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PREFACE TO THE THIRD EDITION 

During the years preceding 1960 plasma physics developped rapidly 
and the pioneering mood of those days influenced many, including 
the author of this book, to come out with articles and books in which 
a fermenting, part ial and somewhat hasty spirit prevails. The times 
have changed and nowadays it is possible to a t tempt to write a text
book ra ther than a work demonstrat ing novel or revolutionary features 
of the subject. This edition is meant for graduate and post-graduate 
s tudents; wherever possible the t rea tment insists on physical insight 
ra ther than on mathematical rigour. I have tried to treat the subject in 
all its aspects without indulging in details and specialities (for which 
exist now several excellent books) and nevertheless aiming at students 
having a good background in physics and even having some acquaint
ance with the concepts of physics of ionized gases. This should put 
the present edition in a bracket between elementary books on plasma 
physics and those dealing thoroughly with special domains, some of 
which will be found among the recommended l i terature on p. 332. 

Frascati , spring 1967. 

Acknowledgment 

I would like to thank those of my colleagues from Laboratorio Gas 
Ionizzati who have helped me so generously with the manuscr ipt of the 
3rd edition. 





CONTENTS 

P R E F A C E TO T H E T H I R D EDITION V 

INTRODUCTION 1 

CHAPTER 1 

1.1. Plasma state 6 

1.1.1. Degree of ionisation — Sana's equation 6 
1.1.2. Electric fields in plasma 16 
1.1.3. Radiation in plasma Hi 
1.1.4. Classification of plasmas 21 

1.2. Plasma in nature and in laboratory 22 

1.2.1. Stars and interstellar space — The diagramme of Hertzsprung 
and Russell 22 

1.2.2. Planets 24 
1.2.3. Plasma produced by man 24 

References to Chapter 1 26 

List of symbols used in Chapter 1 27 

CHAPTER 2: MOTION OF ELECTRONS AND IONS IN ELEC

TRIC AND MAGNETIC FIELDS 

Introduct ion 28 

2.1. Motion in an electrostatic field 28 

2.2. Motion in a magnetostatic field 31 

2.2.1. Motion of charged particles in a toroidal magnetic field 37 
2.2.2. Motion of charged particles in the field of a magnetic lens 39 
2.2.3. Motion of charged particles in a helical magnetic field 45 
2.2.4. Superimposed toroidal magnetic field and betatron magnetic 

field 46 

2.3. Motion of charged particles in crossed electric and 

magnetic fields 52 

2.3.1. Electric vortex field and magnetic lens field 56 

2.4. Motion in crossed R. F. electric field and a magnetostatic 

field 58 



VIII CONTENTS 

2.5. The movement of a charged particle in the field of an 
electromagnetic wave 62 

2.6. Radiat ion from accelerated charges 66 
2.6.1. Bremsstrahlung 68 
2.6.2. Cyclotron (betatron, synchrotron) radiation 71 

2.6.3. Cerenkov radiation 77 

References to Chapter 2 85 

List of symbols used in Chapter 2 85 

CHAPTER 3 : FLUID DESCRIPTION OF PLASMA 

Introduct ion 87 

3.1. Stationary distributions 91 

3.2. The collisionless Boltzmann equation 92 
3.2.1. Non-relativistic ensemble 94 
3.2.2. Relativistic ensemble 97 

3.3. Integrals of Boltzmann's equations over the velocity 
space 98 
3.3.1. Non-relativistic case 98 
3.3.2. Relativistic case 104 

3.4. Fluid models 106 

References to Chapter 3 110 

List of symbols used in Chapter 3 110 

CHAPTER 4 : EQUILIBRIUM CONFIGURATIONS 

(PLASM ASTATICS) 

Introduct ion I l l 

4.1. Plasma in an external magnetic field 112 
4.4.1. Cylindrical and cusp geometry 120 

4.2. Confinement by magnetic fields generated by currents 
in the plasma 126 
4.2.1. Non-relativistic streams 126 
4.2.2. Relativistic streams 131 

4.3. Plasma equil ibr ium in external and self-fields . . . . 135 
4.3.1. Stabilized Z-pinch 135 
4.3.2. Toroidal plasma loop 137 
4.3.3. Force-free magnetic fields 140 

References to Chapter 4 142 
List of symbols used in Chapter 4 142 



CONTENTS IX 

CHAPTER 5: WAVES AND INSTABILITIES IN PLASMA 

Introduct ion 143 

5.1. Electron oscillations in plasma 144 

5.1.1. The longitudinal oscillations 147 
5.1.2. The transversal oscillations 147 
5.1.3. Hybrid transversal and longitudinal waves 151 
5.1.4. Reflection of electromagnetic waves by plasma 152 
5.1.5. Electron waves on a plasma cylinder 155 
5.1.6. Effects of random velocities on waves in plasma 160 

5.2. Positive ion oscillations 171 

5.2.1. Electrostatic ion oscillations 172 
5.2.2. Hydromagnctic oscillations in a stationary infinite plasma —· 

waves on a plasma cylinder 174 
5.2.3. Hydromagnetic oscillations in plasma streams 180 

5.3. Growing waves and instabilities 183 

5.3.1. Conversion of kinetic energy of particle streams into the 
energy of longitudinal plasma oscillations 185 

5.3.2. Rayleigh-Taylor instability 188 
5.3.3. Magnetohydrodynamic instability 192 
5.3.4. Hydrodynamic instability 208 

References to Chapter 5 213 

List of symbols used in Chapter 5 214 

CHAPTER 6 : SHOCK WAVES IN PLASMA 

Introduct ion 216 

6.1. Relations of Rankine-Hugoniot. Shock-speed . . . . 220 

6.2. Structure of the shock front in absence of magnetic 

field 222 

6.3. Shocks in a gyrotropic plasma 225 

6.4. Diverging and converging shocks 227 

6.4.1. Diverging shocks 227 
6.4.2. Converging shocks 229 

References to Chapter 6 232 

List of symbols used in Chapter 6 232 

CHAPTER 7: PLASMA DYNAMICS 

Introduct ion 233 



X CONTENTS 

7.1. Plasmoids 233 

7.2. Steady plasma flow 242 

References to Chapter 7 245 

List of symbols used in Chapter 7 245 

CHAPTER 8: COLLISION AND RELAXATION PROCESSES 

Introduction 246 

8.1. Dynamics of a collision of two charged particles . . . 247 

8.2. Fokker-Planck equation 251 

8.2.1. Conduction of electricity in plasma — conduction of elec
tricity in a gyrotropic plasma 256 

8.2.2. Stopping power — relaxation to Maxwellian distribution — 
equipartition of energy 264 

8.3. Diffusion in configuration space 267 

8.3.1. Flux of particles 269 
8.3.2. Conduction of heat and electricity 273 
8.3.3. Diffusion of momentum. Viscosity 276 

References to Chapter 8 278 

List of symbols used in Chapter 8 278 

Applications 280 

CHAPTER 9: RESEARCH ON CONTROLLED FUSION 

Introduct ion 281 

9.1. Sources of nuclear energy 281 

9.1.1. Elementary nuclear concepts 281 
9.1.2. Binding energy 283 
9.1.3. Nuclear fusion 287 
9.1.4. Fission and fusion reactions as sources of energy 292 
9.1.5. Uncontrolled fusion reactions 295 

9.2. Controlled fusion reactors 298 

9.2.1. Stationary fusion reactors 303 
9.2.2. Pulsed fusion reactors 306 
9.2.3. Experiments in the research on controlled fusion 309 

References to Chapter 9 311 

List of symbols used in Chapter 9 312 



CONTENTS XI 

CHAPTER 10: OTHER APPLICATIONS 

10.1. Generation of electromagnetic waves 313 

10.2. Direct conversion of chemical energy into electrical 
energy 316 

10.3. Applications to particle-accelerators 322 
10.3.1. Plasma betatron 322 
10.3.2 Collective ion-acceleration 324 

10.4. Rocket propulsion 326 

10.5. Energy storage 328 

List of symbols used in Chapter 10 331 

References to Chapter 10 331 

GENERAL LITERATURE 332 

BOOKS ON SPECIAL TOPICS 332 

The numbering of the equations in each chapter starts from one. 
When reference is made to equations in other chapters, the number of 
the chapter is added first (e.g., Equation (3.62) means Equation (62) in 
Chapter 3). 





INTRODUCTION 

Plasma physics is concerned with the behaviour of systems of many 
free electrons and ionised atoms where the mutua l Coulomb interactions 
cannot be disregarded. In a restricted sense, such systems of particles 
consist of nearly equal numbers of positive and negative charges. 
Systems of this type are examples of a medium known as plasma which 
in many respects behaves differently from the solid, l iquid and gaseous 
state of mat ter . 

All states of mat ter represent different degrees of organization, to 
which there correspond certain values of binding energy. Thus, in the 
solid state the impor tant quanti ty is the binding energy of molecules 
in a crystal; in fact, a crystal could be considered as a macro- or super-
molecule. If the average kinetic energy per molecule W exceeds the 
binding energy U (a fraction of an eV) the crystal structure breaks up , 
either into a l iquid or directly into a gas. A similar law operates in the 
case of liquids, and in order to change a l iquid into a gas, a certain 
min imum kinetic energy per molecule is required to break the bonds of 
the van der Waals forces. Matter can exist as plasma, i.e., in its fourth 
state, when the kinetic energy W per plasma part icle exceeds the 
ionising potential of atoms which is usually a few eV. Thus the average 
kinetic energy per particle determines the state in which mat te r exists. 
A precise mathematical statement of this theorem is an equation of the 
Saha type. However, a simple criterion can be writ ten as 

Un < W < Un+1 (1) 

where U„, U„+\ are the respective binding energies, expressing that 
matter exists in the (n -\- l ) s t state. 

The plasma state will correspond to an order-of-magnitude relation
ship 

1 < WA < 10" (eV). 

Extrapolat ing this principle to higher states of matter , so far unex
plored, one may define the fifth state of mat ter as one in which 

1 < Wr, < 500 (MeV). 

This will be a gas of free nucléons and electrons — a "nugas". The 
sixth state would be, consequently, defined as 

y2 < Wti < 10 (GeV) 
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and would contain free mesons, nucléons in various states of excitation 
and electrons. The fifth and sixth states of mat ter can be expected to 
exhibit an even greater variety of behaviour than a plasma owing to 
the action of short range internucleon forces in addition to long range 
Coulomb forces. 

On the other hand, according to eq. (1) for ÎV, plasma spans a 
broader energy band than any other state of mat te r ; it encompasses 
about 20 octaves on the kinetic energy scale. This width of the kinetic 
energy spectrum of the plasma state is the reason for much common 
ground between plasma physics and many other fields of physics, such 
as the dynamics of single charged particles (in which many-particle 
interactions are not considered), or the physics of electrical discharges 
in gases (in which interaction between charged particles and neutral 
atoms and molecules is of great importance) , whereas some methods of 
description and analysis used in plasma physics belong to the subject 
of hydrodynamics, particularly magneto-hydrodynamics. Another phy
sical discipline, indispensable for the theory of a plasma, is statistical 
mechanics and there are yet other fields from which plasma physics 
draws its mathematical formulation and its terminology. 

Although probably more than 99.9 % of matter in our Universe is 
ionised and therefore in the plasma state, on our planet plasma has to 
be generated by special physical processes and under special conditions. 
These processes are the subject of the physics of electrical discharges in 
gases and this is the reason for the parental relationship between the 
lat ter and plasma physics. 

Using an anthropomorphic analogy one may say that whereas the 
physics of electrical discharges is more specifically concerned with the 
bir th and metabolism of plasma, plasma physics concentrates mostly 
on the anatomy and motion of plasma. 

On our planet the medium which often resembles an ideal plasma 
is a partially ionized gas. This medium enters in the experience of 
prehistoric humani ty in three forms; as fire, as l ightning and as Aurora 
Borealis. In this connection it is curious to note tha t a number of greek 
philosophers, starting with Empédocles of Agrigentum (about 490-430 
B.C.), held that the material Universe is bui l t of four " roots" : ear th , 
water, air and fire. This, in modern terminology, may be compared 
with four states of matter, solid, l iquid, gaseous and the plasma state. 
The privilege of identifying the medium created in electrical discharges 
in gases as the fourth state of mat ter belongs to W. Crookes who writes 
(1879): "The phenomena in these exhausted tubes reveal to physical 
science a new world, a world where mat ter may exist in a fourth state...". 
At about this t ime it became obvious tha t this newly discovered state 
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of mat ter is not very much at home on our dense and cold planet and 

that special conditions must be realized in order to generate a plasma

like medium in the laboratory. Investigation of these conditions were 

the subject of the physics of electrical discharges in gases. I t was 

only when electrical and vacuum techniques developed to the point 

when longlived and relatively stable electrical discharges were available 

that plasma physics emerged as a separate field of study. 

Around 1923 I. Langmuir developed the appropr ia te basic theory 

of an ionised gas and gave the medium the name "p lasma" *. During 

the period 19231938 the subject developed further due to the efforts 

of L. Tonks, R. Seeliger, Β. Klarfeld, M. Steenbeck, Α. ν . Engel, L.B. 

Loeb, W. Bennett , F.M. Penning, J. Townsend, W. Rogowski and many 

others. 

At the beginning of this century astrophysicists became aware of 

the importance played by ionised mat ter in the processes in outer 

space and subsequently some of the finest contributions to plasma 

physics came from their ranks. Here one may mention the work of 

M.N. Saha, S. Chapman, T.G. Cowling, V.C. Ferraro , S. Chandrasekhar , 

L. Spitzer, H. Alfvén and the german astrophysical school at the Max

Planck Institute. 

In 1929 F. Houtermanns and R. Atkinson suggested that the main 

source of energy in stars is the fusion reactions among the nuclei of 

the light elements. After 1945 a similar mechanism was exploited in the 

construction of hydrogen bombs and at the same time some physicists 

became interested in a controlled release of fusion energy. 

However, it was appreciated that the energy output from fusion reac

tions depends critically on the kinetic energy of the colliding nuclei 

and that fusion outputs of practical interest depend on one's ability 

to produce temperatures of at least several million degrees Kelvin. 

If explosions are to be avoided, then the pressure of mat ter at this 

temperature must be balanced by external forces. This is within the 

power of our engineers only if the density of the nuclear fuel is sub

stantially less than the density of our atmosphere. The search for a 

mechanism of a controlled release of fusion energy in the 1950's became, 

therefore, synonymous with the study of high temperature , low density 

plasmas. However, it should not be forgotten that the notion of con

trolled fusion is not inconsistent with controlled explosions as will be 

mentioned on p. 308. In accord with such an extension of the scope of 

* The word plasma occurs first in the term protoplasma which was originally 
introduced into scientific terminology in 1839 by the czech biologist J. Purkynie 
for the jellylike medium interspersed by numerous particles which constitutes the 
body of cells. 



4 INTRODUCTION 

controlled fusion is also tlie recent extension of our interest to very high 
density plasmas. 

The prospect of nuclear fusion gave a new lease of life to plasma 
physics which was becoming rather unfashionable and as one of my 
friends put it, regarded by most other physicists as a rather charming 
subject, full of small, colourful experiments, where there was little left 
to discover and whose only real justification was the amusement of those 
who bothered to waste their time on it. With the goal of a fusion reactor 
as an incentive, plasma physics became a subject of interest to many 
physicists and engineers. More recently many other applications of 
plasma physics have appeared, such as plasma rockets, direct conversion 
of thermal energy into electrical energy, transmission of radio and tele
vision signals through ionosphere and others. These are more than able 
to sustain the interest of physicists and engineers in plasmas. 

When the first edition of this book was written in 1959 only very few 
experiments on plasma had been carried out and those that had been 
done were useful onlv for a general orientation and could not be com
pared with clear and precise experiments in other branches of physics. 
In five years this situation has changed considerably and there exist 
now some "classical" experiments on waves, shocks, diffusion and dyna
mics of plasma. I have attempted, therefore, to illustrate at least some 
of' the theoretical statements by means of related experiments. Owing 
to the interplav of theorv and experiment in the last decade it was 
possible to gain a feeling for the plasma medium, appreciate its many 
aspects which predominate according to the values assumed by the 
density and by the temperature of the plasma and also according to 
whether or not there is a magnetic field in the plasma. In order to 
transmit some of this feeling the book starts with a rather lengthy 
chapter on the general properties of the different types of plasma. 

As in many problems dealing with a large ensemble of individuals 
(e.g., star clusters), plasma physics uses two complementary modes of 
description: the analysis of the movement of a single particle and the 
fluid model. These two treatments are the subjects of chapters 2 and 3. 

These modes of description are subsequently applied to equil ibrium 
configurations, i.e., to plasma statics (chapter 4), to wave-motion and 
instabilities in plasma (chapter 5) and to shocks in plasma (chapter 6). 
This brings us to consider the dynamics of a plasma (chapter 7). 

In order to complete our description of plasma it is important to 
know how an equil ibrium configuration is established. This problem 
can be solved only if one can find a suitable description of the various 
collision, diffusion and radiation processes that are operative in arriving 
at an equil ibrium. This is the aim of chapter 8. 
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The eight chapters provide us with models of plasma processes 
which are used in chapter 9 to describe some of the applications of 
plasma physics to the research on the controlled fusion of l ight nuclei, 
and in chapter 10 to electronics and to other problems in applied 
physics and in engineering. Those who will he using this hook as a text 
book may not want to get involved with some of the more complicated 
mathematical arguments. In such a case it may be advisable to only 
gloss over paragraphs marked by an asterisk. The c.g.s. system of units 
will be used unless specified otherwise. 



CHAPTER I 

1.1. Plasma State 

Let us first restrict the applications of the word plasma to systems 
in which the positive ions are not bound in any lattice in space. This 
will exclude systems in which the positive ions belong to a conducting 
or semi-conducting solid body, it will also exclude l iquid conductors 
and electrolytes in spite of the fact that the lattice in these lat ter cases 
is ever changing. Such a restriction amounts to the requirement ha t 
the density of the kinetic energy of positive ions be much higher than 
the density of binding energy corresponding to a lattice. By making 
this restriction no offence is meant to thus excluded types of plasma, 
the behaviour of electron plasma in conductors (ref. 1, 2) and semi
conductors (ref. 3, 4) is of considerable theoretical and experimental 
interest, however, it is more fitting to discuss such systems in another 
book entitled perhaps "Electron plasmas in solids". For similar reasons 
it is advisable not to mix the physics of electron and of ion beams with 
that of plasma physics proper, besides several books have already been 
written on that subject (ref. 5, 6). 

At this point it may be bet ter not to go on deciding what is not a 
plasma, instead we shall study some impor tant properties of a system 
consisting of many free electrons and ions and decide which are the 
parameters corresponding to a typical plasma *. 

Let us first consider a special case in which the system is of infinite 
extension, with no fields of force imposed from the outside and the 
velocity vectors of the particles randomly distributed both with respect to 
their direction and their ampli tude. Let the average density of either 
type of particle he n. Let us try to find out how the lines of force e 
of the electric field E of an electron Q are distributed in space. 
Obviously most of these lines will be attached to the nearest positive 
ions Pi ... P-M some go to the more distant ones such as P4, Pr, and some 
(e') leak out and travel far before they, too, get attached to positive 
charges (fig. 1). I t is easy to see tha t no e' lines would exist in a per
fectly ordered lattice. There all the lines emanating from the charge 
Q finish on the oppositely charged nearest neighbours. Evidently the 

* Lists of symbols are given at the end of each chapter. 



PLASMA STATE 

Electric Li'nes 
emanating from 

an electron ¡n 
plasma 

o iions 
• electrons 

Fig. 1. 

® 

only 
elinei 

Fig. 2. 

a) perfect lattice. 

b) elines transformed into e'lines as a result of disturbance in the eflectron lattice 
resulting from the shift of 3 electrons. 

c) The intensity of the electric field in the disturbed lattice, equivalent to the number 
of electric lines at any position χ. 
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reaching out of e' lines is due only to the imperfections of a lattice, i.e. 
to a local accumulation of charge of one sign *. This is shown graphi
cally in fig. 2. 

Such fluctuations in plasma are limited as can he seen from the 
following argument. Let a layer of electrons escape from a layer of 
positive ions (fig. 3). The field E in the separated layers can be 
calculated from the Poisson's law 

dE 
~dx~ 

= ± 4 7Γ n e (1) 
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* It is also due to the dependence of electrical forces. A short-range force 
r-

would cause the group of charges to behave more like a gas of neutral atoms. 
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„ . . ) + valid for χ > 0 
l h e sign s 

j — valid for χ < 0 

which gives for uniform n: E — — 4 π η e (d — |x|). 

The electrical energy stored in this field per cm2 of the surface of 

the layer is 

.i 

We = 2 I dx = — Tr n2 ë d' (erg/cm2) (2) 
J 8TT 3 
<> 

This energy could have been generated only by drawing on the 

random kinetic energy of the electronlayer. Since each electron has 

3 degrees of freedom, each of which should be endowed with an energy 

equal to 1/2 kT, we get for the available kinetic energy W't capable of 

being converted into We. 

