
nu! II il 
R 4769e 

ititi 

M 

«Si» 
îgm 
ii 

SSW·«· 
.IH ' 

COMMISSION OF THE EUROPE 

mm 

«IB» 
iifsttr; 

ë *»J 

»?!*? 

Ito' 

i j - i * 

'tan 
m 

m 
WW) 

'ÍS 

«fWi 

Sin 

THEORY OF 

DYNAMICAL SCATTERING 

TICLES 

If 
¡Maai 

■rr 

il 
rt£ 

! 

.Mi 

Ρ I 

»«Mh.i 

i 
g 

üfi' 
1972 

Joint Nuclei 

Ispra Establishment ■· Italy 

Physics Division 

¡Hi/ft 

wi 

PE 

Ä 

ii 
íPSfiií 



A 

m 

JHlrtUir ι Γ A 'î '1 ι «'"riHtfRìftlh IltpMfb'; ' r i ' f" Μϊ JWTI uFilîl ïllV'iit'IlWlBhlf II I 
This document was prepared under the sponsorship of the 
Commission of the European Communities. 

Neither the Commission of the European Communities, its 
contractors nor any person acting on their behalf : 

ί β 'Ùimri WwfàifmSSÍ 
make any warranty or representation, express or implied, with 
respect to the accuracy, completeness, or usefulness of the 

it, or that the use of any 
process disclosed in this 

owned rights ; or ¡mm 
any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method 

β M 

K*P7i 

ΪΠΚ 

at the price of B.Fr. 50.— 

» ! 

m " en ordering, please quote the EUR number and the titl« 
ch are indicated on the cover of each report. 



EUR 4769 e 
THEORY OF BANDS AND DYNAMICAL SCATTERING OF 
PARTICLES BY LARGE CHRYSTALS by G. BLAESSER 
Commission of the European Communities 
Joint Nuclear Research Centre — Ispra Establishment (Italy) 
Physics Division 
Luxembourg, February 1972 — 18 pages — B.Fr. 50.— 

Well-known expressions of the dynamical scattering theory are 
derived by the analogy with the mathematical similar situation of the 
propagation of electrons in a periodic potential. It is our hope that this 
similarity between the theory of electron bands and the theory of 
dynamical scattering can be used for the discussion of more complicated 
problems (for example : the dynamical scattering in the presence of 
impurities). 

EUR 4769 e 
THEORY OF BANDS AND DYNAMICAL SCATTERING OF 
PARTICLES BY LARGE CHRYSTALS by G. BLAESSER 

Commission of the European Communities 
Joint Nuclear Research Centre — Ispra Establishment (Italy) 
Physics Division 
Luxembourg, February 1972 — 18 pages — B.Fr. 50.— 

Well-known expressions of the dynamical scattering theory are 
derived by the analogy with the mathematical similar situation of the 
propagation of electrons in a periodic potential. It is our hope that this 
similarity between the theory of electron bands and the theory of 
dynamical scattering can be used for the discussion of more complicated 
problems (for example : the dynamical scattering in the presence of 
impurities). 

EUR 4769 e 
THEORY OF BANDS AND DYNAMICAL SCATTERING OF 
PARTICLES BY LARGE CHRYSTALS by G. BLAESSER 

Commission of the European Communities 
Joint Nuclear Research Centre — Ispra Establishment (Italy) 
Physics Division 
Luxembourg, February 1972 — 18 pages — B.Fr. 50.— 

Well-known expressions of the dynamical scattering theory are 
derived by the analogy with the mathematical similar situation of the 
propagation of electrons in a periodic potential. It is our hope that this 
similarity between the theory of electron bands and the theory of 
dynamical scattering can be used for the discussion of more complicated 
problems (for example : the dynamical scattering in the presence of 
impurities). 





