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1 . INTRODUCTION *) 

The discharge of large quantities of cooling water 
from electric power stations into rivers or lakes may 
give rise to a variety of problems, which can be as­
sembled under the term thermal pollution. 

In the very concise framework of our report, it will 
not be possible to go into a discussion of the biolo­
gical aspects of thermal pollution, so we will there­
fore assume that the arbitrarily accepted admissible 
temperature of 30 C for river water will in fact avoid 
all biological problems. 

Having done this, the main problem to be solved is 
thus how to determine the nominal quantity of waste 
heat which can be permitted to discharge into the ri­
ver, in order to ensure that even under the most unfa­
vorable conditions the mean temperature of the river 
will never exceed a value of 30 C. 

To this end the self cooling capacity of a river or 
lake has to be determined, as a function of the dis­
tance between two successive power stations situated 
along the river, and the volumetric flow capacity of 
the river. 

It will be shown that in particular the heat transfer 
coefficient from the water surface to the environment 
must be determined very well, in order to avoid a large 
part of the cooling capacity of the river remaining 
unused. 

*) Manuscript rece ived on December 15» 1970 
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2. THE BASIC EQUATION FOR THE COOLING CAPACITY OF A 

RIVER 

The waste energy to be discharged by means of cooling 

water into the river amounts to about 0,3 Meal/sec 

pro installed electrical Megawatt. 

The total amount of waste heat for disposal can thus 

be calculated from the equation 

Q = 0,3 N Meal/sec (1) 

if N is the electrical capacity of the powerstation in MW, 

This amount of waste heat will be transported by a 

cooling water stream with a flowrate of K m^/sec, an 

initial temperature©·, and a discharge temperature of 

θ °C 

κ · 
Thus Qh = rw p w cPv (Θ K ­ e.) (2) 

here fi specific weight of cooling water in tons/m
3 

and cp specific heat of cooling water in Meal/ton C 

After discharge into the river, the temperature of the 

river, after thorough mixing, will increase to a value 

of 9e degrees C to be found by the equation: 

h 
3w 

θ
«
 e

i
 +
 ?

 (θ
κ -

 e
i
} 

= Qi
 +

Q f
h
c (3) 

1
 Q w ïw

 c
Pw 

as$ is the volumetric flowrate of the river in m /sec. 
w 
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According to the theory of WEMELSFELDER /~1 "J the tem­

perature of the river θ decreases to the natural equi­

librium temperature θ of the river following the equa­

tion: 

ÕCF 
­ ­g

­

θ = θ + (θΛ ­ θ ) β
 w

 (4) 

W Ν
 V

 β N
y K ' 

here ø( is the heat exchange coefficient from the water 

surface to the environment taken as a constant during 

Meal 

the cooling time in , and F is the surface 

2 c­

area of the river m m , situated bet­

ween the positions where the temperature of the river 

amounts to θρ and θτ, C respectively (see also Fig. 1). 

e y 
If F is the surface area of the river between two 

o 

power stations the temperature of the river must have 

been cooled down at least to the initial temperature θ 

Thus for F = F , θΤ7ίτ θ. (5) 
ο W ι v ' 

This must be guaranteed for the minimum value of the heat transfer coefficient OC . and the minimum flow-mi η 
rate of the riverφ„ . and also at the maximal attain-

Wmin 
able natural equilibrium temperature θ>τ 

r Ν max 
ÕL F 

According to Wemelsfelder, a value for -ττ9
 = 1 is a 
W 

sound basis for the calculation of F . 
o 

Bearing in mind that θ β = 30 C we obtain from equa­

fi. max 

tions 2 to 5 

1 

Q h é (30 - iN) 

r FÄ/O,, 1 

% f ν
 c

pw (
6
) 



Under the most unfavorable conditions oL . , QTT . and 

mm W mm 
ft is thus, assuming F oí . /QT7 . = 1, 
N max o m m W mm 

Q
h nominal*

 (3
° " ®N max

}
 ( H ^ W n i n Pw

 C
Pw

 (7) 

Equation 7 will be called the basic equation for the 

cooling capacity of a river. 

The following example illustrates the foregoing theory. 

