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ABSTRACT

In the report is discussed the validity of the slugflow equation given, amongst
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THE SLUG FLOW EQUATION x)

If a co-current two-phase flow, in a vertical tube which
commonly has a diameter greater than 10 mm, is charac-
terised by bullet or piston shaped gas bubbles (also called
G.I., Taylor bubbles), separated from each other by liquid
slugs with a length of at least six tube diameters (a flow
pattern known as fully developed slug flow), the velocity
of the bubbles may be expressed according to NICKLIN,

WILKES and DAVIDSON (1) by the equation:

W}= QLVM 4-C2 V gD (1)

In this equation the meaning of the symbols is:

\ = bubble velocity (m/sec)

v = volume flow density or throughput velocity

of the gas-liquid fluidu combination (m/sec)

My =Vea*Va = 1T °*

D = diameter of tube (m)

n/h,Dz(m2)

o=
|

QG and QL = volume flow of gas and liquid respectively.

For an air-water system C_, = 0,35, as has been theoretically

(2)

, and experimentally confirmed

2
determined by DUMITRESCU

by NICOLITSA and MURGATROYD(3) among others. Assuming C2 to be

*) Manuscript received on March 1, 1972



M Nicklin et al obtained for C, the va-

lue 1,2, In their experiments single bubbles were injec-

invariant with V

ted at the base of the test section with such low fre-
quency that during the rise of the bubble VGA = 0 could
be maintained. The 1liquid volume flow density VLA
(superficial liquid velocity) was varied between 0,3 m/sec
and 2,5 m/sec. The same technique for injecting single

bubbles was employed by Nicolitsa and Murgatroyd.

These research teams obtained a value of 1,24 for Cl in the

range for V between 0 - 0,25 m/sec, with a spread of ! 2%.

Both seriengf experiments, i.e. those of Nicklin et al
and those of Nicolitsa and Murgatroyd, were carried out in
tubes of about one inch diameter and their results could
be considered to be congruent.

However, GRACE et al (43

, performing slug flow experiments
in stationary water with a steady state air flow in a one
inch tube, and with a superficial gas velocity of up to

about 0,2 m/sec, arrived at the following slug flow equa-

tion:

Vo =11 V5, + 0,359V gD (2)

So we have already three different values for C i.e.

1,24, 1,2 and 1,11,

l’

Still more diversity is caused by the results of work

performed by HARRUCCI et al (5).

This team obtained, in five tubes of diameters 1,6: 2,1:
2,8: 4,2: and 5,3 cm respectively, and with an air-water

system, results which can be described by the equation:

Vo = Vpa + 1417 Vg, + 0,35V gD ‘3)
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Equations 2 and 3 could be written in a more general form,

i.e.,

VG = VM + C3 VGA +0,35Y gD (%)

and for C3 we already have two values, i,e. 0,11 and 0,17.

These results are supported by observations made by

VAN HEUVEN and BEEK(S).

Although no information on the water velocity has been pro-
vided, we can translate their results into our type of for-~

mula and express them as

2 /4

vV, = +
Vi 0,216 Voa (s)

G

The experiments were performed in tubes with diameters of
0,48 cm and 0,238 cm, at superficial gas velocities of be-
tween 0,1 and 0,7 m/sec, and are in a certain sense beyond
our scope. Equation 5 could be written in the form of e-
quation 4, but because

2
g =280 - 313
o a

is beneath the critical value of 4, according to WHITE and

BEARDMORE (7), C2 = 0,

1/
GA

3

In the same context, C 0,216 V and is thus no

3
longer a constant. It 1s true, in spite of all these diver-

gencies, Cl = 1 and C3 # 0.



For small values of V only bubbly flow exists. Using a

GA (8)

criterion of STEWART and DAVIDSON » that in stationary

water slugging starts if v
—GA 3 0,2
V gD

we may write for the boundary line indicating initial slug-

flow for the 0,48 cm tube, based on equation 5,

V., = 1,075V
Gg M (6)

If we now go over our findings, we may conclude that there
is obviously no uniform, and perhaps not even a generally

valid interpretation of the results,

If we plot the results of the group with VG as a function of

v v and 4/ gD according to equation 4, then we ob-

M? "GA
tain the situation that has been illustrated in Fig. 1. In

this Figure we have taken V as being constant. At a cer-

LA

" tain value of V bullet, shaped bubbles will be formed, and

GA?
they will move at the velocity VG .
1
Following equation 6, then C3 = 0,076.
For higher air velocities, we follow curve VG - VG and
1 2

03 increases.

