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Na. Methods of comparing these theoretical results with the coming exper
imental data are proposed (with a view to checking the theory) and a simple 
correlation between the peak pressure and pressure pulse half-width is predicted. 
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A B S T R A C T 

On the basis of a simplified representation of a reactor channel containing 
a region where hot molten fuel becomes mixed with the coolant, the equations 
of heat transfer and balance are derived in a form which permits the evaluation 
of the pressure and vapour mass generated by the boiling of the coolant. These 
equations are then coupled, via the pressure and vapour mass, to the equation 
of motion describing the ejection of the unboiled coolant from the channel. 

A simple numerical method of solving the complete set of equations jointly is 
proposed and has been embodied in a new computer programme TOMOF 
(thermohydrodynamics of a mix ture of two fluids). This programme has been 
tested with a wide range of data and has proved tha t the chosen numerical 
method is effective. 

In particular, in order to provide a preliminary idea of the results to be 
expected, the TOMOF programme has been applied to the proposed. Ispra 
U0 2 /Na direct contact rig. The results show tha t the pressure pulses generated 
by the boiling and ejection process are strongly dependent on the mean size of 
the dispersed U 0 2 globules and on the total mass of Na which interacts thermally 
with these globules. This is true also for the speed and time of ejection of the 
unboiled coolant, though here there is less dependence on the mass of interacting 
Na. Methods of comparing these theoretical results with the coming exper
imental data are proposed (with a view to checking the theory) and a simple 
correlation between the peak pressure and pressure pulse half-width is predicted. 
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Introduction *) 

Ever since the famous SPERT experiment in which the fuel in a water 
reactor assembly was allowed to melt, mix with the coolant and cause a 
destructive vapour explosion, the problem of direct contact fuel/coolant 
accidents has been "in the air". 

Such accidents are of particular current interest in the LMFBR field, 
since even the experts are not yet entirely happy about the idiosyncracies 
of liquid sodium cooling and, in the absence of more detailed knowledge, 
it is reasonable to assume pessimistically, that the direct contact acci
dent is a concrete, if small, possibility. This assumption is encouraged 
also by the well known positive coolant void coefficient of reactivity in 
the central region of the LMFBR which may be capable of amplifying a 
direct contact accident into a dangerous nuclear excursion. 

Many experiments are underway around the world, Ispra included, to 
directly observe the effects of introducing molten UO into a channel 
filled with liquid sodium. By this means the possibility is afforded both 
of observing the hazards produced (pressure pulses, voiding, etc.) with the 
materials and dimensions existing in the real system, and of providing the 
data needed for a theoretical understanding of the phenomenon. The purpose 
of the present paper is directed entirely towards the latter aspects the 
development of an appropriate thermo-hydrodynamic model. 

In formulating this model, we do not restrict ourselves to particular 
"fuels" or particular "coolants", but consider only the essential features 
of a "direct contact" situation. These features are summarized by the 
following chronological series of events. 

1. A dense liquid (fuel) at high temperature Τ is dispersed in globules 
into a certain region (interacting zone) of a channel filled with a 
light liquid (coolant) whose normal boiling temperature Τ is less 
than T. . fo 

2. The heat transferred from the fuel causes the coolant in the inter
acting zone to boil. 

3. The vapour pressure so generated leads to the ejection of the unboiled 
coolant in the remainder of the channel. 

') Manuscript received on 21 October 1970 
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The accompanying diagram will serve to clarify these events and high
light some of the assumptions made to facilitate their mathematical des
cription. These assumptions are indicated by the broken underlining of 
certain key words. Also provided below is a list of the more important 
physical symbols used in the theory and an indication of some further 
assumptions made. 

The work presented in this article draws on many references, but the re
port of DUFFEY (1) is by far the most important. 
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Configuration employed as the basis for the mathematical description of 
the coolant boiling and ejection process; assumptions indicated by broken 
underlining: 

Constant pressure Ρ just above channel 
exit. 

Reactor (or experimental) channel; flow 
area C( , friction constant K. 

Incompressible liquid coolant plug ejected 
by vapour pressure Ρ generated by coolant 
boiling in the interacting zone. 

Interacting zone. Uniform dispersed mix
ture of molten fuel globules and coolant. 
Uniform pressure P(T) corresponding to 
the saturated two phase condition of the 
coolant at a uniform temperature T. Total 
volume V(t). 
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Glossary of the more important physical quantities and the assumptions 
made about them: 

Interacting Zone 

1) Molten_Fuel_Globules 

Total mass 
Initial temp. 
Mean temp, at time t 
Mean linear size of globules 
Specific heat (const.press.) 
Density 
Thermal conductivity 
Thermal diffusivity 
Boundary layer resistance 

m. 
'fo (assumed uniform) 
Tf(t) 

:<< 
P 

Pf 
k 
Χ 
h 

(assumed 
(assumed 
(assumed 
(assumed 
(assumed 

constant) 
constant) 
constant) 
constant) 
constant) 

2) Coolant in the Liquid Phase 

Total mass 
Initial temp. 
Temp, at time t 
Specific heat (const.press.) 
Density 

