of elements composing its

argunent, which is a list.

Recursion is allowed in the function definitions, that is, if

such a definition has the form f b calls for fA can be contained

AR

in the form b.
If we establish a weak precedence relation in the space of the
function letters involved by an algorithm , such that £, fm if

there is a sequence f., f veo fm where f, is used in the

OY 1! i

definition of fi then, if this relation ylelds a partial weak

-1

order, we shall say that the algorithm is based on a _class of

individual recursive functions (the case of the strong order

would imply the absence of recursion). As it was remarked by
Pacelli, this way of defining algorithms is possibly less power-
ful than McCarthy's {3], who explicitly introduces sets of
recursive functions defined through systems. However, since the
logical problem of comparing the two ciasses of recursive
functions to which this difference has given rise is open and
goes far beyond the specific scope of this essay, care has been
exercized here to base the file processing algorithm cn a class
of individual recursive functions,

A handy gimmick which makes it easler to read the definitions of
recursive functions conslsts of replaoinglwith a dash (possibly
in parentheses to avoid confusioﬁ with the minus mark) some

appearances of x‘ in 4, in a2ll function definitions of the type

J J
fA = fB (d1,|~o,dm> (2.1}
or
fA E fcond(dA“")dB,T -—?fB(d,l’o-oo,dm)) (2.2)

The letter z with a subseript (possibly mnemonic or descriptive)
is called shorthand, that is, it replaces graphically the occur-

rence of an arbitrary writing, which is associated with it by

means of a shorthand definition having the layout

z = d
where z is the shorthand and d is the writing that z stands for.
Such shorthand definitions have Beeu already introduced in [8]}
and {17), where they were called symbols.
Despite the confusion between function and shorthand definitions
that the common layéut and the common use of the mark " g " might
yield, one should keep in mind the-deep semantic difference between
them: they dencte functional equivalence and grapbicél identity,
respectively, and the occurrence of is velated to the McCarthy's
label operator{}} in the first case, while it denotes plain
identity ox replacement in the second, The limited purpose of
shorthands is to simplify the design of algorithms and to ocut
the size of the (real or simulated) computers which carry them
out.,
The letter v with a descriptive subscript denotes an off-algorithm
datum or a datum which for some reason is left unspecified. In
this example, this notation will be used to denote the elements
of the progranms which the algorithm or abstract machine should
execute (see section 4),
The letter w with a subscript is used loosely in this essay in
order to build explanatory examples.

In the sequel, {1 will denote an empty set,

- 27 -

2. The file processing algorithm

Fach currently available record 1s presented in the system as a

list of seven items, ramely

fcomp(7’wrecord’WE’wL’wR’WPK'WCK"WFK)
: : T + _ £
where ¥oecord is the record represented as list of the contents of
its fields,wET Wy and W, are values of the existence indicator and

the left and right derivative at this record of the file to which
it belongs, respectiyely, while Wepy Wep and W are the keys of
the preceding, current and following record if the file involved,
respectively. In the sequel, the key constructing function fkey
of one argument (a record) will be supposed unique for all files,
for simplicity. We shall also assume that the last exclusive
records of all files will consist of the litéral LOF,
Let

fmincfmin 1(~’h'1'x1(fe1(1‘x2))‘fnum(x2))
and

iy

min 17 "'onc‘l((X X5) = X T — Iy 1(—’"’(~)+1’f

cond
((xqw(x1(fel(x3,x2)))._9 %1 T _.>fel(x3,x2)))

Then, fmin

value of the function X, of the elements of the list Xy

is a function of order two, which computes the minimum

Let
("‘1 (((}’1) X)74 X) 1 fl X3,XI+’

finput 1 T Tinput 2 Tpin Tkey

(£ (y Qo)) Ve, (2,8 (1,%,00),2)

- 23 -

With reference to [17] (section 3), x, will denote the contents

of the current ey remister (CKR), x, the complete sct of the

2

records aveilable at the previons pnlse (the dimensions of X

thus being the ones of a list of lists of lists of literals of
unspecified dimensions), x3 ande“ denote the contents of the
Jower and upper logical one-reccord buffers (required to compute

the right derivatives), x_. is the value that the current key

5
register had at the previous pulse and X is the 1list of all input

files.