The following characteristics are given for a river 

Min velocity of the river water W . =0,02 m/sec 

mm 

Min width of the river Β . = 100 m 

mm 

Min depth of the river D . = 6 m 

mm 

We calculate öt7 · = 12 m /sec 

^W m m ' 

In addition we know that cL · = 6 χ 10~ Mcal/m sec C 

mm 
From F &min/<3TT . = 1 we o b t a i n F = 20.000 m 

o ^W mm o 
Now is θ„ = 24 C 

Nm ax 
Then 

and 

Q, „ = 6 "
 1
 12 = 45 Meal/sec 

h Nom. κ 

45 
Ν = -^ = 150 Mw 

From this example it becomes clear that the nominal 

electrical power of a powerstation is determined by the 

smallest temperature difference between the maximal 

admissable temperature of the.river water and the 

maximal natural equilibrium temperature of the river 

and by the minimum throughput of the river. 

The distance between stations along the river depends 
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on the minimum value of the heat transfer coefficient 

and the minimum through put of the river. 

The choise of a smaller or greater distance between 

the stations alters the permissible installed power 

of the station. 

Also an important parameter is the installed power per 

Km cooling length of the river 

With 1 = 20 Km, we found 
o 

N Mw 
eff­ei= 0,63 (θβ­θκ), N=150Mw and — = 7.5 — 

o 

For 1 = 0,8 x 20 Km = 16 Km we find 
o 

Ν Mw 
0e­ Θ. = 0,55 (θδ­ Θ Ν), Ν = 131 Mw and j - = 8,2 — 

o 

For 1 = 1 ,25 x 20 Km s 25 Km we obtain 
o 

Ν Mw 
θ ­ θ. =0,71 (θ_­ θ„) , Ν = 169MW and ­ — = 6,8 — 
C ι Β Ν 1 km 

ο 

It is beyond the scope of this paper to study the 

economical merits of the different possibilities. It 

is however interesting to calculate the cooling time 

of the river. This is 

*d
 =

 W^~
X
 3 6 0 0

X
¿

d a y S = 1 2 d a y S 

mm 

In our computation example we took a value of 

6 χ 10~ Mcal/m
2
sec°C for pi . . The determination 

' m m 

of a reliable value for <&. . is very important, given 

min 
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the relation to the cooling length of the river for 

one station. 

The scope of the following paragraphs will be to find 

theoretically the best value for 0C . . 

m m 

3. THE NATURAL TEMPERATURE OF THE RIVER 

Even without any thermal pollution the temperature 

of a river will fluctuate during the day due to mass 

transfer to and heat exchange with the environment 

(the influence of rain will be ignored). The physical 

processes responsable for this temperature fluctua­

tion and for the nominal value of the natural tempe­

rature of the river are: 

1) the short wave solar radiation heatflux (q ) 

2) the difference between the long wave back 

radiation of the water surface and the 

long wave atmospherical radiation (± q ) 

3) the energy transported by evaporation ('îp) 

4) the heat exchange by air convection (- q ) 

The temperature changes of the river may now be found 

from the equation 

d θ,, = Λ
 q

 d F (8) 

"pw
 Q
w fw 

Because dF = BWdt and â = WBD, this equation can be 

modified into 
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¿θ,, = —
 ä

 dt (9) 
N (ϊ> 0π D w y 

\ W PW 
This equation can only be solved if q , q , q and 

s r β 
q are known functions of t (t = given in seconds) 

3.1. For the short wave solar radiation heat flux q only 
rough estimations can be made. 
The maximum total effective insolation for a latitude 
of 46 45' averaged over a period of 24 hours can be 
approximated by the equation 

^ = 4.25 + 3.25 sin^fâ ­pi (10) 

m day 

Here q is the value of q averaged over 24 hours 

t is the time in days 

st 
t, = 0 coincides with the 21 of March 
d 

st 
Equation 10 gives a maximum on the 21 of Juin having 

o 
q =7.5 Mcal/m day. 

On this day the number of hours of sun sline at this 

latitude can reach up to 15­16 hours. 

We assume that the solar radiation heat flux distri­

bution over η hours of daylight can be given by the 

equation 

A 2 7Tth Meal ,ΛΛλ q = q sin —­—­ — (11) n
s ^s 2n 2 

m sec 
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in which formula q is the daily maximum value of q , 

^s s 

and ttø the time in hours. 

th = 0 coincides with the moment that the sun rises 

above the horizon 

Integration of equation 11 for n = 16, and determina­

tion of the averaged value q gives 

qs = 0,422 $s 

or <ζ = 2,37 qs 

With q = 7,5 Mcal/m day, we arrive at 

q = 17,93 Mcal/m day = 207 x 10 Mcal/m sec 

The maximum solar altitude on the latitude of 46 45* 

st o 

is on the 21 of juin about 66 . 

