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ABSTRACT 

This report deals with the problem of determining some of the fundamental 
parameters of stationary ergodic random signals (mean value, auto- and cross-
correlation functions, covariance functions, probability density, e t c . ) , using 
continuous estimators and working from time history analog records. 

Within this context particular reference is made to the possibilities of the 
S.D.A. statistical analyzer, designed and built at the J.R.C. — Euratom, Ispra. 
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ON THE STATISTICAL PROPERTIES OF SOME ESTIMATORS 

OF LINEAR SYSTEM PARAMETERS IN TIME DOMAIN ANALYSIS ») 

INTRODUCTION 

In a previous report ) we discussed the statistical 
properties of continuous estimators of some functions belonging to the 
frequency domain (power and cross-power spectral densities and Fou­
rier transforms) in the case of random, stationary ergodic signals. 

In this report a similar sort of study has been extended 
to cover the correlation and probability density functions. A know­
ledge of these functions, like that of those mentioned in the first pa­
ragraph, is of great interest for the identification of systems and 
processes and for choosing the most appropriate and accurate mathemati-

2 3 cal models ) ). 

As a particular example, the cross-correlation function 
has proved itself to be most helpful in studying vibration transmis­
sion pathe in installations and structures, while probability density 
can indicate the presence of non-linearity in the processes or systems 
being examined, as well as provide some informations about the nature 

4 5 and the origins of the noise ) ) of system variables. 

As already in the case of spectral estimators, ) the 
estimators analyzed here are also of a general type and constitute the 
algorithms upon which the operation of the S.D.A. statistical dy­
namic analyzer, built at C.C.R. - Euratom, Ispra, ) ) is based. 

*) Manuscript received on 21 May 1970 
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1.) MEAN VALUE ESTIMATION 

The mean value μ of a random variable x(t) is 
8 X 

defined as ) : 

μχ = E(x(t)) (1) 

but in the cases where x(t) is stationary and ergodic, one can sub­
stitute for relation (1) : 

Τ 
1 Γ 

μχ 
l.i.m. ψ j x(t)dt (2) 

o J T-+ °° 

g 
in which l.i.m. means limit in mean square ) . 

It must be noted that for (2) to be valid, (and together 
with it similar expressions (25), (42), (56), (63) which are rela­
tive to the mean square value and to the correlation and covariance 
functions) it is not necessary that x(t) and y(t) are ergodic 
in the strict sense (strongly ergodic): it is sufficient that they 
are ergodic with respect to the covariance functions. Random func­
tions are said to be strongly ergodic if the equivalence of time and 
ensemble averages is extended to all their statistical properties. 
Taking into consideration expression (2), the mean value of a statio­
nary, ergodic random signal x(t) can be estimated by using estima­
tor: 

μχ ψ f x(t)dt (3) 
J o 

having chosen the instant at which the measurement begins as the time -
axis origin. 

./. 
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8 
Let us examine estimator (3), which is an unbiased estimator, as ) 

Τ 

Χ> ■ Τ J * W J « = μχ (4) 

o 

where we used the interchangeability property of the operation of fin­

ding the mathematical expectation and the operation of integration ), 

Because the estimator we are dealing with is unbiased, 

its mean­squared error is equal to its variance, which is given by: 

var(/y = B(íy­ jV¿x) ]
 2
 = Ε(μ

2
χ) ­ μ

2
χ (5) 

Substituting (3) in (5) we have: 

Τ Τ 
s var(íx) = Ε Γ ­ 7 f x(t)dt ί χ(τ )άτ 

ο ο 
" μ χ 

T T T T 

= -J j j E(x(t)x(r)) dt dr - μχ = h i l C xx( W ) d t dr 

o o o o ( 6 ) 

Q 

which gives at last ): 
T 

~ * V ■ ?ƒ (^·ψ-)θβ(θ),β(τ)*· (7) 
-Τ 

. / . 
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where C is the autovariance function of x(t) and PVV\T) xx xx 
is the normalized autocovariance function, given by: 

C (τ) 
ρχχ ( τ ) = C (0) ( 8 ) 

xx 

If x(t) is a real function, its covariance function is real and (7) 
can be reduced to the form: 

Τ 
varC/y = f ƒ (ï ­^)cxx(0)Pxx(r)dr (9) 

If the autocovariance function C (τ) sa t i s f i e s the condition: 
xx 

Τ 

O 

we can say that the estimator (3) is consistent, as: 

lim var(£x) = 0 ( l l) 

T­*oo 

The condition (10) is satisfied in the case of ergodic processes ), 

It will be observed that while the property (4) is a 

guarantee against the appearance of a systematic error when replacing 

the mathematical expectation by its estimated value, the property of 

consistency guarantees that we can reduce the statistical errors by in­

creasing the time T of integration. 

./, 
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If the integration shown in (3) is repeated k times, 

and the results averaged out,the following estimator is used to deter­

mine the mean value: 

k t.+T. 

k¿x
 β
 T k ¿ |

 x(t) dt (12
> 

i=1 
t 

where t. indicates the instant at which the i repetition be­
1 

gins; this estimator, like the preceding one, is unbiased, inso far 

as: 

_k t.+T 

E
W ■ ï ï }_, ƒX

 ■«*»
 at

 - "»
 <13) 

1=1 ι 

as the expected value operation is a linear operator. 

As far as the variance of the estimator (12) is concer­

ned, it can be obtained simply be considering the estimations û : 

χ,ο 

μ j. ; ·...... μ of the mean value found in the k repetitions, 

x>' Xj k 

as k measured values of a random process. The sample mean is 

therefore: 

1 V « 
lc'x ­ k ¿^ μχ,ί (14) 

i=1 

where the subscript i indicates the result of the ±l measu­
rement. 

./, 
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Hence we can w r i t e : 

v a r >,] ■ ' Μ ­ Κ Λ ] ] 2 ■ «[(i [ «,.)']■ 
i=1 

(Ί5) 

and, by developing (15): 

Κ κ 
(16) 

i=1 i,0=1 
Ut 

Remembering that for two random variables ζ and w we can write 
8 ) : 

E(V) = a\ + [ <■) j 
E(z w ) = a 

rs 
(17) 

Ί1 a (τ) 
zwx ' 

E(z).E(w) +Pzw(r)VCzz(0)Cww(0) 

E(z)-E(w) + P 2 W(T) · ογ ow 

where α is the moment of order r+s , expression (l6) can 

•A 
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be rea r ranged : 

var [A] ■ i [«* ['„i ] * 4 }+ Ψ Λ* ? « ["„i] I "ij(T > ­ 4 
i,j=1 

= ^[v][1 + *WT)] (18) 

i,j=1 

where p..(τ) represents the degree of correlation existing between 

the values assumed by the variable x(t) in the ith interval and 

those assumed in the jth interval. 

We can reduce (18) to a simpler, though only approximate, form: 

var [A] var 

­i 1+(k­l) Pk(r) 

(19) 

where p. .(τ) is infact assumed to be constant whatever the value: 

1J 

of i and j . 

From (18), remembering that var(¿ .) is actually 

given by the second member of (7) , we have: 

lim var 

T­+ °° 
k": (20) 

by virtue of the hypotheses already made for the case of estimator (3), 

except that now the convergence is more rapid because of the divisor k , 

It can once more be seen that similarly: 

./. 
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lim var I A = O (21 ) 

even if Τ remains a finite value. 

This is all obviously valid when p. .(Ό is less than unity. If 
ρ (τ) was equal to one, however, the repetitions would not have any 
ij 

effect, and the result would be: 

var [A] = T a p [ V ) <22> 
as can be imagined from the fact that a p. .(τ) with identically uni-
tary values would be the same thing as always making measurements over 
the same time interval. The most favorable situation, however, is 
that of completely uncorrelated measurements, for which p. .(τ) has 
a value of zero, so that we have: 

var ]Λ 
1 — var k x.i (23) 

In order to have p. .(τ) values small enough, it is obviously neces-
sary to choose the instant t. from which the measurements begin suf­
ficiently far apart. 
In practice ρ, (τ ) will be greater than zero but less than one, because 
of which the variance of estimator (12) will be less than that of 
estimator (3). 

In appendix A a direct procedure to evaluate the influence 
of the repetitions on the estimate variance is shown. 

The S.D.A. analyzer employs estimator (12) in order 
to determine the mean value of a signal under examination; the estima­
tion of the mean value is done by S.D.A. when used as a digital voltmeter 
(D.V.M. function): more details will be given in chap. 5. 

./, 
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2 . ) MEAN SQUARE VALUE ESTIMATION 

The mean s q u a r e v a l u e X" of a random v a r i a b l e x ( t ) 

i s d e f i n e d by: 

m„ E 

2,x 
x 2 ( t ) ] (24) 

where the symbol m„ of the moment of the second order is introduced. 

¿ ,x 

If x(t) is stationary and ergodic, we can write: 

"2.x 
l.i.m. 