(3) 

Put t ing 

we get 

wt = — η d k Τ (erg/cm) 

wt < Wt 

— kT > — π η e2 d2 

2 — 3 

or 

V 2 V 4 π η , 
(4) 

In the following we shall take for this critical distance, known as the 

Debye distance, the expression 

/ kT 
d = \ 

V 4 π e2 nr 

(4a) 

the numerical factor \ / 3 / 2 having been introduced by the oversimpli

fied na ture of our analysis. 

The maximum electric field corresponds to * 

Emax = y^rnkT (5) 

£2„„.x 3 
* Def in ing the energy dens i t ies to„ = and w¡ = — nkT respec t ive ly , the 

87Γ 2 

1 
equa t ion (5) can also be wr i t t en iv„ — —· w¡. 

3 
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Considering a spherical ra ther than plane geometry we obtain using 

similar arguments a critical distance dSPh ■—' d and EmaxBph <~' Emax. T h e E 

field is composed only of the e' lines and the distance d is then the 

longest distance to which the field of a charge in plasma can penetrate 

before being screened. 

These ideas are similar to those used by Debye and Hiickel in the 

theory of electrolytes (ref. 7) ) and the distance d is called the Debye 

distance. In their theory, Debye and Hiickel have shown that the 

distribution of electric field around a fixed charge q in an electrolyte 

corresponds to a "screened potent ia l" φ = — exp K) Using a 

simplified argument we shall show how such a potential distribution 

arises around a fixed charge q in a plasma of density η and tempera

ture T. In absence of charge q the charge density of the electronic and 

positive ion fluid is 

n¡ ,6) 

Introducing the charge +q creates a spherical, positive potential wall 

</>(r), and the electric field E — — 
d φ 

will tend to bend the electron 

trajectories towards the charge and deflect the ion trajectories. In a 

spherical geometry the Poisson's equat ion for φ, ne and re¡ reads 

dr I dr J 
= 4  (ne — n, (7) 

According to a wellknown theorem of statistical mechanics (ref. 8) 

the distribution of electrons ( temperature T) in thermodynamic equi

l ibr ium in such a potential well is given by 

ne (r) = ne · exp 

id of ions n, (r) = n¡ · exp 

βφ(Γ) 

+ e<ft(r) 

kT 

—βφ(τ) 

kT 

(8a) 

(8b) 

For radii r so large that 
kT 

<̂  1, the electron and ion distri

bution will not be greatly perturbed and we can write 

e<Mr) 
ne,i (r) = η 1 

AT 
(8c) 

The potential φ can now be determined from 
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r dr 
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' dò \ 8ττηβ'

kT 
The expression must have a dimension of (length)2 . F rom 

8nree2 

equation (4a) it is clear tha t this length d' is 

1 / kT 
d' = — = d = \ (10) 

χ/2 V 8ne

The solution of equation (9) must satisfy two boundary conditions. At 

r = oo the potential φ = 0 and for r —> 0 the solution must converge 

1 
to tha t of a point charge q in vacuum, i.e., φ (r —» 0) = — . 

Such a solution is 

* = 7-
εχ

Ρ ~ " ? ( i i ) 

If the ions owing to their inertia connot reach thermodynamic equili

b r ium and thus cannot distr ibute themselves in the potential well 

according to equation (8b) one finds in the solution (11) the Debye 

length d instead of d'. 

As long as the charge q is much larger than the elementary charge e 

a potential distribution of the type given by equation (11) will develop 

and is encountered in experiments using spherical probes in a plasma 

in which the Debye length is larger than the radius of the probe 

(ref. 9) . When the analysis is extrapolated to the problem of potential 

distribution around a positive ion, i.e. for q = je, it ceases to be valid. 

Each ion creates and carries its own potential well and, as the mean 

distance between the ions is re"1'3, the formula (11) cannot be applied 

to r < re1'3, as the mean number of electrons within a volume 

1 e 
— capable of modifying the — par t of φ cannot exceed unity. On the 

rer 

other h a n d for r ^> re1'3 the field of this ion is relatively weak and the 

formula (11) is, therefore, of l i t t le interest. 

Consequently the only chance for potentials of the type of φ being 

generated in a plasma is when local accumulations of ions arise, as 

has been already mentioned. Only then the lines of force of a particle 

in plasma may reach up to the Debye distance and one must, therefore, 

admit that in such a case all particles within a sphere whose radius is 

equal to d can mutual ly interact. In this respect plasma differs from 

gases in which the trajectories of the molecules are influenced only by 
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binary collisions — in plasma the trajectories of an electron or an ion 
are dictated by long-distance Coulomb forces produced, in absence of 
external fields, by at most Nd particles, where 

1 ( kT \ 
Nd = 2 · 4 /3 - dJ · re = ^ ^ 

SyJriTT ν e 2
 t 

3/2 

(12) 

i.e., all the particles within the Debye sphere. Only when Nd ^ 2 do 
we recover binary interactions. T h e curve Nd = 2 is plotted in the 
n,T d iagramme (fig. 7) separating thus the region belonging to plasmas 

Classical plasma — collective interactions 
Degenerate plasma 

Classical plasma — binary interactions 

Relativistic electron plasma — classical + degenerate 

5th state of matter 

The first three states of matter 

Fig. 7 
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exhibiting many-body interactions from that corresponding to binary 
collisions *. 

Let us estimate the probability that electrons within a Debye sphere 
or a Debye layer will all have their velocity vectors pointed in a 
special direction. The probability that the velocity vector of a particle 
lies in the v, > 0 hemisphere of the velocity space (fig. 4) is 1/2. 

Nä The probability that all the 

hemisphere is, therefore, 

electrons belong to the Vx > O 

Pa = (l/2) 
Ì / 2 * , , 

(13) 

yy 

vx 

Fig. 4 

provided the velocities of the particles are not correlated. Although 
the probability of finding such an extreme velocity distribution is 
small, once such a distribution is created it may reappear periodically 
many times afterwards. The reason is that the electron layer (fig. 3) 
having transformed its kinetic energy into the energy of the electric 
field E will be pulled back into its original kinetic energy, correspond
ing to a velocity in the -x direction. The process is obviously limited 
only to these electron and positive ion layers as all the electric field 
(e7 lines) appears only in the space between these layers (see also fig. 2) 

* The condition /V,i = 2 ie equivalent approximately to d = I, where I = n -1/3 . 
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and consequently the oscillations are not transmitted to the rest of the 
plasma. 

Later on (chapter 5.1.6) we will see tha t such a process can propagate 
owing to the randomness of ν and that it is damped; nevertheless, its 
persistence suggests that once an oscillating electric field is created 
in the plasma it may be difficult to get rid of it and that there may be 
a tendency in a plasma to establish an equi l ibr ium between the stored 
electric energy in oscillating fields and the energy of the random motion 
of particles. 

The frequency corresponding to the electron oscilations resulting 
from a depar ture in the electric neutrali ty of a plasma can be obtained 
from the motion of an electron in the field Emax . βίηωί. 
Thus 

eE 
c i f r i l i ! » . .- . . 

8ΐηω£ (14) 
■'max 

from which follows after double integration and putt ing xmax = d tha t 

eE 

rei d 

From equations (4) and (5) 

'-'max . 

r— = 4nree 

(15) 

This substituted into eq. (15) gives for ω (which we shall call the 

plasma frequency ωρ) 

l i l , , - V ^
 (16

> 
ν rei 

This is quite generally the frequency with which any charge accumu

lation in a plasma of density re will be neutralised by the inflow of 

oppositely charged particles. 

Having discussed the upper l imit of the Coulombian interaction of 

a charge in a plasma, let us say a few words about the shortest distance 

δ corresponding to such an interaction. A natura l choice for 8 is the 

re 

de Brogue's wave length λ„ = . 

reír' 

In a plasma where the ion gas has the same kinetic energy of random 

motion ( thermal energy) as the electron gas, the average momentum 

of the electrons will be much smaller than that of the ions and 

consequently their λΒ will l imit the part icle interactions at short 

distances. 
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we get 
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rei2ir = 2rei ( j ^ fret)2) = 3mkT 

= %B = _ — _ (17) 
\/3mfc - 2 - \ / T 

If the density of a plasma is such tha t n%B
s ^ 1, the interactions 

have to be treated by quan tum methods — let us call such a plasma a 
quantum plasma or a degenerate plasma. T h e degenerate plasmas can 
be described statistically by the Fermi-Dirac statistics — whereas the 
non-degenerate plasmas are subject to the Bol tzmann statistics. T h e 
above mentioned inequality can be writ ten as 

> 1 (18) 
2TT (2mkyi- Tll-

This relation is also plotted in the re,T diagramme (fig. 7), giving us thus 
a boundary between degenerate and Boltzmannian plasmas. I t is often 
necessary tha t the Coulomb interaction has to be t runcated at distances 
larger than XB. When an electron encounters another in a head-on 
collision the min imum distance between them is given by energy 
consideration. Thus when their kinetic energy is spent the electric 

e2 

potential energy is equal to . Taking for the kinet ic energy the 
o 

mean thermal energy for two particles in one degree of freedom, i.e., 
A: Τ we get * 

. . - - £ (19) 

Much the same argument could be made about p-p and e-p collisions. 
In the lat ter case the min imum distance δ corresponds to a deviation 

of the electron trajectory by an angle π/2. 
Let us find a criterion for the classical and quan tum close-interaction. 

Obviously when δ/, > X the close interaction will be described by classi
cal mechanics, in the opposite case by quan tum mechanics. The l imit 
is decribed by X = 8 giving Τ < (2 - ) 2 · (3 e'rei/fere2) S 10(i (°K) for 
classical interaction. 

Let us observe a region of space in plasma whose volume is equal to 
that of the Debye sphere. Let us consider the case in which Nd <ζ 1, 
which is also equivalent to /V/ / 3 ^> 1. From the lat ter we get using 
eq. (12). 

* Also called the "Landau distance". 
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kT 3/2 kT 
1 < ; < — (20) 

(91r)
1/3re1/3e2 e2 ' 

-1/3 

which shows tha t in this case the mean kinetic energy per particle 

is much larger than the mean interpart icle potential energy evaluated 

for the mean interpart icle distance. 

The inequali ty N d ^> 1 can be also transformed into 

f kT Ì 2 ( 1 Ì *!> 1 

This is approximately 

re1'3 λ.·ι 
■ = — > 1 (21) 

ae¡ re í 

where σ,,· = π Sj,2 and λΡ1· is the electronion (closecollision) mean free 

path. The close collisions are, therefore, rare phenomena on a stretch 

equal to the mean interpart icle distance (fig. 5). 

Fig. 5. A marks a closecollision event. 

1.1.1. DEGREE OF IONIZATION — SAHA'S EQUATION 

In gases not all the electrons are always bound to the atomic nuclei. 

The outer electrons may receive enough energy in collisions with other 

particles or with photons to overcome the potential well eV¡ of the atom 

and become free *. A reverse process, the recombination, is responsible 

* In degenerate gases the outer electrons are "squeezed out" of the potential 
well (ref. 11). 
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for the capture of free electrons by ions. The relative frequencies of 

these two processes: the ionization and the recombination, determine to 

what degree the medium is ionized, i.e., to what extent it resembles an 

ideal plasma. The corresponding relat ion for a medium in thermo

dynamic equi l ibr ium is known as the Saha equation and it reads (ref. 

10) 

reerej λ /2 - re iÄ ; 

exp 
_i T3/2 (22, 

kT 

where ne, re¡ and re are respectively the densities of electrons, ions and 

neutral atoms and Vi is the ionization potential . When kT > eV{, then 

the exponential term is almost equal to unity and since for once ionized 

atoms ne = re¡ we have 

( y¿Trmk γι-

P 4 — J "-
1/2T3

"· (23) 

In order that kT > eV¡ the tempera ture must be of the order of 10r' 

and it follows that the ratio is very high as long as re < 1022. The 
re 

dependence T3 '4 is to be expected, the higher the tempera ture , the 

higher is the electron velocity and the higher the frequency of ionizing 

collisions. 

In the other extreme, i.e., kT < eV¡ the degree of ionization is dictat

ed mainly by the exponential term. The ionization can be accomplished 

only by the relatively few energetic electrons in the tail of the Maxwel

lian distribution. 

The dividing line between plasmas and gases can be fixed as cor

responding to a certain degree a of ionization. If, e.g., we take 
ree 

a = = 1 for hydrogen we get a relation 

( — 158 000 Ì 
T3 '2 exp = 1.45 . 1 0 1 8 ■ re. (23a) 

Another and more precise criterion for deciding whether a medium 

is plasma or only a weakly ionized gas is provided by considering the 

electronion and electronneutral atom collisionfrequencies (ve¡ and 

ve„). One may then define plasma by 

ve¡ ^ iv« 

where (using eq. (21) and eq. (856) ) 

ve _ e4 iii 
= Λ/2 π · — JreA 

Xei ^k:,m Τ3' 
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and 

/ 2/c 
Ven = Λ/ 

V m 

Jl/2 

where aen is the collision crosssection between electrons and neutral 

atoms. 

Substituting into these expressions for re¡ and re from eq. (22) we 

get a function of T and (re + re¡) which is plotted in fig. 7 (curve C) 

and represents the above mentioned criterion. 

1.1.2. ELECTRIC FIELDS IN PLASMA 

It is possible now to visualize the type of electric field an observer 

will register inside a plasma in which collective interactions predomi

nate. This is shown in fig. 6 where we have chosen a typical plasma 

having re = 10 l s and T = 10°. 

When external fields penetrate into a plasma the motion of individual 

particles does not change appreciably. This is due to the external fields 

being usually weaker than the microfields E„, Eb and EL. tha t are always 

present in a plasma. This can be appreciated from the example shown 

in fig. 7 and noting that in laboratory it is difficult to generate electric 

fields much higher than 105 V/cm. The same argument is valid, though 

to a lesser extent, for magnetic fields. In laboratory it is feasible to 

generate fields of the order of 100 KGauss. An electron moving in a 

magnetic field sees an equivalent electric field 

E = ^— B.300 (V/cm, Gauss). (24) 

c 

For a typical plasmaelectron this is 

E = 3.7  ΙΟ"3 Β Λ / Τ (V/cm) . (24a) 

Thus for Τ = 10" ("Κ) and Β = W Gauss we get E = 3.7 · IO5 V/cm, 

again not a very high field compared to E„ or E¡, in fig. 6. 

1.1.3. RADIATION IN PLASMA 

In any medium in thermodynamic equi l ibr ium there should be a 

radiation field whose photons are distributed in frequency according 

to the Planck's law 

8 ref 
!«,(ƒ) = — 25) 

" c3 (e* ' /* r—1) 
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ME/ (Ein **4m) 

Fig. 6. Three typical electric fields records in a plasma with 
π = 101S, Τ = 10" ("Κ) in which Nd = 2800. 

a) The most usual behaviour: irregular oscillations due to passage of electrons. 
Mean amplitude E« = en-!'-' ^ 150.000 V/cm, mean interval τ , = 

(kT \ 
n-i /3 

l m j 

~ 10-15 

6) A rare event: electron passing closest possible to an ion, i.e., at a distance 
e- e (kT)2 

S = away. Amplitude Eb = = = 2 . 1011 V/cm. The mean 
kT e* e* 

interval of such an event is 
S e-m1/'2 

τ , = = ~ 10 -'s 

V kT (fcT)3/2 

c) Another event: oscillations of a Debye sphere. Amplitude E r = V4^nfeT 

10" V/cm. Frequency of occurence lower than E, mean interval TC 

s 1/3 . IO-13 . 

2ττ 

ω,, 

where wr is the energy density in an uni t interval of frequencies. This 
is the photon-gas analogy to the Maxwell distr ibution of velocities 
among particles in thermal equi l ibr ium. In order tha t any velocity 
distribution can, within a finite t ime, relax into a Maxwellian one 
a certain, be it even very weak, interaction (coupling) between the 
particles is required. Since photon-photon interaction is for all prac
tical purposes non-existant, one requires a charged particle, e.g., an 
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electron, in order that an arbi trary frequency distribution of photons 
could relax into a Planck's distribution. This condition for coupling is 
satisfied in a plasma and consequently in an infinite plasma one will 
find apar t from thermal energy density Wt — ZnkT also radiat ion 

energy density Wr = ƒ wr · dj which is the well known 
α 

Wr = Ίτσ Τ4 (26) 
c 

T h e behaviour of a plasma in which WT > Wt will be largely dictated 
by the contained radiation fields. This will occur, therefore, when 

9 „ „ T< 
- > 1 (27) 

3 ck 

The line corresponding to this boundary is also found in the re,T 
diagramme (fig. 7). 

In most laboratory plasmas, however, no such equil ibr ium can occur. 
This is due to the small optical dimensions of such plasmas, i.e. to their 
transparency. Thus most of the radiation generated by various emissive 
processes in a plasma has no chance of being reabsorbed or t rapped 
and is lost out of the system. Let us find the min imum radius Β of a 
plasma sphere, which could approach the state of radiat ion equili
br ium. Such a sphere will tend to radiate as a black body, in which 
case the radiation loss will amount to 4ττΒ2σΤ4. This must be continually 
replaced by generation of radiation within the sphere. Let us put 
g(T,n) equal to the rate of radiat ion energy generation and neglect 
the absorption of this radiation. Then 

4 τ τ Β 2 σ Τ 4 ^ 4 π ƒ r2-g.dr 

Let us assume for simplicity tha t re and Τ are constant within the 
sphere. This will yield an order of magni tude value of B . We get 

( 3 o - T 4 ) / g < B (28) 

One of the most impor tant radiation-emission processes in a fully 
ionized plasma is that corresponding to the radiation emitted by 
electrons during their collisions with positive ions, known as brems-
strahlung. The ion deflects the electron and, therefore, changes its 

β 

velocity. The electron radiates at a rate (v)2. 
c 

I t will be shown later (p. 70) that , averaging over all the electrons, 
this process gives 

g(n,T) = 1.42 . 10~2T ne
2 Ζ y/T (ergs/cm3 , sec) 
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Substituting into eq. (28) we get 

Β > — Γ . (29) 
Ζ re,,

Example : Ζ — 1, Τ = IO5, ree = IO17 (a typical laboratory plasma), 

then Β > 30 Km. 

I t is to be understood tha t since the absorption of radiat ion has been 

neglected, the criterion for Β is valid only as long as Β/λ Γ >̂ 1 where 

λΓ is the mean free path of a photon which in a completely ionized 

hydrogen is 

λΓ = where στ = 6.65 · IO25 (cm2). 
re σψ 

Plasma whose dimension is smaller than Β can still radiate as a 

black body, bu t only over tha t par t of frequency spectrum in which 

ei ther g(n,T) is h igher than tha t given by the bremsstrahlung process 

or the photons can be conserved an appreciable t ime in the plasma. 

1.1.4. CLASSIFICATION 

I t is now possible to discuss the re,T diagramme (fig. 7) which permits 

us to divide plasmas into different types. 

The realm of plasmas is l imited on the low Τ side by the Saba's 

equat ion (eq. (22) ). Whe the r one agrees that the degree of ionization 

corresponding to a gaseous state of mat ter is 50 ψο or 10"2 % does not 

make much difference to the position of this low Τ boundary (see the 

two curves Si , S2 corresponding to the abovementioned degrees of 

ionization). 

On the low re side the l imitat ion is somewhat arbitrary, we shall take 

n = l as the l imit since this value corresponds to the mean interstellar 

density and it is, therefore, unlikely tha t one will encounter in our 

galaxy a plasma density lower than 1 par t ic le /cm 3 . 

On the high Τ side, an order of magni tude l imitat ion is obtained by 

making a distinction between plasma state and the fifth state of matter . 

In this new state of mat ter nucléons are free. T h e maximum binding 

energy of nucléons being 8 MeV/nucleon it follows tha t the transit ion 

between pure plasma and the higher state will be around 1 M e V / 

nucleón, i.e., corresponding to a tempera ture of the order of 1010 ( ° K ) . 

Just below this tempera ture is the realm of plasma in which the elec

tron gas must be treated by relativistic mechanics as 3/2 k T ^ rei0c
2, 

from which T r e l = 3.9 .10° (° K) . 



22 PLASMA IN NATURE AND IN LABORATORY 

On the high density side there is first the boundary XB — I defined 
by eq. (18) which can be written as 

re1'3 ^ 2TT · IO5 T1 '2. 

For re higher than that which follows from this equation, there will 
be more than 1 part icle in a cube whose dimension is equal to the 
Broglie wave length and the interaction of the part icle will be governed 
by quan tum mechanics. The region to the r ight of the XB = I cor
responds, therefore, to quantum plasmas. These are often called de
generate plasmas since the relevant Fermi-Dirac description of such 
plasmas uses the notion of degenerate degrees of freedom for the 
particles. An interesting corner between the curve S2 and the boundary 
X„ = / corresponds to a plasma in which Ζ ^ d. I n such a plasma 
collective interactions, such as the oscillation of a Debye layer or 
sphere, are impossible as the corresponding volumes contain less than 
one electron. T h e particles thus interact mainly by means of binary 
collisions. 

To XB < I < δ (region Ω), does not correspond any plasma. One can 
e2 

show easily that in such a case > kT and, therefore, the binding 

β 2 

energy of an ion is larger than the mean kinetic energy kT in one 

degree of freedom which means that the electrons are no longer free. 
The greatest part of the following chapters will be devoted almost 

exclusively to the physics of classical, i.e., Bol tzmannian plasmas, which 
correspond to the clear area in fig. 4. 

