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The method has the practical advantage that the eigenvalues and
eigenfunctions of the integral equation converge to the exact values
very rapidly as the order of the jx approximation increases. The eigen-
values can be computed in the jx method without any knowledge of the
eigenfunctions which are therefore only evaluated by the code if
required (e.g. the flux in selected energy groups at selected space
points). This fact makes for a high computational efficiency.
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ABSTRACT

This report summarizes the mathematical solution of neutron
transport problems in a bare sphere and infinite homogeneous slab
according to the new analytical jx method, spherically symmetric
scattering in the laboratory system being assumed. It also describes
in detail a Fortran-IV computer programme JN-METD1 for accurately
solving both the stationary and time-dependent problems.
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JN-METD1, A FORTRAN-IV PROGRAMME FOR SOLVING NEUTRON TRANSPORT PROBLEMS
WITH ISOTROPIC SCATTERING IN BARE SPHERES AND HOMOGENEOUS SLABS BY THE
Jy METHOD )

1, Introduction

The jN method has been developed during the last ten years to achieve a
simple but accurate analytical approach to neutron transport in a finite
system. One of the essential points of the method lies in the expanéion
into spherical Bessel functions of the Laplace~Fourier transformed emis-
sion density of neutrons (or the distribution of secondary neutrons) and
the kernel of the integral equation (resulting from the Laplace and
Fourier transformations of an integral transport equation with respect

to time and space, respectively). For spherical and plane geometries,

the expansion of the transformed flux rather than the transformed emis-
sion density with fespect to the Fourier transform variable is equivalent
to an expansion of the original flux in Legendre polynomials with respect
to spacel)Z). Due to the expansion of the emission density, our final ex-~
pression of the flux exactly satisfies the boundary conditions independent-
ly of the order of the jNapproximation (truncation order of the expansion).
The method has already been applied successfully to space-energy time-
dependent transport problems in a bare spherical systems) as well as
space-angle energy-time dependent problems .in an infinite homogeneous

slab with finite thickness4) (always assuming that the scattering of neu-
trons is spherically symmetric in the laboratory system). The neutron flux
for a stationary state has also been obtained as a simple limiting case of
time-~dependent problems. A computer code for stationary problems in a homo-
geneous slab has been adapted for calculating also the first and second

5)

time moments of the flux due to an incident delta function source

An extention of this approach to take into account anisotropic scattering
of neutrons as well as multilayer slab systems can easily be performed,
as already shown by several authorse)_g). Furthermore, the application

of the method to convex geometries has recently been demonstrated for a
homogeneous medium in which the neutron scattering is 1sotropic1 . In
this work, an expansion into ordinary Bessel functions of odd order was

adopted for an infinite cylinder instead of the spherical Bessel functions

for the slab and spherical geometries,

*) Manuscript received on 16 September 1970



The present report is concerned mainly with the computer code JN-METD1
designed to solve neutron transport problems for bare spheres and in-
finite homogeneous slabs within the context of the multigroup and (up
to) J7 approximation (scattering being assumed spherically symmetric).
The code can deal with the following problems:

(a) Stationary problems in bare spherical reactors to obtain the asymp-
totic time constant (decay constant of the fundamental mode), the
value of the effective multiplication factor keff or the critical
radius, and the flux distribution as a function of space and energy.

(b) Stationary problems in homogeneous slabs to obtain the space, angle
and energy dependent flux due to a plane isotropic, point isotropic
or monodirectional boundary source. Also the first and second time
moments are calculated for the time-dependent flux in the slab with

a point isotropic or monodirectional delta function source on one

boundary.

(c) Time-dependent problems in a non-multiplying bare sphere without up-~
scattering of neutrons to evaluate the space, energy and time de-
pendent flux resulting from the incidence of an external source at
the centre, the time behaviour of the source being described by a

delta-function or the Gaussian distribution.

(d) Time-dependent problems in a non-multiplying homogeneoﬁs slab with-
out up-scattering of neutrons to evaluate the space, angle, energy
and time dependent flux in the slab with a point isotropic or mono-
directional source (described by a delta function or the Gaussian

distribution in time) on one boundary.

2. Mathematical Formulae

Under the assumption of spherically symmetric scattering in the laboratory
system, the jN method has already been developed to deal with neutron
transport in a bare sphere and an infinite homogeneous slab with finite
thickness3)4). We therefore only summarize the mathematical formulae

here.



2,1 Time-dependent problems in a bare sphere

We consider first a bare sphere of radius R within the context of a multi-
group (G energy groups) model and the JN approximation (with an odd value
of N). Let 25 and 15 be the macroscopic total cross section and speed

of neutrons in the g-th group respectively and C(j‘),) the mean number
of secondagyneutrons produced in the g-th group as a result of a collision

in the gith group.

The number of neutrons at the radial co-ordinate r and at time t resulting
from a neutron source S}S(f)S(T)/?qb[Y‘) , in the case where ﬁyﬂg is
finite, is written asa) (IM1 being the largest integer less than or equal
to M)

Wy (v, £)= 5, o2p (- TV ) S (£-vA4 )/bamr)
L(NN)A2 16 INAD
+(4/Y>JZ=‘ 2, Bom (4 G (TR, VR, Z04) ep [TV U-DEY ) (g

where
Gty 5,025 Bompiogs) |, o] Lot ran ey, ()

in which }“(I) is the n-th order spherical Bessel function and fia
4-(1',15—,4)/(7,15). The explicit expression for 6:“(1\’,,;')}) is shown in the
Appendix 1, Section 4. In Eq. (1), ,6-"-'-7-'41)4.5;‘_ and B,._(?,JJ-) stand for

a real pole and the residue of B&(3“4) which satisfies the following
/

P indicates a sum only over odd values
=0

linear equafions (the notation

of n):

N
T Bt = F 0 T R Ba(3,4)
(&)
+3L5-Z%4 S}C(’_)‘I)ZIAM (%R,J)) m=4,3,~,N,

where



L . , 60

Tun @)= B & 0oy (oz,,r.r)f° oapt-Rain(z), (@
o 00 . .

Antyp =3} 44 enp-R)f 432,40 i, (5)

The expressions for J-'m (0q,4) and Am (d,,J) are summarized respecti-
vely in the Appendix 1, Sections 1 and 8.

In the absence of up-scattering of neutrons in a non-multiplying bare

sphere, Eq. (3) is reduced to

N
[~ €451 T By R, 431 Bu (35 4)-c357) %o’ Tnn (FyR> 4) B (35 4)

nn

Y 4 N
=3‘iés,C(1"3’)2',Am(2}K; 4 ”g 6(7’3')5; Jun (ZR, 4)Baly 4),
m=1,3,-+,N. (6)

This equation indicates that the problem of finding the pole .J=1;'2,Jj

of Rm(ﬂ,,A) is the same as that in a one-group model:

det lgﬁ%'cd"?ﬂm“ﬁ’?)“ |=0, mm=4,3,5:.,\, (7

and the total number of poles for the g-th group is f(N-M)/:z]g instead
of T(NHY21G , including all poles of the higher groups due to
the presence of the last term on the right~hand side of Eq., (6).

2.2 Stationary problems in a bare sphere

From Eq. (1), the asymptotic behaviour as t«>» 00 can be written as

al .
V,’n’ (r,t)~ (4/?)%0 Bzm (3, 41) Gy (raRJ VR, ZVidy) Wfﬁ}wuﬂ”f 1, .
8



where 4= V4, stands for the largest pole of Bum(§,4) whose

value is to be obtained by solving the determiﬁantal equation:

it | BL T R, T | =0,

9,9=4,2,>,6 $or M, 1=4,3,5,,N, @

which gives the asymptotic time constant J4;-4 as a function of the

physical properties of a reactor and the geometrical dimension.

For a critical reactor, Aﬁ must be equal to unity and Eq. (9) with 4h=4
therefore gives the critical condition. In order to obtain the value of

the effective multiplication factor k for a given reactor, C(Téa’)

eff
is divided into two parts. These are the scattering part C}(T»?’):

by (1—)1/)/11 and the fission part (4(§>})= ;\”, (va),/Iz where X’
stands for the proportion of fission neutrons born in the g-th group.
Using this separation, the value of ke
with 4={ and

o is obtained by solving Eq. (9)

C(I2r= (210 C5(4>3)/ By . (10)

The ratios between the residues RM(7,14) can now be obtained by the
use of Eq, (3) with Si=a and Eq. (9) for any of the above-mentioned
three problems, that is, the evaluation of the time constant, critical

condition or k Having thus obtained the residues, the flux distribu-

eff’
tion can be obtained from Eq, (8) for each problem,

2.3 Time-~dependent problems in a homogeneous slab

We now consider here an infinite homogeneous slab with finite thickness
a by assuming a neutron source Sigy,t) incident with the direction
cosine M upon the surface at the space co~ordinate X=0 . The number

4)

of the g-th group neutrons is then written as
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Yy (T E)= (14) Sy, t-XAUJ0) 2ap (- 3 k)
+z 2 p, (0:4)) T (Z4/2, X/, J, Z0A) ) et 120040t ]

Iz
- . A _
+ o] Y TP 2 B3 2T
X Fa(B%2, %4, j, W+ 20-5%;)

(11)
where
00 . ]
AR A 1)547 _;12uffw(,z(l-ﬂplJ,,(agZ)gﬂuff-(P,-iE/W 1, (12)
the explicit expressions for H.(o{,,;‘,/a,,A) and F&(d,,;'/(, ._“4-1%1)4-1"1)5)

being given respectively in the Appendix 1, Sections 6 and 7. In the second
term on the right-hand side of Eq. (11), the summation is performed only
over the contribution coming from the poles of the g'-th group (g' = 1,2,
«e»E,+04,8) which satisfy the condition Jj’, >4~ IJV’/(I‘W) { at most,
j=12,..., (N+1)G] . The function Bh(,hg) satisfies the following equa-

tiong

N
TR D" E QD2 T8, ), 4

+g.; CQ";')%QS’ qu(r’w) 4 )) N=0,4,2, ", N)
(13)

where
3 Ca o 4= A [ 4 o o) J 42 [ [l 5, 6> mp Et-2 0]
x4y erp iz 3, ()

For three cases where
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(a2) S,(/l,'t)=$,$(-f) (plane isotropic source),
(b) 5’(/1,’(,')= 25’/‘-5{{‘) (point isotropic source),

(c) S’(/u,t)= S’sgu.}u‘) S(t) (monodirectional source),

the integral C,,,W,,J) takes respectively the following forms:
. ey | oo | 44 7R oY
- -7 ht [
Cn (o 4)=75 L%”T( ‘%E)Jn("()mfo%ﬂ (e"%1), (15)

Gl =y | 4 onp Ciog o ML Lang) M-y 1, (e

Co (04, 4)=2F (0, 4, 4, ), o an

[ ¢
the explicit expressions for C,,' (0(,,,4), C;;‘W:/J) and C‘,l (N,,J) being
shown in the Appendix 1, Sections 9, 10 and 12, respectively.

