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ABSTRACT

For a case where the temperature of a river lies above its equilibrium value
with the atmosphere the heat transfer coefficient from the free surface of the
river to the environment has been determined analytically.

The data for these derivations have been taken from the work of Raphael.

By means of the known expression a minimum value has been calculated for
the heat transfer coefficient, giving a simple basis for calculating the total
heat that can be rcleased on the river without exceeding its given maximum
admissible temperature. For this the theory of Wemelsfelder was used.
The report also gives a calculation method for obtaining the natural daily
temperature fluctuation of the river.
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1. INTRODUCTION )

The discharge of large quantities of cooling water
from electric power stations into rivers or lakes may
give rise to a variety of problems, which can be as-

sembled under the term thermal pollution.

In the very concise framework of our report, it will
not be possible to go into a discussion of the biolo-
gical aspects of thermal pollution, so we will there-
fore assume that the arbitrarily accepted admissible
temperature of BOOC for river water will in fact avoid

all biological problems.

Having done this, the main problem to be solved is
thus how to determine the nominal quantity of waste
heat which can be permitted to discharge into the ri-
ver, in order to ensure that even under the most unfa-
vorable conditions the mean temperature of the river

will never exceed a value of 3OOC.

To this end the self cooling capacity of a river or
lake has to be determined, as a function of the dis-
tance between two successive power stations situated
along the river, and the volumetric flow capacity of

the river.

It will be shown fhat in particular the heat transfer
coefficient from the water surface to the environment
must be determined very well, in order to avoid a large
part of the cooling capacity of the river remaining

unused,

*) Manuscript received on December 15, 1970



2. THE BASIC EQUATION FOR THE COOLING CAPACITY OF A
RIVER

The waste energy to be discharged by means of cooling
water into the river amounts to about 0,3 Mcal/sec

pro installed electrical Megawatt.

The total amount of waste heat for disposal can thus

be calculated from the equation

(Qh = 0,3 N Mcal/sec (1)

if N is the electrical capacity of the powerstation in Mw,

This amount of waste heat will be transported by a

cooling water stream with a flowrate of K m3/sec, an

W
initial temperature Gi, and a discharge temperature of

QKOC.

Thus Qh =x, @, ©°p, (® -8 (2)

here fw specific weight of cooling water in tons/m3

and Cpy specific heat of cooling water in Mcal/tonOC

After discharge into the river, the temperature of the
river, after thorough mixing, will increase to a value
of Be degrees C to be found by the equation:

K
ei+-—w(e -8 )

9 (Qw K 1

e

Qn

= 0. + —— 2
1 Qy v Cpy

(3)

asCZw is the volumetric flowrate of the river in m3/sec.



According to the theory of WEMELSFELDER /1 / the tem-
perature of the river ew decreases to the natural equi-

librium temperature 8 _ of the river following the equa-

N
tion:

S I—

- BN + (Ek - 8

N (4)

here K is the heat exchange coefficient from the water

surface to the environment taken as a constant during
Mcal

the cooling time in , and F is the surface

area of the river sec m2 c in m2, situated bet-
ween the positions where the temperature of the river
amounts to 8, and ewoc respectively (see also Fig. 1).
If Fo 1s the surface area of the river between two
power stations the temperature of the river must have
been cooled down at least to the initial temperature ei.
Thus for F = Fo ewa CH (5)
This must be guaranteed for the minimum value of the
heat transfer coefficient E(min and the minimum flow-

rate of the riverCQWmin and also at the maximal attain-

able natural equilibrium temperature 8

N max

According to Wemelsfelder, a value for =1 is a

stz

sound basis for the calculation of Fo.

- Bearing in mind that ee max = 3OOC we obtain from equa-
tions 2 to 5

eFé%AQw 1

n S G0-8)| Tme— & fu v (O

IN

Q



Under the most unfavorable conditions ;(

Oy max 15 thus, assuming Foo( /Q

Q (30 - 8, (&)@

h nom1na1 N max

W min

Wmi

in Saw “Py (7)

Equation 7 will be called the basic equation for the

cooling capacity of a river,

The following example illustrates the foregoing theory.