Τ ­* °° 

l
(t) dt (25) 

Let x(t) therefore be a stationary ergodic random signal; its mean 

square value can be evaluated by the estimator: 

m, 2,x 

1 

Τ 
\t) dt 

(26) 

which i s unbiased, since i t s expected value i s given by: 

m, !,xj TJ 

Τ 

E ' ( t ) dt = m 2 , χ (27) 

Let us now look at its variance (equal to its mean­squared error, owing 

to unbiasedness of the estimate) : 

var m 2,χ 
J 5,x]-[

E
p2,xJ]

2
 =

 Β[Α!,χ]-«ί,χ (28) 

./. 
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from which, introducing (26) and carrying the mathematical expectation 
operation inside the integration operation, we obtain: 

var m 2, χ 
.Τ .Τ 1 [ Γ = 7· Ι ο ο 

Xa (t) χ2(θ) dt do -] m' 2,χ (29) 

Remembering now the expression relating the mathematical expectation 
of the product of four normal random variables to their correlation 
functions and mean values ): 

E χι X2X3X4 ] = R12R 34 + B13R24 + R14R23 - 2 *ί *e *a *4 (30) 

we can rearrange equation (29) , so tha t i t becomes: 

var 2,χ J 
Τ Τ 

L. f f 
m 2 

R2 ( o - t ) dt d0 - 2 μ4 
χ χ ν χ (3θ 

o o 

If we wish to express (31) in terms of the autocovariance function 
C (τ) and to resolve p a r t i a l l y the double in tegra t ion , we have f ina l ly : 

var !_
Ä
2,xJ = T 

-T 

1 - ¡■^ΛΓ C2 (τ) +2 μ» C (τ) 
'Χ J XXs Χ XX 

dT (32) 

If x(t) is real: 

""•[
â
2,x] - I ƒ ( 1 ' f )KX ( T ) * 2 4 Cxx(T)_ άτ (33) 

. / . 
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In both cases the variance tends to zero if Τ tends towards the in­
finite, always presuming that the autocovariance function and its squa­
re are absolutely integrable; if this is so, then: 

lim var 
Τ*»00 M (34) 

namely, the estimator is consistent. 

Where the measurement is repeated k times and the k results 
are averaged out, the estimator takes the form: 

ι ran k 2,x 

k t.+T 

τ i £ ƒ x3<t} dt 
i=1 *i 

(35) 

where t. is the instant at which the i repetition commences, ι 
This estimator is also unbiased: 

E [A,] - Hyf ' -h» dt m 2,x (36) 
i=1 

while as far as its variance (equal to its mean-squared error) is con­
cerned, what we have already said about the mean value estimator is va­
lid. One has, in fact: 

κ 
var[kÄ2,x] = ÏÏ[1 + kT P Ì J ( T ) ] · var m 2,x,i (37) 

i,j=1 

where var m_ . represents the variance of an estimate carried 
out by a single measurement, and is given by expression (32). 

./. 
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By assuming ρ. .(τ) to be constant whatever the values 

of i and j , we can write the approximate, simplified expression: 

var [A.,] var m 2,x,i 

1+(k­1 )pk(r) 

(38) 

The less the different measurements are correlated, the greater is the 

efficiency of the repetitions in reducing the estimate variance. 

Where x(t) has a mean value of zero, (38) becomes 

(if x(t) is real) : 

var k
m
2,x 

1+(k­1 )pk(r)
; 

it­ σ< 

τ
2 x 

! (T­r) PHT) dr (39) 

where the autocorrelation function R (τ) has been expressed as: 

R
xx^

T
^
 = σ

χ '
 P
^
T
^
 = v a r

W ' P(
T
) 

(40) 

It will be observed that, if x(t) has a mean value of zero, the moment 

of the second order, or mean square value m , coincides with the 

¿ ,x 
variance σ

2
 , 
χ 

In the S.D.A. statistical dynamic analyzer the estimation 

of the mean square value is done on the basis of estimator (35); more 

information about this will be given in chap. 6. 

./. 
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3.) CORRELATION FUNCTION ESTIMATION 

3.1.) Cross­correlation function estimation 

Let us consider two random variables x(t) and y(t) ; 

11 12 
their cross­correlation function is defined as ) ) : 

R (τ) = E x(t) y(t+r) 
xy j_ (41) 

If the variables are stationary and ergodic, the cross­correlation func­

13 
tion may be computed by a time average, that is ): 

a (τ) 
xy

v
 ' 

x 

l.i.m. ^ / x(t) y(t+T) dt 

Τ ­» oo
 l J 

(42) 

Therefore, as in the case of mean square value, the estimator of the cor­

relation function of two real ergodic stationary random functions can 

be provided by: 

a (τ) 
xy 

* 

= i x(t) y(t-n-) dt (43) 

where Τ is a sufficiently long period. 

Let us look at the properties of this estimator. We find: 

E â (τ) 
xy

v 1 ƒ EJ~x(t) y(t+r)"j a (τ) xy (44) 

that is, it is not biased. 

./, 
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Its variance (equal to its mean-squared error), defined as: 

var £ (τ)Ί E R2 (τ) xy "ι E I R (τ ) xT (45) 

i s given by: 

var 

Τ Τ 

EV>] ■ ?l ƒ 
o o 

x(t) y(t-n-) χ(θ) y(e+r) dt dø - Rxy(r) 

(46) 

Expression (46) shows that, in order to evaluate the variance of the 
estimator of the cross-correlation functions, knowledge of the correla­
tion functions is not sufficient; it is also necessary to know moments 
of higher order. 

Nevertheless, when the random processes under examination 
are normal processes, the moments can be expressed in terms of mathema­
tical expectations and correlation functions. In general, for four 
normal variables x1(t) , x_(t) , x (t) and x,(t) , expres­
sion (30) has been proved. 
In the present case we can write: 

xx(t) = x(t) ; , 

Xa(t) = x(0) ; 

*a(t) = y(t+r) 

Xi(t) = y(0+r) 
(47) 

for which (46) becomes: 

./. 
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τ τ 

var [ V T ) ] ■ JS Jl4y<*> ♦*«<»­*> V'­*» * 
o o 

+ R (ø+T­t) R ( ø ­ t ­ r ) 
xy yx 

2 μ2 μ2 1 dt dØ ­ Η2 (τ ) 
χ y xy 

(48) 

which, when developed, gives us the expression we are seeking: 

varper) 
Τ 

= * / T(1 " i î L ) [ R ­ ( " ) v » > +
 V " + T ) VC"­T )" 

dn + 

- 2 μ
2
 μ

2 
M

x
 M

y (49) 

or, in terms of covariance functions: 

var 

χ 

[>
t T )

]
 =

 * / T(
1
 " * ) l°**

M
 "¿

η)
 * V"

+T)
 V

(
"-

T)
] dn + 

χ 

* ƒ (1 " ^ ) fa0»+ Φ**Μ * v />)♦ 

+ ν7°νχ(ΐ?"Τ ^ dT? (50) 

Therefore» where C ^ , C , C^'Cyy a n d c
x y · Cyx a r e absolutely 

in tegrable , (5θ) allows us to wr i te : 

lim var 
T-*°° LV>] (51) 

. / . 
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which means that estimator (43) is consistent. 

Formula (50) is quite complicated and it is often rather 
difficult to prove that relation (51) is satisfied. For practi­
cal purposes it is therefore more convenient to observe that (51) is 
proved if the covariance functions C > C , C , decrease in-v xx yy xy 
definitely in absolute value as \τ\ tepds to infinity. 

We repeat that stationary random variables x(t) and 
y(t) which satisfies relations (10) and (51) are said to be 
ergodic with respect to the covariance functions. 

If we consider the estimator relative to the case of k 
repetitions for the cross-correlation function too, it can be expressed 
as: 

vR (r) k xyv 1 1 
k Τ 

k t.+T 
ι x(t) y(t+T) d (52) 

i=1 

which is unbiased, as: 

k t.+T 
E kV') ι ι 

k Τ 
i=1 *i 

x(t) y(t+T)| dt R^ir) (53) 

while its variance can be expressed as a function of the variance of esti­
mator (43), of the number of k repetitions, and of the degree of 
correlation Pir(T) existing between the k measurements; the for­
mula is the same one already seen in the case of the mean value and 
mean square value: 

var J (τ) k xys = var R -(τ) 
xy»i 

1+(k-1 )pk(r) 
(54) 

./. 
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the considerations already made for relations (19) and (38) 
beeing also valid for expression (54). 

3.2.) Auto-correlation function estimation 

What we have said about the cross-correlation is substan­
tially valid also for the autocorrelation function. 
The autocorrelation, defined for a random variable x(t) by : 

R (τ) = E 
XXs 

x(t) χ(ΐ+τ) (55) 

can, if x(t) is stationary and ergodic, be expressed as 

R (τ) 
XX 

l.i.m. - / 
Τ -+ » J 

x(t) x(t+T) dt (56) 

for which one can in practice use the estimator: 

R (τ) = 
XX 

X 
1 Í x(t) x(t+r) dt (57) 

to estimate the autocorrelation function of an ergodic random variable, 

This estimator, like that of the cross­correlation function, is unbia­

sed: 

E R (τ) 
xx

v 

J 

] ■ *ƒ E x(t) x(t+r) dt = R^Cr) (58) 

while its variance is given by the expression: 

./. 
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Í >
( T )

J
 = ?

ij
1
--) *β(»?) a jvTig.K) dn ­ 2 μ* 

(59) 

which can be obtained rapidly from (49) by substituting the variable 

χ for the variable y . 