Since J"m(tY,,,A)=0 when mtn = odd, a system of linear equations (13)
can be split into two setsj one contains only the terms with even values
of n and m and the other contains only those with odd values of n and m,
Hence, for a non-multiplying slab in which there is no up-scattering of
neutrons, the poles of B,nfﬁ,,d) are to be obtained by solving two de-

terminantal equations [ see Eq, (7)1]:

det | %ﬁ?““‘}"?)]’,m(fﬂ/zl) | =0, (18)

n,m=0,2,4,...,N-1 or nm=1,3,5,...,N,

under the condition that the value ,J=13’R,Ai should be larger than JW,-Z"V",
In this case, the maximum number of the poles for the g-th group is (N+1)g

instead of (N+1)G.
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Upon integrating Eq. (11) over }4, from -1 to 1, the total flux is ob-

tained in the form:

4 Z,
Yty =[G 0t ) wp )
N -
YT 2 Bal1)4)) Gal HA/2, 20/0A, Zihdy) ey LT Uyt
" . N )
+z Ldgurf-(r,v,-ty)f]% Bn (3, L+ ZVi-ZyVy)
X Gy (342, 2/-1, L+IP-ZY ),
(19)
The expression for @, (04, 254, i‘]-l'l'c'l’r‘z,'l)j) is shown in the Appendix 1,
Section 5. Furthermore, the total number of neutrons reflected by or trans-
mitted through the slab is obtained by integrating ,}L]f[),/na (z',)}(,t) (X,=0
to observe neutrons reflected by the slab or X,=4 for neutrons transmit-

ted through it) over/u. from -1 to zero or from zero to 1. This gives the
form [ see Appendix 1, Section 11 for the expression of Q‘({X,,l’%ﬂ'ﬁ&'l’ﬂ@)]l

4
Sy o p 3= g Sy o, t-3r ) 2p CF) 1
+!,—§ é(fl%’-ﬁ"&; @ ACHEE, XYk ) p L2 -1 t ]
" ) N .
g {44 A E ) 2 (R0 Bt i)
XClaa, dr 2y,

(20)
2.4 Stationary problems in @ homt_)g' eneous slab
For a subcritical system with a stationary boundary source 5}(/1) , only

one largest pole J4=Zy¥, of Bal (1,.4) is of importance, Hence, by multi-
plying 4-X¥ on both sides of Eq. (13) and taking the limit J4->Z% ,

we get
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N
A 107 & CPIZ, T 582, 0B D)

(21)
+§C(,"3')z’as,cﬁ_ (2}&/2), n=0,1, 2, N,

where Bﬁ q)=ﬁl—i';:"ﬁ (4-ZW) 81(3;,4) and S’cﬁ (0(,)=ﬁ€4£.v 4-xV;) S,C,;(%,J)

( 0
which takes the form given by Eq. (15), (16) or (17) with A=ZsV when
the angular distribution of the source is plane isotropic, point isotropic

or monodirectional.

The stationary vector flux, scalar flux and the total number of leakage

neutrons can thus be written as follows:
N
Uiy (T, 0= 5,000 02 (FAMI+ 2 B o (2802, /0, 1, 70, ), (22)

N
Uty )= § Y8 008 CTRPO* 2 BaD) G 582, 2804, Zi0), (33)

W/tw,oz,u.w 54#5 sl Z440] tyea
+#£(:¢7g -1PBuPCHHa/2, 20).

(24)

In addition, it is also easy to obtain the time moments of the time-de-

pendent flux. For example, the first three time moments of the angular flux

(11) is written ass)

(it sgnt-fo g 30

N
, Z
+2. Ba (1 T ) Fu (542, X, b ZiVi ), 25)

y = (%p+d S -
Jattvmyap = {attlrs 00 ) e |
-éféBﬁfﬂ,A)F;,(Iga/ﬁ, m!/"ﬂ‘”]nzﬁ’q, (26)
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[t Py o tr= [ 44 g0 ) o )
+ 4T 2 B A Fu (542, 38, J 4D Loy

(27)

From a comparison between Egqs. (13) and (21), it is seen as expected that

the zeroth moment of the flux due to an incident delta function source

SJ(/“'-t)= %(/‘)S‘f} is equal to the stationary flux (22).

3, Procedures for Evaluating the Pole, Residue and Contribution of the

- Continuous Spectrum for a Non-Multiplying Medium without Up-scatter-
ing of Neutrons

3.1 Approximate values of the pole

We summarize here the procedure to find an approximate value of the pole,

which is required for solving Eq. (7) or (18).

Figure 1 shows the curves giving 1/c as a function of X4 obtained by
solving the determinantal equation (18) of the elements with even values
of n and m by fixing the value _4=X4 , within the context of a one-
group model and the 33, 35 or J,, approximation (N = 3,5 or 7). (Note that
the smallest ¢ gives the value required to keep a slab of thickness X4
critical). In order to find the poles of the g-th group with C(j*,) and
Z.',a. , the diagonal of a rectangle with sides 4/C(1->]) and Z"ﬂ. is
drawvn as 1illustrated in Fig., 1. The points of intersection between the
curves and the diagonal should have the abscissa I}QP’ . In the ex~
ample shown in Fig. 1 [C(:91)=4 and z,a=45] , it is not clear
if the lowest curve of the J7 approximation intersects with the diagonal.
In such cases, the asymptotic expression for the pole with a small absolute
value of Z’,ﬂ.P’ should be taken into consideration. The expressions in
the 33, 35 and ,j,, approximations are respectively written as follows

1C0y = C429)Z,4/2 and ) being the Euler Mascheroni constant ]:
i 1
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L 1
1277~ ]2/ (5CA’3 )

5 e 4-#41/(35ciy)
anN fdf[‘% Y coy “\ 7% -2 200250/(5%)]):4-5 342597/Ccay)] ]) (28)

89 _[4-3.496539/(co)114-1.795340/Ccop)] ]

§90 H_%Hl.ﬂggz&]p_m

which shows that, for example, in the j7 approximation there are 4 poles

for Cofy> 9.265908, 3 poles for 9,265908 > car, > 4, 2798305, 2 poles

for 4.2798305>c0(,> 2.198517, and only 1 pole for 2.198517,> cay >0

On the other hand, when Z}an >>{ , the value of P: is approximately
equal to C(Z"’Z)

The approximate value of the pole coming out of Eq. (18) with odd values

of n and m or Eq. (7) can be found by following the same procedure as
mentioned above with the help of Fig. 2. (Note that the negative values

of P‘ are applicable only for spherical geometry.) In this case, the asymp-
totic expressions for the pole with small '“gP,l (o(’=2',a/2 or Z,R) in the

33, J5 and j7 approximations are respectively given by

f%% 277‘/74)(4 Z?_é ‘Eé )/(l

Coy 5 Cﬂ’,

5005 I4-4-2’l74‘f?/<C“:>1f4-3.234312/<cor,)]f4-7.2855/+/<ca,u
0P~} % (21T / (oI T4 59025T/Ccap)]

(29)

- 12'1743 1{4- .253122][,_ﬁ_ﬂ3ﬁl][4_%ﬂ.’1]

\ 1.2052?75

{4- 2_'Iﬂé.‘liH4 ﬂ?ﬂe:l]y ﬂ%%o_ﬁ] .

From these expressions, it is seen that, for example, in the J7 approxima-
tion there are 4 positive poles when COYJ > 11.748197, 3 when 11,748187
prd ClX,? 5.423541, 2 when 5.,423541 >Cﬁ1> 3.263428, 1 when 3.263428
>Cdz> 1.277137 and none when 1.277137 >C0YJ>‘0
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3.2 Evaluation of the residue

The procedure to evaluate the residue by solving Eq,., (6) or (13) for a

non-multiplying sphere or slab will be shown here by the use of Eq, (13)

with odd values of n in the js approzﬁimation [c_];m_s cq—;,)_]'nm(z',a/g,,d)]:

Locy, -c3, -cks ) [B0A) (&b

=y T, ST Bs(2,4) | = | Zs(14)

-CJs = Clys -;;T-sts 85(3,.4) 25(5:44) ;

where
J
Zm(ﬁhd)a %1 Sa/ C(g’—rZ)ZraCm(Zra/,Z,.J )

-4
/4 /
+E A D 2 Tnn (Gy/2, 4)Ba (2} 4).

Equation (30) leads, for example, to

3¢ -3Z,(34)  3¢Ts
, AN
B,(3,4p=fim T2 | ey <1Z3(3d) 1T
4> TV 4
McTys -1 25(3,4) M T4

where
3¢Ty4 3¢Ty3 3¢,
Az | 163 T¢T3~1 TeTss
11c¢Ts T¢T35  11¢Ts54

Hence, for the pole .J—"-Z}’V,sz
equation A= ,

.

of the g-th group obtained from the

(30)

(31)

(32)

(33)
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3CTyA -3%(34) 3¢5 3¢hH 3¢], 3k
By (3, 4i)=| 1¢Tiz  ~T2(14) TcTys 5’ Tehis TeTsd T¢Tys (34)
cT,s ~HZs(3.8) HeTsrd - telis Hels U | yzy, Lgs

the explicit expression for %Jnm(a”,A) being given in Appendix 1, Sec-

tion 3.

On the other hand, for the pole A:Z}MJ”/ of the higher g'-th group,

-4
3¢l -3 NZ, Tt/ Bath Aiy) 3T

— T ~1ZCUDT Tan(Gh2, 8)Bnhdig) 1¢Tss
2 ie
Y| 1eTys MR ehopz Tsn(%4a/2, 4) By (R, 4j3) HeTsd

1
(9, 4; r)=
Ba (3 4je/) A, 55)

i

which shows that all poles of the higher g®-the group (g' =1,2,...,g-1)
are also the poles for the g-th group if all values of C(§>7%4{) are
not equal to zero (this condition means that there is the slowing down
of neutrons from a certain group to the next group). For a homogeneous
slab, however, the condition that -Ajj/ >4-13‘V:/(1',’V4) excludes some poles
because the Aﬁ,/ has been obtained under the condition that Aﬁ,/>’
1-ZVy/ (Z¥;) [ this implies also the condition that JH,>4-ZW4./(IM)
for h = 1,2,...,gL1, as seen from the presence of the second term on the
right-hand side of Eq. (31) ] . In other words, some poles of the g'-th
group for which Z',/'V,/ 71’,17: may not be the poles of interest for
the g-th group.

