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ABSTRACT 

One may distinguish a class of technical and scientific computation 
problems for which a problem-oriented sliderule might be very useful. 

Several sliderules have already been developed by Cetis-Euratom, 
together with some tools to facilitate the designing. 

This report describes the obtained experiences together with two 
computer programmes i.e. " ACCESS " and " COOLER ". 

" ACCESS " converts the numerical descriptions of sliderules into 
the actual drawings. " COOLER " is a programme which designs and 
draws circular sliderules for the conversion of leak-rates but by 
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INTRODUCTION *) 

It has been experienced that there exists a class of technical 
and scientific computation problems which might be solved conve­
niently by a specially designed sliderule. 

This class is characterized by: 

1. not too many input parameters, 
2. few output data, 
3. rather complicated calculation process, specially including 

algebraic or numerical functions, 
t. frequent executions, 
5. instantaneous results requested. 

Thus .characterized problems may be handled by special computer 
produced tables, by nomograms or by special purpose sliderules. 
For several problems the latter solution has been applied by 
CETIS-EURATOM. Also some tools have been developed to facilitate 
the designing of special purpose sliderules. This report des­
cribes these aids and the obtained experiences. 

Two computer programmes are mentioned: 
The code "ACCESS" converts numerical descriptions of sliderules 
into the actual drawings with the aid of a CALCOMP-plotter. This 
programme can be applied as an independent programme or as a part 
of larger code. 

The code "COOLER" designs and draws circular sliderules for leak-
rate conversion calculations. "COOLER" might be used more gene­
rally by removing the two subroutines where the actual relations 
are calculated and substituting them by other FORTRAN programmed 
expressions. The problem of the leak-rate conversions has been 
described somewhat extensively as an illustration for the entire 
report. 

No distinction has been made as far as concerns the basic shape 

*) Manueoript received on 21 April 1970 



of the sliderules, circular or rectangular. The most important 

difference is that a circular sliderule can easily be provided 

with more moving parts. 

THE SLIDERULE 

A sliderule may be considered as a primitive analog machine. 

The two reversible basic principles are: 

1. function value representation for a given argument only for 

strict monotonie functions, 

2. addition of function values. 

The first principle is illustrated by a scale for the function 

2 

f[x] = χ ­1 with χ M to have a monotonie branch of the func­

tion 

2 3 
_l_ 

4 
_1_ 

■«­ x values 

f
6
[x]=0 

setpoint 

·«­ the distance from the setpoint to ­*■ 

the argument value is a measure for 

the function value 

length represents 

the value of 
.2 

[«'­!] 

The addition of two function values is performed physically as 

is illustrated for the relation /z = χ ­1 + y : 

i
 u 

χ ­1=0 

setpoint 

■*■ χ values 

Δ 2
 Λ 

y =0 , 

setpoint ι 
I 

144 
ι 

length represents 

[x ­1] 

·*· y values 

length represent: 

y 

·*■ ζ values 

/z = 0 

setpoint 

length represents 

/τ 
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If now the latter example is executed as a traditional sliderule, 
the x-scale and the z-scale will be engraved on the body of the 
rule and the y-scale on the central slide (cs.). Furthermore, 
a windowslide (ws.) is necessary. 

The elaborations for the calculation of ζ at given χ and y will 
be: 

1. put the ws. on the x-value, 
2. move the cs. until the setpoint is under the marker, 
3. move the ws. to the y-value, 
4. read the z-value. 

A certain simplification of the tool is possible by combinations 
of scales which leads ultimately to sliderule applications for 
more complex functions. 

In the given example, the positive direction of each scale points 
to the right. However, the procedure will be simplified if the 
positive direction of the x-scale points to the left as is shown 
in the next example : 

x-values length for y' 
length for[x -l] 

t 1 4 9 
ZzsO 
setpoint 

x2-l=0 

144 

y-values 

«- z-values 
length for /z~ 

2 2 The necessary elaborations to calculate ζ from /z=x -1+y at 
given χ and y become: 

1. move the cs. until the x-value coincides with the setpoint 
of the z-scale, 

2. move the ws. over the y-value, 
3. read the z-value. 
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Appropriate location of the scales within the limited size of a 

sliderule may be obtained by introducing a place correction term 

c. The example relation may be written as: 

/ z + c = [ x ­ l + c ] + y 

For c = ­5 the sketch of the sliderule becomes: 

x­values­>· 4 3 2 1 

_______ * j j _ _ „_ v a l u e s 

1 

I I 

g 1 4 9 ¿ 144 ■*■ z­values 

The given example shows a very important by­product of the slide­

rule construction: 

The represented expression can be solved in any direction 

that is for a η­parameter relation, each of the variables 

can be calculated if the other n­1 parameters are given. 

Not every relation can be represented by a sliderule. 

The most simple class of elaborative expressions is of the type: 

The addition may easily be performed by moving line­intervals. 

Sometimes a transformation of a more complex function may yield 

the previous form: 

fjx,]· *,[«,] » f,[«,] 

By taking the logarithms of the functions in this case, the stan­

dard form is obtained 

A more complicated system is required by: 

1
L
 1

J
 2
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 2

J
 3

L
 3

J
 4

 L
 4

J 



As an intermediate result has to be calculated: 

y ■ Ί - ^ ] · f
2I>2] 

or transformed by taking the logarithms: 

log y = log fj^Xj] + log f2[x2] 

but the calculated result f [χ ]· f [χ 1 appears now as an argu­
ment value and not as an interval-length as is required for the 
addition with f_ Γχ "1 . 

3 «- 3J 
The solution for this type of expressions will be given by the 
next example. 
Consider the function: 

χ, '/χ -2' + χΛ s χ + 8 1 2 3 4 

A scale diagram for the values x,=2, x =6, χ = s= 2.24 shows: 
1 2 3 

Δ 2 log χ =0 
2 
-t-

3 
__ 

4 argument = χ 
distance=log x' 

l o g / x -2=0 

1 

3 4 5 6 7 
I I I I I 

1 2 3 4 5 6 7 8 9 10 
I . I . I ' .1 I i 1 

l o g x , + l o g / x -2=0 1 2 

argument== x. 
distance = log/x -2' 

argument = χ ./χ -2' 
2 » distance = log x.+log/x_-2' 1 2 

0 1 2 3 4 5 6 7 8 9 1 0 
I 1 

χ , . / χ Λ - 2 = 0 1 2 

0 1 

ψ. 
- 2 

3 Δ -
- 2 . 5 - 1 0 1 1 . 5 

' ■ * — 

2 / 

argument = χ . / χ - 2 
d i s t a n c e = x . , / χ _ - 2 

1 2 

3 argument = χ„ 
J
 — 2

 3 

d i s t a n c e = x . 

argument = χ 

χ +8=0 
4 

distance=x.+8 
4 
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If the 2nd and the 5th scale of this diagram were engraved on 

the movable part of an actual sliderule, the elaborations for 

the calculation of the χ ­value would be: 

1. put the windowslide on the χ ­value, 

2. adjust the centralslide, 

3. move the ws. to the χ ­value, 

4. read the χ ./χ ­2­value on the 3rd scale, 

5. move the ws. to the χ ./χ ­2­value on the 4th scale, 

6. adjust the cs, 

7. move the ws. to the χ ­value­

3 * 

8. read the χ ­value. 

