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I. Introductory Remarks to the Quench Problem 

For point defect s tud ies , quenching has become one of the most important methods for evaluation 

of the character is t ic data of vacancies and vacancy c lus te rs . The significance of quenching 

lies in the fact that the only type of defect likely to be frozen-in in appreciable concentration are va

cancies and vacancy a s s o c i a t e s , respect ively. Thus quench experiments offer the possibi l i ty 

of studying behaviour and properties of vacancy-type defects without the complications which 

ar ise when appreciable concentrations of other defects such as in ters t i t ia ls , for example, are 

present. 

It is a familiar resul t of s t a t i s t i ca l thermodynamics that the equilibrium concentration of any 

spec ies of defect at temperature Τ is given by: 

c = c 0 exp i - (Qf - TASf) / kT! (1) 

where Q£ is the formation enthalpy (energy) and ASc the change in entropy assoc ia ted with 

the defect. This equilibrium concentration is achieved and maintained in a crystal by diffusion 

of defects from and to internal and external surfaces . 

In an ideal quenching experiment the high-temperature-concentration of defects is preserved 

unchanged at a lower temperature at which the defects are frozen-in. With a finite cooling rate 

this cannot be achieved because of various p rocesses which tend to maintain thermodynamic 

equilibrium by eliminating excess defects. Already NABARRO (1) has pointed out that disloca

tions can act as sinks for vacancies and BARTLETT and DIENES (2) have indicated that in 

non-equilibrium conditions such as encountered in quenching, some vacancies will combine to 

vacancy pairs (or c lusters) . 

At any temperature the rate of es tabl ishing a new equilibrium defect concentration is determined 

by the mean free path between defect sources and s inks , the migration energ'y of defects , the 

binding energy between defects and by the temperature itself. The sink concentration c s ? the 

migration activation energy Q m and the binding energy of vacancy clusters (e.g. d ivacancies) 

Qb being considered constant for a certain material, only the quenching temperature and quench

ing rate can be varied by the experimentator. 

For reliable detection of point defects by electr ical res is t iv i ty measurements, the main require

ment is to freeze-in a (single)defect concentration as high as poss ib le . Normally this makes the 

fas tes t quench desirable s ince otherwise appreciable l o s se s of (single) vacancies may a r i se by 

migration to and annihilation at sinks or by formation of vacancy a s soc i a t e s (during quench). The 

higher the quench temperature is , the higher the quench speed applied has to be since defect mobility 

and concentration increase exponentially with temperature and hence the loss rate during quench

ing too. In consequence for a fixed quench rate the thermodynamic equilibrium concentration 

ipf vacancies a t quench t empera tu re can be retained almost completely only up to a certain-

temperature. Above this temperature lo s ses become appreciable and the logarithm of the quench-

$d-in res is t ivi ty does not increase anymore linearly with the reciprocal temperature. 

Ou. the other hand quenching always produces some thermal _sir.ess s ince the inner and outer 



parts of the specimen cool at different ra tes . If the thermal s t r e s s becomes sufficiently large to 

cause plas t ic deformation, moving dislocat ions will be generated which can act a s s inks or sour

ces for defects . Obviously this process which is forming an upper limit for the allowable quench 

rate, is related to the sample ' s dimensions and its thermodynamic data (specific heat, thermal 

conductivity e tc . ) . 

For interpreting thoroughly some recent experiments and resul ts of quenching on FCC alloys 

[e.g. on a—brass (3)l , an exact investigation of the various quench techniques applied to these 

materials and their characteris t ic quench rates appeared to be worthwhile. 
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¡2. Quenching Techniques 

The various quenching methods described hereafter are most commonly used to quench materials 

as FCC metals and al loys from medium temperatures up to 1 0 0 0 ^ . As quenching media we con

sidered water, liquid nitrogen and to some extent He-gas, si l icon oil, CaCl2— and NH4OH - so lu 

t ions. Water is the most sui table quenching medium because of i ts high thermal capacity, thermal 

conductivity and heat of vaporization. It is specia l ly used for non-reactive mater ials , whereas 

si l icon oil, liquid nitrogen LN2 or He—gas are uti l ized for quenching of materials which tend to 

oxidize or react with water (for example UC) and for materials in which the defects migrate al

ready at very low temperatures. In the latter case a l so certain aqueous solutions cooled to rather 

low temperatures (ca. —40^) by a cryostat may be applied succesfully. 

The equipments have been instal led in our laboratories , and some of them have already been des

cribed in connection with other experiments (3,4,5). Therefore we give here only some brief in

dicat ions. 

2.1 Ti l t Method. 

With this technique, the sample to be quenched is inserted inside a quartz tube into a horizontal 

res is tance furnace (F ig . 1). For real quenches , the specimen can be kept under an inert gas 

(He,Ar) atmosphere to prevent oxidation andevaporization.For our present experiments, the tube 

was open a t one end and a thin thermocouple was at tached to the sample. Having reached the 

quenching temperature, the tube is quickly taken out of the furnace, tilted over a nearby quench 

bath (water, liquid nitrogen etc.) , and the specimen is falling by i ts own weight into the bath. 

To compensate for the stiffness of the measuring thermocouple (diameter of wire 0,2mm) an 

addit ive s ta in less s tee l piece has been at tached to it . 

2.2. Pull Method 

The furnace, tube and sample are in the same arrangement as above. In contrary to method 2 .1 , 

here the quench bath is brought directly to the opening of the quartz tube and the sample for 

quenching is drawn out of the furnace by means of a thin wire which is a t tached to it and pass ing 

below a fixed axis inside the bath (Fig. 2). 

For rate determinations the wire has been subst i tuted by a thin thermocouple (no additive weights 

being used) . 

2.3 Drop method 

This technique has recently been developed for our laboratory and ut i l izes a vertical res is tance 

furnace (Fig. 3). In this furnace a quartz tube supplied with connections to a vacuum system and 

a (inert) gas inlet valve is ins ta l led. The lower end of the tube is closed during the heating 

period by a stopper. At the top the tube is closed by a feedthrough for current leads and a thermo

couple. The current leads end in a filament wire (0,05 m/m) at which the specimen is at tached 

by means of a thin nickel wire charged by an additional s ta in less s tee l weight (ca. 50 g.). To 

start quenching, the filament wire is heated till it breaks and having removed the ground stopper 

before, the sample drops into the quench medium put beneath. Since the sample tube is immersed 

at i ts lower end into the quench bath, the quenches can be performed almost perfectly in an inert 

atmosphere. 