In terms of covariance functions, the expression of the 

variance of the estimate of the autocorrelation function is obviously 

similar to expression (50), from which it is obtainable by substitu­

ting μ χ for μ . and C for C and C . 

y xx xy yy 

As far as the consistency of the estimate is concerned, 

what we have said for the cross­correlation function is also valid; the 

relation which expresses this consistency: 

lim var 

T­*°° [ R (τ) xx^ (60) 

i s proved in t h e case where C and C2 a r e a b s o l u t e l y i n t e g r i l e , 
r
 x x XX J O 

An e s t i m a t o r which t akes i n t o account k r e p e t i t i o n s of 

the measurements can a l so be cons idered for the a u t o c o r r e l a t i o n : 

J (τ) k xx
x 

k t.+T 

■ k τ ν ι *(*)*(*■"■>
dt 

1=1 1 

(61) 

For the properties of this last estimator we can refer back to what was 

said about the cross­correlation functions. 

In Chapter 6 the procedure by which the S.D.A. analyzer 

evaluates the correlation functions will be described. This procedure 

is based on estimators (52) and (61). 

./, 
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4.) COVARIANCE FUNCTION ESTIMATION 

Let us consider the usual two random variables x(t) and 
y(t) ; the cross-covariance function is defined as: 

C ( τ ) 
xy ' [[» E x ( t ) - μ. y( t+T) -ν]] (62) 

o r , i f the v a r i a b l e s x ( t ) and y ( t ) a re ergodic with r e s p e c t 
to the covar iance func t ions (weakly e r g o d i c ) : 

G ( τ ) xy 

τ 
l . i . m . ψ / x ( t ) - μ χ 
τ -» °° J L _ 

y( t+T) - μΛ dt (63) 

The c ros s -cova r i ance e s t ima te C ( τ ) can consequent ly be def ined by : 
xy 

C (τ) xy 
1 τ x(t) - μ. y(t+T) -4) dt (64) 

In practice the effective mean values μ and μ of the variables 
x(t) and y(t) are replaced by the estimated mean values μ 
and μ ; because of this the following estimator is the one actually 

J" 
used: 

C (τ) xy ψ / x(t) y(t+T) dt - μ ·μ x y (65) 

which means that the cross-correlation function R and the mean 
* y 

va lues μ and μ a re measured s e p a r a t e l y , and from these 
•J 

measurements the c ross -covar i ance i s then deduced: 

C W ( T ) = R ( τ ) - μ * μ xy xyv *x y (66) 

. / . 
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Let us now look at the properties of this estimator. As far as 
the bias is concerned, we have that the expected value for the estimate 
C (Τ) is given by: 
xy ° J 

E "c (τ)Ί 
xy J 

E R (τ) xy - E μ ·μ 
χ y 

(67) 

which, rearranged on the basis of what we said about the estimates of the 
correlation function and of the mean values, becomes: 

T T 
C (τ) 
xy V r ) -? / ƒ E x(t) y(0) dt d0 

o o 
(68) 

and finally gives: 

E "c (τ)Ί xy' V T ) - Ï 
1 

ƒ e - \n\ \ 
T ) °xy C (η) dn 

-Τ 

(69) 

Hence C (τ) is a biased estimate of the cross­covariance function 
xy 

C (τ)', its bias is given by: 

xy ' ° J 

ï 

bias C (τ) 
xy

v 

-τ 
0 lì 

τ C (η) dn 
xy ' 

(70) 

If however the cross­covariance function is absolutely integrable, the 

right hand member of equation (70) tends to zero when integration 

time Τ tends to infinity, so that we haye: 

lim bias C (τ) 
xy 

(71) 

./. 
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which means t h a t : 

lim E 
Τ·+°° 0W (T)] C (τ) xy (72) 

so that we can say of the estimator under examination that it is unbia­
sed in the limit. 

It is clear from (72) that the estimated value C ( τ) 
xy 

can assume the true value C (Τ) only by taking the measurement 
xy 

time to infinity. But it is also obvious that if one could replace 
the estimated mean values μ and μ by the true mean values μ 

Λ jr Λ 

and μ in (65) , then the estimator would be unbiased. 
In order to see now whether or not this is consistent, it 

is necessary, on account of the bias, to evaluate the mean square error 
and not the variance. The mean square error (m.s.e.) is defined 
by: 

m.s.e. [y*>] E "c (τ) - C (τ)Τ ] xyv xy J j (73) 

or, in terms of the variance and the square of the bias: 

m re ( 
|_ xy 

. s . e . C_ ( τ ) v a r [V>] + b i a s 2 "c (τ)Ί 
xy J 

(74) 

where the bias of the estimator has the expression we gave in equation 
(70), while the variance of the estimate can be evaluated on the ba­
sis of the definition; 

var β (r)l . ** J E e (τ) 
xy ']'H»[V>]Ï (75) 

./. 
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The strict development of expression (74) is given in appendix B, 

for the sake of accuracy, but it has no effective or practical interest 

because the final expression is too complex. For this reason it 

is convenient in practice to construct a simplified form of this expres­

sion, even if it is only approximate, by replacing the mean estimated 

values μ and μ by the mean values \i and μ * 

x y χ y 

This does not lead to a significant error, since the variance of the 

estimator of the mean value is rather small. 

Ignoring thus the difference between the estimated mean 

values and the effective mean values, estimator (65) can be written 

as: 

Τ 

Ô
xy

( T )
 = Τ ƒ [X(t) - μχ] [y(t+T) * My] dt <76) 

o 

which gives an unbiased estimate of the cross-covariance function, so 
that the mean squared error of the estimate becomes: 

m.s.e. [VT)] ■ ™ [VT)] ■ E [ [ V T ) ] ' ] ­ °^ (τ) <??> 

On the other hand we know that: 

Τ Τ 

f pxyÍT jT j = ^T ƒ ƒ Ε Γ ΓΧ( t )-μΊ (~y(t+T )-μΊ Γχ(0 )-μΊ Γν(0+τ )-μ J d t dØ = 

Τ 

%^ ?ƒ τ(1- ψ) [C>)C>) ♦ Cxy(n+r)Cyx(̂ )] dn 

(78) 

. / . 
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for which the approximate expression of the mean square error of the 
cross-covariance estimator becomes: 

m.s.e. [V>]* *ƒ 0-Ψ) r Cxx^)Cyy(T?) + V^V^ 
(79) 

dn 

which, if x(t) and y(t) are ergodic, tends to zero if Τ tends 
to the infinite. 

As far as the autocovariance function is concerned, every­
thing that has been said for the cross-covariance is valid. 
The relative formulae can be obtained immediately from the analogs given 
for the cross-covariance by substituting x(t) for the variable 
y(t). 

./. 
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5.) ESTIMATION OF THE MEAN VALUE AND OF THE MEAN MODULUS BY THE S.D.A. ANALYZER 

The S.D.A. statistical dynamics analyzer evaluates the 

mean value and the mean modulus of the x(t) and y(t) signals 

being examined,on the basis of estimators: 

k ti+T 

μ
χ 

= ¿ Y V ƒ x(t) dt (80) 
t. 

i=1 ι 

k t i + T 

dt (81 ) 
i=1 "i 

and on the basis of the similar estimators relative to variable y(t), 
The quantities ο, , β. » *̂  and &"£ supplied by the analyzer 
to the computer which carries out the averaging and the normalizations 
on them, are given by: 

t.+T t +T 
ι Λ Γ i 

α. Ι fx(t) dt = ¿ i x(t) dt (82) 
*i *i 

t,+T t,+T 
/51 = / |fx(t)| dt = ¿ / |x(t)| dt (83) 

t.+T t±+T 
-. = f 1 fy(t) dt = ¿ f y(t) dt (84) 

./. 
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t.+T t.+T 
δ- = ƒ X |fy(t)|dt = ! ƒ X |y(t)| dt (85) 

t. t X i 

where f (t) and f (t) are the output frequencies of the voltage x y 
to frequency convertors of the χ and y channels respectively, 
and | f (t)| and |f (t)| are the same frequencies taken always 
with a positive sign; the proportionality coefficient of the voltage 
to frequency conversion is indicated by h . 
Finally the analysis time Τ is equal to η times the unity Τ 
of machine time, equal to 10 milliseconds: 

Τ = η Τ m 

while the instant at which the ith repetition starts is indicated 
by t. . From the abo> 
(82) .... (85) , we have: 
by t. . From the above, and on the basis of (80) , (81) and 

μχ 

k . k 

k n V h ) ai = Å/ "i 
m L— i— 

i=1 i=1 

(86) 

μ 
χ k η T 

m 
*>Ί - ΐτ7"ι <87> 

i=1 i=1 

k , k 
h 1 1 v \ y _y. 