The following characteristics are given for a river

Min velocity of the river water wmin = 0,02 m/sec
Min width of the river B. =100m
. “min
Min depth of the river D. =6m
- min 3
o= 1 S
We calculate | Qy min 2 m é ec .
In addition we know that o"min =6 x 10 Mcal/m"sec C
6(- 1 . = 1 F = .
From F_ m1n/QW nin = | Ve obtain F_ = 20.000 m
Now is © = 24°C
Nmax
Then
Q =6 &= 450 o 45 Mcal/sec
h Nom., e -
and
45
= == = 150
N 0.3 50 Mw

From this example it becomes clear that the nominal

electrical power of a powerstation is determined by the

smallest temperature difference between the maximal

admissable temperature of the river water and the

maximal natural equilibrium temperature of the river

and by the minimum throughput of the river.:

The distance between stations along the river depends



on the minimum value of the heat transfer coefficient

and the minimum through put of the river.

The choise of a smaller or greater distance between
the stations alters the permissible installed power

of the station.

Also an important parameter is the installed power per
Km cooling length of the river

With lo = 20 Km, we Found

ee— eiz 0,63 (ee-eN), N=150Mw and _lfi = 7.5 %/
For 1O = 0,8 x 20 Km = 16 Km we find

oe— 8, = 0,55 (ee— eN), N = 131 Mw and EN; = 8,2 %’
For 1O = 1,25 x 20 Km = 25 Xm we obtain

ec- ei =O,71(68— GN), N = 169Mw and —fLO- = 6,8 %

It is beyond the scope of this paper to study the
economical merits of the different possibilities. It
is however interesting to calculate the cooling time
of the river. This is

0 1

1
td = wm_n X 3600 X 52 days = 12 days

In our computation example we took a value of
6 x 10°° Mcal/m?sec’C for X nipe The determination

of a reliable value for aimin is very important, given
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the relation to the cooling length of the river for

one station.
The scope of the following paragraphs will be to find

theoretically the best value for 5Lmin

THE NATURAL TEMPERATURE OF THE RIVER

CEven without any thermal pollution the temperature

of a river will fluctuate during the day due to mass
transfer to and heat exchange with the environment
(the influence of rain will be ignored). The physical
processes responsable for this temperature fluctua-
tion and for the nominal value of the natural tempe-

rature of the river are:

1) the short wave solar radiation heatflux (qs)

2) the difference between the long wave back

radiation of the water surface and the

long wave atmospherical radiation (* qn)
3) the energy transported by evaporation (qe)
4) the heat exchange by air convection £ qc)

The temperature changes of the river may now be found

from the equation

24

de. =
N fv Spw Ry

dF (8)

Because dF = Bwdt and Qw = WBD, this equation can be

modified into



.
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2q

de. = dt (9)
N Pw Cpy P

This equation can only be solved if qs, 1.0 dp and

r
q. are known functions of t (t = given in seconds)

For the short wave solar radiation heat flux 9 only
rough estimations can be made.

The maximum total effective insolation for a latitude
of 46045' averaged over a period of 24 hours can be
approximated by the equation

- . 2TMtd Mcal
qs = 4.25 + 3.25 sin 365

5= (10)
m day
Here 9 1s the value of 9, averaged over 24 hours
t. 1is the time in days

d

td = 0 coincides with the 21St of March

Equation 10 gives a maximum on the 21St of Juin having
9 = 7.5 Mcal/mzday.

On this day the number of hours of sun shine at this
latitude can reach up to 15-16 hours.

