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ABSTRACTS

The nuclear heat generation process is analyzed and presented in well-known
form as function of the neutron and gamma energy distributions.

The energy distributions are approximated by expressions containing three
unknown parameters which appear, after insertion, as three unknown linear
constants in the heating equation.

By setting up this equation for three different materials, a system of three
linear equations is obtained, the coefficients of which are computable functions.

The solution of this system is presented in terms of experimentally determined
nuclear heating values of the three materials.

The known solution can be used for calculation of nuclear heating data for
any desired sample size and material by the samec linear expression.

Numerical coefficients of this expression are given for materials C, Be, Mo
and Fe as function of sample size.

A test rig, CADO-17 for measurements in the High Flux Reactor (HFR) at
Petten is described; the chosen sample materials are C, Be and Mo.
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*
A METHOD FOR DETERMINATION OF CONVERTIBLE NUCLEAR HEATING DATA )

INTRODUCTION

-Calculation of nuclear heat generation in non-fuel materials
of the High Flux Reactor (HFR) at Petten is in general
based on measured values, which are obtained by special

calorimeter probes.

Although the presently available data are in themselves ra-
ther complete, there exists a considerable lack of means to
apply them to conditions, which are different from the test

conditions.

Particular difficulties are encountered, if the data are to
be converted to objects having other geometry, size or ma-

terial as the test sample.

These difficulties arise, because the nuclear heat gmnerat-
ion, which is a result of several energy absorption proces-
ses of gamma and neutron radiation, is measured by calori-
metric methods in integral form, which does not reveal the

contribution of the individual process.

Data conversion however requires the knowledge of the con-

tribution of each absorption process to the overall effect.

The functional dependency of a process on the sample para-
meters has the form of an energy integral of geometry and
material dependent parameters, in which only the energy

distributions (more correctly the "energy spectral densi-
ties of the number fluxes") of neutron and gamma particles

appear as unknowns,

If these energy distributions are known, then the proport-
ionate contributions of the absorption processes can be

determined, so that the conversion problem can be solved.

*) Manuscript received on 10 October 1969.



Since the .gamma energy distribution, which is the more im-
portant one of the two, is not known for the HFR, some con-
version relations had earlier been derived on basis of an

assumed distribution.

Although by this evaluation, wuseful nu-

merical results could be obtained, it is desirable to pro-
ceed to a method, in which no explicit assumptions on the
energy distributions are needed and which also covers the

influence of the neutron radiation.

Such a method must necessarily be based on a detailed ana-
lysis of the energy absorption processes involved and must
be directed on'deterhination'df parameters, which are re-

presentative for the gamma - and neutron energy distributions

existing in the reactor.

The method described here, is laid out for determination of
3 constants, 2 representing the gamma and 1 the neutron

distribution.

The description of these distributions by expressions con-
taining 2 resp. | parameters is, of course, very approx-
imate and will only be satisfactory for investigations of

nuclear heating and similar effects.

The experimental principle of this method follows in some
lines that of ref. 1, where 2 parameters are determined,
which relate the gamma and neutron heating of a material

to the corresponding values, measured in C.



2.0, SYNTHESIS OF NUCLEAR LEAT GENERATION

The main effects contributing to nuclear heat generation in

non-fuel materials in the HFR are the following :

1. Core gamma radiation absorption, P

2. Core neutron elastic scattering engrgy degradation, PO

3. Thermal neutron capture induced gamma absorption, Pn

4. Inelastic scattering (fast neutron) induced gamma absorption,

nivy

5. Activation product gamma and .8 absorption P .
: _ o , " “"ndecay

There are other minor sources of heat éeneration, such as

effects of (n,a) and (n,p) reactions and others, which are however

neglected here.

The 5 above mentioned heat sources are not equally important, and
some of them have negligible contribution for some materials.

