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ABSTRACT
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THEORY OF BANDS AND DYNAMICAL SCATTERING OF PARTICLES
BY LARGE CRYSTALS

by
G. BLAESSER

1. Introduction

_ It is well known that usual kinematic scat-
tering theory can be applied only to the case of .'
small thickness - where multiple scattering events'
can be neglected- while in the case of large samples
one has.to use the sd-called dynamical scattering

theory (1f2’3’4).

In the standard texts dynamical scattering
theory is derived for the particular case of X-ray -
scattering while taking into account all the polari-
zation properties of electromagnetic waves by using
the mathematical apparatus of classical Maxellian
theory. This derivation tends to obscure the essen-
tial physical features by the additional complicationa
arising from these polarization effects,

It is therefore interesting to derive the essen-
 tial properties of dynamical scattering for the case

of scalar (i.e. spinless)particles éince the polariza-
tion effects are not essential to the main results of
dynamical scattering theory.

In the present paper the results of dynamical
gscattering theory are rederived along these lines; by
this procedure it is also seen that dynamical scattering
theory bears a striking ressemblance to the theory of
electron bands in crystals : it is thereforehoped that
this similarity can be used to extend some results of
the theory of electron bands to problems in dynamical
gscattering ., This could be especially important in case
wvhere we have to study dynamical scattering in the
(presence of impurities, phoncn interactions and non-

linearities.



2. The Propagation of Particles in an Infinite
Ideal Crystal

Since the potential V(r) which describes the

interaction between the propagating particles of mass

and the crystal atoms has to the symmetry of the
crystal the Hamilton operator H=T + V (T = (h2/2/u)V2=
kinetic energy operator) of these particles is invariant
with respect to the space groupqof the crystal and in
particular with respect to its subgrouﬁ?gf lattice trans-
lationslé, where the operators é are defined by

1- { g = plr+g)

and the « are all vectors of the form

2— « = g m.a;

where my Mo and my are arbitrary integers, and 84182 gnd
ay are the Bravais vectors of the lattice (which define
the elementary cell), Thus the invariance of V(r) with
respect to%ﬁmeans that

3- é Vir) < Vieea) = Vir)

Since H and the operators{‘commute, the eigenstates
of H (iie. the solutions of the Schrddinger equation
Iy = Ey ; must be representations oftri As it is well
known (5 all representations ofcgvcan be written in the
form of Bloch functions

4 lp(f)= Qk(f}rup(fff)

with periodic functions uk(g):

5~ {,ué () = Wy (r+d) = “, (r)

The vector E ig the parameter which distinguishes the

different representations F%; within the first Brillouin

zone different values of k Correspond to inequivalent re-

pregentations. |
These facts are well known for the case of electrons

in a lattice. The dependence of the energy eigenvalues on



the representations is expressed in the dispersion
relation E = E (k) and exhibits the band structure.
Here, however, we nowhere assumed that the propagating
particles are electronsa. Therefore these results are
perfectly general and apply to all particles propagating
in an ideal crystal, : :

In the usual treatment of the theory of electron
bands (5) a first orientation about the band structure
is obtained by the quasi-free electron approximation:

One starts with the free-—electron approximation, which
neglects all interactions between the electrons and the
lattice., The wave functions are the plane waves

6= \7‘/1,3:_ (r) . exp[i (k - X, )-;_]

and the corrisponding dispersion relation is

7- By (k) = B%/2m) (k- K)°

'The index 1 enumerates all vectors Kl_of the reciprocal
lattice; therefor exp ( iKj. &«) = 1 ,s0 that the plane
waves (6) are really Bloch functions with a periodic

part exp (-iK,.$ ). The quasi-free electron approxima-
tion is now obtained from the free electron apprimation

by considering the interaction only at the points where

we have accidental degeneracies in the freeelectron model.
In this way the dispersion curves of the freeelectron ca-
ge (fig.1a) go over into the corresponding curves for the
quasi-free electron cagse (£ig .1b). If we draw the contours
of constant energy in two dimensions and apply the same
perturbation procedure we obtain the effect shown in Fig.2
for the particular case of the interaction of the two waves
characterized by K, = (000) and Ky= (2m/a) (100).
Considering the influence of the other points K1 of the re-
ciprocal lattice, the constant energy curves in two dimen-
gions have a form like the one shown in Fig. 3.These

curves are the (kx’ky) - sections of the three-~dimensional
constant energy surfaces; plots like fig., 3 are well known
in the theory of the Fermi surface (wich is nothing else
than the constant energy surface for which the energy equals
the Fermi level).