However, the design of the sliderule and the procedure of the 

calculation can be simplified by: 

1) choosing opposite positive directions for the scales 1 and 2 

on the cs. of the sliderule, 

2) combining the scales 3 and 4 to a "go to scale', 

3) choosing opposite positive directions for the "go to scale" 

and t h e x - s c a l e . 
3 

;o t o : 1 2 3 4 5 6 7 8 9 1,0 

Í 1 2 3 4 5 6 7 8 9 10 

X
2 

5 1 ι—f­
5 43 

JL 

- 2 - 1 . 5 - 1 0 1 1 . 5 

φ 
Η 
Λ 
<0 

, _ ► 
J 1 1 1 1 4 J Ο 

Β I 
I 
I 

3 ' 2 1 0 + x „ 
ι ι ι ι 3 

Now the procedure of the calculation has been reduced to: 

1. move the cs. until the χ -value coincides with the setpoint 
of the "go to scale", 
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2. move the ws. on the χ ­value and read value on upper part 

of the "go to scale", 

3. move the ws. over this value on lower part of this scale, 

4. move the cs. until the setpoint of the x­scale coincides 

with the given χ ­value, 

3 

5. read the x.­value under the marker of the ws. 

A MATHEMATICAL DEVICE 

As has been shown by the previous examples, a function of the 

type: 

I J 

y = Σ TT f ^ C x J 

i=lj=l
 3 J 

is accessible for sliderule application. 

Now arises the problem of converting a function of the type: 

y = f [xl.x2,..»x_] 

into the standard form. 

If normal algebraic operations do not yield results, a mathema­

tical device for this conversion , as developed by Mrs.C.TAMAGNINI 

(see réf.),might help. The applied approximation has shown to be 

useful in many cases, although it is not a general solution. 

The method will be explained for a three­parameter function, 

y = f[x ,x ] . The extension to more parameters is easy. 

Consider the function y = f[x.,x5] in a defined range: 

The approximating function must be of the type: 
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to make it accessible for sliderule application. 

Choose a point[Χ,Λ»
χ
ΛΛ] in the definition field of y and consi­

10 20 ' 

der the two curves ^τη­Χη!
 a n d f

O T C
X
J obtained by the intersec­

tion of the y­surface with the two planes parallel to the planes 

χ =0 respectively χ =0 and passing through the point£x ,x ] . 

As a first approximation one may try: 

y
i * »D'Io·* J V

f
n

[ x
i

]
­ ^ i

1
^ 

in which f[x ,x J = — can be calculated numerically. 

The choice of the pointQx ,x ] may be performed by covering 

the definition field of y by a lattice and successive tryings of 

the lattice points for the best approximation. 

Sequentially, the surface 

y - yx - f C v 2 ] - V n & r l ­f
21^ 

can be treated in the same way etc., until 

ζ = y - V^CxJ.f^Cx,]- *2*l2l*¿­*22L*¿­ V 13^^23^! 

is small enough within the field of definition. 

Then: 

i = l 

is the requested approximation. 

A MECHANICAL DEVICE 

A handy tool in the laboratory is the sliderule with exchangeable 

scales. The annexed design has proofed to be very useful. The ac­

tual scales can be calculated and drawn on graph­paper. The draw­

ing is then adjusted on the body of the rule and the transparent 
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covers are fastened. The protruding part of the drawing can be 

removed by a razor blade. 

THE PROGRAMME "ACCESS" 

"ACCESS" (for Automatic Compiling of Circular ¿liderule ¿cales), 

converts numerical descriptions of sliderule scales into actual 

drawings with the aid of a CALCOMP­plotter. "ACCESS" may be used 

as an independent programme or it can be incorporated in another 

programme which provides the numerical descriptions as has been 

done in the case of the programme "COOLER" which is described 

also. 

Programme "ACCESS" may produce drawings in the frame of a rectan­

gular coordinates system with 0 ̂  χ and 0 ^ y 4 70 cm, combining 

the components : 

1. dotted arcs of any length, 

2. full­line arcs of any length, 

3. straight lines given in polar coordinates with regard to a 

centre point in cartesian coordinates. 

The straight lines (division marks), may be given with an abso­

lute length or in ratio to the radius, thus enabling an automatic 

scale enlargement of the components. 

The programme contains also an option for surpressing a division 

mark if the distance between two division marks becomes smaller 

than a specified value. 

A complete description of the options will be given in the input 

list. 

"ACCESS" INPUT DESCRIPTION 

The actual input for the "ACCESS" programme consists of a collec­

tion of fixed point­, (I­format) and floating point­numbers (E­

format). A fixed point number is written without a decimal point, 
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utmost right in its field. 
Floating point data are written with a decimal point and are 
eventually supplied with a fixed point exponent of 10. 
The position of such a number in its field is irrelevant, only 
the exponent must be placed at the utmost right. 

The next list gives a detailed description of the input. The sym­
bols refer to the input sheet. 

N = number of drawings to be performed; 
format: 16 

For each drawing the next specifications have to be repeated: 

card 1 format: 213, 16, E12.4, 4(211, E10.4) 
I = 0 the angle and size of each division mark are given o 

in one card, 
I = 1 all the angles are specified first, followed by 

a set of cards with the lengths of the division 
marks in the same sequence, 

1 = 0 the angles are given in radians, 
1 = 1 the angles are given in degrees, minutes and seconds, 
1 = 0 the lengths of the division marks are given in cm 

(size(D), 
1 = 1 the lengths of the division marks have to be calcu­

lated from given ratios in relation to the radius R, 
ARCMIN the minimum arc length in cm between two division 

marks: in the case that two division marks come 
closer than arcmin, the smallest is surpressed. If 
they are equal in size no action will be taken, 

J 1 four additional arcs or circles may be specified on 
K y the centre coordinates χ ,y , but with different 

o o 
C(I)j radius, 

J = 0: an arc between the smallest and the largest 
angle of the division marks' specification will be 
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drawn with a radius of C(I) cm, 
J = 1: a full circle around χ ,y will be drawn 

o o 
with a radius of C(I) cm, 
Κ = 0: continuous arc, 
Κ = 1: dotted arc. 
More contrasting arcs may be obtained by repeating 
the definitions, eventually with a somewhat smaller 
radius. 

card 2 format: 4E6.2 
R radius in cm, 
S (only if I =1). 

The length of a divisionmark at radius 10 cm and 
size(I)=l. The actual lengths of the division marks 
are calculated: S.„_(I) = 0.1 x R x S x SIZE(I). 

ACT 
This factor is used for automatic scale enlargement. 

X 1 Coordinates of the centre point. The drawings are 
°r 

Y J produced in a frame of rectangular coordinates with 
0 4 X and 0 ̂  Y ^ 70 cm. 
* > » · * _ _ « X. " d R M X < * o ^ '° ""MAX' in which R„.„ is the radius of the largest circle. MAX 

The angles and the lengths of the division marks may be specified 
in several ways depending on the indicators 1 , 1 and I , as al­
ready been described. The symbols on the input sheet have the fol­
lowing meaning: 

(only if I =1). DEG(I) 
MIN(I)fThe angles of the division marks with the X-axis, 
SEC(I)J counterclockwise, in degrees, minutes and seconds, 
RAD(I) (only if I =0). 

The angles of the division marks with the X-axis, 
counterclockwise, in radians 

SIZE(I) if I =0: 
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the lengths of the division marks in cm, 
if I2=l: 
the length ratios; the actual lengths will be cal­
culated: S. (I) = 0.1 χ R x S χ SIZE(I) cm. 

ACT 
If SIZE(I) has a positive value, the division 
mark is pointing outwards from the outer point of 
the radius R, otherwise the division marks point 
to the centre, 

* the last card of the angles specification must 
have a "*" in the first column. 

The number of scales [N] to be drawn in one run is not limited. 
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THE FORTRAN LISTING OF "ACCESS" 

The next pages give the FORTRAN listing of "ACCESS". The pro­
gramme has been written in FORTRAN IV for the IBM 360/65 with a 
CALCOMP-plotter. The subroutines which are called for and not 
presented in the next listing, are special CALCOMP-routines which 
are published elsewhere (see réf.). 



