
Working Paper Research
by Arnoud Stevens and Joris Wauters

October 2018 No 355

Is euro area lowflation here to stay ?  
Insights from a time-varying parameter 

model with survey data



Is euro area lowflation here to stay?
Insights from a time-varying parameter model with survey data.∗

Arnoud Stevens†
National Bank of Belgium

Joris Wauters
National Bank of Belgium

and Ghent University

15th October 2018

Preliminary draft prepared for the NBB 2018 International Conference

Abstract

Inflation has been persistently weak in the euro area despite the economic recovery since 2013. We
investigate the sources behind this protracted low inflation by building a time-varying parameter model
that jointly explains the dynamics of inflation and inflation expectations from the ECB’s Survey of
Professional Forecasters. We find that the inclusion of survey data strengthens the view that low inflation
was mainly due to cyclical drivers. In particular, the model with survey expectations finds a more muted
decline of trend inflation in recent years and a larger degree of economic slack. The impact of economic
slack and import prices on inflation is found to have increased in recent years. We also find that survey
expectations have become less persistent over the financial crisis period, and that including survey data
improves the model’s out-of-sample forecasting performance.

Keywords: inflation dynamics, trend inflation, survey-based inflation expectations, ECB Survey of Pro-
fessional Forecasters, nonlinear state space model, Bayesian estimation, euro area
JEL Classification: E31, C11, C32

∗This paper has been written for the National Bank of Belgium (NBB) 2018 International Conference on “Understanding
inflation dynamics: the role of costs, mark-ups and expectations”. Part of the research was undertaken while Stevens was on
secondment at the European Central Bank (Prices and Costs Division). We would like to thank Jef Boeckx, Ferre De Graeve,
Carlos Montes-Galdón, Rafael Wouters, members of the ECB’s Prices and Costs Division and participants at the preparatory
meetings of the conference for useful comments and suggestions. All remaining errors are our own. Any views expressed herein
are those of the authors and do not necessarily reflect those of the National Bank of Belgium or the Eurosystem.
†National Bank of Belgium, Economics and Research Department, de Berlaimontlaan 14, B-1000 Brussels, Belgium. Email

addresses: arnoud.stevens@nbb.be and joris.wauters@nbb.be

1



1 Introduction

The euro area enjoyed an economic recovery over the past five years, yet headline inflation remained persist-
ently weak. Specifically, the year-on-year growth rate of the Harmonized Index of Consumer Prices (HICP)
has averaged 0.8% since 2013, thus keeping a good distance from both its pre-crisis (1999-2007) average of
2.06%, as well as the European Central Bank (ECB)’s target of below, but close to, 2% in the medium term
(Figure 1). Economists speak in this respect of a “missing inflation puzzle”, because inflation was expected to
be higher given the favourable economic recovery that followed the sovereign debt crisis (see, e.g., Ciccarelli
and Osbat, 2017).

[INSERT FIGURE 1 HERE]

What explains this so-called lowflation period? Conceptually, we make a distinction between two causes.
One the one hand, inflation could have been pushed down by permanent effects, which lowered its long-run
trend. On the other hand, cyclical and thus temporary effects might have created a long-lasting downward
drag on inflation. Even though the symptoms - low inflation - are similar in both cases, an accurate diagnosis
remains important in order to identify the right monetary policy treatment. For instance, if cyclical effects
are the main culprit, then inflation might still return to target within the medium term once the effects
from shocks have faded out. However if the long-run trend has decreased, then additional stimulus might be
necessary in order to re-align the trend with the target.

A recent stream of literature studies euro area inflation dynamics from different angles. A first strand
uses constant parameter structural vector autoregressive (SVAR) models to distinguish between the different
types of shocks affecting inflation (see, e.g., Neri et al., 2017, Jarociński and Bobeica, 2017, and Ciccarelli and
Osbat, 2017). One important finding of this line of research is that shocks from both domestic and foreign
origin have driven down inflation. A second strand of the literature uses time-varying parameter models in
order to investigate the role of structural changes to inflation dynamics. The evidence from this literature
points to a recent increasing sensitivity of inflation to cyclical conditions (see, e.g., Riggi and Venditti, 2015,
Dany-Knedlik and Höltemoller, 2017, and Cordemans and Wauters, 2018), but also to a decline in inflation’s
long-run trend (Dany-Knedlik and Höltemoller, 2017).

This paper explores whether survey inflation expectations are helpful for measuring the contribution
of trend and cyclical factors to low inflation. To this end, we estimate a time-varying parameter Phillips
curve model that jointly explains macroeconomic data and inflation expectations from the ECB’s Survey
of Professional Forecasters, and contrast its dynamics with that of a model variant that abstracts from
survey information. Forward-looking information variables might help to uncover shifts in inflation dynamics
not necessarily captured in historical data. In fact, such forecasts typically incorporate new information
regarding structural changes; including changes to the conduct of monetary policy, the formation of inflation
expectations and price setting behaviour (see, e.g., Kozicki and Tinsley, 2012). Inflation expectations of
professional experts have been considered as particularly attractive in this respect because of their proven
success in forecasting inflation relative to statistical forecasts derived from past data (Ang et al., 2007; Faust
and Wright, 2013).

We add to the empirical literature that models euro area inflation dynamics with the use of survey
inflation expectations. Garcia and Poon (2018) and Banbura and van Vlodrop (2018) estimate models
where inflation’s long-run trend rate is linked to data from long-term survey forecasts or market-based

2



expectations, and Grishchenko et al. (2017) incorporate the survey expected inflation distribution in a factor
model with constant parameters and stochastic volatility. Yet, the combination of information from the
expectations term structure (of short-, medium- and long-term expectations) has not yet been exploited for
estimating the time variation in the dynamics of both the trend and cycle of euro area inflation. Our first
contribution is to fill this gap and to show that the short and long end of the inflation expectations curve
are complementary information sources for identifying structural changes.

Our proposed framework follows the spirit of Kozicki and Tinsley (2012) and other following work,
including studies by Crump et al. (2016) and Winkelried (2017), in that the survey expectations for inflation
are explained by the model-consistent forecast using the equations that describe the macroeconomic series.
However, the literature typically adopts a constant parameter set-up for the transmission of cyclical factors
to inflation. To the best of our knowledge, Mertens and Nason (2018) is the only other paper to provide a
model-consistent treatment of inflation dynamics and the term structure of expectations in a time-varying
parameter framework. They estimate the joint dynamics of US inflation and its expectations in an unobserved
components model featuring sticky-expectations formation and time-varying parameters. Relative to their
setup, our second contribution is that we further decompose the cyclical component of inflation into parts
that relate to economic slack and import price developments, and infer their relative contributions to cyclical
movements.

The baseline empirical model that we estimate is an open-economy unobserved-component Phillips curve
model with time-varying parameters. The Phillips curve model provides a structural framework for explain-
ing inflation dynamics. In its simplest variant, the Phillips curve prescribes a negative relationship between
inflation and the amount of slack in economic activity. Modelling this Phillips curve relationship in an un-
observed component set-up, in accordance with Stella and Stock (2013) and Chan et al. (2016), serves two
purposes. First, it permits decomposing inflation into a permanent component called ‘trend inflation’ and
short-run cyclical fluctuations. Second, it allows estimating a model-consistent slack measure and, there-
fore, covers concerns about official output gap measures providing a distorted picture of actual inflationary
pressures.1 To account for potential foreign price pressures, we add an international dimension to the tradi-
tional Phillips curve in the form of a variable measuring relative import prices. Finally, the presence of time
variation in the model’s parameters allows for measuring structural changes in the dynamics of the various
determinants of inflation.

We consider two model extensions to the baseline model where the term structure of the SPF mean
inflation predictions is linked to the model-consistent inflation expectations. One of these models allows for
“forecast smoothing”, in the sense that survey expectations can gradually respond to changes in the model
forecast. However, we remain agnostic about the source of such smoothing behaviour. It could, for instance,
be related to informational frictions, in accordance with the Mankiw and Reis (2002) sticky information
paradigm, but it could also be grounded in the epidemiological interpretation of expectations’ formation by
Carroll (2003), emphasizing the tendency of well-informed professionals to keep their forecasts unchanged
unless they are fully convinced about the usefulness of new incoming information.2

1Riggi and Venditti (2015) discuss the possibility that conventional output gap measures understate the amount of spare
capacity in the euro area economy, thereby misguiding their relevance in pushing down inflation in recent years. In fact,
alternative measures of slack estimates that match inflation dynamics after the sovereign debt crisis are found to perform better
in predicting inflation in real time (see, e.g., Jarociński and Lenza, 2018).

2In its original interpretation the epidemiological model of expectations formation applies to agents not experienced in
macroeconomic forecasting; such agents typically adjust their predictions with delay to information provided by the media.
Applied to the forecasting behaviour of professional experts,  Lyziak and Paloviita (2018) re-interpret this argument in terms of
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The inclusion of survey data as endogenous variables to the model creates measurement equations which
are nonlinear functions of the time-varying parameters. This precludes the use of standard Bayesian MCMC
techniques for sampling from the posterior distribution. To estimate our nonlinear state space model, we
follow Cogley (2005) and Koop and Potter (2011) and apply the single-move sampler of Carlin et al. (1992)
in a Metropolis-Hastings within-Gibbs sampler. Broadly speaking, this implies some steps where we sample
the time-varying parameters on a date-by-date basis, each time conditioning on the time-varying parameters
from all other periods.

By comparing the estimates from the models with and without survey expectations data, we find that
the inclusion of survey data strengthens the view that low inflation was mainly due to cyclical drivers. The
results differ mainly in the estimated trends, in the sense that the models with survey expectations find a
more muted decline of trend inflation in recent years and a lower natural rate of unemployment. As a result,
the gap between the unemployment rate and its natural rate - a measure of economic slack - is larger and
remains positive at the end of the sample for the models with expectations data. Concerning the time-varying
coefficients that affect the transmission of the cyclical drivers to inflation, we find broadly similar evolutions.
The Phillips curve slope flattens between 1990 and 2012, but then steepens sharply. The effect of import
prices is found to have increased since 2000. The intrinsic inflation gap persistence is generally low and flat,
but follows a short-lived spike in 2008-2009 in the models with survey data. In the model which allows for
a time-varying degree of forecast smoothing by survey respondents, we find that the smoothing coefficient
declines during the financial crisis period. Although this finding is consistent with more frequent updating
by survey respondents, the persistence in survey expectations remains high in general. Overall, the models
with survey data attribute the lowflation period since 2013 mainly to a downward drag from import prices
and economic slack, rather than a strong reduction in trend inflation.

Our strategy of modelling the expectations term structure in a time-varying parameter model invokes
complications relative to the typical approach in the literature, which uses either only long-term survey
expectations or constant parameters for the transmission coefficients in the inflation gap. We therefore eval-
uate the usefulness of our approach in two ways. First, we perform an out-of-sample forecasting comparison
between the different models. We find that the models with survey data outperform the baseline model
both in terms of root mean squared errors and log predictive density scores. From the perspective of a
practitioner who is concerned with inflation predictability, this finding supports the inclusion of survey data
in a time-varying parameter inflation model. Second, we perform robustness checks to evaluate if the results
remain the same when we simplify the model to i) using only long-term expectations data, or ii) featuring
constant transmission coefficients. We find that these perturbations bring economically meaningful changes
to the results, which leads us to conclude that short- and medium-term expectations bring useful information
for detecting changes in the dynamics of the inflation gap.