EUR 4769e 

COMMISSION OF THE EUROPEAN COMMUNITIES 

THEORY OF BANDS 
AND DYNAMICAL SCATTERING 

OF PARTICLES BY LARGE CRYSTALS 
by 

G. BLAESSER 

1972 

Joint Nuclear Research Centre 
Ispra Establishment - Italy 

Physics Division 



ABSTRACT 

Well-known expressions of the dynamical scattering theory are 
derived by the analogy with the mathematical similar situation of the 
propagation of electrons in a periodic potential. It is our hope that this 
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THEORY OP BANDS AND DYNAMICAL SCATTERING OP PARTICLES 
BY LARGE CRYSTALS 

G. BLAESSER 

1. Introduction 

It is well known that usual kinematic scat­
tering theory can be applied only to the case of 
small thickness-where multiple scattering events 
can be neglected- while in the case of large samples 
one nasuto use the so-called dynamical scattering 
theory (1>2>3>4)# 

In the standard texts dynamical scattering 
theory is derived for the particular case of X-ray 
scattering while taking into account all the polari­
zation properties of electromagnetic waves by using 
the mathematical apparatus of classical Maxellian 
theory. This derivation tends to obscure the essen­
tial physical features by the additional complications 
arising from these polarization effects. 

It is therefore interesting to derive the essen­
tial properties of dynamical scattering for the case 
of scalar (i.e. spinless)particles since the polariza­
tion effects are not essential to the main results of 
dynamical scattering theory. 

In the present paper the results of dynamical 
scattering theory are rederived along these lines; by 
this procedure it is also seen that dynamical scattering 
theory bears a striking ressemblance to the theory of 
electron bands in crystals : it is therefore hoped that 
this similarity can be used to extend some results of 
the theory of electron bands to problems in dynamical 
scattering . This could be especially important in case 
where we have to study dynamical scattering in the 
presence of impurities, phonon interactions and non-
linearities. 
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2. The Propagation of Particles in an Infinite 

Ideal Crystal 

Since the potential V(r) which describes the 

interaction between the propagating particles of mass 

AX and the crystal atoms has to the symmetry of the 
/ 2 2 

crystal the Hamilton operator Η = Τ + V (T = (h /2ΛΙ)\7 « 

kinetic energy operator) of these particles is invariant 

with respect to the space group Gj of the crystal and in 
Q er* 

particular with respect to its subgroupAof lattice trans­

lations 4­, where the operators / are defined by 

1­ { <f(t) = cpCi+Sf) 

and the * are all vectors of the form 

2­ g¡g \~irt. α· 

where m.. ,m2 and m., are arbitrary integers, and a^ ,a_p and 

a_o are the Bravais vectors of the lattice (which define 

the elementary cell). Thus the invariance of V(r) with 

respect to ¿means that 

3­ I V(r) -V(r + *) - Vd) 
ss 

Since H and the operators/ commute, the eigenstates 

of H (i.'e. the solutions of the Schrödinger equation 

Εψ « Έψ ) must be representations of y. As it is well 
f 5 ) <τ-' 

known v ' all representations of ò can be written in the 
form of Bloch functions 
4_ fit) * Hkd) wUi-t) 
with periodic functions u, (r): 

5- id UL(?) * U.k Lt + ct) - <lk U) 
The vector K is the parameter which distinguishes the 
different representations P,» within the first Brillouin 
zone different values of k correspond to inequivalent re­
pre sentations. 

These facts are well known for the case of electrons 
in a lattice. The dependence of the energy eigenvalues on 



the representations is expressed in the dispersion 
relation E = E (k) and exhibits the band structure. 
Here, however, we nowhere assumed that the propagating 
particles are electrons. Therefore these results are 
perfectly general and apply to all particles propagating 
in an ideal crystal. 

In the usual treatment of the theory of electron 
bands (5) a first orientation about the band structure 
is obtained by the quasi-free electron approximation: 
One starts with the free-electron approximation, which 
neglects all interactions between the electrons and the 
lattice. The wave functions are the plane waves 

6- ^l,k (r) = expfi (k - K., >r] 
and the corresponding dispersion relation is 
7- E1(k) = &2/2fx) (k - K.,)2 

