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If one injects into an animal H
3
-thymidine, 50% of it is incorporated 

into deoxyribonucleic acid (DNA), within approximately 30 to 45 minutes, 

while the rest is catabolized(l). A storage of H3-thymidine for later 

incorporation into DNA does not occur, 01, the basis of available evidence. 

Once incorporated, the label remains bound to DNA until cell death and no 

unequivocal evidence has as yet been presented to indicate metabolic renewal 

or intracellular turnover of the DNA molecule. The loss of labeled DNA 

from the bone marrow is therefore directly influenced by the rate of 

proliferation of the various cell types with release of mature cells into 

the peripheral blood. 

The turnover of ribonucleic acid (RNA) within the total bone marrow -

on the other hand - depends on the rate of renewal, within the individual 

cells, of the various molecular entities in which RNA occurs. Turnover 

measurements of RNA are further influenced by reutilization of RNA break­

down products within the single cell as well within the total cell popu­

lation. In addition, the renewal of RNA within a total tissue appears to 

conform to some degree to the rate of cell proliferation of the tissue 

examined~ 2) 

The data here presented are limited to the regression of labeled 

thymine or its analogue, in DNA of rat bone marrow following a single 

intravenous injection of various labeled precursors, namely: 1) H
3
-thymidine, 

as specific DNA precursor; 2) 5-I-deoxyuridine, labeled with I
131

, a 

3 thymidine analogue, and 3) H -cytidine, a precursor for the pyrimidines in 

RNA as well for thymine and cytosine in DNA. 



- 4 -

Groups of female Sprague-Dawley rats received the following doses 

3 
in a single injection into the tail vein: H -thymidine: 0.5 p,c/GM weight, 

specific activity 1.9 C/rnM, or H
3
-cytidine: lpc/GM weight, specific 

131 
activity 1 C/rnM, or 5-I -deoxyuridine: 0.18 ,JJC/GM weight, specific activity 

of more than 100 C/rnM. 

At various times after injection, to 9 or 11 days, the animals were 

killed with ether, and the marrow of femur and tibia was examined for the 

regression of the specific activity of the labeled DNA-thymine, or its 

analogue. 

3 
Eidinoff and co-workers have shown that 5-I-deoxyuridine is a specific, 

but less efficient precursor for DNA than thymidine. From the work of 

Conr.nerford(4) and Krueger(S) it was suggested that the labeling of DNA with 

5-!131-deoxyuridine allows the observation of true DNA turnover by minimizing 

reutilization. Upon degradation of the DNA the label dissociated from its 

carrier, but in the native form of DNA the label remained bound, parallel 

3 to H -thymidine. This is, for example, observed in a rapidly growing culture 

of HeLa-s
3
-cells, demonstrated in Figure 1. In this culture system cell 

death and hence reutilization of DNA-nucleotides. from dead cells is, if at 

all, minimal. 

Figure 2 shows the data obtained from rat bone marrow. All curves 

are normalized to their value at 12 hours after injection. 

The two lower dotted lines give the specific activities of DNA 

131 labeled with 5-I- -deoxyuridine. The lower one of the two reflect the 

measurements of the total bones including the marrow. The upper one of 

the two gives the specific activities of the isolated marrow after 

extraction of the acid soluble fraction and of the lipids. These two 

curves are practically identical from day 2 on. They are the expression 
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of the true DNA turnover in the marrow, showing a 50% regression within 

10 5 days (regression co-efficient: 0.462), over the observed period of 

time. 

The solid line gives the specific activities of DNA labeled with 

H
3
-tbymidine, at various times after a single injection. For the first 

131 
24 hours, DNA labeled with 5-I -deoxyuridine behaves rather parallel 

to DNA labeled with H
3
-thymidine. Then the two values separate, and 

H
3
-thymidine labeled DNA regresses to 50% within 2.8 days (regression co­

efficient: 0.248). The difference in the slopes indicates that approx­

imately 50% of the loss of label with the DNA was compensated by continuous 

influx of n3
-thymine. The scarce of this delayed precursor may be within 

or outside the marrow from other parts of the organism. Since DNA is lost 

when mature cells enter the circulation or, within the marrow itself, 

when the most mature normoblasts lose their nuclei to become red cells(lS), 

it is conceivable that the DNA of these cells could be a source of precursor 

for new DNA synthesis. 

Following injection of H3-cytidine, the sp.ecific activity of H
3
-

thymine rises for the first 12 hours, parallel to H
3
-cytosine, as shown 

elsew~ere( 6). The initial rise probably is due to continuous incorporation 

from the acid soluble pool, which falls proportionally at the same time. 

3 From, 12 hours on, the specific activity of the H -thymine declines slowly 

with a regression to 50% within approximately 7 days (regression co­

efficient: 0.099). This means that approximately 80% of the loss of label 

with the DNA from the marrow was compensated by influx of labeled 

precursors. The acid soluble H3 declines already within the first 12 

hours, and followed in parallel to the overall RNA specific activity, 
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as shown elaewhere(G). It is therefore unlikeJy that the late precursor 

comes from the initial acid soluble fraction. Approximately 50% of the 

lost label was already accounted for by reutilization of DNA-thymine, 

therefore an additional 30% is supplied from the pyrimidines of RNA, 

nearly continuously over the observed period of 9 days. Indeed s. Cohen( 7) 

has shown that conversion of cytosine nucleotides from RNA to cytosine­

deoxyribose-diphosphate to DNA occurs in phage infected E. coli. 

The given values of label reutilization, and conversion from RNA 

to DNA do not allow a statement as to the total amount of nucleotides 

actually involved in these processes. The specific activities of the 

reutilized or converted nucleotides are not known; however, it is expected 

that the specific activities fall progressively with time after injection. 

It is obvious that the data present therefo:ce minimum values. 

These findings confirm in general for the bone marrow the hypothesis 

and the r3ports of reutilization of DNA-thymine given by Hill and 

Drasil(B), Krueger(S), Fichtelius(9), Bryant(lO), Rieke(ll), and Robinson 

and Brecher(lZ), whose p!iper is presented in this session. The data 

furthermore demonstrate a continuous contribution also of RNA pyrimidines 

to DNA-thymine in the normal bone marrow cell population. It is even 

feasible that the de-novo synthesis of thymidine occurs totally via the 

RNA. The presence of thymidine kinase a~d thymidylate kinases in rapidly 

. (13) (14) dividing cells , and the work of Potter let one assume that thymidine 

is not an unphysiological precursor for DNA, but that it lies on the 

salvage pathway and is probably a major intermediate in DNA-catabolism. 

The results warn to caution in the interpretation of data on loHg term 

studies on cellular kinetics using u3-thymidine. 
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HeLa-S3 cells in culture were exposed for 45 minutes to H
3 

-thymidine 

or 5-1131 -deoxyuridine. The specific activities of DNA (left), or total 

cells (right) were examined following the short-term labeling at various 

times to 3 days. 
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FIGURE 2 
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The specific activity, in normal rat bone marrow, of DNA-thymine or 

its analogue 5-I-uracil was examined following a. single intravenous 

injection of H 3 -thymidine, H 3-cytidine, or 5-1
131

-deoxyuridine. 

..... 
0 






