

~Fa

EUR 5116 e

THE SLC-II SYSTEM LANGUAGE TRANSLATOR PACKAGE CONCEPTS
AND FACILITIES by $. PERSCHKE, G. FASSONE, C. GEOFIFRION
W. KOLAR and H. FANGMEYER

Commission of the European Communities

Joint Nuclear Research Centre - Ispra Establishment (Italy)
Scientific Data Processing Centre - CETIS

Luxembourg, April 1974 - 102 Pages - 21 Figures - B.Fr. 150.—

This is the first part of the description of a software system developed at
CETIS by the Information Science Research Unit and intended to be the basic
support for their R & D activities in Automatic Documentation and Language
Translation.

The present volume is a general presentation of the system and should enable
the reader to gather an over-all insight into the potential applications and the
solutions of the problems found.

F'or more detailed information, two more publications are in preparation:

— an user’s manual which is to enable the reader to generate and run an
application system on the basis of SLC-1I

EUR 5116 e

THIE SLC-II SYSTEM LANGUAGE TRANSLATOR PACKAGE CONCEPTS
AND FACILITIES by S. PERSCHKE, G. FASSONE, C. GEOFIRION
W. KOLAR and H. FANGMEYER

Commission of the European Communities

Joint Nuclear Research Centre - Ispra Establishment (Italy)
Scientific Data 1’rocessing Centre - CETIS

Luxembourg, April 1974 - 102 PPages - 21 Iigures - B.Fr. 150.—

This is the first part of the description of a software system developed at
CETIS by the Information Science Research Unit and intended to be the basic
support for their R & D activities in Automatic Documentation and Language
Translation.

The present volume is a general presentation of the system and should cnable
the rcader to gather an over-all insight into the potential applications and the
solutions of the problems found.

IFor more detailed information, two more publications are in preparation:
an user’s manual which is to cnable the reader to generate and run an
application system on the basis of SLC-IT

EUR 5116 e

THE SLC-II SYSTEM LANGUAGE TRANSLATOR PACKAGE CONCEPTS
AND FACILITIES by S. PERSCHKE, G. FASSONE, C. GEOFTI'RION
W. KOLAR and H. FANGMEYER

Commission of the luropean Communities

Joint Nuclear Research Centre - Ispra Establishment (Italy)
Scientific Data ’rocessing Centre - CETIS

Luxembourg, April 1974 - 102 Pages - 21 Figures - B.Fr. 150.—

This is the {irst part of the description of a software system developed at
CETIS by the Information Science Research Unit and intended to be the basic
support for their R & D activities in Automatic Documentation and Language
Translation.

The present volume is a general presentation of the system and should enable
the reader to gather an over-all insight into the potential applications and the
solutions of the problems found.

For more detailed information, two more publications are in preparation:

— an user’s manual which is to enable the reader to generatc and run an
application system on the basis of SL.C-I1

— a system maintenance manual which is to contain a detailed description of the
system modules.

Part of the programming was performed under contract by the software
company ITALSIEL S.p.A., Rome.

— a system maintenance manual which is to contain a detailed description of the
system modules.

Part of the programming was performed under contract by the software
company ITALSIEL S.p.A., Rome.

— asystem maintenance manual which is to contain a detailed description of the
system modules.
Part of the programming was performed under contract by the software
company ITALSIEL S.p.A., Rome.

EUR 5116 e

COMMISSION OF THE EUROPEAN COMMUNITIES

THE SLC-II SYSTEM LANGUAGE TRANSLATOR
PACKAGE CONCEPTS AND FACILITES

by

S. PERSCHKE, G. FASSONE, C. GEOFFRION,
W. KOLAR and H. FANGMEYER

1974

Joint Nuclear Research Centre
Ispra Establishment - Italy

Scientific Data Processing Centre - CETIS

ABSTRACT

This is the first part of the description of a software system developed at
CETIS by the Information Science Research Unit and intended to be the basic
support for their R & D activities in Automatic Documentation and Language
Translation.

The present volume is a general presentation of the system and should enable
the reader to gather an over-all insight into the potential applications and the
solutions of the problems found.

For more detailed information, two more publications are in preparation:

— an user’s manual which is to enable the reader to generate and run an
application system on the basis of SLC-II

— a system maintenance manual which is to contain a detailed description of the
system modules. ' ' o
Part of the programming was performed under contract by the software

company ITALSIEL S.p.A., Rome.

KEYWORDS

INFORMATION RETRIEVAL
INFORMATION SYSTEMS

TABLE OF CONTENTS

1. INTRODUCTION

1,1
1.2

1.3

Motivation and Objectives
Applications

Future Developments

2, GENERAL SYSTEM DESIGN

2.1
2.2

2,3

System Conception

System Organization

System Generation

3. SYSTEM DESCRIPTION

3.2.4
3.2.5
3.2.6

Text Analysis

Functions

Text Analysis Processor
Output

IExamples

Dictionary Search
Functions

The Source Language Morphological Search Dic-
tionary and Access to it

The Source Language Morphological Paradigms
and Morphological Analysis

Realization of the Dictionary Scarch Program
Organization of Dictionary Entries

Subdivision of the Source Text into Minor Batches
and Dictionary Loading

Problem Programs Execution
Data Organization in Input
Organization of Logical Units

The SLC Executor Program

10

10

22

26

26
26
27
34
35
40

40

42

43

45
55

Table of Contents (contd.)

3.3.4
3.3.5
3.3.6
3,3.7
3.3.8

3.3.9
3.3.10

3,3,11

3.4

4, SYSTEM USAGE

Orga.nization of SLC Programs

SLC Language Environment

Brief Description of SLC Programming Language
Syntax

Communication between the SLC Programs and the
System

Data Modules

Intra-Cycle Communication Storage
Input/Output Facilities of SLC Programs
Editing

Application System Generation

Data Base Creation and Management

Environment

Sample of a SLC-II System Application

5. CONCLUSIONS

Page
75
76
77
79
84
88.
88

88
90

92
92
93
94
94

101

Preface

This is the first part of the description of a software system developed
at CETIS by the Information Science Research Unit and intended to be the
basic support for their R&D activities in Automatic Documentation and

Language Translation.

The present volume is a general presentation of the system and should
enable the reader to gather an over-all insight into the potential applica-

tions and the solutions of the problems found.

For more detailed information, two more publications are in prepara- '
tion:
- a "User’ Manual', which is to enable the reader to generate and run
an application system on the basis of SLC-II,
- a system maintenance manual which is to contain a detailed description

of the system modules.

Part of the programming was performed under contract by the software

company ITALSIEL SpA, Rome.

1. INTRODUCTION

1.1 Motivation and Objectives

SLC-II (Simulated Linguistic Computer) is intended to be the basic
software for natural-language data processing. It is based on some ideas which
emerged in the context of the Georgetown Machine Translation Project L
in which A, F. R, Brown conceived and implemented a system called SLC
for machine translation. This system was, in fact, never given publicity
as an independent software. Rather it was considered to be an integrated
part of the translation program. Further, it was closely linked to the
basic linguistic concepts of the Georgetown project (symbol substitution

approach), so that it appeared of little use for advanced linguistic solutions.

However, the basic idea of SLC is still to be considered valid:
language data processing, the R&D and the applications involved (trans-
lation, abstracting, indexing, question-answering etc.) imply extremely
complex operations and large data bases on one hand, and a high effi-
ciency on the other,motivated by the extreme case and relative rapidity

and economy of the corresponding functions performed by man.

As a consequence, it is observed that in enterprises involving language
data processing, the majority of resources (intellectual and economic) is
exhausted by the solution of problems to be considered trivial from the
point of view of the linguist or the information scientist and there remains
little space for the solution of the true prorblems, or, even worse, the
software solution limits the possibility of describing the problems in their

proper terms.

S1.C, along with some specialized programming languages like COMIT
or SNOBOL is to be considered as an attempt to offer the linguist or
information scientist a tool for describing his problems in his proper terms,

so as to relieve him of complex data and storage management considerations.

While COMIT and SNOBOL chose the classical solution of a higher-level
programming language, and, from the point of view of efficiency, were li-
mited to an experimental laboratory environment, SLC kept in mind the
over-all efficiency of practical applications like machine translation and
chose the approach of simulating the functions of a special-purpose compu-

ter.

There is another important aspect in SLC which permitted to increase
efficiency: for those phases of the process, which could be considered lin-
guistically resolved, such as dictionary scarch, invariant algorithms, opti-
mized from the point of view of data and storage management, were deve-

loped, for variable dictionaries and grammars, while the algorithmic pro-

gramming language concerns the less stabilized phases, and presents
to the linguist the data in conformity with his usual way of working, i.e,
as a logical text unit, which can be processed from left to right (or vice-

versa).

The principal limitation of the solution was mentioned before: the
poverty of the underlying linguistic model. Another limitation concerns

the implementation too closely tied to the IBM 7090 computer.

The design of the new system, which, in homage to its precur-

sor, was called SLC-II, put the following objectives:

- independency of a particular application: SLC-II is to be considered as

a component of the basic software - the language translation package -
of integrated fully automatic documentation, translation and data base
management systems. The other components of this package are the

software for automatic thesaurus construction and document retrieval

and data base management,

- independency of a particular language model: SLC-II applied this prin-

ciple not so much to grapheme processing and morphology for which one
model - retained satisfactory - was chosen, as to the central problem

of computational linguistics - syntax and semantics.

- installation independence and transportability: this objective could not

be fully realized in the present version., SLC-II is implemented in
IBM/360 Assembler language and virtually is only transportable to other
computers with byte-organized storage. However, there exists a long-
range project - called SLC-III, of re-formulating the system in a higher-

level language such as ALGOL or PL/1,

- usability as a resecarch tool in linguistics and information science:

SLC-II is a modular system which permits not only application-oriented
usages such as translation, indexing, abstracting, etc., but also research

oriented ones like parsers, transformational grammars, generative gram-

mar statistics etc,

1,2 Applications

As a whole, SLC-II is a language translation package - languages can
be both natural and artificial. The range of applications taken into consi-

deration during system design is:

- machine translation: as a requirement of the system capability, a mul-

tilingual reversible translation system of the 2nd-3rd generation was
assumed, in which the recognition and the generative parts of the trans-
lation are independent one from the other, and the link is established

by a metalinguistic representation of the texts. For less advanced so-
lutions, transfer - i.e. symbol equivalence - functions can be intro-

duced, especially for the lexic.

- automatic indexing is to be considered as a particular case of transla-

tion from natural language into an artificial language (information re-
trieval language - IRL). At the present stage of development, most of
the IRL practically used, are so-called syntax-free IRL (c.f. coordi-
nate indexing) and the automatic indexing methods which appear most
promising for practical applications are rather statistics- than lin-
guistics-based. However, SLC-II is capable of using also advanced

IRL with complex syntactic and semantic relation devices,

- automatic abstracting and summarizing: at present, very little progress

in this field has been made, and the attempts known of are rather ex-

tracting.