Sample thermocouple 
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Fig. 1 Schematic drawing of the experimental arrangement for " t i l t 

method" quenching. 
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Vip,. 2 Schematic illustration of the experimental installation for 

"pull method" quenches. 
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To the vacuum ^ r~ 
pumps 

H e - ^ C l 

Feed-through 

Thermocouple 

Furnace thermocouple 

Quartz tube 

Ground stopper 

Quench bath 

i^T-T^T=T=T=T^T^-T£T-
Fig. 3 Schematic draft of the experimental arrangement for "drop 

quenches" 

From above it is already evident that this technique should provide a rather reproducible quench 

because manual operation is eliminated. In addition the real sample (quenching) temperature 

can be measured more precisely by means of the sample thermocouple nearby. 

For our rate determination experiments, the upper end of the tube had to be kept open, and the 

nickel wire was replaced by the measuring thermocouple. 

Some improvement of the technique described above can be achieved by utilizing a HF-generator 

instead of the res i s tance furnace *). Thus , higher quenching temperatures —as needed for other 

materials (UC, refractory metals etc.)—can easi ly be obtained and moreover the duration of fall 

(fall length) could even be reduced. Varying properly the fall height, the sample will arive with 

different speeds at the quench bath surface and thereby various quench rates can be set t led.At

tention should be paid to the fact, that with greater fall length a lso the temperature (heat) l o s ses 

of the sample will increase. 

*) For non-metallic samples an auxiliary _pre-hea ting might then be necessary . 
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Vacuum gauge 

To the vacuum _ 

pumps 

He — 

Feed-through 

Thermocouple 

Furnace thermocouple 

<— He 

Liquid 

nitrogen 

=ΤΞ=.τ=τ=τ=τ=τ=τ=τ=τ^τ=τ^ 
Fig. Í Schematic drawing of the experimental installation for "gas 

quenches" 

For a more flexible way of set t ing different quench ra tes , we may here a l so suggest another mo

dification of the drop method: to the lower end of the sample a thin wire is connected pass ing 

through an ushaped tube filled with the quench medium. By winding up this wire by means of a 

high speed motor, the specimen can be drawn into (and through) the quench bath. Attention must 

be paid to a proper performance of the experiment in order to prevent eventual deformation of the 

sample during the quench. 

To determine the exact quench temperature for temperatures higher than 1200°C an automatic 

pyrometer or a calibrated photocell focussed onto the bath surface might be proposed as a con



- 12 

renient means. Hov/ever the determination of the quench rate will be rather difficult since the 

flail of the specimen can hardly be pursued by a pyrometer, and might only be executed by res is

tance measurements. 

For the high temperature region and for quenching from melt it may a lso be suggested to make 

use of the lévitation technique as described for example by Van AUDENHOVE and JOYEUX, (o ) 

Here the sample is levitated and heated by a H.F. electromagnetic field inside a sui table formed 

coil. 

A further improvement of the actually used drop method is foreseen by the instal lat ion of an 

electromagnetically operated shutter in place of the ground stopper. For higher temperatures 

a tube of AI2O2 instead of the quartz tube will be used. 

2.4 Gas quench 

A convenient method for quenching highly reactive materials is the " g a s quench" by means 

of blowing a precooled gas blast onto the sample. To this purpose after i ts heating period, 

the sample is dropped suddenly just outside the lower end of the tube blowing simul

taneously a stream of cold heliumgas on it . This helium becomes precooled in a liquid nitrogen 

heat-exchanger to about —150°C. (see Fig. 4) 

Using HF- or direct res i s tance heating, the sample could remain at the heating position, current 

switched off and the gas blas t sent directly onto it. 
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3. Performance of Experiments 

The quench rate of the various techniques had to be determined by quenching a sample from 

different temperatures into different quench media and recording the temperature vs time 

decrease . 

Measurements of quench speeds are considered to be somewhat difficult due to a poss ible error 

caused by the method of temperature detection. 

Both applicable temperature control techniques —either measurement of the sample res i s tance 

or detection of the EMF output of a thermocouple are subjected to a temperature deficiency 

due to the thermal conduction along the l eads at tached to the sample *) . 

We decided here for temperature measurements by a thermocouple because of the more direct 

correlation between the measured voltage output and temperature (special ly in case of an alloy 

sample) and because of only two — instead of four— wires being applied. 

It should be mentioned that for the rate determinations a linear dependence of the thermocouples' 

EMF on temperature is assumed which i s , of course, only valid in a first approximation. 

The sample was made of «-brass and had about the dimensions of the samples used for our 

res is t ivi ty measurements (50 χ 5 x 0.1 mm) and a weight of ca. 0.4 g. 

For the quench bath we used either a 30 cm high container of 25 1 water or oil (T = 18°+ 1°C) 

or a 20 cm high styropor vesse l containing ca. 7 l i ters of liquid nitrogen or of the aqueous 

solutions ). 

The temperature was measured by a thermocouple the wires of which were spot welded ca. 5 mm 

distant from each other onto the sample by a condensator discharge. Thus one can be rather 

confident to measure the real surface sample temperature and to avoid the, heat capacity of a 

hot junction of the thermocouple. The temperature measured is that of a certain area and not 

only that of one point. Furthermore it could be controlled by this arrangement if the thermo

couple had lost contact to the sample during quenching. 

As can be seen from the resul ts in section 4, the choice of a sui table thermocouple may influen

ce considerably the curve shape. It became evident that the use of very thin wires is strongly 

recommended in order to avoid heat conduction from or to the sample giving r ise to a tempera

ture deficiency. For this reason we took asbes tos insulated Fe-Konst-thermocouples (0,45 mm φ) 

the wires of which were of 0,2 mm diam. 