The function f called above is defined as
input 2

((Xl' (}:)""?"f p("ot,x,‘,X2,XB,XINXS,X6,X7,x8‘X9?X1O)9

f > f
input 2% oond num 10 com

(x),f

— ~ gy (=)
Ten T (=== € "1‘fcomp(x4'fdec >

input 2 (ZZ’A”

f
cond < Tcomp

(7,stop,T,U,U,U,U,U),T wep £ (x 2y T ey £

crnd 9 (71847 Gepaxg) s

comp

Ty — f ((ngx)),x <fel(xh’x7)’fel(6’fel(x4’xa)’

key

(K}_}‘.;XZ) ,fkey(fel(xl'-?x?))))) 'f (}F “"“"; £

cond "9 cond (X%‘X)

al

= EOF —~»LOF,T —ebfel(xq,x7),T_4>—,f (x P & (f (x,,x)

cond " "econd

))
>t ‘4>fphy°ical jnpu+((Xh’x o)’fcond((fkey(fel(xh’x6')

) A £ (212, Gy =TT om (8 (8 Gy x) V)V

key

(2,42, Gee1y:,00) AN (= xg)) =)

- 24 o
where

) (. g b g r L i -2
297 fcond‘XB a‘fel(k4’x2’T ”lcomp(7’ffirst(1‘fcl(xh‘xa))'F‘flast

(S‘fel(xQ,KEV)))

and
- - TOm
z, = <fel(x4’x6) = EOW)
Here, X, is the contents of CKR, x, is the set of the available

records at the time of the preceding pulse, ¥y is a signal which
is on during the first pulse of each phase (sece [7],@7un is a

standard recursion count, x. is the part of the machine status

5

elaborated until .he previous incarnation of f,

nput 2 irclusive,
- [

x6-and X, are the contentp of the lower and vpper buffer, respec-

7

tively, Xg 1s a signal which triggers the entrance of a record
which clobbers another one belonging to the same file and having

the same key (see (177 , pages 152-153), xy 1o a bit which

summarizes the conditions under which a new record should not be

entered, and x,. denotes the set of all input flles. r

10

R 5
The value of both finput 2 and finput 1 is a list of ten elements,

of which the fifth is the set of records available to the pulse

of which the evaluation of f is the start [17, section 37.

input 1

We shall utilize the auxiliary function fS defined by

top

fotop & Toonal 1 Ty (prx) =\ T (G £ (o)) > 1Ty f

stop = “cond stop

where X4 is a list and X, an inte nal count, Furthermore, we shall

- 25 -

need

f —,1,x2(1))

1ist 1 ® T14q¢ 2("i

where X, is an integer, x5 a function c¢f an integer variable,

and

flist 2= C“nd

((x > x,)-avf ESOREE S N ,w,(u)+1$f00mp(x3,

fdec(x4>’x2(x3)))) g where X,

denotes the number of recursions; X, is a function cf &n integer,

X, an internal count and X, the issue of the preceding incarnation,
and
= - £
frive 18 Toi10 20 i 00na Ty (M2 (1% Gpaxyyxgd) =220 000y pite

(xa,fel(z,fel(1,x1))(x3,x4,x5)),T—ﬁyxz),xz,x3,x4‘x5)

where X, is the group of FCE related to the current incarnation of
f1, X, is the output file involwved, X5 is the list of availleble

records,; x, the list of dinternal variables, *g the stop indicator

(17) and

f ((w >f (1 fe

file 2 = Toona (x)) =% T =2 o000 0=y (24141,

numb cond 1

(x2’x1)(x5'x6'x7))‘~e'fphysical file(x4’fel(a’fel(XZ’x1))

(x5’x6) 7T —'9 xb,) 9"1"7""")

where x, has the same connotation as for f is a count,

1 fi11e1' %2

x, 1s the main issue of the preceding incarnation, Xy, the output file

3

involved, and xs, Xg and x,, have the same meaning that xj,xq and xs,

7

- 26 -

respectively, had in the definition of ffile 1 °
The defirition of the jact two functions requires that the file
control predicates [17] are organized in the form of a list of as
many elements as are the output files, where the i~th element is
the 1list of all the file control predicates related to the i-th
output file. Furthermore, each such predicate should bé prescnted

as list of two elements, of which the first is the flow contrecl
predicate as defined in [17} and the second is a form whose value
is the record to be filed, represented as list of the contents of its

fielde,

The basilc functlion used to compute the contents of the records and

of the output files, that is, to control the output, is

(x4 '*’XZVT — 1 (finput 1(fmin(key(y1)‘ "1(6;x))'

foutput 2 = cond output 2

f 1(5’X1> ,fel(6px1)fel(7,x1)x8) 1

(f

fcomp “list 1(aumH Y6) f (y17x6))'

mjn key

(f (5;:)1)

i’stop el

(£ (x.), £ (f (x:),

fcomp numb 75 list 5

numb

Te1e 1Te1 T1xg) 1y (ryaxgd £ 5 (5yx),

XZ,X#)) 'X6,}{7,X8)