- automatic query formulation for information retrieval: this application

is very closely linked to automatic indexing. In this context, SLC-II
becomes a subset of a larger automatic information retrieval and ques-

tion-answering system.

- automatic IRL development: a softwarec package is at present being de-

veloped at CETIS which uses a subset of SLC-II, and applies statistical

methods on lexeme basis for the definition of the vocabulary of an

IRL, and of the paradigmatic relations between the terms.

- machine-aided translation: in the philosophy of CETIS, it should be an

interactive post-editing facility with the possibility of access to specia-

lized terminological vocabularies,

1.3 Future Developments

The present version of SLC is operating in batch mode, which is ade-
quate for applications as machine translation or indexing, but unsatisfac-
tory in the information retrieval environment (query formulation) and in
research applications, Therefore, a conversational version of SLC-II is

being designed at present and implementation will start in 1974,

This conversational version will be added to the information retrieval
and data base management package which is being developed at CETIS,
so as to permit, for example, interactive query formulation and informa-
tion retrieval. Another development which was mentioned before, is the
formulation of SLLC-II in a higher-level language so as to permit full trans-

portability of the package.

This project will possibly be realized in cooperation with an informa-

tion and computer science research institute of a university,

The question which is to be resolved first is whether higher-level lan-
guages which dispose of compilers for different computer models (c. f.
FORTRAN, COBOL, PL/! or ALGOL) are adequate for this class of
problems, or, eventually, sliculd one design a new language, for which

a set of compilers would be implemented.

- 10 -

2. GENERAL SYSTEM DESIGN

2.1 System Conception

Fach application of SLC-II is interpreted as a translation process which

starts from the graphic representation of the source text and produces, as

a result, the graphic representation of the same text in the target language.

In order to make analysis and design more manageable, the process

was broken down into a series of basic functions or cycles, each of which,

in principle, has three components:

an algorithm which, as a final objective, should be invariant with respect

to the languages and applications chosen,

a dictionary which contains the elements of the language handled, and all

information about the elements necessary for the process.

a grammar which is a collection of the rules of the language processed

represented according to the language model chosen,

The translation process itself is broken down into three principal phases:

the recognition phase which has the purpose of transforming the continu-

ous character string representing the source text into the representation
of the same text according to the conventions of the language model (me-

ta-lingua).

the transfer phase which actually is a concession to the difficulty (or im-

possibility) of fully formalizing the language. In effect, transfer bases on
the concept of the equivalence of symbols (beloved in word-for-word trans-
lation) and is applied for all elements of the language which in the language
model appear just as codes and are not semantically defined, In the 2nd-
generation translation projects, transfer is primarily applied to the lexic.,
There exist a few attempts of fully formalizing also this component of

language (as, for instance, Ceccato with differentiation, figuration and

- 11 -

categorization), but their approach is, in general, purely theoretical
and speculative, and description and analysis usually apply only to a few
selected samples. Laarge-scale applications never were seriously at-
tempted, and it is even dubious whether the investments and efforts are
actually justified in the context of the sole machine translation. They
are certainly necessary for advanced solutions in documentation, such

as contents analysis and summarizing, but not in short-range projects.

- the generation phase which is the inverse process of the recognition phase,

i. e. the point of departure is the metalinguistic representation of the
target text, which is to be transformed into a character string accord-
ing to the grammar of the target language. This phase is indispensable
for applications with natural-language output, and might be omitted,

when the target language is formalized, i.e. a meta-language.

2.2.1 Recognition Phase

For the time being, the source text is assumed to be written text in
machine-readable form, such as hand-coded material, or tapes as a by-
product of text-processing and computer-controlled type-setting. Phone-

tic input was not taken into consideration.

The first cycle, hence, is an input module, which reads the '"conti-

nuous' character string and transforms it into substrings qualifying them

as:

- "word items'', i.e. strings which according to the grammar are elements
("words'') of the source language and must be looked up in a dictionary,
or

- "mon-word items', i.e. strings which are not elements of the source

language, whose function may be either computable from the string it-
self (e. g. numerical values or lay-out control symbols), or just strings

with an unknown function, as, for instance, foreign-alphabet data.

- 12 -

The model chosen is a finite-state automaton with a context-sensitive
immediate-constituent grammar, The technique used in the implemen-
tation is that of higher-level programming language compilers with a
scanner, parser and semantic interpreter. In the batch version, the
input cycle is executed independently, without dictionary control. A sub-
set of the SLC-II programming language is dedicated to the coding of

the dictionary and the grammar of this cycle. The algorithm is invariant.

The ""wozxd items' identified by the text analysis module are processed

by the second cycle of the system, the dictionary search and morpholo-

gical analysis module. The source language morphological search dic-
tionary is organized as a stem-suffix dictionary. Analysis is performed
from left to right. From the linguistic point of view, the following facili-
ties are provided for: word inflection through suffix analysis with mor-
pheme chaining, word derivation analysis, segmentation of compound
words, prefix analysis, tentative suffix analysis of unknown words (from

right-to-left), homography detection.

The dictionary search and morphological analysis algorithm is inva-
riant, Stem- and suffix analysis are implemented as a finite state context-
free grammar with a table-driven parser with the first access to the syn-

tax tree through the dictionary,

A subset of the SLC-II programming language is dedicated to the sym-
bolic coding of grammatical definitions, paradigm tables and dictionary
entries. A set of utility programs is provided for the creation and main-

tenance of the source language morphological search dictionary.

The result of the dictionary search is the replacement of the grapheme
representing the "word item' by one (or more in the case of homographs)

lexeme identification code (LIN) and the precise description of the

morphological form. Each item afterwards is linked to the corresponding

- 13 -

entry of the source language dictionary.

While the first and the second cycle are performed for the maximum
possible batch concurrently so as to increase program efficiency by
exploiting the phenomenon of the repetition of words, the subsequent
cycles are performed on logical text units, which can be defined para-
metrically depending on the application (e.g. sentence, paragraph, ab-
stract, etc.).

Further, due to the variety of applications and instability of language
models, for the time being, no attempt was made for the definition of
invariant algorithms for parsers, transfer functions and generative
grammars on the syntactic level, but rather a procedural special-pur-
pose programming language was designed which is the central component
of the SLC-II programming language. Furthermore, no grammar models
and dictionary formats were defined for the single cycles: SLC-II rather
enables the application system designer to define his own models and
formats and to use his proper nomenclature. A subset of the SLC-II pro-
gramming language was explicitly defined for coding grammars and dic-
tionary entries and a set of utility programs permits to create and main-

tain SLC dictionaries.

In the course of development of application systems, (e.g. the auto-
matic documentation and the machine translation projects at CETIS), a
set of more or less generally acceptable algorithms, grammars and dic-
tionaries will be defined and implemented and become a generalized appli-
cation package of the system.

The SLC-II programming language, apart from the general CPU and
I/O capabilities, was designed for syntax- and semantics-oriented lan-

guage processing.

- 14 -

The basic linguistic model underlying the design is the one of the
Italian Operational School (Ceccato). However, it is also capable of hand-
ling dependency grammars (Chomsky-Hays) and relational grammars
(Vauquois). In the latter case, the graphs should be broken down into a

set of relations.

The "translation' algorithms can be designed for ''bipartite! (algo-
rithm with built-in grammar dictionary) or for "'tripartite” (algorithm
grammar dictionary) organization. The latter should be more adequate

for the design of general-purpose algorithms.

The source data processed by the problem program in the recognition
cycle is the internal representation of a logical text unit (e.g. sentence)
as a result of dictionary search by means of a four-level tree structure

(item - match - segment - form):

- item is a grapheme isolated at input time (word item or non-word item).
Eventual input convention inconsistencies which result into reading va-
riants are considered as separate items and must be resolved at pro-
blem program time (c.f., period as end-of-sentence symbol and abbre-

viation, hyphen at the end of a line etc.)

- match is the result of homography detection at dictionary search time.

Homography resolution is left to the problem program

- segment is the result of the analysis of compound words, prefixes and
word derivation. The distinction between segmentation and derivation is
given by the configuration of HWO at the "Form!' level. Distinction be-
tween prefixes and word segment is given by the associated dictionary

entry. v

- form is the result of morphological analysis. It is represented by a
binary vector, conventionally called Headword O (HWO), whose length
is parametrized. Note that dictionary search does not handle morpholo-

gical homographies. Therefore, the linguist must foresee all possible

- 21 -

If the use of any one of the relations at a level higher than that of the
insertion is not univocal, i.e. it appears as an element in more than
one alternative relation, at the moment of insertion the structure invol-
ved is copied so as to avoid unpredictable side effects. This kind of trans-
formation is only possible in the course of a top-to-bottom exploration

.of a structure which keeps track of the passes performed.

The system being syntax-oriented, at the end of the source text ana-
lysis cycle, the syntactic representation is interpreted as the meta-
linguistic description, and all elements which have no link

are deleted from storage.

The second cycle - the transfer - actually is an auxiliary cycle de-

signed for handling those elements, which could not be formalized in the
meta-linguistic representation, on the basis of symbol equivalence, This
applies, at the present stage of development, principally to the lexical
transfer, as the attempt of a completely formalized representation of the
meaning of words still appears to be little realistic in application-oriented

projects. Of course, this transfer cycle can be omitted.

The transfer cycle may imply structural transformations of the source
text image, mainly due to the necessity of replacing single words by

expressions and vice-versa.

The result of the transfer cycle is a meta-linguistic representation
of the text in the target language, which is used as input to the third cycle
- the generative algorithms. The task of this cycle is inverse to that of
the first cycle: the syntax-oriented text image is to be transformed into
a linear string of items, each of which is constituted by the identification
code of the lexeme, the definition of the inflectional form and by lay-out

control codes,

- 22 -

The process implies the definition of the surface structure of the
target text, with the necessary transformations due to the target lan~
guage grammar, and the conversion of the syntactic representation into

a linear string.

The subsequent cycles - morphological generation and editing, again,
for efficiency purposes, are performed on the entire text batch processed

in input,

The algorithms for morphological generation and editing use the same
type of grammar as the analogical recognition algorithms, and are inva-
riant, As the entries of the target language generation morphological dic-
tionary are accessed by the lexical identification code (LXN), they may

have also nil-stems in the case of irregular inflections (c.f. go - went).

Generative morphology permits to attach suffixes and prefixes to the
stem and to chain them (suffixes from left-to-right and prefixes from

right-to-left).

The editing algorithms are capable of processing information obtained
from the text image during text analysis (e. g. lay-out data, capitalization
etc.) and that obtained from the target language dictionary and grammar

(e. g. capitalization of nouns in German).

Another function consists in the transformation of strings due to phone-

tic phenomena (c.f. a/an in English; au/a 17 in French, etc.).