The paper proceeds as follows. Section 2 presents the different empirical models. Section 3 contains
details on the data, estimation method and the choice of priors. In Section 4, we present the full sample
estimates of our model, including an assessment of the factors behind the lowflation and of the information
content of SPF inflation expectations. In section 5, we undertake a forecasting exercise. This exercise serves
to assess the value of SPF data in forecasting inflation, but also to evaluate the usefulness of survey data in
understanding euro area inflation dynamics over the past two decades. Section 6 discusses two robustness

forecasters fearing reputational risks if their projections would be revised too frequently.
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exercises. Finally, Section 7 concludes the paper.

2 Empirical models

Our goal is to determine whether survey data helps to diagnose whether lowflation in the euro area is driven
by either permanent effects, i.e. shifts in inflation’s long-term trend, or by cyclical and thus temporary
effects. To this end, we estimate three different model specifications. The first specification, our baseline
model, is an empirical Phillips curve model with time-varying parameters and stochastic volatility, which we
estimate on macroeconomic time series alone.

The next two models extend the baseline model with information from surveys. These specifications
add equations where inflation expectations series are fitted in a model-consistent way. By doing so, we
can infer how the forecasters’ expectations affect the parameter estimates and, therefore, the economic
interpretation of the recent lowflation. The first model with survey data allows for a gradual adjustment of
survey expectations to changes in the model forecast; the other assumes no type of rigidity. We discuss the
three models in turn.

2.1 Baseline model

Our modelling framework builds on the bounded bivariate unobserved components model of Chan et al.
(2016). Their model jointly estimates the degree of slack in the economy and the Phillips curve relationship
between slack and inflation. The trends and coefficients are allowed to be time-varying in order to capture
structural changes to the economy. Our baseline model extends their framework by also including the effects
from import price inflation. The measurement equation for inflation takes the following form:

πt − τπt = ρπt
(
πt−1 − τπt−1

)
+ λt (ut − τut ) + γt (πmt − τmt ) + επt , (1)

where πt stands for inflation, ut for the unemployment rate, and πmt for inflation in the relative price of
imports. The trends for these variables are, respectively, τπt , τut and τmt . Hence, equation (1) states that
the deviation of inflation from its long-term trend (πt − τπt ), henceforth defined as the “inflation gap”, is a
stationary process that mean-reverts to zero. This gap depends on its own lag, the “unemployment gap”
between the unemployment rate and its own trend (ut − τut ), and the “import price inflation gap” between
relative import price inflation and its own trend (πmt − τmt ) . The impact of these three variables on the
inflation gap is measured by the time-varying coefficients ρπt , λt and γt. They denote, respectively, the
degree of intrinsic inflation gap persistence, the Phillips curve slope, and the impact effect from the import
price inflation gap.

As in Chan et al. (2016), the unemployment gap is assumed to evolve as an autoregressive process of
order 2:

ut − τut = ρu1
(
ut−1 − τut−1

)
+ ρu2

(
ut−2 − τut−2

)
+ εut , (2)

where the autoregressive parameters ρu1 and ρu2 are restricted to ensure stationarity.
The novelty relative to Chan et al. (2016), is the addition of the term γt (πmt − τmt ) in equation (1) - a

time-varying effect from the import price inflation gap. This extension is motivated by the strong fluctuations
of commodity prices during the financial crisis, and the hypothesis that globalization has made imported
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inflation more important in the recent period (IMF, 2013).3 We also add a measurement equation for this
gap which, for simplicity, is assumed to evolve as as an i.i.d. process:

πmt − τmt = εmt . (3)

To account for changing volatility in the shocks to inflation, the measurement error equation (1) follows
a stochastic volatility process as επt ∼ N(0, eψt), where N

(
µ, σ2) denotes a Normal distribution with mean µ

and variance σ2. The remaining measurement errors are assumed to have constant volatility: εut ∼ N(0, σ2
u),

and εmt ∼ N(0, σ2
m).

The state equations for the time-varying trends (τπt , τut , τmt ), the time-varying coefficients (ρπt , λt, γt),
and the log of the volatility of the error term in equation (1), ψt, are assumed to follow independent random
walks:

τπt = τπt−1 + ητπt (4)

τut = τut−1 + ητut (5)

τmt = τmt−1 + ητmt (6)

ρπt = ρπt−1 + ηρt (7)

λt = λt−1 + ηλt (8)

γt = γt−1 + ηγt (9)

ψt = ψt−1 + ηψt . (10)

As in Chan et al. (2016), the parameters λt and ρπt are bounded to lie in the (−1, 0) and (0, 1) intervals,
respectively. These restrictions imply that the error terms for these state variables are drawn from truncated
normal distributions as

ηλt ∼ TN(−1− λπt−1, 0− λπt−1, 0, σ2
λ) (11)

ηρt ∼ TN(0− ρπt−1, 1− ρπt−1, 0, σ2
ρ), (12)

where TN(a, b;µ, σ2) denotes the normal distribution with mean µ and variance σ2 that is truncated to the
interval (a, b).4 The remaining error terms for the unbounded states follow independent normal distributions:

ηit ∼ N(0, σ2
i ), (13)

with i ∈ (τπ, τu, τm, γ, ψ).
In this framework, shifts in trend inflation τπt have permanent effects on inflation. If the recent lowflation

is mainly driven by a decline in trend inflation, it follows that inflation will eventually converge to the new
lower level of τπt in the long run. On the other hand, lowflation can also be driven by a persistent decline
in the inflation gap πt − τπt . Such a decline can be due to three factors. First, the direct effect from shocks
to the inflation gap (επt ). Second, indirect effects from shocks to the unemployment gap (εut ) or the import
price gap (εmt ). And third, changes in the impact coefficients (ρπt , λt, γt) which affect the transmission of
these shocks and, ultimately, the speed at which inflation returns to its long-term trend τπt .

3Other studies which measure a time-varying impact of import price inflation are Matheson and Stavrev (2013), IMF (2013),
and Dany-Knedlik and Höltemoller (2017). In contrast to these studies, which de-mean the import price variable πmt prior to
estimation, we also estimate a trend τmt in order to account for the possible presence of slow-moving shifts in relative import
price inflation which leave the cyclical nature of headline inflation unaffected.

4Chan et al. (2016) also impose bounds to trend inflation τπt and the natural rate of unemployment τut . In our application,
we leave these trends unbounded as we have no strong prior on their behaviour.
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2.2 Extensions with survey data

To assess the role of survey data in uncovering the factors behind euro area lowflation, we also estimate two
models which include survey expectations data on inflation. These two models build on the baseline model by
adding measurement equations which connect the survey expected inflation series with the model-consistent
inflation forecast, as derived using the equations described above.

SPF expectations model The first specification assumes that the reported survey expectation at time
t for future inflation at time t+ h is a weighted average between the previous period’s expectation, and the
model-consistent inflation forecast. Specifically, we add a set of measurement equations

πet+h1|t = (1− ξt−1) fh1

(
θt−1, Y

t−1)+ ξt−1π
e
t−1+h1|t−1 + εh1

t (14)
...

πet+hn|t = (1− ξt−1) fhn

(
θt−1, Y

t−1)+ ξt−1π
e
t−1+hn|t−1 + εhn

t , (15)

where πet+h|t represents the survey expectation for year-on-year inflation rate in period t + h given the
information at the start of period t. Each survey observation in quarter t is linked with the h quarter ahead
model forecast in period t, fh

(
θt−1, Y

t−1), the previous period’s survey expectation for the same horizon h,
and a measurement error. The weighting between the survey data and the model forecast is determined by
the smoothing coefficient ξt, which we assume to evolve as an independent random walk that is bounded to
lie within the (0, 1) interval:

ξt = ξt−1 + ηξt ,

where
ηξt ∼ TN(0− ξt−1, 1− ξt−1, 0, σ2

ξ ).

Finally, the residuals are independently distributed as εh1
t ∼ N(0, σ2

h1
),..., and εhn

t ∼ N(0, σ2
hn

).
This specification allows for survey expectations to gradually adjust to changes in the underlying model

forecast. To see this, subtract the previous period’s expectation from both sides to deliver, using simplified
notation, ∆πet = (1− ξ)(ft − πet−1) + εt. That is, the change in reported survey expectation is a fraction of
the gap between the current period’s model forecast and the previous period’s survey expectation. A larger ξ
implies more sluggish adjustment of survey expectations to changes in the underlying model forecast. Similar
specifications where survey expectations adjust gradually to either the model forecast or to other data can
be found in Baele et al. (2015) and  Lyziak and Paloviita (2018). Partial adjustment of survey expectations
is typically motivated by informational rigidities, such as the sticky information framework of Mankiw and
Reis (2002) and the epidemiological model of Carroll (2003), or by the strategic behaviour of forecasters
who, on the one hand, aim to minimize forecast errors, but on the other hand want to avoid making large
forecast revisions for reputational concerns ( Lyziak and Paloviita, 2018). Our empirical setup is not tied to
a specific theoretical model. Instead, it assumes that the reduced form of the forecasters’ structural model
can be approximated with the reduced form baseline model described above.

We define the information set at the beginning of period time t to include the ECB’s SPF data, which
are collected at the start of quarter t, and the macroeconomic data up to the previous quarter. Hence, the
model forecast function is based on data stacked in Y t−1, where Y t−1 = (Y ′1 , ..., Y ′t−1)′ and Yt = (πt, ut, πmt )′,
as well as the relevant (constant and time-varying) model parameters in the previous quarter, collected in
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θt−1. To generate the model forecast of inflation, we rewrite equations (1) to (3) as a reduced form VAR and
iterate the model forward (appendix A.2). One complication at this stage, is how to treat the path of the
time-varying parameters in the future. Following Cogley (2005) and Mertens and Nason (2018), we invoke
the anticipated utility model and keep the future values of the time-varying parameters such as, e.g., trend
inflation τπt constant at their current values. This assumption can be interpreted as approximations to more
complex systems, or a form of bounded rationality by the agents (Cogley, 2005).

SPF no smoothing model The third model is a nested case of the above SPF expectations model where
the smoothing parameter ξt = 0 in all periods. This assumption changes the measurement equations (14) to
(15) into:

πet+h1|t = fh1

(
θt−1, Y

t−1)+ εh1
t (16)

...

πet+hn|t = fhn

(
θt−1, Y

t−1)+ εhn
t . (17)

We label this specification as our “SPF no smoothing model”, because it assumes that model forecasts
align with the survey data.

2.3 Relation with the literature

Following the work of Kozicki and Tinsley (2012), a burgeoning literature has emerged in which models with
latent states, such as trend inflation, are estimated by explaining survey expectations and macroeconomic
data jointly.5 Relative to these studies, we innovate by jointly explaining macroeconomic data and expect-
ations series in a nonlinear state space model with time-varying parameters. To the best of our knowledge,
the only other paper to do so is Mertens and Nason (2018). They apply the sticky information framework to
model US inflation and inflation expectations jointly in a time-varying parameter model which resembles our
“SPF expectations model”.6 Relative to their work, we further decompose the inflation gap into components
related to economic slack and import price inflation, such that we can zoom in on the drivers of the inflation
gap.

3 Data and estimation method

This section explains some details related to the estimation. We first describe the data, followed by an
outline of the Bayesian estimation method and, finally, a description of the priors.