-~ 27 -

where x, is the value of f 7 X, 1s the list of the values
1 input 1 2

of the internal variables at the previous incarnation, x, is (CKR),

3
x), an internal signal which denotes the occurrence of the last
pulse, x5 is the list of the output files at the previcus incarna-
tion, *¢ 1s the list of forms which assign values to the temporary
variables, %,y is the list of the flow control predicates 117]) and
Xg is the list of the input files.

In {177 the concept of pulse as atomic file processing actinon was
presented and discussed. With the present algorithm we can give a

simple formal definition of this basic concept of file processing:

a_pulse is an incarnation of ¥

output 2°

The general controlling function of this algorithm, which, if we
had adopted a tree structure rather than a machine~oriented linear

notation, weuld be at the root, is

5 (fel(y1,x2),

&
foutput 1 = foutput Z(ZB’XB’O’F’*

(£ ,(1yx,) ¢

list rhysical file

(
Fe1 Ty ¥g))) o xp k0 %55 x,)

where X, and X, are lists of input and output files, respectively,

x., and xu are the lists of the initial values ard of the forms

3
defining the temporary variables, respectively, X5 is the list of
the flow control prediceates with the corresponding record value
associated (see above in this section), X¢ is the 1ist of the

contents of the labels of the output files (which, in this algorithm,

are assumed independent of the input), and

25 3 flist(fel(1’x1)'fcomp<7'U’F’U'U’U'O’O>)

is the initial machine status,

- 28 -

Remark. The uvsage of £ , made here is to a certaln extent
s s A ou tput H
similar to the one of a special purpose supervisory control or
monitor in systems programming for conventional, command-structured
algorithms or computers. In the case of declarative representation
there is no difference between monitors and other functions, since
each function moniltors the incarration ef those on the basis of whach
it is defined, and each funotion which is used as monitor by being

at the root or lowest level in an algorithm can be on a branch cf

other algorithms,

- 29 -

Lk, The programming language

The implementation of the above algorithm on a computer with wired
or simuleted stack logic [5] able tc evaluate on either wired or
programmed basils all'apodictic functions mentioned in section 2
consists of writing the functions and shorthands defined in section
53 into its memory or of preparing microprogramming plans consisting
of thelr definitions. A program for this new computer consists of a

function definition of the type

z f (v1'v2,v3,yq,v5,v6) (4.1?

Eome Process output 1

while its operation comsists of letting it evaluate such function,

The meanings of the vy are the following:

¢ list of the names of the input files

list of the names of the outptt files

<

list of the initial values of the intermediate variables

<

vy list of the forms which assign values to the intermediate
variables

list of lists of flow contrcl predicates and record evaluaticn
forms

Ve ot list of labels of the output files

The programmer of this algorithm is supposed to write the vy
according to the morphological rules of the system. For example, if
he is programming a process involving five intcrmediate variables,

the initial values of the first four of them being 1, fsomé function!

T ond BUMBLEBEE, respectively, while the last one is Initially not

defined, then, at the place of v3 he should write

£ (5,1,¢ T,BUMBLIBEE,U)

*comp some function?

- 30 -

For the design of "V 4 V,_. V,, v. and v, analogcus rules should
3 1!)4_? 5 6 &3

_ 2

be fcllowed. Regarding the lists v, and V5, thege items stand for
i

forms in three bound variables, namely the list of the availlable

records, the list of dnternal varisbles,; and the STOP dindicator.

'S

They will be denoted Yq1 Vo and yj, respectively. Reference to
elements of such variables while preparing the lists Vi and v5
should be made considering this, For example, the contents of the
third field of the fifth input file will be denoted
fel(B,fel(1,fel(5gy1))), while the right derivative of the same
file is denoted fel(H,fel(B,yq)). The sixth internal variable is
denoted f61(67y2).