In all cases, the dominant role is played by Py.
The total effect is combined in the form :

P =P + Pn (1)

P =P + P + P (2)

.+ P
n nn ny niy ndecay

2.1. Heat Generation by Core Gamma Absorption PY

The heat generation at a point with the local coordinate r in a

sample due to gamma absorption is given in ref. 2 as :

,Iua .
Pyﬁr) = ) % (E) . N(E,r) . E dE (3)

The spectral number flux density at r,N(E,r) is obtained from
the undisturbed flux density No(E) by multiplication with a
factor which is, according to ref., 3, equal to the escape
probability p(r) from the same body for a homogeneous internal
source distribution; if linear exponential attenuation is

considered :



N(E,r) = N_(E) . p(r) {4)
The average escape probability is :

P, = 7 !, p(r)av (5)

The average heating 1is

P =L f P (r)dv = ( fa g1 g N(E,r)dVdE (6)
Y v Y p v ?
v o v (7)
Herein
1 No S
v i N(E,r)dV = v J p(r)dv = NoPo (8)

And finally

7] = G ;
e . N . P, - E dE (9)

Alternative Derivation

This result can be derived in an alternative way on basis of
the total amount of incoming photons n_ (spectral) and the

fraction of collisions Fc :

1 ua
P = — — . F . n EdE (10)
Y pV s H c o

In ref. 3 one finds the relation

o]
h
=
o

(1

o o]

and the definition of the average chord Rav’ which represents

the mean of all possible penetrations through a body

R =

4v
av 5

(12)



Introduction of these terms in eq. (10) yields

P =I 2y = E dE (13)
Y A P ° My

Eqs. (9) and (13) are equal if

L | (14)

The proof that relation (14) holds, is given in ref. 6.

Since in eqs. (9) and, (13) the effect of secondary gammas
(scattering gammas) is neglected, these expressions give under-
estimated values for PY’ which are corrected by introduction

of the energy absorption build-up factor Ba, which is applied

in the linear form proposed in ref. 4

y

B (E,ur) =1 + (~u- - 1) wur (15)
a
With use of the mean value r = % Rav in eq. (15), eq. (9) becomes:
Ua 1 L
PY = —5— []+-2-(_LT:—])uRav:l pO NOEdE (]6)
o

The average escape probability P, is a function of photon energy
and sample geometry. Calculations of p, are rather extensive.
For simple geometries, tabulated results can be found in ref. 3;
among them are tables for slabs, spheres, half-spheres and

infinitely long cylinders.

The result for infinite cylinders is reproduced in fig. 1. It
can also be used with good accuracy for length to diameter
ratios L/D >0.5, if one replaces x by the parameter

)
X ='§' U:Rav’ (17)
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where Rav’ defined by eq. (12), is for cylinders

R = —2 (18)

av 1

"Definition (17) permits the shorter form of eq. (16)

P "( Ya 1 o ] (y).N dE 19
= — +f(—— - . .' . R .
I [ (“a )x] p,(x).N_.E (19)

Other geometries than cylinders can be treated in analogue form

on the basis of ref. 3.

2.2. Heat Generation due to Core Neutron Radiation Pn

2.2.1. Heat Generation by Elastic Scattering P

- s > ———— - = . e . i me o e e G me o S o G e -

In ref. 2 the following expression is given for neutron

heating by elastic scattering

o0

_| I
Paa() =] SR 3 @) @ (B a, (20)

where the mean energy degradation per collision AE is

7E = E . EA—-—E (21)
(A+1) .

Analogue to sect. 2.1., the local’fluk'density can be
‘expressed by the undisturbed flux density and a pro-

bability. The volume average has the form :

00

/ZS(E).¢O(E).p‘o(xT').E.dE (22)

o

P ‘___Z_A_..

nn (A+l)2

O |
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where in this equation

=-1_."‘ 2
Xp = 7I.R (23)

av

and po(x) is taken from fig. 1, Rav corresponding to eqg. (13).

Graphs of Zq and §,. are presented in ref. 4.
& A

Heat Generation by Capture Gamma Radigion P
____________________________________________ XY

For the (n,y) reaction following thermal neutron capture is
assumed, that it has a spatial distribution in the sample

producing a homogeneous gamma source distribution.

