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ABSTRACT 

In connection with a study on the detection of irradiated foodstuffs by means 
of ESR, the induction of free radicals in plastic packaging material by ionizing 
radiation was investigated at doses of 2 Mrad. Except for polymers with a large 
fraction in the glass state above the glass temperature and polymers with plasti-
cizers, radicals can be measured during periods up to a few months. Radical yield 
was found to depend on dose rate and temperature. A theoretical model that 
accounts for these parameters is discussed. Decay was found to follow approxi
mately first order kinetics characterized by two rate constants. 
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ESR STUDY OF IRRADIATED PLASTICS* 

1 — INTRODUCTION 

It is well known that irradiation of solid material with X-rays, y-rays and fast electron 
beams induces the foi mation of free radicals which can be detected in principle by electron spin 
resonance (ESR). In the framework of an investigation on identification methods of irradiated 
foodstuffs, the applicability of this measuring technique was studied. However it appeared from 
preliminary measurements on foodstuffs [1] that the stability of these radicals is so low that an 
hour aftei the irradiation no ESR signal could be measured. This low stability was attributed 
to the high moisture content. Measurements on dry foodstuffs were more promising indeed. 
Irradiation of wheat for example gives an approximately 19 gauss broad signal and a radical 
yield of 3 spins per 100 eV deposited energy. The stability of the resonance signal was low. In 
a nitrogen atmosphere the half value time was about 40 days. Samples kept in open vessels showed 
a 4 fold decrease in a few days. Furthermore it may be remarked that in dried foodstuffs a large 
concentration of radicals was found prior to the irradiation. No significant change was found 
after the irradiation of these samples up to a dose of 1 Mrad. This means that the method can 
not be used for identification of irradiated foodstuffs as such. 

More promising seems an indirect method via the radicals formed in the packaging material 
that generally encloses the product during the irradiation. Therefore an investigation on the for
mation and decay of radicals in a number of plastics was started. In this report the results of this 
investigation are communicated. 

EXPERIMENTAL REMARKS 

2.1 — Irradiation of the samples, kept in evacuated quartz tubes, were performed with the aid 
of a 850 Ci Co^-source^. The absorbed dose was calculated from the irradiation time and the 
estimated exposure rate at the position of the sample, assuming a quadratic dependence of the 
exposure rate and the distance to the source. The electron density of the sample material was 
calculated from the Z-values based on the chemical formulae and the specific density. Since there 
was no need for a determination of the absolute radical yield to a very high precision, at this stage 
of our work, no attempts were made to apply any correction to the dose thus estimated. The most 
important sources of error are: 

a) deviations from the assumed quadratic relationship; 
b) neglect of the radiation scattered from the source holder and the walls of the irradiation well; 
c) lack of electron equilibrium due to the small dimensions of the sample. 

The accuracy of the dose is estimated to be better than 15%. The dose rate was changed 
by varying the distance of the samples to the source. The highest dose rate that could be attained 
was 0.66 Mrad/h and unless stated otherwise it is to be taken that all the samples were irradiated 
at this dose rate. 

* Work performed under Euratom contract 033-67-4 PSTN. 
t We wish to acknowledge the Standard Dosimetry Group of our Institute for the use of this source. 



2.2 — Resonances were investigated at room temperature with the aid of a homemade spec

trometer with the following specifications: 

— frequency 

— sample cavity 

— max. microwave power at the sample 

— modulation 

—■ frequency stabilisation 

9000 MHz (Xband) 

TE1 0 2 rectangular (AEG) 

40 mW 

140 kHz by means of a loop outside the cavity 

locked to the resonance frequency with a 10 kHz 

signal applied to the repeller 

—■ klystron : Varian type V 153 

— magnet : Varian type V 3400, 9 inch 

The sensitivity of the spectrometer was determined with carbon samples in which the 

number of free electrons is known. The maximum sensitivity at a time constant of 0.5 sec and a 

hypothetical line width of 1 gauss is estimated as 1012 free spins. Measurements of the spectra 

were performed at powei levels low enough to prevent saturation broadening. The power level 

mostly used was 2 mW. The modulation amplitude was chosen as 2 gauss, small enough to 

suppress serious modulation broadening of the spectral lines. 

