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ABSTRACT

The present report describes the computer code TAFEST that has been
developed for the purposc of solving two-dimensional transient heat-
conduction problems. The concept of finite elements in space and time is used
as a means of obtaining numerical responses.
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INTRODUCTION

Within the frame of the finite element method, solutions to
the transient heat-conduction equation are governed by a
system of first-order linear differential equations of the

form1

(k] {1} « [e]{r(eD} = {F ()} (12)
{T(0)}= {10} (1b)

where {T (tﬁ' denotes the temperature vector, (F (tﬁ

is the 'load' vector, ZfK;7 is the conductivity matrix and

/ C_/ the heat-capacity matrix.

The vector {To} specifies the initial values of the tempera-

ture.

The differential system (1) can be integrated numerically with
the aid of a digital computer. The most critical step is, of
course, to choose an integration method that combines efficien-
cy and accuracy.

In this report, the concept of finite elements in space and
time is used as a means of integrating the differential system
(1). The basic variational formulation involving both time and
space variables is described by reference to the Galerkin pro-
cess.

Although various elements of the space-time domain can easily
be derivedz, the only element described here is a right trian-
gular prism of the (x, y, t) domain. This element is shown to
lead to a better short-time accuracy than the Crank-Nicholson
scheme used by Wilson—Nicke113, Zienkiewicz—Parekh4 and Ful-

lards.

The main features of the computer code TAFEST are described in
the last part of the report. This code was developed for the



purpose of solving two-dimensional transient heat-conduction
problems by means of the indicated space-time element. A ty-
pical example has been included in order to show the type of
results that can be obtained on using the code.

BASIC VARTATIONAL EQUATION

Let it be required to solve the transient heat-conduction
equation

k div(grad T)+Q(x,y,z,t) - gc 3 ﬂ =0 (2)

in a domain V bounded by a surface S .

In order to formulate a variational problem associated with
(2), we multiply it by an arbitrary admissible temperatu-
re variation 6T and use the property

div(aB) = a divB + Bgrad a (3)

Such a manipulation indicates that

div (k grad T 6T) - k grad T grad &T + Q 6T - 9c—315T 0 (4)

We now integrate eq. (4) over the domain V and the time t
and transform the volume integral for the first term by means
of the divergence theorem. This enables the order of the par- -
tial derivatives to be reduced and yields :

/f — ©T dSdt + //k grad T grad 6T dV dt -

tv

//QSTdth+//gc—6Tdth:0 (5)



3.

3.7,

with n denoting the outward unit normal to S .

Since eq. (5) holds for an arbitrary temperature-variation
6T , eq. (1) is also satisfied. The variational equation
(5) can thus be used as a basis for a numerical solution of

transient-conduction problems.

The main problem in solving eq. (5) consists in the defini-
tion of suitable finite elements in the space~time domain.
For any such element, the local field will be represented in
the form '

M
T(xy,zt) = Z Ni(xyzt) T (6)
i=1

where the modes Ni depend on space and time, while the M
nodal values Ti are indépendent on the coordinates x, y,z,t.
The characteristic equations for the element are obtained by
introduction of the local representation (6) into the basic
variational equation (5).

The assembly of the various elements appearing in the discre-~
tization of the space-time domain follows the usual rules of
the finite element method.

A RIGHT TRIANGULAR PRISM IN THE (x, v, t) DOMAIN

Although various elements in space and time can easily be de-
rivedz, we shall concentrate on the particular element that
has been choosen for the computer code TAFEST to be described
in section 5.

The right triangular prism represented in Fig. 1 has six de-~
grees of freedom. In order to ensure the continuity of the
temperature on the interfaces between the various elements,



the local temperature field is choosen in the form :

T®(x,y,t) = a+bx+cy+dt+ext+flyt (7)

In function of the nodal parameters (Fig. 1)

. |
%} = (LT T T T T (8)

the local field can be written as

Ty, ) = [N, N, N, N Nm,Nn] (19 (9)
with

Ni=Mi(t -t)  Nj=Mj(y-t) N = Mic(t - 1)

Nl:Mi(t—ti) i NpEMi(t-t) 5 No=M(t-t)

M; = 2Lt b;xv+ ciy . V = Volume of the prismatic element,

Aj=Xj Y = XkYj bi:yj—yk ; Cj= Xk = X

The modes Mj and Mg are obtained by cyclic permutation
of the indexes in the order i, j, k. The parameters ts and

ty define the time interval spanned by the element.