3.3 Contribution of the continuous spectrum

For time-dependent problems in a homogeneous slab, we have to evaluate
the last term on the right-hand side of Eq. (11), (19) or (20). The con-
tribution of the continuous spectrum represented by, for example, the

last term of Eq. (20) can be rewritten in the j5 approximation as follows:
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b op( )] 4 E (51T By -Brg Gy Yo (41

4 (36)
(ijcm "'BmgCn Min(ft)],
where
B (4, U420 20 )= (B iBrag ),
C‘,; (%Ha/2, LY+ZV-ZY ) 'Ti‘(cm‘f'“cm;)
and use has been made of the fact that BMHJ (Y) and C,,m':(ﬂ) are

even or odd functions of y depending on whether n+m = even or odd.

Since Bp(§, if+TU-Z;¥y) 1s written as [CJum=C(IPD T, ,, (5872, YHIV-HN) ;
see Eqs. (30), (31) and (33) ]

3T =321, 5TV HY) 3¢Ts
1CTis -723(3,('.‘#111),-131;') 1¢Tas (37)
HeTs ~HZsCY, i+ Tu-Z0) Hedisd |

e Ly 44=.1+z.w1ﬂ':

BM, and Bm’ ~can be evaluated successively starting with g =1 by
using the expressions shown in the Appendix 1 [Section 2 for Jmu (a(z,

{+3¥-5¥;) and Section 11 or 13 for GF or c‘“c(o(,,éjuw,-z',zr,) to ob-
tain Zn(g, ('.1+1;'V4—I"Vj) for the case where the angular distribution

of the boundary source is point isotropic or monodirectional J .

When '1-900 , however, the value of the integrand of Eq. (36) changes very
rapidly as a function of y. The evaluation of the integral over y from
‘I,>>4 to 00 is therefore performed separately by the use of asymptotic
expressions for the functions J'“n)cn“) Cuc) 6,! and/or F',., for large y
[or for large a.y/(gv,)] y which can easily be obtained from the expres-
sions shown in the Appendix 1, Sections 2, 11, 13, 5 and/or 7. In the case
where the boundary source is monodirectional, this gives in the J7 approxi-

mation the following forms (Z¥=X/AR)
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(a) For the angular flux V”n,('l,/u,'t) with 4>0 written by Eq. (11);
J% ‘%Z‘%:o [(B«qﬁtq'smz, Fazg) M(yt)-(8ﬂ21ﬁlq+8ﬂlaﬁlza Yaimyt)]
i ”d a
n~ (3+T+44+{5+4+5+9+{3) 1% €359 )x,,v,,s ,570 -# cod [(17,51'1')”

-$(3X3+7x3+ux,+45x5+4+5x‘+‘n(,mx,)écr:'ﬁ)z,,v,ﬁ,, }“.‘%M(#)

+4(3+7+44+45-4-5-7—43)i}§‘ccszz,,v,,s,, {4 oallnri3-t)4]
- 4,[(ax,+7x,+44x.,+45x,-4-5x‘-9x,,—43 Xp)
Feona e,

(38)

where

Xa=4-25, X3=(-25)(4-105(k1, X4= (R2D)[1-2850-0(4-L3005))],
Xs= (I F-SH5UD-UsDU-3F505NTY | K= 4-65045),
Y= 205 IFDIFE )], Xp= 1250 -155)0- F5 1}

Since 5(“3,5,}‘,)): (‘4)”&(“,,4‘3’,'}‘,,4) , the value for the angle ~M
and the space 4-X (or 4-¥ ) can be obtained by changing the sign of the

first 4 terms in the parentheses of each term on the right-hand side of
Eq. (38).

(b) For the total flux v’ﬂa (X,t) with X=Q/2 written by Eq, (19);

j‘l 2% 2:-(-' [ (Brig Gnig~Bruag Gmag ) 009 (4t )~ (Brag Gmegt Bgg Gipag Jsin (41) 1
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(& (3474442154 1+549443) éaz’»a)z,m,,s , S:% wd (4t)
-4 (5r7HHI5-1-5-143) é oy Sy 4hes (G-,
3 for 5=0,
- ﬂ— (3Xa+ TX3+41XgH5X5H+5X,+9 Xy +13Xp) ,zé cqt»g)z,,v,,s,,j‘:'%’; cod (Yt)
~ & (3XHTXsHHMX g H5X 515 X4~ Xy 13X )
x’é c<7’->z>z,,v,,5,,j;: o[ GER-+)41, for 052570,

(39)

The value for _E > 0.5 can be obtained by changing the sign of the first

4 terms in the parentheses of each term on the righthand side because

Gy (0.5, 4)= 0" Gy (0, 45, 4) .

(c) For the total number of leakage neutrons jéupulmaﬂz(zhuu,f) written
by Eq. (20);

oy . 4 2 .
& 7‘4 “Zfo 2% 1( Breg Crag ~ Bag Coag ) 009 (43~ (Bpryg q,,§‘+ B,.,Jc‘mf Yam(4t)]
N{,-f(z%-ai) (3+T+M+15)-(445+7+43) ] 32?." cqépz,m:,sa,f;% cod (Yt)

+4 {(a%-1)(3+THHE)+(549413) ] 122.’4 Cq=NZ S, f" 9‘-‘45; m[(w—‘*—,},‘—t )]

(40)

In the JN approximation, the first [(N+1)/2] terms out of the first 4 and
out of the last 4 terms remain in the parentheses of each term. . on the
right-hand side of Eq. (38), (39) or (40). In addition, when the boundary
source is point isotropic, the total number of terms on the right-hand
side is reduced to be half, for example, only the first 2 terms remain

in Eq. (38),
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4, JN-METD1 Computer Code

4,1 Input data (see the Appendix 3)

After an

ID card with a 20A4 format, 26 integers are read with a 2613

format, These integers are defined as follows!

110 3, 5 or 7 for the 33, 35 or J7 approximation (0O to stop the
execution’; see the Appendix 2, Section 1)

IIII O or 1 in the case where the boundary source is plane or point
isotropic when NSPH = O

NPRINT 1 or O when the intermediate results are required or not
(1 for NSPH = 1 or NSTAT1 = 1)

NSTATY 1 or 2 for a stationary or time-dependent problem (2 when
LLL = 1)

IGRP Total number of energy groups

IHT Arrangement of reaction type of the cross section (XSEC) for
the g~th group; XSEC(IHT-2,g) = Ze¢y , XSEC(IHT-1,g) = Ztg,
XSEC(IHT = 3,g) = Zf,.a , XSEC(IHT+1,g) = Z(g+tIHS-IHT - g),
+e., XSEC(IHS-1,g) = J;(gtl-> g), XSEC(IHS = IHT,g) =Z(3->7))

IS XSEC(IHS*1,g) = F(§~4-27) +++e» XSEC(IHL Z IHS,g) = X (g-IHL
+IHS —» g) [Z.h,, is used instead of Z’ (for taking into
account the anisotropic scattering of neutrons) and Z&: is
for calculating the values of C(§{*§/)= 2(3-73’)/2:11 NPT

IHL may be equal to Zirg) 1

- NSPH O or 1 for slab or sphere

When NSTATY = 1 and NSPH = 1, JJJ=2, NKK=2 or/and N=2 for

Jop critical radius, time constant or/and keff calculation

339 (1 otherwise and JOD being not used),

NKK When NSTATY=1 and NSPH=0, JOD=1, JJJ=1 and NKK=0 (N being

N

not used),
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When NSTATY=2,

JOD=1 or 2 for NSPH= O or 1, JJJ=1 and NKK=0 for solving
a new problem or for LLL=1,

JOD, JJJ and NKK for restarting an unfinished problem for
which punched cards for the poles and residues are avail-
able till the NKK(>O0)-th group of JJJ of JOD [ see the
subsection (d) ],

N for evaluating the contribution of the continuous spec=-
trum by using 4N+l values for NSPH=0, N2 70 being recom-
mended (see the Appendix 2, Section 6), and N=0 for NSPH=1

LLL 0 (1 to obtain only the poles when NSTATY=2)

JNKK The flux is to be calculated beginning with the JNKK-th group
(1 when NSTATY=1 and NSPH=1)

NNN The flux is to be calculated till the (JNKK+NNN)-th group (IGRP-1
when NSTATY=1 and NSPH = 1)

JJIIJ 1/2/3 or 4 for calculating only the total number of leakage
neutrons/total number of leakage neutrons and total flux/total
flux and angular flux or total number of leakage neutrons, total

flux and angular flux (3 when NSPH=1)

NoOT Total number of time points (1 when NSTATY=1)

NOM 0 [total number (oddZ3) of angle points when NSPH=0 and
JJJ3z3]}

NOS Total number (Z 2) of space points (NOSZ 3 when NSPH=1 and
NSTATY=1)

When NSTATY=1 and NSPH=1, NFLUXR=1, NFLUXS=1 or/and NFLUXK=1
to obtain the flux distribution for JJJ=2, NKK=2 or/and N=2
NFLUXR (0 otherwise),

NFLUXS When NSTATY=2 and NKK> O, NFLUXR=NNNNN if no poles till the
NFLUXK (NNNNN-1)-th group for JJJ of JOD (NFLUXR=1 when NKK=0),
When NSTATY=2 and TPINT> O, NFLUXK=NOP; the total number of

time points for pulse source
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The total number of input cards for the present problem

NSTAT1

1 for obtaining the first and second time moments of the flux
due to a §(t) source, in addition to evaluating the stationary
flux, when NSPH=0 (O otherwise), [When NSPH=0, NSTATY=2 and
L11,=0, NSTAT1=1l for solving a new problem or NSTAT{1=0 for re-
starting an unfinished problem for which punched cards for

the stationary flux are available; see the subsection ().l

NUPSAT

1 in the case where there is up-scattering of neutrons (or/and

fission process) when NSTATY=1] and NSPH=0 (O otherwise)

Next, 12 floating-point numbers are read with a 6E12.5 format. These are

defined as follows:

A Thickness of slab a or diameter of sphere 2R
DMU1 The value of ;>0 of the monodirectional boundary source
when NSPH=0 (O otherwise)
EPSS Required relative accuracy for the value of the pole when
NSTATY=2 or for the time constant when NSTATY=1, NSPH=1
and NKK=2
Time interval of NOT time points for the flux due to a $(t)
source when NSTATY=2;
- +
TINT TINT*(SCAL)g JNKKF1 for the g-th group (g = JNKK,JNKK+1, ...,
NN
SCAL JNKK+NNN-1) and TINT%{SCAL) Nk(SCALl) for the(JNKK+NNN)-th
SCAL1 group,
TINT=SCAL=SCAL1=0 when NSTATY=1
TO Parameters describing the time behaviour of the pulse source,
TCON exp [ -TCON:‘:(t—TO)2 1
TSTAT To obtain the flux due to the pulse source for the time points
TPINT TSTAT, TSTAT+TPINT, ...,TSTAT+NFLUXKATPINT [ TPINT=0 for ob-

taining only the flux due to a B(t)-source or NSTATY=1 ]
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2
T1 The duration of the pulse source; exp [ -TCON%(t-TO)”] from
T2 t=T1 to t=T2

In the subroutine JNMETD, the following data ordered respectively by energy-
group beginning with g=1 are read with 8F10.6:

VG Speed of neutrons ‘!},70 (it is recommended to chose the
values which are around in the same order of magnitude as A

when NSTATY=2 and NSPH=0)

BUCLG Buckling (B§+Bz)g when NSPH=0 or fission spectrum 23 when
NSPH=1 and NSTATY=1

SOCE Source intensity Sﬁ at the slab boundary when NSPH=0 or at
the centre of sphere when NSPH=1 and NSTATY=2, or (VZ}): when
NSPH=1 and NSTATY=1

The total number of these cards is therefore 3 [ (IGRP+7)/8] . Next, the
cross section XSEC is read with (8F9.6, F8.5) for all types of reactions
arranged as mentioned above in the first group, then for those in the se-

cond group and so on, the total number of cards being [ (IHLXIGRP+8)/91] .