5See, inter alia, Kozicki and Tinsley (2012), Crump et al. (2016), Nason and Smith (2016), and Winkelried (2017) for a
state space model with constant parameters, and Grishchenko et al. (2017) for a state space model with constant parameters
and stochastic volatility. For a model-consistent treatment of inflation expectations in a DSGE model, see e.g. Del Negro and
Eusepi (2011), Smets et al. (2014) and Cui et al. (2015).

6In the sticky information framework, period t’s expected inflation for period t+h is a weighted average between the rational
expectations forecast at time t and πe

t+hn|t−1, the previous period’s inflation expectation for the same end date. Given that
we use rolling event forecasts from the ECB’s SPF, we cannot link πe

t+h|t to πe
t+h|t−1 as in the sticky information framework,

and use πe
t−1+hn|t−1 instead.
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3.1 Data

Macroeconomic data Headline price inflation πt is derived from the euro area Harmonised Index of
Consumer Prices (HICP). Throughout the paper, the rate of inflation is defined as the annualised quarter-
on-quarter growth rate of the price index: πt = 400ln(Pt/Pt−1), where Pt is the price index and ln(.) is
the natural logarithm. Following Matheson and Stavrev (2013), we define the relative price of imports as
the import-price deflator relative to the gross domestic product (GDP) deflator. The unemployment rate
ut is the euro area civilian unemployment rate. These series are obtained from the ECB’s Statistical Data
Warehouse (SDW). We transform the monthly unemployment rate and price indices to a quarterly frequency
by taking the three months average, and backdate all series using the historical Area Wide Model (AWM)
database (see appendix A.1 for details).

Inflation expectations data Our inflation expectations data is taken from the ECB’s Survey of Pro-
fessional Forecasters (SPF). The SPF is a quarterly survey that is conducted in January, April, July and
October since 1999. Each quarter, around 60 EU-based professional forecasters deliver their point estimates
and density forecasts for HICP inflation (annual percent change), GDP growth (annual percent change) and
the unemployment rate (percentage of the labour force).

The survey contains individual level and aggregate data for two types of forecasts: rolling horizon and
calendar horizon forecasts. The rolling horizon forecasts comprise one-year and two-year ahead forecasts
starting from the latest date for which data are available. As the survey participants are provided with
the inflation rate for the previous month, this implies that, for example, the 2018Q1 one-year and two-year
ahead forecasts refer to year-on-year inflation in the month December 2018 and 2019, the 2018Q2 survey
refers to March 2019 and 2020, etc. The calendar horizon forecasts refer to year-on-year inflation in the
current calendar year, the next calendar year, and five calendar years ahead.7

Our empirical setup follows the “noise” interpretation from Smets et al. (2014). Specifically, we treat the
rolling horizon forecasts and five-year ahead calendar year forecast as noisy indicators of the model forecasts
for year-on-year inflation 3, 7 and 19 quarters ahead. This implies that in our implementation the systems
of equations (14) to (15) and (16) to (17) each consist of three equations which refer to these horizons.
Concerning the expectations data πet+h|t, we use the (self-computed) mean of the professional forecasters’
aggregate probability distribution for inflation. This implies that the model forecast - a conditional mean
expectation - is matched with mean expectation from the survey distribution.8 The evolution of the three
survey expected inflation series is shown in Figure 2.

[INSERT FIGURE 2 HERE]

Estimation sample Our sample starts in 1990Q1, about one decade before the start of the SPF data in
1999Q1 in order to let the model ‘learn’ the parameter values before the start of the SPF data, and ends in
2017Q4. Our aim is to compare how an econometrician’s ex-post assessment of the lowflation period changes
when survey data is incorporated in the information set. Hence, we use revised data instead of real-time
data, because we are not primarily interested in maximizing the fit of the survey expectations series.

7Since 2010Q3 the 2 calendar years ahead forecast is also provided.
8The mean of the probability distribution is very close to the average of the reported point forecasts for the one-year and

two-year ahead forecasts. For the five-year ahead forecast, however, the mean of the distribution is persistently below the
average point forecast in the lowflation period by about 10 basis points.
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3.2 Gibbs sampling algorithm for the baseline model with SPF data

We estimate the model using Bayesian methods. Since our baseline model builds on that of Chan et al.
(2016), an MCMC procedure similar to that from their appendix can be applied. However, the inclusion of
survey data into the extended models requires additional care. As shown in equations (14) to (15) and (16)
to (17), the measurement equations become nonlinear functions of the parameters due to the model forecast
function fh(θt−1, Y

t−1). Therefore, additional steps are required in order to sample from these models.
We summarize the Gibbs sampling algorithm for the SPF expectations model below, and refer the reader
to the appendix for further details. Starting with initial values for the state variables, the Gibbs sampling
algorithm separates the unknown parameters into separate blocks and draws from their conditional posterior
distributions as follows:

1. Sample the error variances σ2
u, ..., σ

2
ψ conditional on all other parameters.

• Following Chan et al. (2016), the error variances σ2
ρ and σ2

λ of the bounded states ρπt and λt are
both drawn with an independent Metropolis Hastings sampler.

• The remaining variances are drawn independently from inverse Gamma distributions.

2. Sample the persistence parameters ρu1 , ρu2 conditional on all other parameters.

• In this step we have to take into account that i) the parameters obey stationarity constraints,
and that ii) they affect the likelihood terms in measurement equations (14) to (15) relating
to the survey expectations data. We draw the persistence parameters using an independent
Metropolis-Hastings step where the proposal distribution is based on the posterior distribution
from an approximated model where the nonlinear model forecast functions fh1

(
θt−1, Y

t−1) , ...,
fhn

(
θt−1, Y

t−1) are linearized.

3. Sample the time-varying trends τπt , τut , τmt for t = 1, ..., T conditional on the time-varying coefficients
and error variances.

• Conditional on the time-varying coefficients ρπt , λt, γt,ξt and the persistence parameters ρu1 and
ρu2 it turns out that the model forecast functions fh1 (θt, Y t) , ..., fhn (θt, Y t) are linear functions
of the time-varying trends τπt , τut , τmt . Hence, the model can be cast in a linear state space form,
and the trends can be drawn with the Carter and Kohn (1994) algorithm.

4. Sample the time-varying coefficients ρπt , λt, γt and ξt for t = 1, ..., T conditional on the time-varying
trends and other parameters

• This block involves two complications: i) these parameters enter nonlinearly in the model forecast
functions fh1

(
θt−1, Y

t−1) , ..., fhn

(
θt−1, Y

t−1) of the equations of the survey expectations, and
ii) the parameters ρπt and λt are bounded to lie within certain intervals. To accommodate both
features, we implement a single-move sampler (see Cogley, 2005; Koop and Potter, 2011), where
for each period t = j the time-varying coefficients are drawn conditional on the values for these
coefficients from periods t 6= j, in addition to all other model parameters, using an independent
Metropolis-Hastings sampler.

5. Sample stochastic volatility ψt for t = 1, ..., T conditional on the state variables and other parameters
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• The stochastic volatility terms ψt of the error term in the measurement equation (1) for inflation
are drawn using the single-move sampler of Jacquier et al. (1994).

6. Go back to step 1 until the required number of draws has been reached.

We executed 250,000 replications of the Gibbs sampler and discarded the first 50,000. Finally, we stored
every 20th draw in order to break the autocorrelation and economize on storage size. This leaves us with
10,000 posterior draws. To assess convergence, we inspected the recursive means of the retained draws at
every 20th draw. The fact that there is little evidence of large fluctuations in the posterior means is taken
as evidence in favour of convergence (see appendix A.5.).

3.3 Priors

In their analysis on U.S. data, Chan et al. (2016) use relatively uninformative priors which favour smooth
transitions for the time-varying parameters. We closely follow their choices in our analysis. The priors of the
error variances are independently distributed as σ2

i ∼ IG (νi,Si) for i ∈ (u,m, τπ, τu, τm, ρ, λ, γ, ψ, h1, ..., hn),
where IG (., .) denotes the inverse-Gamma distribution. As in Chan et al. (2016), we set the degrees of free-
dom to a small value in order to make them relatively uninformative: νi=10 for i ∈ (u, m, τπ, τu, τm, ρ,
λ, γ, ψ). The scale parameters Sτπ, Sτu, Sτm are set to 0.09, such that E

(
σ2
τπ

)
=E

(
σ2
τu

)
=E

(
σ2
τm

)
=0.01.

We deviate here from Chan et al. (2016), who set Sτπ to 0.18 instead. Our prior mean implies that dif-
ference between two adjacent state observations, e.g. τπt − τπt−1, lies with about 95% probability between
-0.2 and 0.2. The scale parameters for the time-varying coefficients, Sρ, Sλ, Sγ , and Sξ are set to 0.018,
which imply prior means E

(
σ2
ρ

)
=E

(
σ2
λ

)
=E

(
σ2
γ

)
=E

(
σ2
ξ

)
=0.002. This prior favours smoothly transition-

ing states, as the change between two periods has about 95% probability of lying between -0.09 and 0.09.
For the stochastic volatility process and the unemployment gap equation, the scale parameters are set to
Su=Sψ= 0.9, which implies a prior mean of E

(
σ2
u

)
= E

(
σ2
ψ

)
= 0.1. Concerning the measurement equa-

tions for the survey data, we set smaller values for the degrees of freedom: νh1
=... =νhn

=1.5, and scale
parameters Sh1

=...=Shn
=0.15. These values also imply prior means of E

(
σ2
h1

)
= ... = E

(
σ2
hn

)
= 0.1, but

the variances are larger. Given the high volatility of import price inflation, we raise the scale parameter
to Sm = 9, such that E

(
σ2
m

)
= 1. The persistence parameters parameters of the unemployment gap are

normally distributed: (ρu1 , ρu2 )′ ∼ N ((1.8,−0.8)′, 5I2).
The initial values of the state variables are normally distributed with large variances: τ0 ∼ N (3.5, 10) ,

(τu0 , τu−1)′ ∼ N (9I2, 10I2), τm0 ∼ N (0, 10), ρπ0 ∼ N (0, 1) , λ0 ∼ N (0, 1), γ0 ∼ N (0, 10) , ψ0 ∼ N (0, 5), and
ξ0 ∼ N (0.7, 1) .

4 Full sample results

This section describes the posterior estimates from our three models. It compares the results from the
baseline model, estimated without survey expectations, against those from the two other specifications that
incorporate expectations data. We discuss in turn the estimated time-varying trends, the time-varying
coefficients, the error variances, and a historical decomposition of inflation.
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4.1 Time-varying trends

Trend inflation τπt Figure 3 shows the posterior median and 68% credible sets of the trend inflation τπt

estimates from the three models. The results from the baseline model (blue shaded area) are compared
against those from the SPF expectations model in panel (a), and against those from the SPF no smoothing
model in panel (b) (red, with dashed lines). The plots show that in all three cases τπt trends downward
from levels around 3% or higher in 1990, to about 2% by 1999 - the starting date of the European Monetary
Union. Trend inflation estimates are subsequently stable around 2% between 1999 and 2011, after which
they decline. The end-of-sample decline is the strongest in the baseline model, which delivers a final trend
inflation estimate around 1.4%, whereas in the models with survey data the decline is more muted, and trend
inflation lies around 1.7% at the end of the sample. Note also that the uncertainty bands are remarkably
narrower for the models with survey data, especially for the SPF no smoothing model (panel b). As a result,
the decline between 2011Q4 and 2017Q4 is only a posteriori significant at the 95% level for the SPF no
smoothing model, even though it is significant at the less restrictive 68% level for all three models.