Under this condition the heating due to capture gammas can be

expressed by

[--3

_ 1 Ha
Py * E.Za.¢oth.po(xn).jBajr-pc(x)-an(E)-E dE (24)
o]
where
boen = (%(E)dﬁ (25)
Eth

is the thermal neutron flux density, The build up factor B is:
a

R = + (-
a

In view of the information available in ref. 2, the integral

can better be expressed as a sum over discrete energy intervals

AEi in the form

-]

N
Ha Ya
%:r -PC(X)-an(E)-EdEz 7T(Ei)’pc(x)'EiB§fandE (27)
i=]

o AEi
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In this expression, pc(x) is the collision probability
= |- 2
p.(x) = 1-p_(x) , (28)

In the preceding equations, yx is defined by eq. 17 andx\by

1 (29)
Xa = 72 Lenr Raye
The integrals
f an(Ei)dE = S(Ei) (30)

AE,
i
are tabulated in ref. 2 for 7 gamma energy intervals and for

all important materials. Eq. (24) can therefore be written

7
P =1 ) .p (x.) - EE (E.).p _(x).E..S(E.) (31)
ny p a Ooth o “n au 1 c 1 1
i=1
PnY is in general negligible for materials having comparably

small absorption cross sections.

leating by Fast Neutron Inelastic Scattering Gamma Radiation

P_.
SO Y e ————————— e

In the few cases, where inclastic scattering (fast neutrons)
induced gamma radiation contributes to the heating, one can

treat the induced gammas as monoergetic with energy Z

Under analogue conditions as in sect. 2.2.2, the heating gan

then be expressed as

o

u

;a a
P . = — — (E . LE T r .
R IR NCORLINY [ A

aiy (BB )8, (E )P, (xp)dE,,

Y

(32)
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vhere Ba is defined by eq. 26. Furthermore

p.(x) = 1-p (x> (33)
and
1
X =g Ray (34)
=15 r 35
XT 2 T av ( )

Cross section data are available in ref. 4.

Heating by Activation Product Decay Radiation,Pndecay

In some cases, thermal neutron capture generated nuclides
contribute to the heating by their decay gamma and beta

radiation.

For calculation, it is again assumed, that the gamma and beta
source distributions are homogeneous. The decay radiation
normally originates from a nuclide, which was generated by
neutron capture in an isotope, the natural abundance of which

in the material under consideration 1is Yo

The source strength therefore 1is
T .
Yo Lo ®oenPo(Xy) (36)

If the decay gamma and beta energies are EY and EB’ the

partial heating terme< are

B v

= —é _a | - 2
PndecayY P H (EY)'pc(X)'Ey'yn'za'¢oth'po(xn) (37)

1]

]
PndecayB E'pc(XB)'EB'yn'£a°¢oth'po(xn) (38)



- 14 -

wvhere Ba is defined by eq. 26 and

1
Xn = 2 zthT'Rav (29)
1
X =3 u(EY).Rav (40)
_ 1
XB =5 . uB . Rav (41)

The total decay radiation heating must be summed up from
the partial heating terms according to the decay characteristics

of the invelved nuclides, so that

(42)

Pndecay =1 Pndecayy * I PndecayB

The relations derived above apply to equilibrium conditions,
which are reached only after a time of several half lives

of the decaying nuclide.
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ENERGY DISTRIBUTIONS OF GAMMAS AND NEUTRONS

The three types of parameters of the preceding sections

Attenuaticn coefficients or cross sections,
Geometry averaged reaction probabilities,

Particle energy distributions

are direct or indirect functions of particle energies; the
energy distributions of neutrons and gammas therefore constitute

the key to hcating calculations.

Energy distributions of neutron flux densities in the HFR are
in general available by 4 group computer codes of the neutron

metrology group (RCY).

The -for heat calculations- more important gamma energy

distributions are unknown in the operating reactor,.

The calculations cf gamma heating terms are therefore based on
a double exponential approximation of the energy distribution

with two unknown linear constants.

Approximation of the Gamma Energy Distribution

The gamma energy distribution of the operating reactor is a
result of the interactions of the prompt fission spectrum and
the fission product decay spectrum with the materials of the

core region.

In general, this distribution is a rather complicated
function of the configuration and can only very summarily be

expressed by a two parameter approximation.

In the higher energy region (E>IMeV) the prompt and fission
product spectra show an exponerntial form, approximated in ref.