Due to the fact that the heat conductivity of brass (0,26 cal cm/cm2 sec °C at 18°C) is greater 

by orders of magnitude than that of water (0,00143 cal cm/cm2 s e c °C a t 20°C) or n i t rogen 

(0,00034 cal cm/cm2 sec °C at -196°C) and due to the small sample thickness (0,1 mm), the 

*) An ideal measurement would mean contac t less temperature detection as it could be provided 

in certain limits by an automatic pyrometer or a UR-sensor — although with rather great 

experimental difficulties (see 2.9)· 

**) For method 2.2 a 30 cm high container with 100 1 water was used. 
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measured surface temperature can be assumed to correspond in good approximation to the real 

sample temperature, i .e. there should exist no great temperature gradient which may give r ise 

to thermal s t r e s ses (see Par. 5). 

The thermocouple s i g n a l has been r eco rded by a T e c t r o n i c s Type 556 Dual Beam O s 

cil loscope (reference temperature 25 + 1°C). The osci l loscope was triggered either by self-

triggering or by manual external triggering — the latter mode being more secure if executed with 

rather good s imul taneousness .The oscilloscope display curve itself was recorded by a Polaroid Land 

Camera 1 ) . 

Some previous rate determination experiments had been performed by means of a recorder 

oscillograph (galvanometric system Visicorder-HONEYWELL |3j) providing the possibi l i ty of 

long time recording, i .e. no triggering was needed. Further the time sca le was greater by a factor 

5. However using for data evaluation an enlarged copy of the osci l loscope display curve, the 

data obtained with the two different techniques agree fairly well . 

j Normally, in addition to the quench curve there has been a l so recorded the initial ¡sample 

temperature Tp- and the final (bath) temperature) T p . 
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4. Results 

I n d i c a t i o n s on q u e n c h i n g s p e e d s found in l i t e r a tu re (9,19) are often l a c k i n g of a proper 

de f in i t ion . Somet imes the t ime for half of the to t a l t empera tu re drop i s t aken a s q u e n c h 

rate . We consider this not adequate s ince the loss of vacancies by annihilation or clustering is 

poss ible in the whole temperature range where vacancies have a marked mobility. Rate deter

minations depend on the cooling law being assumed. LOMER (11) considered for his fundamen

tal retention calculat ions an exponential cooling law: 

dT /d t = -β ( T  T L ) , T L = quench bath temperature [ l ] 

whereas MORI, MESHII and KAUFMANN (12) assumed a constant cooling rate: 

T Q = quench temperature 
Τ = T Q  t.V, foi 

*<■ V = quench rate L J 

Indeed, the initial cooling rate of the exponential law can a lso be approximated by a linear 

cooling rate . The quench curves reported below have a l so indicated that the early temperature 

drop can be considered a s quasi l inear. But it has to be emphasized that in reality due to the 

various, not yet clearly understood heat transfer mechanisms (as heat conduction in gas and 

liquid phase , nucleate and film boiling etc . ) , the temperaturetimerelation during quenching 

as shown by our photographs is neither straightly l inear nor a simple functional relat ion. This 

statement is valid —with some distinction— for quenches into water as well as in liquid 

nitrogen, helium etc . But for the sake of simplicity and for comparisons we have calculated a 

mean quench speed V taking the time for the temperature drop from the quench temperature 

T Q to 100°C — a temperature a t which vacancies in fee al loys just start to migrate in appre

ciable amount. We agree that this method sometimes may resu l t in an underestimation of the real 

quench rate and therefore the values l is ted inTable I might not be compared directly to l i tera

ture data but should be valuated mainly in a relative manner. 

In the following the character is t ics of quenches from temperatures in the range of 300, 500 and 

700°C into water, liquid nitrogen, sil icon oil, two aqueous solutions and gas (He, air)per

formed by the various techniques are explained in some detail *). 

4.1 Quenching of thermocouples 

In order to detect the response of the thermocouple itself, some quenches of two types of ther

mocouples (0,5 and 0,2 mm wire diam.) were accomplished by method 2.1 and 2.3 from about 

500°C into water and liquid nitrogen. Fig . 5 — 8 show typical quench curves and some signi

ficant resul ts are l is ted in Table I. 

The resul ts clearly point out that the thicker thermocouple (2) due to i ts greater mass and heat 

capacity, responds very slowly. For the quenches into water, the quench rates achieved with 

the two thermocouples differ by a factor 3, for liquid nitrogen it reaches 5 — what might be due 

to t h e smaller heat of vaporization and thermal conductivity of nitrogen a s compared to water. 

*) Method 2 .2 . only from 700°C into water, method 2.4 only quenches from 500°C into a pre

cooled gas stream and s t i l l air 
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These physical data determine mainly a lso the great difference in quench speed between quench

es in water and in nitrogen (by a factor (30-40). The faster response of the thinner thermocouple 

is a l so indicated by its higher ΔΤ-values (temperature drop during extraction). 

It is evident that for rate measurements on a sample, the influence of the measuring thermo

couple should be negligible. But infact this cannot be achieved completely and even using —as 

we did— the very thin thermocouple wire, there is always involved a greater heat capaci ty . 

Due to the fact that the insulation of the thermocouple prevents immediate heat exchange with 

the quench bath, the heat from the hot part of the wires will flow to the bare "hot junct ion" to 

be exchanged. 

This process i s , of course, more marked in quenching a sole thermocouple than one at tached to 

a sample, i .e . with increased mass and surface. Therefore the quench rates reported below have 

to be considered as lower l imits . 

All guench rate measurements according to our method proved to be reproducible within limits 

of + 10% whereby the estimated error in data evaluation is about 5%. 

4.2 Tilt method 

Figures 9, 10 and 11 represent some typical quench curves. The total time for sample extraction 

from the furnace could be evaluated from curves at a time sca le of 50 msec/cm (see Fig . 10), 

whereas for rate determination the curves have preferentially been taken a t shorter time sca le s 

(20 or even 10 msec/cm, see F ig . 11). The resul ts proved the method to be rather reproducible, 

the extraction time varying between 2 50 and 350 msec . Typical data are l is ted in Table I. From 

this it follows: 
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a) the temperature decrease during extraction amounts to about 10% of the furnace temperature, 

b) the quenching rate increases somewhatwith quenching temperature, reaching a maximum speed 

of about 27000°C/sec from 700°C for quenches into water, 

c) quenches into LN2 have a much lower quench rate, by a factor 4050, 

d) quenches into si l icon oil seem to be faster by a factor 2 than LN2quenches as is demon

strated by one experiment (Fig. 12). Water and si l icon oil a s well as the aqueous solut ions 

of NH2 and CaClo (see 4.4) represent real " l i q u i d " quench baths whereas LN2 as all 

cryogenic liquids has to be considered as a " g a s e o u s " quench medium. 

