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1 . INTRODUCTION 

Within the frame of the finite element method, solutions to 

the transient heat­conduction equation are governed by a 

system of first­order linear differential equations of the 

form : 

[K] (T(t)}. [c]fT-(«)} = {F(t)} (U) 

{T(O)}= (T 0) 0.b) 

where [τ (t)j denotes the temperature vector, [F (t)j 

is the 'load' vector, ¿fX_7 is the conductivity matrix and 

¿f"C_7 the heat­capacity matrix. 

The vector {To} specifies the initial values of the tempera­

ture. 

The differential system (1) can be integrated numerically with 

the aid of a digital computer. The most critical step is, of 

course, to choose an integration method that combines efficien­

cy and accuracy. 

In this report, the concept of finite elements in space and 

time is used as a means of integrating the differential system 

(1). The basic variational formulation involving both time and 

space variables is described by reference to the Galerkin pro­

cess. 

Although various elements of the space­time domain can easily 

2 

be derived , the only element described here is a right trian­

gular prism of the (x, y, t) domain. This element is shown to 

lead to a better short­time accuracy than the Crank­Nicholson 

m< 

5 

3 4 

scheme used by Wi l son­Nicke l l , Z ienkiewicz­Parekh and F u l ­
l e r d­

The main features of the computer code TAFEST are described in 

the last part of the report. This code was developed for the 
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purpose of solving two-dimensional transient heat-conduction 
problems by means of the indicated space-time element. A ty­
pical example has been included in order to show the type of 
results that can be obtained on using the code. 

2. BASIC VARIATIONAL EQUATION 

Let it be required to solve the transient heat-conduction 
equation 

k div(grad T) + Q(x,y,z(t) - 9 c | I = 0 (2) 

in a domain V bounded by a surface S 

In order to formulate a variational problem associated with 
eq. (2), we multiply it by an arbitrary admissible temperatu­
re variation 5T and use the property 

div (a Β ) = a div Β" + Β grad a (3) 

Such a manipulation indicates that 

div(k grad Τ 5T) - k grad Τ grad δΤ + Q 6Τ - o c f f S T = 0 ( Α ) 

We now integrate eq. (4) over the domain V and the time t 
and transform the volume integral for the first term by means 
of the divergence theorem. This enables the order of the par­
tial derivatives to be reduced and yields : 

# 
k-|^- δΤ dSdt + 

t S t v 

Q δΤ dVdt + ij 3c J^6T dV dt = 0 (5) 
PM 



with n denoting the outward unit normal to S · 

Since eq. (5) holds for an arbitrary temperature-variation 
6T , eq. (1) is also satisfied. The variational equation 
(5) can thus be used as a basis for a numerical solution of 
transient-conduction problems. 
The main problem in solving eq. (5) consists in the defini­
tion of suitable finite elements in the space-time domain. 
For any such element, the local field will be represented in 
the form 

M 
T(x,y#z,t) = Y_ N¡(x,y,z,t) T¡ (6) 

i=1 

where the modes Ni depend on space and time, while the M 
nodal values Ti are independent on the coordinates x, y,z,t, 
The characteristic equations for the element are obtained by 
introduction of the local representation (6) into the basic 
variational equation (5). 
The assembly of the various elements appearing in the discre­
tization of the space-time domain follows the usual rules of 
the finite element method. 

3. A RIGHT TRIANGULAR PRISM IN THE (x, y, t) DOMAIN 

Although various elements in space and time can easily be de-2 rived , we shall concentrate on the particular element that 
has been choosen for the computer code TAFEST to be described 
in section 5. 

3.1. Choice of the local temp_erature field 

The right triangular prism represented in Fig. 1 has six de­
grees of freedom. In order to ensure the continuity of the 
temperature on the interfaces between the various elements, 



­ 8 ­

the local temperature field is choosen in the form : 

T e ( x , y , t ) = a + b x + cy+dt +ext + fyt (7) 

In function of the nodal parameters (Fig. 1) 

{τ6}* = (η, W W V (8) 

the local field can be written as 

T(x,y,t) = [N,· , Nj , N k , N ( , Nm<Nn] {Τ^ (9) 

with 

Ni = M, ( t l ­ t ) ; Nj = Mj ( t r t ) ; , N k =M k ( t r t ) 

N ^ M ^ t ­ t j ) ; N^Mjit­ t j ) ; Nn=Mk(t­t¡) 

M. ­ a; + b\x + c¡y y _ V o l u m e o f t h e p r ¡ s m a t ¡ c element. 
1 2 V 

a i=x jyk­xkyj ; b¡ = yj ­y k ; Cj = xk­Xj 

The modes Mj and Mk are obtained by cyc l i c permutation 

of the indexes in the order i , j , k. The parameters t . and 

t.. define the time i n t e r v a l spanned by the element. 