[INSERT FIGURE 3 HERE]

Natural rate of unemployment τut Estimates of the natural rate of unemployment τut from the baseline
model show a marginal decline from 9.2% to 8.8% over the sample period (Figure 4). As a result, the
unemployment gap - a measure of economic slack - was closed at the end of the sample according to baseline
model. By contrast, the decline is more pronounced for the models with survey data. These models find a
larger unemployment gap over the lowflation period, and that slack remained in the economy at the end of
the sample. This is especially the case in the model without forecast smoothing, which finds an end-of-sample
unemployment gap of 0.7%. The difference in τut values between the first (1990Q1) and last observations
(2017Q4) is only a posteriori significant at the 95% level for the SPF no smoothing model.

[INSERT FIGURE 4 HERE]

Trend relative import price inflation τmt We include a trend τmt in order to capture any remaining
slowly moving trend effects to relative import price inflation πmt . Figure 5 shows that the trend estimates
are very similar across models and that, with the exception of the pre-1999 period, the trends move broadly
sideways at levels around zero.

In sum, the extended models with survey expectations data point toward temporary, rather than per-
manent factors, as the main drivers behind low inflation in the euro area. In particular, these two models find
a more muted decline of trend inflation - inflation’s permanent component - and a larger degree of economic
slack - in the form of a positive unemployment gap - over the lowflation period. In the next subsection we
further explore the evolution of the temporary factors that influence the inflation gap.

[INSERT FIGURE 5 HERE]

4.2 Time-varying coefficients

Figure 6 shows the posterior estimates of the time-varying inflation gap persistence ρπt , the Phillips curve
slope λt, and the import price coefficient γt, and compares the posterior estimates from the baseline model
against those from the models with survey data.
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[INSERT FIGURE 6 HERE]

Intrinsic inflation gap persistence ρπt In the baseline model, intrinsic inflation gap persistence ρπt is
found to trend slightly downward from 0.17 in 1990 to about 0.1 in 2000, and stabilizes thereafter. However,
both models with survey data find a short-lived spike in inflation gap persistence which peaks in the 2008Q4-
2009Q1 quarters. As we discuss below, this timing coincides with shifts in the one-year and two-year ahead
SPF forecasts, which are also reflected in ξt changes. The SPF model without forecast smoothing finds higher
intrinsic persistence at the start of the sample, which is related to the fact that this model also reports the
lowest initial level of trend inflation (around 3%) and, therefore, a larger and more persistent inflation gap.

Phillips curve slope λt To facilitate comparison among coefficients, Figure 6 shows the Phillips curve
slope as −1 × λt. Hence, a decrease toward zero indicates a weaker impact and, therefore, a Phillips curve
flattening, and an increase represents a Phillips curve steepening. Across all models, the Phillips curve slope
estimates follow the same broad tendencies. First, a general slope flattening between 1990 and 2012 despite
several short-lived steepening interruptions. Second, a sharp steepening which starts around the end of 2012
and, finally, a stabilization during the final years at values close to 0.3. The slope estimates from the SPF
model without smoothing show several short-lived fluctuations, but follow the same broad trends as the SPF
model with forecast smoothing. In particular, the end-of-sample steepening is the strongest in these models
with survey data. Combined with the finding of economic slack in the post-2013 period, this steeper slope
partly attributes low inflation to a stronger effect of economic slack, which remained present despite the
continuous decline of the unemployment rate. This steepening is a posteriori significant at the 95% level in
the SPF no smoothing model, and at the 68% level in both models with survey data.9

A second effect of the Phillips curve slope steepening, is that the (inherited) persistence of the inflation
gap increases. Indeed, the euro area unemployment gap is a highly persistent process, where the sum of the
autoregressive persistence parameters is close to one (Table 1).

Import price coefficient γt Estimates of the import price coefficient are very similar across all models.10

The import price coefficients decline during the period from 1990 to 2000, but then follow an upward trend
which ultimately stabilizes at the end of the sample.11 The increase between 2000Q1 and 2017Q4 is a
posteriori significant at the 95% level in all three models. Despite the apparently small magnitude of γt,
import prices still have a meaningful impact due to the relatively large volatility of shocks to the import
price gap. As we will show below, the general weakness of commodity prices during the post-2013 period,
combined with this stronger impact coefficient, resulted in a important downward effect on inflation in recent
years.

9Using different model specifications and estimation methods, Riggi and Venditti (2015), Dany-Knedlik and Höltemoller
(2017) and Cordemans and Wauters (2018) also report a slope steepening of the euro area Phillips curve in the post-crisis
period. Bulligan and Viviano (2017) find a steeper wage Phillips curve slope for Italy, Spain and France after the global
financial crisis.

10The strong similarity across model estimates in γt and τmt is possibly due to our simplifying assumption that the import
price inflation gap is an i.i.d. process. This assumption implies that a shock to today’s import price gap affects future inflation
via the impact on today’s inflation gap, and not via spillovers to the future import price gap. As a result, including the survey
data on inflation expectations delivers no additional information for estimating γt. A robustness check which models the import
price gap as an AR(2) process is on our to-do list.

11The overall evolution of γt resembles that from its counterpart in Dany-Knedlik and Höltemoller (2017) and Cordemans
and Wauters (2018).

13



Smoothing parameter ξt Panel (a) of Figure 7 shows the evolution of the smoothing parameter ξt from
the SPF expectations model. The pre-1999 period, for which no SPF data is available, is marked in grey.
From 1999 onward, the smoothing coefficient ξt remains stable above 0.8 and then declines swiftly in the
2007-2008 period. ξt subsequently follows an upward trend, which is interrupted only shortly by a drop at
the end of 2014. Thus, the evolution points to a lower tendency for forecast smoothing during the financial
crisis period, but overall ξt remains at elevated levels above 0.6. These results resonate with  Lyziak and
Paloviita (2018) who, in a different setup, also report high smoothing coefficients for the euro area that also
decline during the crisis period.12

Intuitively, the role of ξt in our SPF model is to allow for a gradual adjustment of survey expectations
to changes in the underlying model forecast. Drops in the level of ξt would thus suggest a higher degree of
comovement between the survey expectations and the underlying model forecast. To support this idea, panel
(b) of Figure 7 shows the recursively estimated values of ξt, along with the evolution of the SPF one-year and
two-year ahead expectations.13 Compared to the full-sample estimates from panel (a), the median estimate
of ξt shows two periods of more pronounced drops: the first in 2008Q4, and the second in 2015Q1. The plot
shows that these declines coincide with periods wherein the SPF one-year and two-year forecasts experienced
sharp changes.14

[INSERT FIGURE 7 HERE]

4.3 Error variances

Figure 8 shows the evolution of the time-varying standard deviation of επt - the error in the measurement
equation (1) for inflation. The volatility of residual shocks to inflation trended upward in the period from
about 1995 to 2008, but has been in decline since. The estimates from the all three models, as shown by the
medians, are very similar to one another.

Table 1 shows the summary statistics (median and 16th and 84th percentiles) from the posterior distri-
butions of the error variances that remain constant over time. Overall, the results are mostly similar across
the three models. The variance of the residual in the import price equation, σ2

m, is by far the largest due to
the volatile nature of import price inflation. The variance of the residuals of the survey expectations data,
shown as σ2

1y, σ2
2y and σ2

5y for one-year ahead, two-year ahead and five-year ahead expectations, are smaller
than those from the other measurement equations.

The degree of time-variation in the trends and coefficients is limited and does not deviate much from
the prior mean. Of all time-varying parameters, the variation is the largest in the stochastic volatility series
(σ2
ψ), followed by trend inflation (σ2

τπ) and trend import price inflation (σ2
τm).

[INSERT FIGURE 8 HERE]
12  Lyziak and Paloviita (2018) estimate how the ECB’s projections (instead of an underlying model forecast) spill over into

the SPF expectations.
13The results in panel (b) reflect the estimated ξt using data up to period t, whereas those from panel (a) use the full sample.

The recursive estimates are a byproduct of the forecasting exercise described in the next section.
14In the plot, the SPF data is shifted back one quarter in order to align it with the timing in the empirical model. Given

this timing, the recursively estimated ξt drops strongly in 2008Q4, which is the quarter where the one-year and two-year ahead
forecasts record their largest period-by-period changes. ξt also drops remarkably in 2015Q1, a period where the same SPF
series also experience large changes.
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4.4 Historical decomposition

To summarize the overall impact of these estimates to the dynamics of inflation, Figure 9 shows a histor-
ical decomposition of year-on-year headline inflation over the 1999-2017 period from the SPF expectations
model.15 Since trend inflation is generally close to 2% and only declines weakly in the post-2013 period, it
does not explain the lowflation period. Instead, import prices had an important role in the inflation cycles
after 2007. In the post-2009 period, economic slack had a protracted downward drag on inflation, which
reverts to zero by the end of the sample. According to a back-of-the-envelope calculation, the variation in
import prices accounted for 55% of the variation in inflation since 2007, while the shares are 21% for slack,
16% for the residual and 8% for trend inflation.

[INSERT FIGURE 9 HERE]

5 Is the SPF data helpful for forecasting?

We now evaluate and contrast the forecast performance of our three model specifications for forecasting
future inflation at different horizons. This exercise serves two purposes. First, it provides an assessment
of the value of SPF data in improving the forecast accuracy of our baseline model. Second, it offers the
applied econometrician with an interest in forecasting a model evaluation device to discriminate among our
different measures of trend inflation and cyclical inflation drivers. In fact, as surveys send more accurate
signals about future inflation, they can be regarded as providing more valuable information about current
inflation dynamics as well.

We perform a pseudo-out-of sample forecast exercise for the time span 1990Q1 to 2017Q4. We use an
expanding window, re-estimating the model every quarter.16 We evaluate the accuracy of both point and
density forecasts, using root mean squared errors (RMSE) and cumulative log predictive densities (CLPD),
respectively. The forecast horizons include the one quarter ahead as well as the one, two and five year
ahead horizons. The one through five years ahead forecasts refer to expected year-on-year inflation rates;
matching the SPF’s rolling forecast horizon. We use iterated forecasts calculated with predictive simulation.
More specifically, when forecasting using information through time t, predictive simulation is done of future
values of the latent states and of the dependent variables. In the following, we first discuss aggregate forecast
statistics, evaluating the average forecast performance over the forecast sample. Subsequently, we investigate
the evolution of the relative forecast performance of our different model specifications over time.

5.1 Average forecast accuracy

Figure 10 displays the accuracy of point and density forecasts, as ratios of RMSEs of the extended model
variants including survey forecasts relative to the baseline specification, estimated without survey expecta-
tions, (panel a) and as differences in CLPDs relative to the baseline model (panel b). The figure also contains
the forecast statistics of two robustness checks (presented by the grey striped and dotted bars); these are
discussed in Section 6.

15This decomposition of year-on-year inflation takes into account the time variation in all parameters. It is calculated as a
four quarter moving average of the decomposition of quarter-on-quarter inflation. This transformation, along with the effects
of ρπt , explains the apparent persistence of the residuals in the figure.