1.2. Plasma in Nature and in Laboratory 

The most conspicuous condensations of mat ter in the Universe are 
the stars. T h e stellar material is mostly in the plasma-state. In order to 
represent the stellar plasmas in the re,T diagramme it is necessary to 
discuss the types of stars and determine to which physical conditions 
these correspond. 

1.2.1. STARS AND INTERSTELLAR SPACE — 
THE DIAGRAMME OF HERTZSPRUNG AND RUSSEL 

A convenient mode of representation of different types of stars is the 
diagramme of Hertzsprung and Russel (ref. 12). The two parameters 
used are the absolute magnitude (corresponds to the l ight-output of 
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the star) and the spectral type (related to the superficial temperature). 
There are three main agglomerations — the stars of the main sequence, 
white dwarfs and red giants (fig. 8). 

k absolute 
mac/niiude 

cfiani 

dwarfs 

red 
dwarfs 

hot 
stars 

cold Spectral 
stars type 

Fig. 8. 

The hottest stars of the main sequence are the white giants whose 
superficial temperature is typically about 105 (°K). Their structure 
should be sensibly different from other stars, the temperature of the 
centre may be about 107 (° K), however, this estimate depends very 
much on the model one uses for their internal composition. 

In the middle of the belt representing the main sequence is our 
sun and the stars resembling it. Their superficial temperature is of the 
order of 104 (° K), the central temperature should be about 20-30 . 
10° (°K). The ion density in the centre is probably between 1024 and 
1025 ions/cm3. 

In the lower tail of the main sequence are red dwarfs whose surface 
and central temperatures are well below those of our sun. 

The red giants correspond to a spectrum of relatively low tempera
tures and densities, whereas the white dwarfs correspond to high 
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temperatures, and above all, to high densities. The central densities 
of some white dwarfs may reach 10:io ions/cm3 . 

Apar t from the stars mentioned sofar, all of whom are in 
equil ibrium, there exist also pulsating stars and exploding stars. Some 
of these may reach a state in which the central part of their mass 
reaches such temperatures and densities that an almost complete 
collapse of the star occurs; the densities in the center of such a collaps
ing mass may reach 103S-1039 ions/cm3 . This corresponds to the density 
of nucléons in an atomic nucleus and such stars are called neutron-stars. 

All the stars possess an atmosphere, thus e.g., our sun's atmosphere 
consists of a so called reversing layer, then a layer known as the chromo
sphere and finally the outermost - the corona. The temperature ranges 
from 104 to 10", the densities from 101K-10" ions/cm3 . 

Most stars, especially the unstable ones, emit streams of plasma in 
the interplanetary and interstellar space. The temperature and the den
sity of these ejected plasmas diminish as the stream propagates away 
from the star and as it expands, unti l in the interstellar space the 
density drops to about 1 ion/cm 3 and the temperature to an order of 
one thousand degrees. The zones corresponding to all these states of 
mat ter are plotted in fig. 9. 

1.2.2. PLANETS 

The plasma state is represented relatively poorly on planets. Those 
planets possessing their own magnetic field are capable to reflect and 
deviate the solar streams. The plasma free cavity is known in the case 
of our earth as the geomagnetic cavity. Very energetic particles can 
penetrate deeply into this cavity and create ionization in upper layers 
of ear ths ionosphere. Impor tan t and interesting regions filled with 
such plasma resembling onion-shells have been discovered recently and 
are known as the Van Allen belts. 

Electric fields can be generated in planetary atmosphere giving rise 
to storms — during which electrical discharges occur. T h e gas in the 
inner core of these discharges may reach very high temperatures 
(T ~ 104 (° K) ) and must be, therefore, highly ionized. This is the 
nearest, short-lived sample of a plasma-state in nature accessible to 
human experience in the past. 

1.2.3. PLASMA PRODUCED BY MAN 

We are able to produce plasma either thermically or in electrical 
discharges. 
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relstivisiic elecivon gas 
< \ >—7— 

<NeMvo\) slavs 

Fig. 9. Occurrence of plasma in the Universe. 

Explosions of atomic and hydrogen bombs produce dense (re > 1022 

ions/cm3) and hot, short-lived plasmas. A thermal method for the 
generation of stationary plasmas uses high- temperature ovens (T > 
2000° K) in which vapors of caesium are admitted. The caesium atoms 
are ionized on contact with the incandescent walls of the oven. The den
sity and tempera ture of such plasmas are low. 

Pulsed electrical discharges are used to produce plasmas for experi
ments on controlled nuclear fusion. T h e tempera ture of such plasmas 
may be as h igh as 108 ( ° K ) , the density may range from 108 to 1017 

ions/cm3 . T h e life-time of such plasmas is usually l imited to micro
seconds ( the low density plasma to milliseconds), consequently in 
most cases such plasmas are not in thermal equi l ibr ium and some of 
the observations we made for a plasma in thermal equi l ibr ium do not 
apply (e.g., the W,- = Wt l ine has no sense). 

Experiments on plasmas produced by stationary electrical discharges 
were among the first classical plasma-experiments. A large class of glow 
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discharges corresponds to very low ionic temperature , electron temper

ature of the order of 104 (° K) and to densities re < 1013. As the power 

input of the electrical discharge increases, the ionic tempera ture 

approaches the electron temperature , the density increases and one 

obtains an arc. The density in arcs may be as h igh as 1018 ions/cm3 , 

their tempera ture may reach 105 (° K) . 

The zones corresponding to these plasmas are outlined in the n,T 

diagramme in fig. 10. 

Fig. 10. Plasmas produced by man. 
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List of symbols used in Chapter 1 

B 
c 
d 
e 
E 
f 
re 
k 
ι 
m 
η 

<1 
Β 
Τ 

magnetic field strength 
velocity of light 
Debye distance 
elementary charge 
electric field strength 
frequency 
Planck's constant 
Boltzmann's constant 
mean distance between particles 
electron mass 
particle density 
charge 
radius 
temperature 

x, r 
V 

v, 
w 
ζ 

s. 
λ 
λΒ 

σ 

°"e, » 
Ο" τ 

Φ 
ω ρ 

coordinate 
velocity 
ionization potential 
energy density 
atomic number 
Landau distance 
mean free path 
De Broglie length 
Stefan's constant 
electron-ion cross-section 
Thompson cross-section 
potential 
plasma frequency 



CHAPTER 2 

MOTION OF ELECTRONS AND IONS ES ELECTRIC 
AND MAGNETIC FIELDS 

Introduction 

This chapter is concerned with the study of the motion of charged 
particles in the various fields of force and in combinations of such 
fields, tha t are of interest in the study of plasmas. The most impor tant 
of these motions is the interaction of charged particles with various 
magnetic fields. The last section of this chapter will be devoted to 
radiat ion emitted by single charges. 

2.1. Motion in an Electrostatic Field 

If the field is irrotational it may be described by a potential V, 
and a particle trajectory is constructed in the general case from the 
equation for the radius of curvature R. Thus (fig. 11) 

m —— = eEL (1) 

and provided that ν = 0 for V = 0 one may write (for non-relativistic 
energies) 

Fig. 11. The projection of a trajectory of a charged 
particle in an electrostatic field on its osculating plane. 
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2eV 
R " Φ . 

and therefore, 

2V 
R = ^ r ^ r r ^ (cm). (2) 

(τ), 
This formula can be used very simply in a step by step graphical 

plotting of the trajectory. I t is also used in automatic trajectory 
tracing in an electrolytic tank (ref. 1). 

Motion of this type is of great interest in electron optics; in plasma 
physics it enters only in connection with the classical description of 
Coulomb scattering. 

Let us give a brief t reatment of this last problem, since it is connected 
with many impor tant phenomena such as particle diffusion and emis
sion of the bremsstrahlung. 

Let us consider first the motion of a part icle having charge e and 
mass ire in the electric field of a relatively heavy particle of mass M 
and charge Z.e. The motion is determined by the laws of conservation 
of energy and of angular momentum. Let the velocity of the l ight par
ticle at infinity be vn and let the distance of M from the l ine deter
mined by vu be pu, the so called collision-parameter (fig. 12). 

T h e vectors r 0 and pu determine the plane of motion. Using polar 
coordinates in this plane, the two conservation laws can be writ ten 

y 2 
r2 + r2 Θ2 ± 2 = t v (3) 

PoV„ = r2 θ (4) 

the - j - is valid for charges of the same sign, the — for oppositely charged 
particles. 

The t ime derivatives can he eliminated by means of 

d · d 
= θ dt de 

and substituting for θ from equation (4) we get 

dr \ ( p„v0 \ 2 ( p0v0 \ 2 2 Ze2 

{-de-} [ — J + I — J ± -ΊϋΓ = v°' (5) 

Separating the variables there is 
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Fig. 12. Geometry of eletron-positive ion scattering. 

de = 
PoVo 

which can be integrated giving 

iPoVo/a) 

2 Ze2 1/2 
dr 

1 ± cos θ 
(6) 
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where 

Ze2 

m p„v0 

A = Λ / t v + a2. 

Equat ion (6) is an expression for a hyperbol ic or eliptic trajectory. 

In the case of charge e starting its motion from infinity the motion 

can be only hyperbolic. Considering the event as a collision of two 

particles it is customary to talk of strong and weak collisions. In order 

tha t a collision be considered strong it is necessary tha t t h e total devia

tion of v0 is equal or larger than 90°, i.e., π — θ0 <Ü τ / 4 . The angle 

θ0 = τ / 4 corresponds to the position r = oo and can be realized only 

if in equation (6) the denominator is equal to zero. Thus the criterion 

far strong collisions becomes 

A IT 

1 cos = 0 

mpoV0- = i ( 7 ) 

Ze
2 

All particles, having velocity νΌ, whose collision parameter is smaller 
Ze2 

than p0 = will effect strong collisions. The cross-section repre-
m i v 

sented by the field of Ze corresponding to such strong collisions is, 
therefore, 

-Z 2 e 4 

σ0 = τ ρ 0
2 — ——— . (8) 

2.2. Motion in a Magnetostatic Field 

In a homogeneous magnetostatic field Β a charged part icle moves 
on a helical trajectory (fig. 13) with an angular frequency 

«.c = — B. (9) 

The projection of the trajectory on a plane perpendicular to Β is a 
circle whose radius 

m(vhB) 
Ρ = — (10) 

^ B 2 

c 

is called the radius of gyration. 
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helical 
I raj e e Tory 

Fig. 13. Trajectory of a charged particle in 
a uniform magnetostatic field. 

For non-relativistic electrons whose kinetic energy is W 

3.37 Λ/Ψ 
<oc = 1.76 Χ ΙΟ7 Β (rad/sec, gauss), ρ = 

Β 
(cm, eV, gauss). 

For nuclei of atomic mass number A and charge Ζ 

u,c = 0.957 X 104 — Β (rad/sec, gauss), 
A 

145v^ yw 
ρ = (cm, e v , gauss). Ζ Β 

The motion of the particle parallel to the magnetic field vector Β 
is independent of the magnetic field. 

Let us now consider the effect of magnetic field non-uniformities 
on t h e motion of a charged particle. 

In order to appreciate clearly the effects of such non-uniformities let 
us first consider a simple example, treated by means of a simplified 
analysis. 

Let us have a magnetic field B: which only increases with increasing 
S B - S B - S B - , 

χ (fig. 14). Thus = = 0, > 0. A particle whose 
δ y δ ζ S .r 

velocity vector lies in the xy plane will move on an orbit whose mean 
radius of curvature below the y axis will be larger by Ar than that 
corresponding to the orbit above the y axis. After one complete turn, 

2 τ . . 
i.e. after a time τ the particle will advance in the -y direction 

01 

(fig. 14) by 2 ΔΓ . AS 
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r + ΔΓ = 

we get 2 Δ Γ 

Β f ΔΒ 
Ι 1 B 

2 mv _. 
ΔΒ 

Β2 
(11) 

y 

5 - 4 Β 

Fig. 14. Motion of a charged particle in 
a non-uniform magnetic field. 

where ΔΒ = α · r 
δ Β 
δ ι 

and α is a factor of the order of 1 which can 

be evaluated averaging Β over the orbit and later will be shown to be 

equal to . 

The part icle drifts in the -y direction with a "drift-speed' 

2 Δ Γ 1 την2 

V = 
2 e 

grad Β (12) 
Β 2 
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Let us now derive a general formula for the drift motion of a charged 

particle in a nonuniform field. 

If the nonuniformities cause only small perturbat ions in the angular 

speed and radius of gyration during one rotation, it is more convenient 

to follow the curve traced by the instantaneous centre of gyration of 

the part icle ra ther than the part icle itself. We shall now derive the 

equat ion of motion of the centre of gyration. 

At a point P ( r ) the part icle possesses a velocity ν (fig. 15). The 

corresponding centre of gyration is at G(r \ p) where 

c ΡΛΒ 

e Β2 (13) 

Fig. 15. The drift of the centre of gyration in a 
nonuniform magnetostatic field. 

The force acting on the part icle is 

F = — ν Λ Β 
c 

and the change in the momentum during a t ime d i is 

dp = F dt. 

The radius vector of gyration changes during the same time into 

'-H 
ρ Λ Β dpAB ρ Λ d ß ΡΛΒ 

Β2 + Β2 + Β2 
Β ' 

dB 

(14) 

(15) 

(16) 
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The translation of the centre of gyration is, therefore, 

GG' = d | = d r + p' — ρ 

dp Α Β ρ Λ d ß D A ß 

+ — 2 d ß *> (17) d | = 

where 

and 

dp Λ Β 

e 
dr + — 

e 

i
 e 

VA 
K
 C 

Β- Β- Β
3 

d r = ν dt 

Λ Β 
e e ß ( » . ß ) 

d i = « dt Η dt. 
Β

2
 Β

2 c c Β
2 

The equation for άξ becomes 

B(vB) c ( PA dB PAB ) 
di = — -dt+— I— 2 - dB} (18) 

ß 2 e \ Β2 Β 3 j 

from which the velocity of the centre of gyration, often called the 

drift velocity, is 

c f ρ AV grad · Β ρ Α Β ) 
η=ξ = υ,+— I  · &

g 2 2 —  —  ν  grad Β j . (18a) 

If the character of the particle motion is determined mainly by 

the magnetic field Β and the influence of v grad · ß , grad ß and dB/dT 

can be treated as small per turbat ions one may expand the velocity 

vector ν into th ree parts 

V = Vc + »|| + «c (19) 

where vc is the velocity vector of the cyclotron motion which rotates 

in a plane σ,. perpendicular to Β with the angular speed ω0 and v¡¡ 

is the component parallel to Β and uc is t he component of u in oc. 

According to our assumption uc is small compared with vc and vu 

(fig. 16). 

The vectors v grad · ß and grad Β can be similarly considered as 

having one component parallel to Β and a second one lying in the ac 

plane. Thus, for example, 

grad Β = grad„ β + gradc Β. (20) 

Let us now introduce in the plane σ0 orthogonal cartesian coordinates 

x, y, with unit vectors i, j . The coordinate axis ζ and the corresponding 

unit vector k are then parallel to B. Let us also wri te * vc = g · vc. 

* g = igx + j g „ , g ì = S in Uei , g„ = COS (Oct. 
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Fig. 16. The component vectors representing ρ and v. 

We have 

(v g r a d · ß ) c = i 
cBT dBj cBz 

- ς — 8'υ* + —r- 8uVc + —— dx oy dz 

'dBv 3ß„ 
+ J ~r~ 8*vc +  r — gvVc + 

ex 3y dz 

dBy \ 

(v g r a d ß)ι. k —— g,v, 
\ ex 

dB. dB. ι 
+  r — gyVc + —r— ν 

3y dz 

Introducing eqs. (20), (21a, b) into eq. (18a) we have 

Be 
u,. = (g Ak)vc 

mc 

+ kv¡ A 

+ j 

— 2vc(g A fe) 

(«II —*Ίι) = Vc8* 

'dB. dB. dB, 
grVc + —— guVc + -

k dx 

(dBr 

<y dz 

dBx dBx 
g*vc + —— guvc + —— W|| 

dx oy dz 

>. ox 

dB,, 
gxVc + — — gyVc + 

?y 

dBy 
dz ·)] 

dB. dB. dB. ι 
Vogx — l· Vcgy — h V| 

dx 9y 3z J 

B2 δΒ,, 3B„ aßu «*t>0 + —— gyVc + —— V,| 

k 3x 3y 3z 

f3ßx 
Vogt, l  ^  g x f . 

3Βχ 3ßx 
+  r — gVvc + —— V 

3y 3z 

(21a) 

(21b) 

(22a) 

(22b) 
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Let us neglect purely oscillatory terms in eqs. (22a, b) and consider 

only uc and un. The oscillatory terms occur in connection with co

efficients such as g„ gy, gxgy. The mean value of terms gx
2, gu

2 is y2. 

We also note tha t the vector 

g A fe = — igy + jgx

Put t ing eB/mc = <uc we get for u t and u¡, 

( 1 3B_~ 3Βχ ) 

-
}
U-¿x-

v
°

2+
i^

v
n

{23a) 

R  ρ , 1 2 oBy 1 ., 3B, (23b) 
ifwc.U,| = #ω0ν,| + — vc — — Vc — . 

2 3Λ; 2 3y 

Assuming that volume currents can be neglected, the second Maxwell 

equation gives 

curl ß = 0 

and therefore, 

3B„ 3B, oBu dB: dBx dB: 

dx 3y 3z 3y 3z dx 

Substituting these relationships into eqs. (23a, b) we obtain 

β Λ grad Β. 

ß2<!),. 

and 

(i/2iV + «,") (24a) 

(24b) 

We shall use these formulae to investigate the motion of charged 

particles in three different magnetic field configurations (in the follow

ing sections S will be denoted simply by u ) . 

2.2.1. MOTION OF CHARGED PARTICLES IN A TOROIDAL MAGNETIC FIELD 

Let us consider a magnetic field which in cylindrical coordinates 

has only a component Βφ and which is uniform in the ψ and zdirection 

(fig. 17). In the absence of volume currents it follows from the 

2nd Maxwell equation tha t 

^ = _ ^ . ( 2 5 ) 

3r r 
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In this coordinate system the velocity of the particle can be represented 

as 

Vc = Vr + V._ V¡¡ = νφ. 

Fig. 17. The geometry of a toroidal 
magnetostatic field (r0 and ψ„ are unit vectors). 

The drift velocity of the centre of gyration of a charged particle 

follows from eqs. (24a, b ) . Thus 

1 
lie = — ψο A r0 {lAv^ + υψ' (26a) 

B„ 

Un = νΨ. (26b) 

As eq. (26a) involves the value of the charge e carried bv the particle, 

it follows that the ti,, drift for negatively charged particles is in a 

direction opposite to the drift of positively charged particles. 

I t is interesting to note that the component of the drift associated 

with the speed vc arises from the radial nonuniformity of B T , whereas 

the component associated with v,F derives from the centrifugal force 

τηνΨ
2/τ of the circulating particle. This lat ter component can be also 

calculated directly from a forcebalance equation 

r0 
= — U Α Β 

c 
which gives 

rB„ 
(cm/sec) 

(27) 

27a) 

A beam of particles injected tangentially into the field B , will spiral 

around the axis, whilst individual particles will also spiral on a tube 
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of flux (fig. 18). The trajectory of individual particles is, therefore» 
a double helix. T h e problem of how the injection speed νψ0 is divided 
into vc and νφ of spiral is outside the scope of this chapter . 

Fig. 13. Drift of particles in a toroidal magnetostatic field. 

Spiral-staircase electron beams have found an interesting application 
in plasma physics as a means for an efficient ionization of low density 
gas in a toroidal chamber iref. 2) . 

2.2.2. MOTION OF CHARGED PARTICLES IN THE FIELD OF A 
MAGNETIC LENS 

The motion of charged particles in the field of a simple cylindrical 
magnetic lens can be considered from two extreme points of view. 
One is that of electron optics, in which it is usually assumed tha t the 
lens changes the momentum of the particles only by a small amount . 
The other view is found in plasma physics, where one usually assumes 
tha t the lens is so strong that the Larmor radius of particles is much 
smaller than the dimensions of the lens and tha t most of the particles 
to be studied have their velocities oriented at random at least in two 
dimensions. Somewhere between these extremes is the subject of 
cosmic ray interactions with the magnetic fields of cosmic clouds, of 
stars and of planets (ref. 3). 
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In this section we shall deal with the motion for which 

την 
ρ = Ξ < d 

LB 
c 

where d is some characteristic dimension of the lens. The description 

of the motion of such a particle can be based on the driftvelocity 

formulae. However, in order to apply these equations, information is 

required on t>c and v9. This can be derived from the invariance of 

the total kinetic energy of the particle, which is 

W = y2m(vS + vf) = const. (28) 

and from the adiabatic invariance of the magnetic moment μ. 

Magnetic moment of a gyrating charged particle is 

μ = p" · i 

e vc mvc · c 
where i is the circulating current. As i = 

c 

we have 

2 V eß 

e V, mvc
2 

* = V2PVe =  ~ . (29) 
c Β 

wc 
I t is evident tha t μ cx where Wv is the energy of the cyclotronic 

ω,. 

motion. I t has been shown by Ehrenfest that the ratio of kinetic energy 

W of an oscillator and its frequency ω is an adiabatic invariant (ref. 4) 

and therefore, in the case of a gyrating particle 

μ = invariant. 