The remaining input data depending on the input integers are:

(a) When NSTATY=1 and NSPH=1, one card is read with 8F10.,6 in the sub-
routine JNMETD., These are

R1 Fixed radius of sphere for which the time constant (when
NKK=2) or/and K e (when N=2) are calculated, or the first
guess for the critical radius (when JJJ=2)

R2 The second guess for the critical radius if JJJ=2

81 The first and second guess for the time constant

52 if NKK=2

CKi The first and second guess for k if N=2

¢k2 & eff =
EPSR Required relative accuracy for the critical radius if JJJ=2
EPSK Required relative accuracy for keff if N=2
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If R2, S2 or CK2 is equal to zero, the input value R1l, S1 or CKl is

regarded as the critical radius, time constant or ke without any

ff
iterations,

(b) When NSTATY=1, NSPH=0 and NUPSAT=1, one card is read with 7F10.7 in
the subroutine RESCAL to evaluate the fundamental decay constant of
neutrons in the system ZiWi(i-44).

S1
P The first and second guess for the time constant .44
EPSS Required relative accuracy for the time constant

(c) When NSTATY=2, NSPH:O, NSTAT1=0 and LLL=0, a punched card dump for the
stationary flux with a (5E15.8) format is read in the JNMETD in the same
order as in the punched output or in the output print [ for each of
(NNN+1) energy groups beginning with the JNKK-th group, NOM values for
the angular flux for each space point (when JJJJZ 3) followed by NOS
values for the total flux (when JJJJ 2 2) and then 2 cards for the total
number of leakage neutrons at X = a and X = 0 (when JJJJ#S)] . The
total number of cards is 2(NNN+1) when JJJJ=1, (2+[(NOS+4)/51)x(NNN+1)
when JJJJ=2, (L[(NOS+4)/5]+[(NOM+4)/5)JNOS)(NNN+1) when JJJJ=3 or
(2+[(NOS+4)/5]+L[(NOM+4) /5] NOS) (NNN+1) when JJJJ=4.

(d) When NSTATY=2, NKK >0 and LLL=O [in case of NSPH=O and NSTAT1=0, the
present data follow the cards described in the Subsection (c)l, a
punched card dump with a (5E15.8) format for the pole and residue is
read in the JNMETD beginning with K=1 and M=1 when NSPH=O or with
K=2 and M=1 when NSPH=1, [ K=1 or 2 represents the fact that the values
come from Eq., (13) with even or odd values of n and M=m stands for the
m~-th eigenvalue (or the pole) for each K and the associated residues.]
Following the cards for (K,M), those for (K,M+l) are read if M+1< JHL
=[(110+1)/2] when K< JOD or M+1<JJJ when K=JOD, Then, the cards for
K+1 (K+1< JOD=<2) are read beginning with M=1 till M=JHL or JJJ. For
each set of values of K and M, the cards should be ordered as follows

[NN= IGRP except for (K,M)=(JOD,JJJ) where NN= NKK I
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SSPP Pg, g=1,2,,..,NN; L(NN+4)/57 cards only if K=1 [ when these

cards are not available because all values for 2',4% are
not very small (see the next subsection e), blank cards should

be inserted ]

sp

1-13 , g=1,2,....,NN; [(NN+4)/5]cards

Bn(g,,&y ), g'=1,2,,..,8 for each n (n=1,2,.,,JHL) separately,
beginning with g=g''+1, then g'"+2 and so on till g=NN (in the
same order as in the punched output), where no poles of in-
terest exist or SP=0 for g=1,2,...,g" [ also SSPP=0 and

Bn (9, 4y)=01 ; JHLk [(NP+1)x(NN-2.5%NP)-(NP'+1)x(g"-2.54NP')]
cards where NP= [(NN-1)/5] and NP'= {(g"-1)/51

(e)

When NSTATY=2 and NKK< IGRP, following the data mentioned in the Sub-
sections (c¢) and (d) if any, the first and second guesses for the poles
sp(1,g), g=1,2,..., IGRP, and SP(2,g), g=1,2,..., IGRP, for K=JOD and
M=JJJ are read first with 7F10.7 in the RESCAL ([(2%xIGRP+6)/7] cards).

If no pole exists for the g-th group, SP(1l,g)=SP(2,g)=0. If no iteration
process is required for obtaining the value, SP(2,g)=0 [SP(l,g) is re-
garded as the pole J . Furthermore, if the value of ZgaP, is very small
for the case where K=1 [ see Eq. (28)], SP(1,g)=0, SP(2,g)#Z0 (any value)
and the first and second guess for the value of Pg is read next with
2E15.8., The total number of cards for Pg is therefore the same as the
number of groups for which SP(1l,g)=0 and SP(2,g)#0 for each value of M
for K=1, These input data are repeated in the same order as mentioned

in the last subsection (d) till K=2 and M=JHL. If NKK=IGRP and JOD=1l or
JJJ< JHL, the present input begins with the data for (K,M) next to
(K=JOD, M=JJJ).
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4.2 Computer programme

4,2,1 General

The JN-METD1 package consists of 24 programmes; MAIN, JNMETD, RESCAL,
FLUXCA, INTCAL, PULSE, ITRTON, DET, SOLEQ, EP, F, FSML, DEROF, SDERF,
CCALC, DEROC, GCAL, FMCAL, VARIAC, ADJPUL, FNCUT1l, IFNCAL, GIMAG and
FMIMG, In addition, the code makes use of the library subprogrammes,
MAXO, EXP, DEXP, DLOG, DATAN, DSIN, DCOS and DSICI (see below).

Almost all input integers and floating-point numbers are transmitted
through a COMMON where, in addition, all subscript variables and their
dimension information are stored for the use of the adjustable dimensioning.
The present size of the floating COMMON for all subscript variables is set
to be 72,000 bytes so as to the programme requires the core storage less

than 300 K bytes in the Fortran-IV, Version G on the IBM-360/65,

For altering the dimension of the floating COMMON to fit core storage,
the following 27 statements should be adjusted (all 24 programmes are
numbered respectively): In the MAIN programme, the 45th card (dimension
of BCOM), 47th card (COMMON), 55th card (clear~-COMMON), 318th card (avail-
able § required storage?), 321st card (available £ required storage only
for the stationary problem?) and 340th card (available -§ required storage
for the time-dependent problem?). In the JNMETD, the 24th card (COMMON)
and 32nd card (dimension of ECOM). In the INTCAL, the 17th card (COMMON)
and 24th card (dimension of ECOM). Seventeen cards for COMMON.: the 21st
of RESCAL, 28th of FLUXCA, 13th of PULSE, 14th of EP, 5th of ITRTON, 18th
of F, 14th of FSML, 16th of DEROF, 10th of SDERF, 18th of CCALC, 13th of
DEROC, 17th of GCAL, 16th of FMCAL, 35th of FNCUT1, 14th of IFNCAL, 12th
of GIMAG and 12th of FMIMG.

4.2,2 MAIN

In the main programme, sizes of the required arrays are computed based on
input paramters and then first-word addresses are calculated for these
arrays., The locations of these pointers and the associated arrays with

their dummy dimensions are shown in Table I where the arrays which share
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the same storage locations are written in one block (for example, Realx4
subscript variables FNPOL, TFLUX and FFLUX share the same storage loca-
tions as for Realkx8 arrays DELTA, E, ED and SS in the case where NSTATY=1.)
The actual values for these integer variables specifying the sizes of
arrays are summarized in Table II., The first-word addresses and the di-
mensions are transferred through a call statement and a part of a vector

in COMMON is treated as a multi-dimensioned array in subprogrammes. The

flow chart of the main programme is shown in the Appendix 2, Section 1.

4.2,3 JNMETD, DET, ITRTON,F, FSML and EP

The subroutine JNMETD (see the Appendix 2, Section 2) is devoted mainly

to solve stationary problems in a bare sphere (NSTATY=1 and NSPH=1), As
can be seen in the Section 2.1 of Appendix 2, for the time-constant cal-
culation to obtain the value of S, fér example, Eq. (9) is solved by using
the two guesses S1 and S2, the function subprogramme F for evaluating Jnm’
the subroutine DET to evaluate the determinant and the subroutine ITRTON
to iterate the process for making the value of the determinant zero until
the difference between two suécessive values of S becomes smaller than

the product of the last value of S by EPSS., After having been obtained

the value of S, the ratios between the residues are calculated by evaluat~
ing the cofactors of the determinant, then the subroutine FLUXCA (see be-
low) is called for the calculation of the total flux Eq, (8) and in the end
the neutron balance is calculated by normalizing the total number of fis-

sion neutrons produced in the reactor to the value of keff'

In the function subprogramme. F(N,X,....) for evaluating P: J'mn (0(1,“ ),
the series expansion shown in the Appendix 1, Section 1 is used if the
absolute value of = aaF; is less than 2 (K=2 in the programme). The
argument N stands for n and m [ N = 1,2,3,..,,20 corresponding to

(n,m) = (0,0),(1,1),(0,2),(2,2),(1,3),(3,3),....,(7,7) 1 . As regards

the control integers transmitted through the COMMON, LG=2 is for re-
ducing execution time required for calculating Pinm (q’,, ,A) with
dififerent indices n and m but with the same value of (X (LG=1 other-
wise), In addition, JOD=1 or 2 is for evaluating the function with even
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or odd values of the indices, When JOD=1 and |(X}|>2 , as is seen from the
expression for P:-J-oo , it uses the function subprogramme EP(M,X,.5,**)
to evaluate the exponential integral Epn{(X) . On the other hand, when
lx{<2 , it uses the function subprogramme FSML( (¢ ,M,...) which eval-
uates ijdzm (0(3,,4)/0( with even values of n and m by the use of the
series expansion [ M=1,2,3,...,10 corresponding to (n,m)=(0,0),(0,2),
(2,2),....,(6,6) ] . The control integer LF=2 is for computing Palmm/“
with the different indices but with the same (X (LF=1 otherwise).