The index 1 enumerates all vectors K.-, of the reciprocal 
lattice; therefor exp ( χΚ.1# e*) = 1 ,so that the plane 
waves (6) are really Bloch functions with a periodic 
part exp (-iE-, .ft ). The quasi-free electron approxima­
tion is now obtained from the free electron apprimation 
by considering the interaction only at the points where 
we have accidental degeneracies in the freeelectron model. 
In this way the dispersion curves of the freeelectron ca­
se (fig.1a) go over into the corresponding curves for the 
quasi-free electron case (fig .1b). If we draw the contours 
of constant energy in two dimensions and apply the same 
perturbation procedure we obtain the effect shown in Pig.2 
for the particular case of the interaction of the two waves 
characterized by L = (000) and K*« (2tT/a) (100). 
Considering the influence of the other points K- of the re­
ciprocal lattice, the constant energy curves in two dimen­
sions have a form like the one shown in Pig. 3.These 
curves are the (k^»k ) - sections of the three-dimensional 
constant energy surfaces; plots like fig. 3 are well known 
in the theory of the Permi surface (wich is nothing else 
than the constant energy surface for which the energy equals 
the Permi level). 
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In the dynamical theory of scattering we can 
also use the quasi-free particle approximation. The 
surfaces E=const will be called "dispersion surfaces" 
since they give the dispersion relation E s E (k) in 
graphical form. It should be noted that for ]/jU.£ > Zwt/a, 
the dispersion surface surounds K and K. as in Pig,4 
In such a case also higher order waves could be impor­
tant for its construction. 
The separation of the energy levels which is illustra­
ted in Pig.1 can easily be calculated from the 
Schrödinger equation in K-space. The periodic func­
tions u, (r) and V (r) can be written as Pourier series 
with a summation extending over all points of the reci­
procal lattice : 

(8) u k (r) = L^expí-ií^r) 
vir) = F^expi-iK^r) 

The Schrödinger equation in K-space is then 
9- Viyf*-*) " 4-"n * m-n=0 

with k =k - K . —ΐο. — —m 

In the case of only one wave the average potenti­
al ν causes a renormalizazion of the energy; it is the 
"work function" in the studies on electrons in metals, 
but it can also be interpreted in dynamical scattering 
theory as "average refraction" of the wave. 

The simplest case of splitting occurs in the 
neighborhood of a double degeneracy. Let us suppose that 
the two waves for which the E (k) plots intersect in the 
free-particle approximation are characterized by the re­
ciprocal lattice vectors IL and K, . It is then reasonable 
to assume that the Pourier expansion of the function VL-LJL) 

in the neighborhood of this point is mainly determi­
ned by the contribution of these two waves. Neglecting 
the effect of the other waves we obtain the equations 
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10- ÉcA - v - l A = ° 

-
v
hi

 +
 ¿A - ° 

where £. ( i=0,h) de-notes the energy change 

11­ ε4= 

ι 

■ 2 , s , 2 

±­ E ­ ( ftVo /O k\­ v0 

Ε­or a real interaction potential V (r) it is ν . = ft , 

Thus the equations (10) lead to the secular equation 

for the energy values : 

2 

12­
 £

o
£
h=

 ,v
h' 

Prom eqs.(10) and (12) we also obtain the relation 

£ Ιί Ι1- ε \ ί I2 
13- £o' T o ' ch|Th' 
wich shows that T, goes to zero if £ goes to zero, and 
also that £n-*0 for τ, -*Ό. This means that in regions 
of k-space far away from an intersection point only one 
wave contributes. 
It is not difficult to understand the physical reason for 
the splitting of the energy levels under the action of the 
crystal potential. Por simplicity let us consider the 
situation on the k -axis at the boundary of the first Bril-

•Λ. 
louin zone of a simple Bravais lattice as in fig. 1 * 
At this point k02=k.,2= Tj2/a2. Thus εο= «.,*■ and |£j=lf.,l. 
The secular equation yields £» + v­ (in a simple Bravais 

lattice a real V (j&) has also real Pourrier coefficients 

since the lattice is invariant with respect to inversions). 

Equations (10) leads to the result that £. = ±§o. 

The resulting wave functions are therefore given by 

(H) y/
+
J s £o cos ( frr/a); <//"")= £o sin ( irr/a) 

Since | \i/\ gives the probability density for the particle 

it is seen that viA^leads to a large probability densi­

ty near the crystal atoms, while ^ " ' goes to zero there. 

Thus if the interaction potential V O ) is repulsive 

(positive), ν and v.. are positive, and the solution 

which is large at the atomic sites has higher energy than 

the solution which is small there. In the absence of in­



teraction both solutions and all their linear combina­

tions have the same energy . This explains the original 

double degeneracy and its removal by the interaction 

with the lattice. If the atoms of the crystal also absur­
re Ì 

be radiation then obviously ψκ ' will be attenuated much 

more than Φ ^~' which will penetrate with almost negli­

gible absorption. This effect is called anomalous trans­

mission. It is obvious how this method can be extended to 

points of higher degeneracy in the original free­particle 

dispersion relation. 