We assume that the solar radiation heat flux distri-
bution over n hours of daylight can be given by the

equation

A . 2TMtn Mcal
= 11
qs qs sin 2n 2 ( )
m sec
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. . A . . .

in which formula q, 1s the daily maximum value of qg
and t, the time in hours.

t, =0 coincides with the moment that the sun rises

above the horizon

Integration of equation 11 for N = 16, and determina-

tion of the averaged value ES gives

- A
is = 0,422 9,
or q, = 2,37 9
With as = 7,5 Mcal/m?day, we arrive at
4 = 17,93 Mcal/m%day = 207 x 10° Mcal/m°sec

s
The maximum solar altitude on the latitude of 46045'
is on the 21St of juin about 66°.

From the diagram given by RAPHAEL 1-2_7 and reproduced
in our Fig. 2 for a cloudcover equal to zero the inso-
lation amounts 210,84 x ‘IO_6 Mcal/m25ec at a solar

altitude of 660.

Equations 10 and 11 enable us to calculate for any
day of the year the solar radiation heat flux distri-
bution for an uncovered sky. ’

For any other latitude, however, we have to know the

maximum solar altitude on the dates of the 21St of de-

cembre and on the 21St of juin. Moreover we have to
know the number of daylight hours on these days in
this geographical position. With the aid of Fig. 2

an equation similar to equation 10 can then be found.
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The minimum value of equation (10), occuring on the

21°% 0f Decembre amounts 1 SS2L_ _ 19,57 x 107% Meal

m day o m sec
On this date the maximum solar altitude at 46 45!

amounts to 20° and the number of daylight hours 1is

about 8.

The max. effective insolation G; according to Fig. 2

amounts to 62 x 1070 Mcal/mzsec. The averaged total

effective insolation may now be found by the formula
n bMcal

- A
dq = 54 x 0,63 X 9, = 13%x10

m secC

Comparison between this result and the value found
with equation (10) gives good agreement (The value
found with Fig. 2 lies about 12% higher).

For a cloud cover factor 0L C £ 1 the solar radiation

heat flux may be found from the formula also taken
from /2 7/, i.e.

. (12)

Let us now éonsider the long wave radiation difference
between the atmosphere and the surface of the river.
For the effective long wave atmospheric radiation we
can write

4 Mcal
I, = o,97G/b (8, + 273) (13)
m secC



- 14 -

In this formula G - Stephan Boltzmann constant

-6
-~ 5,5 x 10 Mcal

m sec day4

/3 = function of doudcover factor and the partial

pressure of the vapour in the atmosphere.

The back radiation of the water body can be found from

the eqaution

Sw + 273 4

) Mcal
100

a,, = €8 ( (14)

2
m sec

€@ is here the emissivity of the water surface = 0,97
Because normally the temperature of the water is some-
what higher than the air temperature. The net radia-

tion
@ = gy = 9Rra

is then to be found from:

@ = 0.7 [(100 - 100 ]

Mcal
= 1,335 x 10 [(100 ﬂ(mo) ] 2 (15)
Writing for /5TA4 = (f,TA)4 = (Tw - AT£)4

equation (15) may be transformed into the approximation

Mcal
4 = 5,34 x 107 1oo) [ ] > (16)
m secC
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The factor € as a function of the partial vapour pres-
sure 1n the air has been given in Fig. 3. The parameter

in this diagram is the doud cover factor C.

A large part of the energy transferred to the water
surface will be transported back into the atmosphere

by evaporation.

The physical condition of the air 1s of great impor-
tance in this process. This fact can be demonstrated
clearly by means of the MOLLIER-diagram FIG. 4.

At the water surface the boundary layer formed by the
air has the watertemperature 8,

This air layer will be saturated with a watercontent
kg water
W kg dry air’

The air at far from the water surface has the tempe-
rature eA (dry air temperature) and a wet bulb tempe-
rature to be indicated by eAb. Extrapolation of the

eAb- isotherm out of the supersaturated region in the
sub saturated region, gives by intersection with the
SA isotherm the actual water content XAb of the air.