. -1.1E . .
5 by a function e . Other measurements, mentioned in ref. 5,

. . -1.24E
which include also capture gammas, suggest a form e .
Since in the present case 28A1 decay will cause. appreciable
increases of a distribution in the range E<1.3, one can
assume, that the exponent -1.24 will be more realistic for the

HFR.
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2
.o

In the range E<IMeV ref. 5 suggests e for the pronpt
gammas. However, a great contribution of degraded higher
energy photons must be expected in this region,; the actual
spectrum car therefore be expected to have an exponent <-2,3.
For convenience, -2.5 is chosen; the distribution is therefore

approximated by the expression

¢ ) .
_— s -1.25E s -2,50E
NO(E) = Ao. T - + BQ"E_ e

S S

(43)

The ekponentsAml.ZS and -2.50 have the dimensions MeV—],

if E is taken in MeV,. o

The multiplication with == is applied in order to make AO and

s

Bo non-dimensional.
The gamma energy distribution could also be approximated by
various other two parameter expressions, but in view of the

presentation in ref. 5, the exponential form is preferred here.

Approximation of the Neutron Enerzv Distribution

For the approximation of the neutron energy distributions,
results of the TEDDI-HFR 4 group code are used as.a basis.
These results refer to the integrated energy spectral densities
of the neutron flux in the form

EUn )
*n ‘/,( BCEYAE , n = 1...4 (44)

ELn

where the followirng energy limits are attributed to the group :

¢l : ELI = 1,35 Mev EU] = 10 MeV

¢2 : ELZ = 67.4 keV EUZ = 1.35 MeV
¢3 : EL3 = 0,625 eV EU3 = 67.4 keV
¢4 : EL4 = 0 EU4 = 0.6?5 eV
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One can derive from the TEDDI results, that the group fluxes
¢n are roughly equally related to each other in all central
positions and also, bur functionally slightly different, for

peripheral positions of the IFR,

These two forms can be approximeted by

) )
~¢;-?’- e 1 4 0.70(n-1) - 0.05¢(n-1)7 (45)
!
no= |, 4
¢Tl
5 = 1+ 075G (46)
1

for central (45) and peripheral (46) positions, respectively.

The characteristic-ratio

(47)
%

is by these approximations 1.51 for central positions and

0.85 for :.peripheral positions.
For a given core position, reclation (45) or (46) can be used to
approximate the neutron energy distribution in group representation
by
Fun ¢
¢ _(E)dE = C_ . ET T A (48)
E

Ln

where the factor ¢S is used for obtaining a non-dimensiocnal form of

c .
o



- 18 -

4.0 SOLUTION OF TILE FEAT GENWERATION ECUATION

4.1, Insertion of Carrma and Meutron Fnergy Distributions

The encrgy distributions of gammas and neutrons, represented
by eqs. (43) and (48), can now be applied tc solve the various
heat generation expressions of scct. 2 up to the unknown

factors A , % and C
0 0 o)
For 'this proccdure the following insertions are made

I) Eq. (43) in eq. (19)

S g u [ u ‘l

s a -1,.25F
P.o=A .= — | I+(— =-D)x|.p_(x).e * .EdE (49)
Y o ES ) o} Ua J o}

¢ u U '
s “a , -2.50E :
+ Bo.-ﬁ:g "—p ]+("‘“"ua 1)x .PO(X).G LEdE
o

I1) Eq. (48) in eq.:(22)

Eq;”(22f ié;approximatcd by the sum :

’ ' 4 E
| _2a _ . Un _
P = o Z Py (xp)-I. S ¢, (L) .EdL (50)
. El g

The integral of this expression can be solved by applying eq. (438)

in the followingtform :

; .
‘ 1 o ' ’Co ¢n
¢ = — - . . ¢dE = -—-“-_—'—" . — ¢ (5])
on EUn E‘Ln'-- ',o_ ;Un ELn _?] S
“E
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which brings

EUn
c ¢ ¢
_ ) n 1,2 2 _1 ’n
A EdE = E, -E E— ¢s i(EUn I:L )_ZCO(EUH E n) ) ¢s
E Un "Ln 1 1
Ln
(52)
and .
4 - A
1Y e n
P =C . — P (x.)'Z (E,, +E_ ). — . ¢ (53)
nn o (A+l) p o' T s Un "Ln | ¢l s |