The ESR measurements were performed with the samples in the same tubes in which 

the samples were irradiated. Due to the formation of colour centres by the irradiation a strong 

background signal was observed. The colour centres were removed by heating the end of the 

tube, while the samples were at the other end. 

2.3 — The materials studied were obtained from commercial sources and were used without 

further purification. Most materials were received in form of plates, a few mm thick, and were 

machined to cylinders of length 5 mm and 0 2 mm. 

The materials, characterized by some specific propeities, are listed below. Tg is the glass 

temperature, defined as the temperature at which the amorphous glass state changes into the 

rubber state, ρ means specific density. 

1. Polyethene in three varieties: 

a) highpressure polyethene; a highly branched structure with low crystallinity and high 

flexibility; ρ = 0.92 gram.cm  3 ; 

b) low pressure polyethene; a less branched structure with higher crystallinity and lower 

flexibility; ρ = 0.95 gram.cm  3 ; molecular weight approximately 800,000; 

c) low pressure polyethene with high molecular weight; approximately 5,000,000 (H.M. 

polyethene) ; 

All varieties are nontransparent. 

2. Polypropene; highly crystalline isotactic polymer; ρ = 0.95 gram.cm  3 ; Tg = — 15°C; 

nontransparent. 

3. Polystyrene; amorphous atactic polymer; ρ = 1.05 gram.cm  3 ; Tg = 100°C; highly trans

parent. 

4. Polyacetale(polyoxymethene); highly crystalline polymer; ρ = 1.14 gram.cm  3 ; Tg = — 50°C 

transparent. 

5. Polytetrafluorethene (Teflon); partly amorphous, partly crystalline polymer; ρ = 2.20 gram. 

c m  3 ; Tg = 126°C; transparent, 

6. Polycaprolactam (Nylon); crystalline polymer; ρ = 1.13 gram.cm  3 ; Tg = 50°C; trans

parent. 

7. Polyvinylchloride; amorphous polymer in three varieties: 

a) PVC139; ρ = 1.39 gram.cm  3 ; T, = 87°C; 

b) PVC138; ρ = 1.35 gram.cm  3 ; Tg = 87°C; 
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c) a variety with a high content of plasticizer leading to a glass temperature of about 0°C; 
ρ = 1.30 gram.cm -3 . 

8. Polymethylmethacrylaat (PMMA); amorphous polymer; ρ = 1.18 gram.cm - 3 ; Tg = 110°C; 
an extruded and a cast sample were studied ; both varieties were highly transparent. 

9. Phenol-formaldehyde paper (PF-paper); a thermo set polymer; ρ = 1.40 gram.cm - 3 ; 
non-transparent. 

10. Phenol-formaldehyde tissue (PF-tissue); a thermo set polymer; p = 1.40 gram.cm - 3 ; 
non-transparent. 

11. Polycarbonate; amorphous polymer; ρ = 1.20 gram.cm - 3 ; Tg = 150°C; highly transparent. 
All sample tubes were evacuated down to a pressure of about 10 - 5 torr and sealed off. 

This means that no attempts were made to outgas the samples. A large fraction of gases which 
might be dissolved in the polymer are still there during the irradiation. 

RESULTS 

3.1 — Spectra 

The spectra, in the derivative form, of the polymers irradiated up to a dose of 2 Mrad 
at room temperature are given in figures 1, 2 and 3. A spectroscopic splitting value of g = 2.0013 
is indicated in the figures. This position is determined from the sharp component of the quartz 
spectrum which according to Weeks[2,3] has a splitting factor of g = 2.0013 + 0.0006. 

Polyethene 

In the case of H.M. polyethene a seven line spectrum with a hyperfine splitting (h.f.s.) 
of 12.5 gauss was found. A similar, but less pronounced, spectrum was found for low pressure 
low molecular polyethene. No signal was observed for the high pressure polyethene. 