The mass-flux due to evaporation may now be expressed

by the equation:
= -
Here O(mB = evaporation coefficient in ton/mzsec.

¢ime is strongly dependent on the windvelocity and

for fairly high wind velocities it can be substituted
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Po 4 = 1,25 10 fk VA (18)

in this formula FA is the density of the air in ton/m3

and V, the wind velocity in m/sec.

Equation (17) can be modified into a heatflux equation,

bearing in mind that
de = Imp L | (19)

in which formula L = latent heat of the water in
Mcal/ton.
So by combining eq. (17), (18) and (19) we obtain

-3 ’
= -1 . -
dg ,25 X 10 fﬁ VA L (xw xAb) (20)
The water content of the air will fluctuate between
the limit values XAb max and XAb min corresponding
to the air temperatures CIN and 8 ..
max A min
Let us assume that a relation of the following type

would be realistic (see also Fig. 5)

N ’
|

®Amax” 2 N L
Xpp = Xa - (Kapmas— Xapmin) (21) 7
b b max eAmax eAmin bmax bmin e R
This relation may be transformed into:i_f,‘ o

- - Xy =, Xa
Xapmax™ *Abmin ) PAnax™ ®Amin) ¥y amin max AmacAhxm_ 6

Xy~ %A= ©

- . o - X )
A max eA min . v XA-bmax Abmin
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For small variations in 8w this expression may be writ-

ten as

X = Xap = )L(g){m e\i - eA?S ‘ 7(23)

In which formula m can be taken as a constant.

we found the averaged value for m is m = 0,1535 °C

Combination with formula (20) gives

-3 X -2
= 1,2 V L f(= - %
ie 25 x 10 © @V, () {mew A (24)
X - .
X Abmax XAb min o -1
£ = 5 e c
Amax Amin
- . . X - .
o= (eAmax eAmln)Xw * O min® Abmax eAmaxXAbmln
- 2
X a: - X ]
;( Apbmax Abmln) ew

In formula (24), 8, will be a function of time e.g.

for a mid summer day it is:

T (ty, = 10)
2] = 25 + 9 sin 2 h

A 24 A(25)

In this formula th is the time in hours.
The daily fluctuation of the natural water temperature
roughly follows two sine curves which can be expressed

by the formulas:
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= . (t,- a)
8, = eNi + Aew1 sin 2N *"h (26)
2
between t. = & z nd t, = + n
n o > @ n- ¢ %
and 2Tt + 12 =(a + n)
. =06_ + Ae_ sin - h (27)
N No Wy 2 (24 ~ n)
between t. = + n nd t, = z + 24
n-2&+ty @ n- %702

In these f 1 is®e. =8 = a,8_ =8 =
S ormulas 1s eN1 eN for th a,8N2 eN for th a+12

2n = period of first sinecurve
2(24-n) = period of second sine curve
Aew,l andAeW2 = amplitudes of the sine curves

See for definitions Fig. 6

As we have already stipulated, the temperature of the
water will increase or decrease after 24 hours depend-

ing on equation (9), the integraton of which gives

24

2q

A8 = 3600 2 -
W

" S

h
D

dt
(28)

Py

The daily temperature increase or decrease may also
be found roughly by using mean temperature curves of

the type

- . T t
_@ = 14 + 10 sin 2f o

N 365 (29)

starting t, at the 15th of april e.q.

d
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The heat exchange by air convection can be found

from an equation

Mcal

q. = & (8, - 8,) (30)
m sec
For o(c can be found
-3 Mcal
= 1, —_
A 15 PV, Cp,y 10 5 (31)
m sec C
So the complete formula becomes
-3 Mcal ,
q. = 1,15 Vv, Cp, 10 "(8, - &) (32)
m sec

In the following example we will try to calculate

the temperature oscillation of a river assuming that

© _ over the heating up period is equal to the 8 _ va-

N N
lue over the period of cooling down. The further as-

sumptions are made as follows:

6 = 24°%
eA follows equation (25)2"(t - 2)
= 100 x 10°° sin b Mcal
s = 32 2
m- sec
only for the positive values
-6 Mcal
q, = - 1,44 x 10 [Tw-0,97TA] >
m sec
e, follows equations (26) and (27)
=3 X 2
qp = - 1,25 x 10 fk V, L £ (e)(0,1535 eN - eA)

Mcal

m sec
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1, = 1,150, V, cpr10'3(9A—6N)zo,36x1o’6vA(eA-eN) Meal
m-sec

For the air conditions we assume Xw = 0,019

XAp, max 0,01

XAb min = 90007

Then f(g) = 0{353 = 16,7x10°° °c”

Apart fromzﬁew we have also to determine VA' Over a

period of 24 hours A§w = 0, thus

2y 2y &y b
3600[/45 dtb + -/QR, dt/, + /gedt/, + /?cdé‘ =0
o o o o

Determining the terms of the above equations, we ob-

taln
2y
3600//;Sdth -~ 0,633%100x10"°x24x3600 = 3,64 Mcgl
° m
24x3600
/qut = =1 ,44)(1 0_6)(24)(3600)(8 = - 1.00 Mcgl
m
24x3600
qpdt =-1,25x10—3x1,3x10—3x587x16,7x1O_5x24x3600x%{(88-25)
o _ Mcal
= - 0,866 V, —
m
24x3600
cht =O,36VAX1O—6x24x36OOxZ§5-247= 0,031\/A Mcgl
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Taking the summation of these terms gives

24x3600
J[q dt =0 or 2,64 - 0,835 VA = 0
0
This means that the air velocity amounts to VA=3,16 m/sec

which 1s certainly not an unrealistic value.

Now we have to calculate the half ripple value of the
daily temperature fluctuation and the periods of the
two sinecurves which compose the temperature ripple.
Starting with the latter problem, we assume as a first
approximation a value of 1°C for the amplitudes of the
sinefluctuations., For the minimum value of the first
sinecurve the summation of the actual heatfluxes 1is

zero, So we obtain the relation:

-6 . IT T
100 10 “sin 16(th-q)+1.44 10 {o 97[298+ 511'1 (t 10)]-296]

-0,503 10'6{81,2-25 51n—(t -10)}+1 14 10 /5+931n %

(th— 10)—23} =0

This gives the solution th’::6 h 55

For the maximum of the second sine curve we obtain:
-6
100 10 31n—(t -4)+1,44 10 /097/298+ sin—5 ('q,1 10)]-298}

~0,503 10_6{96-25—Qsin%(th—‘lo)fﬂ.m 10 125 +951n——(th—1o)—5} 0
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This gives the solution th::18 h 30

In this particulare case of our example that 48 = 0

1s the input heat equal to the output heat, this means
that we have only one temperature sine curve with the
minimum temperature at th = 6h45' and the maximum tem-—
perature at t, = 18h45"',

h
We are now able to calculate Aew. In this calculation
however we still assume that 4 oy € 1°C and the tempe-~
rature sine curve of the water can be written as
By = 24 + sin (th
lowing calculation is to check whether the assumption

- 12,75) %% . The scope of the fol-

that Aew§ 1°%¢ is valid.

We obtain:

18,75
_ 1 3600 / ar
8=3 “¢ A sin (th—4) dth
18,75
+1.44x0,97x2,98xP+1 ,44X0,97x0, 09/ sin ——(th 10)dth
6,75
18,75 T
-1.44x2,97x12-1.44x0,01/ sin 12 (t 12,75) dth
6,75
18,75 - ]2
—0,503x01535x001 24+sm th 12,75) 1 qth
18,75 T
+0,503x12x0,25 + O,503x0,09/ sindL(t, -10)dt
12 "h h
6,5
18,75
+1.14x12x0,01+1,14x0,09/ sin -E(t -10) dth
6,75

18,75 1

-1.14x%0,01 sin — (t -12,75)dt ]

12 h
6,75
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We can solve from this equation Aew = Q1 °c.