3 .2 . El£îBe^Î c h a r a c t e r i s t i c s 

The governing equations for the element are obtained through 

in t roduct ion in eq. (5) of independent v a r i a t i o n s on the s ix 

nodal parameters ( 8 ) . Such an operat ion y ie lds the following 

r e l a t i o n s h i p : 

[H
e
] {T

e
} = {F

e
} (10) 
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The matrix i He\ is the sum of a conductivity matrix 

M- kV 

IF? 

(CB3 + CC3) 

•i-KffUrc]) 

i-(CB3 + CC]) 

([B3 + CC]) 

(11) 

and a heat­capacity matrix 

M - s
c 

ΘΑ 

[P] -[P] 

where 

(12) 

[Β]­[Φ 

(b¡b¡ + c¡Cí) (b¡bj+c¡cj) (b¡bk+qck) 

(bj bj + cj cj) (bj bk + ejck) (13) 

Symmetric (bkbk + ckck) 

Η 
Pii

 p
i j Pik 

Pij Pjj Pjk 

Pik Pjk
 p

kk 

Ρ- = ƒ (a, + b¡x + c¡y) (aj+ bjx + cjy) dx dy 
'K 

A = Area of triangle ¡¿k. 

(14) 

{Pe}*= (^Pj^k^i'Pm^n) (15) 
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If the i n t e r n a l heat ­generat ion 0 i s independent of .spa­

ce but va r i e s l i n e a r l y from Q. to ÇL during the time i n ­

t e rva l t , ­ t . , the contr ibuted nodal loads are e a s i l y 

shown to be 

ÍF
e
i * - -¥-ÍF

1
 F

1
 Fl F

2
 F

2
 F

2
) M6) 

where 

F
Q = Q ¡ * T

Q
I
 ; F

Q = T
Q

¡
t Q

' 

3.3. Nodal_loads_due to_the boundary_conditions 

Prescribed normal heat­flux 

Suppose we impose between nodal points i and j (Fig. 1 ) 

a uniform normal heat­flux which varies linearly from <p¡ 

to φ", during the time interval t, ­ t.. The first term in 

eq. (5) shows that such a condition induces the nodal loads 

{^•..JatîitF'.F^CFÎ.F^O) 07) 

where 

ρ
φ = Φ · .

+
Τ * Ι

 F
9

 =
T ? Í

+
 ft 

L = Length of side i-j 

Convective heat­transfer 

Suppose now we have a convective heat­transfer between nodes 

i and j. The heat­transfer coefficient h as well as the 

fluid temperature Tf vary linearly during the time inter­

val t, ­ t.. This type of boundary condition yields a con­
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t r i b u t i o n to both the matrix ¿/~H€_ƒ and the nodal loads 

The addi t iona l terms in the matrix /~He_7 are 

LHconvJ 
1 LCti-t¡) 

36 

η 1 η o 

η o 

o 

Symmetric 

4-To 0 
'2 7 ' 2 

T
T
2 \ 

0 

Τ
3 |

Τ
3 ° 

Τ
3 0 

0 

(18) 

where 

T|=3h¡ + h[ ; Τ2= hj + h{ ; T3 = h ¡ + 3 h i 

h¡ = h ( t ¡ ) ; h l = h ( t [ ) 

The nodal loads contributed by the condition of convection 

are 

(Peon/ = ^ ( ^ , Ο , ^ . ο ) (19) 

where 

S1 = h j (3T f ' + Tf
l
) + h t(Tf + Tf

l
 ) 

I ' ' i 

S2= h t (3Tf +Tf ) + h¡(Tf + T f ) 

ri -rl 
Tf, Tf = Fluid temperature at times t¡ and t( 
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4. ACHIEVABLE ACCURACY WITH RESPECT TO THE CRANK-NICHOLSON SCHEME 

The one-dimensional example of a constant heat-flux applied 
to a semi-infinite solid has been analyzed in order to il­
lustrate the achievable accuracy with the space-time element 
previously described. 
A finite element solution for this problem is given by Wilson 

3 
and Nickell using a regular mesh with Δχ = 0.2. The ti­
me integration is performed on the basis of a recurrence re­
lation which can be shown to be a generalization of the Crank-
Nicholson scheme . Constant time steps At = 0.1 are used. 
We solved the same problem by means of finite elements in 
space and time, i.e. with eq. (10) as the integration formula. 
Fig. 2 compares both numerical solutions to the exact one.· 
As can be seen, a much better short-time accuracy is achieved 
with the space-time element. The reasons for this better be­
haviour with respect to the Crank-Nicholson scheme are fully 
explained elsewhere . 