3) Coolant_in_the_Vapour_Phase 

Total mass 
Temp, at time t 
Specific heat (const.press.) 
Latent heat of evaporation 
Density 
Pressure 

mg(t) 
T o 
T(t) 
C* 
Ρ 
h 

(assumed uniform) 
(assumed uniform) 
(assumed constant) 
(assumed constant) 

(assumed a perfect gas) 

m (t) v 
T(t) 
c v 
ρ L 

ev P(T) 

(assumed uniform) 
(assumed constant) 
(assumed constant) 

(assumed uniform) 

Channel 

Flow area 
Friction press, drop coef. Κ 

(assumed constant) 
(assumed constant) 
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1. Mass Conservation and Kinematic Relations 

We imagine that at t = O, the interacting zone contains only fuel 
and coolant in the liquid state, the respective temperatures being T 
and T . The initial volume of the interacting zone is thus 

fo 

V » -7Γ + "5" d.« 

where m is the total mass of coolant mixed with the fuel and the depend
ence of the densities on temperature and pressure will be ignored. 

With time, however, heat flows from the fuel to the coolant and eventu
ally (after some time t ) the coolant begins to boil. If m is the mass 

o V 
of vapour and m. the mass of liquid coolant, then, by the principle of 
mass conservation we must have 

Ίηχ -f- in\ ■» ™ (1.2) 

Because of this vapour formation, the volume of the interacting region in

creases from wl to 

^ t\» m„ 

Pf f i ?v 

w . on ?n 

" Pf ft Ρ Λ U
J 

Since we shall be concerned with pressures and temperatures fairly well 

below the critical point, we shall have ρ ^<ς Û. and 

V = V " H (1.3) 
β o rv 
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On the other hand, the expansion of the interacting region implies 

the displacement of the coolant plug through a distance X given by 

ocx = ir-y; 

where OÍ is the flow area of the plug. Thus, from equation (1.3) we 

get 

(1.4) 

*H = * f X 

2. Pressure in the Interacting Zone 

The vapour pressure Ρ generated by the coolant must satisfy (assuming 

saturated conditions) the Clapeyron equations 

¿ P = L 

where L, ν (.=1/0 ) and v. (=l/p^ ) are the latent heat and specific 

volumes of the vapour and liquid phases of the coolant respectively. We 

shall be interested only in pressures and temperatures low enough (viz. 

Ρ SÍ 100 atm; Τ5*2100 °Κ) to allow the assumptions 

L = constant (2.2) 

and 

\  IT" » % (2.3) 

the latter equation being that of an ideal gas free of chemical reactions, 

With these approximations, (2.1) becomes 
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iL 
άΤ 

L Ρ 
RT* 

(2.4) 

which integrates immediately to give the saturated (P,T) law: 

p - Ae 
-ß/r 

with 

and 

Α - ς « 
L/RT ( 2 . 5 ) 

- Ï 
6 2 

where Ρ (= 1.0133x10 dyn/cm ) is atmospheric pressure, Τ the normal 
a b 

boiling temperature of the coolant and the gas constant R for the coolant 

is given by 

_ 8.3147X 10 / ov 
R = zr erg/gm K (2.6) 

6 / o 
M being the molecular mass. For sodium, M - 23 and R = 3.6151x10 erg/gm K, 

The above theory ignores all chemical effects such as dissociation or asso

ciation and thus, for example, fails to account for the dimerization which 

occurs in saturated sodium vapour. 

3. Heat Transfer and Coolant Boiling in the Interacting Zone 

As described in section 1, the flow of heat from the mass m of fuel 

into the mass m of coolant causes the latter to boil and the plug of 

coolant above the interacting zone to be ejected. The heat exchanges with

in the mixture during this process are as follows: 

dQf = mf(dEf + Pdvf) 

dQ, = m,(dE + Pdv.) 

dQ = m (dE + Pdv ) 

V V V V 
dQ. = Ldm 

JL+V v 

to the fuel 

to the liquid phase of the coolant 

tt η »t it it it 

vapour 

" " production of new vapour 
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Since the process will be somewhat fast, we can ignore the heat transfer 
to the mixture as a whole and write 

ά*ψ + *\ 4- JQV + ¿Quv = o. (3.1) 

In the above expressions, the E*s denote specific internal energies. 

Ignoring, as before, the variations in the densities of the liquids, 

equation (3.1) gives 

m dt + y*, d ε. + <** (dt + Pdv)-hLJto =0. (3.2) 

Now, the general thermodynamic relation for changes of specific internal 

energy as a function of Ρ and Τ is 

so that for the liquid phases, we get (again ignoring the volume changes): 

and 

dB^C¡JT 

For the vapour phase, we see from (2.3) that 

(ESS* 
Ρ

 P 

and V (3.4) 

/Ut) m 
P* 
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from which it follows that the second term of (3.3) vanishes identically 

and 

dE = (C?-R)<tT 
V \ Ρ 

Furthermore, formulae (3.4) indicate that 

?dvv = RJT- ψαΡ 

and if dP is eliminated by using (2.4), this gives 

Pdvv= (R-ψ)^ 

Assembling these expressions into equation (3.2) and eliminating m 

by means of (1.2), we get finally 

m C¡dTf +{*ι< + η «  <  T)}dT+ L dmv = °-(3.5) 