The notation rules of the preceding paragraph hold for machine
language programming. However, it is easy to write a program for
mnemonic translation, in order to enable the programmer to use a
notation for fixlds, variables and indicators [7, 16 J , similar
to the one of the Algebraic Data System Language. It would be an
dnteresting exercise to write such a progrem in a declarative
language similar to the one used in this paper.

In the program (4.1), the function £ ome process has order zero,

Its function letter plays a role rather similar to the one played

by program-identification cards in cenventional programming,

- 31 -

Conclusion

- - e

The main direct advantage of this epproach to file processing is

the extreme simplicity of the programming language, which depends

on the fact that the representation of any file process is indepen-
dent of the procedure by which it is carried out,

Despite the fact that the main fields of application of file
-prooessing techniques; which are machine accounting and linguistics,
involve little mathematics, the design of this algorithm or simi=-
lar ones requires some applications of formal logic. In other

words, the alleged non-mathematical nature of file processes is

shcwn to depend only on the conventional procedural‘approach to then,
while this method, based on the analysis of the inherent logical
structure of such processes, allows for fruitful applications of
mathematics to thelr representation. |

¥While conventional algorithm and.computer design involves the
application ef nothing beyond than propositional logic, the declarative
approach based on recursion requires first order functional calculus.
So far, this author has not yet met an algorithm design problem
where second order functional logic is needed.

The need for specialized mathematical tools ylelded by this

approach affects only the design of algorithms. In cohtréét,Ano
knowledge beyond elementary Boolean operations is required,ih produc-
tion programming, where the level of skill that the programmer
should have is considerably lower than the one of a conventional

business programmer, such as, for example, a COBOL programmer.

- 32 -

Bibliography

{13 Goldstine, H,H, and von Neumann, J, ~ Planning and coding of

for Advanccd Study, Princcton, N.J., 1947,

(27 McCarthy, J. - A basis for a mathematical theory of computation,

paper 5.3, Proc, 1961 W.J.C.C,, Los Angcles, Cal., (1961)

(3] MeCarthy, J. - Recursive functiong of symbolic cxpressions and

their computation by machine, Comm, Assoc, Cemput. Mack., 3 ,

b (1960), 184-195.

Cul Gilmore, P.Cs - An ahstract computer with a LISP-like machine

language without the label operator, IBM J. Res. Decvel., (to

appear) .

[5] Pacelliy Mc ~ Tecniche di traduzione automatica, Atti del

convegno sui linguaggi simbolici, Pisa, Januvary 1962 (in press)

(63 Church, A. ~ Introduction to mathematical logic, Princeton Univ.

Press, Princeton, N.J., (1956),

(7] Lombardi, L.A. - Theory of files, Proc. 1960 W.J.C.C., paper

3.3., New Yorki NoYa’ 1960-

(8] Lombardi, L.A. - System Handling of Functional Operators,

J. Assoc. Comput. Mach., 8 , 2 (1961), 163-1385.

(9] Lombardi, L.A. - Inexpensive punched card equipment, J. Machine

Accounting, 12 , 8 (1961), 11 - 18.

[10] Lombardi, L..A. ~ Logic of automation of system communications,

J. Machine Accounting, 13 , 4 (1962) , 18 - 29,

11

12

13

15

16

- 33 -

Lombardi, L.A. -~ On a problem of punched tape-to~-card

conversion, J. Machine Accounting, 13 , 5 (1962).

Lomtardi, L.A. - Nonprocedural data system languages,
(invited paper), Proc. 16th. National Conference of A.C.M.,

Los Angeles, Calif., (1961).

Lombardi, L.As - On_table operating algorithms, Proc. 2nd.

IFIPS Congress, Miinchen, Germany, August 1962 (to appear)

Lombardi, L.A, - Zwei Beitrlige zur Morphologle urd Syntax

deklarativer Systemsprachen, DMV~-GAMM Tagdng, Bonn, Germany,

April 1962.

Lombardi, L.A, =~ Mathematical Structure of Nonarithmetic

Data Processing Procedures, J, Assoc. Comput, Mach., 9 ,

1 (1962), 136 ~ 159.