The EP( M, Z,J,“" ) evaluates also the integral &“ﬁ),tef/z

numerically based on the generalized Simpson's rule when 4>0 I note

that the integral is equal to E,f-#(l—x)]-z,(—#x) it <013 . For 4=0,
it uses the asymptotic expansion for large X or small xll) depending
on whether A>17 or 0 < X< 0.05 for evaluating En(X) with O <n< 10,
For 0.05<X< 0.5, [E;(X) is calculated by using the asymptotic expansion
for small X and then E,n_(x) with n>1 is evaluated by the use of the re-
currence relation. Furthermore, for 0.5 £ X < 17, E,;(X) is obtained
through the numerical integration and then the recurrence relation is used
for calculating the value of En(X) . The control integer LFF is fixed to
be 2 for computing Egn(X) with different n but with the same X (LFF=1

otherwise).

For other problems than the stationary neutron transport in a bare sphere,
the JNMETD calls the subroutines RESCAL, FLUXCA, INTCAL and then PULSE,

In the case where NSTATY=2, NSPH=0 and NSTAT1=1, the stationary problem
is solved first by calling RESCAL and FLUXCA, and then the time-dependent
problem is treated by putting NSTAT1=0 and by calling again these sub-
routines. When NUPSAT=1 and LLL=0, following the calculation of the neu-
tron flux by going through RESCAL, FLUXCA and INTCAL, the fundamental de-
cay constant Z;V; (4-4;) is evaluated by fixing LLL=1 and by calling

once more RESCAL,

4,2.4 RESCAL, SOLEQ, DEROF, SDERF, CCALC and DEROC

For time-dependent problems, the subroutine RESCAL (see the Appendix 2,

Section 3) computes the pole on the basis of two guesses for its value
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[see Sections 3.1 and 4.1(e) J . The procedure for solving Eq. (7) or (18)
to evaluate the pole is the same as that mentioned above for obtaining
the time constant in the JNMETD. When, as an input, the guesses for the
value of Fs have been read instead of I—Ja (KKK=2 in this case and
KKK=1 otherwise), the programme deals with, for example, Eq. (33) with the
elements divided by c(§>§)0q (instead of the unmodified équation) by
using the function subprogramme FSML directly (not via the function F),

After having been evaluated the pole ( 411: = O for stationary problems),
if required (LLL=0), the residues at this pole and at the poles of higher
energy groups are calculated as mentioned in Section 3.2 with the help of
the subprogrammes DEROF, DET, CCALC and F (see the Appendix 3, Section

3.1). In the case where NSTAT1l=1l, also the first and second derivatives

of the residue with respect to the Laplace transform variable 4 at the
point 4J=2Q1Q are evaluated by calling the subroutines DEROC, DEROF and
SBDERF to obtain the first and second time moments of the neutron flux (26)
and (27). On the other hand, for problems with NUPSAT=1 (one cannot deal
with only one energy group, successively, beginning with the highest group),
it calls the subroutine SOLEQ to evaluate the residues (or their derivatives)

by solving a system of simultaneous linear equations.

When NSTATY=2 and LLL=0, the RESCAL produces punched cards, with a 5E15.8
format, for the residue and the pole ordered by K and M in the same way

as for the input mentioned in the Subsection (d) of Section 4,1. For each

set of the values of K and M, the cards for the residue B,,(g,,da,) ,E8'=1,2,...8,
are punched in order of n (n=1,2,..., JHL, separately) for g=g''+1, then for
g=g"+2 and so on till g= IGRP. When, as an input, the guesses for Pﬂ have

been read for g=g'+1,g"+2,...,g" , the cards for P3 for g=1,2,...,g"
( P,:—‘-.O for g=1,2,...,g") are produced following those for the residue
of the g™ ~th group. All these cards are followed by those for the poles

1—,&, for g=1,2,...,IGRP ( 4-4550 for g=1,2,...,g").

The subroutine DEROF ( (X ,CAXV,KKK,....) evaluates CAXVx (2M)1',V’|’,2£-J'nm(“au&)
when KKK=1, by making use of the explicit expression if |x|>2 or the series
expansion otherwise (see the Appendix 1, Section 3). The control integer JOD
transmitted through the COMMON is fixed to be 1 for even values of n and m
[the functions with (n,m)=(0,0),(0,2),(2,2),,,,,(I110~1,110-1) being evaluated}
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or 2 for odd values of n and m [ the values for (n,m)=(1,1),(1,3),(3,3),...,
(I10,II0) being obtained }J . On the other hand, when KKK=2, it calculates
CAXV#(Z'nﬂ)rlvaR"%J‘nm (“a,i)/m with even values of n and m by the

use of the series expansion,

The subroutine SDERF( (X,....) calculates (2‘,1;,)’?13 é}. Tnm (0, 4) by

using the explicit expression or the series expansion depending on whether
the value |0(|l is larger or smaller than 3, for n=0 and 1 (m<7) and for
=7 (n<7). For other values of n and m, it adopts a linear relation among

the functions:

A2 _amH o 2 3 2
A8 Tt = (%‘Tz In,mqt ﬁi Tn,m )- ’i’,‘a Tnam ,

2
with the help of the symmetric relation ﬁ;]’,nm= ﬁjﬂm

The subroutine CCALC(20X,....) evaluates 2X(hy (04, .4) (when JOD=1) or
20(0_,,1:‘ (0(3,,4)/[ (when JOD=2), n=0,1,..., (IIO-1)/2, in the case where
II11I=0, DMU1=0 and NSPH=0. In addition, it computes 20((:,,3(1&,,4) or

20(02#4(0(3,4)/‘: in the case where IIII=1, DMU1=0 and NSPH=0O, The explicit
expressions are adopted for these calculations when |20l > 2,5, with the help
of the function EP (the series expansions otherwise; see the Appendix 1, Sec-
tions 9 and 10). Furthermore, in the case where DMUl>O and NSPH=0, it cal-
culates 20((‘,,{"(&’1,,4) or 20{(‘2;44 (g, 4)/(  the series expansion shown
in the Appendix 1, Section 12 being used when l20{(}‘4l<3. It also computes
20‘A2’n+4(20(3:»4) (Appendix 1, Section 8) in the case where NSPH=1 by
using the explicit expression when [2X1>0.3 or the series expansion other-

wise,

The first and second derivatives of the function C,,;‘(o{,,,g) or C,nc(cr:,,d)
with respect to s are evaluated in the subroutine DEROC(O(,...). In the case

- . 4 :
where DMU1=0, it computes 20 (z’%g%)”'cz:(q@,‘;) or 20((1’,1!,}?,%)’"(‘1” (,4)/
(m=1 and 2) depending on whether JOD=1 or 2, by the use of the series ex-
pansion (when |2|< 4 ) or the explicit expression with the help of the EP
(when |[2¢¢}><4 ). On the other hand, in the case where DMU1>0, it cal-

¢ ma4 € .

culates 2“(“1%”:%‘)"!0191(“3") or 20‘(211)3%41') Cona (43,4) /¢ by
adopting the series expansion when 120(//14)<4 or the explicit expression

otherwise,
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4.2.5 FLUXCA, GCAL, FMCAL and VARIAC

The subroutine FLUXCA (see the Appendix 2, Section 4) calculates the con-
tribution of the poles to the total number of neutrons leaking out of a

slab [ when JJJ (or JJJJ in the main programme) = 1,2 or 4 ], to the total
flux in a sphere or slab (when JJJ=§, 3 or 4) or to the angular flux in a

slab (when JJJ = 3 or 4),

The contribution to the total number of leakage neutrons is evaluated for
fwo boundaries of a slab according to the second term on the right-hand
side of Eq. (20) or (24) by calling therefore the subroutine CCALC for
evaluating C‘," . In addition, in the case where NSTAT1=1, the first. and
second time moments [ multiplied respectively by Z,‘U“ and (Z,‘I)’)’] of
the leakage neutrons due to a S(t) source are calculated on the basis of
the expressions similar to Egs, (26) and (27) (the contribution of uncol-
lided neutrons being excluded) by calling the DEROC for evaluating the de-
rivatives of C‘,,,_‘# .

For computing the contribution to the total flux (and the first and second
time moments), that is the éecond term on the right-hand side of:Eq. 1),
(19), (23) or the right-hand side of Eq. (8), it calls the subroutine GCAL
(x, 5 ,JIK,...,m) to calculate the values of 40((2',’171543-)“4@2“(0(3,25‘-4),4)
when JOD=1 or Foti (2',1),[?, ‘,?la)m”@zm (o, 25-4, 4)
when JOD=2 [n=0,1,..., (II0-1)/2], the integer JIK=2 being for evaluating
the functions with a different value of m (-1, O or 1) but with the same
0(:(,\/,':5 and § (JIK=1 otherwise)., [Note that (ﬁ])mgmn(a'ng"l,.d)
=(‘é])‘mezn(“lll"2§l*“)~] As is seen in the Appendix 1, Section 4, in
the case where the explicit expression for (ﬁ-)mé'm is used ( lax|>+4
in the programme), the integrals E',f20((4’5)] and Ey(200(%) for &,
(only for (X> O, that is LLL=1) and 5;“3_1542 F9E/B for &, with a posi-
tive integer of n fo( may be negative (LLL=2)] are evaluated first in
the calling programme FLUXCA by using the function subprogramme EP, For
12001 < 4 , the subroutine GCAL uses the series expansion for (%-)m&‘”.
In addition, when NSPH=1, it is required to evaluate %;13 40([62”“ (%IY:J)/V
as can be seen from Eqs. (1) and (8). Also these values are calculated in
the GCAL according to the following forms (the series expansion being used
when |2XXI<R2 ):
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dim B ona=20-8%=-28 4o
Jim T2

Y20 ¥ 53”3- at2(H 3+ on)Q -22:7,!’;,—),(411*4)(41-3)(-00”
,&4311-@ =42-354 30 -2 (bt L4 llL 4410 ) o

