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ABSTRACT

The study described in this report deals with dynamics and control of the
pulsed fast rcactor SORA. It is bascd on a sct of equations for mean-value
neutron kinetics. A simulation of the complete set of equations, including
thermal reactivity feed-back, is performed. As results, the reactor responses
to perturbations of reactivity, inlet coolant temperature and coolant velocity
are shown. Control rod malfunctions are investigated; a start-up procedure
is proposed. A fast control system is synthesized.
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SORA DYNAMICS AND CONTROL SYSTEM STUDIES USTING MEAN-VALUE
NEUTRON KINETICS EQUATIONS*)

I. INTRODUCTION

The SORA reactor is a fast reactor periodically pulsed by
reactivity variations designed as a neutron scurce for re-
search in neutron physics. The reactor design and experimental
use have been described in several meetings, notably at Karls-
ruhe in 1965 (Ref. 6), at Santa Fe in 1967 (Ref. 7) and at
Albuquerque in 1969 (Ref. 4).

The study described in the report was performed in the
year 1968 at the request of the SORA Project to answer questions
which the project designers had about the reactor dynamics and

control.

Mean-value neutron kinetics equations are used for this study.
A set of equations for the reactor mean temperatures is used

for the calculation of thermal reactivity feedback.

A simulation of the complete set of equations is performed
using the digital computer IBM 360/65. As results, the reactor
responses to perturbations of reactivity, inlet coolant tem-
perature, and coolant velocity are shown. Also a start-up pro-
cedure is proposed. Control rod malfunctions occurring in the

uncontrolled reactor are also investigated.

In a classical manner, the set of equations 1s linearized
for small deviations from pulsed steady state to obtain a
reactor transfer function which is used for the synthesis of
the fast control system. This fast control system is then in-
troduced as a control loop around the reactor. The whole system
is then simulated and checked against typical perturbations
of reactivity, inlet coolant temperature and coolant velocity.

I wish to acknowledge the help and the interesting suggestions
of Mr. Larrimore throughout this study.

%) Manusoript received on 10 September 1969.



2. Basic Equations for Description of the Reactor

A block-diagram for dynamics of the uncontrolled reactor is
shown 1n figure 2. See also the list of symbols at the end

of this report. Three parts may be seen in this block diagram:

- core kinetics and conversion to power
- thermal description

- reactivity feedback.
Three inputs are considered for this system:
- external reactivity ( ed)

- inlet coolant temperature (T_ . )
c,in
).

The three most important outputs (from dynamics point of view)

- coolant velocity (Vcool

are shown:
- power (P)
- fuel temperature (Tf)

- structure temperature (Tg).

Also available from the set of equations that we will use are
a number of other parameters such as fission rate, outlet coolant
temperature, internal reactivities from fuel and structure. For reasons

ol clarity all of these narameters were not shown in Fig. 2.

We will analyze now this block-dliagram and present the relative

sets of equations.
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2.1 Core kinetics - Conversion to power

The kinetic theory of a periodically pulsed reactor was estab-
lished by Bondarenko and Staviskii (Ref.1). Later on,extensive
kinetic studies were performed at Ispra, namely by Blidsser,
Misenta and Raievski (Ref.2). The neeessary elements for a
clear understanding of the present report will be found in

the survey paper of Larrimore (Ref. 3).

Since our main purpose was to get a good approximation for the
reactor transients and a reference design for control systems,

we decided to use "mean power kinetics" in a point reactor model
for such a work. By '"mean power kinetics" we mean the time be-
haviour of the average values over a period of the power and pre-
cursor concentrations for times long compared to the pulse period.

In analogy with the multiplication factor for a stationary (non
pulsed) reactor, a multiplication factor K is here defined,
based (Ref. 2) on production and destruction of delayed neutron

precursors:

K = Precursor Production During Period (2+1+1)
= Precursor Decay During Period T

with K = 1 for pulsed steady-state operation. This multiplication
factor, also called '"pulsed multiplication coefficient" may be
expressed as:

K=+ 75— (2-1-2)

(o]

where M and €, are functions of the reactivity level in the
reactor. In Figure 2-1 a plot (Ref. 4) of K versus peak prompt
reastivity ¢ ,calculated for the SORA reactor, is shown. The
represented curve was fitted as:

K = 0,229 + 8,80 ¢ + 0,0176 ¢4140 (2-1-3)
Now, since the precursor production during a period is ﬁvWT

and the precursor decay during the same time interwal is gAiEiT
it results directly from (2-1-1) that the mean fission ratelis:

w = %;_ (§§1614.so) (2-1-4)

while the mean delayed neutron precursor concentrations are

described by:
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T, 5

— o W - A -1=
T = LYW ek (2-1-5)
Fouations (2-1-2) to (2-1-5) describe completely the reactor
kinetics. The corresponding reactor power 1s straight forwardly

obtainable from the mean fission rate w as:

T = (2-1-6).

C)Iil

f

We will write finally the complete and practical set of

equations for kinetics:

K = 0,229 + 8,60 ¢ + 0,0176 ¢ %0 n

— K -

W = ‘BT (§A1i+so\
dacC. _ _ (2-1)
—i: ﬁ vV W -~ A.C
dt 1 1 1

-

Ce

2.2 Reactor thermal description

A simple mathematical model (Ref. 5) for the reactor thermal
description has been developped in collaboration with the SORA
Project, which expresses the mean fuel and structure temperatures
in terms of the power, the inlet coclant temperature and the
coolant velocity. These mean temperatures are used for the cal-
culation of thermal reactivity feedback.

The SORA reactor core consists of a bundle of approximately 116
fuel rods (Ref. 6 and 7). Assuming a uniform radial power gene-
ration and neglecting the heat flow in the vertical direction, a
temperature distribution such as shown in Fig. 2-2 may be defined
for any element, which enables us to calculate mean temperatures
for fuel, bond-clad, and coolant. The heat exchange coefficients,
calculated from these mean temperatures, are assumed to hold in
in transients around the previous steady state.
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2-2-1-1., Temperature distribution in fuel. Mean fuel tem-
perature Tf.

Assuming a uniform volume heat source q"', and kf independent of
the temperature, the temperature distribution in a fuel element
is a solution of:

a” + L V2Tf = 0.

Neglecting heat flow in the axial direction, this may be written

as:
daT -
1.4 f _ q®
I O R
Integrating once:
rde q” r dT,
/:d(—ar—')=—k? /rdr F=0atr=0)
o o
dT, o q"
dr ~ 2k
f
Integrating again:
Tes q” Tp
f arg = - o f i
Tf(r) r
2
() T (Z-)°
Te{r) - T = - m—m— ] = (= .
f fs 4 kf [- re ]

The mean fuel temperature is defined as:
XF

[f ETf(r) - Tfs:‘ 27 rdr

T - o]

s

]~ 2 g rdr

o]
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q.