ZWEI BEITRAGE ZUR MORPHOLOGIE UND SYNTAX

DEKLARATIVER SYSTEMSPRACHEN #

Vom Verfasser wird eine auf die Darstellung der Algoritlmen in
deklarativer (d,h. befehlloser) Form gegriindete allgemeine Theorie
der Rechnung entwickelt. Zwel ausgewdhlte Aspekte davon werden in

diesem Vortrag in verein®achter Form kurz besprochen,

1.) Der erste Beitrag betrifft die Bezeichnung der Variablen, In
gewohnlichen Sprachen ist jeder Variablen ein Name als feste
Bezeichnung zugeordnet., In unserem Fall hingt die Bezeichnung
vom Ausdruck, in welchem sie vorkommt, ab. Die Beschreibung
eines beliebigen Algorithmus in unserem System besteht aus
‘einer Reihe von Funktionsdefinitionen, von welchen jede die
Form

n
f W 1.1
name > 1)

- hat, wobei name die Bezeichnung der TFunktion, n ihre Ordnung
(dehs, Anzahl der freien Variablen) und w einen Ausdruck in m

Namen X,, X, svesss X von Variablen bedeuten; £
1 m nam

a

5 o wird als

Funktionshuchstabe von (1.1) bezeichnet.

Eine Erwihnung einer TFunktion, deren Funktionsbuchstabe f;r
ist, im Ausdruck w von (1.1), wird

t
fir(w1’ w

2, oo e ,Wq) (1.2)

+ Unterlagen vorgelegt bei der DMV - GAMM
Tagung in Bonn, Deutschland, vom
24-28 April 1962

- 35 &

geschrieben, wobei q £ t. Jedes W kann hier entweder der
Buchstabe M oder ein Ausdruck sein, welcher zur i-ten Varia-
. t o, " . .

blen x, von fir in der Verkdrperung, die durch diese

Erwdbnung entsteht, als Wert gegeben wird, Jeder celchen

Variahlen xj, bei der j » q oder w. =R irt, wird kein Vert

zugeordnet, d.he sle winrd elne Variable des Wertes des
Ausdruckes (1.2). Wihrend der Auswertung bekemnt sie elne
neve, geeignete Bezeichnung.
Zum Beisplel, wenn

2

Ia = Xy + sz

dann bekommt man dnrch Auswertung von fi(?},}) den Wert
X, + 6, durch die Auswertung von fi (10,7) oder fi(?O) den

Wert 10 + 2x1.

Der Verteil dieser Notation vom Standpunkt der Darsitellung
der Algovrithmen besteht darin, daf ein kleiner Variablene

Wortsehatz ausreichend ist,

Vom Stancdpunkt der Auswertung mit einer gewchnllichen "Stapel-
Logik" (gjgggrLQgik) besteht der wichtigste Vorteil darin,
dafl der Wert jeder beliebigen Variaoblen, die xs bezeichnet

———her -

Stelle unter dem Parameteranzeigeregister (paramecter point

recorder) befindet.

Als Beispiele werden hier wie in‘[2j Algorithmen fiir die

angeniherte Berechnung des einfachen Integrals von f(x) iiber
199

das Intervall Ca,b] mit der Formell =(2M_f(a+i.é)° &,wo§°=
1e]

(b~-a)/100 und doppelter Integrale durch zweifache Integrierung

- dargelegt.

- 36 -

X
Das einfache Integral JXZ X., x.)aal wird als Tunktion dreier
AI ./
Variablen in der Form
5,
1 = ((y=x,)/100) o £ 5 ((3,) /100, x4 3% 0) (1.3)

L';
£ 5 (x Yh)"—'XS” — £ (xq'X2?x37X4 x1,y5+x3(x,)) (1.4)

eine rekursive Hilfsfunktion in der in {1]) erkldrten Form ist.

Das Integral x (xq)

X ("Lr)
wird
£ 130k (x,) 3, (X%,) (1.5)
3'—. 1 1\—413 5’ 1y '

ausgedriickt, wihrend das doppelte Integral

(x) \
2 [[u'x;
f [e oy 5677 ™6 | 45
J AN -

%\ dg ()
in der Ferm

L
f? = ,..§<x1,x2,f3<x3<x7),XIF(X7>,X5<X6,X7),X7>> (1.6)

als Reduktion zu einfachen Integralen dargestellt wird,

Wenn wir zum Beispiel die vom Perameter r abhiéngige Furnktion
(sin(y1 yﬁ))/(y1+ray2) auf dem ebenen Gebiet V2§;y1g,1,

0 (ya.;\/1 (J,I 2 integrieren wollen, diirften wir die damit

erzeugte Funktion elner einzigen Variablen

1 A
£5 = £2(5,1,0,¢ (1=x, 1 2) 0 Geyaxg)/ Gt (g))

adrwrz

schreiben,

2.)