2.2 System Organization

The SLC-II system is implemented as a set of re-entrant and recursive
modules with dynamic task and storage management controlled by a moni-

tor module., The present version is designed for batch mode operation,

- 23 -

but the single modules are all conceived in view of future conversational

application in a time-sharing environment.

In the batch version, the single phases of the process are designed
for the maximum possible amount of text with a given main storage size
available. Only the central part, i.e. the phases programmed in SLC-II,

is designed for processing a single logical text unit at a time.

In the over-all program organization, one can, thus, distinguish three
separate cycles, which are characterized by the different amount of source

text processed:

- the external cycle, which includes text analysis and dictionary search at
the input side and morphological generation and editing at the output side.
The amount of text depends on the size of core storage and the number of
different word items (which may \}ary depending on the homogeneity of
source texts).

Experience made shows that with 300 kbytes core storage, one can pro-
cess app. 12 k different word items, which according to our experience,
may cover from a minimum of app. 70 k to a maximum of over 250 k

current word items depending on the corpus, Non-word items in no way

affect system capacity;

- an intermediate cycle, which subdivides the text processed in the exter-
nal cycle into minor batches, loads the SLC-dictionary entries and or-
ganizes, one by one, the logical text units on core storage. The amount
of source text which can be processed in one cycle depends on the main
storage size and on the number and average length of the dictionaries
associated with the three problem program cycles. Precise estimates
are difficult to make; as an indicative value one can assume that in a
partition of 300 k, app. 120 k may be occupied by the dictionary entries;

- an internal cycle per logical text unit., The definition of a logical text unit

is application-dependent. It may be a sentence in machine translation, an

- 24 -

abstract in indexing etc.

For the system, a logical text unit is a string of items terminating in
a '"delimiter' item to be communicated to the system as a parameter.
When defining the logical text unit, one éhould keep in mind that the maxi-
mum number of items which can be processed in one cycle, is app. 800-

1, 000,

If the problem program logic demands for longer logical text units, one
can define ""sub-delimiters' which are used if the "delimiter' was not en-
countered during loading, and ensure communication between the parts of
the logical text unit either through the intra-cycle communication storage

or 1/O operation on temporary data sets.

The system operation is controlled by a set of options and parameters
which can be pre-defined, compiled and link-edited as a load module in the
system library, or introduced at execution time through control cards.

Data sets are defined at J.C. L, level.

The options are, among others, the names of the grammars associated
to the invariant algorithms, inclusion or exclusion of optional functions in
algorithms (e.g. source text listing, frequency counts, segmentation, homo-
graph detection etc.), the names of the SLC-II main programs associated

to the three cycles of the problem program etc.

2.3 System Generation

The SLC-II system is organized as a library of executable load modules,
which is to be used as JOBLIB or STEPLIB under OS control. One should

keep in mind that SLC-II is a basic software package, and, as such, does

not perform any application function, in the same way as operating systems

or compilers.

- 25 -

In order to generate an application system, the following operations

are necessary:

- analyse the source text formats and coding rules, decide about word-
and non-word items, write, compile and link-edit the text analysis

grammar, Communicate the name of the grammar to the system;

- analyse the source language morphology, decide about the level of ana-
lysis (derivation or not, prefix analysis or not, word segmentation or
not, homography detection or not, suffix analysis of unknown words or
not) write, compile, link-edit the grammar, communicate the gram-

mar name to the system;
- compile the relative source language morphological search dictionary;

- define the source language recognition grammar and algorithms; com-

pile and link-edit; communicate the name to the system;

- define all information about the lexemes used by the recognition gram-

mar and algorithm; compile the source language dictionary;
- define the transfer grammar and algorithms, etc.;
- compile the transfer dictionary;
- define the target language generation grammar and algorithms, etc.;
- compile the target language dictionary;
- define the target language morphology, etc.;

- compile the target language morphological dictionary.

In the first applications, the preparatory work appears to be immense.
One should, however, keep in mind that many of the data bases and gram-
mars produced in different applications, such as text analysis grammars,
generative and recognition morphological dictionaries and grammars etc.
are virtually application-independent and exchangeable and, hence, need

to be compiled only once.

- 26 -

The application of a basic software like SLC-II, in principle, re-
solves one of the most serious problems hampering the development in
computational linguistics and information science: the exchangeability

of the data bases and research results between different projects.

3. SYSTEM DESCRIPTION

3.1 Text Analysis

3.1.1 Functions

This is the input module of the SLC-II system. The variety of machine-
readable text sources (commercial tape services, hand-coded material,
tapes used for computer-controlled type-setting, etc.), made it necessary

to create a powerful tool for handling different coding conventions.

For the system, the source text is a continuous string of characters

which must be broken down into substrings which are either

- word items, i.e. elements of the source language and are normalized
and sent as arguments to the second SLC-II module, the dictionary search,

or

- non-word items, i.e. elements alien to the source language (e.g. control

characters and codes, foreign-alphabet data, digits, etc.). These data
are considered as mere character strings in the further process and not

linked with any dictionary data.

The solution chosen is very similar to that of a table~-driven compiler.
For the description of the specific coding conventions, and the concrete
actions to perform upon the strings, a subset of the SL.C-II programming

language was defined, which has the following components:

- atom definition, which identifies the minimal substrings to be passed by

the scanner to the parser,

- 27 -

- syntax, which controls the operation of the parser and invokes the se-
mantic actions. The syntax is a context-sensitive immediate-constituent

grammar,

- semantic _actions, which are invoked by the syntax and permit manipula-

tion of the strings and their issue to the system as word or non-word

items,

- control dictionaries, conversion tables, etc. for decision making and

string manipulation,

- error diagnostic and recovery facilities, which can be linked both to syn-

tax and semantics.

The word items are sorted according to the SL.C sequence. The amount
of text which can be processed in one cycle depends on the number of differ-
ent word items which can be kept in core storage. Optionally, for statistics

purposes, one can demand the frequency count for each word item.

3.1,2 Text Analysis Processor

The text analysis module, according to the general philosophy of the
system, has been conceived as an invariant algorithm - the processor -
controlled by different grammars.

The processor is constituted of 3 components;

The scanner has the following functions:

1. To read the input records and define start and end of the data fields,

2. Eventually, to link strings over the end-of-record,

3. Optionally, to process header and trailer fields and pass them as strings
to a special semantic action routine,

4., To scan the data fields and to pass the strings defined as '""atoms' by

the associated grammar to the parser ("GETATOM"),
The parser has the following functions:

1. To match the atoms passed by the scanner against the syntax tree,

- 31 -

3.1,2.2 - Scanner (Fig. 1)

The grammar which controls the scanner has the following components:

The identification of the header, trailer and data fields on the record.
Processing of header and trailer fields is optional and is invoked asyn-
chronously each time a new record is read. This facility was created

to enable the system to process text collections coded according to tra-
ditional punched-cards convention with text identification fields (like
document number, category code, card sequence number etc.).

The grammar describes these fields as one or more fixed-lengths strings.
The scanner fills each substring and invokes the header/trailer proces-
sing action routine, |
The data fields are considered to be a continuous string (ignoring header
and trailer fields). In certain conditions, the scanner must connect the

rest of the precedent record with the beginning of the new record.

The Table of "atoms!'

The grammar can define up to 256 different atoms which correspond to
the possible values of a byte. Functionally, four classes of atoms are

distinguished:

a) Individual atoms: single characters which have a special meaning for

the parser and appear in the syntax tree. The scanner passes them
as one-character-long strings to the parser.

b) End of record atom: This special character which is placed outside

the data field is never passed to the parser. It is used internally by
the scanner and invokes, according to the status, reading of a new
record, eventual header/trailer field processing and word concatena-
tion,

c) Blank atom: This atom functionally is very similar to individual atoms.
The only difference consists in the fact that the scanner processes im-
mediately all consecutive blank atoms and passes to the parser only

one atom with its length,

- 32 -

d) Word atom: This atom is defined by default, and comprises all
character strings which do not contain any of the other atoms. As
the ""word atoms'" are the only ones with variable length, the conca-
tenation of end-of-record to beginning-of-record only takes place,

if the data field terminates on a word atom.

3.1.2.3 - Parser (Fig., 2)

The grammar which controls the parser repfesents the syntax of the
strings being processed, and conceptually can be represented as a tree
structure. Each node of the tree structure may be represented either by
a "terminal", i.e. an atom issued by the scanner, or by an entry point
to a substructure ("non-terminal"). All nodes at the sarae level of the syn-
tactic tree concern the same atom. This means that the "GETATOM" func-
tion of the scanner is invoked only, if a ''terminal element' of some level

has been matched and one goes down to a lower level in the path.

One can associate an action routine to each node of the tree structure.
The action routines are activated each time the conditions set by the ter-
minal or non-terminal are met. If one arrives at the last element of the
tree at some level without matching the conditions required, there are two

possible alternatives:

- to branch to some other node of the tree structure,
- to activate an error diagnostic and recovery routine,
The syntax tree is represented by a table of elements with the following

structure:

S E
TYPE | ACTION | ygx71 | T | ERROR | X TERM/NOTERM
O I
P T
. TYPE: TERM - the node is considered matched if the atom issued by

scanner is the one defined in the last field,

- 33 -

NOTERM - pointer to a substrﬁcture defined in the last field,
BRUNC - branch unconditional to element defined in NEXT

-ACTION: action routine to be activated by the interpreter if the condi-
tioné of the element are met,

NEXT :address of the next node to enter if the conditions of the present
node afe met,

STOP :flag: last element in the node,

ERROR :error code which appears in the diagnostic message,

EXIT :flag which causes the return from a substructure which did not

meet the conditions,

TERM/
NOTERM: atom identification code if type = TERM

substructure entry point if type = NOTERM

As the ERROR exit at the syntactic level only causes the printing of a
message with the error code indicated and an abnormal termination of
the job step, it is advisable to limit its use to unrecoverable errors and
to provide error recovery action routines on the semantic level for less

serious errors.

Each time the conditions described by an element (terminal or non-
terminal) are met, and the action field of the element is non null, the
parser passes the code of the action routine to the interpreter which lo-
cates the action routine and executes the operations requested.

The action routines have the function of processing the atoms obtained
from the scanner and parser, to manipulate them if necessary, to qualify
them and to pass them as word items or non-word items to the system.
Further, one can program particular error diagnostic and recovery rou-
tines which do not terminate the job. The instruction set prepared for

the action routines, hence, is subdivided into the following classes:

- 34 -

- string manipulation (set string, concatenate strings, divide a string,

transcode, etc.),
- control of strings (table look-up, compare, etc.),
- qualification (set word item/non—word item, send, etc.),

- general program control (return, branch, counter operation, switch

operations, etc.),
- error recovery (error message printing),

- debugging aids (trace).