This curve may be approximated by the straight line A-B,

In Fig. 1 the mutual relationships between the functions are
pronouncedly out of scale, so as better to express the mean-
ing of the approximations. In Fig. 2 a more realistic pre-

sentation has been given.

0-0' represents the term 0,35,/gD.



The line 0' - C is the "lowest" slug flow line.

The 1line O'-VG is here the upper slug flow line, The
2

triangle between these lines represents all possible slug-

flow situations.

For this sector an average inclination may be given, cor-

responding to the constant 1,2 in the equation of
Nicklin et al.

Successively we obtain the following variations and modi-

fications of the slug flow equation:

l. TFor VLA = const, the slug flow equaticn may be written

in the form:
m
= [ ]
Vg Vy t ¢, A/gh + C s Vaa

(extension of eq. 5)

2, This relation may be sufficiently approximated by the

relation
]

]
V. =V
G M + C2 gb + C 3 VGA

(see eq. 4)

3., For different VLA - values, the equation may be
written as:
Vg = Cp vy, ¢ ng/gD (see eq. 1)

here, Cl is a variable.

4. For a rougher indication C, may be taken as the

1
average of Cl values, leading to the equation of

Nicklin et al,
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Assumptions 3 and 4 may be checked by comparison with
the work of STREET and TEK (g). In this work the spread
in Cl lies hetween Cl % 1,1 and Cl=« 1,4,

Before continuing, we should perhaps discuss the accuracy

of the Nicklin equation.

In this connection we can say that a bullet-shaped bubble
acts on the liquid flowing ahead of it as a displacement
device, due to the difference in velocity between bubble
and liquid. The flowrate of this displaced liquid may be
found to apply the continuity equation over the rear-end
cross~section of the bubble., If we express the void frac-
tion there by the symbol Ec , the "displacement" liquid
flowrate V =V (1 - &,) follows from the equation

LDA LD
(see Fig. 3):

£ - - & =V
VG c VLD (1 c) M (7)
and, sclving for VG’ we obtain:
! 1
Vo = e Yyt /e Vipa (8)
c c
The expression VLDA represents the specific "displaced
ke

liquid" flowrate due to the displacement action of the bubble.
Now it can be imagined that this specific "displaced liquid"
flowrate should be invariant with the rear-end cross-section of
the bubble for a given tube diameter. Let us postulate that

this would be the case,

The solution of equation 8 for VM = 0 gives

\'
LDA _ VA
3 = 02 gD (9)
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Assuming that this solution is invariant for V_,6 also,

M
we obtain as the first equation

1
vG = T/E, vyt C2~/gD (10)

If our postulation is valid, comparison of equations 1 and

10 leads to
c 1 (11)

Thus C, = 1,2 corresponds to £ = 0,833, which is ob-
1 c

viously the average value of § c®

Nicklin et al explained the coefficient 1,2 by the maximum

value of the liquid velocity at the center line in relation
to the average liquid velocity equal to VM.
For laminar flowing liquids, the velocity at the center line
is equal to 2 VM'
This was the explanation of GRACE et al for their experi-

mental findings with an air-sugar solution system.

They obtained: Cl = 2,12 and C2 = 0,194,

C2 was in very close agreement with the correlation pre-

sented by White and Beardnore and Cl was very close to the

factor 2.

However, COX(lO) has shown that for viscous liquids the

fractional amount of liquid left in the tube when a "bubble"

u
has expelled the other fraction, is a function of _L
o

Here U is the velocity of the intertace,
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u, U
For high values of i . Ec tends to the asymptotical
value of O,4, hence the assumption & = —t = o,u471,
c 2,12

as would follow from the work of Grace et al., could be
supported by the work of Cox.,

The results of GOLDSMITH and MASON(ll)

also show that

for a tube of diameter 0,8 cm, a film thickness of 1,08 mm
will be obtained for an air-oil system with u = 8,41 P.
This corresponds to a Ec-value of 0,533,

(12)

From the work of KOUREMENOS , @ similar conclusion,

though approximative in numerical value, may be drawn.

According to this work, the manometrical pressure height

produced by a bubble is to be expressed by the relation

bm
hs is the friction pressure height

Vb is the volume of a bubble.,

Now we can write roughly £ =

Assuming further that particularly for the longer bubbles

hbm ~ L, Wwe obtain:

hS = 2 (l- EC).