THE COOLING CAPACITY OF THE RIVER IN THE CASE OF THERMAL
POLLUTION

In the foregoing paragraphs we have studied the natural
cooling process of a river and we have found that the
natural temperature of a river fluctuates with an am-
plitude reversed proportionally with the depth of the

river,

For a not too shallow river the amplitude of the tem-
perature fluctuation is of the order to one degree C.
An initial temperature jump will decline rapidly but
in fact follows the temperature fluctuations of the

river.

We will now draw a comparison between the thermal ba-
lances for the heat exchange of the river surface and
the environment, both for the case of thermal pollu-
tion of the river and for the case of the natural cool-

ing process.,

With thermal pollution we have:

-6
d, =94 0,97 x 1, 38 x 10 [ (100 /3(100 .]
1,25 x 107° P, vy L [Xw‘XAb]’

1,15 x 10'3fA V, Cp, [ew— eA]
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without thermal pollution we obtain:

. T
-6
q, =4 - 0,97 x 1,38 x 10 Z-(100) 100).]

1,25 % 1073 f’A v, L [XN - XAb]‘

-3
17,15 x 10 Fk VA CPAL [GN

The difference qP - q, gives the extra cooling due to

the temperature excess.

It yields:
= 1,38%107° [ ]A [—F}
i — 9y = ’ 100 100
1 25x1o'3 L (X, - X.) -
’ A Va W N
3

1,15%10 QVA Cp, (8, = 8))
The first term may again be written as

-~ 0,055%10" 100] (e, -

In the second term we may substitute e.g. Xw by

P
W
X, = 0,622 —
and P, - P = TL” (&, - &)
NV

Writing P in bar we obtain for the second term

-2
3,24 x 10° @ v,
- (e, - ©

P TN v"

N

(33)
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Deviding the terms by ew - 8 and substituting Tw by

N
TN we obtain

-2 2
TN~‘3+3,24X']O ‘vAVA L
100} P Ty V"

., = 4
BP0 _p{- 0,055x10°°[
CHEEN

Mcal

1,15x1o_3;°A v (34)

C
p
A A m2oCSeC

In the following calculation example we give an esti-
mation of the nominal power of a block of power sta-
tions to be constructed in the Ludwigshafen agglomera-

tion.

The codling time of a river is normally more than 7 days.

Over this period we may take as an averaged heat trans-

.. ~ -6
fer coefficient the value o€ = 8x10 _Meal
m“OC sec

Furthermore we assume that QWmin= 800 m3/sec.

. ) . Mcal
Then the heat capacity of the river is 800x1x1 = 800 sezoc
According to the criterium by Wemelsfelder 1is
QWPWCP 800 8 2
Fo=—=— = —_¢ =10 m
i 8x10
The width of the Rhine amounts as a mean value to
about 400 m.
Thus the cooling length is 10 = 20 5 = 2,5x105m = 250 km

4X10
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O

~

Assuming éN max = 22 C, the maximum amount of heat to

be stored by the river is

e -1
— q —_ ]
oy = & 2 800 4000 Mcal/sec

The nominal power of the block of power stations to

be installed in the Ludwigshafen agglomeration is then

4000
= 0.3 13.350 Mw

A reduction of the cooling length up to 200 km, gives

Q, _g E

8
— 55 800 = 3520 Mcal/sec

In this case the nominal power of the block is

3520
N = — = 11730 Mw
0,3 73
After this cooling length the temperature of the Rhine
is

8 = 22 + (1 - 0,55) 8 =25,6°_c

In the case of a strongly increased debit of the Rhine
the cooling time is in the order of one day, therefore

we have to take for
3 -6 2 o}
e.d. Qw=4000 m~/sec a low KA-value, say 5x10 Mcal/m"sec C