From the diagram given by RAPHAEL /"*2 7 and reproduced 

in our Fig. 2 for a cloudcover equal to zero the inso­
­6 2 

lation amounts 210,84 x 10 Mcal/m sec at a solar 
altitude of 66 . 

Equations 10 and 11 enable us to calculate for any 

day of the year the solar radiation heat flux distri­

bution for an uncovered sky. 

For any other latitude, however, we have to know the 

st 
maximum solar altitude on the dates of the 21 of de­

st 
cembre and on the 21 of juin. Moreover we have to 

know the number of daylight hours on these days in 

this geographical position. With the aid of Fig. 2 

an equation similar to equation 10 can then be found. 
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The minimum value of equation (10), occuring on the 

„,st „ _, , , Meal „ „ ,_0 „̂ ­6 Meal 
21 of Décembre amounts 1 — = 11,57 x 10 

2 »̂ / — 2 

m day m sec 

On this date the maximum solar altitude at 46 45' 

amounts to 20 and the number of daylight hours is 

about 8. 

A 

The max. effective insolation q according to Fig. 2 
—6 2

 S 

amounts to 62 χ 10 Mcal/m sec. The averaged total 

effective insolation may now be found by the formula 

η
 A

 „ „ ­^Mcal 

q = — x O , 6 3 x q = 13x1-0 
L
S 24 '

 U
S 2 

m sec 

Comparison between this result and the value found 

with equation (10) gives good agreement (The value 

found with Fig. 2 lies about 12% higher). 

For a cloud cover factor 0 ^ C £ 1 the solar radiation 

heat flux may be found from the formula also taken 

from /~2 7» i.e. 

q = q (1 ­ 0,71 C
2
 ) , (12) 

α 

3.2. Let us now consider the long wave radiation difference 

between the atmosphere and the surface of the river. 

For the effective long wave atmospheric radiation we 

can write 

qRA = 0,97 <?A ( θ Α + 2 7 3 ) 4 ­ j p ä i (13) 
m sec 
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In this formula G = Stephan Boltzmann constant 

-6 Meal 5,5 x 10 2 A 4 m sec day 

A = function of doudcover factor and the partial 
pressure of the vapour in the atmosphere. 

The back radiation of the water body can be found from 
the eqaution 

θΐ7 + 273 4
 M Ί 

q = e e (-S ) -usai (Ί4) HRW ^ 100 ^ 2 ν ; 

m sec 
δ is here the emissivity of the water surface =0,97 
Because normally the temperature of the water is some­
what higher than the air temperature. The net radia­
tion 

qR = qRW " qRA 

is then to be found from: 

qR = 0 
Γ T„ 4 T, 4 1 

·" 6 [Φ - P> Φ J 
= 1,335xlO-f¿)

4
-/3(^)

4
j^l 05) 

L
 J m sec 

Writing for A T^ = (¿ T A )
4
 = (Ty - Δ Τ £ )

4 

equation (15) may be transformed into the approximation 

Τ 3 
.­8 , W s /"„ „ „ Ί Meal 

2 m sec 
,R= 5,34X10" (^) / \ - ¿TAJ (16) 
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The factor £ as a function of the partial vapour pres­

sure in the air has been given in Fig. 3. The parameter 

in this diagram is the cloud cover factor C. 

3.3. A large part of the energy transferred to the water 

surface will be transported back into the atmosphere 

by evaporation. 

The physical condition of the air is of great impor­

tance in this process. This fact can be demonstrated 

clearly by means of the MOLLIER­diagram FIG. 4. 

At the water surface the boundary layer formed by the 

air has the watertemperature θ . 

This air layer will be saturated with a watercontent 

kg water 

W kg dry air* 

The air at far from the water surface has the tempe­

rature θ (dry air temperature) and a wet bulb tempe­

rature to be indicated by ΘΛ, . Extrapolation of the 

ΘΑ ­ isotherm out of the supersaturated region in the 

sub saturated region, gives by intersection with the 

θ isotherm the actual water content XA, of the air. 

The mass­flux due tö evaporation may now be expressed 

by the equation: 

qme - ° S (Xy- *Ab) (17) 

Here ^m« = evaporation coefficient in ton/m
2
sec. 

°̂ mp is strongly dependent on the windvelocity and 

for fairly high wind velocities it can be substituted 
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by 

<*mB =
 1

'
25 10

'
3 ?A

 V
A (18) 

in this formula p A is the density of the air in ton/m
3 

and V the wind velocity in m/sec. 