The seven line spectrum might be due to a combination of even and odd spectra with 
hyperfine splittings in the order of 25 gauss. Lawton et al.[4] for instance found after irradiation 
of high density polyethene a radical, due to hydrogen abstraction from the main chain, giving 
a 6 line spectrum with a h.f.s. of 31 gauss and furthermore a 5 line spectrum (h.f.s. 20 gauss) 
which they attributed to main chain scission. Even and odd spectra were also found by Onishi 
et al.[S]. 

Under the influence of oxygen the spectrum was found to change in an asymmetrical 
singlet. This radical is probably due to a ROO· radical. The unpaired electron is, according to 
Abraham and Whiffen[6], strongly localized on the oxygen atom leading to a singlet structure. 

Polypropene 

In the case of polypropene a spectrum is found which resembles an asymmetric singlet 
with g n = 2.033 and g± = 2.004. The results are not in accordance with measurements of Onishi 
et al.[5] who found a combination of an eight-line, seven line, six-line and singlet spectra. The 
observed splittings were all in the order of 20 gauss. A singlet spectrum was found by them after 
very high irradiation dose (290 Mrad). The form of this spectrum was definitely different from 
the spectrum presented here. 

The most probable explanation for the observed spectrum seems to be the formation of 
a peroxy-radical, although the asymmetry is rather high. 
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Figs. 1, 2 and 3 — First derivative spectra of polymers measured at room temperature after an irradiation dose 
of 2 Mrad and a dose rate of 0.66 Mrad/h. The sample tubes were evacuated prior to the irradiation. The 
spectra as measured with the same sensitivity as the PVC-1.39 spectrum are multiplied with the factor given 
in the brackets. The sample weight of all samples is about 30 mg so that a rough idea about the radical yield 
for all polymers can be obtained by comparison with the results of PVC. The arrow indicates a g value of 
2.0013 at the same cavity frequency. 



Polystyrene 

The spectrum of irradiated polystyrene is a triplet, with a h.f.s. of 11 gauss and rather 

broad lines. This result is in accordance with other work[6,7,8,9]. The radical is of the cyclohexa

dienyl type and is the result of hydrogen addition to the aromatic ring[10]. 

Polyacetale 

For this polymer a doublet is found with a splitting of 12.5 gauss and lines of 6.5 broad. 

The main chain of this polymer is of the form  C H 2  0  C H 2  0  and the radical formed by 

abstraction of a proton is similar to the methanediol radical 

H 

HO—Ç—OH 

The observed coupling for this radical is 14 gauss. Although the coupling is clearly an αcoupling 

the splitting is smaller than the expected 23 gauss due to nonplanarity at the radical carbonfll, 

12,13]. We therefore conclude that the radical observed in polyacetale is formed indeed by 

hydrogen abstraction from the main chain. 

Polytetrafluorethene 

For Teflon a spectrum is found that is interpreted as a just resolved doublet with a splitting 

of 8 gauss and a linewidth of 8 gauss. The #value is remarkably high: g = 2.019. The only spec

trum that resembles this spectrum is found by Ard et α/.[14], where the many line spectrum found 

directly after irradiation changed after the admission of air in a badly resolved doublet attributed 

to a F2COO radical. The #value of this spectrum is close to the free electron value in contra

diction to the high #value of our spectrum. 

Polycaprolactam 

A badly resolved sextet spectrum is found in Nylon 6. The splitting is about 21 gauss. 
ι 

The radical is probably a radical of the type 

_CH2_çH_CH2_ 

The total width of the spectrum is the same as found by Onishi et al.[5], although their spectrum 

seems to be an uneven spectrum. 

Polyvinylchloride 

A single gaussian type line is found for the PVC samples without plasticizers. The soft 

PVC sample did not give a measurable ESR signal. The width Δ Hpp between the maxima of 

the derivative curve is found to differ for the two PVC samples. Values of 20 gauss and 30 gauss 

were observed. These values were found to depend on irradiation dose and time after the irra

diation. 

These results are in accordance with work found in the literature[6,15,16]. The spectrum 

is ascribed by Onishi et al. [17] to a polyenyl radical of the form CH2CH(CH = CH)„CH2, 

stabilized by bond resonances. The ΔΗρρ value of the singlet decreases when η the number of 

conjugated bonds increases. The observed widths would correspond to values of η in the range 5 

till 10. It may be remarked here that the action of oxygen on very small PVC samples has been 



studied by Loy[18]. The change of the ΔΗΡΡ value as a function of time can also partly be due to 

a change of the original radicals to the peroxy form. 