It should be mentioned here that the curves of quenches into LN2 —as well as the gas quenches 

reported below— show an even more complex temperature character is t ics than water quenches . 

Therefore calculat ions of quench rates assuming a linear cooling law may result in somewhat 

inadequate values . For that reason it might be recommended to refer here directly to the quench 

times (tø = < T Q T 1 0 0 ° O ) a s character is t ic evidence of the quenching efficiency. 

Iig. 9 Quench curve obtained for a brassspecimen quenched fron 

ca. S00°( imo LS ι by the " tilt'method ". Time scale: 

0,2 sec/unit, temperature scale: S mV/unit. 
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Fig. 10 Quench curve obtained for a brassspecimen quenched from 

ca. S00°( into H?0 by the "t i l t method". Time sca le : 

SO msec/uni t , temperature sca le : S mV/unit. 
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4.3 Pull method 

Fig. 13 ac shows a ser ies of quenches from 700°C into water. It is obvious that there is l i t t le 

reproducibility s ince the sample sometimes during being pulled through the quench bath seems 

to have jumped out of the water or to have touched the container wall (or the fixed rod, see Fig. 2) 

or entered the bath in different manner. Furthermore this technique is strongly dependent on the 

individual performance of the extraction. Performing a good quench, the extraction time may be 

in the order of 50100 msec, i .e . very short and the temperature decrease is equally relatively 

small (compared to resul ts 4.2). The quench rate i tself a s calculated from Fig. 13 a, corres

ponds about to that achieved by method 2 .1 . and might be even higher. Because of the bad 

reproducibility no further quenches a t other temperatures have been executed. The method is 

considered to be somewhat " d a n g e r o u s " s ince in a normal quench (without at tached thermo

couple) there does commonly not exist ad hoc the possibi l i ty to prove the efficiency of the 

quench experiment but a complete annealing curve is needed for. 
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Fig. 1 1 Quench curve obtained for a bra ssspecimen quenched from 

ca. 300°C into H7Ü by the " t i l t method". Time sca le : 

20 msec/uni t , temperature sca le : 2.94 mV/unit. 

Fig. 12 Quench curve obtained for a brassspecimen quenched from 

ca. 500 C into silicon oil by the " t i l t method". Time sca le : 

SO msec/unit , temperature sca le : S mV/unit. 
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Fig. 13 Three quench curves obtained for a brass-specimen quench

ed from ca. 700°C into H7() by the "pull method" and show

ing the low reproducibility of this technique. Time scale: 

SO msec/uni t , temperature sca le : 7,15 mV/unit. 

c) 
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l"ig. l i Quench curve obtained for a brassspecimen quenched from 

ca. 500°C: into Η,Ο by the "drop method". Time scale: 

20 msec/unit, temperatuur scale: 7.15 mV/unit. 

l ig. IS Quench curve obtained for a brassspccimcn quenched from 

ca. 700°C: into ibO by the "drop method". Time scale: 

50 msec/unit, temperature scale: 7.15 mV/unit. 

4.4 Drop method. 

Figures 14 — 19 represent some typical quench rate curves from different temperatures (500, 

700°C) into water, into aqueous solutions of NH^ and CaCL , respect ively , into si l icon oil 

and L N T . Typical resul ts obtained by this technique are l is ted in Table I. As main topics we 

note: 

a) The quench rates are for all quench temperatures of the same order of magnitude as obtained 

by the previously described techniques. For water quenches a somewhat higher quench 

speed can be revealed which might be caused by a higher speed of the sample when hitting 

the quench bath surface. Although running off with much lower ra tes , quenches into sil icon 

oil show the same phenomenon (see Fig. 12 and 19). For LN2quenches, the quench rate is 

is not al tered by the quench method (see Table I) what probably is due to another heat trans

fer mechanism in LN2 not being influenced by the sample motion in the quench medium. 
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b) Quenches from 500°C into aqueous solutions of NH3 as well as of CaCL (at about —40°C) 

revealed quench rates which are somewhat lower than those for plain water. 

C) As for method 2.1 the quench rate increases slightly and not proportionally with temperature. 

A maximum speed of 4 x l 0 4 ° C / s e c could be achieved for a quench from 700°C into water. 

d) The extraction time is rather short (100 — 150 msec), and therefore the temperature drop 

ΔΤ = T p — T Q markedly lower than for the other methods. 

e) The quenches are rather well reproducible. 

The data l isted in Table I reveal a somewhat higher temperature drop ΔΤ for LN2-quenches 

than for quenches into water. That is probably caused by the experimental arrangement used 

for the rate determination: the top of the sample tube has been kept open and when putting the 

LN2-container beneath, the hot tube worked as chimney sucking a stream of cold nitrogen which 

cooled more efficiently the sample already during its fall. 

100°C 
TR 

-M-M 

Ι Ι Ι Ι Ι Π I I I I I I I I I I I 

I'ig. Id Quench curve obtained for a brass-specimen quenched fron 

ca. 700°( ' into l.N'2 by the "drop method". Time scale 

0.2 sec /uni t , temperature sca le : 0.35 m\7unic. 

I ig. 17 Quench curve obtained for a brass-specimen quenched from 

ca. 500°( into silicon oil by "drop method". Time scale: 

SO msec/uni t , temperature sca le : 6.66 mY/unit. 
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Fig. 19 Quench curve obtained for a brassspecimen quenched from, 

ca. 500°C' into an aqueous solution.of NIK at—40°C by the 

"drop method". Time sca le : 20 msec/uni t , temperature scale: 

5 mY/uni_t. 
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Fig. 20 A quench curve for a brassspecimen quenched from ca. 500ûO 

by a precooled Hegas stream. Time sca l e : O.S.sec/uni t , 

temperature sca le : 5 mY/unit. 
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Fig. 21 A quench curve for a brass-sample extracted vertically from 
the furnace (at ca. S00°C ) and cooling by naturrally convec-
ting air (25 C). Time scale: 1 msec/unit.' temperature scale: 
5 mV/unit. 