3.2. Element characteristics

The governing equations for the element are obtained through
introduction in eq. (5) of independent variations on the six
nodal parameters (8). Such an operation yields the following
relationship :

GRGRRG (0
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The matrix [He] is the sum of a conductivity matrix

(LB +[C) % ((B1+(C)

_ kv
[k oy (1)

%(ramcz) ([B1 +[C))

and a heat-capacity matrix

IO EED

[#°] === (12)
[?] -[r] |
where
(bjbj+cjci) (bjbj+cicj) (bjbg+cicy)
[8]+[c] = (bjbjecjcj) (bjbgecic) |  (13)
Symmetric (b by +cici)
- .
- . -
Pii Pij Pik
[P) = |y Py Py (14)

Pij :ﬁa,wbpuciy) (aj+bjx+cjy) dx dy
A
A = Area of triangle i,j,k.

»
{FS} = (R, F R R B F) (15)
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If the internal heat-generation Q 1is independent of .spa-
ce but varies linearly from Q to Qg during the time in-
terval t; - t; , the contributed nodal loads are easily

1
shown to be

L]
3 1 B! El F2,R2 E2
{FS} - (F,F Rl R R F2) (16)
where
Fl=aq+1q ; F=La+a
Q - i T2 ' Q T2 l

e e e e . (. . G s . e, s e G e S . s s s B e S e e e B SO . P S S Y i e Sl e W S

Suppose we impose between nodal points i and j (Fig. 1)
a uniform normal heat-flux which varies linearly from @;
to Zﬁ during the time interval t, - ts. The first term in

1l
eq. (5) shows that such a condition induces the nodal loads

e L(t-t) 1 2 2
(rg) = -t (Rl Rl 0L FA R O) (17)
where
= 1= 2 1 . _
o =Btz d fo =79+ T

L = Length of side i-j

Convective heat-transfer

Suppose now we have a convective heat-transfer between nodes
i and j. The heat-transfer coefficient h as well as the
fluid temperature Tj vary linearly during the time inter-
val t; - t.. This type of boundary condition yields a con-
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tribution to both the matrix /"H® 7 and the nodal loads

{F%}

The additional terms in the matrix /H® 7 are

1 im0 1, 1T 0]
0 12-T2 T, O
(Koo = S SRR IS
36 T o4n o0
Symmetric T 0
| 0
= _
wvhere
Ty=3hj+h ; T=hi+h ;| T3=zhj+3h

hi:h(ti) ; hl:h(t[)

The nodal loads contributed by the condition of convection

are

{ onv} "L(tl—l:tll <51 51,0, 5, Sy, 0) (19)

where

Sy=hi (3T + ) + h(TH+1})

L i
Sp= hy (3T +T) + hi(T +Tfl)

T%,T% = Fluid temperature at times tj and t|.
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ACHIEVABLE ACCﬁRACY WITH RESPECT TO THE CRANK-NICHOLSON SCHEME

The one-dimensional example of a constant heat-flux applied
to a semi-infinite solid has been analyzed in order to il-
lustrate the achievable accuracy with the space-time element
previously described.

A finite element solution for this problem is given by Wilson
and Nickell 3 using a regular mesh with AX = 0.2, The ti-
me integration is performed on the basis of a recurrence re-
lation which can be shown to be a generalization of the Cramk-
Nicholson sheme®, Constant time steps At = 0.1 are used.

We solved the same problem by means of finite elements in
space and time, i.e. with eq. (10) as the integration formula.
Fig. 2 compares both numerical solutions to the exact one.:

As can be seen, a much better short-time accuracy is achieved
with the space-time element. The reasons for this better be-
haviour with respect to the Crank-Nicholson scheme are fully
explained elsewhere6.