Polymethylmethacrylaat 

The nine line spectrum of PMMA found originally by Schneider et α/.[19] has become 

the subject of considerable discussion. It is now generally agreed that the spectrum is due to one 

radical. As originally suggested by Abraham et α/.[20] this radical is of the type 

,CH3 

sCOOR 

which is produced by chain scission. This radical would have two different configurations and 

thus the different intensities of the five line set and the four line set would reflect the relative prob

abilities of the two structures. 

PF-paper and PF-tissue 

For these thermo sets broad singlets were found with some additional structure which might 

be a triplet with a splitting of about 20 gauss. The singlet has a width of about 17 gauss for both 

polymers. The observed structure might be due to a triplet from a radical of the type CQH (splitting 

 17.68 gauss) and a singlet of a free electron localized on an oxygen atom. The small value of 

the αhydrogen splitting, leading to the triplet, may be attributed to the non planar configuration 

at the radical carbon. 

Polycarbonate 

In this nearly completely amorphous polymer a singlet is found with ΔΗρρ = 10.5 gauss. 

The spectroscopic splitting factor g is 2.0037. A main chain scission at the carbonate group could 

give a radical of the type OC = 0 which gives a singlet spectrum. 

We have however no further indications of this assumption. 

3.2 — Free radical yield 

The number of spins can be found by double integration of the derivative curve and 

comparison with a standard sample. In this way we determined thè radical yield, i.e. the number 

of spins per 100 eV dissipated energy. The number of spins per gram as a function of dose and a 

function of temperature are presented in figures 4 and 5 for high density PVC. The curves are 

of type 

N(œ) (1  exp  ßD) 

with N(oo) and β constants and D the radiation dose, β is of the order of 0.2 Mrad  1 . This beha

viour is in accordance with results described in the literature[21]. 

The initial radical yield G is given in the following table: 

dose rate 25 °C 45 °C 60 °C 

0.11 Mrad/h 5.8 3.8 2.9 

0.66Mrad/h 4.6 3.9 3.5 
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Fig. 4 — The number of spins per gram as measured 

in PVC1.39 as a function of irradiation dose 

at a dose rate of 0.66 Mrad/h. The ESR 

measurements were performed at room tem

perature, the irradiations at different tem

peratures as indicated. 
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Fig. 5 — As in fig. 4 at a dose rate of 0.11 Mrad/h. 

The above mentioned measurements were performed in air. A measurement of a PVC sample 

in vacuum, outgassed at 80°C, resulted in the same spectrum and about the same radical yield 

as compared with similar measurements in air. 

It can be seen from these measurements that the dose rate as well as the temperature 

influence the radical yield. 

At room temperature a higher dose rate is seen to result in a lower radical yield, while 

at higher temperature the reversed situation occurs. 

To check the dose rate and the spin concentration measurements on Laalanine have 

been performed for different dose rates. The resulting radical yield was found to be 6.0 ± 0.5 

spins/100 eV for dose rates of 0.11 Mrad/h, 0.22 Mrad/h and 0.66 Mrad/h with a total dose of 

2 Mrad. From measurements of Ebert et al.[22] it follows that a dose rate effect does not occur 

in alanine up to a dose rate of 3 Mrad/h. Furthermore a saturation effect did not show up for 

a dose of 2 Mrad. The results obtained for alanine for the different dose rates shows that the dose 

rate effect in PVC is not due to errors in the dose rate. The absolute accuracy of the spin con
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centration is not checked easily. Results of the radical yield of Laalanine, obtained by different 

authors, range from G = 1.2 spins/100 eV[22], G = 2.5 spins/100 eV[23] to G = 8.0 spins/100 eV 

[24]. In connection with our results on the radical yield in PVC it is interesting to mention the 

results of Onishi et α/.[15]. They irradiated this material at 196°C with 2 MeV electrons and 

determined the concentration of radicals as a function of dose. The initial irradiation yield found 

was 7.1 spins/100 eV, while the saturation value for the radical concentration was about 1 χ IO20 

spins/gram. 

