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ABSTRACT

In the framework of ecology a deterministic model to describe the evolution of
zooplankton (copepods) populations in lakes has been developed. Balance equations are
derived relating the observed concentrations of copepods to production rates and mor-
tality. These demographic parameters are to serve as indicators of water-environment
conditions. Numerical studies are in progress.
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The zooplankton populations, especially the different species of copepods
(Eudiaptomus, Cyclops ) are considered to be suitable and sensitive bio-
logical detectors for the control of the water quality in lakes and of the
consequences of the inputs from the environment. On the basis of long

term observations done by Ravera and coworkers [%] of the populations of
copepods in the subalpine lakes (Lago Maggiore, Lago di Osmate and pre-
sently Lago di Lugano) a mathematical model has been constructed describing
the evolution of the different stages of species as a function of produc-
tivity and mortality. For the application of the model in its present ver-
sion a time series of observations of the population must be given and

the times of development of every stage (= maximal possible lifetime) must
be known., Then the demographic parameters like productivity and mortality
are calculated., The variation of these parameters from period to period

gives a measure for the variation of the ecological conditions in a lake.

The Model

The model describes the evolution of the populations in two time scales,
one scale is the physical time or observation time t, the second one counts

the age s of an individuum. Clearly, O<£s <« T,

¢ if , is the time of de-

velopment of stage i, We denote the number of individuals of stage i per
unit volume at time t, having an age between s and s+ A s by Ni(t,s) A4 s,
The mortality or the percentage of individuals that die out or get lost

per unit time be qi(t,s), We can write down a balance equation, expressing
the fact that the number density or concentration of individuals of stage i
at time t+ At with age s+As is equal to the concentration at a time step

At = 4 s before, diminuished by the fraction that has died out,

Neltedt stas) = Apcts) [1- k) s (l)

This change of concentration is illustrated in Fig. 1. The history of an

individuum proceeds along a diagonal from the bottom (s = O, ''newborn" in-



viduals) to the top (s = T, , maturity). By taylor expansion of Eq, (1) we

state that the concentration satisfies the following differential equation

M ks) DN (ks)
Ta_f—_ 1 ‘T‘ac‘s_"' = '—?4' ({:,S) /\/L Cl‘,&) (2)

Its solution is

s
/%'Ct, s) = f(s—t) Lxp ["f‘& (sts+t,s")Ls! | (3)

with an arbitrary function f, This function can be determined from an initial

state. For s = O we have Ni(t,O) = f(-t). Hence
N (4+8,8) = A (40) - @, (t5)
c(er8,5) = Ao (o) - G L (4)

where

s
R (+s) = exp [-fo%b-(s’wc, D 4 | (5)

is the probability that an individuum of state i and born at time t will‘not

die out before attaining the age s at time t+s. Obviausly Q(t,s=0) = 1.

The individuals that have passed the complete time of development 'El in
stage i are assumed to change then immediately into the next stage (i+l) of

their metamorphosis. In the next stage the begin with age zero:

/\4.M (t,0)= N, (€ T, ) (6

The leakage due to mortality is compensated by the productivity of the adults
in the last stage i = n. The adults may produce eggs during their whole life-
time, not only at the end of the stage. If p(t,s)ds is the number of eggs

produced at time t by an adult of age s in the time interval ds, the con-



centration of new eggs Nl(t,s=0) at time t is given as the sum (integral)

of the contribution of the adults of any ages

T

/V, (¢0) = J M Cb151) (4,570 LS’ 0

0

The three processes of "aging'', "passage of stage" and "production', expres-
sed by Egqs. (4), (6) and (7) describe completely the evolution of the po-

pulations in any stage.

System Egquations

Equations for the initial states (s = 0) of the stages (i = 2,3,...,n) can
be related to Nl(t,O) (i.e. the productivity) by successive application of
Eqs. (6) and (7). With Eq. (6) we perform Ni(t + T&+’t2+"'t 0) = N,

i-1° i-1
(t + tl + T,'z + -+ Ti—l’ti-l)' According to relation (4) this is
+ + + . + T + ... +T .
equal to Ni_l(t -tl coe 'ti_z, 0) Qi_l(t o C,_o t:i—l)

Reducing further in the same way we obtain
. V — F) . (82
N, Lt+7';_7, 0) = QL;? (t+ 7:._21'51«.‘1) Q&'«z ({:+7:,_5’7:4,_L )

" QL Lt+7‘7’/'rz) Qr (t/z;) M(t,D)

where

’—_r__,l‘ -~

[, = TatT+---+ T, (9
and Nl(t,O) is given by Eq., (7). If Nn(t,O) were known for a whole cycle, i.e,
for the time range 051:£Tn, then Ni(t,O) (i =1,2,...) would be known for

all time. The distribution function Ni(t,s) can be obtained from (8) via re-

lation (4) with t replaced by t-s3



In practice it is difficult to measure the concentrations resolved with re~

spect to the age s, What is generally observed are the integral concentrations
[
o (6) = J Ay ces) ds an
o

denoting the number of individuals of any age at time t in stage i per unit
volume of water., In order to rewrite the balance equations (10) for the in-
tegral data it is consequent to introduce the average production rate (aver-

age over all ages) at time t

T

W

ol : i "’,» T“'
iobt):)/\/“ Lflol) }Ott(s()ds j/‘/n L‘{T(()I)‘{'S/ (12)
° (4

After integration the system of equations (10) passes into the following

system for the yi(t)
C.