3.1.3 - Output

The elements established by the text analysis module are processed
as follows. The text image is represented by a list which contains an
entry for each element: for word items, the list contains a pointer to the
next-level list, while non-word items are recorded in place. (TEXT

TABLE),

A second list is built for each different word item. It is arranged phy-
sically according to the order of occurrence of the items, and at the end
of the input phase each entry contains the sequence number of the word
in the SLC -alphabetic sequence (WORDTAB). (1lst character in ascending
order - length in descending order - alphabetic order of rest of equal

length).

Optionally, a frequency count for all word items can be requested. In
this case, a table of the same dimension as WORDTAB is built and con-
tains the frequency of each word (FREQTAB). The single word items
are recorded in the SLC sequence and constitute the input to the dic-

tionary search.,

- 37 -

—— - - s wn o e e - e

INPUT: Texts written in Russian
USED NOTATION: BACKUS-NAUR FORM (B-NF)

{ Input textd : : = <WORD> | < DOLLAR » | < HYPHENY ﬁ MBLANK

{ WORD) : : = WORD{MBLANK] #§ MBLANK | gWORD |
- WORD | -MBLANK WORD [MBLANKIS l -]}

{ DOLLAR)Y :: = §|WORD | MBLANK | ¢] -]

{ HYPHEN): : = - [MBLANK] % | worp]

-39 -

3.1.4.3 - Example of action routine

ARS8

SORT

TRANSC

SUB

SETSTR

SETWJI
OFFSW
LOOKTAB

SETNWI
ONSW
LLOOKTAB

ERROR

RETURN

UP, NAMSTR

NAMSTR, TAB

C,NSTR,NAMSTR

STR
SWITCH

NSTR, WITAB,
AR92

STR
SWITCH

NSTR,NWITAB,
AR92

4

ER11

sorf characters of string NAMSTR
in ascending order (UP)
substitution of characters of
NAMSTR with string pointed at

in TAB - table name

NAMSTR, COMMA if name string terminates in string

defined by COMMA - delete sub-
string in NAMSTR

construct the string NSTR using
the CHARACTER STRING (option
C) of NAMSTR

- set ON a flag of string STR

set OFF the switch SWITCH
search in a table the address of
which is in WIDTAB a string equal
to NSTR, If one finds it, the con-
trol passes to AR92

set ON a flag of string STR

set ON the switch SWITCH

see the precedent comment
print the 4th label of "Message
Dictionary"

INTERPRETER passes the con-
trol to PARSER that continues

with scan of ER11l element

- 41 -

The dictionary used - the '""'source language morphological search dic-
tionary'" - has been conceived as a stem-affix dictionary. The stem,

in this context, is the invariant part of a lexeme respect to the morpho-
logical forms it can assume. In the case where (with irregular inflections,
c.f. go - went) no invariant portion can be found, in order to avoid nil-
stems, more than one entry of the dictionary can be associated with

the same lexeme. This is one of the reasons why, in the system, the
different logical parts of the dictionary have been physically separated
and logically linked to each other through the lexeme identification code
(LXN).

The grammar used is the source language morphology organized as
paradigm tables. These paradigm tables, for more or less regular in-
flections, can be '"general', i.e. grouped in a common grammar module.
For irregular inflections, they may be directly associated to the respec-

tive dictionary entry (''built-in paradigms'').

No particular efforts were made to formalize even regular phenomena
of the transformation of the root due to inflection (such as palatalization
in slavonic languages or "Ablaut/Umlaut" in germanic languages). It was
felt rather that, from the point of view of search efficiency and coding
effort, it was preferable to use the facility of built-in paradigms or to
introduce several entries to cover one sole lexeme.

From the functional point of view, the dictionary search module was con-

ceived to handle the following problems:

- word inflection through suffix analysis (c.f. puella, puellae, puellam,
etc.),

- word derivation through suffix analysis (c.f. Marx - Marxism -
Marxistic, etc.),

- analysis of compound words (c.f. Bahnhofsvorsteherwitwenpensions-
antragsformular),

- analysis of prefixes (c.f. scientific - unscientific - pseudoscientific),

- 42 -

- detection of homographs (c.f. '‘can'),

- tentative suffix analysis of words not found in dictionary (NID).

It is up to the system designer to decide which of the above functions
are actually to be used in some particular application. It should be re-
membered here that the detection of homographs is limited to the lexeme
level. Morphological homographs are not handled by the program, and
the ambiguity of an inflectional form (c.f. put - put - put) must be fore-

seen by the linguist and associated to one sole paradigm entry.

3.2.2 The Source Language Morphological Search Dictionary and Access

to It

The dictionary is accessed by the stems which are sorted, as the word
items, in SLC sequence: lst character - length - rest. This sequence was
chosen primarily in view of word segmentation and prefix analysis to avoid

nonsense segmentations.

To accelerate the first access to the dictionary, a three-level directory
is placed in front of it: 1st character - length - end of block, Further, to

accelerate search in groups of entries with the same lst character and

length, a list of pointers is placed in front of each separate group to permit

a binary search (entries are variable in length).

For the subsequent accesses, each entry contains two pointers:

- the first pointer is used if no stem contained completely in the word item
was found in a particular group. To limit search time, each entry con-
tains the address of a subsequent entry of lower length, which is smaller
than or equal to the present, but larger than or equal to the precedent
entry. Match between word items and dictionary entries is from left to
right for the length of the stem, and in principle the search is sequential.

When, during the scan, the stem becomes larger than the corresponding

- 43 -

portion of the word item, scan is discontinued and resumed at the entry

pointed at;

- the second pointer contains the address of the next entry completely
contained in the present one (same length or shorter). It is used, when
a full match between a stem and a word item already has occurred. In the
case where the morphological analysis has been successful, it is used

to detect eventual homographies., If it has failed, to retry analysis.

If the reference (lst or 2nd depending on the status of search) is nil,
and no match has occurred, the word in question is unknown - not in dic-

tionary (NID).

3.2.3 The Source Language Morphological Paradigms and Morphological

-— e .-

Each dictionary entry contains either a pointer to a general paradigm
or a built-in paradigm.. The paradigms contain the suffixes which a stem
can be given and the description of the meaning of the suffix., For economy
purposes, suffixes -can be subdivided into a chain of morphemes, each of
which can be looked up in a separate paradigm. Thus, in highly inflecting
languages like Russian, a word like KRASOVAVWIMIS4 can be analysed
as KRAS-OVA-VW-IMI-S4

OVA - Infinitive stem formant,
Vw - past active participle,
IMI - instrumental plural,

S4 - reflexive,

The description of the form is given by a binary vector (HWO), whose
contents and length can be defined symbolically by a subset of the SLC-II

programming language.

If morphemes are chained, the vectors associated to each suffix are

- 44 -

added logically,

The remaining functions of morphological analysis depart from parti-

cular situations created in suffix analysis,

Word derivation analysis is started, if the binary vector associated to

the suffix (HWO) has a particular configuration, communicated to the
system as an input parameter, and there is a chain reference in the entry
to another paradigm. In the derivation algorithm, a binary vector is asso-

ciated to each level of derivation.

Word segmentation is started if the match is incomplete, the paradigm

entry has no chain reference and the binary vector associated has a par-
ticular configuration communicated to the system as an input parameter,
Segmentation takes place only if no full match has previously been found.
As it is uncertain that it will also be found, an artificial homography be-
tween the full word as NID and the segmentation is created, which is re-
solved at the end of dictionary search (see ORENT), The rest of the word
is considered to be an autonomous word and looked up in the dictionary

separately.

Prefix analysis is a particular case of word segmentation. In the dictio-

nary search program no distinction is made between compound words and
prefixed words, It is up to the source language dictionary and the problem

program to distinguish these cases.

Multiple Matches (homographs) are detected when the chain of the entries

linked to each other by the second pointer is followed to the end. The de-
tection of homographies can optionally be excluded by an input parameter.

In this case search is interrupted after the first full match.

Analysis of words not found in the dictionary (NID), If the chain of the first

or second pointers terminates without any full match, the word is consi-

- 45 -

dered to be unknown, and, subsequently, is treated in the same way as
are non-word items. Optionally NID can be analyzed with a special para-
-digm table which might permit, especially for highly inflected languages,
to determine the grammatical properties of the word. This option may
be useful especially in applications as machine translation, as the un-
known worg at léast,may be correctly inserted at the surface syntax

level,

3.2.4 Realization of the Dictionary Search Program

Especially with large dictionaries and many word items to look up,
dictionary search becomes a prevalently I/O bound problem, The design
of the over-all search strategy aimed at an optimal exploitation of the re-
sources in a batch-processing environment, but took into account also the

future destination of the modules for interactive operation.

The solution chosen ensures a good balance between the I/O operations

and the dynamic main storage management and CPU occupation.

The following chapters describe conciéely the program organization

and the general program and data organization logic.

The problem of balancling the resources is given by the presence of
f.wo large data sets which, in a certain sense, control each other’s 1/0O
operations: on one hand the words which request the input of certain dic-
tionary entries, on the other hand the dictionary which is read according

to the requests issued.

As both words and the dictionary are sorted by the same sequence,
their I/O should, in principle,be sequential. However, for the dictionary,

there may be two sorts of exceptions:

- blocks of entries may not be requested at all, and should be skipped;

- 46 -

- especially the word segmentation option may request the return to a

previously processed point of the dictionary.

For the words, one must keep trace of those already processed in a
block so as to be able to read the next block when all requests have been

treated.,

The problem was resolved by the definition of a series of control lists
which are inter-dependent.
The words are read sequentially into core storage and scanned one by
one against the dictionary master directory (resident during dictionary
search) to determine the initial request for scanning the dictionary (see

Fig. 7).

The buffers for input words are controlled by a list called AERTAB
in the program, which contains the buffer address, the status of I/O and
request operations (I/O operation termination checked or not, all re-
quests for search issued or not), and a counter of requests still to be
satisfied, Each time when search for a word is terminated, the counter
is reduced by one, and, eventually, a new request is issued. When all
requests relative to a word buffer are satisfied, it is free for the next
block. The amount of buffers and relative ALRTADB entries is dynamic-
ally allocated depending on the main storage available and the space occu-

pied by the words.

The outstanding requests are controlled by a list called REQTAB
which contains one entry for each word processed. It contains the word
address, the number of the buffer, the request (in terms of track and
offset), the word number and a code which permits to chain homographs,
segments etc, after search. Further it contains the search status infor-
mation flags which are consulted during search. The entries are sorted

by ascending track number.

- 47 -

Each time a new request has been issued (see Fig. 8), the program
checks whether the relative track has already been requested by means
of a list called TABRT, which controls all such requests and records
the address of the first REQTAB entry * "hich issued it. Each time a
new track is requested, it is inserted ini> TABRT, and one checks
whether it permits to continue sequential reading. The sequential read-
ing of the dictionary and the relative buffers are controlled by a list
(RDDCTB). As there may be more sequential read requests than there
are buffers, an auxiliary list (RQDCTB) handles all outstanding requests.
Direct access operations are only performed if no sequential I/O is pos-
sible. When a read operation of a track requested is completed, one lo-
cates the REQTADB entry which first requested the track and processes
subsequently all entries which requested it. The links to the subsequent
accesses are processed immediately if they point to the same track, and
queued for later processing if the track changes.

