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THE SLUG FLOW EQUATION *) 

If a co­current two­phase flow, in a vertical tube which 

commonly has a diameter greater than 10 mm, is charac­

terised by bullet or piston shaped gas bubbles (also called 

G.I. Taylor bubbles), separated from each other by liquid 

slugs with a length of at least six tube diameters (a flow 

pattern known as fully developed slug flow), the velocity 

of the bubbles may be expressed according to NICKLIN, 

WILKES and DAVIDSON ' by the equation: 

V
G
 = C

1
V
M
 + C

2 ^ ¿ ^ ( D 

In this equation the meaning of the symbols is 

V = bubble velocity (m/sec) 
G 

V = volume flow density or throughput velocity 
M 

of the gas­liquid fluiu combination (m/sec) 

% Q
T 

( V = V + ν = — + ­= ) kV
M GA LA A A

 ; 

D = diameter of tube (m) 

A = TTA.D
2
U
2
) 

Q and o = volume flow of gas and liquid respectively 

For an air­water system C = 0,35, as has been theoretically 

(2) 

determined by DUMITRESCU , and experimentally confirmed 

( 3 ) 

by NICOLITSA and MURGATR0YDv ' among o t h e r s . A s s u m i n g C t o be 

*) Manusc r ip t r e c e i v e d on March 1, 1972 
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invariant with V w l Nicklin et al obtained for C. the va­il 1 
lue 1,2. In their experiments single bubbles were injec­
ted at the base of the test section with such low fre­
quency that during the rise of the bubble V = 0 could 
be maintained. The liquid volume flow density V 
(superficial liquid velocity) was varied between 0,3 m/sec 
and 2,5 m/sec. The same technique for injecting single 
bubbles was employed by Nicolitsa and Murgatroyd. 

These research teams obtained a value of 1,24 for C in the 
range for V between 0 - 0,25 m/sec, with a spread of - 2%. LA 
Both series of experiments, i.e. those of Nicklin et al 
and those of Nicolitsa and Murgatroyd, were carried out in 
tubes of about one inch diameter and their results could 
be considered to be congruent. 

(4) However, GRACE et al , performing slug flow experiments 
in stationary water with a steady state air flow in a one 
inch tube, and with a superficial gas velocity of up to 
about 0,2 m/sec, arrived at the following slug flow equa-
t ion : 

VG = 1'11 VGA + 0,359 V T ^ (2) 

So we have already three different values for C , i.e 
1,24, 1,2 and 1,11. 

Still more diversity is caused by the results of work 
performed by MARRUCCI et al ( 5 ). 

This team obtained, in five tubes of diameters 1,6: 2,1: 
2,8: 4,2: and 5,3 cm respectively, and with an air-water 
system, results which can be described by the equation: 

VG = VLA + 1- 1 T VGA + 0 ' 3 5 Ì r ^ ( 3 ) 
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E q u a t i o n s 2 and 3 cou ld be w r i t t e n in a more g e n e r a l fo rm, 

i . e . , 

V
G -

V
M

 + C
3

V
O A

 + 0
«

3 5
V~rD (4) 

and for C we already have two values, i.e. 0,11 and 0,17. 

These results are supported by observations made by 

VAN HEUVEN and BEEK
(6
 . 

Although no information on the water velocity has been pro­

vided, we can translate their results into our type of for­

mula and express them as 

V
r. = ▼„ + 0,216 V 

i/4 

M GA (5) 

The experiments were performed in tubes with diameters of 

0,48 cm and 0,238 cm, at superficial gas velocities of be­

tween 0,1 and 0,7 m/sec, and are in a certain sense beyond 

our scope. Equation 5 could be written in the form of e­

quation 4, but because 

E = £.g.
D
­ = 3,13 

is beneath the critical value of 4, according to WHITE and 

(7) 

BEARDM0RE
 v
 , C = 0. 

1/. 