4.5 Gas quench 

Only one experiment ( a t T N = 500°C) has been executed by quenching with precooled He-gas; 

the curve obtained is shown by Fig . 20. Here the extraction time and the corresponding tem

perature drop are about the same a s for quenches by method 2.3 due to the same sample ex

traction operation from furnace. The quench rate however is about twice that of quenches from 

the same temperature into LN2. 

Further it should be taken into account that our experimental arrangement was not the bes t one 

in what concerns a) the method of blasting helium-gas agains t the specimen *) and b) i ts s u s 

pension at the thermocouple pass ing through the furnace. For these reasons the indicated quench 

iimes and rates should be considered as lower limits which could be easi ly improved. 

For a comparison we made with the same arrangement a simple air quench from the same tempe

rature ( T N = 500°C). The sample was vertically removed at i ts thermocouple and cooled down 

by naturally convecting air (see Fig. 21). The quench rate (see Table I) was slower by a factor 

of about 20 with respect to a He-quench and by a factor 10 compared to LN2-quench. The dif

ference in quench speed between LN2- and air-quench will mainly be caused by the lower 

quench medium temperature in the former ca se . The similarity of the quench curves in all cases 

(LN2", He-, air-quench) indicates_ that the same heat transfer mechanism has to be assumed. 

*) It is suggested to blast the pre-cooled helium through two frits a t both s ides onto the sample. 
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5. Discussion 

Discuss ion of the resul ts should s tar t with some remarks to the quench curves obtained by the 

various techniques. Here we first have to dist inguish between quenches in " r e a l " liquids (as 

plain water, s i l icon oil , CaCl2solution and NH3solution) and in " g a s e o u s " media (LN2, He

gas and convecting air) . 

Quenches in water exhibit independently of the applied technique three s tages in the total 

temperature drop: a) a quasi linear temperature decrease during the extraction of the sample 

from the furnace, the shape of which i s clearly dependent on the quenching method. It is follow

ed by b) an abrupt temperature drop when the specimen hits the quench medium surface. This 

s tage shows a l so an almost l inear character which is changing at lower temperatures (TQ = 100°C) 

into ■ c) a slower exponential decrease . This experimental s tatement is in contradiction to 

to resul ts obtained by KAUFMANN and MESHII (13), who claim for a rather low quench rate just 

below the quench temperature which is increasing lateron markedly. 

Our r e s u l t s i n d i c a t e further t ha t one h a s to d i s t i n g u i s h b e t w e e n the s a m p l e t empera 

ture T p in the furnace and the r ea l quench t empera tu re T A i . e . the s a m p l e ternpe

rature a t the moment of h i t t ing the quench bath s u r f a c e . From ι c a l c u l a t i o n s 1 of 

LOMER (16) it can be concluded that in well annealed fee metals the time for the rees tabl ish

ment of the thermodynamic defect concentration after a small temperature variation a t high 

temperature (i .e. at relat ively high defect mobility) is of order of some 10 msec. Therefore we 

can assume, that the equilibrium concentration will be maintained during the temperature decrea

se due to specimen extraction ("quench r a t e " of some 1 0 0 ° C / s ) , and "e f f ic ien t" quenching 

does not s tar t before immersion into the quench medium. 

For the evaluation of the formation energies of vacancies the res is t iv i ty increase by quenching 

is determined as a function of the reciprocal quenching temperature. Since it follows from our 

results that the temperature drop during sample extraction is strongly dependent on the tech

nique to be applied, this fact should always be taken into account for an exact data evaluation 

and the quench temperature corrected correspondingly. 

The extraction temperature loss increases obviously with the furnace temperature and with the 

time needed to transfer of the sample from the furnace to the quench bath. It became evident 

that the drop method yields the best resul ts with respect to temperature loss and reproducibility 

The quench rate itself is determined by 

a) quench temperature 

b) temperature and thermodynamic data of quench medium 

c) speed of motion of specimen through the quench bath, which is dependent on the quench tech

nique. 

Quenches into water yielded for al l methods rate values of the same order of magnitude, being 

somewhat higher for the drop method which may be caused by a faster motion of the specimen 

in the quench bath. For this method the immersion speed can be properly adjusted in certain 

limits by select ing different fall heights . 



- 26 -

With the CaCl2 and the NH,solut ions only a few runs have been performed. In general they 

indicate the same features as water quenches , but the corresponding quench rates are somewhat 

different (see Table I). It became evident by these experiments that not the quench bath tem

perature but i ts thermodynamic data are the most important point. The CaCLsolu t ion (of —40^) 

has about the same heat capacity a s water (see Table II) whereas the thermal conductivity is a 

little lower. But the liquid surrounding the sample surface has to be heated up ca. 151°C 

( 40°C + 111°C) instead of 80° C as i ncase of water ( 2 0 ° C + 1 0 0 ° C ) until the vaporization process 

can start which carries off the sample heat more efficiently. 

With regard to ammonia we have to s ta te that both heat capaci ty and thermal conductivity are 

lower than for water and CaCl2solution . On the other hand, vaporization of NH:J s ta r t s 

earlier than for water and CaCl2solution, but the latent heat of vaporization is almost only half 

that of water and the thermal conductivity of the ΝΗ,gas i s markedly worse than that of water 

vapor: therefore we have to expect a lower quench ra te . 

Thus the importance of thin film boiling as heat transfer mechanism in quenching experiments 

is impressively demonstrated. The resul ts and conclusions are a l so supported by the quenches 

in sil icon oil where we found much lower quench ra t e s . In this ca se , thermal conductivity a s 

well a s heat capacity are fairly low, whereas the boiling point of the medium is rather high. 

Therefore the vaporization process should not become important, and all heat has to be transfered 

by conduction and/or convection. It should be emphasized here, that for a more sophisticate and 

complete d iscuss ion of these phenomena, one has to take into a c c o u n t a l s o other proper

t ies as viscosi ty and surface tension as well a s heat transfer by radiation and/or convection. 