Y-
=-2374__ 3)(1-5) o
22_: ) (D) (0-5) (o)

Sim 3L G = - 345, + 2001 - iﬁ{-‘?+2(l+"’+3—§+3ﬂ§+%+ g2+ 48002 ) 74

Y>0

=2 “2_37,{1@ (4500 3 )04 ) - 3)(0-5) (=) (1)t

The contribution to the angular flux (and to the first and second time
moments), that is the second term on the right-hand side of Eq, (11) or
(22) ['and the second terms of Eqs. (26) and (27)7] are calculated in the
FLUXCA by calling the subroutine FMCAL(¢, ¥ yMLITI, L y) which evaluates
4o (ZW R g&;)”‘“ﬁ,, («y,5,4,4)  with u>0 when JOD=1 or 4«6(%‘&?,5%)”"‘
X Fany (05,5, 4 4)with 4>Q when JOD=2 [#M=-1,0,1 and n=0,1,...,(110-1)/2] ,
‘This subroutine uses the explicit expression or the series expansion shown
in the Appendix 1, Section 6, depending on whether the value |2§00§“l

is larger or smaller than 4. The integer JII=2 is for calculating the func-

tions with different values of m and /u but with the same values of X

and ¥ (JII=1 otherwise). [Note that (%)’"F,,,(a{,,g,}(,;):(-4)"({;—)"‘5,@',,4-5,71,4),]

In the case where NSTAT1=1, the above-mentioned calculations are followd
by the evaluation of the mean emission time ; and the variance §-2of the
time~dependent flux due to a $(t) source. For the angular flux, these are

written as [ see Eqs. (25), (26) and (27) 7

= { dt tyym aupt)/ St um upt), | (41)

02 = fat oy )/ S atum p - @7, (42)
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The ? and (2 are evaluated in the subroutine VARIAC(....,K,NSTAT2)
when K=2 and 3, respectively. When K=1 and NSTAT2=2, it produces punched
cards for the stationary flux [ see Section 4.1 (c)].

4,2,6 INTCAL, FNCUT1, IFNCAL, GIMAG, FMIMG and ADJPUL

The subroutine INTCAL evaluates the contribution of the continuous spectrum
to the time-dependent flux when NSTATY (NCURVE in this subroutine)=2,NSPH=0
and LLL=0, It calculates also the contribution of uncollided neutrons to

the flux, The flow chart of the INTCAL is shown in the Appendix 2, Section 5,

For the evaluation of the contribution of the continuous spectrum, it calls
the function subprogramme FNCUT1 (see the Appendix 2, Section 5.1). The
control integer KKKK=1, 3 or 5 is for evaluating the contribution to the
total number of leakage neutrons, to the total flux or to the angular flux,
Therefore, when JJJ (or JJJJ in the main programme) = 1, 2, 3 or 4, KKKK
takes the value 1 only, 1 and 3, 3 and 35 or 1,3 and 5, For the calculation
of the last term on the right-hand side of Eq. (20), it uses the /fact that
only the factor (21@/&—4)” depends on the value of X, . For the evalua-
tion of the last terms of Egs. (19) and (11), on the other hand, it makes
use of the symmetric relations, G“(a'.',glj)z.(—4)"Gn(n”,4-'§,,4) and
Fn(o(a,g)/ulj)=(-n"}?ﬂ (%y,4-§,-4,4) , respectively. The newly defined in-
teger NCURVE (#NSTATY only in the routine) is therefore put to be 1 imme-
diately after the calculation with NCURVE=0 for evaluating the contribution
for the mirrored point, for example, the contribution to 157%(4—1,7H;t)
immediately after the calculation of that to 15%z(zou,t) for NOT time

points,

As shown in the Appendix 2, Section 6, in the FNCUT1(g,t,%¥,....) the value
of 5, is first chosen to satisfy the conditions Y,>>{ and q,a/?zv5)>>4
for all groups g of interest ['only at the first time when the subprogramme
is called (LF=1) ] . The numerical integration from y:o to 70 is divided
into two parts at g = tan (0.9 tmf',, ). The real and imaginary parts of
the integrand are then evaluated for each value of ¥ = tan [0.9 (M/2N)M47¢])
m=0,1,,..,2N (JJJ=1), and Y = tan [ 0.9 tan’{,+0.1 (m/2N) fs'Y,],
m=1,2,..,,2N (JJJ=2). Since Bpn(9§, i-7+2'4v,—2‘,1),) depends only
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on g and 5 Isee Eq, (37) ] , the values for 4N+l points of Y are cal-
culated only once for the group g (LOGCL=1 and IGRP=1, these integers
being different from those defined in the main programme) by calling the
subroutine IFNCAL and then the integrand is evaluated, by the use of these

values of Bh , for different time, space or angle points,

In the course of evaluating B,(J, ilj+z"|;4-1',1r’) , the values of S,,Z’/Q
XCn(ZJ/a/,?,,A)"'ZI;Inm (Z’/R/Q,,A)quﬂ,é),with A:iﬂ-ﬁl}%-rﬂfz , are stored in
the array Yl or Y2 for g'=1,2,...,g~1, in order to use them for computing
ZMLW*‘TM-IJVJ) and Bn((j,iwzm-zjv‘-) » j=€,8+1,...,IGRPP [see Eq.
(31) ]. This is the reason why the calculation begins always with g=1,

the highest energy-group, when LF=1.] Since the arrays Y1l and Y2 require
generally very big storage, it is recommended, in the case where these
arrays are used (NSPH=0, NSTATY=2, LLL=0 and IGRPP =JNKK +NNN>0), to esti-
mate the required size of the floating COMMON according to Tables I and II
in advance of the execution so as to be sure that the size is less than the

available storage.

After having been obtained the Bh@ (Bl in the programme), the coefficients
of cos(yt) and sin(yt) [ see Eq. (36) ] are evaluated by calling the sub-
routine GIMAG or FMIMG when KKKK=3 or 5 [ for KKKK=1 , Chf and Cyi have
already been evaluated as a result of calling the IFNCAL (see below) ].

The coefficients ZZA are then used to compute the integrand, and the in-
tegral is calculated on the basis of the generalized Simpson's rule [ see
Eq. (36) ] . For evaluating the contribution for different time points

&or the same energy-group, space-(and angle-) point and KKKK ], it uses
directly the coefficients (LOGCL=2 and IGRP=2), In addition, for the
mirrored point (NCURVE=1), the sign of a part of the coefficients is
changed due to the control integers, LOGCL=2 and IGRP=1, to obtain new
values of the coefficients, For computing the integral for different space-
(or/and angle-) points and/or different values of KKKK (but for the same
energy-group), the calculated values of B,n(g, i'j+zm-1’,1r,) are used to
evaluate the coefficients for this problem (LOGCL=1 and IGRP=2), The last
part of the FNCUT1 is devoted to the calculation of the integral over 5
from Y, to 60 according to Eq. (38), (39) or (40).

The subroutine IFNCAL ( al;j/(:zv’) KKK, ...) evaluates (', and (pf
( KKK=1 or 2 for odd or even n) shown in the Appendix 1, Section 13, when

the angular distribution of the boundary source is monodirectional. When
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ag/(:zv,/l‘)< 1.5, the values are obtained by the use of the series ex-
pansion. In addition, this subroutine calculates Jymand Jyma (KKK=1 for
odd values of m and n) shown in the Appendix 1, Section 2, and Chf and
C;j‘ (KKK=1 for odd n) shown in the Section 11, the series expansions
being used if a.lj/(2’|7,)< 1.5.

The subroutine GIMAG( ¥, 24/(2V;) ,KKK,...) calculates the values of &ay
and Ghz shown in the Appendix 1, Section 5 (the series expansion is used
for evaluating the function with 41/&7 < 2.5) and the FMIMG( F,dﬂ/?%ViL
KKK, ...) evaluates F}4 and Fya with a positive value of M4 shown in the
Section 7, the series expansions being used if IQ{;}%%@M)I<:4. In these two
subroutines, KKK=1 or 2 is for evaluating the functions with odd or even n,
The control integer LFF transferred through COMMON is put to be 2, instead
of 1, for computing the functions with different values of Ry/QQQG) or
a.g/('v,/u) but with the same value of ¥

The subprogrammes FNCUT1l, IFNCAL and GIMAG make use of the library routine
DSICI(SI,CI,Xx) to evaluate the sine and cosine integrals:

S __M;t =4 (x) and Cl= 54 %“-‘Ct(-'z)

Following the evaluation of the continuous spectrum, the INTCAL adjusts the
calculated values of the flux by calling the subroutine ADJPUL, because it
has been found that the contribution of the continuous spectrum does not
converge to the exact value so rapidly (as the order of the jN approximation
increases). The adjustment uses the fact that the integral of the time-de-
pendent flux due to a delta function source, Eq. (25), is equal to the value

of the stétionary flux (22),

The ADJPUL therefore evaluates the integral of the time-dependent flux (the
contribution of uncollided neutrons being not included) over time from O to
00 under the assumption that the g-th group flux decays exponentially,
after the time T(NOT), with the asymptotic decay constant 2'4%(4-.44:).

[The Simpson's rule is repeatedly adopted for the integration over time
from T(NOT) to 0.] If the calculated value of the integral is larger than

the stationary flux, the values of the time~dependent flux are put to be
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zero beginning with the flux at t=0 until the integral becomes smaller
than the stationary flux. Then, as for the case where the integral of
the unmodified flux is smaller than the stationary flux, the first posi-

tive flux is adjust‘,ed so as to achieve the equality.

To show the measure of the accuracy of the adjusted time-dependent flux,
the ADJPUL calculates also the mean emission time t (41) and the variance
02 (42) of the adjusted flux distribution, which should be equal to
the values obtained previously from the stationary calculation (NSTAT1=1)

in the FLUXCA,

As mentioned already, the INTCAL evaluaI:es also the contribution of un-
collided neutrons to the total number of leakage neutrons (for NSPH=0 and
JJJ#3), to the total flux (for JJJ#1) or to the angular flux (for NSPH=0
and JJJ 2 3) according to the following forms [ for NSPH=1, see the first
term on the right-hand side of Eq. (1)} :

(a) When NSPH=0 and NSTATY=1 [ see Eqs. (24), (23) and (22)],

J:#‘S,(/l)%f(~zfl')= $,E.(5a), 25,E;(5) or s,uf(-%) , (43)
fo‘%sz(/‘)”‘f(" Zﬁz): S;E(([1), 25,E,(HX) or 5:”?(‘%)4“4: (44)

Sy (B fu=Syomp ) fu, 280 (FE) o St spm M a5y

depending on whether the boundary source is plane isotropic (II11=0),

point isotropic (IIII=1) or monodirectional (DMU1>0).