3.3 — Decay of the radicals 

The stability of the radicals in the irradiated polymers is shown in figures 6,7,8 and 9. 

In these figures the amplitude of the ESR signal is plotted logarithmically versus time. For most 

radicals two runs were made, one with the sample in vacuum and the other in air. In most cases 

the decay seems to be governed by first order kinetics with two decay times. The short time 

decay is in the order of a few days and the long time decay a factor 10 higher. The difference for 

decay in air and in vacuum is generally not large, only for H.M. polyethene a decrease in signal 

versus time is found in vacuum and an increase in signal vs. time in air. As mentioned earlier 

this should be due to the formation of the ROÓ radical which would have in that case a higher 

amplitude than the original radical. 

Temperature dependent decay was measured for PVC. PVC samples were irradiated up 

to a dose of 3.6 Mrad at a dose rate of 0.11 Mrad/h and the decay was followed at 80°C and at 

30°C, both in a vacuum of about 10  3 torr. For both cases two decay times (half value times) 

were found: 

80°C / ( y = 6 . 6 m i n i f | ) = 180 min 

30°C /'[>= 0.5 days ^ = 6 0 days 

From these results an activation energy of 45 kcal/mole and a preexponential factor 1.4 χ IO12 

sec  1 was calculated for the slow decay. For the fast decay corresponding values are 35 kcal/mole 

and 6.7 χ 109sec 1. 

4 — THEORETICAL CONSIDERATIONS — DISCUSSION OF THE RESULTS 

At low doses the number of radicals induced by radiation is proportional to the observed 

energy. At higher doses in most irradiated plastics a saturation effect is seen to occur. In this 

study such an effect was also observed in irradiated PVC. The saturation of the number of induced 

spins can be described by an exponential equation 

N(D) = /V(oo) (1  exp  ßD) 

where N(D) is the number of radicals ; 

JV(co) the saturation value and 

β a constant. 

The exponential behaviour can be understood if it is assumed that the radicals foimed previously 

can be destroyed by irradiation. In a detailed study of the kinetics involved in the production 

of radicals in alanine single crystals Snipes and Horan[25] have demonstrated this process clearly. 

They found that radicals of a different type than those induced by ionizing radiation and as such 
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Figs. 6, 7, 8 and 9 — The relative amplitude of the ESR signal in some polymers on a logarithmic scale versus time. The straight line shows exponential decrease for a fraction of 
the radicals. 

·* decay in an evacuated sample tube 

• decay in an open sample tube (in air) 

The irradiations were performed in evacuated tubes at room temperature to a dose of 2 Mrad. The dose rate was 0.66 Mrad/h for the samples which were to decay in vacuum 

and 0.13 Mrad/h for the other samples. 



distinguishable, disappear exponentially upon irradiation. The dose at which half of the original 
radicals were destructed was found to be 6 Mrad. This corresponds to a value of the constant/? 
of about 0.12 Mrad - 1 , which is of the same order of magnitude as the value found for PVC in the 
present study. 

In order to describe the saturation effect we introduce the following model that resembles 
in some respects a model put forward earlier by Ten Bosch[26]. This model is based on the fact 
that the energy of the secondary electrons liberated by the y-radiation, is dissipated locally in 
isolated regions, which are called spurs[28]. 

It is assumed now that the radicals created in a spur are highly reactive and mobile during 
a certain time τ and can annihilate whit each other and with the already present immobile radicals. 
After the active period the initially formed radicals will be immobilized. Deposition of energy 
Δ W in the local volume V* will lead to the creation of radicals. The concentration of these radicals 
as a function of the time / after the deposition of the energy is denoted by n*(t). The concentration 
of the existing immobile radicals is denoted similarly by n{t). The radical destruction process 
in the volume V* is then for t < τ described by 

dn*(Q 
di 

dw(Q 
di 

= -Κιη*2{ί)-ί<,2η*{ί)η{{) 

= -k2n*(t)n(t) (2) 

where kl and k2 are the reaction rates. 
It is assumed that the number of primary radicals formed locally is large compared to 

ultimately remaining immobile radicals. This assumption is equivalent to the assumption that 
the number of annihilation reactions occurring after the energy deposition is large. This implies 
n*(0)$>n(0), so that for the t = τ, the solution to the equations (2) is given by 

* n*(0) „ 1 ηΛ 
η (τ) = —: ~ ■ (3) 

π * ( 0 ) ^ τ + 1 kxx 

π (τ) <4 π* (τ). 