This equation represents an overall condition on the internal heat ex

changes within the mixture, namely, that there is no heat transfer to/from 

the environment. It does not describe the heat exchange process itself 

which requires a quite separate analysis based on the heat diffusion equa

tion for the fuel globules and the surrounding coolant and the conditions 

which exist at the boundary between them. Such an analysis is given in 

the appendix where it is assumed that the fuel globules are spherical, 

with a diameter equal to the mean size d which occurs in practice. In 

addition, because of the turbulence induced by vapour formation in the coolant 

and the tendency of vapour blanketing to occur on hot surfaces (combined per

haps with a high coolant thermal conductivity} it is assumed that the only 

significant spatial temperature variation in the coolant occurs in a purely 

resistive skin layer next to the globules. On the basis of this picture, it 

is shown in the appendix that the mean fuel temperature Τ and (uniform) 

coolant temperature Τ are approximately related by the equation 

rTf +Tf =T <
3
·

6
> 
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where the time constant Τ embodies the hold-up of heat in the fuel due 
to its heat capacity and thermal conductivity and the thermal resistance 
at the fuel/coolant interface. Denoting the latter by h, and the mean 
volume/surface ratio of the globules by (Γ (=d /6), it is shown that Τ 
is given by 

r=<refC/(k + I f ) (3.7, 

the condition for the va l i d i t y of (3.6) and (3.7) being 

\ / = JlL· $? ή (3.8) 
v 3<Γ 

which implies that the effect of the fuel thermal conductivity (second 
term in (3.7)) must never exceed 20% of the effect of the boundary thermal 
resistance (first term). To compute orders of magnitude we can assume 
k«*>0.1 watt/cm°K, h **> 10°K/watt cm , ( T ^ 0.1 cm (d ~ 0.6 cm), O ^ 10 
gm/cm and C /ν» 0.3 J/gm K. Then 

y ~ 3 

in support of the validity of the approximations (3.6) and (3.7), and 

3 sec 

4. Equation of Motion of the Coolant Plug 

The assumptions made in order to simplify the derivation of an equation 
of motion for the coolant plug are: (a) the coolant plug is incompressible 
and (b) the pressure Ρ a little beyond the channel exit is constant. 

oo 
Assumption (a) is valid only so long as the speed of the coolant plug is 
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well below the speed of sound in the liquid phase of the coolant. Since 

• Λ 

there is a pressure loss of about p. 3C as the coolant bursts from the 

channel, it follows from assumption (b) that the pressure at. the exit is 

» a 

Ρ
 + Ρ* X · Thus we can write the following statements: 

oo r¿ 

mass of plug = P. Ä V^~"·*·/ \ 

(P- r . 0 - f i *
a
) * i 

friction =  Q OC (Ζ- Κ ) Κ 3C ; 

gravity = — O. OÍ (/¿"~^)^ 5 

where, for example 

/ 2 
+ 980.66 cm/sec if the coolant is ejected upwards 

g = ̂  O " " " " " horizontally (4.1) 

 980.66 " " " " " " downwards 

force on it due to pressure = v , ·_ 

I! It It tt . / Λ _  \ L*r ^ ^ ^ 

It tl tt tt 

and Κ is a constant giving the pressure gradient due to frictional drag: 

• a 

(4.2) it) - - f t** 
>oX/ Friction 

Combining the above forces into Newton's second law of motion, we get 

·· Ρ "~ ^00 ~ ft* i/ JL '
Λ
 a <4.3) 

3C = 

& ( * - * ) 

— K* —3 
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5. Reduction of the Equations 

With the derivation of the above equation of motion, the problem is 

completely defined. We have the five unknowns m , Ρ, Τ , Τ and χ and 

five equations (1.4), (2.5), (3.5), (3.6) and (4.3). Because of the 

simplicity of the first two of these, however, it is easy to reduce 

the problem essentially to a set of three equations in the variables 

Τ , Τ and χ. 

Eliminating ö from (1.4) by means of equation (2.3), we have 

m = ^ 
" (?T 

of which the differential is 

From (2.4) or (2.5), we have 

which reduces the above expression to a function of Τ and x: 

(5.2) 

Substituting expressions (5.1) and (5.2) into equation (3.5), using Β = L/R 

from (2.5) and rearranging slightly, we then obtain 

c* 
d T + { p ± ; + ) i F ( T ) } ^ 4 G(T)dx=0 (5.3) 

where 

ß«= (5.4) 
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is the mass of coolant per unit mass of fuel in the interacting zone, 
and 

and 

oiL Pit) 
(5.6) 

are functions only of T, P(T) being given by (2.5). Equations (3.6), (4.3) 
and (5.3) now form the above mentioned trio for the evaluation of Τ , Τ 
and χ. 