ITI) Eq. (48) in eq. (31):

The thermal neutron flux density ¢oth corresponds to the 4th

energy group, and therefore

¢ - c A A | o - o (54)
oth o ° ¢l Vs
za ¢4 . : ua | ’ ? . ‘
ny - Cot 3 - —4,-]— P xy) - Ba—u--(‘t‘i)-pc(x).’r:i.S(Ei)-dbS (55)
i=1

IV) Eq. (48) in eq. (32): = . SRR ERPE
Eq..(32) is approximated by: ' ’

&

G 4 . =
P . =C Ya (E )‘p {(x).E_. B } ;T;.(x ).’_:_‘.‘.}.Iiﬂ ."¢H ‘ (56)
niy o vy’ 'fe Yy “a o T » ¢1 s
m=}
V) Eq. (48) in eq.. (37): ... . .~ »“? .
"a za ¢4 ,
Pndecayy = C TT(E )op (x).E vy ¥n* o $T-¢SPO(Xn)Ba (57)
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VI) Eq. (43) in eq. (38):

. — .¢S.po(xn) (58)

n .

™~
° |0

Pndecayg = CO‘PC(XS).EB.y

4,2, Presentation of Feating as Linear Lxpression with 3 Unknown

Constants

By sumning up the terms of sect. 4.1. to the total heat generation
(eq. 1), an expression for P is obtained, in which the unknown

factors Ao’ BO and Co appear in linear combination.

The resulting equation can be written:

P= A .G+ B . F+C .N (59)
o ) )

fop}
o]
o
o]
Q.
'_,:
o
H
o

short forms of the following expressions

®©
¢ u u . .
¢ = "é:'i‘ + [“(T ‘l)x] p 0. R e (60)
S o a
s | Xa " -2.50E
F= 't: Iy [H(_u: 'I)XJ P (x).e .EdE (61)
(o]
4
N = A 1 P (x.).T_ . (E  +E_ ) iﬂ ¢
(a+1)? P PotXr/+®s = “Mun Lm’ " F) %s
m=1
(62)

i=1
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Ba M L ¢
+ — —= (E ). .E
= ( Y) pc(x) y p (x

(62)
] Ya ¢4
— . —— ), . . D M —_ .
S z B, T (FY. p. () B YaTa po(xn)qal ¢
n.decayy
L ! ) . : ) °
5 P XB)' g V0 2 Pox,)- E’T b
En.decays
For convenience, the different arguments of the probability
factors are oncemore listed here
1
x =3 ¥Ry
=15 &
X 2 T Tav
(63)
=._1_ T R
Xn 2 thT "av
=..].. R
XB 2 pB av

The expressions G, F and W (60), (61) and (62) are functions of
the sample material and the sample geometry and sizc; they can

be determined theoretically.

For cylinder geometries, which are considered here, the influence

of size is expressed by the dependency of G, F and N on Rav

The dimensions of G, F and N are the same as the dimension-of
P, e.g. [Watt/g].
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4.3, Determination of Unknowns Ao’ Bo and Co

The solution of eq. (59) for the total nuclear heat generation
nov depends -on the knowledge of the constants Ao, Bo and Co

of the gamma and neutron energy distributions.

1

A, and Bb are unknown; C_ can be obtained by the TEDDI code
theoretically and by activation analysis experimentally; it

is however not advisable *o apply the so-found values, in view
of the complete loss of self-correction within the further

process.

It is therefore useful to consider all three constants as
unknown and ‘to determine them simultaneously in a common

procedure. : ; . S

Yor this-pufposc, the ncthqa applied in ref. | is used here
in & modified form. It:con;ists in a measurement of the heat
generation in 3 materials and solution of the system of 3
lincgt_cquaéiona (59) with ithe measured values P.