μγ = k n T h / y i = η k / * i 
J m Í—J '—i 

V rA (88) 
' I 

i=i i=1 

h k 

"β, = T ^ Y V (89) M
|y| " k n T

 n
/ .

e
i " n k 

m 
i=1 i=1 

· / . 
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The h factor which appears in expressions (86) to (89) is 
the normalization coefficient of the S.D.A. when operating as a di­
gital voltmeter (D.V.M.) ) and is equal to: 

hv = — (90) 
m 

In the D.V.M. operation, the S.D.A. apparatus can be employed to 
obtain the static characteristics of a system. 
In fact, if x(t) is the perturbation signal sent to the system or 
process being examined, and y(t) is the reply of the system itself, 
one can obtain, point by point, the static characteristics A of the 
system by giving to x(t) a step by step behaviour: 

I ( 9 1 > 
The averagings performed on χ and y serve in this case to reduce 
the influence of spurious noise which is superimposed upon the useful 
signals. We can write: 

7'i 
A = -r = -Z = (92) 

Χ μ k 
Mx α . ι 

i=1 

Fig. 1 gives the sequential operating diagram of the D.V.M. function 
of the S.D.A. analyzer, and Appendix C.2describes the corresponding 
calculation programmes for cases where an Olivetti P102 is used as 
final computer. 

,/. 
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ANALYZER 

— » 

COMPUTER 

Read and store 

V *i'
 r

i' *i 

i 
Calculate Σ α. 

1 
Calculate Σ β. 

i 
Calculate Σ ΧÅ 

i i 

i 
Calculate Σ δ. 

i
 Χ 

Γ 

1 
Read and store 

h , n, k 
ν ' ' 

Ι 
Calculate Τ 

Ι 
Calculate x ( t ) 

J. 
Calculate | x ( t ) | 

Fig.1 

Calculate y ( t ) 

I 
Calculate | y ( t ) | 

Print Results 
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6.) ESTIMATION OF THE CORRELATION FUNCTIONS AND THE MEAN SQUARE VALUE 

USING THE S.D.A. ANALYZER 

The mean square value, and the auto and cross correlation 

functions are evaluated by the S.D.A. on the basis of estimators of 

the type (35), (52) and (61); in particular» 

Vf 
m
2,x H£/

 x9(t)dt (93) 

i=1 *i 

4.
 n 

k V? 
*χχ

(τ)
 - ï » E /

 X(t)x(t+T) dt
 (94) 

i=1 *i 

V? 
ν

( τ )
 - k ïï^ ƒ *<*>*<*«*)« (95) 

i=1 *i 

where as usual k indicates the number of repetitions, while the ana­
lysis time Τ is expressed as the number of cycles of the reference 
generator frequency ): 

* - ? 

The lag τ of the correlation functions is given by ): 

τ = 2f 

Now, in order to evaluate the normalization coefficient for the correlation, 
it is necessary to consider the operation of the S.D.A. more closely. 

./, 
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Let us take the case of the mean square value m , 

¿ ,χ 

i.e. the autocorrelation of x(t) for a lag of zero. 

The input signal x(t) , after having been led to dynamic 2A by 

amplification, is sent to two level—comparators and compared with two 

mutually independent reference voltages (one with a saw­tooth form, 

and the other one randomly variable and equiprobable on 2A ) , such 

that the probabilities P1(t) and P~(t) that x(t) will be 

greater than the first and second comparison voltages respectively are 
14 

equal ) . These probabilities are proportional to the amplitude 
ft 19 

of the signal x(t) under examination ) ): 

Pl(x) = P2(X) = -^ùTk— (96) 

where 2A is the dynamic, in amplitude, of x(t) after having 

been amplified. 

The probability that a logical exclusive­or operation applied to the 

logical output voltages of the two comparators will give a positive 

result, is equal to: 

Pp = Pi(x) 'Paix) +|l ­ ΡΙ(Χ)ΊΓΙ - Pa(x)| (97) 

while the probability ρ that the result of the exclusive or opera­
tion will be negative is equal to: 

Pn = Pi (x) M - Pa (x) + Pa (x) 1~Pi(x) (98) 

Introducing the expression given in (96) for p..(x) and p9(x) 
we find: 

Ρ xa(t) + Aa 
p 2Aa (99) 

Aa- xa(t) 
2Aa P n OA» (100) 

./. 
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A bidirectional counter placed after the exclusive or circuit gives 

us a measurement of the difference between the time during which the 

output of the exclusive or is positive (positive count) and the ti­

me during which it is negative (negative count) . 

This time is given by the difference between the two probabilities 

ρ and η : 

x
2
(t) 

Pp ­Pn ¡2~ (101) 

where the time is given in relative units, as a fraction of the total 

analysis time. 

It is measured by the bidirectional counter, by means of pulse counts; 

if f is the timing frequency, we have: 

If we consider all the bidirectional counters, their contents α. , 

β. , ï. and δ. are given bys 

t.+ n/f 

«i = [ J È Í Í L f dt 
« J­ .9 t 
t. 
1 

t.+ n/f 

/?. = ! x(t)x(t4T) f d t 

J
t. A

2 t 

ι 

(103) 

(104) 

t. + n/f 
r f x(t) y(t+r) a t ( 1 0 5 ) 

i A
a 

./. 
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δ. 
1 

ti+ n/f 

ƒ - ^ - ft dt (106) 
X · 

because of which, considering the case of k repetitions, and taking 
(93), (94) and (95) into account, we can write the following rela­
tions which evaluate auto and cross-correlation functions and mean 
square values by means of α. , β. , X. and δ. S 

m A,L. 1 L \ u ι_ ι r \ ( 1 0 ? ) 2 ,x f. k n Y't - ζ Η I>i 
i=1 i=1 

k k 

*»<*>- A3f; H y^i = r H ^ i (108) 

i=1 i=1 

R (τ) = Aa 1- ¿ £ V r . 
*y

 f
t

 k n
 Z-.

 i 
*\ (109) h k n / i 

c 

i=1 i=1 

m2 

K. Λ 

„ 1 i f Γ, l ì f Γ. 
,y

 = A
 ft k n / _

ò
i hc k n ¿^

 ô
i 

(110) 

i=1 i*1 

The normalization coefficient h introduced in the right hand mem­

c 

bers of (107) ....(110) is given by: 

where f. varies from decade to decade, and A is equal to 10 volts. 
X 

. / . 
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If we wish to obtain the normalized correlation functions, 

in such a way that they vary between a maximum of one and a minimum of 

zero, the formulae become: 

m 2,x 
1_ 
h 

1 1 
k n 

i=1 

(m) 

R (τ ) 
χ χ

χ 

R (o ) 
χχ^ 

R (τ ) 
XX 

m 
2 , χ 

» 
i=1 

i=1 

(112) 

R ( r ) 
xy 

R (0) .R ( 0 ) 
xxx yy 

R ( τ ) 
xy 

2 ,x 2 ,y 

m 2,y 
- i n fv 

h k n / i 
C L— i=1 

¿Λ 
i=1 

^i-E
s
i 

i=1 i=1 

(113) 

(114) 

In fig.2 a sequential diagram of the S.D.A. analyzer opera­

tion for calculating the correlation functions is shown. The operations 

performed by the computer, which constitutes the final element of the SDA, 

are listed separately from those performed in the upper section, called the 

analyzer, and which carries out all the elaborations on the signals to be 

examined. 

Appendix C.3 describes programmes usable with an Olivetti 

Ρ 102 computer. 

./, 
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ANALYZER COMPUTER 

i=k 

Fig. 2 

Read and store 

a
i ' V

 r
i ' *i 

I 
Calculate Σ o. 

Calculate Σ β. 
i *■ 

I 
Calculate Σ ϊ: 

I 
Calculate Σ δ. 

i i 

J 

1 
Read and store 
hQ, f, n, k 

i 
Calculate τ 

ι 
Calculate R (0) xxN 

i 
Calculate R (τ) 

XX 
i 

Calculate R (τ) 
xy 1 

Calculate R (0) yy 
i 

Print Results 
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7.) PROBABILITY DENSITY ESTIMATION 

7.1.) First­order probability density estimation 

Given a random variable x(t) , the first order probability 

density ρ (£) is defined as: 
χ 

Τ 

p
x
(
^ = l™ h l ì dT' = i

iffl
 k f (113) 

Δχ­»ο Δχ­»ο 

where Τ indicates the measurement time, T' the total time during 

which, in the course of the measurement, the variable x(t) has as­

sumed values between ξ- αχ/2 and ξ + Δχ/2 , and finally Δχ 

is the amplitude of the window centered on the value ξ under exami­

nation. 