- 37 -

In unserer allgemeinen Theoric der Rechnung wird die Ordnung
der Funktionen nicht bei der Deflriticn, sondern nur beil der
Erwihoung angegeben, so dal es nicht unbedingt in allen Ver-

korperungen diec gleiche ist,

Der zweite Beitrag betrifft eine syntaktische Ltsung eines
der Probleme bei der fuswertung ven Ausdriicken durch die
Stepellogik, Es ist das Problem der Beschridnkung der Liénge

des Stapels.

. - . . a . t
Die Definiticn einer beliebtigen Funktion frame kann immer

in der Form

= p1_«=p.w1' Pa-—-.)wz' tecsceosan Pu-——?rwtl (2“1)

dargestellt werden. Wenn irgendeiner der w, von (2,1) mit
elnem Funl:itionsbuchstaben beginnt, wird die Irwihnung der
entsprochenden Funktion als HuBerliche FErwihnung bezeichnet.

4
. ' R ~C .
Wenn in der rechten Seite von (2.1) lndme entweder nie oder

ausschlieflich in HuBerlichen Zrwdhnungen vorkommt, wird die

Funktion fZame als Huflerlich definiert bezeichnet, Die

Llemente eines Systems von Funktionen, die alle von gewissen
Urfunktionen und voneinander duBerlich definiert sind,

heiflen Huferlich rekursive Funktjonen.

In diesem Kurzvortrag sowie in [4) und {5), wo die in [3,6)
beschriebenen deklarativen Algorithmen relcursiv dargestellt

werden, werden ausschlieflich HuBlerlich rekursive Funktionen-
gebraucht,

Man kann leicht den folgenden Satz der Reduktion zur Hufller-

lichen Form beweisen:

~ 38 -

Satz: "Hinreichende Bedingung dafiir, daB einem System SO von
Funktionen, in welchem es allgemeine (den universellen
Turing-Maschinen entsprechende) Auswertungsfunlitionen gibt,
ein anderes Systen S1 von dullerlich relursiven Funktionen
entspricht, so daB jedes Llement von So mindestens ecinem
von S1 funktionell identisch ist, ist, daB E ein Unter-

system S, von #uBerlich rekursiven Tunlktionen cnthilt, in

2
welchem es eine allgemeine Augwertungsfunlktion gibt',.

Wenn ein Algorithmus durch Stapellogik ausgewertet wird, entspricht

der Erscheinung jeder Erwdhrung die Eingabe in den Stapel des

Wertes der Eingabeparameter der Erwihnung und der Verbindungs-

daten, Die Eingabeparsmeter der vo?hergehenden Erwiihnung werden

normalerweise im Stapel gelassen. Aber, wenn die LErwihnung

duBerlich ist, werden diese nicht mehr gebraucht werden, so dal

man sie einfach eliminieren Xenn (Entladunq). In diesem Fall

werden die neuen Verbindungsdaten nicht eingepgeben, weil die der

vorigen Erwilhnung an ihrer Stelle gebraucht wzrdsn sollen. Diese

erweiterte Logik filir den Stapel wollen wir #ls Totladunpslogik

bezeichnen. Thre Vorteile, die im Falle der Auswertuny rekursiver
Funktionen besonders wichtig sind, bestehen darin, daB man die
Aufbewahrung im Stapel der Elngabeparameter und Verbindungsdaten

von schon verbrauchten Verkdrperungen von Funktionen vermeidet,

Als Beispiel werden hier zwei Algorithmen angegeben, die beide
die Fakultdt einer ganzen Zahl darstellen, von denen nur der

zweite aus HuBerlich rekursiven Funktionen besteht.

1
fortq = Xq = 021, Topx, o (£, (x =1) (2.2)

a1 ~

Vonez Tz (300

Y (2.3)
=‘°3 - - - v .. ? > » - -

“ “‘}\:'t} o }-1 - “2 - x3, T — ffl{t} (354' 1}‘2'*"] Y XB(A2+1))

Die Auswertung von (2:2) mit ciner Stevellegik (mit oder chne

- ()

Entladung) bringt in den Stapel eine Raihe von Zahlen, deren

Lange £u Xy propoftional ist; zudem werden Uberflilssige Zdalungen
gemachte Im Gegencatz dazu, wird im Fall (2.3) der Stapel hichstens
vier Zahlen enthalten, und ksiae einzige iberfliissige Rechnung
ist notig.

