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ABSTRACT

Within the frame of the finite-element method, the solution of some visco-
elastic problems governing the behaviour of graphite structures under irradiation
can be obtained by a conventional elastic analysis. _

Numerical examples are included to illustrate the method of analysis
suggested in the present report.
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1. Introduction. *)

This note is concerned with a special application of linear
vigco-elasticity to fhe.stress‘analysis.of graphitic bodies when subjec-
ted to boundary loads, temperature gradients and dimensional changes due
to neutron irradiation .

The special treatment presented in this paper is based on some

hypotheses which simplify very much the stress analysis (1]
a) The creep function for graphite un&er irradiation which includes an
elastic response, & primary creep term and a secondary creep contri-
bution is éssumed'to=have a constant.value over the body . This means
that the secondary creep coefficient corresponds to some mean tempera-
ture and that fhe fast-neutron flux is considered as uniform .
b) For tranéversely isofropic graphites;lthe three creep functions that
. are necessarj to define the material behaviour are assumed to be all
proportional to & single function .
c) Poisson's ratio of graphite remains constant during irradiation and

at a low value of about 0.2 .

The preceding assumptions have recently been applied to the

analysis of graphitic bodies using a biharmonic computer code [ﬂ .

*) Manuscript received on March 13, 1971



The result was that any two-diﬁensional visco-elastic problem could be
solved from the sum of four elastic solutions which are multiplied by
appropriate functions of the neutron dose.

The formulation of the same problem is presented here within
the frame of the finite-element method.

It will in particular be shown how the original visco-elast;c
p?oblem can be reduced to an elagtic one introducing the concept of equi-~
valent forces acting at the nodes of the idealized structure.

If the displacements within the structure are sought, the equi-
valent forces are derived from the boundary loads. For the stress problem
they result from the nodal loads due to the thermal and irradiation strains.

Once the appropriate equivalent forces have been appliedé at the
nodal points, the stress or displacement picture at any given neutron dose

is ovtained from a single computer run. A great saving in computational_
time can thus be achieved, since the original problem has been reduced to
an elastic one.

If the preceding hypotheses cannot be accepted, the problem has
to be solved using either an incremental procedure [3] or the Laplace

Transform method suggested in reference [4] .

2. Basic equations.

Although the considerations developed hereafter are valid for



two or three dimensional stress.analysias, the formulation of the visco-.
elastic problem will be illus%rated for a situation of plane stress with
an isotropic material.

It c5u1d be objected that many graphites are transversely
isotropic so that three creep functions are necessary to characterise
the material behaviour. It can however be shown that the assumption (b)
makes it very easy to extend the approach presented here for the isotroric
case to deal with transversely isotropic materials. The problem rresents
in fact no more difficulty than the correspondéing elastic case.

Since the felationship between an uniaxizl normal siress Gf%
and a normal strain E:X is assumed to be linear, the principle of super-
position holds. It follows that the total normal strain Efx(D) at some

neutron dose (D) due to a variable normal stress & (D) can be represen-
: X

ted by the convolution integral :

D
= (D_]D?
EX(D) J(D-D')

9 (& (D)) (1)
0 3D

The creep function J for graphite can be written in the form (2]

J (D) = + (1 =we o ) + XT)7D (2)

1 1
E 2B
o) o)

where D is the fast-neutron dose and T the temperature.

The creep function {2) includes an elastic term as well as a2 wrimary and

a secondary creen part.



For convenience of notation the integral operator appearing in Eq. (1)

is written as

i . »
D s(pop) 9 ap c (3)

2D
0 D

Therefore Eq. (1) can be written in analogy with elastic behaviour in

the form

£_(» = ¢ o (D) @

The stress can be expressed in terms of strain as

D .
S, (D) = G(D - D) 23 (g_(D')) aD’
0 D

e (0)  (5)

where G(D) is the relaxation function related to the creep function J(D)

by
G(D~D') 9 J(D') dB=H(D) (6)

0 ? D
in which H(D) is the Heaviside step function.
) . »
As can be seen the operators C and B* are related by the identity