6. Solution of the Equations before the Onset of Coolant Evaporation 

During a certain initial time interval 0<t<Tt the heat flowing into 
>* ^ o 

the coolant merely causes its temperature to rise, the latter being too 
low for boiling to occur. During this interval, the vapour mass m is 
zero and hence by (1.4) or (5.1) 

3C=0 for 0^t^to (6.1) 

With this condition, equation (4.3) is irrelevant, (3.6) of course remains 
unchanged: 

τ ή. +Tf = Τ (6-2) 

and equation (5.3) reduces to 

dZ + ß -^ dT = 0 C% dT = 0 ce-3) 
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The solutions to equations (6.2) and (6.3), with the boundary conditions 

( 6 . 4 ) 

a r e 

-t/x, 
T = T - ( r - T j e (β.» 'hi v «ι o 

and 

r f=rm + ír í 0-^)e-
t / r< 

( 6 . 6 ) 

where 

T _
 T

f0 ^ Ρ ~ψ
 T

o (6.7) 

is the final (asymptotic)temperature which both the fuel and coolant would 

reach in the absence of boiling and 

«r «
 p

 (6.8) 

is the holdup time constant of the mixture. 

The above solutions are only valid as long as the vapour pressure P(T) 

corresponding to the temperature Τ is less than the pressure Ρ + Qo 3 

in the interacting zone. By the definition of t , it follows that when 
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t = t , these two pressures are equal: 

at which time the temperature is equal to the corresponding boiling point 
Tbl = 

T=TM (β-10, 

Combining (6.9) and (6.10) with (2.5), we get 

A« = 1 + ^3 

i.e. inverting and substituting for A and Β from (2.5): 

Tu 

The time t at which evaporation begins follows from (6.10) and (6.5): 

(6.11) 

0 ή ν-ς,-w 
(6.12) 
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7. Solution of the Equations after the Onset of Coolant Evaporation 

When t > t , all three of the equations (3.6), (4.3) and (5.3) come 

into play simultaneously and means must be sought for obtaining their 

joint solution. For convenience, they are repeated here: 

τΤ + Tf = Τ (7.1) 

„ _ pen-P.,-et* _ K ¿ » _ , 
e, a-*;

 J 

and 

where 

, -
β / τ 

ρ(τ)= Λ e 

, . ciL PCT) 

ζ 

FÎT) = - ί — ( S - Cp - y + —z J 

(7.2) 

¿η, +J[a+xF(O}dT+G-(T)d* =0 (7.3) 

C* ρ 
Λ =

 Ρ F (7.4) 

(7 .5) 

(7.6) 

(7.7) 
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The boundary conditions at t = t are: 

r-τ 
M 

^ L + O ^ - U ^ 

Jc=¿> 

X = 0 

(7.8) 

the latter condition being a consequence of the instantaneous static equi

librium embodied in (6.9). Conditions (c), (d) and (e) make possible an ex

plicit solution of equation (7.2) for times very near to t . For these times 
° 

it is accurate to put J£ = 0 in (7.2) and, recalling (6.9), employ the ex

pans ion 

where 

P= P.« + h
l
S +

 i(t
~^ 

HwL 
With these substitutions, (7.2) becomes 

1 tt 

X = 

h-
ft-1.) 

of which the integral (using boundary conditions (c) and (d)) is 
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i . e . for t very near to t i 
o 

JC = 
' "D (t-tj 

<b* Wí/t«h 

Because of the complicating nonlinearities in equations (7.2) and (7.3), 

the evolution of T, T and χ with time can only be obtained approximately from 

a finite difference representation. The system being used at the moment, the 

simplest possible^is described below. 

8. Finite Difference Representation 

Introducing an equally spaced chain of time points t : 
η 

f as Π Δ « η =0,1,2,.... (8.1) 

with the origin η = 0 coincident with the boiling onset time t and writing 

r(t„) = Tn , ΔΤ„ = Tn+i-Tn . 

p /·· \ _ -r f AT^ — T^ T̂  (8.2) 

for the unknown variables and 

PttJ = Pr, 

Gtt.) = £„ y (8.3, 

F(T*) = F„ 
for the functions of temperature, we can deduce formulae correct to first 

order in Δ for equations (7.1)(7.3): 

AT¿ = ^(
T
<*-T¿V (8.4) 
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AT¿ +{a+KF-n]åT« + $* Δχη = O (»β, 

The above equations are valid for η ̂ 1 . The temperatures at η = 1 can be 

obtained by extrapolating the solutions (6.5) and (6.6) to t = t + Δ s 

(8.7) 

(8.8) 

-ft,+4)/τ, 

, , ft^)/r. 

The displacement 3C. at η = 1 can be obtained from (7.9)s 

where P, = P(T,) and Ρ = P(l· , ) . With the values of all three variables 
I l o bl 

at the first time point thus given by equations (8.7)(8.9), a complete step

bystep solution of equations (8.4)(8.6) is a straightforward matter and a 

computer programme has been written to perform all the necessary arithmetic. 

This programme has been named TOMOF (Thermohydrodynamics of a Mixture of two 

Fluids). 
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9. Preliminary Results of the TOMOF Programme for the Ispra UP /Na Direct 

Contact Rig 

The experimental rig designed at Ispra by KOTTOWSKI et al (2) for the 

observation of the boiling and ejection of a sodium coolant due to a direct 

contact with molten UO will have the following essential features. 