LEVEL 15 ί 1 JAN 68) OS/360 FORTRAN Η ΡΛΤΕ 7 ? . ? ? 3 / 1 f . ? 7 , i 7 
COMPILER 

C-

ISN OCX2 
I SN 
ISN 
ISN 

ISN 
I SN 
ISN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
I SN 

0 0 0 3 
0 0 0 4 
0 0 0 5 

0 0 0 6 
OCO 7 
0 0 0 8 
0 0 0 9 
0 0 1 0 
0 0 1 1 
0 0 1 3 
0 0 1 4 
0 0 1 5 
0C16 
0 0 1 7 
0 0 1 8 
0 0 1 9 
0 0 2 0 
OC 2 1 
0 0 2 2 
0 0 2 3 
0 0 2 4 
CC25 
0 0 2 6 
0 0 2 7 
0 0 2 8 
0 0 2 9 
0 0 3 0 
0 0 3 2 
0 0 3 3 
0 0 3 4 
0 0 3 5 
0 0 3 6 
0 0 3 7 
0C38 

C 
C 
c c c c c c 

c c-c 

OPTIJNS -
—PROGRAM 

:iAM£> l!AIN,3PT=C0,LINECNT = 5C, SOURCf ,BCD, NOL 1ST, NODEC< , L C ' Ρ , Μ Μ ' , N a c D I T , h!DÏD .NIX». FF 
ACCESS BY HERHAN I . DE WOL Pf MAY 196«? - — ' 

PROGRAM ACCESS DRAWS CIRCULAR SLIDE RULE SCALES 
THE DIVISION MAF KS MAY BE GIVEN IN RADIANS OR DEGREES 
THE LENGTH OF EACH MARK IS SPECIFIED IN CM 
AT Λ STANDARD RADIUS OF 10 CM 
OR IN A350LUTE LENGTH UNITS ACCORDING TO IND(2) 

DIMENSION INDI 10) , C K ) ,RAD( 1CCC ) ,01VL ( 1CC0) ,MC (4 ) ,KC U ) ,X( IODO , 2 ) , 
J.YÍ100C , 2 ) . I l i U V l mi. I 

DIMENSION XX{2) ,YY(2 ) 

102 

1 0 4 

1 0 5 

1 0 6 

1 1 0 
1 1 1 

112 

1 1 4 

1 1 5 
116 

118 

DATA S T A R / · * 
P I = 3 . 1 4 1 5 ? 3 

Ì 

-READ INPUT DATA 

GO TO 110 

SLIDERULE SCALES HAVE BEEN DRAWN») 

CALL FINIMÍ0.0,1,0) 
READ {5.102) M 
FORMAT Î2I6,F12.4,4(2Ii,riC.4) ) 
IM=0 ΙΝ-Ι.Ί+1 IF (IN.LE.N) CALL F INTRA WRITE (6,106) Ν FURMAT (IMI/16,» GO TO 2C0 READ (5,111) IA,IB,IC,IDfARCMirJt (MC(I) ,KC( I ) ,C( I ) , 1 = 1, Ί-) FORMAT l4I3,F12.4,4(2Ii,FlC.<m WRITE (6,112) FORMAT (llll/· ***** INPUT DATA *****»//) WRITE (6,114) IAtIB,ID,APCMIN.(MC(I),KC(I),C(I),1=1,4) FORMAT (IH ,213,16,Ell.4,4(211,El( .?)) IND(1)»13 IND(2)=ID INDO=IA READ (5,116) R,S,XC,YC WRITE (6,115)R,S,XC,YC FJR.1AT (IH ,F6.2,F6.3,2F6.2) FORMAT (4F6.2) IF (INDI 1).LE.O) GU TD 130 1=0 1 = 1+1 READ (5,122) ALF,RA,RB|RCiDIVL(I) WRITE (6,123) ALF,RA,R3,RC,DIVL(I! 123 FORMAT (LH ,A1 ,F5. 0,2F6.0,F6.2) 122 FORMAT ί A1,F5.2,3F6.2) 
RA=RA+Rß/6C.+RC/3600. 
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ISN 0039 
ISN 0040 
ISN 0042 

ISM 0043 
ISN 0044 
ISN 0045 
ISN 0C46 
ISN 0047 
ISN 0048 
ISN 0049 

ISN 0051 
ISN 0052 
ISN 0054 
ISN 0055 
ISN 0056 
ISN 0057 
ISN 0058 
ISN 0059 
ISN 0060 
ISN 0061 
ISN 0063 
ISN 0064 
ISN 0065 
ISN 0066 
ISN 0067 
ISN 0068 
ISN 0069 
ISN 0070 
ISN 0071 
ISN 0072 
ISN 0073 
ISN 0074 
ISN 0075 
ISN 0077 
ISN 0078 
ISN 0079 
ISN 0080 
ISN 0081 
ISN 0082 
ISN 0083 
ISN 0084 
ISN 0085 
ISN 0086 
ISN 0088 

133 
134 

C 

i' 

RADII)=(RA/180.)*PI 
IF (ALF.E J.STAR) GO TO 140 
GU TO 118 

1=0 
1 = 1+1 
READ (5,134) ALF,RAD(I),DIVL(IÎ 
WRITE (6,133) ALF.P.ADÍ I ï , DI VL CI ) 
FORMAT I IH ,A1,F17.5,F6.2) 
FORMAT (A1,F17.5,F6.2) 
IF (ALF.ME.STAR) GO TO 132 

ORDER THE ANGLES 

140 NA 

135 
136 

137 

138 

IF ÍINDO.EQ.O) GO TO 
READ (5,136) (DIVL(I 
WRITE (6*135) (DI 
FORMAT Ï1H «12F6. 
FORMAT U2F6.2) 

3lVL(T),I=l,NA) 
(DIVL(I),I=1,NA) 

2) 

WRITE (6,137Î 
FURMAT (1H1/5X,·DEGREES',5X,·MINUTES·,5X,»SECONDS»,6X,'LENGTH·/) 
DO 141 I«ItMA 
IF U10*(I/10)­I).EQ.O) WRITE (6,138) 
FORMAT (/) 
RA»180.*RADtl)/PI 
RAA'AINT(RA) 

(RA­R, RB=60.*I ■RAA) 

139 
141 
143 

142 

144 
145 

R3B=AINT£R3) 
RCC=6C,*(RB­RBB) 
WRITE (6j139) RAA,R3B,RCC,DIVL(I) 
FORMAT Í3F12.0,F1¿.2) 
CONTINUE 
CONTINUE 
1=1 
1=1*1 
IF (I.GT.NA) GO TO 146 
IF ÍRAD(I)­RADU­1))144,U2,142 
IA=I 
AA­RAD(IA) 
AB=DIVL(IA) 
RAD(IAÎ=RAD{IA­1) 
RAD(IA­1)=AA 
DIVLÌIA)=DIVLUA­1) 
DIVL(IA­1)=AB 
IA=IA­1 
IF (IA.EQ.l) GO TO 142 
IF (RADIIA)­RAD(IA­l) 1145,142,142 



»AGE rm 
ISN 0089 

ISN 0090 
ISN 0092 
ISN 0093 
ISN 0094 

ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 

I SN ISN ISN ISN ISN ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 

0095 
0096 
0097 
0098 
0099 
0100 
0101 

0102 
0103 
0105 
0106 
0107 
0108 
0110 
O l l i 

0112 
0113 
0114 
0115 
0116 
0117 
0118 0119 0121 0123 0124 0126 0128 0129 0130 0131 0132 