The magnetic moment μ is only approximately invariant and its 

variation Αμ is critically dependent on the ratio 

vJL TC 

(30) 
eB0/2irreic τ, 

where τ,, is the period of the cyclotron motion and rt is the transit time 

of the particle through a nonuniformity whose dimension is L. I t 

can be shown) tha t 

Δμ ( TC 

■ = exp a (31) 

and α is a factor depending on the relative ampli tude AB/B0 of the 

nonuniformity (ref. 5). 
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The consequence of assuming that the magnetic moment is constant 
is that , apart from drift motion of the centre of gyration, a charged 
particle is bound to a surface of a tube of constant flux. This follows 
from eqs. (29) and (10). Thus 

Y2 m2vc
2 Β 

~ΊΓ2 m = const. or p2B = const. 

and as ττρ2Β — φ where φ is the magnetic flux, it follows tha t the 
orbit of the particle l inks a constant amount of magnetic flux. 

Let us now consider the motion of a charged part icle on a converging 
tube of flux of rotational symmetry (fig. 19). Here eq. (24a) for uc 

gives it,. = 0 owing to B A grad Β. = 0. 

liõjecioiy 

¿L 
tube of flux 

r-ΞΒ-

Fig. 19. Motion of a particle on a converging tube of flux. 

The equation for uu does not contain any information as u( = νΨ 

I t is, therefore, necessary to find an equation for V\\. This is 

di 
(32) 

where FB is a force on the particle in the direction of the vector B. 

This force is the component of the Lorentz force in this direction. Thus 

F,= VAB 

= — vcBr. 
c 

(33) 

The component Br is related to B7 through div Β = 0. Thus 
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3(rB r) 3B
r 

dr dz 

Assuming that for r <~> p, 3Bz/3z is independent of r one obtains on 

integrating this equation with respect to r : 

R Y dB* 

Substituting this into eq. (33) yields 

„ 1 e 3B, 
t\\ = — x vop—— 

2 c 3z 

lÁmvJ dB. 
F, =  ^= — (33a) 

B cz 

or expressed in a vector form 

F„ = — μ ■ grad ß . (33b) 

The equation of motion in the Bdirection becomes 

μ 

v,¡ = · grad B:. (34) 
rei 

This equation shows that charged particles, incident on a region of 

strong magnetic field experience deceleration in the direction of Β 

and in some cases are reflected. However, as their total kinetic energy 

remains constant, it follows that as i\ decreases t;c increases and vice 

versa. This can be expressed mathematical ly using eq. (28) as 

2W 
vf. (35) 

τη 

The condition of reflection is that vu = 0. When this is so i>c reaches a 

maximum vcU 

rw 
ναι = \ ■ · (36) 

V ire 
Assuming the magnetic moment to be invariant it follows that 

y2 reitei,2 W 

" = ^ 7 - = T^-
 (37) 

I t is clear that the smaller the magnetic moment, for a given total 

energy W, the further will the charged particle penetrate along the 

converging flux tube *. 

* In this connection one defines J = ƒ mvtdl, which can be shown to be inva
riant in some situations (longitudinal invariant, ref. 6). 
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A more general problem is represented by the motion of a charged 

part icle in a magnetostatic field whose flux tubes form a converging 

and bent bundle (fig. 20). This is the configuration off axis of a cylin

drical lens. 

■Zg 

Fig. 20. Drift motion in the field of a magnetic mirror. 

If ß varies only slowly with respect to ζ one has B A grad B z 

Β · dB./dr and eqs. (24a), (34) become 

¿, = y2v
2B^ 

dB; 

dz 

(38) 

(39) 

The reflection condition remains approximately the same as formulated 

in eq. (37). However, the particle does not re turn after the reflection 

along the same tube of flux bu t precesses in the todirection during the 

reflection process. 

Let us study this precession in the case of a magnetic mir ror (fig. 21). 

This is a par t icular case of a lens geometry in which 

ß = B 0 for ζ < α, ß = Bi for ζ > b 

where Βχ > B 0 and b > α. 

Fig. 21. Fluxtube in a magnetic mirror. 
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It follows from eq. (37) that particles for which 

W 
μ> Bi 

will be reflected. Let us divide this inequality by (vf)0 where 
(i)|i)o = f« f or z < a. Then 

I v\\ Jo { νύ
2 J, 

B« Bi 

+ 1 

Putting 

( 
= tan ι 

where θ is the angle between the vector f 0
 a n d the vector B0, one can 

write the condition for reflection as 

sin2 θ > 
Bu 
Β, 

(40) 

We shall follow a typical particle which satisfies this inequality. The 
angle of precession φ of such a particle will be 

r 

9 = 2 \J*- dt 
i> 

(41) 

This can be written as 

= 2 
f dB.Jdr ( 2W \ dz 
\—rB—\-B " J ~ · 

From eq. (39) it follows that 

' W i 
μ dB; 
rei dt 

2 — (Β. — Bo) + ν,,ο21 " . m J 

Also near the z-axis (i.e., for r < b — α) one can expand B- as 

Β:(r, ζ) gg ΒΛ - y¿r2B"A 

(42) 
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where 

β Λ = Β Λ (0, ζ) , Β " Λ = ΒΛ. 

Using this expression and eq. (42) one obtains 

„ Γ 2ÍF 
Β"A I 

c 

e 
? s -

B
dz 

B 2 — (B; — B0) + %>2 

rei 

1/2 
(43) 

which can be easily evaluated for a specific field geometry. I t can be 

appreciated tha t owing to Β" Λ changing sign in the interval (a, b) 

the sign of ψ may be ei ther positive or negative. 

The field of a magnetic dipole can he also regarded as a magnetic 

lens of the type discussed in this section. However, as the field strength 

of a dipole depends on the distance r from the centre of the dipole 

as 1/r3, the motion of a charged particle in this field cannot he always 

correctly represented by the drift motion of its centre of gyration. 

In particular, the theorem of conservation of the magnetic moment μ 

of the particle breaks down when the radius of gyration ρ becomes 

larger than the distance r. 

A very elegant experiment on part icle trajectories in mirrorfields 

has been based on the product ion of positrons and the tracking of 

their excursions in the magnetic field (ref. 7). 

2.2.3. MOTION OF CHARGED PARTICLES IN A HELICAL MAGNETIC FIELD 

Let us consider the field of a cylindrical lens, to which a Βφ compo

nent has been added. The flux tubes of such a field possess a certain 

twist around the axis of symmetry z. This twist can be specified by the 

angle φ beUveen the osculating plane of the field line and the axis ζ 

(fig. 22). 

I t is evident that as the angle ψ increases, the angle ψ' between the 

axis ζ and the driftvelocity vector u increases also. In order tha t the 

progress of the particle in the zdirection be arrested one must have 

ψ' = ψ tan 
( Uc

 > 

I "II . 
= te 

tan (y2TT — ψ). (44) 

From this it follows tha t the drift discussed on p. 38 inherent in 

purely toroidal fields can be compensated for or even reversed by the 

addition of a Br, B field of a cylindrical lens. As in most cases of 
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lube of flux 

k6? 

Fig. 22. Drift motion in a helical magnetostatic field. 

interest uc/«n <̂  1 it follows from eq. (44) tha t 1/27Γ — φ <^ l/2ir and, 

therefore, the value of uc can be obtained directly from eq. (26a). 

The value of the B. field which will compensate the axial component 

of this drift is 

Bz = Βφ COtg ψ = Βφ 
uc (45) 

and using eqs. (26a, b) one obtains 

Bz = 
1 Í % V<* Ì (A.K 1 

— — · + v,.\ . (45a) 
r \ vr J 

I t is clear tha t this formula gives the correct field as vc —» 0. The 

particle is then constrained to a circular trajectory of radius 

Ρ = 
mv« 

LB, 

A similar mechanism is used for t h e confinement of hot plasma in a 

toroidal magnetic field (ref. 8) ; see also chapter 9 of this book. 

2.2.4. SUPERIMPOSED TOROIDAL MAGNETIC FIELD AND BETATRON 

MAGNETIC FIELD 

As an example of the way in which formula (24a) may be applied let 

us study the motion of a part icle in a betatrontype field with a 

superimposed toroidal magnetic field (fig. 23). I n this case we can 

compare the results of an analysis based on conventional equations 

of motion and that using the concept of driftmotion. 
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The equations of mot ion of a charged part icle in this helical field are 

vJ e — e . 

VrfB; = Zß , 

. . e e . 
ζ Η νφΒτ = ΓΒΨ. 

(46) 

(47) 

\a=j3¿+4r 

οάρ 

->-r 

Fig. 23. Geometry of a betatron field. 

Let us expand r, ß  , B r and Βφ about their respective values at 

r — r0, ζ = 0. Thus 

χ = r— r0 

3ß z 3B 
Bz = B 0 2 + χ —— + ζ 

cx dz 

dBr 3 ß r 

Br = X z + ζ 
cx 

Βφ — Β0φ + χ 

dz 

3Β„ 

Ίχ 
As the betatron field is produced by external currents only 

curl ß = 0, d i v ß = 0 

and we get 

3B* c,Br dBz 1 3( rB r ) 

32 cz CT 

(48a) 

(48b) 

(48c) 

As B r = 0 for ζ = 0 it follows from the last of these and from (48b) 

tha t 
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3B, 
dx 

= 0, 
dBT 

dx 
= 0. 

Eqs. (48 a, b , c) can, therefore, be written 

B; = B0; + X cjh 
~dx~ 

B. 
dB; 

Ίϊχ-

ff φ — Ο Uff Χ 
Β Ol 

Γη 

(49a) 

(49b) 

(49c) 

The value B„; can be taken to be the field corresponding to the steady 
state solution of eqs. (46) and (47) for which the centrifugal force of the 
rotating particle is exactly balanced by the magnetic force. Thus 

— V,,B0;. (50) 

With the help of eqs. (49a, b, c) and (50) the equations of motion can 
be written : 

x + 
dB; 
~dx~ 

zB„ 
mc (K) 

e dB; e 
ζ Η v„ —ζ— ζ = — — χΒ mc dx 

Let us define the parameters 

-H;) 
(51) 

(52) 

3B-
r 

3r 
B«, 

- ωη , 

x=0 

eBor 

(53) 
on: 

eß,'~ (54a. 
mc mc 

Neglecting all nonlinear terms in χ and z, the equations (51) and (52) 

become 

.r + o>o2(l ω 0Ζ 

+ <i>o2rez ωνΧ. 

(55) 

(56) 

These equations are of the same form as those for two coupled harmonic 

oscillators and have two solutions of the form 

χ = | e ' a = nPJO" Tje'" (57a,b) 
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Substituting these into eqs. (55) and (56) one obtains the characteristic 
equations : 

ξ[ ω2 + ( 1 re)<i)0
2] = J ω ωνη (58) 

η[ ω2 + 1ω0
2] = j ωω^. (59) 

The determinant of these two homogeneous equations must be zero, 
which gives 

V. ω0 J 2 

Let us plot the function 

1 + — -
ωο" 

V. ωο J 

4re(l—re) (60) 

for par t icular values of re. In fig. 24 ω/ω0 is plotted for re = 1/2 and 
re = 1/3. For ω<. = 0 the two proper frequencies ωι0 and ω2ο represent 

Fig. 24. The two betatron frequencies for a betatron with a 
super-imposed B$ field. 
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two independent betat ron oscillations of the particle, one in the radial 

and the other in the axial direction. 

In the presence of the toroidal field these two oscillations are coupled 

and one must distinguish four different ampli tudes 

£1171 and ξ2η2. 

From eq. (59) one obtains 

& «ωο — ω* 
where k = 1, 2. (61) 

For a toroidal field much stronger than the beta t ron field, i.e., for 

ω„ ^> ωο 

one has from eq. (60) 

ωι 

ωο 

ü>2 ωο 

ωο 

ω0 Γ 1 ( ω0 "\
 2

 1 

ωο L 2 ^ iúc J J 

Substituting these into eq. (61) one has 

^ - = - i i l - ( n + l/2)4-l 
171 L ωε J 

and 

■m = -
j
V i ^ 1 — ( 1 —re) (re — 1 / 2 ) 

(62a) 

(62b) 

(63a) 

(63b) 

The movement is, therefore, composed of two elementary motions 

(fig. 25), one being nearly a cyclotron motion with angular frequency 

Fig. 25. Drift in a meridian plane of a betatron 
with superimposed toroidal magnetostatic field. 
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ai £Ξ ω0, the other a slow elliptic motion whose angular frequency is 

ω2 A V " ( l — n) (64) 

and for which the ratio of the major axis to the minor axis of the 

ellipse is 

772 V I — re 

In order to t reat the case of Βφ ^> B0; by means of driftvelocity 

formula (24a) we must define the force F and grad Β. In a betat ron 

field this is the restoring force tha t the part icle of speed νφ experiences. 

This force has two components, which were already formulated in 

eqs. (51) and (52) 

I?
 e dB

'
 e

 Bo; 

t r = — νφ ——■ χ — — νφ x (66a) 
c dx c r0 

e 3B* 
(66b) dx 

In the expression for B A grad ß we shall neglect contributions 

of second order in B  and B r . Substi tuting into formula (24a) and 

assuming tha t uc <̂  vt we get 

R_ ii ( mil \ 

(67) 

dB; 
L
* dx 

X 

Β φ 

C dB; 

ux — 
e οχ 

mc v„
2 

e Γ0ΒΨ 

νφ 

Β φ 

[ 

ν-

( mvv 

1
2 +

 B. 
3 B;

2 

2 B„
2 

mc 
ι 

i 
J 
* i 
^ ) 

dB. νφ
2 

e dx B,
2 

Remembering tha t B,r >̂ B 0 z and using eq. (53) we obtain 

B0; ζ 

(68) 

ß 0</,
 r

0 

B0z χ 

νφ (69) 

Z = U; = (η — \)νφ. (70) 

These are the equations of motion of the centre of gyration in the 

meridian plane of the betatron. Differentiating eq. (69) and substitut

ing i from eq. (70) we get 

Í IÜO' — * 
Ι Β0φ J r0

2 

* = re(rel)  ^  Í  x. (71) 
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The solution is 

χ = |ei"" . (72a) 

Similarly we find 

ζ = ηβ>ω'. (72b) 

The corresponding characteristic equation gives 

= V"( l — n) (73) 

which is the same as eq. (64). 

The ratio ξ/η follows from either eq. (69) or eq. (70). 

i-¡Vr-
τ; V I — re 

(74) 

which agrees with eq. (65). 

The comparison of the two analyses shows that the driftvelocity 

description is less detailed than the full analysis of the equations of 

mot ion; however, it is generally shorter and often easier to interpret 

than the latter. 

2.3. Motion of Charged Particles in Crossed Electric and 

Magnetic Fields 

In a plasma confined by a magnetic field the force of the electric 

field eE on an electron is small compared with the Lorentz force 

(e/c)v A B, even though the velocity v is often a small fraction of c. 

This is not always t rue for the positive ions. 

In this section we shall study the motion of charged particles in 

combined electric and magnetic field, restricting our attention to the 

situation mentioned above, i.e., making the assumption that the effect 

of the electric field on the particles can be regarded as a small pertur

bation of their cyclotron motion. This leads to a description using the 

concept of a drift velocity and therefore, it will be more often appli

cable to electrons in a plasma ra ther than to positive ions. 

We shall derive a formula for the radius of gyration of a particle 

in an electric and magnetic field. The force balance in the σ plane 

gives (fig. 26) 

rei + | £ i A v±\ = — v±B (75) 
ρ VL c 

when recalling the assumption made above 
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C ρ Λ ß 

ΊΓ Β 2 1 + c 
| £ ι Λ β ι | 

V i
2 B 

A differential translation of the centre of gyration is given by 

d | = p' — ρ + dr. 

Fig. 26. Motion in crossed electric and magnetic fields. 

(76; 

Let us assume that the magnetic field is uniform. Using a treatment 
similar to that on page 34 we have 

Ρ = — e 
dp Α Β ρ Α Β 

Β2 + Β' 
■ d | £ 1 Λ Τ ± | 

2c· 
\EL A vx\dvx 

From 

we get 

dp 
( e Λ 

= eE + — VAB\ dt 

dp Α Β 

Β2 

e , e B{vB) E AB 
— ν dt + dt + e 
c c Β2 Β2 dt. 

Substituting these into eq. (77) one gets 

reic ν Α Β Γ Ι 
u = ί = v« + eB2 ΘΕΑΒ + 

ic ν Α Β Γ 1 
Bfi L vi dt 

\Ελ AVi\ 

2 i r ι dVí 

- í7 | £ i A r i | ~dT 

(77) 

(78) 
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Some of the terms in the square brackets are of oscillatory nature, the 

rest can be neglected in comparison with the Ε A Β term *. Thus 

(79», 
B 2 

"n = «,. (79b) 

This formula does not contain the charge e of the part icle and therefore, 

the drift velocity in crossed electric and magnetic fields does not 

depend on the sign of the charge. In uniform electric fields the 

eq. (79a) is valid for any ratio of E and B. 

The expression (79a) can be generalized for any force field F by 

substituting 

E = L. 
e 

The general result of eq. (79a) is tha t the drift velocity vector is per

pendicular to both the force field F and the magnetic field B. 

As our analyses of the effect of grad Β in the previous section and 

that of the electric field E in this section were both developed to the 

first order in the magnitude of these perturbat ions one can super

impose the expressions (24a) and (79a) and get a general formula for 

MC: 

c FAB Β Λ grad ß 
u , = — + ( i / 2 t v + Vf) (80) 

e Β e „ 
Β' 

mc 

or, using the expressions for the magnetic moment μ and the total 

kinetic energy W one has 

e l f ( 2W \ ) 
«c = — — J F A B + — μ B A g r a d B J . (80a) 

The formula (79a) for the Ε A Β drift has been derived on the assump

tion of small perturbat ions to the cyclotron motion. I t can be shown 

that for this type of drift such an assumption is not necessary and we 

shall derive the above mentioned formula directly from full equations 

of motion. Let us assume that E = Ey, Β = Β and that these fields 

EAB 
* The second term, though usualy small compared to c ;—, is of importance 

B' 
mc2 

in evaluating the transient current eu¡n in a plasma of density n. Thus Ui = Ei 

(see p. 58). 
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are uniform. The mot ion of a charged part icle is then described 

by 

mx = — y ß (81a) 
c 

my = eE —  — χ B (81b) 
c 

Integrat ing the first and substituting into the second we get 

e 
y — E — ω0

2 y — ω0 Xo 
rei 

whose solution is 

y = A sin (<i)c t + φ) — A sin φ (82) 

which gives for the χ and y 

E 
χ = ac A sin (ω0 t + ψ) + c — 

B 

y = ω0 A cos (<ac t + ψ) 

The speed of the cyclotron motion is evidently 

ν = (χ2 + y2yi2 = ωοΑ (83) 

whereas a drift appears in the «motion whose speed is 

E 
u = c — 

B 

identical with expression in eq. (79a). 

Comparing ν and u it is possible to distinguish three types of motion 

a) ν ^> u — this is the case corresponding to the perturbat ional 

analysis worked out on pp . 53 and 54 (fig. 27a). 

b) ν = u — the trajectory is the classical cycloid (fig. 27b). 

c) ν <̂  u — the trajectory corresponds to an epicycloid, generated 

by a circular motion of small ampl i tude superimposed on fast 

l inear translation (fig. 27c). 

In conclusion let us mention the case in which E > Β. The simple 

formula (79a) gives u > c. This paradox is easily resolved writing the 

original equations of motion (eqs. (81a, b) ) in a relativistic form. I t can 

be shown then tha t it < c, consequently at no t ime can the Lorentz force 
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Fig. 27. Motion of a charged particle in crossed 
electric and magnetic fields. 

— xB ( < eß) balance the electric force eE and the orbit is an open 
c 

one, i.e., the particle deviates steadily from the «axis. 

2.3.1. ELECTRIC VORTEX FIELD AND MAGNETIC LENS FIELD 

As another application of eq. (79a) let us consider a magnetic field 

changing in time. Associated with such a magnetic field will be an 

electric vortex field given by the first of Maxwell's equations 

curl E = Β. 
c 
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If the magnetic field is homogeneous within a radius R> r one 

finds 

E = Εφ =  | i  r. (84) 
¿c 

Let us assume tha t the change of Β is slow compared to the cyclotron 

motion, i.e., tha t 

Βτ < Β 

2ir , , 
where τ = , and tha t ρ <ξ. r. 

<!>C 

The motion in crossed fields E,fBz consists then of two component 

motions (fig. 28). 

Fig. 28. Drift in a rising cylindrical magnetic field. 

(1) A radial drift with the velocity ur obtained by substi tuting eq. (84) 

into eq. (79a) 

r Β 
ur = r = (cm/sec) (85) 

2 ß 

giving after integration 

r2 Bo 
=  = r · (85a) 

ro2 ß 

(2) A cyclotron spiral motion in which the particle gains energy from 

the field E. The energy gain per revolution is 

AW = e Φ E dl 
ι 

= e f curl E dS 
i 

= TT ρ D 

C 

AW = ^L(y2mv^)L. (86) 
e ¡S 
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The power absorbed by the particle from the E field is, therefore, 

AW 
W = . (86a> 

τ 

Thus W = WL(B/B) where WL ·= y2mvL
2. (87) 

Integrat ing we have 

Wy = W0L - — . (87a) 
B« 

Substituting for B/B0 from eq. (85a) we have 

W j t f 
W0 ~~~~ r2 

(88) 

This ratio of initial energy to final energy is the same as would be 
achieved by an adiabatic compression of a volume 7rr0

2 to a final volume 
π Γ containing particles possessing only two degrees of freedom, i.e. 
r and <p. 