With ‘the auhacript:‘l._z and 3 for the 3 materials, one has

B + N
o

Py .l}cle + 1%
r, -_::-?c':zxo + 7,8+ B,C (64)
RSCTAEE KRS XX
The iciorniﬁant of the cooiticicnts is :‘
G, F, N, |
D.*|C, T3 ¥, (63)
Gs 13 2x3 :

The colutioﬁ:cnn be prnsonéod in the fdllowing form :

¢ 173

L -] ' : : : .
A =D g[(2283-§2P3)Pl f (nlra-r N )Pz + (F|N2-N1F2)Pé] (66)
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B =D . -(N2G3—G2N3)P] + (GN,-N G )P, + (N‘GZ-G‘NZ)P3]
(66)

-
-1 (G,F
C =D . (G2F3 F2G3)P] + (F]G3—GIF3)P2 + 172

-FIGZ)P3

Once these constants have been determined, one can express
numerically the approximations for the gamma and neutron energy
distributions (43) and (48) for the conditions of ithe measurement

(core position, core configuration, etc.).

For the same conditions, the constants in combination with
eq. (59) permit to calculate the nuclear heat generation in
samples of any material, geometry and size, for which the

coefficients G, F and N are known,
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EXPERIMENTAL

5.1.\Princigle

The experimental determination of the constants Ao, Bo and Co
according to sect. 4.3. requires simultaneous measurement of
the specific power for 3 different materials, which are

exposed to the radiation at the same point of the reactor core.

Since this is, in the strict sense, impossible, it is necessary

to apply a separation in either time or space.

The principle of time separation requires use of calorimeters,

which can be moved to the measurement position in succession.

The principle of space separation can be realized with fixed

calorimeters.

In view of the rather slow changes in the radiation at a given
point of the core, the time separation introduces practically
no mistake, whereas the space separation can be subject to
errors caused by local differences in the radiation pattern.

These errors are difficult to estimate and can only be kept at

'a minumum by minimum spacing of the calorimeters.

The practical realization of the time separation principle
(movable calorimeters) however, is rather difficult and intro-
duces special problems in view of the required sensitivity of

the calorimeters.

Since construction of rigs with movable probe supports is
presently an unproved technique for the HFR, preference is given

to the somewhat less accurate solution with fixed calorimeters.

Sample Materials

In order to reduce the errors, which are introduced by local
gradients of the radiation pattern (sect. 5.1.), and to make the
sensitivity, expressed by the right sides of egs. (66), a maximum,
materials with sufficiently different gamma and neutron heating

characteristics must be selected.
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In numerical terms, the determinant Dc (eq. 65) should approach

a maximum value.

On the other hand, the sample materials should be suitable for
construction of geometrically equal calorimeters with good
sensitivity and limited temperatures, which is an important

requirement reducing the risk of thermo-couple failures.

On the above basis, the combination graphite-molybdenum~beryllium
was chosen. Estimated heating ratios of these materials are

approximately

Gammas : C : Mo : Be * 10 : 14

Neutrons: C : Mo : Be ¢ 1 ¢+ 0 : 2

The thermal characteristics of C and Be calorimeters are very
similar, the temperatures in Mo. are comparably high, due to ihe

higher heating rate and the greater density,

Cross sections and absorption coefficients are well known for all
3 materials; the specific heats and their temperature derivatives
(source : ref. 6} as defined by .eq. (67) are listed in the

following table

c =c [l + q(T - To)] ’ (67)

‘[Material p[g/cmal eo[J/(gdeg)] q[l/deg] To[degC] T[Heg C]

Be ' 1.85 1.892 0.00178 35 0<T<150

c* 1.69 0.762 0.00332 35 0<T<200
Mo 10.21 0.253 0.00026 35 0<T<600

* graphite Carbone Lorraine type 3780 WEG

With the above figures, c is accurate within + 27 in the

temperature range indicated for T.
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Test Rig

A test rig, which can be inserted into the relevant experi-
mental core positions of the HFR, is designed on basis of

the principles of the CADO series, being in use at Petten.

This test rig, CADO-17, is a carrier for isothermal calori-
meters, which are arranged at the 4 vertical stations shown
on the scheme of fig. 2: (1) two groups of 3 calorimeters

(referred to as '"group calorimeters') with graphite, molyb-
denum and beryllium samples and (2) two single calorimeters

with graphite samples.

The group calorimeters have capsule diameters of 6 mm, the
single ones of 10 mm. The single calorimeters serve for com-
parison with earlier measurements, for which the same types

had been used.