Remark: In our equations entered the mass /u of the 

propagating particles which is zero in the case of 

photons. However, this case leads to the wave equation in 

a medium with periodic dielectric constant. Since this 

wave equation is invariant with respect to the group, 

all the considerations above apply to this case too, with 

the Pourier coefficients of the potential replaced by the 

Pourier coefficients of the dielectric constant, e . Por 

scalar photons (i.'e, neglecting the polarization properties 

of the electromagnetic waves) one obtains the equation^· ' 

S (k
2
 - k

2
 ) + k

2 J e «$ = 0 
15­ ^ _

v
m v

y
 m ¿­ n m­η 

Here k = V/c is the wave number of the photon in vacuum. 

It plays essentially the same role as the energy E in 

the method presented above. The dispersion surfaces in 

X­ray scattering are the surfaces of constant k . 

Eq. (15) can be considered as the photon equivalent of 

e|.(9). 

3. Solution for a Wave Impinging on a Semi­infinite 

Crystal 

In a large but finite crystal the asymptotic 

solution derived in the preceeding section for an infi­

nite crystal is valid at a certain distance from the 

boundary. Its parameters have to be linked in some way 

to those of the incident wave field outside the crystal 

i.e. we have to impose suitable boundary conditions to 

the asymptotic solution inside the crystal. 
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To find such boundary conditions one can start with the 
approximation that the validity of the asymptotic solu­
tion extends even tó the surface of the crystal. This 
is certainly not true in a rigorous sense : as we know 
from the theory of electron bands in finite crystals 
there are "surface states" at the boundary which die 
away as one proceeds to the interior atomic layers of 
the solid. Then, at distances of the order of some hun­
dred A, the asymptotic solution prevails. On the other 
hand, in the case of neutrons for example, the interaction 
between crystal atoms and incident particles takes mainly 
place at a much larger distance, determined by the mean 
free path (which, for neutrons, is usually of the order 
of centimeters), i.e. in a region where the asymptotic 
solution is already well established. Thus it is likely 
that boundary conditions which directly link the incident 
wave and the asymptotic solution will give the right expres­
sion for the field inside the crystal, except in the surface 
region itself. 

It is therefor reasonable to impose the boundary 
conditions of continuity of the wave functions and the 
currents at the surface of the crystal to a superposition 
of eigenfunctions of the infinite crystal Hamiltonian H. 
The continuity of the wave functions implies in particular, 
for an incident plane wave jo . » Aexp (ifi .r), that the 
tangential (with respect to the surface) component of the 
wave vector remains unchanged: 
16- ft - (ft.n)n = k - (Ê.n)n 
(ft = wave vector of the incident wave , k = wave vector 
inside the crystal ,n = normal to the surface) 
Eq.(16) will be refered to as the condition of continuity 
of phase (or of phase velocity) at the boundary. 

Instead of the condition of the continuity of the 
current at the surface we can use the much simpler condition 
that follows from the fact that the energy of the incident 
beam and of the solution inside the crystal has to be the 



10 ­

same since we are considering elastic coherent scat­

tering only (All other interactions could later be 

included in this theory as "absorptions"). This con­

servation of energy requires that the inside solu­

tion has a wave vector k which lies on the disper ­

sion surface corresponding to the energy of the in­

cident wave : 

17­ E = h
2
ft

2
/2 

It is easy to determine the k­vectors graphically 

from these conditions (fig. 5) : If we draw­ in the 

reduced zone scheme­the incident vector in such a 

way that it points at Γ, the center of the zone, and 

if we draw that normal to the surface which passes 

through the other end of ft , then the first condition 

is satisfied for all vectors which start from that nor­

mal ñ and end atf
1
. The second condition means that 

these vectors have to originate at the dispersion sur­

face of energy E. Thus the intersection points of Ã 

with the dispersion surface determine the wave vectors 

which contribute to the inside solution. In fig, 5 we 

have illustrated the case where the dispersion surface 

has a form typical for the interaction of two­free­

particle waves characterized by the reciprocal lattice 

vectors K = 0 and K, . As one can see from this figure, 

there are two k ­vectors in the first Brillouin zone 

that contribute to the solution; they are determined by 

the points A1 and Ap. 