When all requests for a given track have been processed, the buffer is

free for input of the next track.

The offset field in the request may point either to an individual entry

or to the binary search directory (see Fig. 9).

In the latter case, a binary search is performed before starting se-

quential scanning, locating the first entry equal to or lower than the word.

In the sequential scan, one compares the beginning of the word with
the stem by the length of the stem. If the stem is smaller, one continues to
search at the next sequential entry. If the stem is larger, one uses the
first pointer and either continues scan or queues the request depending
on whether the track changes or not. If the stem is equal to the beginning
of the word, one considers the rest of the word (the portion beyond the
length of the stem) to be the potential ending and calls the morphological

analysis routines. At the return, one uses the second pointer to continue

- 48 -

search if morphological analysis failed, or, optionally, to detect homo-
graphies, When the chain of pointers is interrupted and no match has

occurred, one calls the routine which handles unknown words (NID),

The morphological analysis routine (MORPHAN) first locates the para-

digm pointed at in the dictionary entry (general or built-in) and scans

the entries contained in it sequentially trying to match from left to right
the word ending with the suffixes contained in the paradigm (see Fig.10).
If a full match between a word ending and a suffix is found and there is no
link to another paradigm in the entry, search is terminated and no attempt
is made to detect morphological homographs. |

If the match is partial, or there is a link in the paradigm entry, the fol-

lowing options are examined:

- morpheme chaining: one locates the paradigm pointed at and continues

search. A full push-down mechanism is provided for the case that the

morpheme chaining fails at a certain point.

- word derivation: it is detected through a particular configuration of HWO,

given as a parameter. This parameter is a double representation of HWO,
The first part contains a mask indicating which bits of HWO must be check-
ed and the second, = which must be on. The mechanism of word deri-
vation is quite the same as in morpheme chaining, with the only differ-
ence that the HWO are not OR-ed to represent the result, but linked to

each other as if they represented word segments,

- word segmentation: it is detected in the same way as word derivation

with another input parameter (see Fig. 11). It takes place only if no full
match has occurred before to avoid pseudo-homographs. The parti-
cular sort sequence makes it quite sure that a full match will not occur
after the first segmentation has been performed. As it is not sure that
the segmentation will be successful, an artificial homography with the
full word as NID is created which will be resolved in the subsequent

cycle, If prefix analysis is required, segmentation can be forced soas

- 49 -

to detect possible homographies (c.f. German "gehsrt"). For the rest
of the word a search request is set up, as if it were a new word to be
looked up in the dictionary. The word segments are linked to each other

by conventional pointers.

The analysis of unknown words (NID) first moves the word into a special

file and inserts its relative position in the file into the search result in-
stead of the lexical number (see Fig.1l), Optionally, a list of unknown

words may be produced.

As an option, which can be useful particularly in machine translation,
the unknown word can be analyzed with a special paradigm table quite in
the same way as in morphological analysis, with the only difference that
suffix matching and morpheme chaining take place from right to left.

(N. B, At attempts operating with a null-dictionary, the result is that of a

suffix analysis program).

The results of dictionary search are written on a data set and contain in

addition to HWO and LXN an identification of the entry given by the word
number and a conventional match counter, and the eventual pointers to

segments and homographs.

- 55 -

3.2.5 Organlza,tlon of Dictionary Entries (ORENT)

This module is called at the end of the dictionary search and exa-
mines its results for inconsistent solutions which primarily may come
from word segmentation. The results of dictionary search have been

collected on a data set (OET) which for each entry has the following for-

mat:
WN CN RM RS HWO LXN
where:
WN = word item number
CN = conventional number
RM = reference match
RS = reference segment
HWO = head-word zero
LXN = lexical number

The sequence of the entries depends on the moment in which the
match has occurred. The task of this module is to group physically all
entries which refer to the same word item and to eliminate all incon-

sistent solutions,

The output of the module is a bipartite list (FINTAB & OET1) with

the following structure:

o N O U b W N

- 57 -

STEM NUMBER STEM HWO LXN
1 JELEZ + (O) CMB (IRON)
2 JELEZ + (O) CMB (GLAND)
3 JEL + (E) CMB (JELLY)
Il\);ﬁiiI‘B REST WN CN STEM HWO
1 XROMOALHMINIEVY1 1253 | 1563 | XROM + (O) CMB
2 XROMOALHMINIEVY1 1253 | 1563 | XROM + (O) CMB
3 ZOXROMOALHMINIEVY1 1253 [1567 | ======ma=-- —_——-
4 ALHMINIEVY1 1253 |1 1569 | ALHMINIEV+
(Y1)
5 ALHMINIEVY1 1253 1571 ALl—/MINlEV+
(Y1) ————
The OET corresponding to the above matches is:
WN CN RM RS HWO LXN
1253 0 1561 0 x NID % * NID %
1253 1561 1562 1563 CMB (IRON)
1253 1562 1564 1565 CMB (GLAND)
1253 1564 1566 1567 CMB (JELLY)
1253 1563 1568 1569 CMB (CHROME)
1253 1565 1570 1571 CMB (CHROME)
1253 1569 1572 ———- -——-- ALUM....
1253 1571 1573 ——-- ---- ALUM,...

Logically, it can be represented by the following tree structure:

- 59 -

3.2.6 Subdivision of the Source Text into Minor Batches and Dictionary

The philosophy of the input and dictionary search modules was to pro-
cess in one cycle the maximum possible amount of source text so as to
increase the efficiency by exploiting the repetition of words. However, if
one wants to associate the dictionary information to all of the words pro-
cessed in the precedent cycles, the core storage available may turn out to

be insufficient to hold them.

For this reason, the source text is subdivided into a series of batches
each of which can be entirely processed in core storage. The input para-
meters are the average length of the dictionary entries to be loaded and
the amount of core storage available, These parameters are initially

given by the user, but after the first cycle they are computed internally.

The amount of text which can be processed in one cycle depends on the
number of different dictionary entries which must be loaded (each entry

is loaded once only).

For this purpose, the TEXT TABLE is read, scanned against WORD
TABLE; FINTAB and OET1, and all entries (LXN) contained in OET1

are inserted into a list with a hash code technique (TLXN).

A subset of OET1 is produced for each new word item requested
(OET2); in TEXT TABLE, the pointer to the WORDTAB entry is replaced
by the entry number in OET2 (a list TEXT1 is produced) and the LXN in
OET2 is replaced by the entry number in TLXN (Fig. 12).

In the following example the first sentence of text presented in Text

Analysis is considered:

- 60 -

THE WORD ITEMS ARE SORTED ACCORDING TO THE SLC

SEQUENCE,

One assumes that the result of dictionary search is:

THE

WORD
ITEMS

ARE
SORTED
ACCORDING
TO
SEQUENCE

two meanings:

1" "
one meaning :
1" 1 -

three meanings:

two meanings:

one meaning ;

article, adverb
substantive, verb
substantive

verb

verb

adverb, verb, preposition
preposition, adverb

substantive

- 62 -

Each time a new entry is requested, the length of the OETI1 entry
and of the dictionary entries are added. When they reach the amount
of core storage available, the process is interrupted. The hash table

is sorted by LXN and control is given to the next module - FLDTG,

3.2.6.2 - First Dictionary Loader (FLDTQG)

The program scans the hash table (TLXN) produced in the precedent
cycle, accesses the First SLC-Dictionary and loads the entries reques-

ted into core storage.

The SLC dictionaries are all structured in the same way: the first
block (all dictionaries must be recorded one block per track of DASD-
Disc, Drum, etc.) contains a master directory which on the first entry
indicates the number of tracks occupied by the dictionary and in the sub-~
sequent entries the LXN of the last entry on the corresponding track.
Dictionary entries are sorted by ascending LXN (lexeme identification

code), During loading the directory is resident in core storage.

FLLDTG scans the LXN contained in TLXN, locates the track number
of the corresponding entries and requests input of the tracks involved
in direct access mode. When a read operation has been terminated, the
entries requested are moved into the core storage area reserved for

them, and the LXN in TLXN are replaced by the address of the entry.
When loading has terminated, the pointer to TLXN in OET2 is re-
placed by the address of the entry in core storage. As a result the fol-

lowing data structure is produced:

N. B. One continues with example used in RIORENT

- 64 -

3.2.6.3 - DICLOADR Module

The translation process (indexing, query formulation etc., also
can be considered as special cases of translation) is, generally, sub;
divided into three distinct cycles - source text analysis, transfer,
target text synthesis - for each of which one must define an algorithm,
a grammar and at least one dictionary. In the batch mode version one
of the principal objectives consists in optimizing the I/O functions.
Therefore, all dictionaries requested must be loaded into core storage
before control is given to the SLC-coded problem program,

SLC dictionaries, for the processor, have all the same structure:

LL LXN BINARY VECTORS (HW)
ID,C, LL DATA
ID.C, LL DATA

Apart from the length field and the LXN by which an entry is accessed, there
may be a series of binary vectors (HW1 - HW14) whose length and iden-
tification code are parametrized at system generation time, and a series

of "variable fields' whose function is identified by their identification

code,

If a dictionary entry is to be linked to a subsequent dictionary, the
LXN of the entry requested may be either contained in the field of binary
vectors or in one or more variable fields. In the latter case, the LXN
must be located in thelast four bytes of the variable field,

A set of input parameters indicates in which position(s) of the binary

vectors there are contained LXN, and which variable fields contain them.

The DICLOADR program assumes as input data a set of entries already

- 66 -

3,3 Problem Programs Execution

3.3.1 - Data Organization in Input
The precedent phases make available all data necessary for the exe-

cution of the problem program, in particular:

- The definition of the source text batch which can be processed in one
cycle, depending on the central-storage size. The source text is recor-

ded, with conventional codification, in the TEXT file.

- The definition of the properties of each element of this text batch (as
word item or non-word item) according to the grammar assigned to the
text analysis program. This classification is also codified in the TEXT

file.

- The assignment of all possible meanings to each word through dictionary
search and morphological analysis, The dictionary search module is able
to handle multiple matches, word inflection, word derivation, segmenta-~
tion of compound words, prefix separation and a tentative suffix analysis
of words not found in the dictionary. All these informations are codified

in OET2 table.

- The loading into core storage of the associated dictionary entries (in prin-
ciple source language dictionary, transfer dictionary and target language

dictionary).

The data organization after dictionary 1dok—up phase is shown in Fig. 14,
and Fig.15 shows the contents of TEXT file and OET2 table for a source

text sample.