Equation (17) can be modified into a heatflux equation, 

bearing in mind that 

^
 = q

me
 L

 (19) 

in which formula L = latent heat of the water in 

Meal/ton. 

So by combining eq. (17), (18) and (19) we obtain 

qe = -1,25 x IO"
3 f>A VA L (Xw - X^) (20) 

The water content of the air will fluctuate between 

the limit values XAfe ^ and XAfe ̂  corresponding 

to the air temperatures ΘΔ and θ 

A
 max A m m 

Let us assume that a relation of the following type 

would be realistic (see also Fig. 5) 

Θ
Α - βΑ max A 

X
Ab ■ *Ab raax- V a x _ V i n (XAbmax- X A b m i n) (21) 

This relation may be transformed into: 

Abmax"" A bmin t
 Amax Anin^ W Amin Aanax" Amax^min_ ft 

XW" A b ~ Θ. - ΘΛ Χ Α κ - X. , . 
A max A m m I Abmax A bmin 

(22 ) 
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For small variations in θ this expression may be writ­

ten as 

In which formula m can be taken as a constant. 

We found the averaged value for m is m =0,1535 C 

Combination with formula (20) gives 

qe= 1,25 x IO"
3
 f AV AL f (f) { ^ ­ θ J (24) 

Κ — Χ 
ρ/Χ\ .

 A
bmax

 A
b min °P~1 

« "
 Θ

Λ *
 Θ

Λ · 

Amax Amin 

m = 

( Θ Λ - ©Λ · ) Χ „ + ΘΛ . Χ Α , - ΘΛ Χ Α , . 

Amax Amin W Amin rtbmax Amax ­"­brnm 
(xA, - x». . ) Θ

2 

■̂ brnax hbmin W 

In formula (24), θ will be a function of time e.g. 

for a mid summer day it is: 

. 27T(th ­ 10) 
ΘΑ = 25 + 9 sm — (25) 

In this formula t. is the time in hours. 

h 

The daily fluctuation of the natural water'temperature 

roughly follows two sine curves which can be expressed 

by the formulas: 



ΘΜ = θ" + Δ θ „ s i n 27T ( t h a ) (26) 
Ν η W1 

2 

be tween t . = ã ­ — and t , = a + — 
h 2 h 2 

and 2 7T t + 12 ­ ( a + n) 

ΘΑΤ = 5 + Δ θ Τ 7 s i n τ— r (27) 
Ν Ν2 W2 2 (24 ­ n) κ ' 

n n 
between t, = a + — and t. = a ­ — + 24 

h 2 h 2 

In these formulas is θ„τ = θ„ for t. = a,ö„T =θ„ for t. =a+12 

N̂  N h N2 N h 

2n = period of first sinecurve 

2(24­n) = period of second sine curve 

Aøy and^6y = amplitudes of the sine curves 

See for definitions Fig. 6 

As we have already stipulated, the temperature of the 

water will increase or decrease after 24 hours depend­

ing on equation (9), the integration of which gives 

M 

J ¿ q ¿t 
Δ θ
» - 360

° V w -PW
 D (28) 

The daily temperature increase or decrease may also 

be found roughly by using mean temperature curves of 

the type 

ΘΝ = 1 4 + 1 0 sin
 27T

36* (29) 

th 
starting t, at the 15 of april e.g. 
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3.4. The heat exchange by air convection can be found 

from an equation 

q = OC (ΘΛ ­ θ„) ̂ ­ (30) 
c C A W 2 

m sec 

For OÍ can be found 

*c=
 1

'
l 5

f A
v

A
c

P A
 10

"
3
 - r ^ <

31
> 

m sec C 

So the complete formula becomes 

^ c
= 1

·
1 5

 J
9

A
V

A
C

P A
1

° "
3

(
9

A - V - P
i
 <

32
> 

m sec 

3.5. In the following example we will try to calculate 

the temperature oscillation of a river assuming that 

θ over the heating up period is equal to the θ va­

lue over the period of cooling down. The further as­

sumptions are made as follows: 

Q = 24°C 

Ν 

θ„ follows equation (25)„ „ ,. N 

,nn ,n -6 ·
 Z

 * ^ ' ^ Meal 
q = 100 x 10 s m 

32 2 

m sec 

only for the p o s i t i v e va lues 

- 6 / A „„ „ ^ Meal 
= - 1 ,44 x 10~ I T - 0,97 TA ] 

H R - , , - r -r Λ , w L * w ~ f ^ , - j 2 

m sec 
ΘΛΤ fo l lows equations (26) and (27) 