For a tube diameter of 4,5 cm, according to the relation

given by Kouremenos,

M u
h / =2 = 0,115 ( L (04222 5 0588 ( —= (0110

% Hu

(12)
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here My is the viscosity of any fluid other than water,

My is the viscosity of water.

With our approximations we obtain:

1- ¢ u H
——=L ~ 0,115 (== )O’222 + 0,0588 (—I‘-)o’115 (13)
E;c Yy uW

For uy= 8,41 P as in the case of (10), we obtain £, = 0,60.

A calculation method is given for the liquid flow between

bubble and wall in (1).

For VM = 0, the flow balance gives

(1 - EC)(/2g£ - 0,35 /D) =¢ o 0,35 \/"g'ﬁ' (14)

This equation is to be considered valid for any cross-
section of the bubble, if we imagine that any bubble is a

part of an ideal bubble. It now yields for the liquid hold-
up around the bubble:

A1l = 2
Dzb.Jo(l-g) de = 0,495 S (15)

This solution holds to % NS (see (1), fig. 2). To "fit" the

hold-up curve for % >5, Wwe write equation 1% as follows:

(1 - &) cl,/zg(uzp) - 0,35 /gD = 0,35 /gD (16)

In this formula, for &£ = 0, and §= 0,

C, /282 | = 0,35 /gD

and thus, because in this case Cl =1,
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R, = 0,0612 D (17)

being equal to hbm -

The factor C2 is an adaptation factor, and from (16)

_ 0,35,/ D
Cp = 1-¢ 2(z+zp) (18)

From this equation follows for 2p<<2 y following formula (15)

follows:

d(Ve/d)

d(a/D) (18)

C, = 0,495

From fig. 2, ref. (1), we derive our fig., 4; the relation
between the liquid hold-up in multiples of tube diameter
versus the squdare root of g/D. Graphic differentiation of

this funcrion finally gives the coefficient Ck .

10

The coefficient Cz is plotted versus in fig. 5 .

It may easily have been found by using equation (18), in

which, for a cylindrical bubble with @ film thickness §,

c, ~0,0188 % 10D (20)
cyl .

o . . (13) _
According to the work of STREET and TEK Emax = 0,895
and thus equation (18) becomes

c = 00,7524 lOzD (21)
cyl

For small values of equation 21 may be used. For

2
10 D

2 L]
real value of Cz is somewhat below Cz , as 1is demonstrated

the bigger values of i,e. for short bubbles, the

in fig. 5.
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For VM) 0, equation (16) may be extended as follows:
- ) ok - - Y- = -
(1-¢) [Fl 2g(2+2p) (VG VM' Vg] VGE VM (22)

in each cross-section of the bubble, equation (22) may be

applied. Now,

2

L - (VG-VM)

p 2g
For slugflow VM = 2 m/sec, and for a tube of about

max
2,5 - 3 cm, £ =1 cm ,
P

Thus in most cases lp may be ignored. For § = Ec

equation (22) becomes:

(1-gc) [c2 2g2 - 1/gcvM + 0,35 /gD] = £, 0,35/ gD (23)

v
Writing now for — - N we obtain as a general expression

Nerns FR

for slug flow:

01351/ D
NFR [ l- cy 28 ]Ec £ (2u4)
<, 1 - Ec c

"

Also in this formula Cl is an adaptation coefficient equal

to:

. (25)

Equation (25) may be compared with equation (18). The latter

equation, with lp ignored, may be written as Cl and we ob-

tain, in general, writing for & at VM = O,Eo °©
1-¢ 1-f
_ c o
c, =¢, [ 1+ — ] ToF (26)
o c c
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iy

Here B = 0,35 =D

Now the relation between Eo and Ec is unknown. There are
two possibilities for this relation, which are extremes of

reality.

The first extreme is:

Cl = Cl and the relation between Eo and Ec may be written
o
as
E -§& &
B = ——r— ¢ (27)
Ec Eo

If this relation is plotted for Eo = 0,895, we obtain at
Eo =0,7 , Bmax = 4,30 , see fig. 6 . For a one-~inch tube

this means VM =0,75 m/sec. This is certainly too low.

Another extreme 1is Ec = £,

This gives

l-Eo ‘
C, = ¢, (1+ 3 B) (28)
o o
The reality will probably lie between these two expressions,

and we may expect an expression, such as:

Cy = c2°(1+¢B) (29)

In that case

£ - & £
B = —TTr— C (IEO- 5T (30)
C [o] C

In equation (29), ¢ will be a variable; for low values of

i%—g, ¢ 0,117, because ¢ = i%gg%%E , and for high values
10 D ’
of T ¢+ 0, because C2+ Clo .