THE COMPUTER CODE TAFEST

In this section we describe the main features of the computer
code TAFEST. This code was developed for thepurpose of sol- |
ving two-dimensional transient heat-conduction problems by
means of finite elements in space and time. Starting from
known temperatures at time t, the last three equations in re-
lation (10) are used as an integration scheme to yield the
temperatures at time t 4+ A t. The assembled equations are
solved by means of Choleski's method. A general flow chart of
the programme is given on Fig. 3.

TAFEST has been written in Fortran IV language and compiled
on the IBM 370/165 computer of CETIS (EURATOM C.C.R. - Ispra).
In the present version, the code has a size of about 200K by-
tes, so that no auxiliary storage space is needed.
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5.1.Description of input data

The input data required by TAFEST are defined here in the
sequence in which they occur. References to card numbers
will be found in the listing of data and formats which fol-
lows this section.

TIT The problem title in 72 alpha-numeric characters,
This information is used to identify the problem
in the printed output.

CARD (2)

NUMEL The number of triangular-shaped elements in the
structure (max. 700)

NUMNP The number of nodal points (max. 400)

NUMTM Number of points used in the discraization of the
time (Initial time included) (max. 50)

N1 Option to define the coordinate system used for in-
put

0 means Cartesian
1 means Polar

N2 Option to define the type of the heat flow

0 means plane
1 means axisymmetric

CARD (3

N3 (I) Option to punch temperature cards at time TM (I)
(I = 1, NUMTM)



CARD (4)

NTI

NTB

NTF

NTQ

CARD (5)

COND

CAPA

CARD (6)

™ (I)
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O Print nodal temperatures but do not punch;
1 Print nodal point and element temperatures
Punch the element temperatures;
Print and punch nodal point temperatures;
Print and punch element and nodal point tempera-
tures.

Number of nodal points with prescribed temperatu-
res (max. 100)

Number of elements with one side subject to convec-
tion (max. 100)

Number of elements with a non-zero normal heat-flux
prescribed on one side (max. 100)

Number of groups of elements with internal heat-ge-
neration (max. 100)

Main thermal conductivity (w/cm-°C)

Main heat capacity gc¢ (Joule/cm3 - °C)

Location (expressed in seconds) of the various

points used in the discretisation of the time.

(I =1, NUMTM) (T (1) is the initial time Ffor
the transient problem).

Six time stations are given per card.



CARD (7)

One card

N

NPI (N).

NPJ (N)

NPK (N)

CT (N)

CP (N)

CARD (8)

One card
(M =1 ,

M
XORD (M)

YORD (M)

CARD (9)

T (I)

- 15 -

is required for each element (N =1, NUMEL)

The element index number

Index numbers of the element nodal points

The effective thermal conductivity of element N
is COND - CT (N) (See card (5))

The effective heat-capacity of element N 1is
CAPA - CP (N) (See card (5))

is required to describe each nodal point
NUMNP)

The nodal point index number
The x or r-coordinate of nodal point M (mm)

The y or ©-coordinate of nodal point M (an-
gles are given in degrees)

Non processed index that may be used to number the
nodal points if J = I.

Initial temperature (°C) at nodal point I
(I =1, NUMNP ; 4 nodal point temperatures are gi-
ven per card)

Cards (10) and (11) are repeated NTI times (I = 1, NTI).



CARD (10)

NTT (I)

NTMI (I)

CARD (11
TI (I, N)

TIMI (I,N)

- 16 -

Index number of a node with prescribed tempe-
rature

Number of points in time which are given to
describe the evolution of the prescribed tem-

perature.

(Piecewise linearization of the effective
temperature)

Nodal point temperature (°C) at time TIMI(I,N)

Time in seconds

Three groups TI, TIMI are given per card (N = 1, NTMI (I))

Cards (12) and (13) are repeated NTB times (I = 1, NTB)

CARD (12)

M

NTMB (I)

LI ( I)

LY (1)

CARD (13)

H (I, N)

Index number of an element subject to convec—
tion heat-transfer on one side.