The quench curves into liquid nitrogen show approximately the same temperature characteristics as those 

of quenches in precooled heliumgas or in air. In contrary to " l i q u i d " quenches , these curves 

do not exihibi t a sharp break i t the moment when the sample enters the quench medium which 

would indicate a change in the heat transfer mechanism. 

When immersing the hot sample into boiling nitrogen, due to the small heat capacity, low boiling 

temperature and bad heat conductivity of nitrogen as compared to " r e a l " l iquids, a vapor layer 

on the sample surface is formed instantaneously which prevents good heat exchange to the bath. 

Since the latent heat of vaporization of LN2 is rather small (s . Table II), the contribution of the 

vaporization process to heat removal should be small, too. B u t a s a matter of fact seems to us 

the presence of a N2vapor layer on the sample surface during the whole duration of the quench 

process . This layer cannot even be removed by the sample ' s motion in the quench bath and due 

to the low heat conductivity of N2vapor, heat transfer by conduction is rather bad. *) 

The similarity of the temperature curves of quenches in LN,, heliumgas and air confirms the 

conclusion that quenching in LN2 (and all other cyrogenic l iquids) corresponds to a cooling in 

a gaseous phase . It is a l so evident that because of the altered heat transfer mechanism, the 

quench rates being achieved are much lower than for " a q u e o u s " quenches . 

c) For quenching in a gaseous phase heat transfer by convection has probably tó be considered 

as the only efficient p rocess . 
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Despite of lacking of any vaporization process , quenches with a precooled He-gas stream are 

faster than in LN2, by a factor 2, because of the higher values of specific heat and thermal 

conductivity (see Table II) of He in comparison to N2. Furthermore, here a greater contribution 

of (forced) convection to the heat removal process has to be expected. 

From our resul ts we may conclude that q u e n c h i n g with He gas or LN2 (cyrogenic liquid*) 

is limited to following specia l c a s e s : 

a) The material to be quenched reacts with water and aqueous solut ions , or it has a marked 

solubili ty for oxygen. 

b) The vacancies in the material under investigation are expected to have a rather low migration 

activation energy, i .e . measurements and annealings have to be performed at cryogenic tem

perature. 

c) Relat ively low quench rates are needed as-for example-for freezing-in vacancy clusters . 

d) The sample material i tself has a very low heat conductivity, i .e . the heat transport inside 

the sample becomes the rate determining process . 

e) The vacancies have a rather high migration activation energy, i .e . the total jump number and 

hence the corresponding defect loss during quenching remains small even at such a low quench, 

ra te . 

MORI, MESHII and KAUFMAN. (12) have demonstrated by quenches of well-annealed' gold 

specimens that quench rates of the order of 2x10* ° C / s e c are sufficient to freeze-in almost 

completely the equilibrium defect concentration at quench temperatures up to 850°C. The quench 

rates reported here may depend somewhat on the specimen material —namely its specific heat 

and thermal conductivity— but we may s ta te that the quench ra tes achieveable with our methods 

(see Table I) are sufficient to freeze-in equilibrium concentrations of defects even from higher 

temperatures — specia l ly in alloys having a larger migration activation energy of vacancies 

than the pure metals . Furthermore in al loys smaller vacancy concentrations are detectable by 

resis t ivi ty measurements because of the ordering phenomenon assoc ia ted with the migration 

of point defects in al loys . 

There should be mentioned one point limiting the maximum quench speed to be applied. As 

pointed out already moving dis locat ions which may ac t as additional s inks or sources for de

fects can be created by thermal s t r e s s e s in the sample. For metals Van BUEREN (13) has de

veloped a formula which allows the estimation of the maximum permissible specimen thickness 

(or quench rate) to prevent thermal s t r e s se s which may cause d is loca t ions : 

d = V 5 ( l - y ) 5 a c r / G V «' [3] 

*) Except quenches being executed in helium-H. 
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where: 

γ = po i sson ' s number (= 0,8 for «—brass*) 

§ = κ /pC = thermal diffusivity (= 0,434 cm2 sec" 1 ) 

« = thermal expansion (= 18 . 10 6 °C~ l) 

G = shear modul (= 4,2 χ IO5 kpcm"2) 

a c r = critical shear s t r ess (= 22 kp/cm 2 ) 

V = speed rate (= 3 x 10* ° C / s e c ) 

For the samples of our interest («—brass), we obtain according to this relat ions a maximum 

allowable specimen thickness of 0,6 mm. Even taking this value only as a crude approximation, 

we can be rather sure to be not concerned with thermal s t r e s se s when utilizing samples of 0,1 mm 

thickness at the quench rates reported here. 

By controlled variation of the sample 's th ickness , the influence of thermal s t r e s s e s on the 

quenchedin vacancy concentration can be made evident by experiment. 

With the quench speed data obtained by our experiments, one is now a l so able to calculate for 

a certain material und quench method the loss of (single) vacancies by annihilation a t s inks 

and/or by formation of divacancies (clusters) during quenching. Such an estimation is normally 

desirable for a detailed analys is of annealing experiments after quenching. 

We may give here a rough and simple estimation of the loss of s ingle vacancies by annihilation 

during quench. The vacancies are assumed to decay according to the relation: 

d c v / d t =  c s c v v*Q exp (  Q M / k T ) M 

where 

c s = sink concentration 

QVÍ* = migration activation energy of vacancies 

i^0 = preexponential factor 

We assume further a constant quench rate V, that means: 

T = T q  V t 

Substitution for t in equ. (4) and integration gives: 

Cs v0* f i exp (QM/kT) dT [ 5 ] 

In c v /coo = 2 

V 

Inserting in equ. (5) some reasonable values for c (10~7 molar fraction), QM (1.0 eV),T (273°K) 

Tq (973°K) and V = 4x10* ° C / s e c as deduced from our experiments, numerical integration 

yields a vacancy loss by annihilation during quenching of 5%, i .e . 95% of the vacancies present 

in thermodynamic equilibrium at temperature T will become frozenin by a quench at the re

ported quench rate. 

We should note from equ. (5) that the loss rate is direct proportional to the sink concentration 

and that at aijiy given temperature In c v is expected to vary linearly with 1/V. 

*) Numerical values_are^valid for Mg—80 according to ref._(17L 
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For a more sophis t ica te and complete consideration of the problem we may refer to the papers of 

DIENES and DAMASK (16) and KAUFMAN and MESHII (13), respect ively. 