C C-
c 

c c-c 

146 CONTINUE 
LENGTHS OF DIVISION MARKS-
IF (IND(2).LE.O) GO TU 152 
DO 150 1=1,NA 

150 DIVLÍI)=0.1*R*S*DIVL(I) 
152 CONTINUE 

C 
C-
C 

DRAW THE REQUESTED ARCS 

CALL FINIM(XCYC) 
AA=RAD(1) 
AB=RAD(NA) 
PSIA=AA 
PSI3=AB 
K=l 
CALL ARC(R,AA,AB,K) 
DO 160 1 = 1,4 
IF (C( I ) . L T . 0*01) GO TO 160 
K=KC(I)+1 
AA=PSIA 
AB=PSIB 
IF (MC(I).NE.0)AB=PSIA+2.*PI CALL ARC(C(I),AA,AB,K) 160 CONTINUE 
TEST AMD DRAW THE DIVISION MARKS 
DO 164 1=1,NA 

tv; 

u u tot l—í»né\ xTl,l)=R*COS(RAD(I)) X(I,2)=(R+DIVL(I))*C0S(RAD(I)) Y(I,1)=R*SIN(RAD(I)) Y(I,2)=(R+DIVL(I))*SIN(RAD(I)) 164 CONTINUE 
03 
IF (DIVL(I).EQ.DIVL(I-l)) GO TO 170 IF (ÎDIVL(I)*DIVL(I-1Ï).LT.0.0) GO TO 170 AA= X(1,1Î-XC1-1,1))**2+(Y(1,1)-Y(1-1,1) )**2 IF (AA.GE.(ARCMIN**2)) GO TO 170 IF (ABS(DIVL(I)).GT.ABS(DIVL(I-1))) GO TO 168 X(I,2)=X(I,1) .... 2 j = v -

168 
Y(I,2)=Y(I,1) GO TO 170 xTl-I,2)=X(I-l,l Y(I-1,2)=Y(I-1,1 



ISN 0133 170 CONTINUE 
ISN ISN ISN m ISN ISN ISN ISN ISN ISN ISN 

013 013 0136 
0138 0139 0140 0141 0142 0143 0144 0145 

DO ΐίιΓ XXU XX 2 YY 1 YYÍ2 CALL LINE (XX,YY,2,1,1) 180 CONTINUE CALL FINIM C^XC,-YC) GO TO 104 200 CONTINUE STOP END 

PAGE ?34 



LEVEL 15 ( 1 JAN 68) OS/360 FORTRAN H DATE 70.323/15.57.22 
ISM 0002 COMPILER Ü P ¡ 5 ^ g u y I [ j A M | = c MAIN,0PTjC:|LINECNT = 50,S0URCE,BCD,N0LIST,N3DECK,L0*P,P<»P,N^FDIT,N0ID,N3XREF 

ISN 
ISN 
ISM 
ISN 
ISN 
I SN 
ISN 

JN 
' N 
SN 

I 
I 
I 
I Jl ί 
ISN 
ISN 
ISN 
ISN 
I SN 
I SN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
I SN 
I SN 
ISN 
ISN 
I SN 
ISN 
I SN 

0003 
0004 
000 5 
0006 
OOC 7 
0009 
0010 
0 0 1 1 
0012 
0013 
0014 
0016 
coie 
0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 

C C 
c 
ί 
c c 

SUBROUTINE ARC DRAWS AN ARC COUNTER CLOCKWISE FROM »PSIA· TO »PSIB·, BOTH BEING ANGLES WITH THE X-AXIS R=RADIUS IN CM K=1,FULL LINE K=2,DASHED LIME 
DIMENSION XC100C),YtlOOO) 
PI=3.141593 
DO 99 1=1,1000 99 Y(I)=R IF (PSIA.EU.PSIB)PSIB=PSIA+2.*PI 
DEL=1./(R*20.) 
IA=1 
X(IA)=PSIA 100 IA=IA+1 X(IA)=X(IA-1)+DEL IF IIA.EU.1000) GO TO 11C IF (X(IA).LE.PSIB) GO TO 100 GO TO (104,106),Κ 104 CALL LINEP0(X,Y,IA,1,1) GO TO 103 106 CALL DASHP0(X,Y,IA,1,1) 108 CONTINUE GO TO 120 

ÖS ».&4
ι
"·"

4,
·
κ 

CALL LINEPO (Χ,Υ,ΙΚ,Ι,Ι) 
113 IA=1 

X(IA)=X(1000) 
GO TO 100 

114 IK=1000 
CALLDASHPU (Χ,Υ,ΙΚ,Ι,Ι) 

120 CONTINUE 
RETURN 
END 

00 
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COMPUTER DESIGNED SLIDERULES 

In this chapter a complete case of a special purpose sliderule is 
described. It concerns a problem for which a general solution 
could not be found. So a computer programme "COOLER" has been de­
veloped which designs and draws the abacus scales for each de­
manded case. The previously described programme "ACCESS" has been 
incorporated into "COOLER", so no extensive data transfers were 
required. 

The actual relations are calculated in the subroutines "QLIQ" and 
"QGAS". By programming other subroutines, one might apply the pro­
gramme "COOLER" also for other sliderules. 

The applied CALCOMP-subroutines are published elsewhere. 

The leaktightness of technical installations and components is 
often tested under circumstances which differ completely from the 
intended operation condition. The differences may concern tempe­
rature, pressure and filling medium. In the Euratom report, 
EUR 2982.e, one has derived the relations between the leak rate 
Q, the diameter D, and the length of a capillary L, for gases and 

-2 2 
for liquids, in the range 10 < D < 10 , especially concerning 
sealings. 
It has been assumed that leaks of sealings and joints always occur 
through a number of small capillaries. The assumption of a mean 
diameter for all capillaries, where the leak flow-rate is caused 
by capillaries of various diameter, has been justified in the 
same report. 
The flow rate of gases, in and around the transient range of pure 
molecular flow and viscous flow is given by: 

£-[o.093 x ^ x ^ - p ^ 2.88 χγ£ χ [ρχ - p2]] Q = 10 χ 
g - g 

clusec (1) 
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in which: Q = gas leak rate in centilusec g 
(A flow rate of 1 lusec causes a pressure increase 

-3 of 10 mm Hg in a vacuum of 1 litre in 1 sec. 
-3 1 lusec = 1.32 χ 10 atm.cc/sec. 

D = the diameter of the capillary in μ 
L = the length of the capillary in cm 
η = the dynamic viscosity of the gas in centipoise 
8 o 

Τ = the temperature in Κ 
M = the molecular weight of the gas 
ρ = the fill pressure in atm. 
ρΛ = the exit pressure in atm. 2 

The basic formula for a laminar liquid flow is: 
4 ρ -6 D A r -ι Q = 0.882 χ 10 χ -— χ — χ Ιρ - ρ mg/hour L η£ 1 2 

in which: Q = leak rate in mg/hour 
I = the viscosity in centipoise 

Π = the specific gravity of the liquid 

In some cases a liquid leak flow rate is influenced by two pheno­
mena, i.e. surface tension effect and evaporation of the liquid 
during leaking. Then, the basic formula should be corrected ac­
cording to the formulae given in the above mentioned report. 

The conversion of, for example, a gas leak to a liquid leak at 
different pressure and temperature, may be performed by a graphi­
cal presentation of the relations (1) and (2) for a standard ca­
pillary of 1 cm length. 

(2) 
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Log D 

n 
L'i 

L>2 
7 i ~

A —
■ " 

^ G a s 

/ / 

1 / 1 
i 1 

y Liquid 

. 

0β2 % °i2
 Q

i3 Ou Log Q 

Assume a gas leak of Q clusec has been estimated. This leak 

gl 

might have been caused by one capillary of diameter D and of 

1 cm length, (see the above figure). Such a capillary would cause 

a liquid leak of Q mg/hour. However, if there is not only one 
<v JL 

single capillary, but more than one with, for example, an aver­

age diameter D , the liquid leak rate will be different. The num­

ber of capillaries with an arbitrary average diameter, D , causing 

a total gas leak Q ., can be calculated: 

Q ,
 g l 

η = ­*± (3) 
Q
g2 

in which Q is the gas leak of one capillary. 

g2 
The equivalent liquid leak rate will now be: 

Q = —£=■ χ Q v
13 Q „

 w
£2 

g2 

(«♦) 

in which Q is the liquid leak rate for one capillary of diame­

ter D . In logarithmic notation: 

2 

l 0 g Q
£3

 = l 0 g Q
*2

 +
 ^

l0g Q
gl "

 l 0 g Q
g2^ 

(5) 

The second term in expression (5) is equal to the distance A in 

the above figure. By shifting this distance, as done in the fi­

gure, one point (Q,_, D_) of the liquid leak curve has been found. 
X w dU 

More points may be constructed by choosing other D values. 
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The final liquid leak curve gives an impression of the prospec­

tive leak range. A more accurate information is obtained if the 

gas test is repeated with another medium or at another tempera­

ture c.q. pressure. The intersection of the two leak curves gives 

the liquid leak and at the same time the average diameter of the 

capillaries. 