Number of points in time which are given to
describe the evolution of the convective
heat-transfer.

Nodal points defining the element side

Subject to convection.

Value of the heat-transfer coefficient
(w/cm2 - ©°C) at time TIMB (I, N)
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TF (I,N) Temperature of the reference fluid (°C) at ti-
me TIMB (I, N)

TIMB (I,N) Time in seconds

Two- groups H, TF, TIMB are given per card (N = 1, NTMB (I))

Cards €14) and (15) are repeated NTF times (I = 1, NTF).

CARb (14)

M ~ Index number of an element with a prescribed
normal heat-flux on one side. '

NTMX (I) Number of points in time which are given to de-
scribe the evolution of the prescribed heat-flux.

MI (I) Nodal points defining the element side with pre-
MJ (I) scribed heat-flux.

CARD (15

FLUX (I,N)  Prescribed heat-flux (W/cm®) at time TIMX (I,N)
TIMX (I,N) Time in seconds

Three groups FLUX, TIMX are given per card (N = 1, NTMX (1)).

Cards (16) and (17) are repeated NTQ times (I =1, NTQ).

CARD (16

IFIRST (1I) Index number of the first element in a group
with internal heat-generation.

ILAST (I) Index number of the last element in a group with

internal heat-generation.
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NTMQ (I) Number of points in time which are given to de-
scribe the evolution of the internal heat gene-

ration.
CARD(1 72
Q (1I,N) Heat generation (W/cm3) at time TIMQ (I,N)

TIMQ (I,N) Time in seconds

Three groups Q-TIMQ are given per card (N = 1, NTMQ (I))



5.2

Input Data Sheets

s S Gt s St o St S T o ——
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Column 1 -72
Format 18A4
Symbol TIT
Cotlumn « 1-6 7-12 13 -18 19 - 24 25-30
Format 16 16 16 16 16
Symbol NUMEL NUMNP NUMTM N1 N2
Column 1 2 3 b | —m = e e e e e e e e e 73 80
Format 1 T I N R B B B ettt o n
Symbol N3(IIINZ()INI(3)INB(4)| — — — — = m = — e o e e e e N3(79)|N3(80)
Column 1-6 71-12 13-18 19- 24
Card
Format Ié 16 16
Symbol NTI NTB NTF NTQ
TAFEST

—Oz_



Column 1-12 13- 24
Card
Format E12,5 £12.5
5
Symbol COND CAPA
Column 1-12 13-24 25 - 36 37-48 49 -60 61-72
Card
Format E12.5 E12.% E12.5 E12.5 E12.5 E12.5
5 ‘
Symbol ™ (1) ™ (1) ™ (1) ™ (1) ™ (1) ™ (1)
Column 1-6 7-12 13-18 19 - 24, 25-36 37 -48
Card
Format 16 16 16 16 E12.5 E12.5
7
Symbol N NP1 (N) NPJ(N) NPK (N) CT{N) CP(N)
Column 1-4 5-6 7-18 19-30
Card
Format 1 4 2X E12.5 E12.5
8
Symbel M —-— XORD (M) YORD (M)

—'[z—



Column 1-6 7-18 19 - 24 25-36 37-42 43-54 55-60 61-72
Card
Format 16 E12.5 16 E12.5 16 E12,5 16 E12.5
9
Symbol J T(1) J T(1) J T (1) J T(D)
ol
Column 1-6 7-12
Card
Format 16 16
10
Symbol NTT (1) NTMI(1)
Column 1—12 13- 24 25- 36 37-48 49-60 61-72
Card
Format E12.5 E12.5 E12.5 E12.5 E12.5 E12.5
1A
Symbol TI(IL,N) TIMI(I,N) TI(IN) TIMI(I,N) TI(LN) TIMI(I,N)
Column 1-6 7-12 13-18 19 - 24
Card
Format 16 16 16 16
12
Symbol M NTMB (1) LI(1) LJ(1)
. TAFEST