Our analysis has been based so far on the assumption of the invariance 
of the magnetic moment . In case tha t the magnetic field rises very 
rapidly this assumption may not be applicable and full equations of 
motion must be used (ref. 9). 

2.4. Motion in Crossed R.F. Electric Field and a 
Magnetostatic Field 

We shall study the motion of a charged particle in an alternating 
electric and a magnetostatic field. Let the angular frequency of the 
r.f. field be ω, and the cyclotron frequency <DC. Four different cases 
will be studied according to the value of ω/ωε. 

(1) <oc <^ ω 

In this case the r.f. field appears to be almost a static one and the 
drift velocity nc derived in section 2.3. may be used to describe the 
motion. Thus 

E0 u = c —— sin (ωί + φ) (89) 

and the drift velocity oscillates * with the angular frequency ω (fig. 29). 

* Apart from this motion there exists a second order effect. The time variable E 
field causes a drift in the direction of E (see footnote p. 54). This u\\E generates 
polarihation currents in a plasma in a magnetic field. 
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(2) ω > ωα 

The magnetic field moves the line of motion slowly away from the 

direction of E (fig. 30). T h e angle of deflection after the first half 

cycle is 

Ψι = (90) 

M CO 

Vê 

Fig. 29. Motion in crossed alter
nating electric field and a magneto
static field for <oc >̂ ω. 

Fig. 30. Motion in an 
alternating electric field 
and a magnetostatic field 
for ω >̂ ωο. 

When ψ ~ 1/2π the part icle ceases to interact with the field E. T h e 

required number of cycles is approximately 

te 

h 
(90a) 

( 3 ) ω — <üc 

This is the case of cyclotron resonance, which is an impor tan t type 

of motion and therefore, it will be described in some detail. 

Let us first consider a charged part icle in a homogeneous magnetic 

field Β and also in a homogeneous al ternating electric field (fig. 31) 

where 

E = E0 COS ωί 

E0 L Β and ω = Β. 

We shall investigate the dynamics of this charged particle, starting 
with the corresponding equations of motion : 
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.. e e . 
χ = — E0 cos ωί + By 

rei crei 

y = — Bx. 
m 

(91a) 

(91b) 

ΘΟ 

¡ 

1 

£ 

ι 

,\P 
Γγ 

% * j c 

Fig. 31. Diagram of fields and particle position and speed. 

Let the initial conditions be x0 = 0 and x0 = v0 

y o = r0 and y0 = 0 

where rn = υη/ω. 

Integrating eqs. (91a) and (91b) and using the initial conditions we 

have 

1 e _ . 
—■ — E0 sin ωί + ωy = χ 
ω ire 

— ωχ = y. 

We eliminate χ from (92a) and (92b), and get 

(92a) 

(92b) 

y + <o2y = E0 sin ωί, 
rei 

(93) 

the solution of which is 

t'o 
y = 

Similarly 

l e E0 , . 
cos (uit + φο) — (sin ωί — ωί cos ωί). (94a) 

2 rei ω2 

^ο 1 e E 0 χ = sin (ωί + <¿o) + ί sin ωί. (94b) 
ω 2 rei ω 
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The kinetic energy W of the part icle is 

W = l/2rei ( i 2 + y2) . (95) 

Differentiating (94a) and (94b) and substituting into (95) we have, 
for <po = 0 : 

l e 2 l e 2 E0
2 

W = y2mv0
2 + y2E0evot -\ E0

2t2 -\ sin2 ωί 
8 rei 8 rei ω2 

+ V4l'o —— s m 2ωί Η — t sin 2ωί. (96) 
ω 8 ire ω 

The first term represents the initial kinetic energy, the second 
increases l inearly with t ime f, the th i rd increases as the square of i. 
the rest are oscillatory terms of li t t le importance. 

Let us now find the t ime ii for which the 3rd term in eq. (96) is 
equal to the 2nd term. This is 

4reiti0 

eEo 

In other words, it is the t ime at which the impulse eE0ti given to the 
particle is 4 times the init ial momentum mv0. The t ime ii is short and 
one may consider that the 3rd term determines t h e absorption of 
r.f. energy by the particle. 

In eq. (96) we have considered only the particle for which <p0 = 0. 
The effect of φ» y= 0 may be predicted from the expressions for χ 
and y (eqs. (94a) and (94b). As f increases the 1st term in those ex
pressions, which alone incorporates φη, becomes negligible compared 
with the others. This means that the charges for which φ0^0 are 
eventually pulled into phase with the applied electric field and the i r 
energy W increases approximately according to eq. (96). 

(4) ω ~ <ÜC 

In this case the particle is accelerated up to a maximum kinetic 
energy, after which it begins to lose energy to t h e r.f. field. This 
process of energy exchange is periodic, the frequency being the beat 
frequency 

ƒ = ^ = 2 - . (97) 
¿TT 

The maximum momentum p m a x gained from the r.f. field is 

1 
P™* = eE — (98) 



62 MOTION OF ELECTRONS AND IONS 

where E is the average field acting on the part icle during the t ime 

1/(2/); one has 

(98a) 

and 

Pmax 

The maximum energy is 

w/ (Pmax)
2 

" max — _ 

2ro 

E » y2E0 

= y2* eE0 -

■π
2 

ire 

8 
c 

1 

ω — ων 

Eo γ 

Β 
(99) 

and the maximum radius of gyration is 

Pmax . . eE0 f ω V
1 

= V2*  , 1 
e nuac \ (i)c ) 

Pma, = ^ ^ = ^ = % » V 1 · (100) 

— ß 
C 

2.5. The Movement of a Charged Particle in the Field 

of an Electromagnetic Wave 

Let us consider a plane electromagnetic wave in vacuum. The field 

components are 

Ex = E sin (ωί — kz) (101a) 

By = E sin (ωί — kz). (101b) 

The equations of motion of a particle in this field can be writ ten as 

eE 

m 
1 1 sin (ωί — k kz) (102a) 

eE χ 
— sin (ωί — kz). (102b) 

m c 
In vacuum k = 2n/X = ω/c, 
and therefore: 

<"τί ζ di . 
c 

o 

If the interaction of the particle and the field over many cycles should 
not be affected by the term kz one must have 

kz <^ ωί 
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Ζ di <^ ωί 

i.e., 

ζ 

— <1. 
c 

(103) 

Provided this inequali ty is satisfied, the set of eqs. (102a, b) reduces to 

χ = ac sin ωί 

ζ = ax sin ωί 

where 

α = eE/c 

Integrating eq. (104a) one has 

(104a) 

(104b) 

COS ωί + X0 

and substituting into eq. (104b) 

from which 

1 a'-'c 
ζ = sin 2ωί + ax0 sin ωί 

2 ω 

1 arc . ax0 
ζ = sin 2ωί sin ωί + Ζοί· 

8 3 2 
ω ω 

(105) 

Thus, if i 0 = 0, there is no mean drift in any direction, the part icle 
moves on a trajectory resembling a figure of eight (fig. 32). 

I* 

Fig. 32. Motion in the field of an electromagnetic wave. 
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Let us now suppose tha t a charged particle is located in a medium 
which is able to advance the phase of Ex with respect to Hy by 1/2-77·. * 
Eqs. (104a, b) are then writ ten as 

χ — ac sin (ωί + y2rr) (106a) 

ζ = ax sin ωί. (106b) 

For xu = z„ = 0 these equations reduce to 

ζ = arcar"1 sin2 ωί. 

T h e non-oscillating component of i is, therefore, 

1 arc 
z0 = ■— í (cm/sec) . (107) 

2 ω 

This is the maximum speed a part icle with a charge to mass ratio 

e/m can attain in an electromagnetic wave Ex, Hy. 

The average force per part icle is then 

1 e2E2 

F r = mz = . (108) 
2 man 

In the case of a single particle a phase shift ψ is introduced owing 

to the influence of the particle on the field-configuration of the wave. 

T h e simplified equations of motion are 

(109a) 

(109b) 

PE 
whe 

mc 

the phase shift φ between the E and Β vectors represents the reaction 

of the charge on the radiat ion field. This is unders tandable if one 

imagines the charge to be a perfectly conducting sphere of radius 

β 2 

r = (classical radius of an elementary charged part icle) . The 

c 
* The phase-shift postulated above may be effected by a slab of plasma thick. 

(dp 

c 
The number of electrons/cm

2
 in the slab is Ν = η and the force per cm- of 

ωπ 

e
2
E

2
 c ΦίΤβ2« 

the slab is F = Ν . Fr = 1/2 . π . Since ωΡ-' = we get 
mea? up m 

F = the total radiation pressure. 
8-7T 

eE 
a — — ■ — 

χ = a · c · sin ωί 

ζ = ax sin (ωί — φ) 
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magnetic lines slip past the sphere along its surface with a speed c; the 

electric lines are not held up , the conducting sphere represents a short 

circuit for them. Thus the t ime τΒ required for the Β lines to slip past 

is < τΒ < —■—; the electric lines do it in rE — (fig. 33). The 
c c c 

r 
difference τ = ¡¡ — τΕ = 0 · 6 — corresponds to the phase shift ψ = ωτ. 

c 

Fig. 33. Electric and magnetic lines slipping past a conducting sphere. 

From the two equations we get 

a2c 

Z = sin ωί · COS (ωί + φ). (HO) 
ω 

Integrating we get for the non-oscillating component of the speed 

1 a2c 
t · sin φ. 

from which the steady acceleration is (sin φ ι—> φ) 

Γ. 1 arc 

The mean force on the charge is, therefore, 

1 m a2 c φ 1 e2E2T 
F = = — mc 

2 ω 2 rei2c2 

2 Γ 2 e2 , let us put τ <—' —■ — = · then 
3 c 3 mc3 

* Only to make our heurietic argument more precise numerically. 

( H I ) 

(112) 

(113) 
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3 ^ mc ) 

which in terms of Thompsons ' crosssection ογ = 

F = 
E2 

"sv" <Γτ 

34
 ì · 

ic4 ) 
gives : 

(114) 

2.6. Radiation from Accelerated Charges 

The radiat ion field of a charged particle experiencing acceleration 

ν is (ref. 10) 

E{tf) = 
e [VA (C — v)] A c 

re* ( c · v \ 3 

t
1
"—) 

H(f) = — c A E 

(115a) 

(115b) 

where c = r c/r and t', v, r and c are taken at a t ime f — r/c (see 

fig. 34). 

Fig. 34. The position and movement of a point 
charge in a sphere representing a surface of a related potential. 

Let us suppose the charge radiates during a t ime dt. The t ime differ

ence dt ' between the first and last radiation signal observed at the 

point where E and H are measured is 

d r* ■ ( í + di + 
v \ ( r} ( cv λ 

di  í +  = d í 1 — 
c j v, c ) v c ) 
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Thus the energy radiated by the charge during di in the direction r 

into a solid angle dQ is 

d2w = ^—(EAH) ■ [l Î 1 Î  ] r 2 d n d f . (116) 

4?r Κ c' J 

Using eqs. (115a, b) and (116) one obtains for a power radiated into 

uni t solid angle 

dw [^){~) 
dil 4TTC3 • νΛ3 ( c■v\* 

r ) ( C
2
 ) 

(117) 

For v/c <̂  1 this expression reduces to the well known Hertzian formula 

du; e2 

dn Arne" 
(υ A c)2. (117a) 

Let us now integrate t h e equation (117) with respect to Ω over a 

large sphere. This gives the total radiat ion output from the moving 

charge. The integral is 

w = — ~ { ¿ „ y + ¿ x V > (118) 
Sc3 

where ν has components in the direction parallel and perpendicular 

to v. Transforming v¡¡ and v± to the rest system of the particle, i.e.. 

into Vft, one obtains 

2e2 · 
V . (118a) 

3 c3 

Thus it follows that the power radiated by accelerated charges is 

an invariant of the Lorentz transformation. 

From these equations it would appear that charges can radia te only 

if accelerated. However, eqs. (115) to (117) were derived only for 

ν < c. If a charge propagates in or near a medium in which the speed 

of propagation of radiation is smaller than the speed of the charge 
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these formulae are not applicable and it will be shown tha t the charge 

can radiate even if ν = 0. 

We shall t reat three radiat ion processes which are of interest in 

plasma physics. These a re : the bremsstrahlung, the cyclotron radiation, 

the Cerenkov radiat ion. 

For the first two ¿ ^ ¿ 0 whereas in the thi rd case ν = 0. 

2.6.1. THE BREMSSTRAHLUNG 

As the name indicates, this radiat ion is emitted by decelerated 

particles. However, it is now applied to the more general case of 

particles whose velocity vector changes as a result of Coulomb inter

action. Thus, for instance, an electron passing through the electric 

field of an atomic nucleus will radiate according to formula (118). 

The validity of this formula is, however, restricted by quantum 

mechanical laws, and the change of the velocity over a distance 

equal to the de Broglie wave length of the particle should be very 

small as compared to the absolute value of the velocity. This can be 

expressed as 

< (119) 

We shall calculate the radiat ion emitted by an electron during an 

elastic collision with an atomic nucleus using the classical formula 

(118a). During a collision with a nucleus (charge Ze) a nonarelativistic 

electron (mass m, charge e) is subjected to an acceleration (fig. 35). 

Ze
2 

(120) 

Fig. 35. Geometry of electronpositive ion 
scattering in which bremsstrahlung is emitted. 
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Using eq. (118a) the total power radiated away during a collision 
is (ref. 11) 

AW = (v)2 di. (121) 

One may integrate with respect to the azimuth θ ra ther than ί using 
the law of constant areas. This is wri t ten as 

de 
"d7 

and AW becomes 

As (see eq. (6) ) 

AW = 
2 Z2e 

pvo 

ι Γ ι 
3 rei2c3 pv« J r' 

- ( Ι Γ - Ψ ) 

dö. 

ρ tan ψ 

1 + κ cos 

one obtains, after integration 

2 Z2e° 
AW = 

3 rei'c' 

1 

Ρ ν» {«—♦»( τ — *) 1 + 
tan2 ψ t tan ψ 

(122) 

(121a) 

. (123) 

The value of the angle ψ is generally larger * than 1/47Γ, e.g., for 

electrons whose energy is approximately 100 eV an angle ψ = 1/4π is 

the smallest permissible. For larger electron energies the de Broglie 

collision parameter 

h 
Pi = — 

is always larger than the parameter p 0 corresponding to a deflection 

of 2ψ =z 90°, and therefore, the smallest permissible ψ is ψ,ηΐη > 1/4τ 
(ref. 12). 

I t thus appears t ha t the value Λ of the expression in the curly 
brackets in eq. (123) is approximately 

Then 

Λ ~ Λ(ψ = Ι/ο-ττ) = y2TT. 

Z V 1 
AW = 

Ρ vu 

(124) 

* Small angle scattering being the most frequent event. 
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In a plasma whose electron density is ree the number of e—ρ collisions 
per second with the collision parameter ρ in the interval (ρ, ρ -f- dp) 
is 2πρ dpi>0ree. Thus the total radiat ion power emit ted by an electron is 

" m u x 

W = J" AW2-pvune dp 
P n i l n 

where p m l n follows from eq. (17) chapter 1: pmia ~ Η/(2τττην0). The 
value of the integral is insensitive to the choice of pmax which could be 
taken to be infinite and therefore, 

4ΤΓ3 Z2e° 
W = — — re.vo. 

ό reic're 

But t;u can be expressed in terms of the tempera ture of the electron 
gas. Assuming that t>0 is equal to the mean random speed y/2kTe/m 
one has 

W = 1.71 X 10 2T Z2ne\jTe. (124a) 

This result agrees reasonably well with a more rigorous wave 
mechanical calculation (ref. 13). A similar calculation can be perform
ed for an e—e collision, in which the radiat ion has a predominant ly 
quadrupole character and is, therefore, generally less intense than 
the dipole radiation from e—ρ collisions, treated above. 

The wave length of radiat ion emitted corresponds at every instant 
to the radius of curvature of the trajectory. Thus the shortest wave 
length wille correspond to 2—rmin. For a strong collision (eq. (7) ) 

rm\n '~/ and consequently 

An approximate 

λ„ 

value 

2ττ 
■ ι « ~ 2 4 1 ' Ρ υ 

is, therefore, 

ληιΐιι — 2 · 6 po 

t' 

^aiiax 

C 
(125a) 

If the trajectory extends from co to — co is is evident that λΙ11Βχ —» co. 
However, in plasma the upper bound for collision distance is usually 
the Debye length d and consequently 

c 
2ττά vmax 

v0 vu y ne 

c /-kT = — V — - · <125b) 
Vu V n e-

The approximate form of the bremsstrahlung spectrum emitted from 
plasma is shown in fig. 36. 
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Fig. 36. The Bremsstrahlung spectrum in plasma. 

2.6.2. CYCLOTRON (BETATRON, SYNCHROTRON) RADIATION 

This is a type of radiat ion emit ted by charges moving in circular 

orbits. Such a trajectory is traced out by a charged part icle in a 

magnetic field. Clearly 

ν = vL = ω,:ν. 

Substituting this into eq. (118a) one has 

2 e
2 

3 c3 Vy* (126) 

where 

Writ ing 

there is * 

γ = (1 — β2)"1 '2, β = — . 

e ß 

m0cy 

2 e' 
 V2y2B2. (126a) 

rei(|c

T h e time in which a nonrelativistic particle will lose practically all 

its kinetic energy W]¡ is, therefore, 

Wk 3 reio3c5 

W 4 e4B2 
(127) 

* This formula can also be written as w = car 
\ ω„ ) 
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whereas for a strongly relativistic particle one has 

3 rei0
3c5 1 

<B2 
(127a) 

The angular distribution of this radiat ion can be expressed as a 

function of the angle ε which the vector r makes with the plane a 

and of the angle δ which the orthogonal projection of r on σ makes 

with the velocityvector of the rotating particle (fig. 37). Substituting 

these into eq. (117) one has 

dw 

da 4 T 7 C
3 

cos ε cos δ 

4) 
c- I 

cos2 ε sin2 δ 

ï [ cos ε cos δ 

(128) 

Fig. 37. Cyclotron radiation emitted from circulating 
relativistic charges. 

This shows that the maximum of the radiation power occurs for 

ε = δ = 0, i.e., in the direction of the velocityvector v. 

Integrat ing eq. (128) with respect to ε and δ it can be shown 

that half of the radiated power is confined within a cone whose 

axis is ν and whose apex angle ψ is approximately 

muc 1 
y/εο = 

w 
(129) 

where W is the kinetic energy of the radiat ing particle. 

The frequency spectrum of cyclotron radiation has been discussed 

in a number of publications (refs. 14, 15). A full analysis of this 
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problem is beyond the scope of this book and we shall give the main 

results and a heuristic proof. 

A rotating electron radiates a line spectrum of frequencies 

fi = L I 1, 2. (130) 

For a nonrelativistic part icle most of the energy is radiated on the 

cyclotron frequency, i.e., / = 1 only. However, when 

W > m0c
2 

the main portion of the radiated energy appears in higher harmonics 

of ω0/2π. The harmonic which carries most of this energy has an ordinal 

number 

»max — · 

V m0c
2 ) 

Denoting the output in each harmonic by Wι one has 

(131) 

Wl A i/2e2 

r0 

/.,:. 

up to Ζ = lm¡LX after which W¡ decreases sharply (fig. 38). 

Hi 

Fig. 38. Spectral distribution of cyclotron radiation 
from relativistic electrons. 

(132) 

This result can be supported by the following simple argument 

(ref. 16). 

An electron moving in a straight line represents a δfunction of 

current. This may be Fourieranalysed into a spectrum of harmonic 

currents with different frequencies each moving with velocity ßc. Asso

ciated with each current component is an electromagnetic "slow wave" 

with ampl i tude falling off in a direction perpendicular to the track. 

The radial propagation constant kr is given by 
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k2 = ku2 — kx
2 where k0 = 2ττ/λ. (133) 

As kz = ku/ß it follows tha t 

( 1 Ì 
kr = iku —— 1 

V. Ρ J 

= jko/ßy. (133a) 

The radial "fall off" distance is Δ = l/kr = ßy/k0. (134) 

Consider now the electron to be moving in a circle of radius B , 

then the phase velocity of that part of the "slow wave" which extends 

to a radius R/ß is equal to c. Hence if the distance Δ' between these 

two circles Δ ' <̂  Δ, the wave under consideration will radiate, if the 

distances Δ' >̂ Δ it will not contr ibute appreciably to the radiat ion 

from this rotating charge. Equat ing the distances Δ and Δ' one obtains 

ßyk = R(l — 1/ß). 

Now for γ  1 <^ 1, β = 1 — y2y~~ whence 

λ = TTR/Y'. (135) 

Radiation of shorter wavelength will not appear in the spectrum. 

Eq. (135) is equivalent to eq. (131) 

Fig. 39. The cylinder of radius R/ß outside 
of which the nearfield becomes a radiation field. 