For multiple conversion calculations, it is easier to design a 

slide rule. 

The principles of this system will be shown for a conversion cal­

culation as sketched in the aforegoing figure. 

Q =1 Q . 

_ § ; gl 
D
i 

■* log Q 
g 

Q =1 Q 
A Al —α É± , l o g Q 

D
i 

A 

The length of the interval (Q = 1, Q ) represents the func­

g gl 

tion's value log Q .. For 0 = 1 the function value log Q is 

gl g g 

zero. The calculation according to expression (5) can thus be 

performed by moving line intervals. The marks on both sides of 

each scale denounce respectively the values of Q and D, belong­

ing to the value of log Q, which is in turn expressed in mm. 

Assume a gas leak of Q clusec has been estimated. The appro­

gl 
priate diameter of the capillary, D , can be read directly. The 

same D on the liquid scale gives immediately Q,.· Next a D is 
X A» X 4ÉÍ 

chosen on the gas scale. The scales are positioned so that the 

D 's on both scales coincide: 
2 
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! ι 
Q =1 Q Q 

g ¡g2 |gl i 1 F log Q 

'2 il 

A 

ι 
Q =1 Q Oj Q 

A *A2 ¡A3
 y

A l log Q A 

D
,2 ! »1 

I 

B #· | <­

If in this position the window slide is put over Q , Q may be 

gl 3 

read immediately because: 

B = log Q £ 2 

A = log Q g l ­ log Q g 2
 ( 6 ) 

The summation of A and B is equivalent to the expression (5);the 

combined manipulations to calculate a Q from a given D are 

3 2 

thus : 

1. put the windowslide on the D ­value (gas scale), 

2. move the central slide until D ­value (liquid scale) is under 

the marker, 

3. move the ws. over the D ­value, 

»*. read the Q ­value under the marker. 

It is clear that the actual zero points of the functions, log Q, 

are not used. 

The actual sliderule is designed circular. 

The disadvantage of the sliderule system in this case is that the 

for each medium, temperature and pressure a separate scale must 

be designed, as it is not possible to write expression (1) in 

additive form, adapted for sliderule summation. 

It would be possible to design a sliderule with general scales 

for liquids, expressing ρ,η and p ­ p out of expression (2), com· 
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bined with specific scales for gaseous media at desired tempera­
tures and pressures. However, this type of sliderule would be of 
a more complicated structure, so only the type with specific 
scales for gases and specific scales for liquids has been deve­
loped until now. 

A computer programme has been written which calculates the rela­
tions (1) and (2) for given pressures, temperatures, viscosities 
and specific gravities. 

This programme, named "COOLER" from Conversion £f Leak Rates, 
draws the curves with log versus log scales and designs also a 
circular abacus for quick and multiple use. A simple example with 
only four scales is given for illustration. 
However, any combination of media may be treated in the same way 
and the number of scales is not limited except for considerations 
of clearness and handiness. 

Also two or three scales on the same circumference and more than 
two sliderule plates can be designed in one run. 
The output of the program "COOLER" consists of: 

1. a graph which may be used for the conversion of leak rates as 
is shown in the figure on page 28, 

2. a drawing of the scales for an abacus, without the D, respec­
tively Q-values, 

3. for each scale of the abacus, a table of D, respectively Q-
values for the principal scale division marks. 
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The sliderule 

0 in cluMC for dashed lines or in mg/hour for fult lines 

Computer Output 1 

Computer Output 2 

Output 2 
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"COOLER" INPUT DESCRIPTION 

The symbols refer to the input sheet where also a numerical 
example is given. The input example originates a simple slide-
rule as is given by the illustrations. 

NSCAL = number of specified scales 

For each scale the programme requires the data: 

DMIN = minimum diameter of the capillaries, 
DMAX = maximum diameter of the capillaries, 
ETHA = viscosity of the medium, 
PI = pressure at the entrance of the capillaries (atm.), 
P2 = pressure at the exit of the capillaries (atm.), 
Τ « temperature ( Κ) only for gases, 
EM = molecular weight only for gases, 
CORDA = accumulating χ coordinate, 
CORDB = accumulating y coordinate, 
R = radius of the scale, 
PSI = initial angle with the x-axis in radians, 
SCALE = the length of one decade in cm, 

(the first scale as specified in the example input 
-6 -5. 

requires 2 cm between Q=10 and Q=10 ), 
= specific gravity only for liquids, 
full dotted circles around the latest specified 
x-y coordinates, 

= any alphamerical description of the scale which ap­
pears in the printed output to identify the scales. 
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LEVLL 15 ί JAN 68) OS/360 FORTRAN Η DATE 7 3 . 3 2 3 / 1 5 . 5 9 . 29 

I SN 
I S N 

J . . 
SN 
3M 
SN 

I S N 
i SN 
ISN 
I SN 
I 3¡'j 
ISN 
I SN 
ISM 
U N 
i Ol J 
I SM 
ISN 
I SM 
ISM 
ISM 
ISM 
ISM 
ISN 

ISM 
I SM 
I SM 
ISM 
ISM 
I SM 
ISN 
I SM 
I Sil 
ISM 
I SN 
ISM 
I SM 
ISN 
ISN 
I SM 

OMPILER OPTIONS - .ΊΑΜΕ= MAIN,DPT=CO ,LINECNT=50, SOURCE, BCD,MOL I S T , N3DECK, L C \ ? , *.t P , fPFDIT , MOI 3 , N^X»FC 

C PROGRAM»COOLER' BY HERMAN I . D E WOLDE 

OC 0 3 

0 0 0 4 
oco 5 
000 A 
ooc ■ 
OCC' 
0 0 1 
0 0 1 i 
OCX Λ 
0 0 1 3 
0 0 1 3 
0 0 1 6 
0 0 1 3 
00) . 9 
0 0 2 0 
0 0 2 1 
0 0 2 2 
0 0 2 4 
0 0 2 5 
0 0 2 3 
Û027 

0023 
0 0 2 9 

0030 
0031 
0032 
0033 
0034 
0035 
0036 
0038 
0039 
0040 
0042 
0043 
0044 
0045 
0046 
0047 

L 
C 
C 

'CONVERSION »O'F 'LE 'AK «R'ATES 

Γ τ : ; ; I 3 N 0 0 3 ( 2 , 4 0 0 ) , Ο Ο Τ Α Β ( 3 , 1 0 0 ) 
D MENS ION 5 C D ( 7 2 ) , T I T ( 2 0 , 6 ) , X ( I O C ) , Y( IOC) , X X ( 2 0 , 1 3 C ) , YY{ 2 0 , 100) ,N5 

1CX(20) 
REAJ ( 5 , 9 8 ) NSCAL 

98 FORMAT 116) 
DJ 20C INSC=1,NSCAL 
REA3 ( 5 , 1 0 0 ) DMIN,DMAX,ETHA,P1,P2,T 

1 0 0 FORMAT Í 6 E 1 2 . 4 ) 
READ 5 , i e0 ÎEM,C3RDA,CORDB,R,PSI ,SCALE 
READ ( 5 , 1 0 3 ) R H O , R C I R , R C I R A , Ϊ Τ I T I I N S C , I ) , 1 = 1 , 6 ) 