It is to be noted that the number of radicals formed locally is constant and independent of the 

initially present radicals. Introducing the radical yield Gs of stable radicals in the local volume V* 

equation (3) becomes 

η*(τ) = GsAW/pV* (4) 

Since at t = τ, η*(τ) becomes «(0) again per definition, we may write the following differential 

equation for the mean concentration of stable radicals 

dn _ pV* 
— = Gs η (5) 
áD AW 

where D denotes the absorbed dose. 

Integration of equation (5) yields 

n(D) = G s ^ ( l - ^ - ^ D 
pV*\ ÅW 

= ; i (co)( l exp /?D) . (6) 

From the value β we find for PVC (pV*¡MV) = 0.2 Mrad  1 = 3,2 χ IO  2 1 gram/eV. If V* is 

identified with the volume of a spur, AW is about 100 eV, the energy that is deposited in 

14 



a spur[28]. For ρ χ 1 a spur radius will be about 40 Å, a reasonable value as compared with values 

found in the literature. Kupperman[27] foi instance uses in his calculation values of 30 Å. Since 

the weight of a polymer falls in the same order of magnitude as the weight value found forpV*, 

it is possible that the annihilation of the radicals in the volume V* takes place via a chain of cova

lent bonds. 

We assume that the temperature effect of the radical yield, as observed in PVC, is due to 

thermal decay of radicals. From measurements of the radical concentration as a function of the 

time after the irradiation (fig. 6) it appears that the decay follows first order kinetics. The tempera

ture effect can be accounted for in equation (5) by introducing an additional term 

^ = G s  ^ ! n  ^ (7) 
AD AW D 

where λτ is the temperature dependent rate constant for thermal decay and D the dose rate. 

Integration of eq (7) gives 

n(D) = ( ' 
pV* λτ 
 — +  r 
AW D 

1 — exp 
AW D 

(Η) 

Since the rate constant, λτ, increases with increasing temperature, as described in the paragraph 3.3 

it follows from the model proposed above, that at a higher temperature the number of radical 

induced by a given dose decreases. The initial slope of the n(D) vs D curve should be independent 

of temperature. 

Although the experimentally determined initial slopes at various temperatures did not 

confirm this conclusion, the deviation observed might well be due to the inaccuracy of the slope 

determination. 

The measurements on PVC at doses higher than 1 Mrad, at 45 °C and at 60 °C, are quali

tatively described by equation (8) for the dose rates 0.11 Mrad/h and 0.66 Mrad/h(figs. 4 and 5). 

In contrast to the behaviour of the yield at higher temperatures a lower yield is found for a higher 

dose rate at room temperature. This effect can be described by a model which assumes overlap 

of volumina V* during their active period. If two volumina V* overlap during their active period 

the number of stable radicals after the active period will still be given by Gs A W. The same state

ment holds for multiple overlap. We therefore put for the number of stable radicals created in 

a volume V* 
00 G KW 

Σ κ,·^Γ
 (9) 

;=o ; + l 

where K¡ the chance for /fold overlap of the volumina considered. If the deposition of energy 

amounts Δ W is random, K¡ has a Poisson distribution 

Kj = i(M!îYexp_(M!i). ( 1 0 ) 
1 j \ \ AW J \ AW J 

The resulting number of stable radicals, ns, created in a volume V*, can be written as 

DpV*x I AW \ 

The differential equation for the mean concentration of radicals can now be given as 

an G.AW-npV* (. DpV*x\ λτη . . . . 
1 1  exp —. (12) dD DpV*x V AW J D 
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When the term λτη is neglected the solution reads 

ή η ν* τΥΤΙ 
(13) »α»-~?ί' Μ. D Λ Ι>ρΚ*τ 

— Γ - 11— exp -Dx\ AW 

For small doses it follows from equation (13) that the radical yield G is given by 

Om0.J^-(l-^-ilp\ (14) 
DpV*x\ AW J 

Inserting the initial radical yields of PVC at 0.11 Mrad/h ( = 6 χ IO16 100 eV/gram.h) 
and 0.66 Mrad/h ( = 4 χ IO17 100 eV/gram.h) in equation (14) leads to 

Gs = 6 spins/100 eV 

and 
pV*x 
AW 

= 1.2xlO - 2 0gramh/eV. 