5. THE COMPUTER CODE TAFEST 

In this section we describe the main features of the computer 
code TAFEST. This code was developed for the purpose of sol­
ving two-dimensional transient heat-conduction problems by 
means of finite elements in space and time. Starting from 
known temperatures at time t, the last three equations in re­
lation (10) are used as an integration scheme to yield the 
temperatures at time t + At. The assembled equations are 
solved by means of Choleski's method. A general flow chart of 
the programme is given on Fig. 3. 
TAFEST has been written in Fortran IV language and compiled 
on the IBM 370/165 computer of CETIS (EURATOM C.CR. - Ispra). 
In the present version, the code has a size of about 200K by­
tes, so that no auxiliary storage space is needed. 
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5.1.Description of input_data 

The input data required by TAFEST are defined here in the 
sequence in which they occur. References to card numbers 
will be found in the listing of data and formats which fol­
lows this section. 

CARD (1 ) 

TIT The problem title in 72 alpha-numeric characters. 
This information is used to identify the problem 
in the printed output. 

CARD (2) 

NUMEL The number of triangular-shaped elements in the 
structure (max. 700) 

NUMNP The number of nodal points (max. 400) 

NUMTM Number of points used in the discretization of the 
time (Initial time included) (max. 50) 

N1 

N2 

Option to define the coordinate system used for in­
put 
0 means Cartesian 
1 means Polar 

Option to define the type of the heat flow 
0 means plane 
1 means axisymmetric 

CARD (3) 
N3 (I) Option to punch temperature cards at time TM (I) 

( 1 = 1 , NUMTM) 
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0 Print nodal temperatures but do not punch; 
1 Print nodal point and element temperatures 

Punch the element temperatures; 
2 Print and punch nodal point temperatures; 
3 Print and punch element and nodal point tempera­

tures. 

CARD (4) 

NTI 

NTB 

Number of nodal points with prescribed temperatu­
res (max. 100) 

Number of elements with one side subject to convec­
tion (max. 100) 

NTF 

NTQ 

Number of elements with a non-zero normal heat-flux 
prescribed on one side (max. 100) 

Number of groups of elements with internal heat-ge­
neration (max. 100) 

CARD (5) 

COND 

CAPA 

Main thermal conductivity (w/cm-°C) 
o 

Main heat capacity g c (Joule/cm - °C) 

CARD (6) 

TM (I) Location (expressed in seconds) of the various 
points used in the discretisation of the time. 
( 1 = 1 , NUMTM) (TM (1) is the initial time for 
the transient problem). 
Six time stations are given per card. 
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CARD (7) 

One card is required for each element (N = 1, NUMEL) 

N The element index number 
NPI (N) \ 
NPJ (N) ? Index numbers of the element nodal points 
NPK (N)J 

CT (N) The effective thermal conductivity of element N 
is COND - CT (N) (See card (5)) 

CP (N) The effective heat-capacity of element N is 
CAPA - CP (N) (See card (5)) 

CARD (8) 

One card is required to describe each nodal point 
(M = 1 , NUMNP) 

M The nodal point index number 
XORD(M) The χ or r-coordinate of nodal point M (mm) 
YORD(M) The y or θ-coordinate of nodal point M (an­

gles are given in degrees) 

CARD (9) 

J Non processed index that may be used to number the 
nodal points if J = I. 

Τ (I) Initial temperature (°C) at nodal point I 
( 1 = 1 , NUMNP ; 4 nodal point temperatures are gi­
ven per card) 

Cards (10) and (11) are repeated NTI times ( 1 = 1 , NTI). 
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CARD (10) 

NTT (I) 

NTMI (I) 

Index number of a node with prescribed tempe­
rature 

Number of points in time which are given to 
describe the evolution of the prescribed tem­
perature. 
(Piecewise linearization of the effective 
temperature) 

CARD (11 ) 

TI (I, N) 

TIMI (I,N) 

Nodal point temperature (°C) at time ΤΙΜΙ(Ι,Ν) 

Time in seconds 

Three groups TI, TIMI are given per card (N = 1 , NTMI (I)) 
Cards (12) and (13) are repeated NTB times ( 1 = 1 , NTB) 

CARD (12) 

M 

NTMB (I) 

LI ( I) 

LJ (I) 

Index number of an element subject to convec­
tion heat-transfer on one side. 