The subject of emission of cyclotron radiat ion from plasma cannot 

be treated in this chapter ; a greater acquaintance with wavepropaga

tion in plasma is necessary before one can calculate how much of the 

cyclotron radiat ion from single particles is reabsorbed and how much 

can escape from plasma. However, a useful approximation can be 

derived by assuming tha t only the energy radiated in harmonics whose 

frequency is h igher than ω;, is lost from the plasma, i.e., considering 
2ττ 

only / > . This is obviously not true for infinitely thick plasma 
ω,. 

which would radiate as a black body, i.e., whose radiat ion output per 
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uni t volume tends to zero. Our approximat ion gives, in this sense, an 

upper l imit on energy lost per uni t volume of plasma. 

The power radiated in the 1'th cyclotron harmonic is (ref. 14) 

W, = 
e<uL. 

21|8 

/ [2 ß2 J'2l (2/ß) — (1 — β2) J J,i(x)dx] . (136) 

Let us restrict ourselves to a nonrelativistic plasma, i.e., β <^. 1. 

Since the first maxima of the Bessel functions J2i(x) and J'2¡(x) occur 

at χ — 21 it follows that τ = 2/ß is a relatively small argument of these 

functions and one can use the approximat ion 

Jp(x) 
(1/2 x)" 

1 
4 (p + 1) 

Then 

e V . 2 / ) 2 i ß 2 i + 1 (21 + 2) ( I 
Wl A 21  — 1 — α'β2 — 

r ( 2 ) 2 ; + 1 (2/) ! (21 + 1) I 2 

(137) 

(138) 

wher 
2/ (/ + 3) 

W (139) 

(I + 1) (21 + 3) 

Using the expansion pi = ρ ■ Tip) ~ Λ/2ΤΤ ε p p p + 1 ' 2 we have for I >̂ 1 

I > 
| / . i i! 

r ε\/τ 

where ε = 2 · 72. 

Let us now calculate the power radiated by this electron in all harmo

nies between /j = and l¿ — 2/ß2. This is approximately 

_ e 2
M c 1 ( e.ß Υ-ί+1 

r ε\7τ7 I 2 -

W 
β2ω,. β 

2\/ττΓ 
I a' 

( 1 

Ι \JÎ 

β'2 Λ 

— VM dl (140) 

wnere α = 
rß 

<̂  1. The function of \/l in the brackets is varying 

slowly and provides mainly an expression for a cutoff at Z2. We shall, 

therefore, use an approximat ion 

W 
e2a>cß\/l2 \ 

2r V T 

Ï' dl (141) 

as an upper limit. 
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Thus 

e2ü>n2 alí 
W s* — β1 . (142) 

cV2
" hl" r) 

The ratio of this output to tha t emitted by the part icle in absence 

of plasma (eq. (126) ) is 

W 3 ε3 α'."3'2 

Ρ = = = (143) 
w 3 2 V T / 2 , ' 

In t
1
) 

\ a ) 
where Zi is determined only by the characteristics of plasma, whereas 

a depends only on the speed of the particle. Let us take as an example 

re = 1014 e l /cm 3 , Β = MF (Gauss), β = 0.1 then h ~ 3 and ρ S 4 · 10=. 

Assuming a maxwellian distribution of velocities in a plasma whose 

temperature is T, the power output of incoherent cyclotron radiation 

will be 

We = 2re f i Ì ' [W(ß1)[ exp Í — βί~ + A l ¿ ì 2 wßx dß,, d ß x 

l VTßoJ J J l ßo
2
 J 

(144) 

where ßo = — Λ / and ßL corresponds to the velocity component 
c V rei 

βί perpendicular to Β . Integrat ing first over βΝ, put t ing = y/x and 
ßo 

assuming In — <—· In 

Wt. 

a a0 

β2ω0
2 ao'r1 ' 

c χ / τ 

-(-="] 

/2
 r n 

re· 111 M (ergs/sec, cm3) * (145) 

The ratio of this output to that which would be produced were t h e 

plasma completely t ransparent is 

Wc 

wP 

This expression can be also written in terms of Τ as follows 

(146) 

4e1 Vw fe2kT)'V ï! 
W, s · "2 (145a) 

cm In Ι/α» ( 2mc2 } Í5/2 

Up 

where I = 
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where 

W» = T—?Τω^η
 0 / " 2 ß x 3 e x p ( _ A l i . d ß x 

3 c ß 0  ° V. ßo" j 

• ß o 2 · " (147) 
2 θ

2
ω

2 

~ Τ «Γ 

and therefore, 

, . iL vizil i 

Taking values of the last example in which we put β = β 0 

(Τ ~ 5 · IO7 · Κ) we get ρ ' ~ 7 · IO"2. 

So far, we have treated the emission of cyclotron radiat ion as inco

herent . If coherence exists, e.g., the electrons are bunched, the mean 

number of electrons in a bunch being N, t h e total radiation output will 

be Ν t imes larger than the incoherent one. 

2.6.3. CERENKOV RADIATION 

Cerenkov radiation in the broadest sense is electromagnetic radiat ion 

from charges in recti l inear and almost uniform motion. The earliest 

experimental results (in 1934) have been correctly interpreted by 

S.I. Wawilow, by I.M. Frank and by I.E. Tamm. 

I t may be shown that such radiat ion cannot be emitted by electric 

charges in free space. This is the result of both the energy conserva

tion and the momentum conservation conditions. T h e relativistic energy 

W οι a particle of rest mass rein is given by 

W2 = p2c2 + m0
2c\ (149) 

Any differential decrease in energy is accompanied by a decrease 

in t h e relativistic momentum ρ according to 

pc2 pc2 

dW = — dp = : dp. (150) 
W (p2c2 + reioV)1'2 

I t is evident that, when rei0 > 0, 

dW < c dp . (151) 

If, however, reiu = 0, as is t h e case with photons, then for plane waves 

W' = p'c ( the pr ime denotes photons) and 

dW' = c dp ' . (152) 
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For any type of waves other than plane waves 

dW' > c dp'. (152a) 

Thus a spontaneous emission of radiation such as is depicted in 

fig. 40a is forbidden, since it would leave the particle m with larger 

momentum ρ than is consistent with eq. (150) (still assuming a recti

linear trajectory). Thus if dW = dW' it follows from eqs. (151) and 

(152) that dp > dp'. 

If, however, this excess of momentum (dp — dp') can be transferred, 

say, to another particle M, the emission of a photon with energy dW' 

and momentum dp' becomes possible. Such a process is illustrated in 

fig. 40b. It is evident that the radiation process represented by fig. 40b 

varies in intensity as m passes M. In order to obtain a constant drain on 

the excess momentum (dp — dp') it is necessary to provide a system of 

charges Q, uniform in the direction χ (direction of the rectilinear 

trajectory). With such a system the radiation output W is constant in 

time. 

y 7 

J>i 

e ρ ff 

Fig. 40a. Forbidden emission. Fig. 40b. Momentum absorber. 

It is advisable here to abandon the photon description of the 

radiation process and use the travelling wave picture instead. Assume 

that the radiation output from the charge e is constant in time, due 

to the presence of a suitable momentum absorbing structure S, extended 

in the ardirection (fig. 41). In terms of travelling waves, such a constant 

¿γ * y 

¡H/))l»W)W>l>//iW/))>/)>/»t»WM>WM)W/f 

*p 

Fig. 41. Distributed momentumabsorption 

permitting the emission of Cerenkov radiation. 
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flow of radiat ion is the result of a constant interaction between an 
electromagnetic wave Εω(χ, t) and the charge e. The force correspond
ing to this interaction is 

Fw = eE0 exp (ja>i — λ·ω*). (153) 

But Fa is constant only if 

ω 1 , Ι - Λ \ 

= — (1ο4) 

i.e., if the phase velocity of the wave vp is equal to the velocity vc of 
the charge e. 

This is obviously impossible in free space, where 

ve < c 
whereas 

= νΏύ1 = c. 

(155) 

(156) 

Here eqs. (155) and (156) are equivalent to eqs. (151) and (152). 
However, the presence of the system S has a marked effect on the 

phase velocity νρω of the various travelling waves (compatible with 
the boundary condition on S) and for some frequencies ω 

Vpu < C 

and, for these, the condition of constant interaction 

can be fulfilled. 

Fig. 42. 

From the point of view of the wave concept, the structure S (the 
momentum drain of the photon picture) is a slow-wave structure. 
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Such a slow-wave structure (periodic or uniform in the «-direction) 
may take the form of one of the following well known devices: 
(1) metal he l ix ; (2) loaded wave guide; (3) dielectric guide; (4) medium 
whose refractive index re = (εμ) 1/2 > 1; (5) plasma wave guide. 

These structures slow down electromagnetic waves of different fre
quencies to a different extent owing either to the periodicity of the 
slow-wave structure or to the absorption. 

Infinite dielectric medium 

The study of Cerenkov radiat ion in a refractive medium leads to 
a description using simple geometric concepts, similar to those found 
in the study of supersonic phenomena. Imagine the following experi
ment (fig. 43). 

Fig. 43. 

A point charge e is shot through a thin metal screen S into a medium 
whose refractive index is larger than unity 

re = (εμ)1 '2 

If the charge moves with a velocity vr 

> 1. (157) 

V e < 
re 

then the picture of the wave surfaces will be as shown in fig. 42. 
However, if the velocity ue of the charge is larger than the phase 

velocity vp of light in the medium i.e., 

ve > 

the system of the sphrerical surfaces forms a conical envelope C shown 
in fig. 43. T h e conical surface is known as the Cerenkov cone. 
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The angle ψ is given by 

sin ψ = (158) 
vt (ε/χ)1'2 

I t is possible to gain insight into the na ture of this type of Cerenkov 

radiation by noticing that a detector placed near the trajectory will 

record a sudden electric impulse E(t) (fig. 44). Since the impulse E(t) 

has an infinitely steep front, it follows that its Four ier spectrum will 

contain finite components whose frequency ω = co. 

Fig. 44. Field pulse generated by the passage 

of the surface of the Cerenkov cone. 

A more rigorous analysis of the process gives the following formula 

for the energy frequency spectrum (ref. 17) 

ιυ(ω) = CUÛ 

Ι εμβ1 J 
(159) 

where a — vee
2/c2 and β = ν J c. 

The formula suggests infinite output at infinitely large frequencies 

(this type of divergence has been known in the prequantum physics 

as the ultraviolet catastrophe). This is not t rue because no dielectric 

or plasma is ideally uniform and thus there are always the effects of 

periodicity setting in at a wave length λ0 comparable with intermolecul

ar spacing X0 . I t will be appreciated that for instance, for gases, the 

wave length 

λο = ε/χΧο 

is of the order of λ0 = (10") cm and thus the maximum wm¡íx lies 

in the visible par t of the spectrum. 

In order to derive the spectral distr ibution for a plasma let us rewrite 

eq. (159) as follows 

w(<a)  f i v>2 ) 
= cm \ I 

I v2 ) 

(160) 
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where v„ is the speed of propagation of signals of frequency ω in the 

medium considered. This speed is practically the same as the group 

velocity vs, for which we have 

diu 

~dk 
where 

277-

For a plasma without a magnetic field (see later p . 150), the dispersion

relation for transversal waves is * 

r — ωρ
2 = c2 k2 

from which the group velocity is 

k 

^
= C 2

T
= C

V
] 

(161) 

(162) 

Substituting for vg in eq. (160) and integrating over ω we get the total 

power radiated hy the charge 

e-

..j[.(l 
ω. 

+ 
ι ωρ 

1 + ωρ" in ω (163) 

The limits of integration are chosen as follows. The lower limit 

„n = (,,p since for ιν < ivp plasma does not t ransmit tranversal waves. 

The upper l imit iv2 must be chosen so as not to make the integrand 

become negative. This means tha t 

II);, 

1 — r 2 / c 2 

Eq. (163) becomes 

1 
' ωρ 

I'll 

1 

— 1 

(164) 

(165) 

c- / 

Let us consider only nonrelativistic particles. Then ν <̂  c and expand

ing the logari thm we get 

reír (166) 

* A more complicated result is obtained if longitudinal modes are also considered. 
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In case of a relativistic part icle in a plasma ν <> c and eq. (163) gives 

1 eJtt>ji2 ω2 

w r~· In 
2 c ω) 

in this case <o2 is given by the characteristic distance of the medium. In 

ν c 
case of plasma ωο = —;— '—' ωρ and consequently 

d ν, 

0
2
ωρ

2
 C 

w '— In . ( 163a) 
C Vt 

Using a more rigorous t reatment , Kolomenski and Kihara (ref. 18) 

obtain, instead of our eq. (165), 

w = y2e
2 LL. In —'. (167) 

v vt
2 

In a plasma having a tempera ture T the electron velocitydistribution 

Í - — Ì 
I 2vt

2
 ) 

is 
4ßn"1 ( V2 λ 

(168) F(v) = —— c · re (v/c)2 ßo"3 exp 
V T 

1 l2kT \/2v, 
where β,, = — Λ / = . Provided the electron radiat ion 

c \ m c 

remains incoherent and the m(k) is not substantially affected by the 

finite tempera ture effects we have for the intensity of Cerenkov radia

tion * 

W ~ f F(v) w(v) dv. 

Using eq. (166) 

W Ä 0.37 · 10:" re2Te
3'2. (169) 

I t is instructive to plot the radiation power corresponding to the three 

types of radiation considered so far, i.e. the bremsstrahlung the cyclo

tron and the Cerenkov radiation. Let us, for this purpose, rewrite 

the equations (124a), (145a), (169) in the following manner (for Ζ = 1) 

Ri, 102T · ree
2 W„ ~ 1.7 · T,,"2 (170a) 

Z! 
B c 102T · rec

2 Wc ~ 2 · 10" (0.64 · 10"" Τ,)'1 '2 —  (170b) 

R „ 1027 re,.2 W,.e ~ 0.37 · 10 Τε
3'2. (170c) 

* The lower limit of the integral is somewhat arbitrary, however, it is plausible 
to exclude those electrons that move slower than the majority of the distribution. 
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The corresponding curves are plotted in fig. 45. For the 

unscreened cyclotron radiat ion we have used the formula (147) writ ten 

[for — 2nkT\ as 

I 8T J 

B o c 102T · ree
2 Wp ~ 3.75 · 1012 · Te

2. 
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List of symbols used in Chapter 2 

A atomic mass number i, j , k uni t vectors 

B magnetic field strength J longitudinal invariant 

c velocity of l ight ; = y/ — 1 

d Debye length k wave number or 

E electric field strength Boltzmann's constant 

c elementary charge L length 

F force Ζ quantum number 

ƒ frequency rei mass of particle 
g uni t vector re field index of betat ron 
re Planck's constant or refractive index or par-
ί current density t i d e density 
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Ρ 

Ρ 

Q 

R 

r 

s 

t 

T 

u 

V 

V 

•Y 

w 
IV 

*, y. ■ 

Xo 

Ζ 

β = 

Ύ = 
δ 

impact parameter, 
momentum 
momentum 
charge 
radius of curvature 
position vector 
velocity 
time 
temperature 
drift velocity 
potential 
velocity 
phase velocity 
kinetic energy 
power 

ï coordinates 

intermolecular 

atomic charge 

v/c normalized 
( 1 _ t , 2 / c 2 )  l / 2 

angle 

spacing 

speed 

ε 

V 

θ 

Χ 

λ 

μ 

Ρ 

σ 

Σ 

τ 

Φ 

φ φ φ 

è 

Ω 

ω 

ω(. 

ΟΙμ 

angle or dielectric constant 

or base of natural logarithm 

mirror ratio Bi/B0 

angle 

excentricity of a hyperbola 

wave length 

magnetic moment or mag

netic susceptibility 

radius of gyration 

plane perpendicular to Β or 

crosssection 

surface 

time interval 

magnetic flux 

angle 

position vector of centre of 

gyration 

solid angle 

angular frequency 

cyclotron frequency 

plasma frequency 



CHAPTER 3 

FLUID DESCRIPTION OF PLASMA 

Introduction 

The behaviour of plasmas is often more appropria te ly described by 
means of a fluid model, ra ther than by the trajectories of individual 
particles. The fluid is made up from two electrically charged compo
nents, one being the electron gas the other the gas of positive ions. 

In this chapter we shall derive the equations of motion of these two 
fluids and transform them into the form used in plasma analysis. 

Let us consider a flow in which adjacent particles have vanishingly 
small velocity relative to each other, the major port ion of their total 
velocity being, therefore, in the direction of the flow. In such a case 
the flow is called a single stream flow and can be treated appropria te ly 
in ordinary configuration space. This description is still adequate for 
a multi-stream flow provided the component streams are not in any 
way coupled. If a mult is tream exists, in which the component streams 
are coupled, e.g., by collisions between particles composing these 
streams, a phase-space representation is appropr ia te (fig. 46). 

% 

Fig. 46. 

The phase-space may be constructed out of canonical variables 
q¡p¡ corresponding to all the degrees of freedom; however, it is often 
convenient to use a simpler system of orthogonal coordinates q\ 
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and velocity components v¡. The movement in the velocity subspace 

is restricted to within a sphere of radius c. Particles which are 

accelerated to relativistic energies will, therefore, occupy a thin shell 

near the surface of the csphere (fig. 47 also ref. 1). 

Fig. 47. Fig. 48. 

The movement of single particles in a phase space is given bv the 

11 .ι m ¡ I imi ian equations 

dqr¡ dH(q¡p¡l) dpi 

di 

oliere 

ƒƒ 

< l>¡ 

m„2c2 + 

d/ 
dH(qiPit) 

dq{ 

[ρ-~ή 1/2 

+ eri 

( la , b) 

(2) 

These equations can be often used for the graphical plotting of a 
trajectory by a step by step method in a number of p¡qi graphs. 

During a t ime di, the representative point Ρ (q¡p¡) moves on a trajectory 

for which Η = const., i.e. on a surface of constant energy in the 

p¡q¡ space (fig. 48). For time dependent problems this surface changes 

its form in time. 

We shall apply the phase space description to a system of many 

particles. Although a Hamil tonien description for any number of 

interacting particles can be formulated (ref. 2), it is too complicated 

for problems in plasma physics. One adopts, therefore, a statistical 

model in which the particles are considered to form a fluid moving 

in the p¡q¡ space. 
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The first general observation one can make about a system of re 
non-interacting particles located in a small volume Δ = SqiSpi ...δςτ^δρ;, 
of the p¡q¡ space is known as Liouville's theorem. 

Let the surface of the volume be marked out by the coordinates 

p¡q¡ of a few particles. We then assume tha t the interaction between 

the particles themselves can be ignored. The trajectory of each 

particle in the pq space obeys the Hamil tonian equations ( la , h ) . 

The rate at which the volume Δ changes, as the particles move, is 

given by 

dA 

"dT 
■ ( 

d(8qi 

di 

where (fig. 49) 

δρι + 

δ q, 

d(Spi) 
Sci 

di 

Sqo8p28qsSp3 + ... permutat ions (3) 

δρ, = Pi1 

,Λ 

qllpW 

■*"?/ 

Fig. 49. 

and, therefore, using eqs. ( la , b) one obtains * 

dW dH2 
d dqS dqr 

_ _ (oqi) = _ _ _ _ _ dpi 

'dH s 

^pT] 
\ ' ) p,=conel. 

dp. dpi 

d2H 

dpidq¡ 

(8H) 

dqi. (4a) 

* For interacting particles (S/f) 7^ δ 
3p, 

only p',q' but also of p',q'. 

(W\ 
as W i 

UP. 
s a function of not 
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Similarly, 

d dpi 1 dp¡ 2 dH1 dH2 

(sPi) = -L * = _ + di di di dq¡ dq 

dqidp 

( dH s δ2ί/ 

V J li =const . 

Substituting eqs. (4a, b) into eq. (3) we get 

dA f d2H 32H λ 
dt { dpidqi dqidpi ) 

( d2H d2H \ 
— Δ = 0. (5) 

^ dp3dq3 dq3dp3 J 

This is the mathematical proof of Liouville's theorem. The theorem 
asserts that 

The phase volume occupied by a system of non-interacting particles 
is an invariant of their motion. 

The result of eq. (5) is often interpreted as the proof of the invariance 
of particle density in the phase space. However, this formulation of the 
theorem assumes that there are enough particles in the volume Sq¡8p¡ 
to enable us to use the concept of density. 

Let us assume that one deals with such a large number of particles 
that the concept of density is applicable and let us define 

/(<7ίΡίί)δ<7ιδρι...δςΛ·δρλ· 

as a number of particles in the volume element 8qi ... δρ*. Then the 
second version of the Liouville's theorem asserts that 

dt 

which can be expanded as 

3/ 

(6) 

?t 
+ Div (Vf) = 0 (6a) 

8/ 
+ ƒ Div V + V · Grad ƒ = 0 (6b) ?t 

where V is the velocity of particles in the phase space 

V= V(quP¡) 
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and the operators Div and Grad are a divergence and a gradient in 

the phase space. From Hamil ton 's equations it follows (similar to 

eq. (5) ) tha t * 

dg dp i d2H d2H 
Div 

Therefore, 

or 

V = 
dqi 

df 

dt 

df 

dt 

dt + r~ 
dp, dt 

■ + 
Γ ¿Si 3/ 
— + 

di dqi 

+ 
- dH df 

_ dp, dqi 

dqidpi 

dp i 9/ 

di 3p, 

dH df ■ 

dqi dp i 

dpidqi 

= 0 

= 0. 