The solutions corrisponding to the different 

admissible k ­vectors have to be combined in a way as 

to satisfy the detailed boundary conditions. Again we 

limit our discussion to the situation of Pig. 5: 

To simplify the writing we choose our coordinates in 

such a way that the boundary corresponds to ζ = 0, and 

we denote an arbitrary position vector (x,y,0) in the 

surface by â . Taking into account the fact that the 

inside solutions are superpositions of waves fexp(ik.r) 
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and í^exPÍiík­Ev,)·^) we can write the condition of the 

continuity of the wave functions at the surface in the form 

18­ J0.nexp(ift.â) = ( f I + i \ ) exp (ift.É) + (*¿ + 4
2
)exp(i(K­K)i) 

where the superscripts 1 and 2 refer to the points A1 and 

Ap and where we have used the fact that k«.. ê=kp.â=ft.â. Since 

equation (18) has to be satisfied identically(for all values 

of ñ) we have to conclude that 

yj. = Ï
1
 · * 2 

^xn 

and 

19­ 0. = Î
1
 + i' J

 ^xn o 

20- Κ' 'Κ 

Prom Eq.(10) we have 

* è = (
£
o A _ h ) # 0 (1=1,2) 

so xïiax 

0 0 0 0 

and that therefore 

22- 0. = ( 1 - ¿/É2) # 1 

^xn v o' o ' o 

or 
A

1
 = c

2
0 . / ( c

2
 _ r

1
) 

*o ' c r i n ' ^co fco; 

Φ
2
 = eU. /(e

2
 -f

1
) 

To o^xn ' v o oy 

2
3- x 1 e 4 

* h v
-hS" *J> ^

i n 

- £
1
 ε

2 
2 - " £ o *o 0 

The case of a wave leaving the crystal is solved in exactly 

the same manner. 

The two waves distinguished by the superscripts 1 

and 2 have the same frequency (energy) and their phases 

are fixed relative to each other by the equations (23). 
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Since the waves propagete with different wave vectors k̂  and kj, 

their superposition within the crystal will form a characteristic 

interference pattern called "Pendellösung" by EWALD in this work 
(2) 

on dynamical scattering of X­rays
v
 . 

We shall illustrate this oscillatory behaviour of the solution 
2 1 

inside the crystal for the particular case in which e = ­ £Q . 

This corresponds to the case where the normal ñ passes through 

a point which is symmetrical with respect to the t.vo branches 

of the dispersion curves; this means that it passes through the 

intersection point of the free­particle dispersion curves. Then 

it follows from the equations (23) that 

24- #
1
 =Φ

2
 = 0. /2 T

 o o în' 

and 

25- « ; - - ♦ £ - øin/2 
with the abbreviation 

1 
*l 

T
- h 

Thus the superposition of the two waves (24) gives 

26­ §0= (iZiin/2)exp(ik1r) + (0±n/2) exp(ik2r) 

o 0 cos( í k.r)exp(iK.í£) 
xn 

where 

27­ Í k = k1 ­ k2. E = (]fl + k2)/2 

ík is equal to the vector A<.A2 : therefore it points along the 

normal ñ, i.e. along the z­direction so that £k*r = cz, where 

c=|¿k|is some constant. The intensityίΦJ thus has planes of 
maximum cz = (m+1/2)if , 
In the same way we obtain for the superposition of the waves 
(25) 

2 8-^h = 0insin(cz) exp(iE - 14).r) 
Obviously , the nodal planes of $, coincide with the planes of 
maximum amplitude of ̂  and vice versa. 
The superposition of the waves of index 0 and of index h gives 
rise to still more complicated interference patterns. 
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However as we have seen, at the planes ζ = m ir/c and z= 

(m+ 1/2) 1T/C only one wave is present; therefore the 

solution simplifies considerably at these points. 

The direction of the wave emerging from a finite crystal 

differs for waves of index h from that of waves of index o. 

The wave of index o corresponds (outside of the crystal) 

to the direction of the unreflected beam while the wave 

of index h gives rise on exit to the wave scattered by 

the plane h. Thus the effect of the pendulum solution 

is to change periodically (as a function of crystal 

thickness) the relative intensities of these two emerging 

beams in such a way that at the corrisponding nodal planes 

one wave is absent. 

It is possible to show experimentally this effect by 

studying the emerging radiation in the case of a transmission 

through a wedge-shaped crystal. 
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