Introducing finally the average power generation in fuel per
unit of length qQ = wrg q” , we obtain:

’ qa
T, = + T
8rk

f fs .

f

2-2-1-2. Temperature distribution in bond-clad. Mean structure
temperature Té.

For the purpose of this study the bond and clad are combined
into a single region. Due to the small thickness, one may write
directly (see figure 2-2):

qn
Teg ~ Tgs = kg

(r, - rs¢)

where q" 1is the average power per unit area. Introducing the
average power generation per unit of length q = 2« rfq” ’
we get:

q
T - T

= s——— (r, - rg)
fs s 2w rfk8 o f

The mean bond-clad or structure temperature is then defined as:

T 1 9 To Tr
g " Tgs +37 (Tfs - Tgs) = Tgs + 4n’kg ( Te )
or:
1 9 To = Tr

Tg =Teg =3 (Tfs - Tgs) = Trg - Ink, ( Ts ).
2-2-1-3. Temperature distribution in the coolant. Mean coolant
temperature (or coolant temperature at half height of

core) Tc.

We assume the coolant temperature increases linearly from the
inlet to the outlet so that the mean coolant temperature is the
coolant temperature at half height of core. Following this
assumption:



- 14 -

qQ"
Tgs - T = he
where hf 1s the heat transfer coefficient between clad and
coolant and a" the average power per unit area. Introducing

once agaln the average power generation per unit of length we
obtain:
q
- T = ——
gs c 2m rfhf

m
<

From the previous equations we derive heat exchange coefficients

related to the characteristic temperatures Tf, Tg’ and T.
2-2-2-1., Fuel to clad heat transfer coefficient th

We have found: q

Tf - Tfs = 8nkf
= q 's = Tf
Tts = Te = 77 |

we obtain:

1 1
87 kp T A7 kg

2-2-2-2, Clad to coolant heat transfer coefficient

o} r

= o rf

Ty~ Tes = T7kE (o)
a

Tgs - T =77 rfﬁf .
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Defining the heat transfer coefficient hSc as:

N q
sc =
Tg—Tc
it is found:
1
h =

SC 1 (rO—rf ) + 1 .

4 nkg e 21 erf

Cp = = q(t) - hFS(Tf -T) . (2-2-3-1)

(T, - T,) (2-2-3-2)

daT
c -
IC, =3¢ = Dhg, (Tg-Tc) - Vcc<Tc,out_Tc,in) (2-2-3-3)
1
T, =% <Tc,in + Tc,out)‘ (2-2-3-4)

Assuming no time lag exists between Tg and Tc due to the small
heat capacity of the coolant, equation (2-2-3-3) may be turned
into:

T . ). (2-2-3-5)

Lh (Tg-T,) = VC (Tc,out— c,in

sc g ¢ c

Equations (2-2-3-4) and (2-2-3-5) are then used to express TC

and T in terms of Tg and T,

yin

c,out
R SR ! T (2-2-3-6)
c 2V(?c & thc c,1in
T+ry 1+ 57

scC C
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2VC
1o c
, . Th_,
Tc,out = 2VC, Tg - ?VCC Tc,in y (2-2-3-7)
1+ in 1+ ST
sc sc

Eliminating finally TC between (2-2-3-6) and (2-2-3-2), we get
for the structure heat balance equation:

aT h
B _ TO_F - —238C (7T _ _Do_1—
Cg t 7 th (Tf Tg) thc (Tg Tc,in) (2-2-3-8)
1*+37C_

- —— i ——————— o o 11 s o s . S . e e s i e et e e T i S it U o . e iy e i T o A . s W, e, S . e e . e s e . e e (s e o e

Results (2-2-3-1), (2-2-3-8), (2-2-3-7) and (2-2-3-4) describe
the reactor from a thermal point of view. For clarity, we rewrite
here these results:

de _ _
Ceqr =7 " P(¥) - hypy (Tp - T,)
aT _ _ h o
Cg at  ~ th(Tf - Tg) - Th_, (Tg - Tc,in)
v+ e
c
(2-!'2 )
- 2 (
Tc,out Tc,in * 2VC ‘Tg - Tc, 1n)
1+Lh
sc
T = & (T + T )
c - 2 c,1in c,out

2-2, Reactivity feedback

A fundamental characteristic of the periodically pulsed re-

actor is that the reactivity is introduced as a "pulse", that

is to say introduced rapidly and removed in the same manner. It

has been shown (Ref. 8) that the reactivity feedback during the
pulse has a negligible effect on the pulse characteristics due to
the short duration of the reactivity pulse. However, the reactivity

feedback is important when more than one pulse is considered.
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The temperature coefficients of reactivity in SORA have

been calculated to be negative, which simplifies considerably
all problems of control. The temperature effect is split

into two parts: the fuel temperature coefficient of (in-
cluding fuel axial expansion and Doppler effect) and the
structure temperature coefficient ‘vg (including radial struc-

tural expansion) so that:

(T, - T )
‘of = %f''f T “REF

pg g'Tg =~ T REF)
(2-3)

with @_. and « negative.
f g g

2-4 Summary of equations

Equations for kinetics, thermal description, and feedback
reactivity are rewritten below. (See Fig. 2-4 for the relative

block diagram.)

€

i

input reactivity signal
€

total feedback reactivity signal
€

total reactivity = €q + Gp‘

m
-
K = 0.229 + 8.80 «_ + 0.0176 2140 €
= K (1w
w._ﬁv (i iCi+So)
ac

&
]
e
<
=
i
)
[

ol
I
orﬂ
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de ~ _ _
e pP(t) - hy (T, - Tg)
aT _ _ Nee _
Coat- = hpg (Tp = Tg)- Th__ (Tg = T in)
1+ =7C
[#]
T = T . +-—-—————2 (T_-T. . )
c,out C,1n 1 2VCC g c,1n (2-4)
* In
SC
T =1 (1 T )
c 2 c,1in c,out
of = o (Tp = Thgp )
pg ag <Tf T?{EF)
‘o7 9f Y pg
—
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3. Simulation of the Uncontrolled Reactor

The simulation of the uncontrolled reactor was based on the set
of equations (2-4). The use of a digital computer rather than
an analog one was chosen mainly for the following reasons:
noise and thermal drift eliminated, easy calculation of K( em),
amplitude scale unlimited. Therefore, the simulation consists
of an iterative integration of the set of equations (2-4). Ve
used the program SAHYB-2, developped at CETIS: this program
was specially developped to meet the requirements of simulation
on digital computers (Ref. 9).

It must be noted, however, that an iterative integration by

means of a digital computer implies a cumulative error (as time
goes on) on the integrated values. But this error may be kept

as low as desired by introducing the requested specifications into
the program.