Channel length Λ = 100 cm 

flow area (annular) (j( = 2.356 cm 

friction coefficient K = 0.0125 cm 

Ambient pressure Ρ = 1 atm 

oo 

In the early experiments, only 2.4 gm of molten UO (i.e. at about 3070 K) 

will be used, though larger quantities will be employed later. This UO 

will be brought into contact with sodium at a variety of temperatures, 

typically 970 K, by allowing the sodium to fall from the channel into the 

interacting chamber via a punctured diaphragm. Thus, we shall assume in the 

calculations the following parameters for the UO /Na mixture: 

Total mass of UO m = 2.4 gm 

Initial temperature of Na Τ = 970°K 

" " " U0„ Τ = 3070°K 

ò io 

Two further parameters of the mixture are the mean UO globule size d and 

the mass ß of sodium per unit mass of UO which engages in the heat trans

fer and boiling process. The values of both of these parameters are highly 

uncertain, but it seems likely that they will have the orders of magnitude: 

d Λ/0.1 cm and ß wO.l, the latter signifying that the volume of interacting 

Na will be at least as great as that of the UO . To ensure adequate coverage 

of the above magnitudes, we shall perform calculations for 

d = 0.01, 0.015, 0.02, 0.04, 0.06, 0.1, 0.2, 0.4 cm 

and 

Β = 0.1, 0.15, 0.2, 0.25, 0.3, 
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For the remaining material constants, we shall assume: 

U02 density Ρ = 9.7 gm/cm
3 

specific heat (cons, press.) C = 0.35 ¿/gm °K 

thermal conductivity fe = 0.1 W/cm °K 

Boundary layer (UO /Na) resistance h = 1.7 °K/W cm 

Na molecular mass M = 23 

it 3 

density (liquid) Û = 0.8 gm/cm 

sp. ht., (cons, press, liq. ph.) C~= 1.3 j/gm °K 
ti ti tt t tt tt tt v _V _ _ _ / 0 „ 

( vap. ) C = 2.7 J/gm K 

latent heat vaporization L = 3900 J/gm 

normal boiling temp. T = 1155 K 

b 

Typical results obtained by using the above data in the TOMOF programme 

are plotted in Figure 1 which shows the sodium vapour pressure in the inter

acting zone as a function of time during the boiling and ejection process 

for ß = 0.1 and for all of the above values of d . It will be noted that 

in every case, the pressure rise 4P(t) above the initial value of 1.08 atm 

(eq. (6.9)) has the form of a pulse whose maximum value Δ Ρ occurs re
max 

latively early in the excursion. For the smaller values of d , the pulses 

are sharply peaked, the halfwidth t / being small and ¿P large. As 

d increases, however, the pulses become much smaller and broader, reflec

ting the decreased rate of heat transfer for the larger fuel globules. 

This effect is further illustrated in Tables 1 and 2 which present the 

maximum pressure rise Δ Ρ and pulse halfwidth t . respectively for 

all the assumed values of d and B. The first column of these tables 

corresponds to the above discussed results for B = 0.1 plotted in Figure 1 

and the other four columns correspond to the other assumed values of B. 

The sensitive dependence of Δ Ρ and t . on both d and B is clearly 

exhibited. Because of this sensitivity, it should be easy to obtain from 

the measured values of Δ Ρ and t,,_ the values of d_ and B which give 

max 1/2 f 

agreement between the theory and experiment. The value of d. thus revealed 

can then be checked for consistency against the fuel globule dimensions ob

served when the experiment is dismantled. The value of 8, though probably 

not verifiable, is of considerable interest. 
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The calculated values of the ejection speed V . of the sodium plug 

at the instant of removal from the channel and the time t between 

this moment and the moment when boiling began are given as functions 

of d and ß in Tables 3 and 4 respectively. 

It is interesting to note from Table 3 that V ., while being sen

sitive to variations in d , is practically independent of ß. Hence, 

from an experimental value of V .it should be simple to infer the 

value of d. required by the theory to give the same value of V 
f
 ej 

This value of d can then be checked against the observed globule 

size and that determined from the Δ Ρ and t, . measurements as above. 

max 1/2 

The behaviour of t . with respect to d and B as displayed in Table 

4 is similar to that of V ., i.e. strongly dependent on d but rather 

ej ± 

insensitive to B. Thus, from an experimental value of t ., we may 

again infer which value of d should go in the theory (to give the 
same t ) and thereby have the third estimate of d to compare with 

ej ι 
the observed value. 

If these three values are all in good agreement with experiment, 

the theory will have attained a high degree of plausibility. 

The existance in the theory of the two somewhat ambiguous para

meters d and B has stimulated a search for derived mathematical en

tities which depend only slightly on these parameters. This search has 

lead to the formulation of the following two definitions of the pres

sure impulse. 

(a) The integral of the pressure rise with respect to time between 

t = O (bollini 

sodium plug): 

t = O (boiling onset) and t = t (complete ejection of the 
e
J 

1ή = ƒ AP(±)dt O.I) 



 27 

(b) The product of the absolute maximum pressure (not rise) and the pulse 

halfwidth: 

^ ^ m a x * ! ^ <
9
'
2
> 

where Ρ = Ρ + Δ Ρ 

max ο max 

The values of I and I are displayed as functions of d and Β in Tables 5 
1 2 f 

and 6 respectively. 