As one can see, all these data are scattered over the main storage and it
would be difficult to handle them as they stand. Therefore, the text is sub-

divided into 'logical unit'" (sentences, paragraphs, abstracts according to

- 69 -

the application), and each one of these units is organized in core storage
as a four-levels tree structure (item - match - segment - form), called
TEXT IMAGE, the nodes of which are linked to all the informations ob-
tained from the precedent phases. Part of the functions of SLC-II pro-
gramming language was specially designed to handle this tree structure

and to access the different data.

3.3.2 - Organization of Logical Text Units (ORGUL Module)

The organization of logical text units and the construction of the res-

pective tree structures are performed by the module named ORGUL,

Firstly, this module loads the data-set of unknown words (NID)., Then
it scans sequentially the data-set TEXT, Each record of TEXT file con-
tains a reference to the associated entry in OET2 for word items, or the
non-word item., The order of the records corresponds to the order of

source text items.

For each record of TEXT it allocates an entry at the highest level of
the tree structure (ITEM). Subsequently, the lower levels are created
according to the structure of the results of dictionary search, recorded

in the list OET2 as follows. Each entry of OET2 contains:

- a reference to another match or 0 for the last match,

- a reference to another segment or 0 for the last segment,

- a binary vector, called HWO, that represents the morphological classi-
fication of the segment,

- a pointer to the associated dictionary entry.

Depending on the TEXT file contents, there are two possibilities for

creation of tree structure:

- The element is a non-word item.

In this case only one entry at MATCH, SEGMENT and FORM levels res-

- 70 -

pectively, are created. The field HWO in the level FORM is set to

zero,

- The element is a word item.
In this case, the number of the entries at the levels MATCH and SEG-
MENT depends onthe number of homographs, and on the segments
within each hom;)graph (inclusive derivations), detected during dic-
tionary search.
Note that the number of entries at the level FORM is always equal to
one due to the strategy of dictionary search, and therefore, the even-
tual morphologic homographs must be represented within only one

headword O,

The logical flow of ORGUL program is shown in Fig.16 , the Fig. 17
shows the general structure of TEXT IMAGE tree, and Fig.18 shows this

structure through a sample sentence.

The construction of TEXT IMAGE is interrupted when a delimiter element
is encountered in the text. The delimiter elements are conventional word
items (e.g. period, semicolon, end-of-paragraph symbol, etc.) which

have been communicated to the system through a parameter list.

When the construction of TEXT IMAGE is completed, control is given to the
SLC executor module which initializes the SLC environment and controls
the execution of the problem programs written in the SLC programming

language.

- 74 -

3.3.3 - The SLC Executor Program (Fig. 19)

This program controls the execution of the programs written in SLC
programming language. In principle, it simulates the CPU (Central Pro-

cessing Unit) and the OS (Operating System) of a computer.

The execution of SLC -written programs is articulated into three cycles
which represent the three main functions in translation (applications as
indexing query formulation etc. also can be interpreted as translation

problems):

- source text analysis which produces a formalized description of the

source text according to the linguistic model adopted;

- transfer - which transforms the results of the first cycle into a forma-
lized representation of the target text (this function can be considered
auxiliary for all those parts of the process which cannot be completely
formalized and therefore rely on the equivalence of symbols in two

languages);

- target text synthesis which generates the text in the target language.

Each one of the cycles is constituted of three components:

- an algorithm realized as the problem program written in SLC-II lan-

guage;

- a dictionary which contains all information about the words necessary

for processing;

- a grammar which is a set of rules according to which the algorithm pro-

cesses the text unit.

In principle, in partial applications, the number of cycles can be re-

duced to two or one.

Within each cycle, a series of independent SLC-II written programs is

- 175 -~

executed according to their priority which is assigned to the program
at request time and can be modified during execution. A priority sche-
du%er controls the program execution requests and gives control to the

highest-priority prrgram.

All programs executed can be linked to each other through a call me-
chanism which permits a recursive and re-entrantuseof the single modu-
les. The compiler facilitates the design of recursive and re -entrant modu-

les.

The single SLC-II instructions are executed in interpretive mode: i. e.
the program is a binary string in core storage, and a routine simulates

the functions of the CPU which is subdivided into

- a FETCH which loads the next instruction according to the instruction
counter, interprets the binary string as an operation code and operands

and locates the operands,

- an EXECUTE which mainly consists in the branch to the function sub-

routine,

- a TRACE which is optional and is to facilitate program debugging.

3.3.4 - Organization of SLC-IIPrograms

A SLC-II problem program, normally, is subdivided into three cycles.
TEXT IMAGE for each one of the cycles ensures the link to the relative
dictionary information. Hence, in principle, there exist three dictionaries,
which are linked to TEXT IMAGE at the SEGMENT level. However, all
dictionary entries are linked to each other from the first cycle on (in batch
mode) and therefore, one could also design an SLC-II program with one

sole cycle and several dictionaries,

The link between the cycles is ensured by special modules which re-
arrange TEXT IMAGE and purge all elements which are not used in the

subsequent cycle.

- 176 -

At the end of the third cycle, the results of the SLC-II program are re-
presented as a string of items consisting of the lexical code of a word

and a binary string (HWO) which contains the definition of the inflection
form and lay-out information. This string is processed by the programs

for morphological generation and text editing at the end of an input batch.

Each SLC-II program is recorded as a load module in a library and
can call other programs through the instruction CALL or schedule the
execution through the instruction REQUEST with a certain priority. Con-
trol is given to the latter by the priority scheduler when a return to the

executor is performed,

3.3.5 - SLC-II Language Environment

One part of the SLC-II programming language is a subset of the stan-
dard IBM 360 instruction set (the decimal and floating point arithmetic
are excluded). SLC-II, hence, simulates the central organs of the 360 com-~

puter with the general-purpose registers and the byte storage.

A second subset permits operations on TEXT IMAGE and the associa-
ted dictionary entries (addressing of particular entries, transformations,

etc.)

A third subset permits to construct and handle syntactic structures.
The SYNTAX storage is linked to TEXT IMAGE at the lowest level (FORM),
and permits to describe the source text in the form of relations according
to various linguistic models.
The basic elements of the syntax store are relations consisting each of
one operator and two operands.
All SL.C-II language instructions take into account this environment, either

explicitely or implicitely.

-77 -

3.3.6 - Brief Description of the SLC-II Programming Language

The SLC-II language can be subdivided into two parts:

The first part is exactly a subset of the Assembler 360 programming
language, and permits the control of the general registers and of the

byte-structured storage.

The second part is specific to the SLC-II system and permits the con-

trol of the remaining elements of the SLC-II environment:

addressing of elements of the text-image storage, -

- creation, changes and deletion of elements of this storage,
- control of the program queue,

- input/ output operations,

- access to dictionary data,

- access to data modules,

- etc.

In its present form, the SLC-II programming language is an elemen-
tary assembler-type language (i. e. each statement produces one binary
string which consists of an operator and operands). There exists no de-
dicated SLC-II compiler. Instead, one ﬁses the IBM 360 Assembler H
compiler with an associated special rhacro—library which contains the
operation codes and their expansion. This solution, of course, is not
computer-independent. There exists,therefore the intention of re-formu-
lating the compiler and executor in a transportable high-level program-

ming language (like Algol or PL/1),

- 79 -

3.3.7 - Syntax

As it was stated above, SLC-II was designed primarily for syntax-
and semantics-oriented language processing. Therefore, particular
care was dedicated to the definition of a syntactic model and system func-
tions, which permit on one hand to use more or less easily any existent
linguistic model, and to construct, explore and transform syntactic struc-
tures on the other hand. A subset of the SLC programming language is
specifically concerned with syntax which is to be interpreted as a parti-

cular organ of the hypothetic computer being simulated.

The basic syntactic model, as it was stated above, is relational, and
a syntactic unit consists of one operator and two operands (very similar
to arithmetics or logic), which, depending on the level of analysis, may
be interpreted as surface structure or as some kind of semantic deep

structure.

Each relation represents a node of a tree structure which, at the low-
est level, is connected to the "form' level of the text image and on the
highest should comprehend, at the end of analysis, the entire logical text
unit. Actually, the syntax orientation of the system is so strong that all
elements of the text image not related to the syntactic representation,
are deleted from storage at the end of the first cycle of the problem pro-

gram.

- 83 -

3.3.7.2 - Construction and Exploration of Syntactic Networks

In principle, the construction of a relation is performed in two steps:
The first step consists in creating a provisional ("transient") relation
which contains the links to the pre-existent structures, but does not af-
fect them. The principal SLC instructionsare CREATE, INSERT, CLEAR,
DELETE with the operand TRANSIENT, Note that only one transient rela-

tion can exist at a time.

If, after the establishing of a transient relation all conditions of the
grammar are satisfied, the relation can be set '"permanent', i.e. defini-
tively inserted into the existent structures. The "SET PERMANENT" auto-
matically explores the exclusive and complementary attributes of the new

relation established and creates the relative connections.

For the exploration and management of the syntactic structures, the

SLC programming language provides a set of instructions enabling to:

- move up and down the structure,

- to interrogate and modify the single fields of a relation,

- to delete single relations or entire sub-structures (up to the complemen-
tary and exclusive level),

- to perform top-to-bottom explorations keeping track of the path,

Actual transformation of a structure must be performed in two steps:

- first one deletes the single relations to be modified,
- second one creates new transient or permanent relations and inserts the

elements in the desired way.

Algorithms for syntactic recognition and generation, and the relative
grammars are to be prepared in the context of the machine translation

project at CETIS, Particular care is being taken in this context, to make

- 84 -

both the algorithms and the grammatical model,in principle,language-
and application-independent so as to ensure the transportability to other

languages and applications,

3.3.8 - Communication Between the SLC-II Programs and the System
All communications between the SLC-II programs and the system are

provided for by the EXECUTOR module.

The SLC-II programs must correspond to one of the following rules:

- There must be, for each cycle, a main program, edited as a load mo-
dule in the associated job or step library. The names of these main

programs are communicated to the EXECUTOR as parameters.,

- The main programs may call sub-programs, which, themselves, must
be organized in the same way as the main programs, Their names are
communicated to the EXECUTOR as operands of the SLC-II instruction
CALL (see Fig.2J).

- A program can insert another program into the request queue, or remove
it, or it can change its priority. The name of this program is operand of

the relative instructions (see Fig.21).

- Finally, a SLC-II program can be part of an entry of one of the dictio-
naries, The EXECUTOR scans the dictionary entries and inserts the
"local programs'' with their priority into the request queue. Programs
located in the dictionary entries are conventionally called local pro-
grams, while programs edited in the job or step library are called ''ge-
neral programs', Local programs can refer to general programs, but
not vice-versa. The only way of accessing local programs is the priority

scheduler.

In its present version, the system loads the modules into core storage

" each time they are called and deletes them after execution. This may in-

- 85 -

crease somewhat the number of 1/O operations, but permits to reduce
the main storage requirements for the programs and, consequently,

to allocate more space for data. The maximum dimension of the SLC

modules must be communicated to the system as a parameter.