In the same context, C = 0,216 V 

o GA 

and is thus no 

longer a constant. It is true, in spite of all these diver­

gencies, C = 1 and C ^ 0. 
J- ó 
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For small values of V only bubbly flow exists. Using a GA (8) criterion of STEWART and DAVIDSON , that in stationary 
water slugging starts if GA 

VW 
> 0,2 

we may write for the boundary line indicating initial slug-
flow for the 0,48 cm tube, based on equation 5, 

V - 1,076 VM 
D (6) 

If we now go over our findings, we may conclude that there 
is obviously no uniform, and perhaps not even a generally 
valid interpretation of the results. 

If we plot the results of the group with V as a function of 
o 

V , V and V g D according to equation 4, then we ob­
tain the situation that has been illustrated in Fig. 1. In 
this Figure we have taken V as being constant. At a cer-

L A tain value of V , bullet.shaped bubbles will be formed, and o A 
they will move at the velocity V . 

Following equation 6, then C„ = 0,076. 

For higher air velocities, we follow curve V - V and 
1 2 C„ increases. 

This curve may be approximated by the straight line A-B. 

In Fig. 1 the mutual relationships between the functions are 
pronouncedly out of scale, so as better to express the mean­
ing of the approximations. In Fig. 2 a more realistic pre­
sentation has been given. 

0-0' represents the term 0,35A/gD. 
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The line 0* - C is the "lowest" slug flow line. 

The line O'-V is here the upper slug flow line. The 
G2 

triangle between these lines represents all possible slug-
flow situations. 

For this sector an average inclination may be given, cor­
responding to the constant 1,2 in the equation of 
Nicklin et al. 

Successively we obtain the following variations and modi­
fications of the slug flow equation: 

1. For V = const, the slug flow equation may be written 
LA 

i n t h e f o r m : 

VG : V M + C2 V S D + C 3 Vra
GA 

(extension of eq. 5) 

2. This relation may be sufficiently approximated by the 
relation 

M 
VG = VM + C 2VgD + C 3 VGA 

(see eq. 4) 

3. For different V - values, the equation may be 
LA 

written as: 

VG = Cl VM + C ? V 8 D < s e e ecl· D 

here, C is a variable. 

4. For a rougher indication C1 may be taken as the 
average of C. values, leading to the equation of 
Nicklin et al. 
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Assumptions 3 and 4 may be checked by comparison with 
( 9) the work of STREET and TEK . In this work the spread 

in C, lies between C, » 1,1 and C, *a 1,4. 1 1 1 

Before continuing, we should perhaps discuss the accuracy 
of the Nicklin equation. 

In this connection we can say that a bullet-shaped bubble 
acts on the liquid flowing ahead of it as a displacement 
device, due to the difference in velocity between bubble 
and liquid. The flowrate of this displaced liquid may be 
found to apply the continuity equation over the rear-end 
cross-section of the bubble. If we express the void frac­
tion there by the symbol ζ , the "displacement" liquid 
flowrate V = V (1 - £ c) follows from the equation LDA LD 
(see Fig. 3 ) : 

Vp ξ _ V T_ (1 - ξ ) = V (7) 
G c LD c M 

and, solving for V , we obtain: 
G 

VG « XU VM + '/ζ VLDA (8) 
c c 

V The expression LDA represents the specific "displaced 

liquid" flowrate due to the displacement action of the bubble. 
Now it can be imagined that this specific "displaced liquid" 
flowrate should be invariant with the rear-end cross-section of 
the bubble for a given tube diameter. Let us postulate that 
this would be the case. 

The solution of equation 8 for V„ = 0 gives 
M 

^ = C 2 V / £ T (9) 
c 
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Assuming that this solution is invariant for V also, 

we obtain as the first equation 

V
G
 = 1 / ξ

ο
 V
M
 + °2\/^ 

(10) 

If our postulation is valid, comparison of equations 1 and 

10 leads to 

C 1
 ( 1 1 ) 

Thus C. = 1,2 corresponds to 

viously the average value of ξ 

0,833, which is ob· 

Nicklin et al explained the coefficient 1,2 by the maximum 

value of the liquid velocity at the center line in relation 

to the average liquid velocity equal to V . 