We first simulated the effects of:

- a change 1in reactivity,
- a change in coolant velocity, and
- a change in inlet coolant temperature

on the uncontrolled reactor. These changes were introduced as
step functions with the reactor assumed to be stabilized at
power 600 kW. The relative initial conditions were calculated
from the set of equations (2-4) for the steady-state condition*
600 kW.

In Fig. 3-1 the response to a step of reactivity of 5 pcm is
shown: the power jumps immediately by about 100 kW from the
initial level 600 kW, which is characteristic of the kinetics

of such a reactor (see equation 2-1-4); the power then stabilizes
at about 30 kW above the initial level with a time constant of
approximately 1 second.

* See the appendix: Derivation of numerical values for a steady-
state condition at power.
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In Fig. -2, is plotted the power response to a negative step
of 10°C on the inlet coolant temperature. The power stabilizes
at about 70 kW from the initial level.

Finally, in Fig. 3-2 the power response to a positive step of
0,25 m/s in the coolant velocity is plotted. This results 1in

a power increase of about 10 kW.

In the two last cases, the power level increases due to the fact

that the considered perturbations reduce the reactor temperature.

4., Startup Procedure

Simulating the set of egquations (2-4) permits to. define:

- a procedure for approach to criticality (K = 1)

- a procedure for bringing the reactor up to power 600 kW.

These vrocedures are intended as typical insertion rate curves
for the uncontrolled reactor (no control, no scram system) and
may be considered as the optimum insertion rates meeting the

following specifications:

- start from subcritical steady state*
- approach to criticality as quick as possible
- period T, always 2 230 seconds =
; . (1, = —2—)

ap
3

The insertion rates as shown in figure &4 have been found by
successively trying numerical values as slopes for €3 Although
these results were derived empirically, they give a good first
approximation to an optimal startup procedure based on the previous

specifications.
Some conclusions coming from this first approach are:

a) The approach to criticality must be performed very slowly:
the reactivity insertion must be held in the order of 0,1 pecm/s
if the period has to be kept > 30 s. With thie condition,

* See appendix: Initial Conditions for the Subcritical Steady-State.
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the power level at criticality is reasonably high, that is in
the order of 150 mW.

b) The time for bringing the reactor up to power (600 kW) lies

in the order of 1000 seconds. This time seems to be the
minimum required for starting up to power with the imposed
safety condition on the period.

5. Linearized Reactor Description

A linearized reactor description is derived in this section
which leads to a transfer function for the whole reactor - in-
cluding kinetics, thermal description and feedback reactivity.
In a successive step comparisons are made, on the basis of the
reactor response to perturbations, between the set of non-linear
equations (2-4) and the derived transfer functions.

5-1 Derivation of transfer functions

We start with the set of equations (2-4) and consider small

deviations from the pulsel steady state.

5-1-1. Derivation of a transfer function for core-kinetics

Assuming the reactor is at steady state at a certain power level,
we will denote by «€__ the ¢ value such that K( fmo) = 1
( €m0 = 91,1 pem) and consider small reactivity derivations
Ae from this value. Then:
/AK

\
K (emo +A€m) - K(emo) = Aem . K_dfm /}(
mo

which gives the following transfer function:

dK
MK(s) = { N e (s)
'\de m /e m
mo
AK(s) = 3,1745 = 1072 pe n(s)

with Acnlexpressed in pcm.

In the same manner, considering small deviations from the

pulsed steady state, we write the kinetic equations as:
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K
steady state wo o= Ef-( % A ici+so)
dacC. =
io dacC.
K =1 =0 10 = =
° $oar 3T = A Wom Milig
. — K_+ AK
small deviation Wo+ AW = =2 5 Ai(cio + Aci) + Sé}
from Bv 1
d ,= —- —_ — -
steady state 37(Ci*+aCy) = ﬁv(Wo + AW) - Ai(aio+ aC; ).
The second-order term ALK ZAEAEi is neglected. Since at steady
i
ac.

state KO = 1 and 3?32 = 0, one obtains:

- 1 — -
AWz—E— Zi‘.)\i ACi+ WOAK

—9( AC. )= Biv AW — A. AT

at i/= hiv i &%y

This set of equations is Laplace-transformed on both sides;
eliminating Aﬁi(s) the following transfer function is obtained:

In turns, this result is approximated by a one-precursor
group model as:

w (s - 8+ A
_%AK—-E—S—% = WO S . (see Ref. 10)

Introducing finally power instead of fission rate, we obtain

the following transfer function relating the power variations

AP to the reactivity variations Ae o

> dX
F(S) = _A__: PO <‘E‘€' . .S_&
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The numerical value chosen for A 1is 0.08 sec_1. Then, for
the 600 kW power steady state, this gives:

7%3_ - 1,524 - 121558 + 1
m
AP expressed in kW (5-1-1)

Aem expressed 1n pcm

o — — — ——f——— ——— —— - —_— ——— T~ —— — T . D W " TN o —————————— — ——— ———— — — . ot . ot s G2t e o

Assuming a constant velocity for the coolant, the set of equa-
tions (2-2) consists of linear differential equations and may be
directly Laplace-transformed. Since the mean fuel temperature
and the mean structure temperature are of main interest, we will
establish the results for these two temperatures only,

(sC _+h., + ——E§g—) AD + "rs Psc AT
S¥ g 'Fs Th__ P — In_, ¢, in
IR o T+ 57¢
_ C C
ATf ) 2 hsc th sc
s%C,Cy + s[ hpeCq + (Bpg + ) O ] e
1 + ?VE; 1 + ?VEZ
= hSC
phpg & F * —Tq__ (sCp + hpg) AT, 5p
1 + QVE;
AT =
® S2C C_ +sf{ h, C_+ (h, + fse ) C —] Prs’sc
g Fs™g Fs EHsc f_J * EKSC
'+ 3V, 1+ Ve,

These results may be synthesized as follows:



where:

r——
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(5-1-2)

= A(s) = C(s)
\ = .
ATe(s) = SO P(s) + % = ATc,in<S)
= _ D(s) . 5 E(s) .
ATg<S> = Bls7 AP(s) + ng% ATc,in(S)
(expressing power in kW and temperature in °c)
Nse
A(s) = (ng + hp o + Th_, )
T +oave,
A(s) = 0,22 s + 2,98
2 sc m
B(s) = s Cng + S [ hFSCg + (hFS + thc) Ce J +
+
2VCC
B(s) = 3,117 s° + 45,176 s + 16,174
h
Fs''sc
¢ls) = Tn
1+ v
c
C(s) = 16,174
D(s) = php
D(s) = 18,535
e
E(s) = Th, (sCe + hpg)
1 + T—VCC
E(s) = 15,86 s + 16,174,
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Since %p and a_ are constant coefficients, we obtain immediately
from the set of equations (2-3):

g
2

Aeppls) = ap BTe(s) W s
(s) = -0,42 AT.(s) g
Ae s) = -0, s o] @)

(5-1-3) A pf( o _ f .9 |Ef:oo

‘pgls) = "&aT(s) & e < &
A s) = =-0,8 T < e © o
€pg( ) ,80 A Tg(s) £ F S
bep = Bepr + bBepg g a2
o 2)' [ 18
g -

From the previous results, (5-1-1), (5-1-2), (5-1-3) one may
build the block-diagram represented in Figure 5-1.