16A caveat is that the results are based on 40,000 draws from the posterior sampler, where we discard the first 20,000 and
keep every 10th draw in order to obtain 2,000 retained draws.
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[INSERT FIGURE 10 HERE]

Overall, we find that accounting for survey data improves on the accuracy of our baseline model. Using
CLPDs as the forecast metric, our model variants that include survey expectations (i.e., the SPF and SPF
no smoothing models) forecast better than the baseline model without surveys at all forecast horizons. Using
RMSEs, the SPF model variants forecast best at the short to medium horizons, whereas they perform about
equally well as the baseline model at the 5 year forecast horizon.

The relative performance of our two model variants that incorporate expectations data is more mixed.
The CLPD measure favours the model variant with smoothing at short horizons, but the variant without
smoothing at the long horizon; although some caution is required in drawing strong conclusions from the
long-term forecast statistics in that the number of fully independent observations is limited in the available
data sample. The point forecasts of both models are more or less equally accurate: the differences between
their RMSE statistics are small to modest at all forecast horizons. As a result, differences in forecast
performance mainly relate to differences in higher moments of the predictive distribution.

In sum, we find that including information from survey forecasts helps to improve inflation forecasts,
especially at short horizons. For the practitioner interested in inflation predictability, this finding supports
the inclusion of survey data in model-based assessments of inflation dynamics. Our forecast evaluation
exercise therefore provides confidence that the lowflation is mainly driven by cyclical, and thus temporary
forces, rather than by downward revisions in long-term inflation expectations.

5.2 Relative forecast performance over time

It is instructive to investigate whether and how the value of the SPF data in predicting future inflation has
evolved over time. To this end, we look to the evolution of the cumulative sums of the log predictive densities
over the forecast sample, see Figure 11. We subtract the cumulative sums for the baseline model from that
of our two model variants including survey forecasts (i.e., the SPF and SPF no smoothing models). Hence,
declining cumulative sums indicate better performance of the baseline model in that period, and vice versa
for upward sloping lines.

Two observations stand out. First, it appears that the better forecast accuracy of the SPF models
manifests itself mainly after the outbreak of the global financial crisis in 2007. This is particularly true
at short forecast horizons, in which case the baseline model and the two SPF model variants tend to have
comparable accuracy prior to the crisis. Second, we see that the relative accuracy of the baseline model
temporarily improved during the two most recent bouts of falling inflation: first in 2008, in the immediate
aftermath of the financial crisis, then during the first one to two years of the lowflation episode since 2013.
This result applies in particular to the SPF model without forecast smoothing and suggests that these drops
in inflation came more as a surprise to the SPF than to our baseline model forecasts. Interestingly, the points
in time where the relative accuracy of the SPF models starts to prevail again seem to broadly correspond
with those episodes during which the forecast smoothing coefficient ξt drops (see Figure 7 ). This coincident
co-movement may indicate that forecasters started to update their beliefs more actively as it became clear
that they were doing an increasingly worse job in predicting inflation. As such beliefs are typically not only
based on past events but also take account of future expected development, it might be expected that a drop
in ξt leads to forecasts conveying more valuable information about future inflation dynamics.
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6 Robustness analysis

Our strategy of modelling the expectations term structure in a time-varying parameter model invokes com-
plications relative to the typical approach in the literature, which uses either only long-term survey expect-
ations or constant parameters for the transmission coefficients in the inflation gap. We therefore perform
robustness checks to evaluate if the results remain the same when we simplify the SPF model to i) using
long-term expectations data only, or ii) having constant transmission coefficients. Concretely, in the first
case, we take out all measurements equation from the system (14) to (15), except for the one related to
the five-year ahead SPF inflation forecast. In the second robustness check, we estimate a model variant
with constant Phillips curve coefficients (ρπ, λ and γ), a time invariant smoothing coefficient (ξ) and static
variances of the inflation gap residual (i.e., επt ∼ N(0, σ2

π)).
First, we investigate the impact of the proposed perturbations on the estimated dynamics of the smoothing

coefficient ξt, trend inflation τπt and the natural rate of unemployment τut . We then compare the forecast
performance of the SPF model with smoothing to that of its alternative variants. For ease of exposition,
we label the constant parameter version of the model as the “CST model” and refer to the model variant
excluding information on short-term inflation expectations as the “LT-exp model”

Robustness smoothing coefficient ξt We find a median estimate of ξ = 0.81 in our constant parameter
estimation (Table 2). This value accords well with the average degree of forecast smoothing recorded over
the sample in the SPF model with time variation. Interestingly, in the model using only long-term SPF
forecasts, ξt is found to be broadly stable at a level just above 0.9 (not shown). The observed decline in ξt in
our baseline estimate during the financial crisis period is therefore fully driven by developments in short-term
inflation expectations. This is not surprising, since the short-end of the expectations curve experienced sharp
changes consistent with Phillips curve predictions in recent years, whereas the long-end remained relatively
more stable (see Figure 2).

[INSERT TABLE 2 HERE]

Robustness trend inflation τπt and natural rate of unemployment τut Figure 12 displays the pos-
terior median estimates of trend inflation and the natural rate of unemployment of the full fledged SPF model
and its two robustness variants. For ease of analysis, the figure also plots the respective state estimates of
the baseline model (i.e., the model specification without survey data). Of the four model variants, the SPF
model finds the lowest value for the natural rate of unemployment, specifically at the end of the sample.
Hence, compared to the SPF model, the model variants with either constant parameters or abstracting from
short-term forecast data, attribute less weight to domestic slack in explaining the low inflation in the euro
area.

[INSERT FIGURE 12 HERE]

The two robustness variants differ, however, in how they compensate for this more muted slack channel to
fitting the low inflation. The model variant without short-term forecast data points to a stronger weakening
in trend inflation in recent years, when compared to the SPF model that includes both short and long-
term forecast. At first sight, this result might seem counter-intuitive, given the higher and more stable
course of long-term relative to shorter-term inflation expectations and the fact that -in isolation- long-term

17



expectations mainly inform about the trend. However, compared to the SPF model, the relatively high ξt

estimate in LT-exp model, implies a much slower adjustment of survey expectations to changes in underlying
model forecasts. This mechanism allows long-term survey forecasts to persistently overshoot trend inflation.
Finally, note that the LT-exp model, focusing on long-term forecast data only, and the baseline model,
neglecting the information of survey data all together, deliver similar estimates for both trend inflation
and the natural rate of unemployment. Their difference with the SPF model thus relates to both models
abstracting from information on short-term inflation forecasts. This observation suggests that short-horizon
survey expectations may play an important role in measuring inflation’s trend and cyclical factors.

The median trend inflation in the CST model is comparable to that obtained in the SPF model during
most of the protracted period of below target inflation since 2013. Historical decomposition exercises (not
shown) learn that the CST model attributes the more moderate contribution of domestic slack on the
lowflation, relative to the SPF model, to mainly a stronger contribution from negative inflation shocks, but
also to lower upward price pressures coming from foreign factors towards the end of the sample. These
results relate to the inability of the CST model to fully account for the decline in volatility of the inflation
gap residual as well as the increase in the impact of import price inflation as observed in the SPF model
in recent years (see Figures 8 and panel (e) of Figure 6, respectively). In the SPF model the import price
coefficient and the standard deviation of residual shocks to inflation averaged around γ̄2013−17 = 0.19 and
σ̄π,2013−17 = 0.47 respectively since 2013, whereas their respective median values note at γ = 0.15 and
σπ = 0.76 in the constant parameter version of the model (see Table 2).

Forecast performance robustness specifications The full sample forecast statistics of our two ro-
bustness model specifications for forecasting inflation are presented by the grey striped and dotted bars in
Figure 10. Similar to the approach in Section 5, we choose the benchmark model to be the baseline model
excluding survey data.

Looking at the accuracy of point forecasts first, the RMSE indicates that the SPF model with forecast
smoothing performs at least as well as its robustness variants with either constant parameters or abstracting
from short-term forecast data. At short and medium horizons, the SPF model exhibits the best forecast
performance. At the 5 year forecast horizon, the two robustness variants are comparable in accuracy to
the SPF model. The picture is mostly similar when accounting for uncertainty around point forecasts.
In fact, the CLPD statistics favour the SPF model in forecasting inflation at short to medium horizons.
However, at the longer horizon of 5 year ahead, the model variant with constant parameters offers the best
density forecasts; which follows from the fact that the CST model’s forecasts are not subject to parameter
uncertainty.

Overall, these findings support the view that including information from short-term survey forecasts and
adding time-variation in parameters is useful in predicting future inflation. The fact that the fully fledged
SPF model tends to forecast well relative to its variant only incorporating LT inflation expectations also
suggests that short-term survey forecasts carry important information in addition to long-term expectations
data about inflation’s trend and cyclical factors; a point made earlier by Kozicki and Tinsley (2012).
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7 Conclusion

This paper explores the role of survey inflation expectations in uncovering the relative importance of perman-
ent effects and cyclical forces in explaining the protracted disinflation period experienced in the euro area
since late 2012. To this end, we estimate - employing Bayesian Gibbs sampling techniques - a time-varying
parameter Phillips curve model that jointly explains macroeconomic data and inflation expectations from
the ECB’s Survey of Professional Forecasters. To take account of potential systematic forecast biases in the
SPF, we allow for some type of “forecast smoothing” behaviour, in the sense that survey expectations can
gradually respond to changes in the model forecast.

Our results support the view that the lowflation is mainly driven by cyclical, and thus temporary forces,
rather than by downward revisions in long-term inflation expectations. More specifically, compared to the
estimated dynamics of a model variant that abstracts from survey information, we find a more muted decline
of trend inflation in recent years and a larger degree of economic slack when survey data are incorporated in
the analysis. At the same time, inflation has become more sensitive to both cyclical fluctuations and foreign
price pressures in recent years. Moreover, we find that the inclusion of survey data improves the forecast
accuracy of our model in predicting future inflation. Hence, from the perspective of a practitioner who is
concerned with inflation predictability, this finding supports the usefulness of survey data in understanding
current inflation dynamics. As a byproduct, our analysis provides an estimate of the speed with which
survey respondents adjust their forecasts to changing macro-economic developments. We find that forecasters
updated their believes more frequently during the financial crisis period, compared to the years before, but
that overall survey expectations remained very persistent.