(b) When NSPH=0 and NSTATY=2 [ see Egqs. (20), (19) and (11)1],

25; op C V) @/ P
joléll% (jl, '['—1%‘1 ).Mf(—%g)z for 7(1/'1)’ (0 otherwise), (46b)

S (-30)3 (55, (46¢)
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28, X 1 CZt)/Wi") for >35> 0,
1 X)- = (0 otherwise) ( )
[YspigomtBl 2530 o 120 © saersar, G

S“Jur(-ziwl)ﬁ(t-mvw))ﬂ‘d, ‘ (47¢)
283 4tp(-ZX/R)S (t- XAUM)), (48b)

1 (X _..x_.) (—Ix)=
7%/‘ s it —# Srwr(-Z}ZﬂJ)SQ“'/W)S(t'MV;/‘J))é“‘) (48e)

depending on whether the boundary source is point isotropic or monodirec-

tional.

As seen from Eqs. (43) and (44), the function subprogramme EP is used for
evaluating the exponential integral E,"_CB) . The flow diagramme of this

routine is shown in the Appendix 2, Section 5.2.

4.,2.7 PULSE

The subroutine PULSE calculates the neutron flux due to a pulse source of
the Gaussian distribution in time, exp [~ (t-t, )] for Ty<t< T,y .
(the value of (X may be equal to zero), by performing the integration of

the flux resulted from a S(f)—source computed in the INTCAL:

K 4 2 7N TrT], ' ,
P (t)= fT ’au'ufr-mm 1 (t-t)= % _T:(;t o Foi(-t 71 fyit ),

(49)

The integration over t' is performed numerically on the basis of the gene-
ralized Simpson’s rule, However, for the case where the contribution of un-
collided neutrons to 4}(f) is written in the form which contains a delta

function in time, the contribution to 4}({) igs evaluated according to the

following analytical expression:
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(a) When NSPH=1 [see Eq., (1)],

=T
f Ai“wrf ~ (t-t~t21 S}Mr(-z‘,v,’c’)‘a‘(t-’r/v, )/ 4xr?)

= 5y ep ) enpFo(t-to v/ Y 1/141r%)

for t-Tizvyz t-Tp (0 otherwise) ,  (50)

(b) When NSPH=0 and the boundary source is monodirectional [ see Eqs, (46c),
(47¢) and (48¢) ],

Syap 28Uy ) § (42 8/04y))
.t
5t- ‘oppr-rit-tet! I Sqomp ZAM)'S (K- X/ UM )y
Sy CETPI SIS E-R/ M) )y

( S, Mf('z-:aﬂ'l) %f‘“(f‘taﬁfﬁ)’] 'fOY fhﬂzézzf—z(o otherwise), (61c)

=4 S bttt M, (520) }for t—‘nz,,-{%zt-'r,

;0 (~ 55 ) Sy op Lo (-t /“4) /4, (53¢)

(0 otherwise),

{c) For the total flux at X=0 and the angular flux in the case where
NSPH=0 and the boundary source is point isotropic [ see Eqs. (47b)
and (48b) ] ,

{zs 2 139)

28 ap (- 3Ly s (4~ 917)
=28 42 (- Za ) o T-0x (-t A0 ) 1

jt wt’urrx(t -ttt P Ix
o

for t-Tyz X W)z t-Ty (0 otherwise),  (53b)
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For these cases, as is shown in the Appendix 2, Section 7, the contribution
of uncollided neutrons to 4%(t) is first subtracted from 4%(f) , the
numerical integration is performed by using the thus modified ¢%(f) and
then the contribution of uncollided neutrons to 4}(1) is added to the re-
sult, For other two cases where the total number of leakage neutrons and
the total flux at X >0 in a slab with a point isotropic boundary source

are calculated, Eq. (49) is used without any modification,

In addition, this subroutine calculates again the integral of 4%(t) { not

including the contribution of uncollided neutrons written in the form of a
S(t) ] over t from O to T(NOT), the mean emission time of 4%(t) and the
variance [ the integration is performed only from t=0 to T(NOT)] ., Further-
more, it computes the integral of 4}(f) (including the contribution of un-
collided neutrons) over t from W(1l) to W(NOP), the maximum value of 4%Cf)
for W(1) € t < W(NOP), the pulse width at half maximum, the mean emission

time of #?(t) and the variance of the time distribution.

5. Remarks

It should be mentioned here first how the present computer code deals with
neutron transport in a medium with highly anisotropic scattering by the use
of the transport approximation, For such media, the values of C(géa) are
sometimes negative as seen, for example, in the hydrogen cross section of
the LASL 16-group setlz). The code JN-METD1 accepts also a negative value

of C(T?i) but gives all values of the g-th group flux coming from the
pole zero (for stationary problems, it makes the value zero to avoid the
negative flux and for time~dependent problems there exists no pole)., As a
result, the calculated flux consists only of the contribution of uncollided
neutrons which cannot be treated correctly in the transport approximation.
The results for the g-th group with a negative value of C(Tag) are there-
fore not correct (as so the SN calculation in the transport approximation)
but those for other groups with positive values of C(T?j) have been found

in a good agreement with the values obtained from the SN calculation taking
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into account the linear anisotropic scatterings). This defect will be
cleared up when our present work will be completed for dealing with multi-

region slab systems with anisotropic scattering.

As already mentioned in the Section 4.2.6, the multigroup calculation of
time-dependent problems in a homogeneous slab requires a big computer
storage, so that the total number of integral points for evaluating the
contribution of the continuous spectrum (the value of N in the input) is
sometimes limited to be small (N<50), Since the contribution is dominant
only for thin slabs (and for times close to the moment when the wave front
of the direct neutron beam arrives), it will be recommended in such cases
to use the j5 approximation instead of j7 so as to adopt a larger number

of N>70., It saves also execution time of the computation by about 30%.

Typical running time on the IBM-360/65 is nearly 4 min, to obtain the time-
dependent lowest group angular and total flux in a slab within the context
of a 7-group j7 approximation with 2 space, 3 angle and 56 time points, in-
cluding the time required for obtaining the stationary flux as well as the
time-dependent flux due to a pulse source. The calculation of the stationary
angular, total and leakage flux in a slab takes 1 to 2 min, (depending on
the slab thickness) in a 7-group j7 approximation with 11 space and angle

points. All four sample problems shown in the Appendix 3 take about 2 min,
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Appendix 1. Analytical Expressions of Functions

The explicit expressions and series expansions of functions in the solution

of the j7 approximation are summarized here by introducing the abbreviations

X=04F, Bz 4-(ZUa)/(Z0p), 1= aY/avy) (=i when 4= if+Z0-7;)

and }’E Euler~-Mascheroni constant. ,

1. Jmm ( D(J)A )

B o= 4-4 4 sax J_(J_[M).,.D(jd;-zaz
= X (hn20-Y+E)+ 2 plsmes Caolf,
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l. STATIONARY PROBLEM FOR A SPHERE TO EVALUATE TIME-CONSTANT, Kefj AND CRITICAL RADIUS, AND
THE FLUX DISTRIBUTION By THE USE OF A 1 ENERGCY-GROUP MODEL AND THE J7 APPROXIMATION
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Ze STATIONARY PROBLEM FOR A SLAB (WITH UP-SCATTERING OF NEUTRONS) TG OBTAIN 7TH GROUP
ANGULAR FLUX, TOTAL fLUX AND TOTAL NUMBER OF LEAKAGE NEUTRONS DUE TO A POINT ISOTROPIC

BUUNDARY SOURCE BY THE USE OF A 7-GROUP MODEL AND THE J:, APPROXIMATION

(ALSO THE 1ST AND 2ND TIME MOMENTS OF THE FLUXES DUE TO ${t)-SOURCE AND THE FUNDAMENTAL

DECAY CONSTANT ARE CALCULATED)

2 [+] 0
1 1 o I 410 1 ‘1 gx
ID  TEST CASE 2 7-GRDOUP, NOS=2, NOM=3, JJJJ=4 7TH GROUP
' 7 1 1 1 7T 3 4 9 1 1 7 4 1 3 2

‘{9. i - 40

l& 2854 © 171.2 82.24 18445 20118 02402 « 024484
(g"-pg:), «009 «0l2 «016 .018 «019 « 019 «021

S’ «10757 36278 « 50403 «02559 + 00003
((«00133721.08457866+08457866~.0305552

«1277501 1277501 -.0377562.08437803
02766694 2766694 «069T0T750614904233.02674421

XS‘EC‘ ¢51975166e51975166021350756620038489.0161576 +00267442
«00026137.70026002,70096002 .48070889,30493378.,00657692.,L0030642

200204551 4 74581862474581 862+ 48544689421846222.,00131032
[ «01947 2,11599 2011599 2.09652 425832622.00152754
«00004 « 000038 « 0000001

1 1 Jx 1 O I _ i



3, TIME-DEPENDENT PROBLEM FOR A SPHERE FOR EVALUATING THE TIME-DEPENDENT TOTAL FLUX DUE
TO THE INCIDENCE OF A $i{t)-SOURCE AT THE CENTRE,BY THE USE OF A 1-GROUP MODEL AND THE
J;APPROXIMATION {USING PREVIOUSLY OBTAINED PUNCHED CARDS FOR THE POLES AND RESIDUES)

{/]
£7 1 %P 1 1? 1 ?, 1 Y
ID TEST CASE 3 1-GROUP;NOS=6,NOT=40
5 11 2 1 3 4 4 1)} 2 3 1 1 3 40 6 1 20
{ 1-4 +0 1. "7.07 +()1. "‘Olo +0
v 1.
S 1.
XSEC l. 1. l.