5-2. Comparison between the non-linearized and the linearized

reactor description

The block diagram shown in Fig. 5-1 and the relative numerical
values may be used to get the reactor response to reactivity

or inlet coolant temperature perturbations. However, one must
remember that the linearized reactor description holds only for
small deviations from a particular steady-state; moreover, all

of the numerical values from (5-1-1) to (5-1-3) hold only for

the 600 kW steady-state. Therefore, it is of importance to check
the'validity of this linearization and to know how representative
the linearized reactor description is with respect to the set of

non-linear equations (2-4).

We considered some increasing steps of reactivity (1,2,3,4,5 pcm)
and plotted the obtained power responses:

a - using the transfer functions.
b - simulating the complete set of non-linear equations
(2-4) by means of the SAHYB programme.
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In the same manner we considered some increasing steps of
inlet coolant temperature (1,2,3,4,5 °C) and plotted the
power-response for both the two cases.

Assuming AT, ;, = O, it is found / from the block-diagram re-
]

presented in figure 5-1, or from the set of results (5-1-1) to

(5-1-2) 7:

AT(s) _ 4g o5 s3+14,572 940,248 s+0,415
Bey(s) s7+15,058 s°+21,9468+1, 337

The subroutine POLRT (Ref.11) was used to calculate the roots of

these polynominal expressions and gave:

(s+0,08) (s+0,37)(s+14,12)
(s+0,064)(s+1,56) (s+13,472)

_85(s) _ 19,05
Aed(s)

Results are plotted in figure 5-2-1. As is to be expected, the power
responses obtained using the transfer function hold good for small
perturbations: the more the step height is increased, the less the
curves agree. Retaining as good agreement a difference of less than
10 %, it may be seen in figure 5-2-1 that the derived transfer
function holds up to about 2 pcm deviation.

It must be pointed out that in these conditions (steps < 3pcm) the
transients as well as the final steady states are well contained in
the transfer function. If only the final steady states were of in-
terest, the transfer function would hold still higher than 5 pcm -
which means that the transfer function might also be used for get-

ting the response to larger slow reactivity deviations.

Assuming now Ae 4 = 0, it is found / from the block-diagram of
figure (5-1) or from the set of results (5-1-1) to (5-1-3)_/:
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= F(s) (azC(s) + agE(sx
8T, (] 7 B(s] - F(s) (aphls) + agD(s))

s+0.08)(s+1.555

- 77,544 s+0.064 ) (s+1. 8+13,42

>

3

(0]
N

which simplifies as indicated in Figure 5-2-2. Results are shown

in this figure.

Considering the set of curves of Figure 5-2-2, it may be seen
that the transfer function AP is quite a good approximation
AT .
c,in

up to 5 °C (difference between curves less than about 10%).

Remark 1

So far we considered the power response of the reactor against
reactivity or inlet coolant temperature perturbations. However, all
of the presented results from (5-1-1) to (5-1-3) may be arranged

in such a manner that also the fuel temperature or the structure
temperature, or any other parameter of interest might be considered
as an output of the system. Such a work has been performed and has
shown that the transfer functions always constitute a good approxi-
mation for the set of non-linear equations (2-4).

Remark 2

For clarity we have considered responses to reactivity and inlet
coolant temperature separately. Due to the linearity of results
from(5-1-1) to (5-1-3), mixed transfer functions may be derived
where reactivity and inlet coolant temperature appear together; con-
sequently, complex perturbations may be considered where reactivity
and inlet coolant temperature are varied simultaneously.
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6. Fast Control System

Clearly it seems unreasonable to define a "fast control
system" for the reactor since we deal with mean values for
all of the parameters. Such a fast control system should be
defined using a discrete-time reactor description (Ref.12)
However, it may be thought that the faster is the control
system based upon mean values, the easier it will work in

the discrete conditions. On the other hand, such a '"fast
control system" was intended to keep the reactor at the de-
sired power level against small perturbations of reactivity
(in the order of some pcm) while a "slow control system" was
foreseen against large deviations. In this sense, the set of
equations for mean values might be used for a preliminary de-
finition of the control system. We present here (see also Ref.
13 ) a possible way to define a fast control system for such a

reactor.,

The SORA reactor is equipped with a control rod worth 10 pcm,
vertically mounted as described in Ref. % and Kef.7 . The
so-called fast control rod is a rotating one, directly shafted

to a drive motor.

For our purpose it is of primary interest to use a motor meet-
ing the following requirements:
- small time constant to achieve a high rapidity response;
- high rotor inertia with respect to the inertia of the
driven mechanism: in this manner the load inertia has
a small effect on the motor time constant;
- low nominal speed: in this manner the motor may be shafted
directly on the control rod without any gearbox;
- power 1in the range of 100 W,
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In order to meet these general requirements, we chose a torque-
motor of the Inland Motor Corporation (Radford, Virginia):

type T 51235

mechanical time constant 17-1073 second

rotor moment of inertia 3-10_31b-ft°sec2=
4.05:1073 kem®

power at peak torque 119 Watt

maximum no-load speed 220 rpm.

As may be seen, when such a motor is linked to the load the

overall mechanical time constant changes into:

(Moment of inertia) (Moment of inertia)
(Mechanical time constant)x of the motor of the load
of the motor (Moment of inertia)
of the motor

-3 -4
4.05:107° 4+ 3:34'10 _ 18.5.1073s.
4.05 « 10

17:1073 x

Denoting by © the position of the motor shaft (which is also
the angular position of the fast control rod) and by U the vol-
tage applied to the motor, we get as a transfer function between
these two parameters (see nomenclature and numerical values):

8 _ 1. L .,
v k s(O+7s+ 777 s8°)
or
8 1,4652.10%
U - s(s+260)(s+73.35) (6-1)

@ expressed in radians
U expressed in volts.

Now, to synthesize the fast control loop:

a - we will assume the reactor in pulsed steady state condition
at 600 kW and use the linearized reactor description holding
for small deviations from the previous steady state, i.e.:
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AP
Aed

(s+0.08) (s+0.37) (s+14.12)
= 19.05 ¥ e (oo 5 a5 Y (6-2)

b - we will close the loop and plot a root-locus. (This plot
gives direct information about stability and system per-
formances.) From an analysis of this plot the gain will be

chosen.