For laminar flowing liquids, the velocity at the center line 

is equal to 2 Vw. 

M 

This was the explanation of GRACE et al for their experi­

mental findings with an air­sugar solution system. 

They obtained: C = 2,12 and C = 0,194. 

C was in very close agreement with the correlation pre­

sented by White and Beardmore and C was very close to the 

factor 2. 

However, COX has shown that for viscous liquids the 

fractional amount of liquid left in the tube when a "bubble" 

UT U 

has expelled the other fraction, is a function of *■* 

Here U is the velocity of the interface. 
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For high values of ^L
U 

, ξ tends to the asymptotical 
c . 1 

value of 0,4, hence the assumption ξ = — - — — = 0,471, 
as would follow from the worK of Grace et al., could be 
supported by the work of Cox. 
The results of GOLDSMITH and MAS0N ( 1 1 ) also show that 
for a tube of diameter 0,8 cm, a film thickness of 1,08 mm 
will be obtained for an air-oil system with μ = 8,41 P. 
This corresponds to a ξ -value of 0,533. 

(12) . . From the work of K0UREMEN0S , a similar conclusion, 
though approximative in numerical value, may be drawn. 

According to this work, the manometrical pressure height 
produced by a bubble is to be expressed by the relation 

bm A s 

h is the friction pressure height 

V, is the volume of a bubble. 
b 

Now we can write roughly £ 
ξ ο Α 

Assuming further that particularly for the longer bubbles 
h, *v» £, we obtain: bm ' 

h = I (1- ξ ). s c 

For a tube diameter of 4,5 cm, according to the relation 
given by Kouremenos, 

h / lb s ( H jO.222 ^ 0,115 (12) 



­ l ì ­

bere μτ is the viscosity of any fluid other than water, 
L 

ut, is the viscosity of water. 
W 

With our approximations we obtain: 

Ì 1 Ì £ ­ 0,115 ( ^ ) ° · 2 2 2
 + 0,0588 A 0 » 1 1 5 

ξο V W WW 
(13) 

For y= 8,41 Ρ as in the case of (10), we obtain ξ = 0,60. 

A calculation method is given for the liquid flow between 

bubble and wall in (1). 

For V = 0, the flow balance gives 

(1 ­ Çc)(/2gT­ 0,35/7DT =ξ c . 0,35 \fW (14) 

This equation is to be considered valid for any cross­

section of the bubble, if we imagine that any bubble is a 

part of an ideal bubble. It now yields for the liquid hold­

up around the bubble: 

fA 
£ = 1 | (l­ξ) ai = 0,495 (15) 

This solution holds to — ̂ 5 (see (1), fig. 2). To "fit" the 

hold­up curve for — >5, we write equation 14 as follows: 

(1 ­ ξ) C^y 2gU+A ) ­ 0,35/"gT = ξ0,35^/^0" (16) 

In th is formula, for % - 0, and i= 0, 

C£ / 2 g T = 0 ,35 /gT 

and thus, because in th is case C = 1. 
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£ = 0,0612 D 
Ρ 

(17) 

being equal to h, - £ 

° ^ bm 

The factor C is an adaptation factor, and from (16) 

follows : 

0,35 

1-ξ 
ι / — 2 — 
V 2(£+£ ) 

(18) 

From this equation follows for £ <<£ , following formula (15) 

C = 0 495 áüESp. L
£ u,Has d ( x / D ) (19) 

From fig. 2, ref. (1), we derive our fig. 4; the relation 

between the liquid hold-up in multiples of tube diameter 

versus the square root of £/D. Graphic differentiation of 

this function finally gives the coefficient C, . 

The coefficient C is plotted versus in fig. 5 . 