In addition to inflation forecasts, the ECB’s SPF also contains expectations for unemployment and GDP
growth rates. An interesting topic for future research is to investigate whether this data conveys additional
valuable information about inflation’s underlying driving sources.
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Tables and Figures

Table 1: Summary statistics of the posterior distribution of the error variances and persistence parameters

Parameter Baseline model SPF expectations model SPF no smoothing model

σ2
u 0.026 0.027 0.029

(0.023, 0.030 ) (0.023, 0.031 ) (0.026, 0.034)

σ2
m 1.614 1.613 1.634

(1.424, 1.837) (1.426, 1.837 ) (1.440, 1.866)

σ2
τπ 0.012 0.009 0.004

(0.008, 0.016) (0.007, 0.012) (0.004, 0.005)

σ2
τu 0.005 0.005 0.005

(0.004, 0.006) (0.004 0.006) (0.004, 0.007)

σ2
τm 0.010 0.010 0.010

(0.007, 0.014) (0.007, 0.014 ) (0.007, 0.014)

σ2
ρ 0.002 0.002 0.002

(0.001, 0.002) (0.001, 0.002) (0.001, 0.002)

σ2
λ 0.002 0.002 0.002

(0.001, 0.003) (0.001, 0.003) (0.001, 0.002)

σ2
γ 0.002 0.002 0.002

(0.001, 0.002) (0.001, 0.002) (0.001, 0.002)

σ2
ψ 0.077 0.078 0.080

(0.059, 0.103) (0.059, 0.103) (0.061, 0.107)

σ2
ξ 0.002

(0.001, 0.003)

σ2
1y 0.014 0.010

(0.011, 0.017) (0.009, 0.013)

σ2
2y 0.007 0.007

(0.006, 0.008) (0.006, 0.008)

σ2
5y 0.006 0.006

(0.005, 0.007) (0.005, 0.008)

ρu1 1.816 1.766 1.645

(1.742, 1.888 ) (1.713, 1.817) (1.600, 1.690 )

ρu2 -0.836 -0.794 -0.685

(-0.908, -0.762 ) (-0.843, -0.742 ) (-0.727, -0.642 )

Note: The summary statistics shown are the posterior median and, between parentheses, the 16th and 84th
percentiles of the posterior distribution. The parameters σ2

1y , σ2
2y and σ2

5y denote, respectively, the error variances
from the measurement equations for the one-year ahead, two-year ahead, and five-year ahead inflation expectations.
The ρu1 and ρu2 parameters denote the autoregressive parameters in the unemployment gap equation.

20



Table 2: Summary statistics of the posterior distribution of selected parameters in the Robustness estimation

Parameter CST model

ρu1 1.771

(1.710, 1.828)

ρu2 -0.797

(-0.852, -0.737)

λ 0.214

(0.142, 0.311)

γ 0.152

(0.135, 0.169)

ρπ 0.151

(0.067, 0.245)

ξ 0.806

(0.723, 0.878)

σ2
π 0.760

(0.710, 0.816)

Note: The summary statistics shown are the posterior median and, between parentheses, the 16th and 84th
percentiles of the posterior distribution. The table contains selected parameters from the CST model estimation
from the robustness section.
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Figure 1: Euro area headline HICP inflation
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Note: Headline inflation is the year-on-year growth rate of the Harmonized Index of Consumer Prices (HICP; full
line). The dotted line shows the pre-crisis (1999-2007) average of 2.06%. Sample: 1999m1 - 2018m8. Recession
dates are taken from the CEPR Euro Area Business Cycle Dating Committee.

Figure 2: SPF inflation expectations data
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Note: The SPF expectations are the rolling horizon one-year and two-year ahead expectations and the five-year
ahead calendar year inflation expectations. In all three cases, we report the computed mean from the aggregate
probability distribution for year-on-year headline inflation. Sample: 1999Q1 - 2017Q4.
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Figure 3: Inflation πt and estimates of trend inflation τπt
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Note: The figures show headline inflation (black line) and estimates of trend inflation. Trend inflation estimates
from the baseline model (blue shaded area) are compared against those from the SPF expectations model in panel
(a), and against those from the SPF no smoothing model in panel (b) (both have bands with red dashed lines).
The bands depict the median and 68% credible set.
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Figure 4: Unemployment rate ut and estimates of the natural rate of unemployment τut

(a) Baseline and SPF models
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Note: The figures show the unemployment rate (black line) and estimates of the natural rate of unemployment.
Natural rate estimates from the baseline model (blue shaded area) are compared against those from the SPF
expectations model in panel (a), and against those from the SPF no smoothing model in panel (b) (both with red
lines). The bands depict the median and 68% credible set.
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Figure 5: Relative import price inflation πmt and its trend τmt

(a) Baseline and SPF models
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Note: The figures show the inflation rate of the relative price of imports (black line) and estimates of its trend.
Trend estimates from the baseline model (blue shaded area) are compared against those from the SPF expectations
model in panel (a), and against those from the SPF no smoothing model in panel (b) (both with red lines). The
bands depict the median and 68% credible set.
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Figure 6: Time-varying coefficients

(a) ρπt : Baseline and SPF models
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(c) −λt: Baseline and SPF models
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Note: The figures show the estimated time-varying inflation gap persistence ρπt (panels a and b), Phillips curve
slope λt (panels c and d), and the import price coefficient γt (panels e and f). The Phillips curve slope is shown
as −λt to facilitate comparison (an increase reflects a steepening of the slope). Estimates from the baseline model
(blue shaded area) are compared against those from the SPF expectations model in the first column, and against
those from the SPF no smoothing model in the second column (both with red lines). The bands depict the median
and 68% credible set.
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Figure 7: Estimated smoothing coefficient ξt

(a) Full sample estimates ξt
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Note: Panel (a) shows the full sample estimates of the smoothing parameter ξt from the SPF expectations model.
We mark the pre-1999 evolution of ξt in grey, because there is no SPF data available for this period. The bands
depict the median and 68% credible set. Panel (b) shows the recursively estimated ξt values, along with the 1 and
2 year ahead SPF inflation expectations.

Figure 8: Time-varying stochastic volatility
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Note: Estimates for the time-varying standard deviation of επt , calculated as eψt/2, are shown for the baseline
model (median and 68% credible sets), a well as the median estimates for the SPF expectations model and the
SPF no smoothing model.
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Figure 9: Historical decomposition of inflation with the SPF smoothing model
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Note: The historical decomposition of headline inflation is calculated from the posterior mean of the time-varying
parameters from the SPF expectations model.
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Figure 10: Forecast performance statistics

(a) RMSE relative to baseline model
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Note: The figures show the forecast performance relative to the baseline model. Panel (a) shows the root mean
squared error (RMSE) results against the baseline model. Panel (b) shows the cumulative log-predictive density
scores against the baseline model. A RMSE below 1 indicates better performance than the baseline model, and
a CLPD above 0 indicates better density forecasting compared to the baseline model. The ’LT-exp’ and ’CST’
models refer to the robustness checks with i) only long-term expectations and ii) constant transmission parameters,
respectively.
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Figure 11: Forecasting comparison: CLPD over time

(a) 1Q ahead QoQ inflation
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Note: The figures show the evolution of the cumulative log-predictive density score over time. The log-density
score relative to the baseline model is shown in the full red line for the SPF model, and in the dashed blue line for
the SPF no smoothing model.
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Figure 12: Robustness checks: trend inflation τπt and natural rate of unemployment τut

(a) Trend inflation τπt estimates
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Note: The figures compare the median trend estimates from the different robustness checks. Panel (a) shows
trend inflation τπt estimates and panel (b) shows the natural rate of unemployment τut estimates. The ’LT-exp’
and ’CST’ models refer to the robustness checks with i) only long-term expectations and ii) constant transmission
parameters, respectively.
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Appendix

This appendix starts with a description of the data sources in Section A.1. and then provides more details
concerning the estimation procedure. The inclusion of survey expectations data in the SPF and SPF no
smoothing models implies nonlinear state space structures in the conditional posterior distributions, for
which particular steps need to be taken. Section A.2. describes how we link the model forecast to the survey
inflation forecasts. Subsequently, we explain the Gibbs sampler for the SPF model in Section A.3., and
briefly discuss in Section A.4. how the algorithm changes for the baseline model and the forecast smoothing
model.

A.1. Data

The macroeconomic series are sourced from the ECB’s Statistical Data Warehouse database (SDW)17 and
correspond to the series published in the ECB’s Economic Bulletin. We backdate these series using his-
torical data from the Area Wide Model database (AWM)18. Specifically, we follow the AWM procedure
and backdate price indexes and the unemployment rate using growth rates (Fagan et al., 2001, Annex 2).
Prior to backdating, the AWM HICP price index was seasonally adjusted with the X13 procedure using
JDEMETRA+ software.19 Details are given in Table 3 below.

The inflation expectations series are sourced from the ECB’s SPF webpage20. Specifically, we collect the
aggregate probability distributions for inflation at the one-year, two-year and five-year ahead horizons, and
compute the mean from these distributions at each point in time. Note that these are discrete probability
distributions with bins such as [1.5%, 1.9%] , [2%, 2.4%], etc. To gauge the mean of the probability distri-
bution at each point in time, we compute a weighted sum of the means of the bins. The weights are the
probabilities assigned to the bins by the forecasters, and the mean value of each bin is the mean of the two
outer points in the interval (e.g. for the [2%, 2.4%] interval it is (2%+2.4%)/2).

Table 3: Data

Variable Source (and codes)

Headline inflation
SDW (ICP.M.U2.Y.000000.3.INX)

AWM (HICP)

Unemployment rate
SDW (STS.M.I8.S.UNEH.RTT000.4.000)

AWM (URX)

GDP deflator
SDW (MNA.Q.Y.I8.W2.S1.S1.B.B1GQ. Z. Z. Z.IX.D.N )

AWM (YED)

Import price inflation
SDW (MNA.Q.Y.I8.W1.S1.S1.C.P7. Z. Z. Z.IX.D.N )

AWM (MTD)

Inflation expectations ECB SPF website

17See http://sdw.ecb.europa.eu/.
18See https://eabcn.org/page/area-wide-model.
19https://ec.europa.eu/eurostat/cros/content/software-jdemetra en
20https://www.ecb.europa.eu/stats/ecb surveys/survey of professional forecasters/html/index.en.html.
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A.2. Linking the survey expectations with the model forecast

. Notation

Our estimation sample ranges from 1990Q1 to 2017Q4, but the SPF inflation expectations data is only
available from 1999Q1 onward. We denote the starting date of the SPF with t̄, such that 1 < t̄ < T ,
with T denoting the final observation. We explain below how the estimation algorithm differs for time
periods t < t̄ without the survey data compared to periods t ≥ t̄ which include it. Starting with some
notation, denote Yt = (πt, ut, πmt )′, and Y T =(Y ′1 , ..., Y ′T )′ as the vectors which stack the macro data, and
let Zt = (πet+h1|t, ..., π

e
t+hn|t)

′, and ZT = (Z ′
t̄
, ..., Z ′T )′ denote the vectors which stack the survey expectations

data collected in periods t̄, ..., T . Similarly, the superscript T is used to indicate a vector of (stacked) time-
varying parameters, e.g. as in λT = (λ1, ..., λT )′. Also, let τt = (τπt , τut , τmt )′ and τT = (τ ′1, ..., τ ′T )′ collect
the time-varying trends, and define θt =

(
τ ′t , τ

′
t−1, ρ

π
t , λt, γt, ρ

u
1 , ρ

u
2
)′ as a vector that collects the relevant

parameters for forecasting inflation using data up to period t. Finally, the detrended variables are given by
π̃t = πt − τπt , ũt = ut − τut , and π̃mt = πmt − τmt , and they are collected in the vector Ỹt = (π̃t, ũt, π̃mt )′ .

. Rewriting the macro block in VAR / state space form

Measurement equations (16) to (17) link survey expectations to the model forecast. To generate this model-
consistent forecast, we rewrite equations (1) to (3) as a vector autoregressive model (VAR):


1 −λt −γt
0 1 0

0 0 1


︸ ︷︷ ︸

A0,t


π̃t

ũt

π̃mt

 =


ρπt 0 0

0 ρu1 0

0 0 0


︸ ︷︷ ︸

A1,t


π̃t−1

ũt−1

π̃mt−1

+


0 0 0

0 ρu2 0

0 0 0


︸ ︷︷ ︸

A2


π̃t−2

ũt−2

π̃mt−2



+


επt

εut

εmt

 .