Number of points in time which are given to 
describe the evolution of the convective 
heat-transfer. 

Nodal points defining the element side 

Subject to convection. 

CARD (13) 

H (I, N) Value of the heat-transfer coefficient 
(W/cm2 - °C) at time TIMB (I, N) 
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TF (I,N) Temperature of the reference fluid (°C) at ti­
me TIMB (I, N) 

TIMB (I,N) Time in seconds 

Two· groups H, TF, TIMB are given per card (N = 1, NTMB (I)) 
Cards <14) and (15) are repeated NTF times ( 1 = 1 , NTF). 

CARD (14) 

M 

NTMX (I) 

MI (I) 
HJ (I) 

Index number of an element with a prescribed 
normal heat-flux on one side. 

Number of points in time which are given to de­
scribe the evolution of the prescribed heat-flux. 

Nodal points defining the element side with pre­
scribed heat-flux. 

CARD (15 

FLUX (I,N) Prescribed heat-flux (W/cm2) at time TIMX (I,N) 
TIMX (I,N) Time in seconds 

Three groups FLUX, TIMX are given per card (N = 1, NTMX (I)). 
Cards (16) and (17) are repeated NTQ times ( 1 = 1 , NTQ). 

CARD (16) 

IFIRST (I) 

ILAST (I) 

Index number of the first element in a group 
with internal heat-generation. 

Index number of the last element in a group with 
internal heat-generation. 
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NTMQ (i) Number of points in time which are given to de­
scribe the evolution of the internal heat gene­
ration. 

CARD(17) 

Q (I,N) Heat generation (w/cm3) at time TIMQ (I,N) 

TIMQ (I,N) Time in seconds 

Three groups Q-TIMQ are given per card (N = 1, NTMQ (ï)) 
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5 .2 . Input Data Sheets 



Card 

1 

Column 

Format 

Symbol 

1 - 7 2 

18A4 

TIT 

Card 

2 

Column 

Format 

Symbol 

1-6 

1 6 

NUMEL 

7 - 1 2 

I 6 

NUMNP 

13 - 1 8 

1 6 

NUMTM 

19-24 

1 G 

N 1 

2 5 - 3 0 

I 6 

N2 

Card 

3 

Column 

Format 

Symbol 

1 

11 

N3Ü) 

2 

I 1 

N3(2) 

3 

I 1 

N3(3) 

4 

Π 

N3(4) 

79 

I 1 

N3(79) 

80 

1 1 

N3(80) 

CO 

o 

Card 

A 

Column 

Format 

Symbol 

1 - 6 

I 6 

NTI 

7-12 

I 6 

NTB 

13-18 

I 6 

NTF 

19- 24 

I 6 

NTQ 

TAFEST 



Card 

5 

Column 

Format 

Symbol 

Card 

6 

Card 

7 

Card 

8 

Column 

Format 

Symbol 

Column 

Format 

Symbol 

Column 

Format 

Symbol 

1 -12 

E12.5 

COND 

13-24 

E 12.5 

CAPA 

1-12 

E12.5 

TM ( I ) 

1 -6 

I 6 

N 

1-4 

I 4 

M 

13-24 

E12.5 

TM ( I ) 

25 -36 

E12.5 

TM ( I ) 

7 -12 

I 6 

NPI(N) 

5 - 6 

2X 

— 

13-18 

I 6 

NPJ(N) 

7 -18 

E 12.5 

XORD(M) 

3 7 - 4 8 

E 12.5 

TM ( I ) 

4 9 - 6 0 

E 12.5 

TM ( I ) 

61 -72 

E12.5 

TM ( I ) 

19-24 

I 6 

NPK(N) 

2 5 - 3 6 

E12.5 

CTÍN) 

3 7 - 4 8 

E 12.5 

CP(N) 

19- 30 

E12.5 

YORD(M) 

to 
h-1 

1 

TÄTEST 



Card 

9 

Column 

Format 

Symbol 

1 - 6 

16 

J 

7 - 1 8 

E12.5 

TO) 

19-24 

I 6 

J 

2 5 - 3 6 

E12.5 

T O ) 

3 7 - 4 2 

I 6 

J 

4 3 - 5 4 

E12.5 

Τ ( I ) 
1 

5 5 - 6 0 

16 

J 

61 -72 

E12.5 

T ( I ) 

Card 

10 

Column 

Format 

Symbol 

1 - 6 

I 6 

NTT ( I ) 

7 -12 

I 6 

NTMI ( I ) 

to 
to 

Card 

11 

Column 

Format 

Symbol 

1-12 

E12.5 

TI(I,N) 