-1 .
»
c - ¥ . (1)

I+ can be shown Eﬂ that the relaxation function which corresponds to

the creep function given by Eq. (2) has the following expression

D_ (g

G (D) = — _ BKH + Ao) e
((Eo K+ 1.5 Ao) -4 EOK Ao)

KDJ
2+Aq)92_

2

(8,



with
. i
. 5 %
K = = 0, EX + 1.5 4 0. EX+1.54A - EXK A
] 5(EBEK+1.54) + 0.5 ((BX+1.54) ~4EKA )
= - 0, EX + 1.5 4 - 0. E X 1.5 A - EXK A
K, 5 ( EX+1.54) 5 ( (EK+1.54)" -4EKA )
(9)
For an isotropic material in which Poisson's ratio V remains constant
during creep, the stress-strain relations for linear visco-elasticity
are for the case of plane stress
1 - 0 .
_ _v " th ‘ w
{C(D)] = -y 1 0 c {O’(D')}' + ,{E (D)} + {E (D)}
0 0 2(1+v) [10)
where, denoting by T the transposition
T T .
8 ; = : {G =
{ef-(e e, y,) 5 (& (o e, T,)

(11)

T | AT
{5}= <7 (1,1, 0) 3 (Ev"} wi(t,1,0)

o T and W represent the thermal and irradiation strains , respectively.

The stress vector can in turn be defined as

{em) - [E] R({e@R- {7 0} - {0 (2

where R* / Eo

R = = —— G(D - D) d aD’ (13.2)

0 0 9D
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| 1 v o |
(2] - _.__.‘._E’ v 1 o | (13.1)
T=Y% " 1o o0 1V -
- 2 J

is the conventional elasticity matrix for plane stress with a constant

Young's modulus Eo .

3, Finite~-element formulation.

<

If triangular finite-elements wi£h nodal points at the corners are used
in the idealization of’the'body, the simplest way of representing the
displacement field within an element is giveﬁ by two linear polynomials
with the(nodal_point displacements #s parameters.

Following the notations of reference [5] , the total strain }

at any point within an element (i, j,k) can be defined as

-

e -]

{em} - [B] {?(D) } (14)

The (3x6) matrix [B] contains geometric coefficients, while the six

components of nodal displacements are listed as
e .
{S } = (ui’ Vi’ ujs Vj’ uk’ Vk) (15)

3.1 The Stress Distribution.
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In view of Eqs (10) and (12) , the stiffness matrix of the element can be

_written‘invthe‘form ,
. s e m ’ : e - .
B AP O R IR C
) : ' '
with A representing the area of triangle (i,j,k) .

The nodal forces due to the “thermal and irradiation strains are giveﬁ by

(7}

while the nodal forces,baiancing the surface pfessures actually present

- -[B]T [E] R ( {Eth(D')}e + {aw(D') } e) A° (17)

e
at dose D are .denoted by { Fp } .

Using these results, the nodalbpoint‘EQpilibrium equations for element
(i,j,k,) are found to be at neutron dose D

T _. o ) e )
['B]_ [E][B] A° r {§ON} - {F£ } + [F ) ; (18)
. .| . p
-'Thelnext step in the finite-element procedure is the assembly
of the equilibrium equations (18) for the whole structure. Since it was
assumed that the scalar opérator R is a common factor in all the elements

‘we find that the nodal point equilibrium equations for the complete struc-

turesare at neutron dose D
[K] R {§(01)} = {'FTE_} d {Fp} | (19)

In Eq. (19) the stiffness matrix [K] is based on the elastic properties
Eo s, V appearing in the elasticity matrix [E] ._'

As can be seen from Eq. (17) , the first vector in the right-hand
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side of Eq. (19) can be interpreted as equivalent nodal forces due to the

thermal and irradiation strains. In other words, these forces can be generaf
ted ¥y considering an elastic structure:on which equivaleiat thermal and

irradiation strains of magnitude

1)

{éth}, _ # {gth(D')}

are appiied .