Ν 
o Y p M e a l 

, ­ ­ 1,25 x IO
3 ­ VA L f ( 5 ) ( 0 . 1 5 3 5 βΝ ­ · Α ) -¡— 

* m sec 
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—3 —6 Meal 
% " 1 · " Α VA CPAX1° ( e A ­ e N t e O , 3 6 x 1 0 V ( Θ ­ Θ ) ­A A PA

 v
 A N'~ ' A

v
 A N' 2 

m sec 

For the air conditions we assume XT =0,019 

w 

XA, = 0,01 A
b max 

X
Ab min " °>

007 

Then f(f) ­2^â . 16,7X10­
5
 V

1 

Apart from^©r, we have also to determine V . Over a 
W A 

period of 24 hours Δ θ = 0, thus 

w 
2y Zlf ti ¿y 

3600[ Jqs<ttM t- JÏ^K + J%^h + /*e*k]=o 

Determining the terms of the above equations, we ob­

tain 

Γ 
3600 / q dt , = 0,633x100x10~ x24x3600 = 3,64 K c a l L

S h ' ™ " _ - r ~ — ~ , , ^ 2 

Ό m 

24x3600 

—6 ΜΡΛΙ 
q dt = -1,44x10 x24x3600x8 = - 1.00 i ~ i 

m 
24x3600 

'q f fdt = - 1 ,25x10~3xl , 3x10~3x587x1 6,7x10~ x24x3600xVx( 88-25) 

- - 0,866 V S E f i 
m 

24x3600 

q d t =0,36V x10" x24x3600x/25-247= 0,031V ^ ~ i 
m 
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Taking the summation of these terms gives 

,24x3600 
q dt = 0 or 2,64 - 0,835 V = 0 

0 

This means that the air velocity amounts to V =3,16 m/sec 
which is certainly not an unrealistic value. 

Now we have to calculate the half ripple value of the 
daily temperature fluctuation and the periods of the 
two sinecurves which compose the temperature ripple. 
Starting with the latter problem, we assume as a first 
approximation a value of 1 C for the amplitudes of the 
sinefluctuations. For the minimum value of the first 
sinecurve the summation of the actual heatfluxes is 
zero. So we obtain the relation: 

100 10~6sin ^(th-^/)+1 .44 10~/θ,97/*298+ sin^|(t -10)/-296j 

-0,503 10"6J81 ,2-25- sin^(t -10)?+1 .1 4 1 0~ ƒ25 + 3sin ^ 

(th- 10)-23J = 0 

This gives the solution t. C5r 6 h 55' J h 

For the maximum of the second sine curve we obtain: 

100 1 0 ~ 6 s i n ^ | ( th-4)+1 ,44 10^0,97/298+ sdn^|( tfc-1 0)] -298^ 

-0,503 10"6/96-25-9sin^(th-10)/+1.14 10" /25+3sin^(th-10)-25J= 0 
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This gives the solution t £18 h 30' 

In this particulare case of our example that4§ = 0 

is the input heat equal to the output heat, this means 

that we have only one temperature sine curve with the 

minimum temperature at t = 6h45' and the maximum tem­

perature at t. = I8h45'. 

h 

We are now able to calculate ̂ θτ,. In this calculation 

<c 
however we still assume that Å θ„ = 1 C and the tempe­

W 

rature sine curve of the water can be written as 

θ>τ = 24 + sin (t. ­ 12,75) 77: . The scope of the fol­N h 12 

lowing calculation is to check whether the assumption 

< „o_ _. 

tf' 

We obtain 

that Δ θ„= 1 C is valid, 
w 

•a β 1 1ψ 1 0 -
4

/ /
8 , 7

s i n ^ ( V 4 ) dt, 
W 2 6 / Λ 7 , . 16 h h 

, 1 8 , 7 5 

+ 1 .44x0,97x2,98x12+1 ,44x0 ,97x0 ,09 / sin ^ \ ~ λ 0 ) ά \ 
6 , 7 5 

. 1 8 , 7 5 
-1.44x2,97x12-1.44x0,017 s i n γ | ( t h ~ 1 2 , 7 5 ) d t^ 

6 , 7 5 

,18,75 jj 2 
-0,503x0,1535x0,01 / ¿ 2 4 + s i n ( t - 1 2 , 7 5 ) T T J d t 

y6,75 
18,75 

+ 0 , 5 0 3 x 1 2 x 0 , 2 5 + 0 , 5 0 3 x 0 , 0 9 ƒ s i n ^ ( t h - 1 0 ) d t h 

6,75 
18,75 

+1 .14x12x0 ,01+1 , 1 4 x 0 , 0 9 J s i n J | ( t h » 1 0) d t f a 

6 , 7 5 
, 1 8 , 7 5 ^ Τ 

- 1 . 1 4 x 0 , 0 1 y s i n — ( t h - 1 2 , 7 5 ) d t h / 
6,75 J 
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We can solve from this equation Δ θ = 0,l"j c, 