13-24 

E12.5 

TIM1(I;N) 

25 -36 

E12.5 

TI( I ,N) 

37 -48 

E12.5 

ΤΙΜΚΙ,Ν) 

4 9 - 6 0 

E12.5 

ΤΙ( Ι ,Ν) 

61-72 

E12.5 

ΤΙΜΚΙ,Ν) 

Card 

12 

Column 

Format 

Symbol 

1-6 

I 6 

M 

7-12 

I 6 

NTMB(I) 

13-18 

I 6 

L K I ) 

J9-24 

I 6 

L J ( I ) 

TAFEST 



Card 

13 

Column 

Format 

Symbol 

1-12 

E12.5 

H(I ,N) 

13-24 

E12.5 

TF(I,N) 

2 5 - 3 6 

E12.5 

ΤΙΜΒ(Ι,Ν) 

3 7 - 4 8 

E12.5 

H(I ,N) 

4 9 - 6 0 

E12.5 

TF(I,N) 

61 - 7 2 

E12.5 

ΤΙΜΒ(Ι,Ν) 

Card 

14 

Column 

Format 

Symbol 

1 -6 

1 6 

M 

7-12 

I 6 

NTMX(I) 

13-18 

I 6 

Ml ( I ) 

19-24 

I 6 

MJ(I ) 

to 
00 

Card 

15 

Column 

For mat 

Symbol 

1 -12 

E12.5 

FLUX (I,N) 

13-24 

E12.5 

ΤΙΜΧ(Ι,Ν) 

25-36 

E12.5 

FLUX(IyN) 

37 -48 

E12.5 

ΤΙΜΧ(Ι,Ν) 

4 9 - 6 0 

E12.5 

FLUX(I,N) 

61 -72 

E12.5 

TIMX (I,N) 

Card 

16 

Column 

Format 

Symbol 

1 - 6 

I 6 

IFIRST(I) 

7-12 

I 6 

ILAST(I) 

13-18 

I 6 

NTMQ(I) 

TÄTEST 



Card 

17 

Column 

Format 

Symbol 

1 -12 

E12.5 

Q(I,N) 

13-24 

E12.5 

TIMQ(I,N) 

2 5 - 3 6 

E12.5 

Q(I,N) 

3 7 - 4 8 

E12.5 

TIMQ(I,N) 

4 9 - 6 0 

E12.5 

Q(I,N) 

61 - 7 2 

E12.5 

ΤΙΜΟίΙ,Ν) 

TAFEST 

to 
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5.3. pescrigtion of thejprinted outgut 

As an illustration of the printed output of TAFEST, we re­
produce hereafter the results for the one-dimensional pro­
blem of a constant heat-flux applied to a semi-infinite so­
lid (see section 4). 



* * * TEST TAFEST - CONSTANT HEAT FLUX APPLIED TO A S E M I - I N F I N I T E SOLID * * * * * * * * 

THIS PROBLEM I S SOLVED UNDER PLANE CUNDITIONS 

NUMBER OF ELEMENTS = 38 

NUMBER OF NODAL POINTS = 40 

NUMBER OF TIME POINTS = 11 

THERMAL CONDUCTIVITY (h/CMC) = l.OOOOE 00 
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A PRACTICAL PROBLEM 

We analyzed a transient heat-flow in the graphite matrix of 
a HTGR fuel element. As indicated by Fig. 4, the analysis 
is limited to the symmetric portion of the graphite matrix. 
Fig. 5 shows the finite element grid that has been used. The 
transient heat-flow is due to a power increase of the reac­
tor. Along the interface between fuel and graphite, we pre­
scribe a uniform normal heat-flux φ which increases with 
time as indicated on Fig. 6. 
The same figure gives the evolution of the heat transfer coef­
ficient h between graphite and coolant. The thermal proper­
ties of graphite are 

k = 0.2 W/cm °C ; gc = 4.5 Joules/cm3 - °C 
while the coolant temperature is 600°C. 

The upper curves in Fig. 6 show the temperature evolution 
at points A and Β of the symmetric cell. It can be noted 
that if the temperature at point Β decreases as soon as the 
heat transfer coefficient h is increased, the temperature 
at point A reacts with a small phase-difference due to the 
effect of the heat capacity. Figures 7 - 8 - 9 show the iso­
thermal curves in the graphite matrix at three typical in­
stants of the transient problem. 
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Fig. 3 General f low chart of TAFEST. 



38 -

Fig. i, Graphite matrix of a HTGR fuel element and symmetric cell. 

Fig. 5 Finite element grid. 
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Fig. 7 Isothermal curves at t = 20 sec. 
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