- 88 -

3.3.9 - Data Modules

As SLC-II programs may need data beyond those contained in the dic-
tionaries, e.g. grammars, one can code and compile so-called data
modules with any structure desired. These, non-executable modules are
managed by SLC-II instructions, Data modules must be link-edited as
load modules in the SLC-II library. The names of the data modules are

communicated to the executor as operands of the instructions involved.

Basically, these modules are used for coding grammars., Should
one want to use them as auxiliary programs, the programmer must pro-
vide the calling sequence and the return. This facility may be useful
in case one designs a grammar as a finite-state automaton, In this case
the data module is bi-partite and contains non-executable parts which

point to executable action routines.

3.3.10 - Intra-Cycle Communication Storage

In general, SLC-II programs process logical text units independently
one from another. If data must be communicated from one logical text
unit to another (e. g. in automatic abstracting, or in machine translation
for the resolution of problems like pronouns or articles), one has the option
of allocating a certain amount of intra-cycle communication storage, which
in principle has byte structure and can be accessed only by SLC-II instruc-
tions, The storage initially is cleared and remains un-affected by any sys-

tem operation during the whole job.

3.3.11 - Input/Output Facilities of SLC-II Programs
The standard input to SI.C-II programs is constituted basically by the
source text, the associated dictionary entries and, eventually, by the data

modules and the intra-cycle communication storage.

- 89 -

The standard output is provided for by the TEXT COLLECTOR module
which is given control at the end of the third cycle and collects the final

result of the "translation' process. It consists basically of:

- lay-out and editing codes,

- the lexical identification code and the binary vector defining the mor-
phological form of word items,

- the character sequence representing the non-word items and the words

not found in the dictionary.

These data are collected as a data set and used as input to the mor-

phological generation and editing modules.

As optional features two additional I/O facilities have been provided

for:

- handling of "permanent data sets' which on one hand can be used to
communicate data from cycle to cycle which cannot be kept in intra-
cycle communication storage because of their volume, on the other
hand to produce special outputs (as for instance the direct file entries

in automatic indexing),

- message handling: in input, in the batch version, input of messages
is not provided for and will be introduced in the conversational version.
In output one can print messages, lay-out of text image, syntactic
structures, dictionary entries etc., dumps, and, as a debugging aid,
trace the SLC-II instructions executed. In the batch version, messages
appear on the printer, but will be sent to terminals in the conversatio-

nal version,

- 90 -

3.4 Editing

3.4.1 - Morphological Generation

3.4.1.1 - I_n_p_u;t_

After the execution of the SLC-II-coded problem program, the TEXT
COLLECTOR creates a sequential data set which contains for each item
to be edited the identification codes (LXN), the morphological informa-
tion (HWO) and the lay-out control codes. This data set is the input to
morphological generation program, needed for operating the tar-
get language morphological dictionary and the paradigm tables as gram-
mar.

The target language morphological dictionary is accessed by the lexical
identification code (LXN) and contains the invariant part of the grapheme

(stem) and a pointer to the paradigm.

The morphological generation program permits to attach suffixes and
prefixes to the stem (which may also be nil) and to chain them (suffixes

from left to right, prefixes from right to left).

3.4.1.2 - Functions

For each different lexical number of the input data set, one accesses
the corresponding dictionary entry, attaches the suffixes and/or prefixes
to the ""stem' and transmits the grapheme,thus completed,to the editing

program,

The morphological generation program is articulated into three parts:

- Analysis of the input data set. The program scans the entries con-

taining a lexical number and inserts the lexical numbers into a table

- 91 -

with a hash code technique, similar to that of the DICLOADER module,.

At the end the entries are sorted by lexical number;

- Loading of the dictionary entries. One uses exactly the same technique

as described in paragraph 3. 2.4;

- Morphological generation, The program re-reads the data set modified

in phase a, and analyses all entries. Those containing non-word items,
unknown words and null items (items which contain only editing infor-

mation) are transmitted to the editing program without any processing.

Entries containing word items are connected through the hash table with
the dictionary entries. One moves the stem into a work area,locates the-
corresponding paradigm and looks them up for the correct prefixes and/
or suffixes. The location of the affixes is performed by logical operations

on the binary vector HWO, The program permits to chain several affixes. .

3.4.1.3 - Output

The output of the morphological generation program is constituted by:

- The character string to edit,

- A binary vector containing the control codes for editing,

This information is transmitted directly to the editing program, as the
last phase of morphological generation and the editing program co-exist

in core storage.

3.4.2 - Final Text Editing

The program analyses the binary vector with the control codes trans-
mitted by the precedent phase and processes correspondingly the charac-
ter string associated, or sets permanent switches,

The editing control codes have two functions:

- 92 -

- permanent control, i.e. valid until another code of the same type
is encountered. It concerns primarily the general lay-out data as
tabulation, the length of the printed line and of the margins, the

character type and the inter-line;.

- control concerning only the item the code is associated with.
It defines the selection of upper- or lower case, the left or right
justification of the items, spaces between items, insertion of blank

lines or pages etc.

The set-up of the control codes is performed by the last cycle of the
SLC-II coded problem progfa.m, and inserted in the last two bytes of
HWO, Therefore, the description of the target language word form must
be exactly 2 bytes shorter than the one of the source language. This fact
must be kept in mind, when one defines the paradigm table for the mor-
phological generative dictionary, and sets-up the HWO in the last cycle

of the problem program.

4, SYSTEM USAGE

- - s e

In order to use the system, it is necessary to provide for a certain

number of data:

- The source text: it must be recorded on a machine-readable support

(cards, paper tape, magnetic tape, etc.), according to the conventions

defined by the input grammar associated.

- Options: the use of options gives the system an extreme flexibility. One

can subdivide them into three classes:

- options which permit to select a particular application, as, for in-
stance machine translation, automatic indexing, thesaurus construc-
tion, query formulation for IR or SDI, etc.;

- options which permit to select certain particular services of the sys-

tem, as, for instance error messages, word lists, listing of the source

- 93 -

text, dictionary search options, etc.;
- options which permit to change certain standard values as, for instance
data set attributes, program and grammar names, average length of

dictionary entries etc.

- The description of the coding conventions of the source text which com-
prehends a dictionary of the elements with a special function in the text
(delifniters, control codes etc.), and a grammar, which permits to frag-
ment the text into substrings and to qualify them with the attribute of word
items or non-word items. Dictionary, grammar and the associated seman-
tic action routines are one load module of the system, invoked by the text

analysis program.

- The source language morphological search dictionary, associated with the
relative paradigm tables, which permit to describe each word item by
means of a lexeme identification code and the definition of the inflectional

form. The dictionary is a direct access data set.

- The paradigm tables are a system load module invoked by the dictionary

search program.

- The generative morphological target language dictionary and the relative
paradigm tables. They are organized in the same way as the correspond-
ing source language dictionary, and are requested in all applications

which provide some output in natural language.

- Up to three dictionaries and relative grammars, associated with the SLC
problem programs, whose number and structure, essentially, depend on
the application. For instance, in translation, one needs a source lan-

guage dictionary, a transfer dictionary and a target language dictionary.

4,2 Data Base Creation and Management

The SLC system disposes of a set of programs, to be executed off line,
which permit to create and maintain the different data bases necessary for

some concrete application. The utility programs are executable load mo-

- 94 -

dules of the SLC system library.

A subset of the SLC programming language is dedicated to the sym-

bolic coding of dictionaries and grammars.

4, 3 Environment

At present, the SLC system is operational in batch mode with IBM
360/370 series OS., Minimum storage requirement is app. 150 K bytes
(excluded OS), while a region of app. 300 K bytes is estimated to give
optimal performance. The SLC-II programming language, necessary
for symbolic coding of algorithms, dictionaries and grammars, requires
the Assembler H compiler as system support, which needs a minimum

of 200 K bytes.

All data sets, except the source text and the options, are recorded on
direct access devices (discs) as well as the program library and the
macro library which has the function of the SLC-II compiler. The peri-

pheral storage requirements can be estimated as follows:

macro library 600, 000

program library 1,000,000

source language morph. dict. app. 25 bytes/entry
target language morph. dict. app. 20 bytes/entry
other dictionaries variable

4,4 Sample of a SLC-II System Application

The data in input and output of SLC-II system are shown for a current
use. The use chosen for the example is automatic indexing of nuclear

abstracts with EURATOM thesaurus,

Only one abstract has been processed in this example, but it is obvious

- 95 -

that the system permits to process an unlimited number of documents

during one job step at the rate of some 500, 000 words/hour.

The control listing includes three parts:

- The input data (options and text),
- The intermediate results (list of words, unknown words, utility mes-
sages),

- The final result (keywords).

OPTIONS

)

] ONHbe?ZNUJNP-‘UJ.L\WNI—‘—"

LOWINC O

ColOm
[eleledrs)
= USPM
oo

MmZZ OO0 SO0
OEN= = OQOCY,
[elale]

LIN =

T e
—N—HxZzZ
=

Or~-oOZuvounnzZooozZzorrmr=—-
MM = oococar-—rT
jo1
<

FOXFOXODIOOITZ2X-NTIIM
MM AT O O—Y S S
T Zro>DpDD<SEX 20O ~—~—"N
NN A = DO~ OOO0O0OZ>e 0
X Milsr T D Z 2™ i~ N D O
TV W CZ2Z2N-=mOOO

¢
0
0
0
0
0
0
0
0
I
IN
P
P
0
0
7
0

x

—

-
1!
i

This part of output listing shows the options transmitted to the system

for the execution of this job.

Each statement is structured as KEYWORD-VALUE, the functions

of which are explained below.,

LLHWTAB Defines for each non-standard headword its length,
the dictionary number in which it is contained and
the level of text image at which the dictionary entry

is connected.

OPTIONS

NUMDICT

DDNAMDIC

NUMCYCLE

SLCMAINn

PARTABxx

NMDELIM

DELIMTAB

BLKSIZE

LLDELIMS
DELIMSTR

- 96 -

Specifies up to 32 options that can be defined by
one binary position., In this job the specified op-
tions were: display of input text, display of word-
items and display of word-items not found in the

morphological dictionary.

Number of dictionaries used by SLC problem pro-

gram.,

Specifies for each dictionary the reference to a sta-
tement that defines the data-set and the estimated

average length of one entry.

Number of SLC cycles to be performed for the exe-

cutionof problem programs.
SLC main program name associated to the n-th cycle,

Paradigm table name used for input (IN) and output

(ou).

Number of delimiters used for separating logical text

units.
Hexadecimal value of headword 1 of each delimiter.

Standard block size of utility data-sets.

Length-1 and configuration of character string used as

end of text unit symbol.