In the dynamical theory of scattering we can
also use the quasi-free particle approximation., The
surfaces E=congt will be called "dispersion surfaces"
since they give the dispersion relation E = E1(g) in
graphical form, It should be noted that for J2xE >2rk/a
the dispersion surface surounds K, and K1 as in Fig.4
In such a case also higher order waves could be impor-
tant for its construction,

The separation of the energy levels which is illustra-
ted in Fig.1 can eagily be calculated from the
Schrodinger equation in K-space, The periodic func-
tions uk(;) and V (r) can be written as Fourier series
with a summation extending over all points of the reci-
procal lattice

(8) u, (z)

v(x)

E,émexp(—igmg)
I:'vmexp(-ighz)

™

The Schrddinger equation in K-gpace is then
2 .2
9_ % (fl ] - E) + Zvn é m_n—O
mn /'Ll n
with §ﬁ=g -~ Km.

In the case of only one wave the average potenti-
al vV, ceuses a renormalizazion of the energy; it is the
"work function" in the studies on electrons in metals,
but it can also be interpreted in dynamical scattering
theory as "average refraction" of the wave,

The simplest cage of gplitting occurs in the
neighborhood of a double degeneracy. Let us suppose that
the two waves for which the E (k) plots intersect in the
free-particle approximation are characterized by the re-
ciprocal lattice vectors Eb and X, . It is then reasonable
to agsume that the Fourier expansion of the function uélﬁ

in the neighborhood of this point is mainly determI-
ned by the contribution of these two waves, Neglecting
the effect of the other waves we obtain the equations



€ éo B V—h¥h -
-vﬁé + Eﬁfﬁh = 0

lO-_—

where € (i=0,h) de-notes the energy change
2 .2 |
11- £4=E - ( B /2 /u) k™= v,

For a real interaction potential V (r) it is V_y= 3%.
Thus the equations (10) lead to the secular equation
for the energy values :

?
12- | £oEn= Iy

From eqs. (10) and (12) we also obtain the relation
| 2
13~ £ ,5"; | = Eh‘éhl2

wich shows that é goes to zero if E goes to zero, and
also that e-wO for @ —~>0. This means that in regions

of k-space far away from an intersection point only one
wave contributes.

It is not difficult to understand the physical reason for
the splitting of the energy levels under the action of the
crystal potential, For simplicity let us consider the
gituation on the kX-axis at the boundary of the first Bril-
louin zone of a simple Bravais lattice as in fig. 1.

A% this point k =k = 1°/a’. Thus €= €,= ana[$)=|%,|

The secular equation yields £ = + v.‘ (in a 'simple Braveis
lattice a real V (8) has also real Fourrier coefficients
gince the lattice is invariant with respect to inversions).
Equations (10) leads to the result that f =-+§CL

The resultln wave functions are therefore given by

(14) )l/ = $o cos (rr/a); y/(-)= o sin (nwr/a)

Since IWI gives the probability density for the particle ,
it is seen that 4/ leads to a lar%e probability densi-

ty near the crystal atoms, while ¢ ~/ goes to zero there,
Thus if the interaction potential V (v) is repulsive
(positive), v Vo and v1 are positive, and the solution
which is large at the atomic sites has higher energy than
the solution which is small there. In the absence of in-



teraction both solutions and all their linear combina-
tions have the same energy . This explains the original
double degeneracy and its removal by the interaction

with the lattice, If the atoms of the crystal also absor-
be radiation then obviously YX+) will be attenuated much
more than y’(') which will penetrate with almost negli-
gible absorpiion, This effect is called anomalous trans-
miggion, It is obvious how this method can be extended to
pointe of higher degeneracy in the original free-particle
dispersion relation.