w 

4. THE COOLING CAPACITY OF THE RIVER IN THE CASE OF THERMAL 

POLLUTION 

In the foregoing paragraphs we have studied the natural 

cooling process of a river and we have found that the 

natural temperature of a river fluctuates with an am­

plitude reversed proportionally with the depth of the 

river. 

For a not too shallow river the amplitude of the tem­

perature fluctuation is of the order to one degree C. 

An initial temperature jump will decline rapidly but 

in fact follows the temperature fluctuations of the 

river. 

We will now draw a comparison between the thermal ba­

lances for the heat exchange of the river surface and 

the environment, both for the case of thermal pollu­

tion of the river and for the case of the natural cool­

ing process. 

With thermal pollution we have: 

,p = qs. 0,97 x 1,38 χ ΙΟ"
6 Ι ¿ Γ ­ /i(^)

4
j­

1.25x10­
3
pAVAL/'xw­XAb7­

I , 1 5 X I O ­ V A V A C P A / \ " Θ Α 7 
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q. = q ­ 0,97 x 1 ,38 χ 10~
Ò 

n
n
 u

s 

Without thermal pollution we obtain: 

Γ T.. 4 Λ T. 47 

1,25 ΧΙΟ"3 jOAVAL [ x N ­ X A b J ­

l , i 5 x i o ­ 3 p A v A c p A / " θ Ν ­ θ Α ] 

The difference q ­ q gives the extra cooling due to 

the temperature excess. 

It yields: 

q ­ q = ­ 1 ,38x10 
^p ^n £ Í. 1 00

 J
 1.1 00* J 

1,25X10"
3
 JÖ V A L (Xw ­ XN) ­

­3 
1.15X10­ f A V A C p A (e w­e A) (33) 

The first term may again be written as 

­o, 055x1 o­
6
/^]^w­eN^ 

In the second term we may substitute e.g. X by 

x
w
 =

 °'
622
 T 

and P
W -

 P
N
 =
 V7·

 (θ
ν - V 

Writing Ρ in bar we obtain for the second term 

3,24 x 10~
2
 f V L

2 

_ A _ A , _ ν 

P T
N 1>" 
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Deviding the terms by βττ ­ θ>τ and substituting Τ by 
a J W N ö W J 

Τ we o b t a i n 
Ν 

­ q ¿ΓΤΛΤΤ3 3 , 2 4 X 1 0~2(*ΛV L2 

ι ι _ . * . 0,055χ10 ( _ [ , - _ _ + β 

^ ^ " Υ Α ^ Ρ Α Τ ? ( 34 ) 

m ^C sec 

In the following calculation example we give an esti­

mation of the nominal power of a block of power sta­

tions to be constructed in the Ludwigshafen agglomera­

tion. 

The cooling time of a river is normally more than 7 days. 

Over this period we may take as an averaged heat trans­

fer coefficient the value pC = 8x1 o"~ — 

m °C sec 

Furthermore we assume that 0,w . = 800 m^/sec. 

Meal 

Then the heat capacity of the river is 800x1x1 = 800 TTT 
r J

 sec
u
C 

According to the criterium by Wemelsfelder is 

^W ^W °P 800 8 2 

F = = 7 = 10 m 

° OÍ 8x10"
6 

The width of the Rhine amounts as a mean value to 

about 400 m. 