For completeness we should add a l so some remarks on a quench technique not dealt with here: 

It is the quite convenient method of heating the specimen by a current pass ing through the 

sample; quenching is accomplished by switching off the current with simultaneous cooling in 

air or by gas blast as well a s by dropping the sample with i ts current leads into a quench bath. 

Compared to the quench techniques described in this paper, thereby it i s obviously difficult 

to achieve a homogenous temperature distribution along the sample during heating and quenching — 

which is yet a fundamental condition for a reliable quench. Further by this method some mecha

nical deformation of the sample during quench cannot be excluded. 

6. Conclusions 

From the quench experiments described here, we have to conclude the following: 

a) The tilt method although being a rather rudimentary procedure has proved to yield quite 

reliable and reproducible resul ts which may be sufficient for many purposes . 

b) The drop method may be recommended by its greater versabil i ty for quenches which must 

be performed under spec ia l requirements with respect to the variation of quench speed, quench 

medium, atmosphere, reproducibility, exact determination of quench temperature e tc . 

c) The quench rates achievable by our methods are sufficiently high to allow nearly complete 

retention of single vacancy concentrations in most fee metals and al loys for quenching 

temperaturesup to ca. 850°C. Using specimens of 0,1 mm thickness , we are not concerned 

with marked thermal s t r e s se s which might influence the quench efficiency. 

d) Quenches in gaseous media yielded much lower rates than those in l iquids . 

e) The experiments indicate further that for the achievement of high quench ra tes , quench media 

have to be se lec ted which allow to make use of a heat transfer process involving a great 

latent heat. The influence of the type of quench medium on the quench rate has been found 

more important than that of the quench bath temperature. 
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8. Figure Captions and Tables 

Fig. 1 Schematic drawing of the experimental arrangement for " t i l t 

method" quenching. 

Fig. 2 Schematic i l lustration of the experimental instal lat ion for 

"pul l method" quenches. 

Fig. 3 Schematic draft of the experimental arrangement for "drop 

q u e n c h e s " . 

Fig. 4 Schematic drawing of the experimental instal lat ion for " g a s 

quenches" 

Fig. 5 Response curve ofa 0,2 mm φ Fe-Konst.-thermocouple quench

ed from ca. 500 C in water by the "drop method". Time sca le : 

50 msec/uni t , temperature s cale : 5 mV/unit. 

Fig. 6 Response curve of a 0,5 mm φ Fe-Konst.-thermocouple quench

ed from ca. 500°C in water by the "drop method". Time sca le 

50 msec/uni t , temperature sca le : 5,55 mV/unit. 

Fig. 7 Response curve of a 0,2 mm φ Fe-Konst.-thermocouple quench

ed from ca. 500°C into LN 2 by the " t i l t method". Time sca le : 

0,2 sec /un i t , temperature sca le : 6,66 mV/unit. 

Fig. 8 Response curve of a 0,5 mm φ Fe-Konst.-thermocouple quench

ed from ca. 500°C into LN2 by the " t i l t method" . Time sca le : 

0,5 sec /un i t , temperature sca le : 6,66 mV/unit. 

Fig. 9 Quench curve obtained for a brass-specimen quenched from 

ca. 500°C into LN2 by the " t i l t m e t h o d " . Time sca l e : 

0, 2 sec /un i t , temperature sca le : 5 mV/unit. 

Fig. 10 Quench curve obtained for a brass-specimen quenched from 

ca. 500°C into H2O by the " t i l t method" . Time s c a l e : 

50 msec/uni t , temperature sca le : 5 mV/unit . 

Fig. 11 Quench curve obtained for a bra ss-specimen quenched from 

ca. 300°C into H2O by the " t i l t method". Time sca l e : 

20 msec/uni t , temperature sca le : 2,94 mV/unit . 

Fig. 12 Quench curve obtained for a brass-specimen quenched from 

ca. 500°C into sil icon oil by the " tilt method". Time sca le : 

50 msec/uni t , temperature sca le : 5 mV/unit . 
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Fig. 13 Three quench curves obtained for a brass-specimen quench

ed from ca. 700°C into H 2 0 by the "pu l l method" and show

ing the low reproducibility of this technique. Time sca le : 

50 msec/uni t , temperature s ca l e : 7,15 mV/unit . 

Fig. 14 Quench curve obtained for a bra ss-specimen quenched from 

ca. 500°C into H 2 0 by the "drop method". Time s c a l e : 

20 msec/uni t , temperatuur sca le : 7,15 mV/unit . 

Fig . 15 Quench curve obtained for a brass-spe cimen quenched from 

ca. 700°C into H2O by the "drop method". Time sca le : 

50 msec/uni t , temperature sca le : 7,15 mV/unit . 

Fig. 16 Quench curve obtained for a brass-specimen quenched from 

ca. 700°C into LN2 by t h e "drop method". Time s c a l e : 

0,2 sec /un i t , temperature sca le : 0,35 mV/unit. 

Fig. 17 Quench curve obtained for a brass-specimen quenched from 

ca. 500°C into sil icon oil by "drop method". Time sca le : 

50 msec/uni t , temperature sca le : 6,66 mV/unit. 

Fig. 18 Quench curve obtained for a brass-specimen quenched from 

ca. 500°C into an aqueous solution of CaCl2 at-40°C by the 

"drop method". Time sca le : 20 msec/uni t , temperature scale: 

5 mV/unit. 

Fig. 19 Quench curve obtained for a brass-specimen quenched from 

ca. 500°C into an aqueous solution of NH^ a t -40°C by the 

"drop method". Time sca l e : 20 msec/uni t , temperature scale: 

5 mV/unit. 

Fig. 20 A quench curve for a brass-specimen quenched from ca. 500°C 

by a pre-cooled He-gas stream. Time s c a l e : 0,5 sec /un i t , 

temperature sca le : 5 mV/unit. 

Fig. 21 A quench curve for a brass-sample extracted vertically from 

the furnace (at ca. 500°C) and cooling by naturrally convec-

ting air (25°C). Time sca le : 1 msec/uni t , temperature s c a l e : 

5 mV/unit. 

Table I Here are l is ted some significant data of quench rate measure

ments executed by various techniques and with different 

quench mediums. 