£
 F

 £ 

It may easily have been found by using equation (18), in 

which, for a cylindrical bubble with a film thickness <S, 

'cyl 

^ 0,0198 
D /lO D 

(20) 

( 13 ) 
According to the work of STREET and TEK ζ 

and thus equation (18) becomes 
max 

0,895 

C = 0,7524 

cyl /
10 D 

(21) 

For small values of 

the bigger values of 

10 D 

10 D 

equation 21 may be used. For 

, i.e. for short bubbles, the 

real value of C is somewhat below C , as is demonstrated 

in fig. 5 . 
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For V > 0, equation (16) may be extended as follows: 

(1­ξ) C,/2g(£+£p)­(VG­VM>­VM] = VGÇ ­VM (22) 

in each cross­section of the bubble, equation (22) may be 

applied. Now, 

(V ­V ) 
v
 G M' 

2g 

For slugflow V.. = 2 m/sec, and for a tube of about 
M 
max 

2,5 ­ 3 cm, £ = 1 cm . 
_E 

Thus in most c a s e s £ may be i g n o r e d . For ξ = ξ 
Ρ c 

e q u a t i o n (22) becomes: 

(1­ξο) Γθ£νΛ2ΐΤ - l/ÇcVM + 0 , 3 5 / I D J = ξα 0 ,35/ΙτΓ (23) 

Writing now for 

for slug flow: 

N
FR 

Ν we obtain, as a general expression 

r R 

[ ι ­ SJ2Í 
' 0 Ρ ­I

 S η C£ 2£
 J
 c 

1 ­ ξ 

• ξ. (24) 

Also in this formula C is an adaptation coefficient equal 

to: 

0,35 J D '
 N

FR 
c
i - ι-ξο \—

 +
 ΤΓ 

c c 

(25) 

Equation (25) may be compared with equation (18). The latter 

equation, with £ ignored, may be written as C and we ob­

o 
tain, in general, writing for ξ at V = Ο,ξ 

r i - Ç c - i i - e . C
£ =

 C
£ L

1 +
 Τ 

o
 L
 c 'c 

1 ± ^ 
J i-eo 

(26) 
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Here Β 0,3 5̂ g'De 

Now the relation between ξ and ξ is unknown. There are 
o c 

two possibilities for this relation, which are extremes of 
reality. 
The first extreme is: 

C„ = C. and the relation between ξ and ξ may be written £ £ o c J 
o 

ξ - ξ ? 
t-^br- irr '"> 

c o 

If this relation is plotted for ξ = 0,895, we obtain at 
ξ =0,7 , Β = 4,30 , see fig. 6 . For a one-inch tube 
o ' ' max ' ' 

this means V,. =0,75 m/sec. This is certainly too low. 
M 

Another extreme is ξ = ξ 
c o 

This gives 
1-ζ( C£ = C£ (1+ "T" o o 

Β) (28) 

The reality will probably lie between these two expressions, 
and we may expect an expression, such as: 

C£ (1+φΒ) 
o 

(29) 

In that case 

Β = ι-ξ. (1-ξ )- φξ ο c 
(30) 

In equation (29), φ will be a variable; for low values of 
10 D n Ί Ί„ , , 1-0.895 , _ ... 
— , φ ->0,117, because ψ= ■ *QC. , and for high values 

of — , φ-* 0, because C -> C 

0,895 

(compare equations (27) and (30) ) 
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1­ξ, 
It is thus clear that 0 

However, φ is also a function of Β and for the moment 

only fictitious models are available for study, due to 

the lack of knowledge. 

The extreme φ = 0, or C = C gives, for an increasing B, 
X» X» 

a decreasing ξα as follows from fig. 6. (The part left 

from the max. for Β does not belong to the solution of 

equation (27 ) ) . 

This kind of tendency may generally be expected with more 

realistic values for φ. 

This can also be proved by means of equation (22). 