(compare equations (27) and (30) )
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It is thus clear that 0 ¢ < .

%

However, ¢ 1is also a function of B and for the moment

only fictitious models are available for study, due to

the lack of knowledge.

The extreme ¢ = 0, or Cz = Cz gives, for an increasing B,
a decreasing gg as follows £rdm fig., 6. (The part left
from the max. for B does not belong to the solution of

equation (27) ).

This kind of tendency may generally be expected with more

realistic values for ¢.

This can also be proved by means of equation (22).

Since Cz = 1 and VG—VM = \2g zp, for short bubbles,
A/ 2D
l-gc- 2,+2, .
p

(0,2 V,, + 0,35 \/gD)2
2g

Using the formula of Nicklin zpz

and for increasing VM’ lp is therefore increasing and £ o

accordingly decreasing.
Finally the following observations can be made,

Equation (21) suggests that for 2-o, Cz = 0, It may be

imagined, however, that a limit value for 2/D exists.

From wave theory we know

Cw > 1 V 2g hw or Cw > 0,28 V2 ghw
2V
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In this formula Cw = velocity of the wave over shallow

water

hw = wave length,

In the case of slug flow, assuming the bubble is a wave,

we obtain:

v = Ve * Vip
h, = L. .
Thus c, = Ei v, + 0,35V gD + TT%_ 0,35V/gD
Cc C

and applying equation (31), we obtain

N
iR [1 - 0,35 \/ 2—.] £, (32)

0,28 0,26(1-§_) 2%

Equations (24) and (32) are identical, if CZ = 0,28 ,

Substituting the value C, = 0,28 in equation (21). the
result is &/D = 72 .,

. _ 0,35]/ 1 .
For this value, F(2) = 1 - 0,28 oy 0,896 being
the limit value for Ec'

No higher values can be found for &/D in the literature at

present available,

Ref.(1l) reports as a maximum 2~70 D, and Ref.(9) gives
for 4= 200 cm, &/D = 70.
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Conclusions

There is a strong indication that in the Formula of

Nicklin et al(l)

Vg = Cy + C, 1/8D,

Cl is not a constant value.

This follows from the work of other researchers (h),(5),

(6), and (7).

2,

The factor Cl is very probably equal to.l/&c s €

being the local void fraction at the rear-end of the
bubble, If this is true, then the "fixed" relation

between Cl and the ratio max. liquid velocity at the
center line to the mean mixture velocity must be con-

sidered to be accidental.

From this theory it follows that with increasing VM
the bubble volume per unit length decreases, assuming

the bubble length remains constant,

A maximum bubble leng&h to tube diameter ratio could
be explained, by analogy between bubble motion and

wave velocity over shallow water,



Notation

M o O O 0O O 0O 0
il

as]
~ (o]
»
N’
"

bm

[aa B2 BT A, S = S o S = S ¢
]
it
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pipe cross section (m2)

iy

0,35VgD

constant or coefficient

adaptation factor of bubble

idem for cylindrical bubble

adaptation factor VM =0

wave velocity over shallow water (m/s)

tube diameter (m)

film thickness {(m)

p D2
EStvds number = —%7_—
0,35 D
ooV om
e - Cy
o
B

gravitational acceleration (m/s?)

manometrical pressure height by bubble produced (m)
friction pressyre height (m)

wave length (m)

local void fraction in cross-section of bubble
local void fraction at rear-end of bubble

local void fraction in cross-section of idealized
bubble on length & equal to local void fraction at
rear-end of bubble with length £, under flow
conditions VM = 0,

bubble length (m)

relative velocity head (m)

liquid holdup around the bubble expressed in

unit length of full tube

exponent

viscosity of liquid other than water (5535)
m

. . kg.s

viscosity of water ( )
m
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NFR = Bubble Fround Number = VM
V2 gt
QG = volume flow rate of gas (m3/s;
QL = volume flow rate of liquid (m /s)
p = liquid density (kg/ma)
o = surface tension of liquid (kg/m)
U = velocity of interface (m/s)
Vb = bubble volume (m3)
v = velocity of the gas phase (bubble) (m/s)
VGA = volume flow density of gas phase (m/s)
VGS = gas velocity at the point of slug formation (m/s)
Voa = Vvolume flow density of liquid phase (m/s)
VLD = liquid downflow velocity between bubble and wall (m/s)
VLDA = volume flow density of downflow liquid (m/s)
v = volume flow density of gas-liquid mixture (m/s)
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