Column 1-12 13 ~-24 25 -36 3748 49-60 61-72
Card
Format E12.5 E12.5 E12.5 E12.5 E12.5 E12.5
13
Symbol H(I,N) TF(I,N) TIMB(I,N) H(IN) TF(I,N) TIMB(I,N)
Column 1-6 7-12 13-18 19 -24
Card
Format 16 16 16 16
14
Symbot M NTMX (1) MI(1) MJ(1)
Column 1-12 13-24 25-36 37 - 48 49 - 60 61~72
Card
Format E12.5 E12.5 E12.5 E12.5 E12.5 E12.5
15
Symbol FLUX (IN) [ TIMX(I,N) | FLUX(I,N) TIMX (I,N) | FLUX (I,N) TIMX (IN)
Column 1-6 7-12 13-18
Card
Format 16 16 16
16
Symbol IFIRST(1) | ILAST(1) | NTMQ(1)
TAFEST

—gz—



Column 1-12 13-24 25- 36 37-48 49-60 61-72
Card
Format E12.5 E12.5 E12.5 E12.5 E12.5 E12.5
17
Symbol Q(I,N) | TIMQ(I,N) Q(IL,N) | TIMQ(,N) Q(,N) | TIMa(,N)
TAFEST

-vz ‘_<
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5.3. Description of the printed output

As an illustrationof the printed output of TAFEST, we re-
produce hereafter the results for the one-dimensional pro-
blem of a constant heat-flux applied to a semi-infinite so-
1id (see section 4).



*%k  TEST TAFEST - CONSTANT HEAT FLUX APPLIED TO A SEMI-INFINITE SOLID #¥k&kk&x

THIS PRUBLEM IS SOLVED UNDER

NUMBER UF ELEMENTS
NODAL POINTS
NUMBER OF TIME POINTS

NUMBER

OF

THEKMAL CONDUCTIVITY (wW/CMC)
THERMAL CAPACITY (J/CM3C)

NODES WITH PRESCRIBED
ELEMENTS WITH CONVECTION

NUMBER
NUMB ER
NUMBER
NUMB ER
N1
N2

JF
GF
OF
UF

ELEMENTS WITH PRESCRI BED HEAT FLUX
GROUPS UF ELEMENTS WITH HEAT GENERATICN =

PUINTS IN THE TIME DOMAIN
TIME (SEC) N3

Ce0
6.(00E-01

0
g

TEMPERATURE

TIME (SEC) N3

1. 000E-0O1
7. 000E-0O1

0
0

PLANE COUNOITIONS

= 38
= 40
= 11
= 1.0000E 06O
= 1.0000E 00
= 0

0O 0 O =~ D

TIME (SEC) N3

2.000E-01 Y]
8.000E-01 0

TIME (SEC) N3

3.000E-01 0
9.000£-01 0

TIME (SEC)

44 000E- 01
1. 000E 00

N3

0
0

TIME (SEC)
5.000E-01

N3
0

_gz—



Y-0ORD
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X=0RD
(MM)
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cP
(J/CM3 C)

cT
{(W/CM C)

tLEM.

cp

(J/7CM3 C)

CT
(W/C4 C)

ELEM.
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TIME (SEC)

ELEM 1 TIME POINTS 2 NODES 1 2
FLUX (W/CM2) TIME (3EC) FLUX (W/CM2) TIME (SEC) FLUX {W/CM2)
~-1.000E QO C.?2 -1.000E 00 1.000E 02



INITIAL TEMPERATURES - TIME (S3EC) = D.0

NODE TEMPERATURE (C) NODE TEMPERATURE (C) NODE TEMPERATURE (C) NODE TEMPERATURE {C)
0.0 2 0.0 3 0.0 4
5 0.C 6 0.0 7 0.0 8 0.0
0.0 10 0.0 11 0.0 12 0.0
13 0.¢C 14 0.0 15 0.0 16 0.0
17 0.0 18 0.0 19 0e 0 20 0.0
21 0.0 22 Go0 23 0.0 24 0.0
25 0.0 2% 0.0 27 0.0 28 2.2
29 0.0 30 0.0 31 0.0 32 0.0 '
33 0.0 34 0.0 35 0.0 36 0.0 o
37 0.0 38 00 39 0.0 40 0.0 ?