The estimator of the first order probability density can 

thus be the following: 

P.(i) - h; Ï ƒ «' 
.T 

1 T' 
x s Δχ Τ J Δχ Τ (116) 

o 

The expected value for the estimate ρ (ξ) is given by: 

E >«>] - h E [ f ] ■ h**(t*-f) (117) 

where ρχ(<? + Δχ/2) indica tes the pr bab i l i ty that the value of x ( t ) 

wi l l be within the amplitude window Δχ centered, as already said , on 

the value ξ : 

. / . 
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ί+Δχ/2 
P x ( ^ f ) = ƒ Ρχ<*>*> (118) 

ξ-άχ/2 

Expression (117) tells us, therefore, that generally estimator (116) 
is biased; the value it gives is not in fact precisely ρ (ξ) , but 
the mean of the values it assumes for values of x(t) included bet­
ween ξ - Δχ/2 and ξ + Δχ/2 . 
This bias can obviously be reduced by reducing the window amplitude ̂ x 
On the other hand, estimator: 

»x(«**) ■ *ƒ dT' ■ Τ 

is unbiased, as its expected value is: 

■[«.(<*¥)] ■ E[fj ■ *(<* τ 

(119) 

(120) 

i.e., it gives us precisely the integral of the probability density inside 

the amplitude window. 

The mean square error of the determinations carried out by 

means of estimator (116) is not easy to evaluate, but can be expressed 

fairly approximately by the following relation ): 

Aa pfte) / ΔΧ a3 P_tè)\ 2 
r ­ , A* p­tfj / ΔΧ 9' VXKÇ}\ Γρχ(̂ )Ί = * — — ♦( Ta—) 
L
 X
 J Β Τ Δχ ν (ξ ) \ 24 Η / 

(121) 

where the two terms of the right hand member represent the variance of the 

estimate and the error contribution due to the bias respectively. 

In expression (121) , Β indicates the bandwidth of signal x(t) in 

./, 
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examination, and Τ indicates the total analysis time; A repre­

sents a constant whose value is linked to the nature of signal x(t) 

and for which the value of 1/v~2~ can be assumed where x(t) has 

a uniform spectrum within the frequency range Β ). 

The above mentioned expression shows that the mean square 

error does not cancel out when Τ tends to the infinite, inasmuch 

as the error due to the bias remains; the estimator is consequently not 

consistent. 

The mean square error cancels out only when Τ tends to 

the infinite and Λ.Χ to zero, as long as the product Τ.Δχ also 

tends to the infinite. In practice, however, the second derivative 

of the probability density of the signals most often encountered is 

small, so that when Δχ has been fixed at a sufficiently small value, 

the contribution due to the estimator bias can be ignored. 

When the determination of the probability density is per 

formed on the basis of k measurements, the estimator becomes: 

Λ<«> 
^­ T' 

­ \ i (122) 

k ) Δχ T.
 K¿¿> 

i=1 

Also in this case the estimator is biased : 

i=1 i=1 

while the effect of the k repetitions on the variance of the estimate 

is similar to that already seen in the case of the mean value determina­

tions or of the correlation functions. 

Consequently: 

./, 
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var íJ* ) k*x 

A
3
 p

3
^) 

Β Τ Δχ ρχ(ί) 
^ _ ιΓ1 + ι Γ . ( τ ) Ί 
6 Cê) kL

 k
¿
 1J
 J 

i,J=1 

Vi 

or, if for purposes of simplicity we suppose p. .(τ) 

in spite of variations of i and j : 

(124.) 

t o be cons t an t 

var [A«>] 
A3 P 3 ^ ) 

Β Τ Δχ p x ( e ) 

(k ­1 ) p. ( τ ) + 1 
(125) 

where for p. .(τ) and Ρν(τ) the comments already made in previous 

chaptea are valid. 

7.2.) Joint probability density estimation 

Given two random variables x(t) and y(t) , we define 

the function: 

p x , y ( ^ ' T ) = 
τ 1 1 

τ-*»
 Δ χ A

y 

Δχ­>ο 
ày*o 

'1 
1 1 

dT" = l im TT TZ 

m tl 

Τ-+°° 

Δχ-*ο 

Ay* o 

Δχ Ay Τ 
(126 ) 

as joint probability density. 

In relation (126) Τ is the total analysis time, while T" re­

presents the overall time during which, in the course of the measurement, 

the value of the variable x(t) happened to fall within the voltage 

window Δχ, centered on the value £, and the variable y(t+τ) 

fell in the window Ay centered on the value η . 

As joint probability density estimator the following can thus 

be adopted: 

./. 
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τ 
1 1 1 Γ 1 1 Τ" 

P X ) y te , " ,T) = Αχ" Ay" Τ J d T " = Αχ" Ã7 "Τ (127) 

which i s a biased est imator , inasmuch as the operation of mathematical 

expection g ives : 

E [V*.-.*)]· fe fc«[¥]- k fe»,„(<**.'*
A
í.*) 

(128) 

where the nota t ion ρ ( ί ± ~ , η + - ^ , τ ) represents the 

p robab i l i ty tha t the x ( t ) variable i s included between the value 

ξ - ψ and the value ξ + ψ , and the y( t+r ) variable b e t ­

ween the values η - -τ~ and η + -g- ' 

ξ+άχ/2 n+Ay/2 

Χ 7 ξ-àx/2 n­Ay/2 

(129) 

The mathematical expectation of estimator (127) does not therefore 

give us the exact value of the joint probability density, but the mean 

of the values assumed by it for values of χ included between 

ξ ­ Δχ/2 and ξ + Δχ/2 , and of y included between η ­ Ay/2 

and η + Ay/2 . The bias of the estimate can therefore be reduced 

by adopting narrow windows Ax and Ay . 

The estimator of the integral value of the joint probability density 

inside the above mentioned amplitude windows given by the expression: 

t„(t± $.,± f.r) . 1 ƒ <T . f (150) 

./. 
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is, on the other hand, unbiased, as is evident from (129). 

It is exceedingly difficult at this point to obtain the mean squared 

error of an estimate performed by estimator (127), or its variance, 

by strict methods. If we suppose windows Ax
 an

d Ay to be 

sufficiently small, the error due to the bias can be ignored, and the 

mean squared error and the variance can be considered to be equal; then, 

where x(t) and y(t) are both signals with limited frequency 

bands Β and with uniform spectral behaviour within this band, we 

can adopt for the variance of estimator (127) the expression ) : 

var Ô (¿,η,τ) = &* ]
 (131 ) 

L
X , y

 J Β Τ Ax Ay P__(£,T7,T) 

where C is a constant. 

In the case of measurements repeated k times and averaged out, the 

estimator of the joint probability density becomes: 

,—^ Φ« 

(* \ 1 V 1- i_ i 

i=1 

while its variance can be expressed as: 

C
3
 p£ (ξ,η,τ) 1 (k­1) pk(r·) +1 

var [kPx>y(e,",T)j = 
B Τ Ax Ay ρ (ί,η,τ) 

(133) 

where for the ρ, (τ') function, the considerations made in the 
case of the first order probability density are valid . 

./. 
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8.) ESTIMATION OF THE PROBABILITY DENSITY BY THE S.D.A. ANALYZER 
1 I ι 1 1 

The first order probability density ρ (ξ ) and the joint 

probability density ρ (£,η,τ) are evaluated, in the S.D.A. analy­
x
»y 

zer, on the basis of estimators of types (122) and (132) , which 

are used in the form: 

.+f/n 

5 ej) . ι y 1 .1 ¡
 χ

 dT! 
*x * k / Δχ η ƒ ι 

(134) 

1.1 r i 

k T±+f/n 

Ρ (ξ,η,τ) = τ y ΊΓ ΊΓ - ! <*TV (135) 
^x,y^ ' " k / Δχ Ay η / i 

i l l T i 

where the analysis time T. of each of the k measurements is expres­
sed as: 

η 
Ti = f 

f being the frequency of the reference generator ) and η 
the number of integration cycles which assumes here the significance of 
time extension factor ). 
The lag Τ of the joint probability is given by ): 

1 
T = 2f 

Let us look now at the significance of the quantities α. , β. , ί'. 
7 and δ. supplied by the analyzer ): 

*i = 1°"3 ƒ X 

τ . 
1 

T.+n/f 
f¿ d t (136) 

. / . 
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1^+n/f 

ß± = 10"
3
 f ft xc(t) dt (137) 

T
i 

T.+n/f 

'i
 = 1

° "
3
 i

 f
t

 X
o(

twr
^
 y
c ( ^

 dt (138) 

τ. 
i 

/ ' 

T.+n/f 

*i =
 10

"
5 ƒ fn ' 

Ti 

where by £ and η are indicated the voltage levels (relative 
to the variables x(t) and y(t) respectively) at which we per­
form the measurement, while f¿ and f are the frequencies cor­

responding to these levels after the voltage to frequency conversion: 

f = £ 
ξ h 

η h 

h being the proportionality factor for the said conversion. 