This VAR, which describes our macroeconomic series, can be cast in state space form as

Xt = FtXt−1 + et, (18)

where the detrended variables are collected in the state vector Xt =
(
π̃t, ũt, π̃

m
t , π̃t−1, ũt−1, π̃

m
t−1
)′, the

transition dynamics are given by

Ft =

 A−1
0,tA1,t A−1

0,tA2

I3 03×3

 ,

and the error terms are

et =

 A−1
0,t

03×3

 (επt , εut εmt )′ .

. Timing of the SPF data
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Two remarks are in order concerning the data. First, the SPF expectations data are collected at the start
of each quarter and are based on data up to a certain month in the previous quarter. So, for example, the
one-year ahead expected year-on-year inflation rate in the SPF from Q1 refers to year-on-year inflation in
the month of December of the same year, etc. We follow the ‘noise interpretation’ of Smets et al. (2014), and
consider these series as noisy indicators of year-on-year inflation of the quarter that contains the month to
which is referred. Ergo, the Q1 SPF one-year ahead year-on-year expected inflation is taken as a measure for
expected year-on-year inflation three quarters ahead, etc. In addition, although the five-year ahead forecast
in the SPF is a calendar year forecast, we use it as a proxy for the rolling horizon forecast of year-on-year
inflation five years ahead.

Second, given the timing of the SPF collection, we consider this series to indicate the forecasters’ views
on the trends and coefficients from the previous quarter. Concretely, each period t’s SPF expectations series
for h periods ahead inflation, πet+h|t, is shifted one period back in time (to t− 1) in our empirical application
such that they inform on trends and transmission coefficients from quarter t− 1.

. Defining point forecasts for year-on-year inflation

Inflation is defined as the annualised quarter-on-quarter growth rate of the price index: πt=400ln(Pt/Pt−1),
where Pt is the price index and ln(.) is the natural logarithm. Denote πat as the year-on-year inflation in
quarter t, then πat = 1

4 (πt + πt−1 + πt−2 + πt−3) . We use equation (18) of the detrended model to generate
forecasts of the inflation gap Et(π̃t+h). Rewrite this term as Et(πt+h − τπt+h)=Et(πt+h)−Et(τπt+h), then it
follows that the point forecast for inflation, Et(πt+h), is the sum of the forecasted inflation gap Et(π̃t) and
expected trend Et(τπt+h).

. Model forecast function fh
(
θt−1, Y

t−1)
We generate model-consistent inflation forecasts by iterating the companion form (18) forward. We invoke
the anticipated utility model (AUM) and keep the time-varying parameters fixed to their current states.
Hence, when forecasting future inflation using data up to period t, we expect future trend inflation to equal
τπt . To match the survey expectations with the model forecast, we consider the forecasts for year-on-year
inflation one, two and five years ahead. Recall that the SPF survey is conducted at the start of each quarter.
Hence, in our analysis, we link the one-year ahead forecast πet+3|t with the model-implied three-quarter ahead
forecast of year-on-year inflation, which is given by

f3
(
θt−1, Y

t−1) = τπt−1 + e′1
1
4

(
X̂t|t + X̂t+1|t + X̂t+2|t + X̂t+3|t

)
= τπt−1 + e′1

1
4
(
Ft−1 + F 2

t−1 + F 3
t−1 + F 4

t−1
)
Xt−1

= τπt−1 + e′1
1
4Ft−1 (I6 − Ft−1)

−1 (
I6 − F 4

t−1
)
Xt−1,

where X̂i|j stands for the forecasted state vector using the information known at the start of quarter j, i.e.
the SPF data from quarter j and the macroeconomic data up to period j − 1. The unit vector e1, which has
size 6× 1 and contains 1 in row 1 and zero elsewhere, selects the element in the first row as this corresponds
to the inflation forecast. Given that the state vector contains the detrended annualized quarter-on-quarter
inflation rate, we construct the year-on-year detrended inflation rate as the 4 quarter moving average of the
quarterly detrended inflation rates, and add trend inflation in order to generate the overall expected inflation
rate. For the two-year and five-year ahead forecast of year-on-year inflation, we use
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f7
(
θt−1, Y

t−1) = τπt−1 + e′1
1
4F

5
t−1 (I6 − Ft−1)

−1 (
I6 − F 4

t−1
)
Xt−1

f19
(
θt−1, Y

t−1) = τπt−1 + e′1
1
4F

17
t−1 (I6 − Ft−1)

−1 (
I6 − F 4

t−1
)
Xt−1.

It is important to note that fh
(
θt−1, Y

t−1) is nonlinear in the parameters that are in θt−1 - that is, all
parameters except the time-varying trends. Since these parameters affect the likelihood function of the
survey data, they will require additional attention in the Gibbs sampler, as explained below.

A.3. Gibbs sampler for the SPF no smoothing model

This section describes the Gibbs sampling algorithm for the SPF no smoothing model. The aim is to draw
from the joint posterior of all unknown parameters by drawing iteratively from the conditional posterior
distributions using a Gibbs sampling algorithm which goes through the following steps:

Initialize: We initialize all state variables and time-invariant parameters at their prior means.

Step 1: Draw the error variances from their conditional posterior distribution:
p
(
σ2
u, ..., σ

2
ψ|Y T , ZT , τT , ρπ,T , λT , γT , ψT

)
. Observe that the error variances are conditionally independent

given the data and the state variables. Therefore, we can draw them one by one from the appropriate
distributions as described in the appendix of Chan et al. (2016). There are two cases to consider: error
variances related to unbounded states and measurement equations, and error variances related to bounded
states λT and ρπ,T .

. Error variances of measurement equations and unbounded states

Using standard linear regression results, it follows that the conditional posteriors follow standard inverse
gamma distributions. For example,

(
σ2
u|uT , τTu , ρu1 , ρu2

)
∼ IG

(
νu + T

2 ,Su + 1
2

T∑
1

(εut )2

)
,

where the prior is defined as σ2
u ∼ IG (νu,Su). The error variances σ2

m, σ2
h1

,..., σ2
hn

, σ2
τπ, σ2

τu, σ2
τm, σ2

γ ,
and σ2

ψ are drawn in a similar manner.

. Error variances σ2
ρ and σ2

λ of the bounded states

The error variances related to the bounded states ρπ,T and λT require a different approach because the error
terms in those state equations are drawn from truncated normal distributions instead of normal distributions.
Therefore,

logp
(
σ2
ρ|ρπ,T

)
∝ logp

(
ρπ,T |σ2

ρ

)
+ logp

(
σ2
ρ

)
∝ −T − 1

2 logσ2
ρ −

1
2σ2

ρ

T∑
2

(
ρπt − ρπt−1

)2
{
−

T∑
2
log

(
Φ
(1− ρπt−1

σρ

)
− Φ

(
−ρπt−1
σρ

))}
−
(
νρ − 1

)
logσ2

ρ −
Sρ
σ2
ρ

,
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which is a non-standard density due to the part that enters in brackets. Following Chan et al. (2016), we
implement a Metropolis Hastings step with proposal density

IG

(
νρ + T − 1

2 ,Sρ + 1
2

T∑
2

(
ρπt − ρπt−1

)2)
,

which is based on the above kernel, but discards the part in brackets. σ2
λ is drawn analogously.

Step 2: Sample the persistence parameters ρu1 , ρu2 from
p
(
ρu1 , ρ

u
2 |uT , ZT , λT , ρπ,T , γT , τT , σ2

u, σ
2
h1
, ..., σ2

hn

)
. Notice that information for these parameters is given by

the unemployment gap equation (2) and the measurement equations (16) to (17) for the survey data. If we
disregard the latter set of equations, we obtain standard regression results (see Chan et al., 2016). However,
the inclusion of survey data implies that these parameters enter nonlinearly in the function fh(θt−1, Y

t−1)
for each period t ≥ t̄.

To draw from ρu ≡ (ρu1 , ρu2 )′, we apply an independent Metropolis Hastings step where the proposal
distribution is based on a model where the nonlinear function fh(θt−1, Y

t−1) is linearized. Denote θt−1/ρu

as the vector θt−1 without the ρu elements. We can then rewrite fh(θt−1, Y
t−1) as fh(θt−1/ρu , ρu, Yt−1), and

take a first order approximation of the latter in the point ρu0 :

fh(θt−1/ρu , ρu, Y t−1) ≈ fh(θt−1/ρu , ρu0 , Y
t−1) +

(
∂fh(θt−1/ρu , ρu0 , Y

t−1)
∂ρu0

)′
(ρu − ρu0 )

≈ fh(θt−1/ρu , ρu0 , Y
t−1)−

(
∂fh(θt−1/ρu , ρu0 , Y

t−1)
∂ρu0

)′
ρu0︸ ︷︷ ︸

ch
t

+
(
∂fh(θt−1/ρu , ρu0 , Y

t−1)
∂ρu0

)
︸ ︷︷ ︸ ′

x̃u
h,t
′

ρu.

In other words, we transform the measurement equations with survey data (16) to (17) into equations which
are linear functions of ρu. Using standard regression results, this approximate model delivers closed form
solutions for the conditional posterior of ρu, which is a normal distribution. Specifically, we rewrite the
unemployment gap equation (2) as

ũT = Xuρu + εu,T ,

where Xu =


ũ0 ũ−1
...

...

ũT−1 ũT−2

 , var(εu,T ) = σ2
uIT , and we stack the linearized measurement equations for

the survey data as
ZT = C + X̃uρu + εz,T ,

where C =
(
c′
t̄
, ..., c′T

)′
, ct =

(
ch1
t , ..., c

hn
t

)′
, X̃u =


x̃u
t̄

...

x̃uT

 , x̃ut =


x̃uh1,t

′

...

x̃uhn,t
′

, εz,T =
(
εz
t̄
′, ..., εzT

′)′ ,

εzt =
(
εh1
t , ..., ε

hn
t

)′
, and var(εz,T ) ≡ Ωz = IT−t̄+1⊗


σ2
h1

0
. . .

0 σ2
hn

. Combining the likelihood functions
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with a normal prior p (ρu) ∼ N (ρu,Vu) leads to a normal conditional posterior
(
ρu|Y T , ZT , ...

)
∼ N

(
ρ̄u, V̄u

)
,

where

V̄u =
(
V−1
u +Xu ′Xu/σ2

u + X̃u ′Ω−1
z X̃u

)−1

ρ̄u = V̄u
(
V−1
u ρu +Xu ′ũT /σ2

u + X̃u ′Ω−1
z

(
ZT − C

))
.

Using these results, we take a candidate draw from a t-distribution with degrees of freedom 10, mean ρ̄u

and variance V̄u, in order to endow the proposal distribution with fatter tails. If the candidate draw is
non-stationary, we use the previous draw for ρu as the current draw. If it meets the stationarity conditions,
we accept it with a certain probability according to the Metropolis Hastings procedure. We select ρu0 , the
parameter values around which the function fh is linearized, as the previously accepted draw.21 In sum, we
generate a candidate draw for the persistence parameters from an approximate model which linearizes the
model forecast functions around the posterior mean from a model that discards the survey data.22

Step 3: Sample the time-varying trends τπt , τ
u
t , τ

m
t for t = 1, ..., T . Conditional on the time-varying

coefficients ρπt , λt, γt, the model can be cast in a linear state space form, and the trends can be drawn with
the Carter and Kohn (1994) algorithm. Building on the expressions from section A.1., we consider the
following augmented state vector:

X̃t = (τ ′t , X ′t)
′

=
(
τπt , τ

u
t , τ

m
t , π̃t, ũt, π̃

m
t , π̃t−1, ũt−1, π̃

m
t−1
)′
.