All the options are recorded on punched cards and are part of job in-

put stream, that contains,

of data-sets.

in addition, the control cards for the definition

-97 -

INPUT TEXT

3 3 3 o e 3 2k e e e e e e g o ok e e koo

TEXT

INPUT

e 3 ok sk ok o o 3 ok Ak ok e o ok oo e sk e dfe e e e ok ok koo i ki ok ok

$§SERELATING $5%TC $SHTHE

oUVIa
W

=$CAT=%
ROVEMENT
DVERY %

227
$IM
tRE

[plelnlalalaleleJolnieloIololeTe]
AFNO~DC O~ TN OO
OO DO iyl — el i e
<L e L<L <L L T L o <L LT L <L L L
NN NNV NV NI
222222272222 222Z22

N

I

T

N

B
THAN 1(

wv>Q Twv

T ~WUWIL~OOW-
O O >FZIr—Irdd
ENT OIS B W
O O WO aTwOOXI
edl D= ap=t) ¢ A2 <LLY)
VAHE J O ITv) x<a
W TOWSWIWR LI E
QU Z T Z-NIXOD
P Ty TR L
OCIFEZIFX T e =L
ZOP DOWT DU T O
AT Tl VLTRSS T LI
I=ETHADINCNe DL T ol
<L U L NS e W,
o O WZV X &
qA> I ZOI WIS D=
O AN QAZ DD - L]
W00 a—ULCxx— »
NIOVUE- 1 XOWU W e
—D] e JRRISHY S |
LMW OIFLUD T <~
QUQIZND =R DE
o=l 0 — L e
V. >UTMUL VLT O
LU O OO O R4 .
W ZZO—~oxQ L (e
P L T 1Vo b SRR SNNU P W R o JIS YWY }
b (D> 2T U D
DZ LUy =S V) e
O ICOIMA TR ALOL TV
VM il QQude= T o
Lot ol S Shor o T g - USRS oW L
D SV VLLEU.NWUFe T~
QL QDL T Tl & 7O
CCo Cobuee -lnm .
Iy VS 0 G~ . W
- SWEWULOS Qun—ocCc
i) <=+ 0O
I | ZTHLIZZ >0
Ol >t 25
TUI DCAUN OS> I > <
WD U3 g0 O

~ NNV POO O i D> C (D=2 Z
WHAOFHAVIO RGO WV L ()
inloletvialslsinlalelotalnloloTololsTeln
PP S P P P PP P P PP P P P P P
Ny 1 NI O OO Oy NN NN NN N
Ll N NI OO N O O O N N N I NN NN
=t g QL e e et o et e el ey
o W UOLWWWWMW EOOWOELWOW I
[R e e e T L L e R L e D L L e P N]
LR T e il d il i el had e ped pal med el e e m Y el 1]

N NI OUD AN 0

=l red el d A

Each statement of input text is structured as HEADER LABEL - TEXT,

The first character of header label indicates the class of text part follow-

ing the label. The other characters of the label indicate the reference num-

ber of the document.

The text has been recorded with conventional codes written as ,x

Example:

All the word is written with capital letters,

g

The first letter of the successive word is a capital,

FMP

$E 1$ Exponent 1,

FI1¢

Index 1.

RESULTS OF TEXT ANALYSIS PHASE

After the text analysis phase, the following messages are printed and

can be used for statistics:

- 98 -

O NG
Mo

>
lanlan B Go N o TV~ g fea]
>0 bt o Ul
<O D>I<{ 2 U T
HIEOQA L I LU <UL pelld e -
WU 0Ol -<<IT IO I 4w
WO NNV NNV NV == £ X Tt

-IMMISCIBLE

)
48]
a>

wv
&) > =
S8} r—_

=z ace: !

il it =oul hafea LRI

Lo [N} Ll FNE > <l 2 wten QOCOR

[N} pes] T 0OZ ORDIERZ oLV O > >0« [Ve]anTas] o or o

[T e et <L D LI < <T) T ad > D 100t Ut D>

Lad 24 <L TE D dl T TUT U > ol N L > L e
AP a Q200> Ouw ZFTUWNZ JdO N UwJdoel>O<10.00tdun VI d iG]
=S B DIAZZ T~ X D>-UCTIUHUM oNX X0 dlrd Or U T Z Z T - Z DU = ZU v Ol o ol
Ll ad af ol o Lo o QY <L O < QU DI O LI U U A M e L Wl) o ot 5 2 LU0 0.0 00

N
1
A
E
When the corresponding option has been specified, the list of input
ENZENE

words is also displayed as follows:
LIST OF DIFFERENT WORD=-ITEMS SELECTED BY TEXT ANALYIS PROGRAM

L2LZZZU

- 99 -

RESULTS OF DICTIONARY LOOK-UP PHASE

When the corresponding option has been specified in input, the list

of word-items that have not been found in the morphological dictionary

is displayed as follows:

(Y2 Ve

—
(&) = L >
L [TR |
- W QU WINOQO

IV —wldinuoaAzZZZ
WDH1Z LD UL Z L
D < WL O DO (e L >
WG D e Ja L >k a g
Qw2 d--ou- Utz

IST OF WORD~-ITEMS NCT FCUND IN DICTIONARY
$
H

1
1

MMISCIBLE

— >
[y
[¥ E]
o
)

e

—d QuUCUU XL ZOX i LD~
) e e LI Y r A e L QL Y (L — & K e O

For the entries requested and not found in the successive dictionaries,

only the lexical number is displayed.

The average length of dictionary entries is computed and displayed.

These messages are useful for a subsequent job that uses the same dic~

tionaries.

[ainisiniaialainislaleiniaialnis
DDDITDODDDIIDDIID=ZID2D
[P VIR S I Y U W O ERy U U S S Ay Fy FUg N
[Aot Sl sl sl sl S st aL el el LA
CooQOUCCOOCOOU2D0
ZPEZZ 2Tl LT
NNNNNINN NNV NNYY
<A ST T LT L LT T T L
ZITIXTXTLFTITXIXIXETXTXT R

OO O LI =N O
N D OO O P~ O Db = O P~
NHOOC O OODJIOQdrtrdr
- OEOMNaMAmMNMOOMmMae

L e s L L Lo B P Ko Do Ea K T R

TICNARY LIARER

\ = = e —a ——————
(S et e Rt g i e G

1 3 0 D DC D D D D DD D > 5 2D XK
[0S P R P N Y S O N Y Y DU Y DU |

e AN G IR RN TR TR T RN Y GRS W AN B
FIIIIIIITIITIXIIIT
T e e e e e
(e

wTITTIT LITILILIIITILITL

U b b e b e b e e e e e

LR s LR e R R e e L R L Ll S o S D T S P I |
TFETETIXXEIZIXIZIRXRXRTET
—

(L D D Do D D 2 3 Do D D Do D D D D D
UG4S AVEE N Ao ig A S5 A0 ATIRCH SN 4

= e e i e e
N 22222227222
(AR SR RS VE R U Y SR DS | SR I SELRS IS FY ES) V] B9)
o)

R aP oo ab o b o obob P s abal ot
L X O (O (L (L e
P2 NESE SR IR LN N T SR I S
L Ll Ll L Ll L Ll L L L
PN W LW] W) W6 | S WS L) W5 [S WS S WP W

N U g et et s T et et] U et e

[l ol and el o ol end il nd ol aad el el el e

1SOLLOLULLLOLLLLLOLLLO

ke lae e e L I F e e L e L T R R K]

SCcocononMoQocolcn

L UL U L U U L e UL L L L
Lo LTl LddL Ll
b b e e b b b b e

iD TICTICNARY LUJASER

SECTN

S FRSM 5

MESSacC:

ER

TTLT ICNARY L3AD

THIRE

3

o)
Ji

MESSACLS FKI

[AB}

0

JF

NEW VALUE FUR LENGTH

THE

- 100 -

The list of the keywords selected by the program and assigned to
DOCUMENT NUMBER 1812270

the document is displayed. The number associated to one keyword indicates

RESULT OF THE PROBLEM PROGRAM

the relative weight assigned to it,

L
= =
a4 Sl o
w Cauwrd -
m>zZv d WwWZ 2T UV W Z=
xO—wuLZZ2TW o ow —_D 5
ITXW=—ZZ O 1 QUVONa -0
DO O UL Dt b= 0 QA r=~ e S
O D> NIEYU EC DU N NG
NNO I IO DN =t=—=N_CHQ' U Z N
WLIUWQC O -t sl vl <L < Lt T = DL et =
LOUOXVNNALLUY ZTONAT NN CLW

[T N A R A T O T T T I I RO OO

OV O OISO S rdemd evd ed vod ek ned e 1d 1= ped od med
QOO DODTOOTIHOOIDITON
alslele’alololelolalstslalnlololalnloininte

ROMIDES
ODUCTS

- 101 -

CONC LUSIONS

The SLC-II System is self-consistent in applications in which the final
result is used by man (e.g. machine translation). In the case of its
usage in information retrieval (document and fact-retrieval), the SLC-II
is combined with a data base management and retrieval package which
is being imple'mented at CETIS. The completion of this package is sche-
dﬁled for early 1974 in the batch version and for 1975 with the conver-

sational interactive extension for the entire system.

BIBLIOGRAPHY

/1/ BROWN, A,F.R.; ;The SLC System for Machine Translation",
' (1965), EUR 2428

[2] PERSCHKE, S.; '""The Computer Programs of the SLC System for
Machine Translation", (1965), EUR 2583 e

[3] PERSCHKE, S.; "SLC-II Eine Software fiir linguistische Datenver-
arbeitung', Fachtagung "Information Retrieval Systeme',
u, '"Management Information Systeme', Gesellschaft fiir
Informatik, Stuttgart 9-11/12/1970

[:1] PERSCHKE, S.; "SLC-II One more Software to Resolve Linguistic
Problems'!, International Meeting on Computational Linguis-
tics', 4-7/9/1971, Debrecen

ﬁ] PERSCHKE, S,; "SLC-II, A Programming System for Natural Lan-
guage Text Processing. A Comparison with Previous Special
Purpose Programming Languages.', International Computing
Symposium, (1972). ACM, Venezia, 12-14/4/1972

/6/ PERSCHKE, S,; "A Generalized Information Retrieval System and the
Associated Software', Atti del Seminario ""Sistemi di riperi-
mento e selezione automatica dell informazione.' Accademia dei
Lincei, Roma,. In press.

[7] Joint Research Centre Annual Report, 1971 EUR 4842 e
/8/ Joint Research Centre Annual Report, 1972, EUR 5060 e

	Table of contents
	1. INTRODUCTION
	1.1 Motivation and Objectives
	1.2 Applications
	1.3 Future Developments

	2. GENERAL SYSTEM DESIGN
	2.1 System Conception
	2.2 System Organization
	2.3 System Generation

	3. SYSTEM DESCRIPTION
	3.1 Text Analysis
	3.2 Dictionary Search
	3.3 Problem Programs Execution
	3.4 Editing

	4. SYSTEM USAGE
	4.1 Application System Generation
	4.2 Data Base Creation and Management
	4. 3 Environment
	4.4 Sample of a SLC-II System Application

	5. CONCLUSIONS