= 0. (7) 

(8) 

(8a) 

This equation can be expressed in a more concise form by using the 

Poisson bracket notation 

3/ 

ci 
+ {ƒ, H} = 0. (8b) 

This is a differential equation of flow in the phase space of a system 
of particles whose individual motion can be derived from a Hamil tonian 
H. 

3.1. Stationary Distributions 

Let us now briefly mention the properties of a stationary density 
distr ibution in velocity space i.e., a distr ibution in which the motion 
of individual particles does not affect the statistical value of the particle 
density ƒ (ref. 3, 4) . Thus 

and consequently 
dH 

dt 

df 

= 0 

dH df 
= 0. 

(9) 

(10) 
dpi dq¡ dqi 9p¡ 

I t can be shown that if initially the density ffpiqi) is only a function 
of the Hamil tonian H of the particles located at p¡</¡, then the distri
bution of ƒ in the p¿ space will remain stationary. 

* Using the summation convention, i.e., aib¡ = 2 i = l α<°<· 
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then 

In order to prove this, put 

ƒ = f[H(Piqi)] 

df df dH of df dH 

dqi dH dq¡ dp-, dH dpi 

Put t ing these expressions into the Poisson's bracket (eq. (8a) ) we get 

{f,H} = 0 

and therefore 9//9i = 0 and the ƒ distribution is a stationary one. 
Systems in which the particle density in phase-space is a function 
of the Hamil tonian only, are called "ergodic". Thus we have a theorem: 

ergodic distributions are stationary. 

3.2. The Collisionless Boltzmann Equation 

Let us transform Liouville's equation (8) into an equation in the g¡i>¡ 
space. This is often more useful than the g¡p¡ formulation. The 
equation for f(q¡v¡) in the g,t;¡ phase space is then called the collision-
less Boltzmann equation (ref. 5) . 

Let us define the appropr ia te canonical variables for a relativistic 
particle in an electromagnetic field. These are 

g ¡ , P¡ = m0v¡y -\ Ai 
c 

with 

y = 

The corresponding relativistic Hamil tonian is 

Η = c < m0
2c2 + LA + βφ. 

Using Hamilton's equations the terms dg¡ /d í and dp¡/dí become 

dg¡ dH 

dp i 

dt 

dH 

dq¡ 

dt dpi 

e ( e \ dAk οφ 
ι Pk i;. c 

ciìtuy \ c ) dg, cg, 

e dAk 

— Vk c 

c dg, 

i'φ 

dqi 

(11) 

(12) 

(13) 
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With the help of these expressions, eq. (8) can be writ ten 

( e dAk 
— Vfc — 

\. c cg¡ 

df df ( e dAk dφ \ 
+ Vi 1 — vk — e 

cp 

df 
0. (14) dt dqi (. c 9g¡ 9g¡ , 

This equation can be simplified by interpret ing Vk(dAk¡dq{) in 

terms of the force of magnetic field Β = curl A on a part icle with 

a velocity vector v. This force is F M where 

c 
— Fu — ν Α Β — ν A curl Α. (15) 
e 

Substituting this expression into the term v¡: dA^/dq,) one obtains 

dAk 
Vk = ν · grad A¡ + [ν (V A A)\¡. (16) 

3g¡ 

Let us now transform the expressions of/dp·,, df/dq, and cf/dt. As 

p¡ is a function of v¡ and of q¡ ( through the A ¡'s) one has to consider 

the following transformation of independent variables. 

e . 
Pi = m0yv; | A¡, 

c 

q. = q'h ( Π ) 

t = t'. 

It follows that 

cf[Vk(pi),q'k,t'\ df dvk df cq'k df dt' 

a ~ã "a *~ '
ir
~i~ Ί, ·" ~TT ~T~ ■ ^

18
^ 

dp ¡ dvk dp, cqk dp i dt dp, 

The coefficients cvk/dp, and dq'k/cpi can be calculated using the 

Jacobian of the transformation (17), and are * 

dvk 1 { ViVk \ dq'u dt' 
8«  \ , ^— = 0 ,  — = 0. (18a) 

reioy I, c ) dp, dp, 
cp, 

Similarly 

df[Vk(p),q'k,t'\ df dVk df dq'k df dt' 

+ ^-r^— + ̂ r-^-- (19) 9g¡ dvk dq, dq'k 3g,· dt' 9g,· 

Using the same Jacobian one finds 

CVk 

cq, 

 1 e dAk ( ViVk λ dq'k dt' 

I — « 1 * — ' ^ = 8 i f c '  5 — = 0.(19a) 
iny c dg¡ ^ c J dq, dq, 

* Su is the Kronecker delta. 
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The remaining differential operator that needs to be transformed is 

(20) 
df df dvk df dq'k df dt' 

dt dvk dt dq'k dt 

Applying the same method as above, we get 

dvk — 1 e d A ¡ 

dt' dt 

rt τη,,γ c dt 

( ViVk \ dq'k dtf 
8ik

 %L\, 4^ = 0, — = 1 . (20a) 
I, c2 ) ot dt 

Using eqs. (16), (18a), (19a) and (20a) one can now write down the 

transformed eq. (14) as 

df df Fi 

di' dq'k m„y 

ViVk Ì 9/ 

( — ~ ) cvk 

0 (21) 

vhere 

dφ e d Ai e „ 
F «  = — e  i _ _ + _ ( „ Λ β),. 

cq¡ c et c 

Let us develop this equation more explicitly for the cases which are 

of interest in plasma physics. 

3.2.1. NONRELATIVISTIC ENSEMRLE 

The first case is tha t of a nonrelativistic gas, i.e., an ensemble of 

particles which are confined in the velocity space within a sphere 

(fig. 50) centred on origin and whose radius is 

ν < 0.1 c. 

In this case the terms ViVk/c2 in eq. (21) represent at most 1 % 

correction to the diagonal terms 8¡k. This formulation is appropr ia te 

Fig. 50. Nonrelativistic gas in the velocity space. 
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for a plasma near thermal equi l ibr ium in which the distribution is 

Maxwellian with a tempera ture 

Τ < 6.107 (°K) 

in which the mean random speed of the electrons is only 

*e=V 
2kTe 

= 0.1 c. 

In this case eq. (21) simplifies to (dropping the primes) 

df
 L.

 df F
*

 df
 η (22ì 

+ Vk 1 = 0. (¿I) dt dqk m 3tfe 

I t is clear that the description of plasma processes in terms of the 

density ƒ in phase space is appropr ia te only if there are enough particles 
per unit volume to give ƒ a meaning. This is possible if bo th in the 
velocity space and in the configuration space the fluctuations in ƒ are 
much smaller than ƒ itself. 

This renders the Boltzmann equation inappl icable to regions of 
velocity space for which the random speed is many times the mean 
termal speed. A similar l imitat ion applies to the configuration space 
where processes occurring in too small a volume cannot be described 
b y e q . (21). 

The equations (21) and (22) have been derived form the Liouville's 
theorem and therefore, only considering a system of non-interacting 
particles. For this reason the potentials φ and A must correspond to 
fields generated by sources outside the plasma. T h e t rea tment is 
applicable, therefore, only to plasmas whose density and pressure are 
low enough not to per turb noticeably these fields. However, this is too 
strong a restriction. T h e Liouville's theorem requires only tha t there 
should be no interaction between particles within the small volume 
Δ = (8x 6y δζ) (8px 8p„ 8p:) where Δ is very much smaller than the 
phase space effectively occupied by the plasma. Interact ion between 
particles whose separation L in configuration space is much greater 
than L0 = (8x oy δζ)1/: ι will render equation (21) inapplicable only after 
a certain relatively long time. In such a case the contributions to φ 
and A from particles located relatively far from Δ can be included in 
the collisionless Boltzmann equation. The far-field extension of the 
B-equation is known as the Vlasov equation in which only near 
interactions are not taken into account. Let us define as a near inter
action one in which the distance between two interacting particles is 
L < L0 . Since L0 *> / = re"1'3 it follows tha t L > Z. I t is evident that 
the Vlasov approximation may become rigorously valid if such near 
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interactions could be completely neglected. Such a situation may be 

realised by dividing all electrons and ions into k parts where k—> co, 

mass and electric charge density remaining invariant. In such a case 

the new interparticle distance is 

l'= l 

k1'3 

and it is obviously possible to define Δ and therefore L0 as small as 

one wishes. Moreover, within the new Δ' the force F' between two 

charges becomes 

e/k ( e'\ 2 ( e/k λ2 

(23) 

and therefore, F' —* 0 even faster than ——. 

k 

I t is interesting to find out how the Debye distance d is influenced 

by such a subdivision. Recalling (eq. (4a), chapter 1) that 

/ KT I 2 /3 mû2 

V 47rere V 4ττβιι 

where ü is the mean thermal speed of electrons and considering that 

m 
, re' = Arre and e'2 = e2k~2 it follows that d' = d. The Debye 

fi 

distance remains constant after suddivision to any k. 

The subdivision in which k —» co corresponds to a model of a homo

geneous fluid and let us repeat that the Vlasov equation describes 

perfectly such a fluid, even to the level of collective interactions *. 

Real plasmas, of course, depar t in their behaviour from such a 

model. Let us mention, e.g., the phenomenon of oscillation of a Debye 

sphere or a Debye layer. We have explained on p. 13 tha t generating 

such oscillations by a stochastic process is improbable if the number of 

electrons N in a Debye sphere is very large. In the homogeneous fluid 

model the number N' = N.k —» co and therefore, the spontaneous gener

ation of plasma oscillations becomes impossible. Consequently in prob

lems in which one wishes to find out the levels of various fluctuations 

and oscillating modes in plasma the Vlasov equation is not applicable. 

In order to modify the Vlasov equation so as to include at least some 

of the nearinteractions in a real plasma one must add a new 9//9t term 

corresponding to collisions. This is done for distant collisions in 

* Compare with the Hartree selfconsistent model of atom in wavemechanics. 
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chapter 8 (the min imum distance in such collisions being much larger 

than both 8 and XB). 

3.2.2. RELATIVISTIC ENSEMRLE 

The second situation of interest in plasma physics is the ensemble 

of relativistic particles whose velocity scatter is small compared with 

light velocity. In particular, we may assume that there exists a system 

of reference in which the ensemble can be described as a nonrelativistic 

gas, the velocity v0 of this frame of reference being close to the velocity 

of l ight (fig. 51). In this case 

V; > v„ v„. 

Fig. 51. 

Neglecting terms of second order in vx, vv, eq. (21) becomes 

3/ 3/ 
— H vk — h "io" V 
at dqk 

FX~F; 
df 
cvx 

 m o  y 1 F „  F , ^ l 

+ rein"1 γ" F; 1 — F , · 
df_ 

dV; 

_ 3 / _ 

dv„ 

= 0. (25) 

A purely onedimensional form can be developed by put t ing 

Fx = F„ = 0, 9 /3* = 9,/9y — 0,vr = v„ = 0. One then obtains 

3g dg 
+ V; 

Tt ?z 
2 r e i 0  y l F î L g + mu'y'F;  L  = 0 (26) 

Cr dv. 



98 FLUID DESCRIPTION O F PLASMA 

where g is normalized as 

g = 2π f vJ dvi, v, = yjvx
2 + v/. (27) 

3.3. Integrals of Boitzmann's Equations over the 
Velocity Space 

One is usually interested in the macroscopic properties of a plasma, 
i.e. in averaged quantit ies. Let us consider some particle property, for 
instance, the velocity of the ions and electrons or their energy. Call 
this particle quali ty Q, and let it depend on v of the particles only. 

In order to obtain equations concerning Q we mult iply the Boitz
mann's equation by Q and then integrate over the velocity space π. 
In order to obtain an average per particle the integrated equation will 
be divided by the number n(r, t) of particles per uni t volume; where 

n(r, t) = ƒ ƒ (β, r, i) d:r. (28) 

Thus the formula defining the average quant i ty Q (depending on r 
and ί only) is: 

SQ(v)f(v,r,t) d^ 
Q(r,t) = — — . (29) 

ƒ f(v,r, t) drr 

3.3.1. NON-RELATIVISTIC CASE 

We consider the non-relativistic Boltzmann equation first. Multi
plying eq. (22) by Q(v) and integrating over — one obtains the transport 
equation for the part icular average quant i ty Q. 

In the process of averaging one encounters the following three 
integrals: 

df d Ç d -
άττ = \ Qf d - = (nQ) (30a) \° dt dt dt 

df d 
Qvi —'— άττ = n(v,Q) (30b) 

9g¡ dg¡ 

du¡ 9/ 

dt 9n¡ 

Γ f dv. « 7 d dv. ) 

τ. τ„ 

+ ... the same terms with vx and vv. (30c) 
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The last integral is developed by integration by parts. The first 
term of the integrand in eq. (30c), containing | / Ç ( d v i / d t ) | " is zero 
in all physical problems as ƒ has usually the Maxwellian form whereas 
the part icle proper ty Q can increase only as some finite power of v. 
Each term of the remaining integrals in (30c) has a form 

ƒ dv¡ Xe dt ) 

The integral (30c) can thus be wri t ten: 

dv, df 
Q —— d- = 

di dv i — i?—ì 
ìvt Γ di J 

The transport equation for the quanti ty Q follows now by writing the 

previous results as 

(nQ) + [n(ViQ)]—n 
ct cq¡ dvi { di J 

0. (31) 

In order not to complicate our analysis unnecessarily we shall consider 

only such forces for which 

U±L)=0. 
Vi { dt j cv 

If Q denotes the identity of a par t ic le ; then Q = 1 and eq. (31) 

becomes 

9re c 
+  — (ην i) = 0. 

et dq, 

This could be transformed into 

ere 

9i 

dv i 9re 
f re^ h ν·,—  = 0 

3 g i d q i 

en 

dt 
+ div (ην) = 0 (32) 

which is the situation of continuity of a flow of particles. 

We shall now describe the t ransport of momentum. This is obtained 

by letting Q = v. 

* In the nonrelativistic approximation. 
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Put t ing this in eq. (31) we obtain 

9 - 9 — 
(ην) H [uw-, \ 

dt dq, 

dv ( dv, \ 

dvi ^ di J 
= 0. 

The first term in eq. (33) may be expanded as 

The last term is 

_ 9n dv 
ν + re 

dt dt 

dv 
dt ' 

The second term is a little more difficult. It can be written as 

9 Γ . . θ f . . 9 

(33) 

(34) 

(35) 

dx 
Γ 3 9 i 
\ νυtf d- Λ \ vvyf άπ Η \ vv;f dir 
) dy J 9z J 
Γ τ ν 

= i I - — - \ vx
2f d- + —— l VtVyf d- + —— \ vxV;f άττ i 

+ j 
+ k 

+ 
(36) 

where (υ = ννχ + vvy + ννζ). 
I t is now convenient to define a random velocity related to the 

average velocity ν and the velocity »of a particle by 

The definitions of ν implies 

Let us substitute 

u = — \ uf d- = 0. 
re 

vr + ux for vx 

(37) 

(38) 

etc., into eq. (36). All products in which one component of the average 
velocity ν multiplies any component of u drop out because ν is not 
effected by integrations over — and because of eq. (38). There will 
remain only terms such as uxuyf and vxv„f integrated over all the 
velocity space. Thus eq. (36) becomes 
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3
 , - - Ì 

n(VXV; + UXU;) ) 

dz J 

, 9 _ 9 _ _ λ 9 
i{—n(vx

2 + Ut2) +——n(vxVy + uxuu) + — 
ox 9y dz 

+ il ——n(v,j2 + u,f) + | 

+ k (36a) 

This array can be expressed using a tensor notat ion. I t is composed 

of two tensors: the V^v tensor which can be writ ten in the ordinary 

language of tensor algebra as V(nvv) and the VI/Ή tensor, wri t ten as 
V(nwu) (notice the different way of averaging). 

Thus 

ν(ψ„ + ψ„) = V(nvv) + V(rewu). (36b) 

In applying the tensor notat ion to the expansion of eq. (36a) let 
us first examine the dyadic corresponding to v, i.e., V(nvv). This can 
be expanded as: 

V(nvv) = nvVv + vV · (nv). (39) 

Thus, the term (36) may be introduced in (33) wri t ten as 

nvVv + vV · (nv) + V(nuu). (36c) 

Let us remember tha t the term V(reuw) is a complex of integrals 
and can be evaluated only if the velocity distribution is known, 
which means tha t one would first have to know the solution of the 
Boltzmann equation. However, one is often justified in using a guess 
at the distr ibution in the velocity space, compute the V(rewu) and 
obtain a solution for re and Ç)'s. 

Recalling the continuity equation and using eqs. (36c) and (34) 

one obtains for eq. (33) : 

( dv  λ F 
+ rV · ν = re V(reua) (40) 

k 9i ) m 

where F = m(dv/dt). 

This is the equation for transfer of momentum in a nonrelativistic 

plasma. 

Let us consider an ensemble of particles in which u is isotropic, i.e., 

a distribution which is spherically symmetrical in the velocity space. 

An example of this is a Maxwellian distribution. 

In that case 

V(reüu) = V(reu2). (41) 
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This expression can be associated with the definition of pressure, as 
pressure can be defined as the t ransport of momentum across a surface 
of unit area in the reference system in which ν = 0. 

Thus 
grad ρ 

V(reu2) = . (42) 

If the u vector defines an ellipsoid in the velocity space (fig. 52) one 
has 

V(nuu) = V[n(ux
2 + uy

2 + uz
2)] 

1 
(grad px + grad p„ + grad pz) 

which is a case often encountered in non-isotropic distribution. 

Fig. 52. 

For the case of isotropic velocity distribution eq. (40) can be written 

as 

(dv - ^ re 
re h vV · v\ = — j 

1,9f J rn 

grad ρ 
(43) 

This equation must be applied to each of the two components of the 
plasma because plasma is a mixture of two gases: the electron gas and 
the positive ion gas. We will use the subscript e for the electrons and 
i for the positive ions, ν for the velocity of the electrons and w for that 
of the ions. 

If the force is of electromagnetic origin one has 

F — eE + e — Λ Β. 
c 

(44) 
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One can also include other non-electromagnetic forces, for instance a 

gravitational force, which, however, is of interest only in astrophysics. 

Let us now consider the t ransport of energy. This corresponds 

to the second moment of f(t) in the velocity space Taking Q = v2 = 

Xa(va + ita)
2 and substituting in eqs. (30a,b,c) we get for the three 

terms : 

3 _ Γ 3 
1 st.: —-— [n t r + 2 1 fua

2 d~] = ——■ (v2 + 2 ua
2) · re 

θί α 9ί α 

2nd: 3 Γ 
2 \ fVi (va~ + Ua

2 + 2 Valla) dir = 
dt a J 

α J m 

= 2ϋα
2 and 

3g¡ 

3 * A 
Va- d-

OVj 8 F < - „ 

lva-Vi + 2 (v;Ua
2 + 2vaUaU, + UiUa

2)] 

2 Fi 
3rd: — 2 \ ƒ va

2 d- = v¡ re 

whc 
3 Vj 

Apart from the expression nrei(iiau,·), which is the pressure-tensor 
p a¡ already discussed on pp . 101-102, a new quant i ty appears, i.e., the 
vector Q i = y2mn 2 u¡ua

2. The physical meaning of this vector is 
α 

related to the heatflux. Let us recall tha t X y2nmüa
2 is the density of 

α 

internal kinetic energy of our fluid, which in thermal equi l ibr ium can 

be described by 3/2nkT. Evidently Q¡ expresses the heat t ransport in 

the ith direction, due to ü¡. Using this nomencla ture and calling 3p = 

2 remûa
2, the second moment of the BoltzmannVlasov equation can be 

α 

written as follows 

3 3 dvi Λ ( 1 3 A 9 , _ 

9f 9g¡ dq, ) \ 2 2 ) dqi 

dQi Fi 
+ .  ^ pvi = 0. (45) 

9g¡ rei 

In deriving the successive moments of the BV equation each new and 

higher moment required the definition of a new quanti ty. Thus in 

writing the equation continuity of flow [(eq. (32) ), the zeroth moment 

of f(v)] it was necessary to introduce the expression for massvelocitv 

vector vi, in deriving the equation for the momentum transfer (i.e., 

1st moment of the BV equation) a definition of the pressure — tensor 

Pa, was needed and the equation for energy — transfer (2nd moment) 
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required the introduction of the heatflux vector Ci· I t c a n D e shown 

that this necessity persists for higher moments of the BV equations and 

consequently the equation system of the moments is an open system 

and its solution requires the knowledge of one of the moments of 

f(v) in the velocityspace. In many cases of physical interest we may 

assume the f(v) or its moments approximately known, in which case 

the system of moments of the BV equation can be truncated at a 

moment of a certain order. 

3.3.2. RELATIVISTIC CASE 

Let us try to integrate the relativistic Boltzmann equation (21). 

We shall assume that in the frame S' moving with a speed ν the /distri

bution is Maxwellian with a mean thermal speed s' = V M ' 2 (fig 53). 

- « 

5 space 

¿"space 

Fig. 53. 