1 0 3 FORMAT Í 3 E 1 2 . 4 . 6 A 4 ) 
CALL FINIM(CQRDA,C0RD3) 
I F Í R C I R . L T . I . E - 5 ) GO TO 101 
CALL CIRCLE(RCIR,2 ) 

1 0 1 I F ( a C I R A . L T . l . E - 5 ) G 0 TO 104 
CALL CIRCLE(RCIRA,2) 

1 0 4 CONTINUE 
DMIN=DMIN-0.1*DMIN 
IND=1 
I F ( E M . G T . O . O ) GO TO 102 
IN0=2 

102 CONTINUE 
CALL CIRCLE(0.25,1) 
CALL D3VAL(OMI N,UMAX,ETHA,RHO,PI,P2,Τ,EM,ODQ »DQTAB,ΜΡΟΙΝ,ΙΝ3, NDQT} 

ν­
α: 

>,PSI WRITE 1 6 , 1 3 0 ) R 
1 3 0 FORMAT l/////* MAH 

i , E 1 2 . 5 / / ) 
WRITE (6,131) (TIT(INSC,I),I=1,6) 

131 FORMAT (IH ,6A4/) 
DJ 14C I»1,IJD0T 
XX(INSC,IÍ=DQTAB(3,I) 

140 Y Y ( I N S C , I ) = D Q T A B ( 1 , I ) 
NSC;C(INSC)=0-NDQT 
IF(IND.GT.1)NSCX(INSC)=NDQT 
N;}üT=NPOIN-NDQT 
DO 135 I=L,NJDT 
I F { ) D J . ( 2 , I ) . L T . 0 . 3 ) GO TO 135 
WRITE ( 6 , 1 3 2 ) Q D Q ( 1 , I ) 

1 3 5 CONTINUE 
132 FORMAT (· Q=

f
,lPE12.4) 

136 FORMAT {· 0=«,1PE12.4) 
DO 137 I=1,NDQT 
IF(DJJAB(2,I).GT.-0.3) GO TO 137 

DIVISION MARKS OF THE SCALE Ρ,= ·,Ε12.5,· Ρ$Ι=· 



ISN 0049 
ISN 0050 

ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 

ISN 
ISN 
I SN 
ISN 
ISN 
ISN 

0051 
0052 
0053 
0055 
0056 
0057 
0059 
0060 
0061 
0062 

0063 
0064 
0065 
0066 
0067 
0068 

137 

106 

WRITE (6,136) 
CONTINUE 

DQTABÍl,!) 
PAGE ?32 

NüDT-IiPOIfl-IlDrr 

NIPOIN)) GO TO 106 
...X-QDuU.... ...... 

I F ( A M N . L T . 4 i f o ( l i - . 

ΑΜΙ.Ί»αθθΤΐ|ΓΤ 
RAMSE=ALfJG10 (A.MAX)-AL0G10( AMIN) 

Γ+ί) 
:ι,ΐ)) GO ΤΟ 108 

CALL C IRCS (R, PSI, SCALE, QDii, RANGE, XF,YF,NPOI Ν) CONTINUE 

ï 

:N.LT.^DJ( 
JDQÎI.IÏ 

108 
200 

DRAW THE GRAPHS 
CALL FINIMpO.,-20.) CALL GRL0G{XX,YY|NSCX,NSCAL) CALL FINIMO.,0.) CALL FINTRA STOP END 

w 
NO 



LEVEL 15 ( 1 JAN 6 8 ) J S / 3 6 0 FORTRAN H DATE 7 3 . ? 2 3 / 1 5 . F ° . 3 3 

ISN C002 

ISN 
I SN 
ISM 
I SN 

SM 
SN 
SN 
SN 
SM 
SN 
SN 
SN 

ISN 
I SM 
ISN 
ISN 
I SN 

SN 
SN 
Sii 
SN 
SN 
SN 
SN 
SM 

COMPILER DATIONS - ΝΛΜΕ= MAIN, 3PT=CD , LINECNT=5ü, SDUP.CE, BCD,MOL I S T , N3DEC*, LO* Π, ^ Ρ , r P F 3 I T , MOI 3 , Μ3)Τ1».Ε!: 

0003 
0004 
0005 
0006 
0007 
0003 
0009 
0010 
0011 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
002 5 
0026 
0027 
0028 
Ü029 

C 
C 
c 
C 
c 

SUBROUTINE CIRCS (R, PSI, SCALE, JDQ,RANCC,XF,YF,NPOIN) 
SJBRJJTINE CIRC DRAMS A SEGMENT FOR A Q-INTERVAL GIVEN BY RANGE 
STARTING FROM THE COORDINATESIR,PSI) 
NPOIN SCALE DIVISIONS ARE DRAWN ACCORDING TO QDQ. 
'SCALE' IS THE LENGTH OF ONE DECADE 

DIMENSION QDQ(2,400),X(10PC),Y(1000) 

DEL=I./tR*20.) 
PI=3.14159 
AMG;1=PSI-KRAMGE*SCALE)/R 
X(1)=P3I 
IA=1 

100 IA=IA+1 
X(IA)=X( IA-D+DEL 
IF(X(IA).LT.ANGM) GO TO IDC 
SCA=3CALE/R 
DO 102 1=1,IA 

102 Y(I)=R 
CALL LINEP0(X,Y,IA,1,1) 
CALL LINEP0(X,Y,IA,1,1) 
CALL LINEP0(X,Y,IA,1,1) 
XF=X(IA) 
YF=Y(IA) 
αΜΐΜ=^ϋα(ΐ|ΐ) A^1IN=AL0G1G(3MIN) DJ 1C6 1=1,NPOIN ORD=PS1+(ALU 310(JDu(1,1))-AQMIΝ)*SCA DI = JiU(2,I) CALL DIVIJRQ,R,DI) 10ό CONTINUE RETURN END 

4*. O 



LEVEL 15 { 1 JAN 68) 

COMPI 

OS/360 FORTRAN H DATE 7 0 . 0 2 3 / 1 5 . 5 9 . 3 5 

ISN 0002 

ISN 0003 

ISN 0004 
ISN 0005 
ISN 0006 
ISN 0007 
ISN 0008 
ISN 0009 
ISN 0010 

ISN 0011 
ISN 0012 
ISN 0013 

ISN 001 
ISN 001 

0016 ISN 
ISN 0017 

0018 
ISN 0019 
ISN 0020 
ISN 0021 
ISN 0022 
ISN 0023 

0024 I SN 
ISN 0025 
ISN 0026 
ISN 0027 

LER OPTIONS ­ MAME= MAIN,OPT=00,LINECNT=50,SOURCE,BCD,NOLIST,NDDECK,LO,*D,«rP,tnFDIT,MOID,NOXREF 
SUBROUTINE DQVAL(DMIM,DMAX,ETHA,RH0,P1,P2,Τ,EM,QDQ,DQTAB,NPOIN, ΙΝΓ» 

^ U B Ä W T I N E DQVAL CALCULATES THE VALUES OF Q WHERE THE Q DIVISION 
MARKS AND THE 0 DIVISION MARKS MUST BE PLACED. 