Then the temperature of the Rhine will be
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7

_ 61 O-6x8x1 0
4000 °
22 + 8§ B = 29,24 C

®©
It

However the heat discharged into the environment is
still
Qh = 4000 x 0,76 % 3000 Mcal/sec

and the power to be installed may be

3000
= —_— = ul
0.3 10.000 Mw

With the theory concerning the heat transfer to the

environment we find with a 6w— 9N = 7.62 OC
Qh = X.F.48

= 5 x 10 ° 8x107 x 7.62 = 3000 Mcal/sec
From this example we see that for Qw—"co, A658 °C
and |

-6 7
Qh =5 x 10 8x10"'x8 = 3200 Mcal/sec
3200
\ = s =

and N 0.3 10565 Mw

Concluding the results of these calculations we may
say that dividing the Rhine into cooling parts of
about 200 km each we may install blocks of power sta-

tions with 10.000 Mw per cooling part.

Remark: In the foregoing view, we have not taken in
consideration the temperature ripple due to the in-
fluences of the environment.

We have seen that this temperature ripple for D6 m
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was smaller than 1°¢.
Under these circumstances this temperature ripple may
be accepted, since there is a growlng tendency to al-

. 0
low a maximum temperature of 32 C.

CONCLUSION

In equilibrium with the natural heatbalance of the ri-
ver (a heat balance due to atmospherical influences
composed by the solar radiation, thc effective back
radiation of the water surface, the evaporation cool-
ing of the water and the heat exchange by air convec-
tion) the natural temperature of the river fluctuates
during day and night and during the seasons of the

year. The temperature ripple over 24 hours is in inverse’
proportion to the depth of the river. From an external
heat source the river may be heated up several degrees
C at the point of heat release.

However, a mean temperature of 3OOC may not be exceeded.
Due to the temperature overshoot in comparison with

the natural-equilibrium temperature of the river, the
heat exchange from the free river surface to the en-
vironment takes place according to the formula

q, = AF (ew - eN) in which

7y 22 '
3 -6( N\ [3,24X1O L Cold -3 Mcal
& =0,055%10 (55| +[ =53 + 1.15%107 Cp RV, 2 0 coc

N
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- -6 Mcal .
The o( -value may be taken as & = 8x10 _2c_a_ in

0
. . .m_sec C
cases where the cooling time has a duration

of at least 7 days.

Where the throughput of the river is very high, and

the cooling time reduced to about one day, we have
. . -6 1

to use in our calculations the value X . =5x10 —Egél.

min &

m sec

The determination of the amount of electrical power

to be installed in a group of power stations distribu-

ted along the boarder of a river and erected at a given

distance between each block has to be made by means

of the formula

&F
| Q@
e -1
¥ min & Fo (30 = Bynax
e %m
N = Mw
0,3
or from
d . F_ (30 - ey )
N = min © max M

0,3

wWe will take the smallest wvalue of the two.

Remarks Fo may be found from:

X F
0,85 ro' é 1.25
. Wmin

Fo = 10. B, lo being the distance between the blocks

of power stations.
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NOMENCLATURE

a value of ty at which time Oy = S

B width of the river

B . minimum width of the river

min

C cloud cover factor

LPA specific heat of air

Coy specific heat of water

D depth of the river

D . minimum depth of the river

min

e emissivity of the water surface

e basic number of Nep. log.