-Í2 Since C. = 1 and V ­V„ = \J2g £ , for short bubbles, 
£ G Μ ρ ' ' 

1 ­ ξ V JLL· 
£+£ 

Using the formula of Nicklin £ = 

(0,2 VM + 0,35 y/g~D)
: 

_ 

and for increasing V , £ is therefore increasing and ξ 

accordingly decreasing. 

Finally the following observations can be made. 

Equation (21) suggests that for £­>"», C = 0. It may be 

imagined, however, that a limit value for £/D exists. 

From wave theory we know 

Cw » — = ­ V 2g h or C ^ 0,28 νΤΤϊς 
2V7r 
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In this formula C„ = velocity of the wave over shallow 
W J 

water 
h = wave length. W 

In the case of slug flow, assuming the bubble is a wave, 
we obtain: 

CW = VG + VLD 

hw = *· 
Thus :W = Τ" VM + °» 3 5V rl^ + irf- 0,35VgD' 
and applying equation (31), we obtain 

N FR 
0,28 d - °.35 /ΣΤ 1 

|_Χ 0,28(1-ζ ) V 2£ J 
(32) 

Equations (24) and (32) are identical, if C = 0,28 . 
X» 

Substituting the value C = 0,28 in equation (21). the 
result is £/D = 72 . 

For this value, F(£) = 1 - £x|| y _ i _ = 0,896 being 
the limit value for ξ . 

c 

No higher values can be found for £/D in the literature at 
present available. 

Ref.(l) reports as a maximum £^70 D, and Ref.(9) gives 
for £= 200 cm, £/D = 70. 
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Conclusions 

1. There is a strong indication that in the Formula of 
Nicklin et al^1^ 

VG = Cl + C2 

C1 is not a constant value. 

This follows from the work of other researchers (M, (5), 

(6), and (7). 

2. The factor C is very probably equal to 1/ξ , ξ 

being the local void fraction at the rear-end of the 
bubble. If this is true, then the "fixed" relation 
between C and the ratio max. liquid velocity at the 
center line to the mean mixture velocity must be con­
sidered to be accidental. 

3. From this theory it follows that with increasing V M 
the bubble volume per unit length decreases, assuming 
the bubble length remains constant. 

4. A maximum bubble length to tube diameter ratio could 
be explained, by analogy between bubble motion and 
wave velocity over shallow water. 
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A 

Β = 

C = 

C
£ = 

C
£cyl 

C
£ 

°W° 
D 

6 

E 
o 

F(£) 

pipe cross section (m ) 

bm 

£ 

£ 

m 

Μι 

0,351/gÏÏ" 

constant or coefficient 

adaptation factor of bubble 

idem for cylindrical bubble 

adaptation factor V„ = 0 

wave velocity over shallow water (m/s) 

tube diameter (m) 

film thickness (m) 

Ρ E D 
Eo'tvos number = —*­

σ 

gravitational acceleration (m/s ) 

manometrical pressure height by bubble produced (m) 

friction pressure height (m) 

wave length (m) 

local void fraction in cross­section of bubble 

local void fraction at rear­end of bubble 

local void fraction in cross­section of idealized 

bubble on length £ equal to local void fraction at 

rear­end of bubble with length £, under flow 

conditions Vw = 0. 

M 

bubble length (m) 

relative velocity head (m) 

liquid holdup around the bubble expressed in 

unit length of full tube 

exponent 
\c & s 

viscosity of liquid other than water (—*JL—,) 
m 

viscosity of water ( "I ) 

m 
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FR Bubble Fround Number 
/2~g"T 

XG 
QL 
P 
σ 
U 
V, 

GA 
VGs 
VLA 
VLD 
V LDA 

volume flow rate of gas (m /s) 3 volume flow rate of liquid (m /s) 3 liquid density (kg/m ) 
surface tension of liquid (kg/m) 
velocity of interface (m/s) 3 bubble volume (m ) 
velocity of the gas phase (bubble) (m/s) 
volume flow density of gas phase (m/s) 
gas velocity at the point of slug formation (m/s) 
volume flow density of liquid phase (m/s) 
liquid downflow velocity between bubble and wall (m/s) 
volume flow density of downflow liquid (m/s) 
volume flow density of gas-liquid mixture (m/s) 



­ 22 ­

Bibliography 

1. Two­Phase Flow in Vertical Tubes: 

D.J. Nicklin, J.O. Wilkes, J.F. Davidson, 

Trans. Instn. Chem. Engrs. Vol. 40, 1962, pages 61­68. 