From Table 5 we see that I is insensitive to Β but varies with d by at 

least the same amount as V . I therefore fails to provide the required 

constant. 

On the other hand, Table 6 shows that the quantity I is substantially 

the same over a very wide range of both d and B. In fact, for the conditions 

of interest in this section, it appears true to write 

Ρ ï, /„ ftí 300 atm msec (9.3) 

max 1/2 

over the whole expected range of d. and Β. It will be useful to see if this 

rough prediction is fulfilled by the experiments. 
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10. Appendix  Heat Transfer between the Fuel Globules and Coolant 

To derive a simple equation connecting the mean temperature Τ of the fuel 

and the temperature Τ of the coolant in the interacting zone, we assume that 

the fuel is quickly broken into globules of mean linear size d . It is assumed 

that these globules remain close together so that the coolant experiences the 

arrival of heat from all directions. The fuel temperatures of interest in this 

problem are far above the normal boiling point T. of the coolant and heat trans
b 

fer will therefore be accompanied by vigorous bubble formation and turbulence 

near the surface of the globules. Such turbulence (combined with a high thermal 

conductivity for some coolants) will tend to suppress spatial variations of tem

perature in all regions of the coolant except a thin layer next to the fuel. 

Thus, it appears reasonable to assume that the coolant has a uniform temperature 

Τ except inside a purely resistive skin layer (mainly vapour) on the surface of 

of the globules. 

Representing a typical fuel globule by a sphere of radius r = df/.2, de

noting the above thermal resistance at the boundary with the coolant by h, 

letting T*(r,t), k and 1C be its internal temperature distribution,thermal con

ductivity and thermal diffusivity respectively and letting T(t) denote the bulk 

temperature of the coolant, then we can write 

TT~ 
 K z* \ r ~k— / (lo.i) 

inside the fuel and 

ST' 
T-T^-hkjï at r s r0 (10.2) 

at the boundary with the coolant. At the centre of the fuel globule, the tem

perature gradient is obviously zero: 

Λ" Λ 
•Ζ— = 0 at r = 0 (10.3) 

fff y 

The mean fuel temperature is given by 

T (t) = JL J* T'(r, t)r*dr U 0 .4 , 
τ 'o 0 

Quite independently of the above equations, one would expect, intuitively, 

that an equation of the form 
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rff «Τ-Τ, (10.5) 

should describe approximately the behaviour of Τ . The reason for this ex

pectation is that Tf will decrease if T f>T (and vice versa) and the rate of 

change must be governed by the difference Τ  Τ and by some time constant Τ 

embodying the effects of the heat capacity and thermal conductivity of the 

fuel and the resistance h at its surface. The attack on equations (10.1) 

(10.4) will be performed with a view to establishing an expression for Τ 

and determining the domain of validity of (10.5). This will be accomplished 

by considering two widely differing cases. 

(a) Oscillating Coolant Temperature 

For this case, we assume that a harmonic fluctuation 

idit 

Τ = Τ (ω) β (10.6) 
o 

is imposed on the coolant temperature and we ask what the response of T'(r,t) 

and Τ (t) will be. First, it is clear that (after the decay of transients) 

the time dependence of T' and Τ must also be oscillatory and therefore that 

j'(r^t) = T¿(<*ir)e.
Ltu

' αο.7) 

and 

Tf (*) =
 T

of
 (ω)

*
 <108) 

Secondly, substituting (10.6) and (10.8) into (10.5), it would appear that 

we must have, approximately, 

T0Cco) 
7V (ω) = ; (ι°·

9
> 

Passing on to the detailed analysis of the heat flow within and out of 

the fuel, we substitute (10.7) into equation (10.1) to get 
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Β ΤΛ . Ζ BT 

dr 
+ 

r àr 
-τ;-o 

of which the solution is 

τ! = A ̂ ; *g£y 
r/C 

(10.10) 

where 

Ζ a κ (10.11) 

is a dimensionless complex constant. A second term in cos zr/r is excluded 

o 

from (10.10) by oondition (10.3). Substituting (10.6) and (10.7) with (10.10) 

into (10.2), we obtain 

/\(ω)^ίηΖ+ hjl(zcosz-&ìnz)j = 7¡ «*>) 

and substitution of (10.7) into (10.4), with application of (10.10), gives 

Γ (CO) = j— (Sen ZZWSz; 
of 2 

Elimination of A(w) from these two equations leads to 

Τ (co) = 
Τ,(ω) 

' ¿ • f - z c e t z r. ƒ 

(10.12, 
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The function ζ cot ζ can be expanded into a power series in ζ which for 

ι ι <° 
J ζ J ■< l i s r a p i d l y convergent : 

Za>tz = * - - | - - — 

2 

2 , Z' 

so that to order ζ 

Substituting this into (10.12) and using (10.11), we then see that for 

wr / v < 1 
o ^ 

r.(w) 
0 

T" (u>) = (10.13) 

and comparison with equation (10.9) immediately provides the formula 

r = —— ( Ή ) (10.14) 

for the time constant in equation (10.5). 