¢ - the so-defined fast control system will be added to the set
of non-linear equations (2-4) and the obtained overall re-
actor description will be checked against reactivity per-
turbations by means of the SAHYB programme.

Steps (a), (b) and (c) will be repeated introducing new elements
in the loop to improve the control system performances until

satisfactory results are obtained.

6-1. Closing the loop directly

The loop is closed as- shown in the block diagram of figure 6-1-1.
The fast control system consists of an amplifier of gain G de-
livering the voltage U to the motor described by 6-1; the angular
position of the fast control rod is converted into reactivity

(10 pem for 180 ° angular rotation); this control reactivity is
applied to the reactor described by 6-2.

As may be seen, small power demands from the considered state
600 kW are considered and denoted by Afo; possible small re-
activity perturbations Aed are also considered.

Since we are mainly interested in the whole system response to
reactivity perturbations, we will not impose any specification
for the response to power demand and assume AA?ozo, which sim-

plifies the system synthesis.

Let us consider now the closed loop transfer function —%g— (s).
We obtain directly from the block diagram represented in Figure
6—1—1 .
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AP _ 19.05 5(9+0.08) (s+0.37)(s+14.12) (8+73.35)(s+260)

24 /5(s+260) (s+73.35) (5+0.064) (s+1.56) (8413.43)
+ 8.8847-10°.G(5+0.08) (5+0.37) (s+14.12)_7

The denominator of this expression contains G as a parameter.
Developping and ordering in the successive powers of s we ob-
tain for this denominator a polynominal expression, the roots
of which gbovern.the overall stability and the time domain tran-
sient response of the system.

A plot of the values of these roots (root-locus) graduated with
the corresponding values of G is shown in Fig. 6-1-2. Z_This root
locus was plotted using the subroutine POLRT - Ref.(11)._ / For

G = 0, all of the poles start from the open-loop transfer function
poles. As G is increased, they tend to the zeros of the open-loop
transfer function or to infinity. So we get three asymptotes:

one of them is the real axis, the two others are + g%— from the
real axis.

As may be seen, even for small G the poles (crosses) nearer the
origin tend quickly to the two nearer zeros (circles). The two
further poles meet together, separate, come again to the real

axis and separate: one of them tends to the third zero while the
other one meets with the fourth pole; these two last separate

and become complex. In such a case, choosing a gain G higher than
0.35 results in two control poles - the farthest one starting from
- 260 and tending to infinity may be neglected.

We will choose a gain G = 0.6 corresponding to a small overshoot
for the step response (for this value of G the system is quite
stable and the two control poles are such that imaginary part =
real part = 32) and a settling time of about 1/32 second.

For such a value of G, the exact roots were calculated always
using the subroutine POLRT and led to the following result:

AP _ 19,058 (8+260) (s+73.35)(8+14.12) (s+0.37) (s+0.08)
e 4  (8+270) (8+14.5) (8+0.354) (s+0.08) (s+31.7+3j31.5) (s+31.7-j31.5)
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which simplified as:

AP
€

- 19.05 s (s8+260) (s+73.35)
d (s+270) (s+31.7+] 31.5)(s+31.7-j 31.5)

This last result, used to plot the power response against a step
of reactivity of 1 pcm gave the result shown in Fig. 6-1-3, curve a.
From this curve, we see a settling time of about 40 ms and an
overshoot less than 5 %, which agrees perfectly with the previ-
sions if one takes into account the simplifications that have

been made in obtaining the last transfer function.

At this point we will verify the validity of our treatment by
introducing the defined control system into the simulation of
the set of non-linear equations (2-4). In other words, we add
to the set (2-4) describing the reactor the set of equations
describing the control loop, make G = 0.6, and use the SAHYB
program for the simulation. We considered a step of reactivity
of 1 pcm and obtained the overall power response shown in Fig,6-1-3
curve b. Acomparison between the two responses (a) and (5) leads
to the conclusion that the linearized description used to syn-
thesize the fast control system is-more than adequate for our
purpose: it may be said that the two responses are coincident.

6-2. First improvement of the fast control system performances

A simple means of improving the previous results consists in
introducing a tachometer dynamo as a loop around the motor, as
shown in the block-diagram of figure 6-2-1. The primary loop is
closed exactly as before; a secondary loop is added around the
motor. A tachometer dynamo delivering 5 Volt at 100 rpm has been
chosen. In terms of transfer function, we introduce the simple
block 0.5 s as a feedback around the motor, so that we get now:

e __1.4652-10°
U ~ 8(s8+204)(s+130)

With this new (motor and dynamo) description, we will repeat com-
pletely the procedure described in § 6-1 and determine the new
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value for the gain G.
The overall closed-loop transfer function becomes:

AP 19.05 s(s+0.08)(s+0.37)(s+14.12)(s+130)(8+204)
Be 7/ s(s+204)(s+130) (s+0.064)(s+1.56) (s+13.43)

a
+8.8847-10°°G(5+0.08) (5+0.37) (s+14.12)_7

Developping the denominator, we obtain a polynominal expression
which contains G as a parameter. The root-locus for this ex-
pression is plotted in Fig. 6-2-2 with the corresponding values
of G.

This root-locus is quite similar to the first one: the main
difference lies in the fact that the two (symmetric) asymptotic
branches start farther from the origin. Choosing as before two
complex poles on these branches will result in a quicker transient.

We chose a gain G = 1, corresponding to a small overshoot in the
step-response, a good settling time and a quite safe relative
stability.

For G = 1, the exact roots of the polynomial were calculated
and the overall transfer function resulted in:

AP _ 19.05 s(s+0.08)(s+0.37)(s+14.12)(s+130) (8+204)
B4 " /T(s+0.0801)(s+0.3572) (s+14.4546) (5+47.8+338.3)
x(s+47.8-338.3) (s+238.4))

which simplified as:

AP 19.05 s(s+130)(s+204)

Be g ™ (s+238.4)(s+47.86+] 38.35)(s+47.86-j 38.35)

This last expression, used to plot the response to a step of
reactivity Aed of 1 pcm showed a& settling time of about 35 ms
and a small overshoot as expected, see fig. 6-2-3, curve a.
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Finally, introducing the so defined control system in the si-
mulation and setting the gain at the new value G = 1, gave the

result as shown in fig.6-2—3 curve b, As may be seen from a compa-
rison between figures 6-1-3 and 6-2-3, the performances of the

control system are somewhat improved in the second case.