The calorimeter capsules are of stainless steel with a wall

thickness of 0.3 mm; the free space is helium filled.

The group arrangement 1is shown in fig. 2 too. The center radius

of 10 mm is a compromise between minimum spacing (see sect.

and the distance needed in order to reduce mutual influencing

(shadowing) of the calorimeters,

The calorimeters are cooled by the primary coolant of the HFR,

flowing in downward direction through the rig. The rig is in-

serted in a standard filler element.

The inner and outer thermo-couples of each calorimeter are

connected in differential junction in the head of the rig.

The instrumentation is a Solartron digital data logger with

punched tape recording equipment.

c10)
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Calibration and Sensitivity

Calorimeters are calibrated out-of-pile by derivation of
the temperature dependent time constant of the differential
thermo-voltage, developped in response to a sudden decrease

of the cooling temperature.

The first order approximation for this time constant reads

M = Mo-(l+BAT). (68)

With this, the differential equation of the calorimeter res-

ponse

dAT _ _ AT
dt M

has the solution

AT  _ .t —_—
AT = exp + B(ATO AT) . (69)

M
o o

Measured response curves of CADO calorimeters are perfectly
represented by this relation, so that the parameters My and B,
defining M by eq. (68), are easily determined from the measured

response on basis of eq. (69).

A steady state calorimetric measurement is evaluated, the time

constant being known, from the following equation:

. AT. (70)

P = ——

f
-k

=lo

The correction factors f and k, allowing for the influence of
the inner thermo-couple mass and heat capacity and the heat loss
by the sample supports, respectively, have been calculated;

results are listed in the following table.
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Calorimeters Sample f k
type material
single 0.985 0.043
group C 0.985 "0.024
" Be 0.975 0.024
" Mo 1.004 0.024

The following table shows predicted mean values of the time

constant, the temperature difference developped per w/g of

heat generation and the sensitivity of the calorimeters,

defined as the output in millivolts (thermo-voltage) per w/g

of heat generation.

Calori- | sample { capsule | mean time |{ related tem- | mean sen-
meter mate- i.d. constant perature sitivity
type rial [mm] [sec] [deg/(W/g)] [pV/(W/G)]

single c 10 10.5 12 6.48

group c 5.5 6.8 0.27

group Be 14 7.5 0.30

group Mo 11 41 1.64
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Accuracy

According to an analysis made in connection with earlier
experiments, the expected mean error of CADO measurements

is of the order of 47.

Since the same calorimetei type is used for the present method,
it is reasonable to consider this value also as the mean error

of the individual cz2lorimeter output.

The total error of the method, which is the error attributed
to the final result Ao, Bo’ Co, must be evaluated on basis of
eq. (66), in which the calorimeter outputs are combined with

the elements cof the determinant DC (eq. 65).

The accuracy of these elements is rather difficult to estimate,
because it depends very much on the unknown quality of the

approximations for the gamma and neutron energy distributions.

In view of these uncertainties, an analysis of the method
accuracy requires experimental experience and .can therefore

only be made, after measured data results are available.
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NUMERICAL CALCULATIONS

Expressions G, F and N

The expressions G, F and N of eq. (59), which are formulated
in eqs. (60), (61) and (62), have been evaluated for the

materials
C, Be, Mo, Fe
and for cylinders of the dimensions

0 < R < 6 cm.
S Ray 2

Eqs. (60) and (61) were integrated graphically by means of a
planimeter, with upper integration limits of 8 MeV for G and

4 MeV for F.
Absorption coefficients were taken from refs. 5, 7 and 8.

N has been determined on basis of the mean of the neutron group
energy distributions (45) and (46), reading

¢ 3

3;-‘1 =1 +0.70 (n - 1) - 0.03 (n - 1) (71)
1

Cross sections were taken from ref. 4.

The pn,Y contributions were evaluated on basis of the 7 group

capture gamma spectra of ref. 2.

Numerical results are presented for the standard values of

E = 0.1 MeV
s

¢s = 10 cm sec
Diagrammes of G, F and N, based on these calculations, are
presented in figs. 3 through 6. Diagrammes for other materials

will be communicated in a separate note.
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It should be noted, that numerical values of Ao, Bo and Co’

which are obtained experimentally and by inversion of the

linear system (64), are only valid for parameters G, F and N

with the above mentioned standard values of ES and ¢S.