Then the output of the window comparator to which the si­

gnal x(t) is sent (together with the reference voltage ξ ) is 

indicated by χ (t). Function χ (t) is defined by: 
c c 

Ax /̂ \ ,. Δχ 
Χ (t) = 1 if ξ - ψ < x(t) < ξ + ψ 
c 

χ (t) = 0 elsewhere 

C 

because of which: 

./ 



46-

i+n/f 

xjt) dt = T! 
i 

c" ' i (140) 
T, 

Function χ (t) , delayed of a time quantity Τ , is indicated 
by χ (t-τ) , while y (t) represents the output logical voltage 
of the window comparator to which signal y(t) is sent together 
with the reference voltage η . 
Function y (t) is defined as: c 

yc (t) = 1 if η - 4ft < y(t) < 1, + 4jE 

y (t) = 0 elsewhere 
C 

so that we have: 

T.+n/f 

/ τ. 1 
xo(t-r) yc(t) dt = T- ( 1 V I ) 

Finally, f is the timing frequency according to which the times 
(measured by pulse counting) are measured. From everything that 
has been said, we obtain: 

n/f T i + -«. = IO"3 ƒ ¿dt = £ f IO"
3
 (142) 

τ. 
1 

T i + n/ f 

/3± = 10""5 ft f x c ( t ) dt = 10"3 ft T' = 10~5 ft ~ ρ χ(^) Δχ 

τ . 

(143) 

.A 
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T.+ n / f 

= 10"3 f. / χ ( t - r ) y ( t ) dt = 10~3 f. TM 

1 VI c c t 
T . 

1 

10"5 f̂  f PXíy(e,Tj,T) Δχ Ay (144) 

T j + n / f 

> 4 = 1 U If a t = Γ 7 Ί υ ^ . c \ 
i / h h f (145) 

10"3 f' ? dt = ?■ S 10­3 

τ. 
1 

From these expressions we can then obtain the following relat ions which 

give the f i r s t order and joint probabi l i ty dens i t i e s , as well as the vol­

tage levels at which we are performing the measurements, in terms of the 

well known quant i t ies α. , β. , ï. and δ. : 

h " Λ 3 

i=1 1=1 

Ρχ ( ί ) = ft k°n Δχ f )_fi = 7" Δχ" Ä )_ƒ 1 

(146) 

(147) 
i=1 * i=1 

k k 
\·3 / . s 10̂  V^ j _ J__ __f_ ^7 y 

Px,y^ , 7 ? , T ; = ft k n Ax Ay Γ /_ /i =
 h* ixiy kn ¿_ 'i 

(148) 

i=1 v 1=1 

3 k 

h 1 0 f Ν δ 

Λ. 

1- -£- Ve 
i h k η / i 

k η [_ i hp k η / i (149) 

1=1 1=1 

In expressions (146) to (149) two different normalisation coeffi­

· / ■ 
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That of the probability densities is indicated by 

7 
and depends upon the timing frequency f ) : 

cients appear. 

, * 

10 

while the normalisation coefficient relative to the reference voltages 

ê and η depends upon the value of the proportionality factor h 

of the voltage to frequency conversion ) , and is indicated by h 

10 

For purposes of accuracy the values of the two coefficients in the six 

frequency decades ) are here listed: 

Decade 

h 
Ρ 

h* 
Ρ 

I 

0,01 

0,39262 

II 

0,1 

3,9262 

III 

1 

39,262 

IV 

10 

392,62 

V 

100 

392,62 

VI 

100 

392,62 

From the above table of values it can be seen that: 

h* = h . 39,262 
Ρ Ρ 

h* = 10 . 39,262 

if h S 10 
Ρ 

if h > 10 
Ρ 

Therefore, having stored the values of h in the normalisation coef­

7 17
 P 

ficient diode matrix ) ), it is possible to obtain the values of 

h from those of h by means of an appropriate calculation program­

me (see Appendix C4). 

A sequential diagram of the S.D.A. operation for calculating the proba­

bility densities is shown in fig.3 . 

./, 
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ANALYZER COMPUTER 

Read and s tore α . , ßiJ** $t 

Calculate Σ ο . 
i i 

I 
Calculate Σ β. 

I 
Calculate Σ ï> 

I 
Calculate Σ δ. 

i i 

Read and store h , f, n, k 
Ρ 

I 
Calculate τ 

I 
Calculate Τ 

I 
Calculate ξ 

Calculate η 

h >10 
Ρ 

I 
h «10 

Ρ 

1 
lv* « 10.39,262 

Caj Lcuiate ρ 

h* = 
Ρ 

, t e ) 

h 
Ρ 

•39,262 

I 
Calculate P­^Cí »Π,τ) 

I 

Fig. 3 

Print Results 

I Stop J 
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APPENDIX A 

Given a stationary ergodic random signal x(t) , let 

us consider the estimator μ of its mean value: 

k t +T 

*χ = ï ï Y ƒ X(t)dt (A.D. 
1=1 *i 

and the variance of the estimate, defined as: 

-ι Λ2 var M - Ή-{Ή I (Α.2) 

so that: 

k t +T 

t. 
1=1 ι 
k t.+T t.+T 1 Γ J Ε [ ^ Σ τ7/ x(t)dt/J »Watj-nJ (A.3) 

i,j=1 *i *J 
i « 

If we assume, for simplicity of notation, the instant t. of the 
ith repetition, to be the origin of the time axis, and if we indi­
cate by x.(t) the variable x(t) in the time interval between 
t. and t.+T , the first term of the right-hand member of (A.3) 
becomes: 

E 
Lk a 

i=1 w 1=1 
[^IK/^(t)dt)]-^Wj>(w)dt 

(A.4) 

./. 
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where the final expression has been obtained by considering the square 
of the integral as a double integral and then by interchanging the 
operation of mathematical expectation and the operation of integra­
tion. 
Remembering now that: 

R (τ) 
XXs 

C (τ ) + Pi XX (A.5) 

and partially resolving the double integral, we finally arrive at 
the following expression : 

K. 1 

1=1 
1 - .TIN % K — I Ce(T) dr + -f (A.6) 

for the first term of the right-hand member of (A.3). 
If we develop in a similar manner the second term, it becomes: 

Τ Τ Τ Τ 
1 Ε Η / / *(t) '*Μ dt ·ΉΣ il Ι ν**1 at dT 

i,j=1 o o i,j=1 o 0 

(A.7) 

which, on the basis of (A.5) and relation: 

C (τ) = y e (0) . C (6) . ρ (τ) xyx ν χχχ ' yyv ' pxyv ' (Α.8) 

becomes: 

Τ Τ 

7 ï j[JoS\^ V0) 

i , j=1 

MJ 

• Ρ „ ( t ­ τ ) dt dT + ­ f ­ μ2 

x . x . ' k χ 

• A 
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■ 7 τ * / o - ̂ ) °-
<ο)

 'VJ
( T ) dr

*
¥ 4 (A,9) 

i,j=1 "
T 

By substituting (Α.6) and (Α.9) respectively for the first and 

second term of the second member of (A.3) , we have for the varian­

ce of the estimate the expression : 

var 

Τ 

M - H Γ *ƒ 0 - τ ) ■»<<>>'>>''
+ 

1.1 -
τ 

k Τ 

f
1
 -TrW·»'«... 

1 J 

κ τ 

Σ * / Ο τ )
c
xx

( o )
v

( T ) d T
] (Α

·
ΙΟ) 

-τ 
i,J=1 

In order to point out the difference between expression (18) and the 

more rigorous expression (A.10), it is useful to remember that, in 

relation (18) : 

'i j
( T )

 =
 P

xx
( A
ij

}
 (A.11) 

while in expression (A.10) : 

' X . X .
( T ) = > X X

( A
Ì J

+ T ) (A.12) 

ι J 

A. . being the time interval between the ith and the jth mea­

sûrements. 

If the k measurements are mutually indipendent (i.e. in the most 

favorable case) , expression (A.10) becomes: 

./. 
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ι 

~ p x ] ■ H ƒ (1 -JïL) W°> >*χ<τ> dT (A.13) 

as ρ (τ) is equal to zero, 

ι J 

In the least favorable case, ρ (τ) can be conside­

i J 

red to be equal to ρ (τ), because of which the repetitions have 

no effect on the variance : 

~ [ * « ] ■ i ƒ ( ' - - ψ · ) «„<<»'=<*>* <Α·14) 

. / . 
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APPEÜDIX Β 

Let us consider two stationary ergodic random signals, 

x(t) and y(t) , and estimator (65) of their cross­covariance 

function. Expression (65) may be rearranged, so that: 

Τ TT 

C x y ( r ) = ψ ƒ x ( t ) y ( t+r ) dt - ^ - ƒ ƒ x ( t ) γ(ξ) åt άξ = 

o o 
Τ Τ 

= 7Í¡oxM y(t+T) ­ y (ξ) dt άξ (B.1) 

The variance of this estimate is defined as: 

var y*>] ■ E {(V>~ -[ ­ E C ( τ ) 
xyv or (B.2) 

where the expectation of the estimate is given by (see expression (68)) 

Τ Τ 

[V>] C (τ) - V 
xy 

c (0­ t ) dt dö 
xy (B.3) 

o o 

We can now evaluate the variance of the estimate by subs t i tu t ion of 

(B.1) and (B.3) i n (B.2) : 

var C (τ) = 

ι** J 
Τ Τ Τ τ 

ο ο ο ο 

Τ τ 

y( t+r ) ­ y( í ) y(0+r)­ y (n) l dt dö άξ dnj 

- [cxy(T)-jj ƒ ^(ö-t) dt d* _ (B.4) 
o o 

. / . 
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To develope the operation of mathematical expectation in the first 

term of the right­hand member of the above formula, we apply expres­

sion (30) , letting: 

x1 = x(t) x2 = x(e) 