6-3. Second improvement of the fast control system performances

The performances obtained as in § 6-2 may still be improved

by means of a lead-compensation network. This network would

change the arrangement of poles and zeros on the real axis:

the operation results in a larger real part of the complex
control poles, and thus in a faster response to the perturbations.
We will introduce a lead compensation network 2%%8% as shown

in the block diagram of figure 6-3-1,

We get then for the transfer function of the closed loop:
AP 19.05 s5(s+0.08)(s+0.37)(s+14.12)(s+130) (5+204) (8+500)

feq / s(s+0.064) (8+1.56) (s+13.43) (s+130) (s+204) (s+500)
+ 8.8847:107G(8+0.08) (8+0.37) (8+14.12)(s+100)_7

The root locus for the denominator of this expression is plotted
in Fig. 6-3-2, with G as a parameter. As may be seen this root
locus is somewhat different from the previous ones: the two
asymptotic branches start much farther from the origin; this
time, we have not simply two control poles but another one

which tends to - 100 as G is increased.

To get a fast transient response it is of interest to approach
this pole - 100 with a high gain. On the other hand, a too

high gain would bring the complex poles too much on the right

and would slow, down the response. The choice G = 10 is a good
compromise for fast response, small undershoot and good stability.
It may be seen that for G = 10 we get complex poles with real
part = imaginary part.
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The settling time results from the combination of these two

poles and of the third one which tends to -100. For the chosen
gain G = 10, the exact roots of the denominator were found and
gave for the transfer function the already simplified expression:

A?P - 19.05 s (s+130) (s+204) (s+500)

d (s+74.46)(9+550)(s2+21Os + 21816)

Let us now see how this final control system works when added

to the set of equations (2-4). Once again the SAHYB program

was used for the simulation; a step of reactivity of 1 pcm was
introduced as a perturbation. The response of the overall system
(reactor + fast control system such as synthesized in this para-
graph) is shown in figure 6-3-3. As it may be seen, the fast
control system performances are considerably improved with res-
pect to the two first results 6-1-3 and 6-2-3.

One might think that increasing still the gain would lead to
a better response. However, the response presents some oscilla-
tions as shown in Fig. 6-3-4 which was plotted with G = 12.

6-4. Basic set of equations for the controlled reactor -

Conclusion

As a first conclusion, an important one, all of the results
show that the SORA reactor is controllable, although the fast
control system synthesis was based upon a set of equations for
"mean values"; only the performances of the control system will
change a little bit with respect to the real case, due to the
sampling effect on the power - in terms of automatic control,
the power will be '"sampled and hold" at the frequency of the

pulsation device.

Major improvements were not investigated, since the obtained
settling time lies in the order of 20 ms, which is the smallest
time interval that one might take under consideration, always due
to the validity of the set of equations (2-4).



- 58 -

As concerns the feasibility of such a control system, some diffi-
culties arise if perturbations really occur under the form of
step-functions as we assumed until now, since saturation phenomena
(on the amplifier, on the motor) would occur reducing the indicated
rerformances. However, 1t seems more reasonable from a practical
point of view to expect perturbations in the form of "ramp-func-
tions". The situation is then quite sure; the simulation showed
that the so-defined control system worked well with ramp-functions
until about 50 pem/second, which is far ahove expected ramp rates

/ a response to this type of perturbation is shown in Fig. 6-4-1_7/.

Basic set of equations for the controlled reactor.

m
"

control reactivity

c
€q = input reactivity signal
€ = feedback reactivity
€m = total reactivity
—
4140 €
K = 0.229 + 8.80 €, + 0.0176 e
- K -
w = ﬁ_\/— ( ZlAlcl + SO)
core kin€tics
ac, _ _
T = Fvw - MG
s W
P = =—
| r
[~
dT e
Ce qx~ = P - hpg (Tp - T,)
Thermal
descriptior] _
dT _ hsc _
Coar = hpg(Te-T,) - Th_. (Tg = T, )
R (o
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> -
Tc,out - Tc,in+ 2VC, (Tg - Tc,in)
IS
sc
1
Te =3 (Tc,in + Tc,out)
-
e — »*
of = %¢(Tg = Tpgp )
Feedback - *
reactivity €pg = ag(Tg - TREF )
€ = €
P pf ¥ ‘pg
1
(6-4)
T~~~

Fast dat T dt + 1U - wQUC

control-systiem

Typical responses of the controlled reactor to perturbations are
shown in figures 6-4-1,6-4-2,6~-4-3,6-4-4,
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7. Malfunctions

Control rod malfunctions occurring in the uncontrolled reac-
tor have been simulated as a part of reactor safety studies.
The set of equations (2-4) was used for this purpose. We in-
vestigated the malfunctions of:

- the fast control rod (by inserting 10 pcm at 20 pcm/s)
- the slow control rod (by inserting 40 pcm at 0.83 pem/s)
- the regulation rod (by inserting 300 pcm at 3 pcm/s).

Now, in order to have a first assessment of the importance of
a reduction in the values of the reactivity feedback coeffi-
cients, each malfunction was repeated changing these coeffi-
cients. Four cases were considered:

af as

Case 1| Reference value (-0.42pcm/°C)| Reference value (-0.80pcm/°C)

Case 2| Half reference value Half reference value
(-0.21pem/°C) (0.40pem/°C)

Case 3| Reference,value (-O,42pcm/°C) 0

Case 4 0 " Reference value (-0.80pem/°C)

For each malfunction, and in each case, the following parame-
ters have been plotted: power, period, fuel temperature,
structure temperature. Results are presented in the figures
from 7-1 to 7-6. Also the effect of a total loss of coolant
flow occurring at 600 kW power has been investigated. The
corresponding result is shown in .figure 7-7.
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Conclusion

As may be noted, this study has been performed using exten-
sively only two programmes: the SAHYB-programme for simulation
and the subroutine POLRT for finding the roots of polynominals.
This meth od has proved to be powerful since i1t permitted -

in a short time and without any difficulty - to answer most
questions about the SORA dynamics and control, such as: reac-
tor response to perturbations, start-up procedure, design of
the fast control system, malfunctions, etc. Therefore, the
initial choice of a digital computer for such a study seems

retrospectively to be a good one.

Of interest also is the possibility of extending the simulation
to the whole plant: the set of equations (6-4) may be completed

with & heat exchanger description and safety circuits. In this
manner, a complete logical start-up procedure should be defined.