In unserer Thecrie der Rechinung werden nur dubBerlich rekursive
Funktionen gebraucht., Die Moglichkeit des ausschliefilichen
Gebravches solcher Tunktionen ist vom Satz der ﬁeduktion zZur
dgufierlichen Form gesichert., Es kann aber vorkommen, daB die
Verteile, die man dvrch die Entladungslogik vom CGebrauch der
duBlerlich rekurgiven Funktlonen bekonmmt, nur scheinbar sind: es
kann vorkommen, daB, obwohl die Anzahl der lopgischen Elemente im
Stapel dadurch beschrénlit wird, die Li&nge der einzelncn Elemente
sich vergrébert; im unginstigsten Fall kann sich sogar ein solches
Tleuent wie ein Stapel betragen. Deshalb ist es notwendig, bei der

Definition der 2lgorithumen dies zu beacihten,

Der Begriff der AuRerlichkeit »ann ohne weiteres zu rekursiven
- - . : i . e
Frnictionen erweitert werden, die durch Systeme (1] (anstatt

einzeln) definiert sind,.

LI

-1+O-

TERATUR

{13

2]

£33

4]

(5]

ol

J.McCARTEY,
A basis for a mathematical theory of computation, Froc. Western

Joint Comp. Conf. (1961), Vortrag 5.3,

L,A, LOMBARDI,
System Handling of Funtional Operations.

J. Assoc. Comput, Mach,, (%) 2 (1961), S. 168~185,

L.A, LOMBARDI,
Mathematical Structure of Nonarithmetic Data Prooessing Proce~-

dures, J. Assoc. Comput. Mach,, (9) 1 (1962), S. 136-159.

L.A, LOMBARDI.

On the declarative Control of the- flow of data by means of
recursive functions

Proc., Symp. on "Symbolic Languages in Data Processing', Rome

Miarz 1962

L.t. LOMBARDI,
On the Representation of Table Opcrating Algorithms by means

of Recursive Functions {zur Verdffentlichung).

L.As LOMBARDI,
Theory of Files.

Proc. LFastern Joint Cemp. Conf. (1960), Vortrag 3,3,

oy Rt e —
' i ' A IR b urs..;e?

i. K [T fos i §! ‘ﬁ ‘3& Q‘;

1¢", e P 35 i“’

\ .
HE : g t e 4 ."« l‘*:

e 4 SR B e, 'h "
) Al i " 01 \Ba | " A 1} .
k NS, ‘,_ it :
! Qﬁi A ¥ { ot el . _'.(, f
i) < & 5 ' y i3 r!fvv ' ' 4 34 ;
av‘, Rty e A e 1 4 s 0 ’
i $
BT B &t i
v } :
) { 17 B A ¢ RY L4001 5 ‘1 ; 5
: 1 RL R LR :
i i p ¢ o 4 %29, t i
i el At) b
\ A 4 4 { ‘
¥

I :‘ v \
‘M“ oy

"*r i ey }

'N' iy, 1 i
w
R et a" . .'?',.:‘ Rl ‘ i
PR Jh&yh LR e 4&
My 4 ,! e LT 51) h

= 4= N

=g i T =

= 5 et g

T : e 5

== R v BT s
EEJeSas rat cwia s

3 - ; e CagdteRudieT = . W St g

&% 2 > - . > v A v 53

- Sex - L e T P I - [= s i 1 B T e, L e e o A eay ==

3 = e Loyt ¥ FET TIT o = W~y TS AT S S e W

Ry s AT IR Ly vy e s oy T ﬁ‘g‘.ﬂ?aﬂ...ﬁ»\ugﬂ 2

e i - PG e LT e ekt E SRR

= e S o = e pgm - S ARG - e e TR S T NS

TR R pdws <R s e REESE NIRRT e o e

5 s P § T Sl B VR s e At o R s -

5 -~ e Y v L A
.v,.,.»numurru»ununw.h.

it BRI o

R Bk 2 o TR T A
<8 et R YR T ke nin
& o o Sy s =

AT e e

N R
e
x5 oo

=
B s

1

. ,@‘3‘

S R 1