4-4; 04244212410 01
0.18110943E 01
0.40183169E 00

-0.10175411E-01
4-4; 0.79124205D 01
-0,77125874E 01
-0,27038589E 02
0.42687244E 01

4-43 0.13313983D 02
0.14525379E Q4
0.51024375E 04
0.70917461E 04

1 1 1 I I I I 1

(2]

_28—



4o TIME-DEPENDENT PROBLEM FOR A SLAB TO OBTAIN THE TIME-DEPENDENT ANGULAR FLUX, TOTAL
FLUX AND THE TOTAL NUMBER OF LEAKAGE NEUTRONS FROM THE SLAB WITH A MONODIRECTIONAL
BOUNDARY SQURCE (M4=1) OF THE TIME BEHAVIOUR DESCRIBED BY A RECTANGULAR PULSE, BY THE
USE OF A 1-GROUP MODEL AND THE j5 APPROXIMATION (ALSO THE FLUXES DUE TO THE $(t)-SOURCE
AND THE FIRST 3 TIME MOMENTS ARE CALCULATED AND COMPARED WITH THE STATIONARY VALUES)

1 1 ¥ I bd 1 b 1 kP
ID TEST CASE 4 1-GROUP s NOS=3 ,NOM=3 y NOT=32 4 JJJ J=4 N=T0 ,NOP=40
5 1 1 2 1 3 4 4 11 70 1 432 3 3 1 40 14 1
‘{10. +01. +Ole -T2 +01. +0l. +0 .
1. +0 2. +0 ®
v 1. '
(By+8;)
S L.
XSEC .1 le le e9

(e 12744 e1274
036297 363

4“4‘, {
e21181 #2118
59495 «535
\
1 I by 1 I I I 1 I
20 40 60 &0
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Teble I Locations of the first elements of Realk8 (ore¢Realk4) arrays stored in the
floating COMMON and their dimensions

Location{ Array name (dimension)

IA(71) LPHA or AL(IGRP)
IA(72) XV(IGRP)

IA(73) SP(IA(1),1A(2))
IA(74) A(IA(3))

IA(75) DELTA or AL1(IA(4)) IA(61) e FNPOL(IA(6))
IA(76) E(IA(5),IA(69)) IA(34) e TFLUX(IA(7)) when NSTATY=1
I1A(77) ED or E1(IA(5),IA(69)) IA(36) o FFLUX(IA(8))

IA(78) SS(IGRP)

IA(61) * FNPOL(IA(6))

IA(34) e TFLUX or TTLUX(IA(7)) when NSTATY=2

IA(36) o FFLUX(IA(8))

IA(79) C1(IA(9),IA(9)) IA(79) | X(IA(16)) 1A (79) | B(IA(11),1A(12),IA(15))

IA(80) C2(IA(10),IA(10)) | IA(82) | RC(IA(1T)) 1A (84) SCNU(IA(13),IA(15))
IA(83) | ABB or DELTA(IA(18))

IA(85) | 80, AA or DELTA(IA(14))
IA(86) | SN(IA(17))

IA(106) | AL2(IA(20))
IA(145) | B(IA(20))

IA(87) VG(IA(19) IA(66) [¢ZZA(IA(25),IA(26)) | IA(66) | ¢« W(IA(68))
IA(88) E2(IA(11),IA(11)) IA(91){»ZZB(IA(25),IA(26)) | IA(139)| « TFLUP(IA(68))
IA(89) aU(1A21),1A(22),1A(15))| IA(92) e ZZ1(IA(27))

IA(90) R(IA(23),1A(12)) IA(93) |»B1(1440),1A(25), IA(26))
IA(95) SSS or AIN(8) IA(95) | F1(IA(30))
IA(96) FG(IA(29)) IA(101) | F2(IA(31))
IA(97) AP(10) IA(102) | F3(I1A(32))
IA(98) 8G(10) IA(103) | C(IA(33))

IA(104) | F8 or F4 (IA(30))
IA(105) | ¥9 or F6 (IA(35))

IA(99) EXPN or VG(10) IA(99) | A1(IA(33))
IA(107) | R(IA(37))

to be continued



- 85 -

Table I (continued)

Location Array name (dimension)

IA(108) X5, XY or AY (IA(39))

IA(109) RC(IA(39})

1A(110) F7(IA(40)) IA(110){ ABB(IA(42)) | IA(110) | SO(IA(45))
IA(111) F5(1A(41)) IA(112) | SO(IA(43))

IA(113) | SN(IA(44))

IA(114) FN1(IA(40)) IA(114) Rs1(1A(38),1A(49),1A(94))
IAC115) | FN2(1AC47)) IA(144) AC or AA(IA(28))

IA(116) FN3(IAC40))

I1A(117) FN4(IA(27))

IA(118) X11(IA(50))

IA(119) F4(IA(51))

IA(120) F6(IA(40))

IA(121) FN5(IA(53))

IA(138) YD1(IA(31))

I1A(122) |°® CS(IGRP, IGRP)

IA(123) | e SOCE(IGRP)

IA(124) |® RES(IA(54),IA(55),IA(55)) * IA(124) ® Y1(IA(50),IA(59),IA(60))
IAC125) | e SSPP(IA(56),IA(57))

IA(126) |+ AL3(IA(20)) IA(126) ® ANGL(IA(62))

IAC127) | AL4(IA(20)) I1A(129) e EXPNT(IA(63))

IAC128) | ¢ EX(IA(20)) IA(130) | » T(IA(64))

IA(131) e TT(IA(65))
IA(132) e R(IAC17))

IAC133) |e CF(IA(9),IA(9) I1A(133) » Y2(IA(50),IA(59),IA(60))
IA(134) |e C(IA(9),IA(9))

IA(135) {e* BUCLG(IGRP)

IA(136) | e VG(IGRP)

IA(137) |e XSEC(IHL,IGRP)




Table II Computed integers for specifying the array dimensions [JHL = (IIO+1)/2, NNNN = NNN+1, IGRPP= JNKK+NNN and NOSMN= NOSkNOMk

-98_

*NNNN ]
NSTATY 1 2
NSPH 1 o 1 o
NSTAT1 0 o 1 0 o 1
NUPSAT ) o 1 o 1 o 0 o
1A(1) 2 JHL+3 Max(JHL+3,6) 110+3
IA(2) 2 Max(IGRP,2) Max(IGRP,2:) Max(IGRP,2)
IA(3) 0 o 11 11
IA(4) Max(IGRP, 10)
1A(5) JHLXIGRP | JHL JHLXIGRP JHL JHL%IGRP ‘ JHL
® NOSMN%NOT o NOSMN%(NOT+1)
1A(6) 0 0 (for JIJJ=3 or 4) (for JJJJ=3 or 4)
o NOSXNNNN | NOSMN (for JJJJ=30r4) | 3%xNOSMN (for JJJJ=3 or 4) o NOSkNNNN4NOT o ax [NOSKNNNNX(NOT+1) ,
(for JJJJ=2,3 or 4) 3%xNOSMN
IA(7) (for JJJJ=3 or 4)
» NOS%NNNN%(NOT+1) (JJJJ=2)
2%xKNNN (for JJJJ=1), 6%NNNN (for JJJJ=1) o 24NOT%(NNN+2) - 21:NOT:0:(NNN+2)+2:|:NNNN,)
IA(8) o NOS%NNNN (JJJJ=3), 3%XNOS4NNNN (JJJJ=3) 0 (JJIT=190r 4) ax 6XNNNN
(NOS+2 )%NNNN (JJIT=2 or 4)| 3%x(NOS+2)(NNNN(JJJJ=2 ar 4) (for JJJJ=1)
o 3%XNOS*NNNN (for JJJJ=3),
. Max(ZtNOT*(NNN+2)+21:NNNN,)
3% (NOS+2 )XNNNN
(for JJJJ=2 or 4)

(To be continued)
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Table II (Continued)
NSTATY=1 NSTATY=2
NSPH=1 NSPH=0 NSPH=1 NSPH=0
IA(9) IGRP 0
IAC(10) | IGRP (for N=2) 0
IAC11) o ( ¢ JHL e JHL, (for IGRP>1)
{IGRP>1 and NUPSAT=0)
IAC12) e IGRP-1 e IGRP~-1
1A(13) JHL JHL
I1A(14) °12 012 . e 12
1A(15) 1 1 (for NSTAT1=0) 1 1 (for NSTAT1=0)
3 (for NSTAT1=1) 3 (for NSTAT1=1)
IA(16) » NOS
IA(17) ® 4
IA(18) 11
IA(19) 0 4 (for NSTAT1=0) ® 10
10 (for NSTAT1=1)
IA(20) ® IGRP 0 0
IA(21) 0 * JHL s JHL
IA(22) o s IGRP » IGRP
IA(23) 0 e 10 (for IGRP>1) 010 (for IGRP>1)
IA(24§D 0 (4} o * 4
IA(25) o o o * 2
IA(26) ' o) o 0 o 4%N+1
IA(27) 0 0 o ° 6
IA(28) 0 20 (for NSTAT=1) 0 20 (for NSTAT1=1)
IA(29) 0 10 0 10
IA(30) o * 20
IA(31) o e 10
IA(32) o e 12
1A(33) o ¢ JHL
IA(35) o o 8
IA(37) 0 e T70-1
IA(38) o 10 (for NSTAT1=1) o 10 (for NSTATHL) |

(To be continued)



Table II (Continued)
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NSTATY=1 NSTATY=2
NSPH=1 NSPH=0 NSPH=1 NSPH=0
IA(39) 0 o8 (for JJJJ=2,3 or 4)
I1A(40) 0 ® 1I0+1
1A(41) 0 16 (for II0Z5)
I1A(42) 0 * 3
IA(43) o e 4 »(JJJJ=2,3 or 4)
I1A(44) 0 2
IA(45) 0 s 7 (for JJJJ= 3 or 4)
I1A(47) 0 s 6 (for II0Z5)
1A(49) 0 IGRP (for NSTAT1=1) 0 IGRP (for NSTAT=1)
IA(50) 0 e I110+1 (for IGRPP>1)
I1A(51) » II0+1 (for IIOZ5)
1A(53) *» 8 (for II0=7)
(JHL+1)%JHL, (JHL+1)%JHL(NSTAT1=0), 2*(JHL)2 . 21lc(JHL)2 (NSTAT1=0),
1a¢s4) | M8*\ Nos 2 2
Max(2%(JHL)“,6%JHL) e Max(2x(JHL)" ,6%JHL)
(for NSTAT1=1) (for NSTAT1=1)
IA(55) ¢ IGRP
IA(56) 0 1 0 * JHL
IA(57) o * IGRP 0 s IGRP
I1A(59) 0 0 o e IGRPP-1
IA(60) 0 0 0 e 4%xN+1 (if IGRPP>1)
IA(62) 0 ® NOM 0 * NOM
IA(63) s NOT
IA(64) s NOT
IA(65) * NOS
A
IA(67) o NOSXNNNN (JJJJ=2 or 4 0 3%XNOSXNNNN(JJJJ=2 or 4
and NSTAT1=0), and NSTAT1=1)
3%XNOSkNNNN(JJJJ=2 or 4
and NSTAT1=1)
IA(68) 0 0 NFLUXK (if TPINT >O0)
IA(69) JHL%IGRP JHL (for NUPSAT=0), JHL
JHLxIGRP+2
(for NUPSAT=1)
IA(94) 0 2 (for NSTAT1=1) 0 2 (for NSTAT1=1)

e Only if LLL=0O (or NFLUXR, NFLUXS or NFLUXK>O for NSTATY=1 and NSPHU=])

® Dimension for the integer array II at the location IA(140)

A Dimension for the stationary total flux which is included in IA(8)
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