Substituting 

for the diffusivity of the fuel, we get 

f i p Cfrô 0+-S-) 
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or, in terms of the volume/surface ratio of the globule, <J* = r /3: 
o 

r = <rpfCf 0i + f f )
 ( 1 0

·
1 5 ) 

(b) Steg Drop in Coolant Temperature 

For this case, it is assumed that for t<t the fuel and coolant temperatures 

are both equal to T and that, at t = 0, the coolant temperature suddenly drops 

to zero and remains there. With such a disturbance, the fuel temperature T*(r,t) 

begins its evolution from a uniform distribution: 

T'(r, o) = T0 (10.16) 

According to the approximate equation (10.5), this evolution is given, in 

terms of the mean fuel temperature Τ , by 

t/T 
T Ä f r> ' (10.17) 

'f Ό * 
On the other hand, the detailed behaviour of the fuel temperature can be 

obtained by putting Τ = O in (10.2): 
f 

j'+hkÈl^O a t r = ro αο ·18> 
2r 

and then solving the complete diffusion equation (10.1) with (10.3) and (10.18) 

as the boundary conditions. Such a procedure leads straightforwardly to the re

sult 

λ*«/5* . , . 

r'(r,i)=ÏA(»e
 i

^
L 

λ 

where the eigenvalues Λ are determined by substituting (10.19) into (10.18): 

likn:..ixM (1_^)ϊ^λ+^λ^λ = ο (10.20) 
ς 
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and the coefficients A(λ) are obtained from the initial condition (10.16). 

Substitution of (10.19) into (10.16) leads to 

Σ*α>4£^ =τ0 

and by using the orthogonality of the functions 

i.e. 

j V ^ W x 4 * » %/ o ^ a ^§ 

we get 

Α (λ) — 'o TT , ο ~ ~7 (10.21) 

The mean fuel temperature is obtained by integrating (10.19) in the way pre

scribed by (10.4): 

Substituting for A(^) from (10.21), this gives 

Tf(t)=T' ï i V ^ · Hit e 
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and using the formulae 

λ 

we get finally 

"■ -Λ 

Y (t) = J ) — ^ — e (10.22) 

Equation (10.22) offers an immediate test of the validity of the intuitive 

approximation (10.5) and (10.17). If conditions are such that the first term 

of (10.22)  that with the lowest eigenvalue \ - is much larger than all the 
Λ 

other terms combined, then (10.17) is valid and the holdup time constant X 

is given by 

£ (10.23) 

V* 

Let us consider the behaviour of the series (10.22) as a function of the 

parameter 

(ík 

which alone determines the eigenvalues in equation (10.20). 

» At << A 
Case 1: γ  ~ = ^ ^ s

 « η 
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In this case, examination of (10.20) indicates that the lowest eigenvalue 

X must be very near to 7Γ . Let us write 

where £ « i . Then 

and therefore, by (1020) 

s-t + OCl·*) 
Pi le 

Hence, for ̂ fi « f 

o 

and 

T" ^t)
 ==

 —r 7" "β
 +

 faster decay terms 

where 

Γ = (10.24) 

TT *0fc íc /ç) 

These results show that the first, slowest decaying term of (10.22) accounts 

initially for only about 61% of the fuel temperature excess and, therefore, 

that the "intuitive" formulae (10.5) and (10.17) are rather inaccurate in 

this case. 
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Case 2: p = = "/ 
kk 

In this case, the smallest solution of (10.20) is 

Λ
1 2 

and therefore 

Τ" f ■£ ) =. I Ρ + faster decaying terms 

V κ* ° 

where 

k-r
z 

W X 

hk 
Thus, we see that for — = 1 , the first term of (10.22) is completely 

dominant, accounting for 98.6% of the fuel temperature excess even at t = 0. 

The intuitive approximations (10.5) and (10.17) are therefore very accurate 

in this case. 

Case 3: p = ' » 7 

In this case, (10.20) can be written 

\aos\- (i- ρ)**λ = 0 

from which it is obvious that the smallest eigenvalue is very small: λ γ « " ί · 
Because of this, the functions can be expanded in power series: sin "\ = 

"Χ — X,/6; cos \ = 1 — Λ-/2, and therefore 

λ,3 \-%-(i-i)(\-?)~ 
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i . e . 

In addition 

^
 =

 J Ρ 

3 

¿"■Xj — Ay c*s Ay = γ 

\j —su*tAy ccsX^ = γ Ay 

Thus, (9.22) becomes 

 Í / T 

where 

j»ç* hkr, 
T =

 ?7
 =

 IT
 α ο

·
2 6 ) 

The faster decaying terms are completely negligible here and the intuitive 

description given by (10.5) and (10.17) is therefore exact in this case. 