The value of Gs thus calculated is nearly equal to the value found at room temperature 
and dose rate 0.11 Mrad/h. 

With the value of ρ V*jA W = 3 χ IO - 2 1 gram/eV the active period τ is estimated to be 4 h. 
Due to the inaccuracy of the measurements the uncertainty of this value is quite large 

and gives therefore only an indication of the order of magnitude. 
However the estimated magnitude of τ is far too large to identify the active period as 

the life time of a spur. According to Mozumber[28] the time scale of the events in a spur is many 
orders of magnitude smaller. Chemical reactions that occur in spurs range over the time scale 
of 10 - 1 0 to 10 - 6 sec. Neutralization reactions of charged particles extend over several orders 
of magnitude in time. For non polar media of high viscosity the time scale is 10 - 6 - 103 sec. 
Although times involved in the latter processes come closer to value of τ estimated here, they 
still seem too small to account for the observed dose rate effect. Therefore we believe that the 
active period of the radicals is not determined by a spur like effect. One can imagine that radicals 
are mobile in the solid material and that their mobility will only end because they are trapped 
somewhere. We suggest that the mobile radicals are actually observed directly after the irradiation 
as shown in figure 6 and that they are thus responsable for the observed fast decay process. 

The observed decay in PVC and most of the other polymers is after a few days, best des
cribed by first order kinetics. It seems difficult to explain the decrease of the existing free radicals 
by the mechanism described above, that is by assuming free mobility in the sample coupled to 
an annihilation process in the encounter of two radicals. For in that case one would expect 
second order decay in contrast to the first order kinetics generally observed[29,30]. Explanations 
for the first order decay behaviour are: 
a) combination of radicals with another radical trapped in close proximity, 
b) the rate-determining step is the untrapping of the stable radicals, which then become free 

to diffuse and react with other radicals. 
In polymers that are partly crystalline and partly amorphous the situation is more complex. 

Radicals formed in the crystallites will migrate and finally react within this amorphous region. 
This last step will be relatively fast above the glass temperature. 

Another aspect of the decay is the influence of diffusing gases in the sample. These gases 
can be dissolved in the polymer during the irradiation or diffuse into the sample after the irradiation. 
The influence of diffusing gases in the sample is most clearly seen in polyethene, where the rate 
constant for decay in vacuum is 4 χ IO - 6 sec - 1 , while in air the ESR signal is even found to 
increase. The same effect has been found by Abraham and Whiffen[6]. 
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Finally another complicating aspect can be mentioned; the presence of impurities or 
chemical additions. If radicals move at random through the solid until each of them reaches 
a partner a large number of steps is involved. It can be imagined that during such a lengthy 
promenade the abovementioned impurities can intervene in the reaction by reacting with the 
perambulating radicals[31]. 

Considering all these effects in conjunction with the experimental results available a de
tailed evaluation of the decay curves seems not to be appropriate therefore at this moment. 

CONCLUSION 

From the present study on the induction of free radicals in polymers that can be used as 
packaging material it follows that for most cases the radicals can be measured during a period 
of the order of 2 months after irradiaion with a dose of a few Mrad. Exceptions are formed for 
polymers with a large fraction in the glass state above the glass temperature and for polymers 
with plasticizers. The number of radicals created in the polymers was found to depend on irradia
tion conditions such as dose rate, temperature and gas environment. A model which accounts 
qualitatively for some of these parameters is given. Decay times were also found to depend on 
these parameters. It is therefore not possible to deduce accurately from an ESR measurement 
to what dose a sample is irradiated, even if the date of any possible irradiation can be estimated. 
An exception is formed by Teflon, where at room temperature no decay of any significance could 
be observed. 
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