Determinant DC for CADO-17

The samples installed in experiment CADO-17 are cylinders of

3.2 mm diameter and 20 mm length; their corresponding value

of R (eq. 18) 1is
av

R = 0.296 cm
av

The determinant (65) is set up by coefficients G, F and N,

which are read from figs. 3 through 5 for this Rav' The

correlation used here is | for C, 2 for Mo, 3 for Be
2.667 0.757 1.470
Dc= 3.491 1.443 0.240 (72)

2.320 0.644 3.110

The value of Dc is

D, = + 2.143 w3 g—3 (73)

On basis of this figure, eqs. (66) are evaluated to

(P in Watts/gram)

A =+ 2,022 p, -~ 0.657 PM - 0.905 P
o

o C Be
Bo = - 4,806 PC + 2.279 PMo + 2.096 PBe (74)
Co = - 0.513 PC + 0,018 PMo + 0.563 PBe ,

index

where the indices C, Mo and Be stand for the corresponding

materials.

Since physically meaningful solutions require that

P. > 0 and P2 0, there exist the conditions
y 2 Z

\
(]

A G+ BF >
(o] o] (75)

o
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By insertion of eqs. (74) into (75) and use of valucs G and
F of (72), one finds a field of physically meaningful specific
power ratios, which is shown in fig. 7 as the area limited by

the straight lines (a), (b) and (c).

However, in view of the expected gamma energy distribution,

only a part of this field can be realistic.

The actual gamma distribution of the HFR has in all probability
a form, te which both terms of approximation (43) contribute
with positive sign, so that the expected field of solutions

has the sharper limits

AOZO-BOZO»COZO- (76)
This field is, on basis of eqs. (74), the triangle I-II-III
(fig. 7), in which point I corresponds to a gamma energy

1.25E -2.,50E
e

distribution type e (hard spectrum), point II to

(soft spectrum) and point III to pure neutron energies.

Accordingly, on a line connecting two points, the contribution

represented by the opposite point is zero.

It can be expected, that actual HFR results will fall close
to the line I-II, because the neutron effects are relatively

small,

The results of measurements at different points of the core
combine to a curve or a field, the magnitude of which depends

on the variation of the spectra over the core.
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DEFINITION OF SYMBOLS

A atomic weight

AO,BO,Co constants of energy distributions, eqs. (43)
and (48)

Ba energy absorption build-up factor

D diameter

DC determinant of coefficients, eqs. (65)

E energy of gammas and neutrons

ES standard energy, arbitrary definition

F defined by eq. (61)

Fc fraction of collisions

G defined by eq. (60)

L length of cylinder

M time constant

N defined by eq. (62)

N energy spectral density of gamma number flux

(eqs. 3...8)

No energy sp. dens., of gamma number flux, undisturbed

P specific power of nuclear heating

Rav average chord

S total surface of sample

S(Ei) integrated capture gamma spectrum, defined by eq. (30)
T temperature

T° reference temperature

AT temperature difference corresponding to UT

UT differential thermo-voltage of calorimeter

v total volume of sample
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specific heat

reference value of specific heat
correction factor

correction factor

total amount of photons coming in
escape probability

volume average of p

volume average of collision probability, eq. (28)

temperature derivative of specific heat

energy spectral density of capture gammas produced

per capture

local coordinate

natural abundance

absorption cross section
scattéring-cross section

total cross section

total cross section for thermal neutrons

cross section for inelastic scattering gamma

ray production
energy spectral density of neutron number flux

energy spectral density of neutron number flux,

undisturbed

gamma ray attenuation coefficient

gamma ray energy absorption coefficient
beta ray absorption coefficient

density

sensitivity of calorimeter output
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neutron number flux

neutron number flux, undisturbed

undisturbed thermal neutron

standard neutron flux,

neutron number

defined

defined

defined

defined

by

by

by

egs.

eqs.

eqs.

egs.

flux in energy group n,
(63)

(63)

(63)

(63)

number flux

arbitrary definition

eq.

(44)
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