DIMENSIONS OF THE MATRIX S = 40% &4



TIME (SEC) = 1.000e-01

NDDE TEMPERATURE (C) NJODE TEMPERATURE (C) NODE TEMPERATURE (C) NODE TEMPERATURE (C)

1 C.39 2 0.37 3 0.16 4 D.18

5 0.08 6 .08 7 0.03 8 deO4

9 Qe iz 10 0.02 11 . 01 12 0.01
13 0. Cu 1% 0.00 15 0. 00 16 0.00
17 0. 0O 18 0.00 19 Je 00 20 0.00
21 0.00 22 0.00 23 e 00 24 0.00
25 Qe GO é 0.00 27 0. 00 28 0.00
29 00O 30 0.00 31 V. 00 32 0.00
33 0. GO 34 0.00 35 0. 00 36 0.00

37 De NV 38 0.00 39 0. CO 40 0.00

_‘[8—



TIME {SEC) = 2.000e~01

NODE TEMPERATURE (C) NODE TEMPERATURE (C) NODE TEM?ERATURE (C) NODE TEMPERATURE (C)

1 0. 49 2 Ge49 3 0.33 4 0.33
0.20 6 Cel9 7 0.11 8 .11

9 0. 06 10 0.06 11 0.03 12 J3.03
13 0. 02 14 0eD2 15 0.0l 16 0.01
17 0. 00 18 0.00 19 0. 00 20 0.00
21 0. 00 22 0.00 23 0. 00 24 J.00
25 0.00 26 0.00 27 Q. 00 28 0.00
29 0. 00 32 C.00 31 0. 00 32 0.00
33 0.0Nn 34 0.00 35 0« 00 36 0.00
37 0.00 38 0.00 39 0. 00 40 0.00



TIME (SEC) = 3.000E-01

NODE

17
21
25
29
33
37

TEMPERATURE (C)

0.62
0.29
0.12
0. 04
0.01
0.00
0.00
0.00
0.00
0. 00

NUDE

2

6
10
1%
18
22
26
30
34
33

TEMPERATURE (C)

0.61
0.29
0.12
0.04
0.01
0.00
0.00
0.00
0.00
0.00

NODE

3

7
11
15
19
23
27
31
35
39

TEMPERATURE (C)

0.43
0.19
0.07
J. 02
0.01
0. 00
0. 00
0. 00
0. 00
0. 00

NODE

4

8
12
16
20
24
28
32
36
40

TEMPERATURE ((C)

0.43
0.19
0.07
0.02
0.01
0.00
0.00
0.00
0.00
0.00
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A PRACTICAL PROBLEM

We analyzed a transient heat-flow in the graphite matrix of

a HTGR fuel element. As indicated by Fig. 4, the analysis

is limited to the symmetric portion of the graphite matrix.
Fig. 5 shows the finite element grid that has been used. The
transient heat-flow is due to a power increase of the reac-
tor. Along the interface between fuel and graphite, we pre-
scribe a wuniform normal heat-flux ¢ which increases with
time as indicated on Fig. 6.

The same figure gives the evolution of the heat transfer coef-
ficient h between graphite and coolant. The thermal proper-

ties of graphite are

k= 0.2 W/em°C ; gc= 4.5 Joules/cm® - °C

while the coolant temperature is 600°C.

The upper curves in Fig. 6 show the temperature evolution

at points A and B of the symmctric cell. It can be noted
that if the temperature at point B decreases as soon as the
heat transfer coefficient h 15 increased, the temperature
at point A reacts with a small phase-difference due to the
effect of the heat capacity. Figures 7 - 8 — 8 show the iso-
thermal curves in the dgraphite matrix at three typical in-
stants of the transient problem.
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