The measurement equations, spelled out for our implementation with three survey expectations series for
inflation in periods t ≥ t̄, are built by stacking Yt and Zt+1 in the left-hand side:



πt

ut

πmt

πet+4|t+1

πet+8|t+1

πet+20|t+1


=


I3 I3 03×3

1 01×2 e′1Ft/4 (I6 − Ft)
−1 (

I6 − F 4
t

)
1 01×2 e′1F

5
t /4 (I6 − Ft)

−1 (
I6 − F 4

t

)
1 01×2 e′1F

17
t /4 (I6 − Ft)

−1 (
I6 − F 4

t

)

 X̃t +



0

0

0

ε3t+1

ε7t+1

ε19
t+1


,

which builds on the previously defined functions f3
(
θt−1, Y

t−1), f7
(
θt−1, Y

t−1) and f19
(
θt−1, Y

t−1) that
define the model forecasts. For the periods t < t̄ without survey data, the left and right-hand side of the
above expression are left-multiplied with the matrix (I3 03×3) in order to abstract from the survey data
equations.

The state equations are given by
21We have also experimented with setting ρu0 to the conditional posterior mean that is obtained when the measurement

equations for the survey data are ignored: ρu0 =
(
V−1
u +Xu ′Xu/σ2

u

)−1 (
V−1
u ρu +Xu ′ũT /σ2

u

)
. However, results were found

to be similar.
22To setup the C and X̃u matrices, we use the symbolic toolbox in Matlab to derive the Jacobian of the functions fh, and

use the matlabFunction() command to convert this symbolic expression into a vectorized Matlab function.
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X̃t =

 I3 03×6

06×3 Ft

 X̃t−1 +


I3 03×3

03×3 A−1
0,t

03×6





ητπt

ητut

ητmt

επt

εut

εmt


.

Step 4: Sample the time-varying transmission coefficients ρπ,T , λT , γT for t = 1, ..., T . This block involves
two complications. First, these time-varying parameters also enter nonlinearly in the model forecast functions
fh1

(
θt, Y

t−1) , ..., fhn

(
θt, Y

t−1) for the survey expectations equations, which precludes setting up a linear
state space model as in Step 3. Second, the states ρπ,T and λT are bounded to lie within certain intervals.
To accommodate both features, we implement a single-move sampler based on Cogley (2005) and Koop and
Potter (2011), where for each period t = j the time-varying coefficients are drawn conditional on the values
for these coefficients in periods t 6= j, in addition to the other model parameters, using an independent
Metropolis-Hastings step.

Define δt = (ρπt , λt, γt)
′ as the vector collecting the time-varying coefficients, covariance matrix Q =

diag
(
σ2
ρ, σ

2
λ, σ

2
γ

)
, and θt/δt

as the vector θt excluding the δt elements. In each period t = t̄, ..., T − 1 the
single move sampler draws from (see Koop and Potter, 2011, equation 15)23:

p
(
δt|δj 6=t, Y T , ZT , θt/δt

, τT , ψT , σ2
λ, σ

2
ρ, σ

2
γ , σ

2
h1
, ..., σ2

hn

)
∝

p
(
Zt+1|Yt, Yt−1, δt, θt/δt

, τt, τt−1, σ
2
h1
, ..., σ2

hn

)
p
(
Yt|Yt−1, Yt−2, δt, θt/δt

, τt, τt−1, ψt, σ
2
h1
, ..., σ2

hn

)
p (δt+1|δt, Q) p (δt|δt−1, Q) 1 (δt ∈ A)

R (δt, Q) .

The two terms in the second line correspond to the likelihood function of the data, and the next three terms
in the third line to the prior distribution. To draw from this conditional posterior distribution, we derive an
analytical expression for a proposal density by extracting certain terms from the above expression. This is
described in the following steps:

. The likelihood function

Concerning the joint likelihood of Y T and ZT , we only keep the parts which depend on δt, since the rest
is absorbed by the integrating constant. We decompose the joint likelihood p

(
ZT , Y T |δt, δj 6=t, ...

)
into

the product of predictive likelihoods:
∏T
t=1 p

(
Zt, Yt|Zt−1, Y t−1, δt, δj 6=t, ...

)
, and then decompose the joint

likelihood in each period t as

p
(
Zt, Yt|Zt−1, Y t−1, δt, δj 6=t, ...

)
= p

(
Zt|Zt−1, Y t−1, δt, ...

)
p
(
Yt|Zt−1, Y t−1, δt, δj 6=t, ...

)
= p (Zt|Yt−1, Yt−2, δt−1, ...) p (Yt|Yt−1, Yt−2, δt, ...) .

Including survey data into the model has an impact on the estimated trends, transmission coefficients, etc.
But once we condition on past data and the model parameters, we consider Yt and Zt to be (conditionally)

23In the final period t = T , there is no δT+1 to condition on, so the p (δt+1|δt, Q) /R (δt, Q) terms disappear from the
conditional posterior density.
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independently distributed. Of the whole joint likelihood function, only the vectors Zt+1 and Yt depend on
δt, and therefore these two likelihood terms remain in the above kernel of the posterior of δt.

By decomposing the likelihood function in this way, we can exploit the fact that in the p (Yt|Yt−1, Yt−2, δt, ...)
component, Yt is a linear function of δt. In particular, we have that

π̃t = (π̃t−1, ũt, π̃
m
t ) δt + επt

= Xδ
t δt + επt ,

is the only part that depends on δt. For the periods t < t̄ which do not contain survey data, p (Yt|Yt−1, Yt−2, δt, ...)
is the only likelihood term. Our proposal distribution uses this expression in combination with the prior
distribution. We now turn to the latter.

. The prior distribution

The elements of δt evolve as independent random walks which are subject to the constraints that ρπt and λt
lie within certain intervals. These restrictions are captured by the indicator function 1 (δt ∈ A), which equals
1 if δt satisfies the bounds and is zero otherwise. The term R (δt, Q) indicates the integrating constant from
the restricted prior distribution 1 (δt+1 ∈ 1) p (δt+1|δt, Q). Intuitively, the integrating constant measures the
percentage of random draws from the normal distribution p (δt+1|δt, Q) that would fall within the acceptance
region (see Koop and Potter, 2011).

. Calculating the integrating constant R (δt, Q)

Assuming that the elements of δt evolve as independent random walks allows us to derive analytical expres-
sions for the integrating constant R (δt, Q). By decomposing the joint distribution as the product of three
independent distributions, we obtain

p (δt+1|δt, Q) = p
(
ρπt+1|ρπt , σ2

π

)
p
(
λt+1|λt, σ2

λ

)
p
(
γt+1|γt, σ2

γ

)
.

Therefore, the integrating constant of the restricted prior is

R (δt, Q) =
∫ 1

0

∫ 0

−1

∫ ∞
−∞

p (δt+1|δt, Q) dρπt+1dλt+1dγt+1

=
∫ 1

0
p
(
ρπt+1|ρπt , σ2

π

)
dρπt+1

∫ 0

−1
p
(
λt+1|λt, σ2

λ

)
dλt+1

∫ ∞
−∞

p
(
γt+1|γt, σ2

γ

)
dγt+1

=
(

Φ
(

1− ρπt
σπ

)
− Φ

(
0− ρπt
σπ

))(
Φ
(
−1− λt
σλ

)
− Φ

(
0− λt
σλ

))
,

where Φ (.) is the cumulative distribution of the standard normal density.

. Combining terms into a proposal density

Our proposal density combines the terms:

p (Yt|Yt−1, Yt−2, δt, ...) p (δt+1|δt, Q) p (δt|δt−1, Q) ,

because they lead to closed form solutions for the candidate draw δ∗t (see Carlin et al., 1992, for the formulae).
Given a prior δ0 ∼ N (δ0,Q0), we obtain

(δ∗t |δj 6=t, Y T , ZT ...) ∼ N
(
δ̄t, Σ̄t

)
,
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where

Σ̄t =
(
Q−1

0 +Q−1)−1
t = 0

=
(
Xδ
t
′Xδ

t /σ
2
π,t + 2Q−1)−1

t = 1, ..., T − 1

=
(
Xδ
t
′Xδ

t /σ
2
π,t +Q−1)−1

t = T ,

and

δ̄t = Σ̄t
(
Q−1

0 δ0 +Q−1δ1
)

t = 0

= Σ̄t
(
Xδ
t
′π̃t/σ

2
π,t +Q−1δt−1 +Q−1δt+1

)
t = 1, ..., T − 1

= Σ̄t
(
Xδ
t
′π̃T /σ

2
π,t +Q−1δT−1

)
t = T .

With these ingredients, we generate a candidate draw δ∗t in each period and evaluate the Metropolis
Hastings acceptance probability. This acceptance probability uses the remaining likelihood term for Zt+1,
the indicator function 1 (δ∗t ∈ A) and integrating constant R (δ∗t , Q). Notice that the Zt+1 term will only be
used in periods t̄ − 1 ≤ t ≤ T − 1 for which we have survey data. In the periods t < t̄ − 1, the acceptance
probability only depends on 1 (δ∗t ∈ A) and R (δ∗t , Q).

Step 5: Sample the stochastic volatility ψt for t = 1, ..., T conditional on all other parameters.
The stochastic volatility terms ψt of the error term in the measurement equation (1) for inflation are drawn
using the single-move sampler of Jacquier et al. (1994).

Repeat: Go back to step 1 until the required number of draws has been reached.

A.4. Gibbs sampler for the baseline and SPF models

. Baseline model

In the baseline model specification without survey data the whole procedure becomes more simple. Steps 1
and 5 remains the same. Steps 2 is based on a normal conditional posterior, for which acceptance-rejection
sampling can be used. Step 3 requires the correction for the absence of survey data (by left-multiplication)
to be applied in each period. The expressions for Step 4 require the removal of the likelihood terms related
to ZT .

. SPF model

Estimation of the model which allows for forecast smoothing (see equations 14 to 15) is similar to that of
the previous section. In this case, we also draw from the conditional posterior of ξT and restrict each ξt to
lie in the interval (0, 1). We adjust Step 4 and jointly draw ρπt , λt, γt and ξt by adjusting the expressions
for the candidate draw δ∗t and the Metropolis Hastings acceptance probability accordingly. For instance,
δt = (ρπt , λt, γt, ξt)

′, Q = diag
(
σ2
ρ, σ

2
λ, σ

2
γ , σ

2
ξ

)
, and Xδ

t = (π̃t−1, ũt, π̃
m
t , 0).
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A.5. Convergence

We executed 250,000 replications of the Gibbs sampler and discarded the first 50,000. Finally, we stored
every 20th draw in order to break the autocorrelation and economize on storage size. This leaves us with
10,000 posterior draws. To assess convergence, we inspected the recursive means or the retained draws at
every 20th draw, as shown in Figure 13. The fact that there is little evidence of large fluctuations in the
posterior means is taken as evidence in favour of convergence.
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