However, the obtained results lie on the assumption of mean
values equations as a reactor description. Although most im-
portant questions may be treated upon this basis, another
study was started, based on a more accurate reactor kinetics
description: the discrete time reactor description which con-
sists of a set of recurrent equations. A comparison between the
results obtained from this ultimate representation and the re-
sults presented here shows a posteriori the high degree of accu-
racy of the reactor description that we have used. This coinci-
dence might be expected from the theoretical studies (Ref. 2
and 3).
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Appendix 1 - Derivation of numerical values for a steady-

state condition at power

Let us assume a pulsed steady state condition at power Po‘
We may neglect the contribution of the source-term SO; then
we get the following set of equations for kinetics:

. 4140 €n
K = 0,229 + 8,80 ¢+ 0,0176 e = 1
w =X ( $A.T.+8) withK =1
o~ Bv it 0
d@'io _ _
qF = PivWo - MG, =0
P = =
¢ CF

from which we derive W, = CF? and successively:

G0 =VTT %
t2

C =v
20 A2 o)
etc.
* <]
Ty = o2 W
60 5 ©

for the set of equations "thermal description", we get:

0= pFo - hpg (Tfo - Tgo )
O = hpy (Tg, - Tgo) - Iﬁsc (Tgo' Tc,in)
"+ 2ve,
from which Tfo and Tgo may be derived, while Tc,out,o and



- 74 -

TCO are calculated successively. Results are given here below:

_ By
Cio=vxTCp By

ol
"
™
v}
@)
Hdl

20 VT F "o
2

A
3
Bq
- - Vv T— -—
C40 4 CF Po
- Bs
C5O = V —Xg CF PO
- N B =
C6O Y —r6 CF PO
6
= = 1 1 L
T =T . + pP ( + + )
fo c,1in o) hFS hSc 2VCc
_ pP Lh
T o Tc in ¥ Th > (1 + 2V(S3c )
g ! sc c
T =T + pP e
c,out,o0 =~ “¢,in %o EVCC
T =1 T A2
co ~ “c,in P Yo QVCc

Numerical values of these parameters at different power levels
are given in the following table.



B, (kW) Cio Coo Ca0 Ch0 Cey
12 13 14 14 15
100 0,33383232x10 0,45385316x10 0,64990908x10 0,80666522x10 0, 33245973x10
12 13 15 15 15
200 0,66766471x10 0,90770642x10 0,12998183x19 0,16133306x10 0,66491972x10
13 14 ’ 15 15 15
300 0,10014971x10 0,13615596x10 0,19497276x10 0,24199960x10 0,99737972x10
13 14 15 15 16
400 0,13353290x10 0,18154122x10 0,25996368x10 0, 322666123x10 0,13298397x10
13 14 15 15 16
500 0,16691610x10 0,22692661x10 0,32495454x10 0,40333259x10 0,16622994%10
13 14 15 ~ 15 16
600 0,20029941x10 0,27231183x10 0, 38994545x10 0, 48399906x10 0,19947594x10

Numerical values of parameters at different power levels.

HOVd ONIMOTIOL THI HIS

_gL-



C60 Tfo(oc) -T-go(oc) Tc,out,o(oc) Tco(oc)
0,14895400x101° | 218,42065 | 211,45950 | 210,72224 205, 36111
0,29790779x10"1° | 236,84132 | 222,91902 | 221,44450 210, 72224
0,44686182x101° | 255,26199 234,37852 | 232,16675 216,08337
0,59581585x10 12 | 273,68262 | 245,83806 | 242,88901 221, 44450
0,74476988x10"° | 292,10327 | 257,29736 | 253,61125 226,80562
0,89372391x10'° | 310,52393 | 268,75708 | 264,33325 212,16673

Numerical values of parameters at different power levels (cont.)

-92‘-
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Appendix 2 - Derivation of numerical values for a subecritical

steady-state condition

We will calculate the numerical values for precursor concen-
trations and mean temperatures assuming that all of the control
rods are removed. ( €4 = 0). The feedback reactivity may then
be neglected ( < = 0), therefore € _ = 0, which gives the
following value for the pulsed multiplication coefficient:

K = 0,2466

In such a steady state:

ac

10 ““60 _
I
which gives:
— By _
Cio =V ——T Yo
* B
T = 63
60 ~ V x6 o)

In turns, these values are introduced into the equation:
K

80 that
- K - - K -
W= =— (v Wy + oo +VBW_ +8 )= =—( pv w  + 5.).

Bv

The value for Wo igs derived from this last result:
K So

wO = 7K pv

and permits to calculate the precursor concentrations for the
considered steady-state (K = 0,2466). It is found:

o LS U SR
io =X "5  TX " So
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For such a steady-state, numerical values are:

and

Ci0

2,202997.10%

2,995030.10°

4,2886294-10°

5,3232759°10°

2,19394090+ 10

9,82964943.10°

6,599096-107° k.
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Appendix 3} - Reactor period

The reactor period is defined as E or Z ; this parameter
ap aw
at dt

is of main interest during a start-up. We will outline the
method which has been used to calculate this parameter. It
consists of expressing the period in terms of the derivatives
and functions which already appear in the set of equations
(2-4) for the uncontrolled reactor. (Of course the derivation
does not hold for the reactor submitted to control since
other terms would appear in the final expression due to the

control reactivity.)

W=I-;V— AT,
i

— 4acC.

aw 1. &K = K _ o, 2

X5 ;MG Thim
with

de de de de de de

dK _ d pf . _‘pg €4 . Zfpf . ““pg \ 4140€
at 8,80 ( it T3t * Tap )t 1286k < att "at T at o "

In our simulation the external reactivity € is always intréduced under the
form of a ramp function, so that the derivative (d(d/at) is the slope of
this ramp and remains constant as long as this slope is not varied.

On the other hand ‘pf and ‘PS are related to the temperatures ff

and Eg 80 that we get for the derivative of K:

de aT ar de aT aT
& _ 4 £ —E —d £ —& \oi140ey
at = 8,80 (dt ter 3k t%gat ) 72’86“'<dt Yo Tat T g at >°

The reciprocal of the period is then expressed as:

ac
3
T

:
K at*
251‘01
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which is finally written under the form:

1.8, K .g,04
We have used this last expression to calculate the reciprocal
of the period, changing the ded term as requested on account
t

of the time interval under calculation into the program.
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Appendix 4 - Note on the simulation

Below is an example of how the simulation was performed.