(B.5) 

xa = y(t+T)­y(£) X4 = y(e+T)­y(n) 

In terms of covariance functions, we have: 

var[yT)] = 
Τ Τ Τ Τ 

■ 7¡ ƒ ƒ ƒ [[β»(*-° + "SIV-0 ■ ̂ "^ + 

ο ο ο ο 

- C (η-t-r) + C (í7-í)l + [c (τ ) - C (£-t)l[c (τ ) - C (η-θ ) 
yy

w
 yy

N
 '̂  'J [_ xy

v
 ' xy

vs
 _| [_ xy xy J 

+ fe (β+τ-t)- C (n-t)l[~C (t+τ-β)- C (ί-β)Ί"| dt d6 dí dr, + 
xy xy xy xy j 

+ 

Τ Τ Τ Τ 

" ̂
(Τ)
" 7 L lo /. ίο 0̂ <δ"ΐ) C^(""í> dt *" * d" * 

τ τ 
+ c

x y
( T )

^ J ƒ ^(β-t) at ae (B.6) 
o o 

Developing the products of the integrand of the first integral on the 
right we obtain: 

var [V>]. 

. / . 
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Τ Τ 

= — / / [c (e-t) c (e-t) + c (e-t+τ) c (e-t-τΗ dt de 
τ2 i i L x x yy *y y* J o o 

T T T 

f ƒ ƒ Γ°χχ^-Θ ) Cyy( 0 + T- t ) + Cxy(^-e) Cxy (e+T_t)"] dt dé?
 ^

 + 

o o o 

Τ Τ Τ Τ 

7 ! ! ! Ι [ν·*
0 c

^
(,
"

í)
 * ν·-*' v^'J

dt ω
 **· 

o o o o 

Τ Τ Τ Τ 

+ Ρ: • τ · ί ί c (e-t) at ae - μ2· -
τ 1 J w 

o o 
τ2 

o o 

c (e+T-t)+ c (β-τ-tjl dt de 
yy yy J 

(B.7) 

Expression (B.3) shows that estimator (B.1) is biased; its bias is 
given by: 

b i a s C ( τ ) xy 

τ τ 
= τ* Ι i c (e-t) dt de 

τ y ; *y 
o o 

(B.8) 

Remembering now t h a t : 

m . s . e . :xy(T)] = va r j j^TÍ j + b i a s ' C ( τ ) 
xy 

(B.9) 

we can, taking into account expressions (B.7) and (B.8) , and partial­

ly solving the multiple integrals, arrive at the following expression of 

the mean squared error of the estimate: 

m.s.e. C (τ)Ί xyN "J 

•A 
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χ 

= ¿ f f1 ­ πΜ fa (λ) C (λ) + C (λ+τ) C (λ­rfl dA + T
 y \ / L y

7
 xy^ ' yx

N
 J 

-τ" 

T T T 

- 7 / ƒ ƒ c te-e)c (θ+τ-t) + c (ξ-θ) c (θ+τ-t) χχ yy xy xy 
d t d9 d í + 

o o o 

Τ Τ 

1 

-Τ -τ 

.a Τ 

1 -
| λ | 

)0-^) C (λ)0 (A')+2C ( λ · ) θ (λ) 
χχν ' yyv xy χ γ ν ' 

dA dA' + 

λ | ?ƒ('-?) 2 C (λ) - C (λ+τ) - C ( λ - r ) 
yyv yyv yy 

dA 

(B.10) 

As a l r eady sa id i n chapte r 4 , t h i s express ion i s too complex t o have 
any p r a c t i c a l i n t e r e s t . 
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APPENDIX 

Cl.) INTRODUCTION 

Some S.D.A. statistical dynamics analyzer computer program­
mes for estimating correlation functions, probability densities and for 
D.V.M. operations, are described here. 

These programmes require the use of an Olivetti P102 as the 
final element of the analyzer. 

Let us remember that all the programmes have a common struc­
ture» each of them being composed of four parts ): the first one 
(from AZ to AV) designed for the reading and storage of data; the se­
cond one (from AV to Z) for the elaboration of these data, and the 
third part (AW ... Z) for averaging and normalizing the quantities 
obtained in the second part and for printing the results. 
A fourth part, dependent upon a conditional jump (/V), directs the se­
quence of operations related to on overload of the system ) ). 

./, 
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C.2.) PROGRAMMES FOR D.V.M. OPERATION 

We saw in chapter 5 that the S.D.A. analyzer, used as a 
digital voltmeter, supplies the mean values and mean absolute values of 
the signals x(t) and y(t) under examination. 

The appropriate programme is described in Table C.2.I.; it 
supplies the following data as results: 

k number of repetitions 

Τ analysis time, in seconds 

in volts (tenths of the full scale of the input amplifier) 
II II II II II II II II II II II 

II II II II II II II II II II II 

|y(t)l II II II II II II II II II II II 

.' 
In Table C.2.2. a modified programme is shown, which sup­

plies, point by point, the static characteristics of a plant or process 
of which x(t) and y(t) represent the input and output voltages 
respectively. The results are printed in the following order: 

k 

Τ in seconds 

x ( t ) 
Λ 

| x ( t ) | 

y ( t ) 

x(t) in volts (tenths of the F.S. of the input amplifier) 

|x(t)| II II II II II II II 

y(t) / x(t) 

|y(t)| / |x(t)| 

. / , 
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TABLE C . 2 . 1 . 

PROGRAMME INSTRUCTIONS 

Reg. 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Α Ζ 

A S 

D / t 

A S 

D t 

A S 

E / t 

A S 

A V 

i 

C + 

C
I 

D / i 

B / + 

B / I 

D + 

B + 

B t 

E / * 

C / + 

c / t 

Ζ 

A W 

/O 

Reg. 2 

25 ! t 

26 / V 

27 Y 

28 A / V 

29 A 0 

30 E / χ 

31 D / : 

32 DJ 

33 A / t 

34 R ir 

35 R S 

36 D / S 

37 * 

38 E / χ 

39 ¡Αφ 

40 ¡ Β / * 

41 D : 

42 A Q 

43 B i 

44 D : 

45 A 0 

46 ! C / l 

47 D : 

48 ! A 0 

Reg. F 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

C i 

D : 

A« 

A Y 

B / * 

B * 

C / * 

C * 

Ζ 
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TABLE C . 2 . 2 , 

PROGRAMME INSTRUCTIONS 

| Reg. 1 

1 j Α Ζ 

2 1 AS 

3 j D / t 

4 j AS 

5 j D t 

6 « A S 

7 | E / t 

8 ; AS 

9 j A V 

10 j i 

11 | C + 

12 j C î 

13 « D / * 

14 I B / + 

15 j B / 1 

16 ! D + 

17 î B + 

18 j B t 

19 j E / i 

20 ; C / + 

21 j C / î 

22 j Ζ 

23 ; A W 

24 j / γ 

Reg. 2 

25 j + 

26 j / V 

27 Y 

28 ¡ A / V 

29 j A V 

30 j E / x 

31 | D / : 

32 J D J 

33 j A / t 

34 R + 

35 R S 

36 D / S 

37 j * 

38 E / χ 

39 A φ 

40 Β / + 

41 D : 

42 j A 0 

43 Β * 

44 D : 

45 j A 0 

46 j C / * 

47 j B / : 

48 j A y 

Reg. F 

49 j C i 

50 j B : 

51 | A V 

52 Ι A Y 

53 î B / * 

54 ¡B * 

55 j C / * 

56 j C * 

57 j Ζ 

58 j 

59 j 

60 j 

61 j 

62 j 

63 | 

64 j 

65 | 

66 j 

67 j 

68 'j 

69 j 

70 j 

71 ! 

72 I 
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C. 3.) PROGRAMME FOR THE CALCULATION OF THE AUTO ­ AND CROSS­CORRELATION 

FUNCTIONS 

Table C.3.1. gives the programme for evaluating the corre­

lation functions of two signals x(t) and y(t) ; this programme 

albws one to calculate the autocorrelation function R (τ ) of the 

xx 

signal x(t) and the cross­correlation function R (τ) , as 

well as the mean square values R (0) and R (0) of the two si­

^ xx yy 

gnals being examined. 

The results are printed in the following order: 

τ lag of the correlation, in seconds 

k number of repetitions 

n 

ï (0) = m in squared volts 
XX c. * X 

R (τ) 
XX 

it it 

I I I I 

II it 

R (τ) 
xy 

R (0) = m„ 

yy 2,y 

Normalised correlation functions can be evaluated with the pro­

gramme listed in Table C.3.2. This gives the following results: 

T
 in seconds 

k 

n 

R (0) = fi0 
xxs
 2,χ 

R (τ) / R (0) 
XX" XX

s 

R (τ) / J~\ (Ci) . R (0) 
xy

v
 ' ' v

 xx
v
 ' yy

v
 ' 

R (0) = m„ 
yy v

 2,y 

0/ o 
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TABLE C . 3 . î . 