Remark: In our equations entered the mass /u of the
propagating particles which is zero in the case of
photons, However, this case leads to the wave equation in
a medium with periodic dielectric constant., Since this
wave equation is invariant with respect to the group,:
all the considerations above apply to this case too, with
the Fourier coefficients of the potential replaced by the
Fourier coefficients of the dielectric constant, e . For
scalar photons (iJe, neglecting the polarization properties
of the electromagnetic waves) one obtains the equation

15— 4>m (kzm - kzv) + 1{Qm Z ep Ppp =0

Here kv =¥/c is the wave number of the photon in vacuum.
It plays esgssentially the same role as the energy E in
the method presented above., The dispersion surfaces in
X~-ray scattering are the surfaces of constant kv.

Eq. (15) cen be congidered as the photon equivalent of

ed.(9).

3. Solution for a Wave Impimging on a Semi-infinite

Crxstal

In a large but finite crystal the asymptotic
gsolution derived in the preceeding section for an infi-
nite crystal is valid at a certain distance from the
boundary, Its parameters have to be linked in some way
to those of the incident wave field outside the crystal
i.e. we have to impose suitable boundary conditions to
the asymptotic solution inside the crystal,



To find such boundary conditions one can start with the
approximation that the validity of the asymptotic solu-

tion extends even t¢ the surface of the crystal. This

is certainly not true in a rigorous sense : as we know

from the theory of electron bands in finite crystals

there are "surface states" at the boundary which die

away as one proceeds to the interior atomic layers of -

the solid., Then, at distances of the order of some hun-

dred 3, the asymptotic solution prevails, On the other

hand, in the case of neutrons for example, the interaction
between crystal atoms and incident particles takes mainly
place at a much larger distance, determined by the mean

free path (which, for neutrons, is usually of the order

of centimeters), i.e. in a region where the asymptotic
solution is already well established, Thus it is likely
that boundary conditions which directly link the incident
wave and the asymptotic solution will give the right expres-
gion for the field inside the crystal, except in the surface
region itself,

It is therefor reasonable to impose the boundary
conditions of continuity of the wave functions and the
currents at the surface of the crystal to a superposition
of eigenfunctions of the infinite crystal Hamiltonian H.
The continuity of the wave functions implies in particular,
for an incident plane wave @ ip = Aexp (f@ .r), that the
tangential (with respect to the surface) component of the
wave vector remains unchanged:

16~ B~ (Bn)p=k- (Enn

(R = wave vector of the incident wave , k = wave vector
ingide the crystal ,n = normal to the surface)
Eq.(16) will be refered to as the condition of continuity
of phase (or of phase velocity) at the boundary.

Instead of the condition of the continuity of the
current at the surface we can use the much simpler condition
that follows from the fact that the energy of the incident
beam and of the solution ingide the crystal has to be the
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same since we are considering elastic coherent scat-
tering only (All other interactions could later be
included in this theory as "absorptions"), This con- ‘
servation of emergy requires that the inside solu- '
tion has a wave vector k which lies on the disper -
gsion surface corrisponding to the energy of the in-
cident wave 3

It is easy to determine the k-vectors graphically

from these conditions (fig. 5) : If we draw- in the
reduced zone scheme-the incident vector in such a

way that it points at ', the center of the zone, and

if we draw that normal to the surface which passes
through the other end of g , then the first condition
is satisfied for all vectors which start from that nor-
mal i and end at[. The second condition means that
these vectors have to originate at the dispersion sur—
face of energy E. Thus the intersection points of fi
with the dispersion surface determine the wave vectors
which contribute to the inside solution. In fig, 5 we
have illustrated the case where the dispersion surface
has a form typical for the interaction of two -free-
particle waves characterized by the reciprocal lattice
vectors K= 0 and K, . As one can see from this figure,
there are two k -vectors in the first Brillouin zone
that contribute to the solution; they are determined by
the points A1 and A2.