DIMENSION QDQ(2,400),DQTAB(3,100),QDTAB(2,300) 

GO TO (100,102),IND 
100 CALL QGAS(DMIN,ETHA,P1,P2,T,EM,QMIN) 

CALL aGAS(DMAX,ETHA,Pl,P2,T,EM,QMAX) 
GO TO 104 

102 CALL QLIQ(DMIN»ETHA,P1,P2,RH0,QMIN) 
CALL ¿Liq(DMAX,ETHA|Pi»P2,RH0,QMAXÌ 

104 CALL DIVMRKÍDMIN,DMAX,QMIN,QMAX,DQTAB,QDTAB,NDQT,MQDT) 

DO 110 I­1,ΝJOT 
QDQ(l,I)=QDTABtl,I) 

110 QDQ(2,I)=QDTAB(2,I) 

DO 118 I»1,NDQT 
IA=I+NJDT 
DD»DQTAB(1,I) 
GO TO (112,114),IND 

112 CALL ÇGAS(DD,ETHA,P1,P2,T,EM,QA) 
GO TO 116 

114 CALL JLIQÍOD,ETHA,PI,P2,RHO,QA) 
116 D0TABl3,i)=QA 

ÜDQTI»ÍA!»QA 
ûDql2,IA)=DQTAB(2,I) 

118 CONTINUE 
NPOIN=NÍDT+MDQT 
RETURN 
BID 

I 

rt» 



LEVEL 15 { 1 JAN 68) OS/360 FORTRAN H DATE 7 0 . 0 2 3 / 1 5 . 5 9 . 3 8 

I SM O 0 0 i C 0 H P , t E * °PÎSSfîauÎlUÊMiî:i QÏÔÏgf8£IS?rèïK§SîÎ5C?0 · S 0 * m C 6 · B C D · " " - " T · »DECK.LO^P. Κ».Ρ. finPDI T. NOI Β. N3XREF 
C SUBROUTINE JLIQ CALCULATES THE LEAK RATE FOR A LIQUID 

C THROUGH A STANDARD CAPILLARY OF UNIT LENGTH. 
ISM 0003 " QL=2.45*D**4*(P1-P2)*1.E-10/ETHA 
ISN 0004 QL=JL*RH0*3.6*l.E+6 
ISM 0005 RETURN 
ISN 0006 END 

Φ· 
to 



LEVEL 15 I 1 JAN 63) OS/360 FORTRAN Η DATE ?:?.323/15.«?9.40 

COMPILER OPTIONS - MAME* MAIM,OPT=00,LINECNT =50,SOURCE,BCD,NOL IST, NODECK.LOAP, f ^ P , NHFDIT, M3I3,N3XREF 
ISN 0002 SUBROUTINE QGASÍDjEJHA,P1.P2,T ,EM,QG) i T r cnn „ A O 

C SUBROUTINE JGAS CALCULATES THE LEAK RATE FOR A GAS 
C THROUGH A STANDARD CAPILLARY OF UNIT LENGTH. 

ISN 0003 
ISN Ü004 
ISN 0005 
ISN 0006 
ISN 0007 
ISN 0008 

ARGA-2.88* (PI -P2)*§ORT{T/EH) 
ARGB

a
C.093*D* tP l * *2 -P2* *2 ) /ETHA 

QG» D**3*(ARGA+ARGB)*1.E-6 

mm,
160

· 
EMD 

00 



LEVEL 15 ( 1 JAN 68) üS/360 FORTRAN H D*TF 7?, e n . Uo 

COMPILER OPTIONS - NAME= MAIN,'3PT=C 0 , LIMECNT=50, SOURCE, BCD, NOL IST,MODECK ,LO* P, MA o, \\y^\ τ , MD! 3 , *PXD EF 
ISN 0002 SUBROUTINE DIVMRK(DMIN,DMAX,QMIN,QMAX,DyTAB,QDTAB,NDQT,NQDT) 

SUBRJUTIME ÜIVMRK CALCULATES THE NECESSARY DIVISION MARKS FOR THE 
1 0 / 2 SCALES AMD GIVES ALSO THE LENGTHS OF THE MARKS IN CM. 

I SN 
ISN 

ISN 
I SN 
ISN 

I SN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 
ISN 
I SM 

ISN 
ISN 
ISN 
ISN 
I SN 
ISN 

I SN 
I SN 
ISN. 
ISN 

0003 
C CO 4 

I m 0005 

0006 
0007 
0008 

0009 
0010 
0011 
0012 
0013 
OC 15 
0017 
0018 
0019 

0020 
0022 
0024 
0025 
0026 
0027 

0028 
0029 
0030 
0031 

C 
C 
C 

DIMENSION 0QTA3(3,100),QDTAB(2,300),AA(18),EN(18) 
DATA AA/l.C,1.5,2.C,2.5,3.C,2.5,4.O,4.5,5.C,5.5,6.C,6.5,7.0,7. 5,8, 
-0,3.5,9.0,9.5/ 

r\ Α τ * r» » i å Λ j Λ ft r\ *% r\ ^ /-»*■% Λ * Λ *> •■» * *-.-■» Λ « ·-« <t ¿- * « « Λ A DATA EN/0.4,0.1,0.2,0.1,0.2,0.1,0.2,0.1,0.3,0.1,0.2,0 
12,0.1,0.2,0.1/ 

NOQT-0 
NJDT=0 
FACT=i.E-20 

DJ 1C2 1=1,30 
DU IOC J=l,13 
ARGA=FACT*AA(J) 
ARG3=C.-EM(J) 
IF(ARGA.LT.DMIN) GO TO 98 
IF(ARGA.GT.DMAX) GO TO 98 
NDQT-NDuT+l 
D2TAB(l,NDiT)=ARGA 
DJTAB12,MD^T)=ARGB 

1 , 0 . 2 , 0 . 1 , 0 * 

^ 
*· 

93 GO 
GO 

IF(ARGA.LT.JMIN) 
IF(ARGA.GT.iMAX) 
NJDT=NJDT+1 
QD TAB (1,N)DT) = ARGA 
O.DTAB(2,NjDT) = EN(J) 

100 CONTINUE 

FACT=FACT*10. 
102 CORTINUC 

RET Jilt 1 

τα 
TO 

ICO 
ICC 



LEVEL 15 ( l JAN 6G) US/36C FORTRAN Η DA
T
F 7Γ.???/? F.î?°.45 

ISN 

I M\ 
ISN 
I SM 
ISN 
ISM 
I SM 
I SN 
I SN 

COMPILER OPTIONS - NAME» MAIN,OPT=OD ,LINCCNT=5C,SOURCE,BCD,NCL IST,NODEC< ,LC*P, W » , MncpiT, VO!3,MOXREF 

C002 SUBROUTINE DIV(PHI,R,EN) . ,. „ti 
C DIV DRAWS A LINE OF LENGTH »EM· CM 
C PERTZNDIÇULAR ON A CIRCLE WITH RADIUS 'R' 
C THIS LINE POINTS INWARDS I¿ »EN« IS NEGATIVE 
C »PHI· IS THE ANGLE OF THE RADIUS WITH THE X-AXIS. 

0003 
C0C4 
0005 
0006 
C007 
Û0C6 
0009 
0010 

DIMENSION X(2i,Y(2J 
X(lT»R*COS(PHlJ, ., 
X(2)=(R+E.1)*C0S(PHI) 2)=( 

1J«F. , .. „*S IN (PHI f 
Y(2)»(R+EM)*SIN(PHI) 
CALL LINS(X,Y,2,1,1) 
RETURN 
EID 

ui 



LEVEL 15 ( 1 JAM 68) OS/360 FORTRAN H 0*TF 7? . ? 2 3 / 1 F. F=>. t τ 
COMPILER OPTI CMS - NAME* MAI M, 3PT=C 3 , LINECNT = 5C , SOURCE, BCD, NOL IST, NOPECK ,LO* Ρ, M ' e , MOFO I T , MO! 3 , M "»Xo F^ 

ISN 0002 SUBROUTINE CIRCLE(R, IK) 
C SUBROUTINE CIRCLE 3RAWS A CIRCLE WITH RADIUS R 
C AROJND THE POINT (C ,0 ) 
C IK* i ,CONTINO JS LINE 
C IK=2,3ASMED LINE 
C 

ISN U003 DIMENSION X(1000) ,Y( iOOO) 
ISN 0004 P I * 3 . 1 4 1 5 9 
ISM 0005 D E L = i . / ( R * l C . ) 
ISM 0006 IA=1 
ISM 0007 X ( I A ) = 0 . 
ISM 0008 100 IA= IA+1 
ISN 0009 X ( I A ) = X ( I A - 1 ) + D E L 
ISN 0010 I F ( , C ( I A ) . L T . ( 2 . * P I ) ) GO TO 100 
I SN 0012 DJ 102 1 = 1 , ΙΑ 
ISM 0013 102 Y ( I ) = R 