PROGRAMME INSTRUCTIONS 

Reg. 1 

1 ¡ A Z 

2 ¡ A S 

3 ¡ D / t 

4 ¡ A S 

5 ¡ D t 

6 ¡ A S 

7 j E / t 

8 ¡ A S 

9 ¡ A V 

io ; * 

11 ¡ C + 

12 ¡ e t 

13 ¡ D / * 

14 ¡ B / + 

15 J B / î 

16 j D * 

17 ¡ B + 

18 ¡ B t 

19 j E / + 

20 ¡ C / + 

21 | C / t 

22 ¡ Ζ 

23 ¡AW 

24 ! / φ 

Reg. 2 

25 E t 

26 j D y ~ 

27 ¡ : 

28 D : 

29 A $ 

30 ¡ Ε I 

3 1 J / V 

32 Y 

33 ; A / V 

34 J A 0 

35 ¡ E / $ 

36 E / * 

37 ¡ D : 

38 E x 

39 ¡ D / χ 

40 j D l \ 

41 ¡ Β / 4. 

42 D / : 

43 ¡ A $ 

44 Β ι 

45 j D / : 

46 ¡ A 0 

47 C / i 

48 ¡ D / : 

Reg. F 

49 Α ψ 

50 ¡ C I 

51 D / : 

52 ! Α φ 

53 AY 

54 Β / * 

55 ¡ Β * 

56 C / * 

57 C * 

58 Ζ 

59 

60 ¡ 

61 

62 

63 

64 ¡ 

65 

66 

67 ¡ 

68 ¡ 

69 

70 

71 

72 ¡ 
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TABLE C . 3 . 2 . 

PROGRAMME INSTRUCTIONS 

Reg. 1 

1 ¡ Α Ζ 

2 ¡ A S 

3 ¡ D / t 

4 ¡ A S 

5 ! D t 

6 j A S 

7 ! E / t 

8 A S 

9 ¡ AV 

IO ! i 

11 ¡ C + 

12 c l 

13 ¡ D / * 

14 ¡ B / + 

15 j B / t 

16 D * 

17 ¡ B + 

18 j B î 

19 ] E / * 

20 C / + 

21 j C / î 

22 j Ζ 

23 ¡ A W 

24 j / φ 

Reg. 2 

25 j E t 

26 ¡ D \ T 

27 ¡ : 

28 ¡ D : 

29 J A 0 

30 ¡ E + 

31 ¡ / V 

32 j Y 

33 ¡ A / V 

34 ¡ A φ 

35 E / φ 

36 j E / * 

37 ¡ D : 

38 ¡ E x 

39 ¡ D / χ 

40 D / î 

41 Ι Β / * 

42 ¡ D / : 

43 j A 0 

44 Β * 

45 Ι Β / : 

46 ¡ Α φ 

47 ! Β / y ­

48 ¡ Β / t 

Reg. F 

49 ! C Ν/"" 

50 ¡ B / χ 

51 ¡ Β / î 

52 ¡ Q 1 i, 

53 j B / : 

54 ¡ A φ 

55 ¡ C * 

56 ¡ D / : 

57 J Αφ 

58 ¡ AY 

59 ¡ Β / * 

60 ¡ Β * 

61 ¡ C / * 

62 ¡ C * 

63 ¡ Ζ 

64 ¡ 

65 ¡ 

66 j 

67 ¡ 

6 8 J 

69 î 

70 ¡ 

71 ! 

72 ¡ 
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C.4.) PROGRAMMES FOR DETERMINING THE PROBABILITY DENSITIES 

A programme which allows the calculation of the first 
order probability density is described in Table C.4.1. 
Results will be printed in the following order: 

Τ analysis time, in seconds 

ξ comparison level, in volts 

Ρχ(0 

The probability density is normalized for the case of an 
7 14 amplitude window Δχ of 400 millivolts ) ) (1/50 of voltage 

dynamic of the input amplifiers); therefore the first order probability 
density ρ (ξ ) assumes values between 0 and 50. 

7 14 
If the 40 millivolt window ) ) is used for the proba­

bility analysis ( 1/500 of the amplifier dynamic), it is necessary 
to normalyse for the new Δχ ; to do this it is sufficient to codify 
the constant 500 instead of the constant 50 (coded in the instructions 
number 45, 46, 47). The codification of 500 is given by the follo­
wing instructions: 

A / t 
R / S 
R S 
D -

Table C.4.2. describes a programme which calculates both 
the first order probability density and the joint probability density. 

The results are printed in the following order: 

τ lag of the joint probability, in seconds 

T analysis time, in seconds 

ξ comparison level for the signal x(t) , in volts 

./· 
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n comparison level for the signal y í t + τ ) , in vol ts 

Ρχ(ϊ(·ί.ΐ.Τ) 

The first order probability density ρ (ξ ) , is normalised 
for an amplitude window Δχ equal to 1/50 of the voltage dynamic 
of the input amplifiers. 

The joint probability density, ρ (ξ η,τ ) , is nor_ 
x>y 

malized for amplitude windows Δχ and Ay equal to 1/50 and 1/32 7 14 of the voltage dynamic respectively ) ). 

Therefore, the values assumed by ρ (ξ) and ρ ( £,η,τ) 
χ x>y 

can vary between 0 and 50 , and 0 and 1600 respectively. 

It is important to note that the programme shown in Table 
C.4.2. is valid only where k (number of repetitions) is equal 
to one: the programme has not left any memory positions free for making 
the necessary summations for the case where k is not equal to one. 

./· 
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TABLE C . 4 . 1 , 

PROGRAMME INSTRUCTIONS 

Reg. 1 

1 ¡ A Z 

2 ¡ A S 

3 ! D / t 

4·. ¡ A S 

5 ! D t 

6 ¡ A S 

7 i E / t 

8 ¡ A S 

9 ¡ A V 

IO D / + 

11 ! B / + 

12 ! B / I 

13 ! D i 

14 ¡ Β + 

15 ί Β J 

16 ¡ Ζ 

17 ¡ A W 

18 / ψ 

19 Ε t 

20 / V 

21 ¡ Υ 

22 ¡ Α / V 

23 ¡ Ε / * 

24 ¡ D : 
' Ι 

Reg . 2 

25 î A y 

26 ! Ε χ 

27 ! D / χ 

28 ! Β / î 

29 ! Β / : 

30 Α ψ 

31 ! Α / * 

32 ¡ R t 

33 ¡ R χ 

34 ¡ R t 

35 R / * 

36 D I 

37 ¡ E t 

38 D / i 

39 

40 ¡ / W 

41 ¡ Β V 

42 Β / * 

43 χ 

44 ¡ Β f 

45 Α / t 

46 R / S 

47 D ­

48 ! χ 
ι 

Reg. F 

49 ! Β : 

50 ¡ A $ 

51 ¡ A Y 

52 ! Β / * 

53 ! Β * 

54 ¡ C / * 

55 ¡ C * 

56 ¡ Ζ 

57 ! A / W 

58 ! D / y— 

59 ; ι 

60 ¡ E ± 

61 ! : 

62 jt 

63 ¡ C V 

64 

65 ! 

66 

67 ¡ 

68 ¡ 

69 

70 ! 

71 

72 ! 
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TABLE C . 4 . 2 . 

PROGRAMME INSTRUCTIONS 

Reg . 1 

1 ¡ Α Ζ 

2 A S 

3 D / t 

4 ¡ A S 

5 D t 

6 ¡ A S 

7 E / t 

8 ! A S 

9 ! A V 

io ¡ c t 

11 D / + 

12 B / J 

13 D 4­

14 ¡ B l 

15 ' E / i 

16 , C / J 

17 : Ζ 

18 ' AW 

19 ! / Δ 

20 ¡ E t 

21 ! D y/~ 

22 ' : 

23 , D : 

24 ! A $ 

Reg . 2 

25 Ε i 

26 / V 

27 Y 

28 A / V 

29 E / χ 

30 D : 

31 Α φ 

32 D / χ 

33 Β / I 

34 Β / : 

35 Α $ 

36 ¡ C 
* 

37 Β / : 

38 Α $ 

39 Α / t 

40 J R t 

41 ¡ R ­

42 R : 

43 R / S 

44 ¡ D + 

45 ¡ E * 

46 ¡ D / * 

47 ¡ ­

48 ' / W 
ι 

Reg. F 

49 B V 

50 ¡ Β / i 

51 ! : 

52 ¡ Β { 

53 A / t 

54 ! R / t 

55 Ό I 

56 : 

57 Β : 

58 ! Α 0 

59 C / * 

60 ¡ Β : 

61 ! Α 0 

62 ¡ Α Υ 

63 ! Β / * 

64 ¡ Β * 

65 C / * 

66 ¡ C * 

67 Ζ 

68 ! Α / W 

69 ! D / J-

70 ¡ E x 

7ΐ ; j 

72 ¡ C V 
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