The solutions corrisponding to the different
admissible k -vectors have to be combined in a way as
to satisfy the detailed boundary conditions., Again we
1imit our discussion to the situation of Fig. 5:

To simplify the writimng we choose our coordinates in
such a way that the boundary corresponds to z = 0, and
we denote an arbitrary position vector (x,y,0) in the
surface by 8 . Taking into account the fact that the
ingide solutions are superpositions of waves f;exp(ighg)
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and'€§hexp(i(§?§£).£) we can write the condition of the
continuity of the wgve functions at the surface in the form

18- g, exp(iR.8) = (&) + 82 ) exp (iR.8) + (3] + %2)exp(1(X-K)3)

where the superscripts 1 and 2 refer to the points A1 and

A, and where we have used the fact that 51.é=k2.é=k.é. Since
equation (18) has to be satisfied identically(for all values
of B8) we have to conclude that

’ o z1 o
19- ﬂin = éo * %o
and
20- %;1= - 4121

From Eq. (1.0) we have .
L= (elm )8 (1m1,2)

so that

.. 2 2 _ 1 1

21— eo*fo_—eo'i’o

and that therefore

20 B = (1- £/82) &
in 0 o) o)

or
1_ 2 2 _ 1
éo - Eoﬂin/ (Eo - 60)

4’3 = 5<1>¢in /(55 '£<1>)

23- gl £ €8
R -y R
1 g2
2 -&_ &
= O 0 .
h v—h( Eg" 637 in

The case of a wave leaving the crystal is solved in exactly
the same manner,

The two waves distinguished by the superscripts 1
and 2 have the same frequency (energy) and their phases
are fixed relative to each other by the equations (23).
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Since the waves propegete with different wave vectors §1 and EZ’

their superposition within the crystal will form a characteristic
interference pattern called "Pendelldsung" by EWALD in this work

"on dynamical scattering of X—raya(2>.

We shall illustrate this oscillatory behaviour of the solution

inside the crystal for the particular case in which Eg = - Eg .

Thig corresponds to the case where the normal ﬁ passes through
a point which is symmetrical with respect to the tw branches
of the dispersion curves; this means that it passes through the
intersection point of the free-particle dispersion curves. Then
it follows from the equations (23) that

1 42
24~ b, =t = 0;,/2
and
25- $1 =422 g /o
h h in
with the abbreviation
£1
/’Z ol R
V_oh
Thus the superposition of the two waves (24) gives
26-  $ = (8, /2)exp(ik,z) + (#;,/2) exp(ik,r)
= g, cos( §k.r)exp(ik.)
where
27~ 65:_}5 -1{2)__ (]f.l +k2)/2

£k is equal to the vector A1A2 ¢ therefore it points along the
normal fi, i.e. along the z=direction so that 5kwr = cz, where
c-'éklls some constant., The 1nten51tyf@4 thus has planes of
maximum cz = (m+1/2)7 .

In the same way we obtain for the superposition of the waves
(25)

28"¢h.= ﬂin51n(cz) exp(ik - gh).r) |
Obviously , the nodal planes of'fh.coincide with the planes of
maximum amplitude of éz and vice versa,

The superposition of the waves of index o and of indéx h gives
rise to still more complicated interference patterns.
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However as we have seen at the planes z = m7/c and z=
(m+ 1/2) w/c only one wave is present; therefore the
solution simplifies considerably at these points.

The direction of the wave emerging from a finite crystal
differs for waves of index h from that of waves of index o.
The wave of index o corresponds (outside of the crystal)
to the direction of the unreflected beam while the wave

of index h gives rise on exit to the wave scattered by

the plane h. Thus the effect of the pendulum solution

is to change periodically (as a function of crystal
thickness) the relative intensities of these two emerging
beamg in such a way that at the corrisponding nodal planes
one wave is absent.

.It is possible to show experimentally this effect by
studying the emerging radiation in the case of a transmission
through a wedge~shaped crystal, '
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