{ £V } =R {EW(D')} (20) j

The vector EFE} in BEq.(19) represents the nodal forces due to
the actuel surface pressures existing at neutron dose D .
Now, solving the system (19) for équivalent nodal displacements

of magnitude L
Zs } = R {S(D')} | (21)

we find, looking at Eq.(12) , that the stress components in all the element:

can be evaluated elastically using the relation i

. B N P NS 1 B T (")) (22
The equivalent visco-el#stic strains {E} are obtained on the basis of
Eq.(14) from the equivalent displacements {g} which satisfy the system (19):

One may therefore conclude from Eqs.(19) to (22) that when the
stresses are caused by external preésures only, their distribution can be
calculated by a purely elastic procedure for the prescribed boundary loads
actually existing at the specified neutron dos;.

In péesence of thermal and irradiation strainsz the stress pictﬂf;

is obtained considering an elastic structure on which equivalent strains

defined by Eq.(20) are applied..
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3.2 The dispiacement field.

A complementary problem must be solveéd to find the displacements
in the structure at any given neutron dose. .

It will be immediately obvious'thgt the equations governing the
displacement field are obtained by multiplying both sides of Eq.(19) by
the scalar operator |

c =" E D‘-J(D-D'). 2. ar = & (23)
0 9D '

The result is that the nodal point d}splacements at & neutron

dose D satisfy the system

[K:‘ {S(D)} = {FC§ +C {F.p} (24)
where the étiffness matrix [K] is again based on the elastic properties
E , Y .

The vector {Fk} is constructed by a summation taken over all
_the elements of contributions of the type

e T o e e e
{ Feg = [B] [E] ( {Eth(D)} + fe¥m)y )} ) A (25{

whicerepresents the forces acting at the nodes of an elastic triangular
element dué to the thermal and irradiation strainq\actually present at
the neutron dose D . -

The -second vector in the right-hand side of Eq.(24) is due to

the surface pressures and it may be interpreted as a set of equivalent
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nodal forces of magnitude
—— . .

applied on an elastic structure.

If there are no presc:ibed surface pressures, the conclusion
is that the displagements and the strains within the structure at any
given neutron dose can be obtained by performing a conventional elastic
analysis with the thermal and irradiation straing actually existing at
that dose .

In presence of surfacevpressures, the displacements and the
strains are again obtained elastically if the sfructure is supposed to

be loaded with the equivalent nodal forces defined by Eq.(26) .

3.3 Evaluation of the equivalent strains and nodal forces.

Expressions such as (20) and -(26) have to be evaluated in order
to calculate the equivalent sollicitations to be applied on the elastic
structure.

If the loading history is known analytically, fhe.required inte-
grations can be carried out analytically using the expressions (2) and (8)
for J(D) and G(D) .

The frequent case of surface pressures { F: }' applied at a
given dose Do an@ maintained constant'thereafter will be invesfigated first

Such a situation can be written mathematically as
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{Fp (D")} { F;} B (D' - D) , (27)

in which H is the unit step function.

After substitution of Eq.(27) into (26) we find for the equivalent loads

{Fp—} - E_ {F°3 ’ 3(D-D') I E(D'-D )
0

ap' = E_ J(3-D) {F;}
2 D'

(28)

Consider now Wigner strains W having as in ref. [2] a quadratic

dependence on the neutron dose D and expresseéd as

W= A(T) [D2 + B(’I") 4D]v. (29)

where A(T), B(T) are functions of the temperature .

The equivalent strains for the stress problem are obtained from

Eq.(20) as
_ D )
W = A(T) G(D-D') 2D' 4D' + A(T) B(T) G(D-D') 4D
0 _— 0

E E

o) (o]
i.e.

W :(T) {B(T) F (D) + F2(D)3 (30.1)
(0]

G(D) = o<1(o:e1- k. e 2 ) (31.a)

we find after integration

(30.2)
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ol o, ‘
P (D) = oty [ > -t - 2 - e+K1D):, (31.1)
K2‘ K1
oLy o o o o
R =20, (_2-72 )0 -T2 -y 2 - M)
2 1 K1 K2

The equivalent Wigner strains are thus readily evaluated .