Table II Some thermodynamic data of the materials involved in the 

quench experiments, according to reference (17)and(18), 



Method 

1. Tilt method 

a) 0,5 mm ά thermocouple 

b) 0,2 mm ó thermocouple 

II. Drop method 

a) 0.5 mm ó thermocouple 

b) 0.2 mm ά thermocouple 

III. Tilt method 

Sample Quench 

IV. Pull method 

Sample quench 

V. Gas-Quench method 

Sample quench 

VI. Drop method 

Sample quench 

500°C 

500°C 

500°(. 

500°C 

300° C 

500°C 

"oo°c 

500°C 

700° C 

500°C 

300°C 

500°C 

200°C 

650°C 

500°C 

500°C 

T F ( °C) 

530 

559 

561 

543 

492 

486 

681 

725 

Î35 

511 

693 

6% 

490 

-5(1 

371 

3"2 

494 

730 

663 

555 

432 

523 

483 

Tg r-o 

497 

528 

t i l 

4.30 

473 

466 

58" 

633 

307 

168 

610 

61') 

440 

(.86 

359 

158 

469 

691 

645 

525 

406 

496 

45" 

Water 

\τ ι η 

33 

il 

120 

I l 1 

19 

2(1 

91 

92 

28 

43 

S3 

--
50 

(vi 

12 

14 

' 25 

39 

18 

30 

26 

27 

26 

tq (ms) 

3 1 . " 

3 1 , " 

9,4 

9.4 

2",0 

25.2 

11.-5 

13.5 

10,0 

12.9 

19.5 

18.8 

264 

20.2 

8.45 

" . " 5 

9,87 

14.60 

184 

13,6 

10,1 

27,0 

26,6 

V ( C sec) 

12500 

13500 

36200 

35100 

I 3800 

14500 

41 500 

39500 

20700 

28400 

26100 

2 "600 

1280 

29000 

30600 

33.300 

3"000 

40600 

1420 

31 200 

3 1000 

23200 

23800 

TF ι α 

479 

5"9 

519 

601 

521 

580 

192 

4"8 

330 

355 

516 

5" ! 

693 

669 

_ 

484 

47? 

548 

556 

281 

262 

4 " 3 

565 

"27 

746 

v ° 

430 

543 

392 

490 

506 

563 

412 

-

101 

13(1 

169 

532 

592 

603 

152 

446 

-

266 

2 46 

444 

5(8 

674 

690 

Liquid Nitrogen 

\ T ( < 

49 

45 

12" 

1 1 1 

15 

1 " 

8(1 

-

>-
25 

37 

101 

66 

32 

(1 

-

15 

16 

29 

15 

53 

56 

1 lq (ms) 

1060 

1335 

195 

289 

12(0 

1600 

218 

288 

414 

44" 

62 5 

"73 

865 

925 

482 

394 

886(1 

"520 

314 

305 

640 

800 

1004 

970 

• 

V 

312 

12 5 

1 195 

1.350 

321 

289 

14-5 

131 

491 

513 

590 

558 

568 

545 

"30 

830 

50,6 

55.4 

49" 

4"8 

538 

538 

570 

608 

Note 

extract ion time 

\ t 25O-350ms 

\ t 100 - I50ms 

cooled in s t i l l air 

t 250-350 ms 

* vety slow extraction 

(400 ms) 

s i l i con o i l 

\ t 150ms quenched 

in precooled He-gas 

quenched in s t i l l air 

\ t 100-1 50 ms 

s i l i con o i l 

aqueous solution 

of 34° ; CaCl2 

aqueous solut ion 

of 25 " , N H , 

00 

Tabic 1 Here arc listed some significant data of quench rate measure

ments executed by various techniques and with different 

quench mediums. 



Material 

a) Vapor 
2 b) Liquid 

a) Gas 
He 

b) Liquid 

a) Vapor 
H 2 0 

b) Liquid 

« — brass 

(Ms-80) 

Silicon oil 

Ms 550 

aqueous solution 

of 30%CaCl2 

Aqueous solution 

of 25% NH3 

Density 

1,2505 g/1 at 20°C 

0,808 g/cm-at-196°C 

1,2505 g/1 at 20°C 

0,13 g/cm-at -268,94°C 

0,95835 g/1 at 100°C 

0,99705 g/1 at 25°C 

8,67 g/cm1 at 20°C 

l ,06g/cm s at 25°C 

1,295 g/cm" at -30°C 

0,907 g/cm3 at 20°C 

Specific heat 

0,248 cal /g grd at 20°C 

0,474 cal/g grd at -200°C 

1,25 cal /g grd at 20°C 

1,08 cal/g grd at -268,94°C 

1,007 cal /g grd at 100°C 
0,998 cal /g grd at 20°C 

0,094 cal /g grd at 20°C 

0,488 cal /g grd at 20°C 

0,632 cal /g grd at -40°C 

0,995 cal /g grd at 20°C 

0,967· cal/g grd at 2,4°C 

Viscosity 

55 μΡ at -192°C 

0,172 cP at -192°C 

139 μΡ at-100° C 

30 μΡ at-269°C 

1,05 cP at - 20°C 

0,282 cP at 101°C 

-

127 cP at 25°C 

1,23 cP at 10° C 

0,276 cP at -40°C 

Thermal Concuti ν ity 
cal/cm sec grd. 

2,16.10"- at -180°C 

4,95.10-" at -200° C 

1,64.10-" at-180°C 

6,28.1ο"1 at -268,94°C 

1,6.10-' at-100°C 

1.4.10"3 at 20°C 

0,338 at 20°C 

3,5.10"4at 25°C 

1,055 xlO"1 at -30°C 

1,08.1ο-1 at 20° C 

(NHj - solution) 

0,478 xlO"4 at 0°C 

(NH3 - gas) 

Latent heat 
of Vaporization 

47,6 cal/g 

4,98 cal/g 

538,9 cal /g 

-

538,9 cal /g 

332 cal /g 

Boiling Point 

-195;8CC 

-268,94°C 

+ 100°C 

? 

111°C (Tf=-

37,0°C 

CO 
en 

Table II Some thermodynamic data of the materials involved in the 

quench experiments, according to reference (17 and IH). 
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