Thus, we have established that the simple equation 

vTf+Tf-T 

gives a very good description of the mean fuel temperature for a step change 

in the coolant temperature Τ provided that 

*■* > i (10.27) 

ς 
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Now let us compare the formulae (10.24)  (10.26) for the time constant 

f with that derived in the analysis of harmonically varying temperatures 

(equation (10.14)). In the following Table the values of Τ calculated by 

the two methods are shown explicitly: 

hk 

r 
o 

small 

1 

large 

r 
harmonic 

2 

1
 r

o 

15 χ 

2 

0.4 f 

hk r 
o 

3 Ä 

step 

2 

1
 r

o 

9.9 % 

2 
r 

0.405 ~ 

hk r 
o 

3X 

Thus, we see very clearly that if the condition (10.27) for the validity 

of the intuitive description is satisfied, the time constant Τ is inde

pendent of the manner of exciting temperature variations. We therefore con

clude that the intuitive equation (10.5) connecting the mean fuel temperature 

and coolant temperature is quite general provided equations (10.14) (or 

(10.15)) and (10.27) are observed. 
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TABLE 1 

Maximum Pressure Rise Λ Ρ (atm) during max 
Ejection as a Function of d (cm) and B, 

\ . β 
d f \ 

0.01 
0.015 
0.02 
0.04 
0.06 
0.1 
0.2 
0.4 

0.1 

44.9 
34.5 
28.3 
17.0 
12.4 
8.19 
4.48 
2.31 

0.15 

34.7 
27.0 
22.3 
13.6 
9.98 
6.63 
3.65 
1.89 

0.2 

28.2 
22.1 
18.4 
11.4 
8.42 
5.64 
3.13 
1.63 

0.25 

23.5 
18.6 
15.6 
9.81 
7.31 
4.93 
2.76 
1.44 

0.3 

19.9 
16.0 
13.5 
8.60 
6.46 
4.39 
2.47 
1.29 

TABLE 2 

Pressure Pulse Half-Width t . (msec) as 
a Function of d (cm) and B 

\ . β 
d f \ 

0.01 
0.015 
0.02 
0.04 
0.06 
0.1 
0.2 
0.4 

' 

0.1 

6.75 
8.52 
10.1 
15.6 
20.1 
27.6 
40.6 
54.4 

i 

0.15 

9.44 
12.0 
14.3 
22.3 
29.0 
40.1 
58.9 
76.4 

0.2 

12.1 
15.4 
18.4 
28.9 
37.8 
52.3 
76.3 
97.1 

• 

0.25 

14.8 
18.8 
22.5 
35.4 
46.2 
63.7 
91.8 
115.8 

« 

0.3 

17.6 
22.3 
26.6 
41.7 
54.2 
74.0 
104.9 
132.2 
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TABLE 3 

Ejection speed V . (cm sec) of Sodium Plug 

from the Channel as a Function of d (cm) 

and β. 

\ β 

d
f \ 

0.01 

0.015 

0.02 

0.04 

0.06 

0.1 

0.2 

0.4 

0.1 

cene 

cene 

cene 

2178 

1988 

1719 

1326 

920 

0.15 

2457 

2413 

2357 

2136 

1959 

1701 

1320 

920 

0.2 

2334 

2346 

2296 

2094 

1926 

1680 

1310 

920 

0.25 

2312 

2279 

2235 

2050 

1892 

1657 

1297 

915 

0.3 

2241 

2212 

2174 

2005 

1856 

1631 

1282 

909 

cene = complete ejection not computed 

TABLE 4 

Ejection time t . (m sec) of Sodium 

Plug from the Channel as a Function 

of d (cm) and ß. 

>v β 

d
f \ 

0.01 

0.015 

0.02 

0.04 

0.06 

0.1 

0.2 

0.4 

0.1 

cene 

cene 

cene 

56.3 

63.9 

76.4 

100.9 

141.4 

0.15 

43.0 

46.4 

49.5 

59.6 

67.7 

80.9 

106^6 

148.6 

0.2 

45.0 

49.1 

52.3 

62.8 

71.3 

85.2 

112.2 

155.6 

0.25 

48.1 

51.8 

55.1 

66.1 

75.0 

89.5 

117.6 

162.5 

1 

0.3 

50.8 

54.6 

58.0 

69.4 

78.6 

93.7 

123.0 

169.3 

cene = complete ejection not computed 



 41 

TABLE 5 

I : Integral of Pressure Rise over Time up to the 

Moment of Ejection, i.e. Ejection Impulse (atm 

msec) as a Function of d (cm) and ß 

N s
v ß 

d f \ 

0.01 

0.015 

0.02 

0.04 

0.06 

0.1 

0.2 

0.4 

0.1 

cene 

cene 

cene 

410 

364 

307 

233 

163 

0.15 

530 

496 

469 

397 

353 

298 

227 

160 

0.2 

507 

476 

451 

384 

342 

289 

220 

156 

0.25 

484 

457 

434 

371 

331 

280 

214 

151 

0.3 

462 

437 

416 

358 

320 

272 

207 

147 

cene = complete ejection not computed 

TABLE 6 

I : (maximum pressure, atm) χ (pressure pulse 
éù 

halfwidth, m sec) as a Function of d (cm) 

and ß 

Ν. Β 

d
f \ 

0.01 

0.015 

0.02 

0.04 

0.06 

0.1 

0.2 

0.4 

0.1 

310 

303 

297 

282 

271 

255 

226 

185 

0.15 

338 

336 

334 

327 

321 

309 

279 

227 

0.2 

355 

358 

359 

361 

359 

351 

321 

262 

0.25 

364 

371 

376 

386 

388 

383 

352 

291 

0.3 

369 

380 

387 

403 

408 

404 

372 

313 
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