A, Illustrative Problems.

A computer program named VELAG (Visco Eégstic Analysis of Graphite)
has been developed for solving two-dimensiénal problems, i.e. , problems
with plahe stresa; plane strain, generalized plane strain or axisymmetric
deformations. A general flow chart of the computer code is given in Fig. 1 .-

The solution of two illustrative problems will be presented in
order to demonstrate the accuracy and the versatility of the solution tech-

nique presented in this paper.

4,1 Circular cylinder with temperature gradients and Wigner strains,

The first problem is the generalized plane strain solution of
a thick-walled circular cylinder on which temperature gradients and Wigner

strains are applied.
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The closed form solution of this problem is given in ref. [Z]
where all the input data can be fqund.

Because of the axial symmetry; a two-dimensional finite-element
analysis was made of a narrow segment of the cylinder. The nugerical resul:
are shown in Fig.(2) , (3) and (4) . The circles répresent the numerical
values while the solid lines show the theoretical resﬁl%s.

The radial distribution of fhe circonferential strain is presen-
ted in Fig..2 for D =3 x 1022 nvt. Figure 3 is a plot of the circonferen-
tial strain existing at the outer surface of the cylinder as a function
of the neutro; dose. The variation with the neutron dose of the axial
stress at the outer radius is shown in.Fig. 4 .

-As can be seen, the numerical results are in good agreement

with the analytical solution.
4.2 Fuel rod with Teledial design.

A fuel element with teledial design (Fig. 5) has been analysed.
It was subjected to steady-state thermal strains applied at D = O and %o
variable Wigner strains.

The stress field was assumed to pe repetiti#e within the symmetric
sectqrs of the element, so that the finite element grid could be limitecd
to the symmetric sector, as shown in Fig. 5 .

The steady-state temperatufe distribution has been obtained using

a finite element code &ﬂ .
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The heat generation within the fuel zone was assumed to be uniform
and fhe game coefficient of heat transmission has been used for both
coolant holes. No gaseous gap was considered between the fuel and the
graphite sleeve.

The temperature distributipn within the symmetric sector of the
fuel element is presented in Fig. 6 .

For the stress analysis a generalized plane strain situation was
asgsumed, with a net resultant force in the axial direction equal to zero.
The graphite was taken as isotropic and the creep function of Eq.(2) was
used with |
Eo = 770 kg/mm2 ;¥ =0.2; Ad =2x 10-22neut-1-cm2 ; K =0.286 x ‘IO-23
(kg/mmz)-1(cm2-neut-1) .

The Wigner strains have a quadratic dependence on the neutron dose
as in Eq.(29). They depend from the temperature as in ref. [2] .

The axial stress picture can be seen from Fige 7 for D = O and from
Fige 9 for D = 1.2 x.1022nvt. Pigures 8 and 10 give»a plot of the maximum
principal stress for the same values of the neutron dose.

The distribution of Gy and &, along the edge AB (see Fig. 5) is
given in Fig.v11 and 12, respectively. These results are comparedeith
those obtained using the incremental procedure suggested in ref. [ﬂ

for the solution of general creep problems.



-19 -

5.'Conclusions.

When some simplifications are available, the visco-elastic
behaviour of graphite strucEPres in presence of external LOads, thermal
field and neutron i;radiation can be investigated assuming an elastic
structure on which appropriate equivalent sollicitations are applied.

If the finite-élement method is used as a numerical techniquse,
the stiress or displacement picture within the body at any given neutron
dose is obtained from a single run of-ihe computer code.

Stresses and displacements are, in fact, derived from an overall
stiffness matrix based on elastic properties, and from appropriate nodal
forces théh_accdﬁnt for dose dependent surface pressﬁres of variable
thermal and irradiation strains.

~ As a consequence, any two or three-~-dimensional computer code

for elastic structures could readily be adapted to deal with such visco-

elastic problems .
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