10 5 

Thus t h e c o o l i n g l e n g t h i s 1 = = 2 , 5 x 1 0 m = 250 km 

° 4x10 
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Assuming β = 22 C, the maximum amount of heat to a Ν max 
be stored by the river is 

^hNOM = 8 ^ Ύ 1 80° = 4 0 0 ° M c a l/ s e c 

The nominal power of the block of power stations to 
be installed in the Ludwigshafen agglomeration is then 

4000 Ν = - ρ — 13.350 Mw 

A reduction of the cooling length up to 200 km, gives 

Λ) β 0' 8 - 1 
K™ = 8 — 7 Γ Έ— 30° = 3520 Mcal/sec NOM o0,8 6 

In this case the nominal power of the block is 

Ν = ^ ^ = 11730 Mw 

After this cooling length the temperature of the Rhine 
is 

θ = 22 + (1 - 0,55) 8 = 25,6 °C 

In the case of a strongly increased debit of the Rhine 
the cooling time is in the order of one day, therefore 
we have to take for 

ft ¿T Q r\ 

e.g. Q =4000 m /sec a low ct-value, say 5x10~ Mcal/m sec C 

Then the temperature of the Rhine will be 
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ST ry 

6x1 θ" x8x1Q 
4000 

θ = 22 + 8 β = 29.24 °C 

However the heat discharged into the environment is 
still 

Q = 4000 χ 0,76 2 3000 Mcal/sec 

and the power to be installed may be 

Ν = ^β~ = 10.000 Mw 

With the theory concerning the heat transfer to the 
o. environment we f ind with a θ , . - θ.τ = 7.62 C 

w Ν 

6 7 = 5 x 10~ 8x10 χ 7.62 = 3000 Mcal/sec 

From this example we see that for Q ·*οΰ , ΔΘ-+8 C 
Λί 

and 
— fi π 

Q = 5 x 10 8x10 x8 = 3200 Mcal /sec 

3200 and Ν = ^f^ = 10665 Mw 

Concluding the results of these calculations we may 
say that dividing the Rhine into cooling parts of 
about 200 km each we may install blocks of power sta­
tions with 10.000 Mw per cooling part. 

Remark: In the foregoing view, we have not taken in 
consideration the temperature ripple due to the in­
fluences of the environment. 
We have seen that this temperature ripple for D^6 m 
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was smaller than 1 C 

Under these circumstances this temperature ripple may 

be accepted, since there is a growing tendency to al­

low a maximum temperature of 32 C. 

5. CONCLUSION 

In equilibrium with the natural heatbalance of the ri­

ver (a heat balance due to atmospherical influences 

composed by the solar radiation, the effective back 

radiation of the water surface, the evaporation cool­

ing of the water and the heat exchange by air convec­

tion) the natural temperature of the river fluctuates 

during day and night and during the seasons of the 

year. The temperature ripple over 24 hours is in inverse 

proportion to the depth of the river. From an external 

heat source the river may be heated up several degrees 

C at the point of heat release. 

However, a mean temperature of 30 C may not be exceeded. 

Due to the temperature overshoot in comparison with 

the natural­equilibrium temperature of the river, the 

heat exchange from the free river surface to the en­

vironment takes place according to the formula 

q = ot F (θΤ7 ­ θ) in which 
h W Ν 

3 

Meal 0(=0,055Χ10­6© j 3 ^ V p + 1 , 5 x W ­ 3 C p A J ß V 
P A / J A A 2 c> Λ 

Ν J m C sec 
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/ "~/ — Ό M C r5 Τ 
The pC -value may be taken as çC = 8x10 in 

2 Cu 
m sec C 

cases where the cooling time has a duration 

of at least 7 days. 

Where the throughput of the river is very high, and 

the cooling time reduced to about one day, we have 

to use in our calculations the value oC . =5x10~ . 
m m 2 Q­. 

m sec^­

The determination of the amount of electrical power 

to be installed in a group of power stations distribu­

ted along the boarder of a river and erected at a given 

distance between each block has to be made by means 

of the formula 

w m m 

N = 

or from 

(30 ­
Nmax 

Mw 

0,3 

oC 
m m 

F (30 ­ ΘΝ ) 

o "max 
0,3 

Mw 

We will take the smallest value of the two. 

Remarks F may be found from: 
o 

oC F 

0,8 ^ ^ ^ 1 .25 S 
w-m m 

F = 1 . Β, 1 being the distance between the blocks 
o o o ° 

of power stations. 
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NOMENCLATURE 

a 
Β 
Β . m m 
C 
C 
C 
D 

PA 
PW 

D . 
m m 
e 
e 
F F O 

f φ 
W 

O 

κ 
L 
1 
( 

m 
Ν 

η 
Ρ 
ΡΝ 

Pw 
Οι 

= value of t at which time θ = θ̂τ 
= width of the river 
= minimum width of the river 
= cloud cover factor 
= specific heat of air 
= specific heat of water 
= depth of the river 
= minimum depth of the river 
= emissivity of the water surface 
= basic number of Nep. log. 
= part of cooling surface of the river 
= cooling surface of the river between 
two power stations 