2. Strömung an einer Luft Blase in senkrechten Rohr, 

D. T. Dumitrescu, 

Ζ. Angew. Math. Mech. Vol, 23, 1943, pages 139­149. 

3. Precise measurements of slug speeds in air­water flows, 

A. J. Nicolitsa, and W. Murgatroyd, 

Chem. Engn. Science, Vol. 23, 1968, pages 934­936. 

4. Expansion of liquids and fluidised beds in slug flow. 

J.R. Grace, L.S. Krochmalnek, R. Clift, E.J. Farkas , 

Chem. Engn. Science, Vol. 26, 1971, pages 617­628. 

5. Moto relativo di gas e liquido. 

Nota IV ­ Influenza della variabili operativo sul flusso 

in equicorrente ascendente. 

G. Marrucci, G. Astarita, L. Nicodemo. 

La Chimica e l'Industria. Voi. 46, N.12. 1964, pages 1458­1463 

6. Gas absorption in narrow gas lifts. 

J.W. van Heuven, W. J. Beek, 

Chem. Engn. Science, Vol. 18, 1963, pages 377­390. 

7. The velocity of rise of single cylindrical air bubbles 

through liquids contained in vertical tubes. 

E. T. White, R. H. Beardmore, 

Chem. Engn. Science, Vol. 17, 1962, pages 351­361. 

See Ref. 4. 

P.S.B. Stewart, J. F. Davidson, 

Powder technol. Vol. 1, 1967, page 61 



­ 23 ­

9. Unsteady State Gas­Liquid Slug Flow Through Vertical 

Pipe. 

J. R. Street, M. Rasin Tek. 

A.I.Ch.E. Journal. Vol. 11, N. 4, 1965. pages 601­607. 

10. On Driving a Viscous Fluid out of a Tube. 

B. G. Cox. 

Journal of Fluid Mechanics, Vol. 14, N. 1, 1962. 

Pages 81­96. 

11. The Movement of Single Large Bubbles in Closed Ver­

tical Tubes. 

H. L. Goldsmith, S. G. Mason. 

Journal of Fluid Mechanics, Vol. 14, N. 2, 1962, 

Pages 42­58. 

12. Strömung einzelner Gasblasen in verticalen Rohren. 

D. A. Kouremenos. 

Chemie. Ing. Techn. Vol. 39, Ν.15, 1967, pages 907­909. 

13. Dynamics of Bullet Shaped Bubbles Encountered in 

Vertical Gas­Liquid Slug Flow. 

J. R. Street, M. Rasin Tek. 

A.I. Ch. E. Journal, Vol. 11, N. 4, 1965, 

Pages 644­650. 



*V L A = C s t 

VG=VM+C3VGA + C2VgD 
B ^ ( IN THIS CASE C2 =0 ) 

Fig.1 Representation of diverse types of 
slugflow-equations in a VG-VM diagram 
(Representation out of proportions ) 

Fig. 2 Representation of diverse types 
of slugflow-equations in a VG-VM 
diagram. 
(In realistic proportions) 
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Fig. 3 Continuity equation over cross-section 
B-B for a slugflow twophase system 
in A vertical tube. 

Fig.A Liquid holdup around a bulletshaped 
bubble in equivalent tube diameters 
versus the square root of bubble lenght 
in tube diameters. 
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Fig. 5 The adaptation coefficient CL 

versus \JWÕ. 

Fig. 6 Function Β versus 5C 

with parameter £c =0,895 
for the case Ci = Ci0 
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