C 
ISM 0014 GJ TO ( 1 0 4 , 1 0 3 ) , I K 
ISM 0015 104 CALL L I N E P O I X , Υ , I A , 1 , 1 ) 
ISN 0016 SO TO 10 3 * 
ISN 0017 106 CALL OASMPO(X,Υ , ΙΑ , Ι ,1 ) * 
ISM 0013 103 CONTINUE 
ISN 0019 RETJRN 
ISM 0020 END 



LEVEL 15 I 1 JAN 60) OS/360 FORTRAN Η DA
T
E 7D.D23/Î5.59.50 

COMPILER OPTIONS ­ MAME» MAIN,OPT=C:,LINECNT = 50,SOURCE, BCD,NOL IST, N3DECK, LO
A
.P, MAP, NOFDIT, MOI 0, M3XPFF 

ISN 0002 SUBROUTINE GRLOG(XX,YY,NSCX, NSCAL) 

GRLOG DRAUS »NSCAL» CURVES ON LUG­LOG SCALE 
CURVE I IS GIVEN BY IABS(NSCX(I)) POINTS 
IF NSCX IS NEGATIVE A DOTTED CURVE WILL BE DRAWN. 

I SN 
ISN 
ISN 
ISN 
ISN 
ISN 

ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 

I SN 
ISN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 
ISN 

0003 
0004 
0005 
0006 
0007 
0008 

0009 
0010 
0011 
0012 
C013 
0014 
0015 
0016 
0017 
0018 
0019 
0021 
0023 
0025 
0027 
0028 
0029 
0030 
0031 

0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
004C 
0041 

:x(20) DIMENSION X X Í 2 0 , 1 0 0 ) , Y Y ( 2 0 , 1 0 0 .NSÇX2C. 
Dlf jENSlJN A A Í 9 ) ¿ E N { 9 J , V Í 1 0 0 ) , W ( Í O C ) , B C ( 1 ) , A L X ( 1 5 ) , A L Y ( 9 ) 

A A / 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 9 . 0 / 
E N / 0 . 3 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 2 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 / 
R f / u n ' / 

OF CAPILLARY IN MU UNITS 

_JM£ 
DATA 
DATA 
DATA BC/'IO

1
/ 

DATA ALX/» J IN CLUSEC FOR DASHED LINES OR IN MG/HOUR FOR FULL LINF 
IS »/ 
DATA ALY/»DIAMETER 
YLENG=15. 

'23. 
lil) 

1,1 

ill 
í=i,NSÇAL 

MG' XLE.N^ 
XMIN*XXI 
XMAX=XXI 
YMIN*YYI 
YMAX»YY! 
DO IOC ■vl 

N=IAB5(NSCX(I)) 
DO 100 J»1,N 
IF(XNIN.GT.XX(I,J))XMIN=XX I,J) 
IF iXMAX.LT.XXÍI,J))XMAX=XX(I,J) 
IF{YMIN.GT.YY(I,J) )YMIil=YY I, J) 
IF<YMAX.LT.YYtI,J))YMAX=YY(I,J) 

100 CONTINUE 
AX=XLENG/(ALJG10(XilAX)­ALOG10(XMIN)) 
BX=0.­ALQGIC(XMIM) 
AY=YLENG/ÍAL UG 10 (YMAX) ­ ALOG10 ( YMIN) ) 
BY»0.­AL0G10(YMIN) 

DRAW THE AXIS 

V(1)*0.0 

W(l)=C.O 

V(2)»AX*(ALOG10(XMAX)4­BX) 

W(2)»C.O 

CALL LINE(V,J,2,1,1) 
VUÏ­0.0 
W(2)*AY*(AL0G10(YMAX)+3Y) 
CALL LINE(V,W,2,1,1) 
FACT­l.E­20 
DU 104 I »1,30 



PAOF 002 
ISM 
ISM I SM 
ISM ,, SN 
.: SN ::sN ;;SN 
,;SN SN ;;SN :SN ;SN 
..3H 
;:SN ; SN :SN SN SN :SN :SN ::SN .;SN ::SN .SN .;SM ::SN :SN :SN :SN :SN I SN 
.:SN .:SN :;SN :SN ;;SN ;SN .SN :SN ; SN :;SN .;SN 

zn • C M 
Τ *~ * ΐ 
.. Oli .:SN ISN 

0042 
0043 0044 0045 0047 0049 0050 0051 0052 0053 0054 C 05 6 
0057 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0076 0078 0079 0030 0081 0032 0083 0035 0086 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 

DU 102 J=1,9 
ARGA=FACT*AA(J) ARG3=EN(J) IF(ARGA.LT.XMIN) GO TO 102 IF(ARGA.GT.XMAX) GO TO 102 
V(I)=AX*(AL0J10{ARGA)+ûX) 
W(1)=0.0 
V(2)=V(1) 
W(2)=0.C-ARGB 
CALL LIN£(V,M,2,1,1) 
IF(ABS(ARG3).LT.0.25) GO TO 102 
ARCA=ARGA+G.C001*ARGA 
IF(ARGA.LT.i.O) ARGA=ARGA-0.0002*ARCA 
ARGA=ALOG10(ARGA) 
YT=1H2)-0.15 
XT=V(1) 
CALL NUM3CRIXT,YT,0.15,0.0,ARGA,-1) 
XT=VIl)-0.25 
YT=YT-0.2 
CALL SYM3L4ÍXT,YT,0.2,0.0,BC,2) 

102 CONTINUE 
FACT=FACT*10. 

104 CONTINUE 
FACT=1.£-2C 
DO 112 1=1,30 
DO 110 J=l,9 
ARGA=FACT*AA(J) 
ARG3=EN(J) 
IF(ARGA.LT.YMIN) GO TO 110 
IF(ARGA.GT.YMAX) GO TO 110 
V(1)=0.C 
W(1)=AY*(AL0G10(ARGA)+3Y) 
V(2)=0.0-ARGB 
W(2)=W(1) 
CALL LINElV,W,2,l,i) 
IF(A3S(ARGB).LT.0.25) GO TO 110 
ARGA=ARGA+0.0001*ARGA 
IF(ARGA.LT.l.O) ARGA=ARGA-0.0CO2*ARGA 
ARGA=AL0G10(ARGA) 
XT=7(2)-0.13 
ΥΤ=Λ(2) 
CALL NUM3ER(;CT,YT, 0.15, 0.0, ARGA,-1) 
XT=XT-0.25 
YT=YT-0.2 
CALL SYM3L4lXT,YT,0.2,0.0,BC,2) 

110 CONTINUE 
FACT=FACT*10. 

112 CONTINUE 

4i 
00 
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ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
I JU 
¡SN 
ISN 
ISN 
ISN 
ISM 
ISN 
ISN 
ISN 
ISN 
I SN 
I SN 

0098 
0099 
0100 
0101 
0102 
0103 
0105 
0106 
0107 
0108 
0109 
0110 
O l l i 

811i 
8HÎ 
0116 

8" DRAW THE ACTUAL CURVES 

DO 126 IN»1,NSCAL, 
lNP»lABS(NSCXflN)] 

120 

CALL DASU(V,W,INP,1,1) 
Ο ΤΟ 126 
ALL LINEIV,W,ΙΝΡ,Ι,Ι) 
ONTINUE 

YT»­Ì. 

CALL SYM3L4(XT,YT,0.2,0.0,ALX,6C) 
XT=­1. 
YT»AY*(AL0G101YMAX)+BY)­K>.5 
CALL SYM3L4(XT,YT,0.2,0.0,ALY,36) 
RETURN 

ENO Φ. 
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