= see definition oh page 14 
= volumetric flowrate of cooling water 
= latent heat of water 
= cooling length of the river between 
two power stations 

= see definition on page 14 
= electrical capacity of a power sta­
tion or of a block of power stations 

= number of daylight hours 
= pressure of the atmosphere 
= vapour pressure at temperature θ Ν 
= vapour pressure at temperature θ 
= amount of waste heat to be rejected 
on the river 

hours 
m 
m 

Mcal/ton°C 
Meal/ton C 
m 
m 

m 
m 

"c"1 
2 m /sec 
Mcal/ton 
m 

Mw 

bar 
N/m2 

N/m2 

Mcal/sec 
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6fyj = amount of waste heat based on Mcal/sec 

installed electrical power 

3 a = volumetric flowrate of the river m /sec 
w 

0, \f¡ ■ - minimum discharge of the river m^/sec 

qc = heatflux by air convection Mcal/m sec 

qg = heatflux due to evaporation Mcal/m sec 

q = total actual heatflux from the Mcal/m sec 

water surface to the environment 

under natural conditions 

2 

q = total actual heatflux from the Mcal/m sec Ρ 

s 

Ά 
'Ν 

water surface to the environment 
if the water is thermally polluted 

2 
q = net long wave radiation heat flux Mcal/m sec 
q = effective long wave radiation heat Mcal/m2sec 

flux of the atmosphere 
q = back radiation heat flux of the Mcal/m2sec KW water body 

2 q = short wave solar radiation heat Mcal/m sec 
flux 

q = insolation heatflux averaged over Mcal/m day 
24 hours normally in 

A / 2 
q = daily maximum value of q Mcal/m sec 
Λ qs = daily maximum insolation heat Mcal/m2sec 

flux at a cloud cover C 
o 

T = Kelvin temperature of air K 
τ = natural Kelvin temperature of K 

water 
T = Kelvin temperature of water K 
t = time in seconds sec 
t, = time in hours sec h 
t, = time in days sec 
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V A 

W 

w . 
m m 

Χ 

Χ 

Χ 

Χ 

Ab 

Ab max 

Ab 

Ν 

\ 

\ 

oc 

m m 

OL 
m m 

0¿, 

OL 
mg 

ß> 

θ 

θ 

θ 

Ab 

^m 

Am 

ax 

m 

= wind velocity 

= velocity of river water 

= minimum velocity of river water 

= actual water content of air 

= XAh at max. temperature of air 

= XA at min. temperature of air 

= max. water content in the air 

based on θιτ 
Ν 

= max.. water content in the air 
based on ΘΤ7 w 

= max. water content in the air 

based on 6rT Ν 

= heat transfer coefficient from 

the free river surface to the 

environment 

= heat transfer coefficient ave­

raged over the cooling time 

(at least 7 days) 

= heat transfer coefficient ave­

raged over a day under the 

most unfavorable conditions 

= heat transfer coefficient due 

to convective heat transfer 

= evaporation coefficient 

= function of cloud cover factor 

and partial vapour pressure 

- ^ Γ 
= temperature of the air 

= wet bulb temperature of the air 

= daily max. temp, of the air 

= daily min. temp, of the air 

m/sec 

m/sec 

m/sec 

kg/kg 

kg/kg 

kg/kg 

kg/kg 

kg/kg 

kg/kg 

Meal 

2 o^ 

m C 

Meal 

2 o^ 

m C 

Meal 

2 o„ 
m C 

M cal 

2 C5 

m C 
ton 

sec 

sec 

sec 

sec 

2 
m sec 
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θ β = temperature of the river at a cooling C 

Κ 

Ν 

5
N 

'N2 

length = 0 

temperati 

length 1 

Θ. = temperature of the river after cooling C 

o 

■θ = discharge temperature of cooling water C 

after condensor 

θ = natural temp, of the water C 

Θκτ = daily averaged natural temp, of the C 

river 

θ j,· = mean water temperature over first C 

half sine 

Θ Μ = mean water temperature over second C 

half sine 

θ = water temp, of the river at a given C 

point 

Δ ©y = amplitude of first half sine­curve C 

Αθ, ; = amplitude of second half sine­curve C 

<0 = Stephan Boltzmann constant 

p = specific weight of air ton/rrf 

rt> = specific weight of water ton/m" 

3 
.V' a V/e" specific volume of water vapour m /ton 
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Fjg.6 Temperature fluctuation of the river water 
described by two half-sine-functions 
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