F part of cooling surface of the river

FO cooling surface of the river between
two power stations

X e

£ (5) see definition on page 14

Kw volumetric flowrate of cooling water

L latent heat of water

1o cooling length of the river between
two power stations

m see definition on page 14
electrical capacity of a power sta-
tion or of a block of power stations
number of daylight hours
pressure of the atmosphere

Py vapour pressure at temperature eN

Py vapour pressure at temperature Gw

G% amount of waste heat to be rejected

on the river

hours

Mcal/ton°C
, (¢}

Mcal/ton C

m

m

m2/sec

Mcal/ton

bar
N/m2
N/m2

Mcal/sec
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= amount of waste heat based on

installed electrical power

= volumetric flowrate of the river

= minimum discharge of the river

heatflux by alir convection
heatflux due to evaporation

total actual heatflux from the
water surface to the environment
under natural conditions

total actual heatflux from the
water surface to the environment
if the water is thermally polluted

net long wave radiation heat flux

effective long wave radiation heat
flux of the atmosphere

back radiation heat flux of the
water body

short wave solar radiation heat
flux

insolation heatflux averaged over
24 hours normally in

daily maximum value of 9

daily maximum insolation heat
flux at a cloud cover C

Kelvin temperature of air

natural Kelvin temperature of
water

Kelvin temperature of water
time in seconds
time in hours

time in days

Mcal/sec

m3/sec
m3/sec
Mcal/mzsec
Mcal/m?sec
Mcal/mzsec

Mcal/mzsec
2
Mcal/m sec
Mcal/m2sec
2
Mcal/m€sec
2
Mcal/m“sec
2
Mcal/m“day

Mcal/mzsec
Mcal/m2sec

sec
sec

sec
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wind velocity
velocity of river water
minimum velocity of river water

actual water content of air

= XAb at max. temperature of air

= XAb at min. temperature of air

max. water content in the air
based on eN

max. water content in the air

based on ew

max. water content in the air
based on éN

heat transfer coefficient from
the free river surface to the
environment

heat transfer coefficient ave-~
raged over the cooling time
(at least 7 days)

heat transfer coefficient ave-
raged over a day under the
most unfavorable conditions

heat transfer coefficient due
to convective heat transfer

evaporation coefficient

function of cloud cover factor
and partial vapour pressure

4:2;"
temperature of the air
wet bulb temperature of the air
daily max. temp. of the air

daily min. temp. of the air

m/sec
m/sec
m/sec
kg/kg
kg/kg
kg/kg
kg/kg

kg/kg
kg/kg

Mcal
2 0
m

Mcal
2 0

Mcal
2 0
m

m2 OC

ton

m secC

O O 0O O ©
Q Q Q a O

sec

sec

secC

M cal

secC
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= temperature of the river at a cooling
length = O

. . o
= temperature of the river after cooling

length 1O

. . o
= discharge temperature of cooling water

after condensor
= natural temp. of the water

= daily averaged natural temp. of the
river

= mean water temperature over first
half sine

= mean water temperature over second
half sine

= water temp. of the river at a given
point

= amplitude of first half sine-curve
= amplitude of seccond half sine-curve
= Stephan Boltzmann constant

= specific weight of air

= specific weight of water

7@" specific volume of water vapour

O
C

ton/m3
ton/m3
m3/ton
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Fig.1

Temperature decay of the river water as
a function of the cooling-surface of the river
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Fig. 2 The effective insolation heatflux as a

function of the solar altitude; for a
cloud cover factor =0



|
1
1
1
]
I
|
I
I
}
X

? 1.00
. xAb w X —e
v ) //% . . . . .
6 0.98 5 co"'("“ _7_% Fig.4 Mollier - Diagram for humid air
° .ec\oV . e ] | = =
g e N e
c e e T
§ s A= ——F
s 096 I—— ==
.g / 1 — 1z =
° B el Ve
P el 4 ~~C*
o g Lt )
o oo =1
T o ==
: =
a L
3
£ 0.92
o
0.90
] 5 10 15 20 25
vapor pressure in mm Hg —&

Fig.3 Atmospheric radiation factor &

as a function of the vapor pressure Fig.5 Mollier- Diagram for humid air showing
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period of 24 hours

Fig6 Temperature fluctuation of the river water
described by two half-sine- functions
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