7L Lt+7:‘-7 ) :,J Q,(4-5T) & ('.6*’7:_—1_5’ 5) /o—(fvs)- ?‘o&—&)d:’

(i =1,2,...,n)

13)

Approximations

It seems reasonable to assume that the changes of the ''survival proabilities'
Qi(t,s) as a function of the time t of observation is negligible compared to
the changes with respect to s during the time interval of length 'CZ in which

stage i is developing.

Replacing t by t + Tk and‘applying the mean value theorem we may rewrite

Eqs. (13) in the form

14 -

Fole +T )= Qs T) o r R (64T 75 %) an

Ta :
' i 6 (647175, 8) P AT, (4T ~5)ds

(i =1,2,...,n)



where()ésiéfC¢ . According to the weak dependence of the Qi(t,s) on the
first variable the factors in front of the integral sign of Eq., (14) are

nearly constant

\yR ' ‘ = n
Q—&L’f+/k‘5{/ rk) = &)k (‘Tll/ tb.))' =152, 00em) 15)

This is true at least within observation intervals not too large with re-

spect to the TA °

In order to reduce the influence of the errors of the observation data yi
to the desired demographic parameters p and Qi the time averages of Eqgs.

(17) will be considered too. We introduce the following mean values

{;*

1 , .

LT T 41T
D]

For t*' sufficiently large we obtain from Eq. (14) by integration and a

further application of the mean value theorem

— a7
CTURIT D =Q PRI THDS QU8 T) Q. (t Ty ) -
Ty
’ 06?1' (t,,5)ds

(i:l,2’°°°’n)

The reference times tk satisfy

P ¥*
'TL < t, ¢T, +t* (18)

=1

Qk(tk’.ti) is the fraction of individuals of stage k and at time tk that
actually will stay in the population all the time of development Tat and

then pass into the next stage, The quantity
Ty
. . = —. (19
@ (¢, s)ds = s, )
O

can be considered, in the sense of relation (4), as the mean lifetime of

those individuals that are found at time ti at the beginning of stage 1i.



If the Qk(tk,s) depend weakly on tk they may again be replaced by Qk(Tk,s)
as in (15). Eq. (17) expresses the fact that the average concentration yi(t)
in stage 1 observed from t = Ti to t = Ti + t* is given by the average
production rage observed from t = O to t = 'C;v+ t*, times the probability
that an individuum has passed successfully all stages from the egg to stage

(i-1), times the mean lifetime gi in stage 1i.

From Eq. (17) for i = 1 we can deduce the average production rate during the

time 0£t & q-+t*

- X, T o Gl T+t > S
COLPIGrt > O =NOInlTH > Loy 0 t*s (203

Since 17_) is the full production rate and S. the mean lifetime of an egg, the

1
quantity of interest is the "effective productivity" (p-sl). It is given by
the measurable ratio on the r,h.s. of Eq., (20), In this way the ambiguity

of a scaling factor between the Qi and 5 in the homogeneous form of Eq. (14)

is removed,

Discretization

Since in praxis the observations are not done continously in time but at
discrete time steps of distance A t of the order of ten days, we substitute
t by ke At and s by (’ A s. All processes are measured in the new time unit

At = As, We further introduce l;'= —(;(‘At; Ti = Li A t. Hence

LL': {’.1+{¢L+—’_+{1‘ (21

The integrals are replaced by sums and p(t + T, - s)A s is replaced by
P(k + Lt'—»(‘. J. In this way system (14) with the assumption (15) turns

over into the discrete system

€¢
Fochrbe ) Ta e Pl bt f (6Ho
o (i =1,2,...,n)
(k = 1,2,...,K9



where

61,‘ (Lu.',{) = Qq (LM (4) ' '04'—1“'""' 64'—4)'&94'(1'1'/ {‘) (22")

In an analogous way the equations of the time averages (17) are transformed,

Instead of (16) we define forI{*sufficiently large
K*
p X .
<~ L'L'I%JIL'{,-H( > = Z;L-i- % /\Jt'(h-/.l‘t') (23)

and obtain the system
4
1 . - 2 X -~ 4 / .
<L 1) L+k*> =J0] Pt CctK™> ) 9 (Lt ) (24)
£=0
(1 = 1,2,...,n)

The number of unknowns Gi(é) in system (22) is extactly Ln. The vector P(m),
1:—m&K*+ max KNA" , could in principle be determined fully. But in view of
the fluctuations in the observed data it is more realistic to assume an average
productivity given by Eq. (20) and not to rely on a value at every time step.
The number of equations is (n°K*3 and generally chosen to be larger than the
number of umknowns, The unknown paramters Gi(e) are obtained from the con-
dition that the functional consisting of the sum of the squares of the resi-
dues of the overdetermined system (22) be a minimum., A computer program has
been written that does this minimisation with the aid of a certain strategy
[2:7. The series of observations yi(k) and the [;: are input, the parameters

P and GiQe) are output of the program, Numerical studies are in progress,
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