The subroutine DER describing the reactor / i.e. the complete
set of equations (6-4)_/ is introduced into the main programme
SAHYB. The case given simulates the response of the controlled
reactor to a reactivity perturbation of 1 pcm, applied as

a ramp function of 45 pcm/second slope. As may be noted, the
subroutine DER calls in turn the subroutine DRAW, which enables
the designer to get directly drawn the functions of interest.
(In the present case, the power deviation was plotted as re-
presented in Fig. 6-4-1 - curve 1).
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NOMENCLATURE
Symbol Signification Value Units
AC coolant channel area per fuel ele- 5
ment 0.1814 cm
_ _ T 2
A, = 2(V3- %) ¢,
®bond specific heat of bond 0.91 Wxs/g/°C
C heat capacity of bond per unit 0.066 Wxs/cm/°C
bond
length
Cbond 2‘"roArbond Pvona ®bond
. specific heat of coolant 0.97 Wxs/g/°C
CC heat capacity of coolant per unit o
length C, = A P c, 0.134 Nxs/cm/"C
s " o
Colad specific heat of clad 0.50 | Nxs/g/ " C
CClad geat cap?i:t¥ %frclad per uglt length 0.550 WXS/Cm/OC
clad 0 clad Pclad”clad
e specific heat of fuel 0.19 wxs/g/°C
Cf heat capacity 8f fuel per unit o
length Cp = mr€. pcCp 5.06 Wxs/cm/~C
Cp conversion factor from fission rate 3.1x1013 fission/
to kW power o - W (sec.kW)
For
61 mean value of the i'th delayed function without
neutron precursor concentration
G amplifier gain (see fast control 12
system)
he heat transfer coefficient from clad | 1.6 W/cmZ/OC
to coolant (Nu = O,15.Pr0’34)
hy heat transfer coefficient from fuel 5.16 W/cm/°C
S to mixed bond-clad
hSC heat transfer coefficient from mixed o
bond-clad to coolant 5.89 W/cm/"C
I current through the motor func tion A
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NOMENCLATURE cont.

Symbol| Signification Value Units
J total inertia of the fast control 4.4%107> kgm2
device = -3 5
(rotor moment of inertia 4.05x10 - |kgm
+
load of inertia) 3.54x10™% | kgm?
k back EMF coefficient for the motor 1.3 Volt/rad/s
kyong | Peat conductivity of bond 0.24 W/cm/°C
k, heat conductivity of coolant 0.24 W/cm/°C
K,1,q | heat conductivity of clad 0.18 w/em/°C
ke heat conductivity of fuel 0.24 W/cm/°C
kg heat conductivity of mixed bond-clad 0.20 W/cem/°C
ATpona* “Telad
kg =
AThond + ATo1ad
kbond kclad
K pulsed multiplication coefficient function
K = Rrecursor production during period
- precursor decay during period
1 self-inductance of the motor actuating 2)(‘]0-2 Henry
the fast control rod
L fuel rod height 24 cm
M ratio of fissions in a pulse to the function {second
mean fission rate
number of fuel rods 116 -
D conversion factor from kW into w 103 -
P mean power of the reactor function |[kW
(over one period)
?O nominal mean power 600 kW
q average power generated in fuel per
unit length = T function |W/cm
I
q" average power generated in fuel per function W/cm2

unit of area _ g
T 2rr

T
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NOMENCLATURE cont.

Symbol Signification Value Units
a” average power generated in fuel per function W/’cm3
volume unit _ g
Tr e
r, outer fuel element radius 0.75 cm
To = Tg * BTyong v 8Tc1ag
re fuel slug radius 0.70 cm
R rotor resistence of the motor 6.7 ohm
So neutron source 10'7 neutron/sec
T period length of the pulsed reactor 2x10-2 second
Tc mean ¢oolant temperature (=tempera- function| °C
ture at half height core)
TC in inlet coolant temperature function| °C
?
nominal value 200 °¢c
outlet coolant temperature function| °C
c,out
Tf mean fuel temperature function| °C
Tg mean bond-clad temperature function| °C
TﬁEF reference temperature for reactivity 200 °c
measurements
Tg reactor period (P/dP/dt) function| second
\% voltage applied to the motor or at function| Volt
the input of the lead network or at
the input of the whole system motor
+ tachometer
UC output of the lead network function| Volt
U coolant velocity in the channel function
nominal value 600 cm/'s
w mean fission rate over a period function| neutron/s
Wo nominal mean fission rate (corres- 1.86x1016 neutron/s
ponding to nominal mean power)
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NOMENCLATURE cont.

Symbol Signification Value Units
e fuel temperature coefficient -0.42 pcm/oC
o structure temperature coefficient -0.80 pcm/oC
B total delayed-neutron precursor produc- 6.4){10-3 -

tion per fission neutron
ﬁi i'th delayed neutron precursor produc-
tion per fission neutron
51 0.1660 -
x1073
52 0.8184 -
-3
x10 ~
g 2.6066
3 ¢ | -
x10 -~
ﬁ4 1.2024 -
-2
x10 -
ﬁ5 1.3615 -
x1073
-3
x10 -
¥ conversion factor from the angular po- 3.18 pem/rad
sition of the fast control rod into
pem -, _ 10
Toow

AP small power deviation from steady state function| kW

resulting of a perturbation

A?O small power demand from the nominal function{ kW

steady state 600 kW

AT 4 bond thickness 0.02 cm
Arclad clad thickness 0,03 cm
Ae small external reactivity perturbation function| pcm

d
Acm small reactivity deviation from €mo function| pcm

Z_K( emo) = 1_7
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NOMENCLATURE cont.

Symbol Signification Value Units
Ae small feedback reactivity deviation function pcm
b from steady-state
&@f from fuel function pcm
Ae = 4[
Ang evee from structure function pcm
€ average prompt reactivity between
pulses (absolute value) 0.038 -
% control reactivity from the fast con- function pcm
trol rod ( €. = ¥e)
3 externally introduced reactivity function pcm
n maximum prompt reactivity function pcm
o total reactivity at steady state 91.1 pem
= max prompt reactivity at steady
state
such as K ( fmo) = 1
o feedback reactivity function pcm
of feedback reactivity from fuel function pcm
Epg feedback reactivity from structure function pcm
e angular position of the fast control
rod (starting from steady-state) function radian
A mean decay constant of delayed neu- -1
tron precursor 0.08 (sec)
Ay decay constant of the i'th delayed (sec)_1
neutron precursor
A 3.8723 (sec)”
A, 1.3975 (sec)”
Al 0.31083 (sec)”
A, 0.11552 (sec)™
Ag 0.031738 | (sec)”
A6 0.012716 (sec)”
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NOMENCLATURE cont.

Symbol Signification Value Units
n gain of the tachometer dynamo 0.5 Volt/
(rad/sec)
v total number of neutrons (prompt and 2.5 -
delayed) produced per fission
p conversion factor from mean power P 0.359 (crn)"1
generated in the reactor into average
power q generated in fuel per unit
length _
&
P specific mass of bond 0.81 g/crn3
bond p *
P specific mass of coolant 0.81 g/cm3
e 2
P o1gq | SPecific mass of clad 7.92 g/cm
C specific mass of fuel 17.3 g/cm3
-2
T electromechanical time constant of 18.5x10 | second
the fast control system (motor +
control rod)
-
T' electrical time constant of the 3x10 ~ second
motor ' 1
(r*=%)
w, zero of the compensation network 1O2 rad/sec
introduced in the fast control system
w, pole of the compensation network intro+ 2
duced in the fast control system 5x10 rad/sec
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