In the laboratory frame S the circle C' of S' (corresponding to s') 

is mapped on a curve C. The transformation that maps s' velocity 

space on the s velocity space is the theorem for the relativistic addit ion 

of velocities. In the s' velocity space 

H df df ƒ'« 
dv't 9i>'„ dv'z Û' 

T h e ratio of densities re and re' is simply 

4/3-(/7' 

1 

(--ST 

(46) 
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which is the mean γ for the particles in the S-space. 
Also 

"* - "·" - "-ι ""' - "-= (A7\ 
- z z - z n 7 » ^z^ — 7 · t 4 7 ) 

11 x 

Let us mult iply eq. (25) by ν and assume that the ux, uu, uz are small 
in comparison with C. Then 

?ƒ — — i 3/ 
(»re) + V(rewu) + V(nvv) + \ F¡ rreio^y"1 dir 

ι dv; 
dt .! dvi 

+ \V{F1* FzV)^^dTT\Fz^v^diT = 0.(48) 
.1 I, 9ws 3 f ¡ J rei0c

2
y J reioc-γ 9i;~ 

1Γ 7Γ 

The integration of this equation is too complicated to be performed 

here. Instead we shall use a simpler argument to obtain a fluid equation 

whose form is essentially the same as that of the integrated eq. (48). 

In the absence of random speeds, i.e., in the l imit of ux = uy = uz 

=■ 0, the equation of the flow of momentum is the well known hydro

dynamic equation 

dv —  F ι F« 
+ v grad · ν = — + { . (49) 

θί m-oy m o 7 3 

I t is possible to define additional transversal and longitudinal forces 
representing pressures in a gas in which ü ^ O . From eq. (47) it 

follows that 

grad j. ρ = 

grad ρ,, = 
9g„ 9g„ 

Waiting 

m0lF
2 = kT' (52) 

and adding the pressure terms (50) and (51) to eq. (49) we get 

dv  ,  F ± F , 1 d(nkT'yi) 
+ ν grad · ν = h 

9reire iu i
2 

dq. 

9rerei||U||
J 

= rei0 -

= rei0 -

9reu'2y_1 

dqi 

dnu'2y~l 

(50) 

(51) 

9ί iio7 m„y3 rei0rey 9gi 

1 d^kT'y-1 

m0ny3 9g,| 

which is the equation for momentum transport in a relativistic gas. 

(53) 
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3.4. Fluid Models 

The moments of the BV equation can be writ ten in several different 

ways, according to the physical situation studied. 

As plasma is a medium composed of ions and electrons we shall need 

two systems of equations, one for the ion gas and one for the electron 

gas *. Let us denote the quantities related to electrons by a subscript e, 

those related to ions by a subscript i, except the masses and flow velo

cities which will be labeled m, M and and v, w respectively. 

In absence of dissipative processes (collisions, turbulence) and prov

ided energy transport equations are either un impor tan t or can be 

approximated by simple equations of state, it is possible to describe a 

plasma by continuity of flow and momentumtransport equations. These 

are 

LL + γ (nev) = 0, L + ν (nuo) = 0 (54a,b) 
9i dt 

dv e f 1 "\ V(neUejUek) 

<t 

f IV 

(54c) 
e ( 1 1 

+ vV · ν = E H ν AB i — 
rei ^ c j 

, ττ e f i r , 1 o í V(re,u, ;Uit) 
+ iüV · w — £  | w Α Β (54d) 

M \ C ) H; 91 

together with Maxwell's equations 

V Λ E = 

V · E = 

1 9B 

c dt ' 

4ττβ(ηί — ne), V · B = 0 

1 «E 
V Λ B = 47re(re¡tr — re,.!;) Η 

c 9t 

(55a,b) 

. (55c,d) 

These equations represent the simplest nonrelativistic twofluid model 

of a plasma. This model is useful with plasmas in which the system of 

electron and ion gases is far from thermodynamic equil ibr ium, such as 

e.g., in twostream plasmas. 

If ei ther of the plasma components possesses a relativistic flow speed 

(this is usually the electron gas) one has to use one relativistic equation 

of momentum transfer, such as eq. (53) and one nonrelativistic equation. 

Such a formulation is always possible as one can choose a system of 

reference in which one of the components is at rest. Thus assuming 

the ions to be nonrelativistic 

"i7 — j — = — <*ιι (» Λ β)ι ι 5 ( 5 6 a ) 
V di J n c dg,, re,. 

* Wc shall consider only once ionized atoms. 
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my 

cw 

e E ^  t c A B ) ,  — '""'""' " (56b) 
c 

' di? ì 

, d i J j. 

el 1 Ì 
 + w grad · w = — £  | w A Β — 

β
 M l c J 

9 

3g, 

P Ì 

(neuL 

ne 

V(rapii, 

27) 

W|>) 
(57) 

This describes the relativistic twofluid model (the equations of con

tinuity being the same as in the nonrelativistic case). 

In many cases of interest the flow velocity for both components is 

smaller than the mean thermal speed of the ion gas. In that case both 

components occupy the region of the velocity space near the origin 

(fig. 50). If the extension of the system one studies is very much larger 

than the Debye wave length one can assume a nearly neutral plasma, 

i.e.. a plasma in which the densities of the two components are almost 

equal everywhere. In such a case, the movement of both components 

is coupled to such an extent tha t it can be represented by equation 

for a single fluid. One may define the following quantit ies associated 

with such a fluid. 

Plasma density ρ = re(rei + M) (58a) 

Plasma momentum pV = n(mv + Mw) (58b) 

Current density j = — n e ( v — w) (58c) 

Charge density σ = (re+—re_)e. (58d) 

The equations of continuity can be writ ten as a law of conservation 

of mass and an equation for electric current and charge. Thus adding 

and subtracting eqs. (54a,b) we get 

+ V ( p F ) = 0 , _f_ + v j = 0. (59a,b) 
9t 9t 

Let us now form the sum of the momentumtranspor t equations, i.e.. 

rem X eq. (54c) + nM X eq. (54d). We obtain 

/ dV 

[~oT 

rei Λ 

Η v grad · ν + u> grad · w = 

1 
 σΕ \ j Α Β — V[n(mueue + Mupup)]. (60) 

c 

Substracting eq. (54c) from eq. (54d) both mult ipl ied by ne, we have 

IL 
dt 

dn Mv + mw Νπ 
+ e(v —■ w) h e2re Λ B + eV[re(weMe — «„Wp)]. (61) 

9t Mme 

en(v grad · ν — w grad · w) = e2n — ) \ E 

\m M ) 
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Our assumptions are equivalent to considering a plasma which is 

not far from thermal equil ibr ium, i.e., in which muf ·—' Mup
2 and 

V
2
 <ξ. Uf, W

2
 <^ Up

2
, UjUk <ξ. Ulf. 

With this eqs. (60) and (61) can be simplified to 

dV 1 
ρ = — j AB + σΕ — Vp (62) 

9i c 

dj 1 9re e2re 

9t re 9t 
E +—VAB] 

l c J 
• j A Β + — Vpe. (63) 

rei 

As the flow of the electric current is given mainly by the motion of 

electrons having a velocity v, whereas the variation of plasma density 

is related to the ion motion (velocity w) we shall neglect the term 

1 3re 1 dj 

in comparison with — . In cases where p e ' ' Pi r> y2p 
re dt j dt 

we may write the last equat ion as 

dj e2re / 1 "\ e e 

91 

'η ( 1 ~\ e e 
_ ¡E + — V Λ B\ j A Β + y2 — Vp. (64) 
ι I, c ) mc m 

The eq. (62) has the character of an equation of motion, whereas 

eq. (64) is known as the generalized Ohm's law and the terms on its 

righthand side can be interpreted as electromotive force, electromotive 

force induced by moving through a magnetic field, the Hal l electro

motive force and the thermoelectric force. These are the equations of 

the singlefluid model. The surface representing ü¡ in velocity space 

often possesses central symmetry, in which case 

2 Σ "»«* = Σ Σ 8iku,uk 
i k i k 

and the terms 

9pjt¡ 
rei · VniijU/; = (65) 

9g;.· 

where pk¡ is the component of the pressuretensor. 

In many cases the energytransport and dissipative processes may alter 

the pressuretensor, in which case it is necessary to consider the energy

transport equation for the single fluid model. This is obtained by 

summing equations for energy transport in ion and electron gases 

(eq. (45) ) and adding to this sum eq. (62) mult ipl ied by V. The result is 

(  ^ + V · v) (3 /2p + l /2p V2) + V · (Q + pikVk) = E (j + aV). (66) 
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All this is not applicable to systems in which pV2 >̂ p. In these, 

al though ρ may be sometimes neglected, the pW · V may often be 

important (e.g., centrifugal forces). 

The single fluid model can be still further simplified for situations 

in which the inertial term may be neglected, where pressure is isotropic 

and where the moving particles of one fluid experience friction against 

the other fluid. This friction force F0 will be assumed proport ional to 

the difference between the flow velocities of the two components. Thus 

Mm 
F„ = ν re (w — v) 

M + m V 

rei 

= ν - j. :67) 
e 

Eqs. (62) and (63) become 

— j A Β = grad ρ 68) 
c 

e
2
re ( 1 Λ e e 

ν j = E H V A B j A B + — grad pe 
m y c ) mc m 

(69) 

Substituting eq. (68) into eq. (69) one obtains 

r 

v J E + —VAB 
c 

e 
■— gradp, , . (69a) 

/re 

These equations are often used in analysing equi l ibr ium configurations 

in a magnetic field. 

In the hydrodynamical t reatment of conducting fluids in a magnetic 

field one is often justified in put t ing 

v = 0, grad ρ <̂  forces of electromagnetic origin 

In that case eq. (69a) reduces to 

Ε = — — V A B. (70) 
c 

At this point it is convenient to use Maxwell's first equat ion which 

reads: 

curl E = — — — B. 
c 9ί 

Combining this and eq. (70) one obtains 

dR 
= curl (V A B). (71) 
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The eqs. (70) and (71) are known as the hydromagnelic equations, and 

the corresponding system of approximations as the hydromagnelic 

approximation. 

More complicated fluid models than those discussed sofar can be 

constructed out of eqs. (56a,b), (57). One of these is a threefluid model, 

the fluids being a relativistic electron gas and two components of a 

plasma whose flow velocity are lower than the mean thermal speed. 

The appropr ia te equations are then eq. (56) and eqs. (54) and (55). 
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potential 
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CHAPTER 4 

EQUILIBRIUM CONFIGURATIONS 
(Plasmastati es) 

Introduction 

In this chapter we shall discuss the equi l ibr ium of some typical 
plasma configurations. As in equil ibr ium the values for plasma density, 
velocity and tempera ture remain constant the time-variation term 
in eq. (3.62) drop out and the forces acting on plasma are considered, 
to be constant in t ime *. We shall use mostly the fluid models for the 
description of these equi l ibr ium configurations; however, occasionnally 
it will be instructive to interpret the results in terms of the motion of 
individual particles. 

The simplest example of plasma equi l ibr ium is an isothermal plasma 
of infinite extension, with no macroscopic internal fields. Such a 
situation is often approximated in the positive column of large electrical 
discharges. 

As soon as one considers a bounded plasma, pressures arising from 
gradients in plasma density and temperature appear which cause a 
flow to the boundaries. In order to reach an equi l ibr ium one must 
either supply fresh plasma ** at the rate at which it streams away 
or one must balance the pressures by some system of forces. The lat ter 
is achieved on the cosmic scale by gravitational forces, and on the 
laboratory scale by forces of electromagnetic origin. These forces 
balancing the plasma pressure are often called the confining forces 
and if a balance is achieved the plasma is said to be confined. 

The confinement by electromagnetic forces can be of four types: 

1. purely electrostatic, 
2. magnetostatic and electrostatic, 
3. magnetostatic, 
4. high frequency electromagnetic. 

* This does not exclude the steady radiation pressure of alternating electromagnetic 
fields. 

** This is connected with the problems of diffusion and will be studied in 
chapter 8. 
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Examples in the first class are rare. One usually requires a plasma 
in which the electron charge density is only partially neutralised by 
the charge of positive ions (ref. 1). 

The second class contains mostly situations in which the electron 
gas is immobilized by a magnetic field whereas the positive ion gas 
is bound by an electric field to this core of the electron gas. Such 
confinement can be better understood by comparing the radius of 
gyration ρ of electrons and ions with the dimensions D of the confined 
plasma. The confinement is characterised by the inequality 

pe < D < Pp. (1) 

When the confining magnetic field is so strong that 

pe < pp < D (2) 

one obtains a situation belonging to the thi rd class. Although the 
inequality (2) suggests an independent magnetostatic confinement of 
both plasma components one cannot disregard a confinement mecha
nism of the second class operating in this case too. This mixture of the 
second and third class situations occurs when 

d < pp < D (3) 

where d is the Debye shielding distance for the positive ions. This partic
ular si tuation applies to almost all plasma configurations encountered 
in the research on thermonuclear reactions. 

In the fourth class are configurations in which the plasma pressure 
is balanced by radiation pressure of a high frequency electromagnetic 
field. As this type of confinement relies on the reflection of h.f. fields 
by the plasma we shall mention this problem in chapter 5, which is 
devoted to oscillatory phenomena in plasma. 

The examples of plasma equilibria studied in this chapter are drawn 
mainly from classes 2 and 3 of electromagnetic confinements. 

4.1. Plasma in an External Magnetic Field 

When only external magnetic fields are used for the confinement 
of plasma one is usually not interested in confining a plasma one of 
whose components possesses a large stream velocitv. 

It thus follows that a plasma in an external magnetic field can be 
adequately described by means of the single-fluid model. On the other 
hand, owing to the anisotropic nature of the Lorentz force it can be 
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expected that the velocity distribution of both the electron gas and 

the positive ion gas will be somewhat anisotropic. 

The equations corresponding to this model are eqs. (3.68) and 

(3.69a) in which v¡ — 0. 

Thus . 

c gran ρ = j A O (4) 

E + — V A Β = grad pp . (5) 
c ene 

The field intensities E, B, the current density j , and the charge density q 

are related by the t ime independent Maxwell's equations. 

Thus 

curl E = 0 (6a) 

curl B = j (6b) 

c 

div E = 4nq = Ίττα(ηρΖ — ree) (6c) 

div B = 0. (6d) 
Let us consider first a plasma with an almost isotropic velocity 

distribution. Using eqs. (4) and (6b) we get 
4π grad ρ = (curl Β) Λ Β . (7) 

Equat ion (5) does not contain addit ional information on the distri
bution of Β and p, this can be determined from the equations (7) and 
(6d) alone. We shall write these together as thev are the basic equations 
for the calculations of plasma equil ibria 

VB = 0 (8) 

VB2 — 2 BVB = — &VVp (9) 

and mult iplying eq. (40) by Λ Β we get 

Β Λ grad ρ 

Β-
(10) 

At this point one may make a fundamental observation. 
I t follows from eq. (7) tha t the pressure-gradient is perpendicular 
to Β and j (fig. 54). This can also be expressed by saying that the 
magnetic field-lines and stream-lines of electric current are loci of 
constant plasma pressure. 

In many geometries the term Β V · Β = 0 and eq. (9) can then be 
integrated with respect to r. One gets 

B 2 

ρ + = const. (11) 
Q 
07Γ 
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, <yàdp 

Fig. 54. Current densities in a plasma 
confined by a magnetic field. 

This shows clearly the diamagnetic behaviour of plasma in a magnetic 

field; as the plasma pressure increases the magnetic field inside plasma 

decreases (fig. 55). Evidently B2/8ir can be regarded as a magnetic 

pressure and eq. (11) represents the balance of this pressure and the 

pressure of plasma. 

Btø.nM 
A 

Fig. 55. Magnetic field and particle 
density in a confined plasma. 

It is instructive to interpret the fluid description of this simple 

plasma - equi l ibr ium in terms of particle orbits. Each particle will 

exhibit three types of motion 

a) a cyclotron motion with a frequency ω,. = eB/mc, 

b) a drift motion due to the non-uniformity of the magnetic field, 

c) a drift motion due to the presence of the radial electric force 

E = grad pp. 

Only the first two motions give rise to a current distr ibution *. The 

corresponding current densities can be evaluated as follows. 

* When tile grad pP is large the c) drifts generate electrical currents. See p. 118. 
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Each gyrating part icle possesses a magnetic moment (eq. (2.29) ). 

In a plasma with a Maxwellian velocity distr ibution one can express 

WL = kT. 

T h e magnetic moment density is then 

reA;T„ p s 

M — — = where s = e, p. (12) 
Β B * 

The current density generated by this magnetic moment distr ibution 

« . = « £  · (13) 

dr 

The drift velocity of the electrons due to inhomogeneous field is 

9B 

ν = — - J £ - kT (14) 
e ß 

and the corresponding current density 

9B 

9r 
ι 2 = — cp . (15) 

The total current density is, therefore, * 

c op 
i = i 1 + i s = — — —  (16) 

Β 9r 

and the magnetic field follows from 

3(Pe + Pp) 

1»
 d B

 Λ
 d r 

curl ß ^ = — 4TTdr Β 

dp 1 9B2 

cr 8TT dr 

which is the same as eq. (11). 

(17) 

* The cancellation of i? and the term — c(p/B2) (dB/ir) of i, has been analysed 
in detail by L. Tonks (Phys. Rev., 97, p. 1443). The term — c(p/B") (dB/dr) is shown 
to represent a circulating current due to the gradient in the radius of gyration of the 
confined particles. 
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In order to examine to what extent the ions are electrostatically 

confined, let us make use of the, so far neglected, eq. (5). 

Multiplying eq. (5) vectorial! y by B, we have 

I 1 1 
VB2 — B(VB) = CBA — E + grad p p 

{ en ) 

giving VL = c  —  Λ — E + g radpp . (18) 
B \ en ) 

For infinitely heavy ions, exercising a pressure p , , the confinement 

cannot be other than electrostatic and therefore, 

VpP (19) 
en 

in such a case VL = 0. This field is also called the ambipolar field E a . 

On the other hand, one can imagine tha t the magnetic field can be so 

strong that even ions are confined magnetically and then E =■ 0 and 

Vx = —L— Β A VpP. (20) 
ereß2 

This formula can be rewrit ten using pp = pe = nkT, Τ = const., 

JWT Mvt 
vt = \ / and ρ = as follows 

V M P e/cB 

in 

ρ dx 
Vx = υ,4·— · (2D 

2 11 

This can be interpreted considering two adjacent ion orbits a and 

b, whose plane is perpendicular to Β and to Vre (fig. 56). The centra of 

these orbits are 2p apar t and consequently if the number of particles 

circulating in the orbit a is proport ional to re, the number in orbit b 

dn 
is proport ional to re f· 2p . Let us observe a strip of the σ plane 

dx 

intersected by these particles. The net flow of ions is proport ional to 

9re 
ν, ρ . The same argument gives the same flux for electrons, however, 

dx 

since electrons are much lighter than ions the net massflow is essen

tially given by the flow of ions, hence the expression for V L ^ 0, eq. 

(21). 

We see now that the VL exists only because of the gradient in density 

of the magnetically confined plasma. 

Let us discuss now the criterion determining whether the ions are 

confined electrostatically or magnetically. I t is evident tha t when the 
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Fig. 56. Flow generated by charged particles 
with density gradient in a magnetic field. 

ambipolar field is so strong that the ion-motion on a Larmor orbit is 
sensibly per turbed, the ions begin to be confined electrostatically. 
Thus in order that the ions are confined magnetically, the energy gained 
and lost from the ambipolar field along the orbit mus t be much smaller 
than the mean kinetic energy of the ion in one degree of freedom. 
This can be expressed as 

2P+eE < y2kT 

where from eqs. (18) and (19) 

E < Ea = 
kT on kT 

dx 
1 

Ί5 
where D is a distance characterizing the n(x) 
criterion (22) becomes even more stringent if we put 

2pteEa < y2kT. 

(22) 

(23) 

distribution. The 

(22a) 

Substituting for the E„ we get a criterion for the magnetic confinement 
of the ions 

P+ < VJ>. (24) 

Example: Let Τ = 108(°K), Β = 100 (kG) then for deuter ium 
p+ r-> 1.5 cm and D >̂ 6 cm (e.g., D = 50 cm). This shows that ions in 
experiments on controlled fusion are not, in most cases, confined purely 
magnetically. 
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When the criterion is not satisfield the orbit analysis of pp. 114-115 
is not valid since the non-uniform distribution of re, Β and E no longer 

permits us to assume that the drifts due to E = 1 grad pi do not 

induce electric currents. In order to see this clearly let us suppose that 
p, >̂ D. In such a case a boundary layer of positive charge develops, 

MH 

**x 
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which is held to the electron current region (D thick) by the electric 
field E (fig. 57). This boundary layer and electric field resembles very 
much the situation of a Debye-layer, whose thickness is d, discussed in 
chapter 1, on page 8. I t is clear tha t the E field does not cause any 
drift in the ion gas since its extension is only D + d <̂  p+ and our 
formula (2-79a) corresponds to a whole ion orbit and not to only 
a small section of it. If, on the other hand, p_ < d the electrons drift 

Ea with a speed ve = c which corresponds to a Lorentz force 

D 
F = neDEa ~ nkT — (25) 

d 

using the equation (25) in which D ^ d, F is, therefore, equal to 
nkT, the pressure of the ion gas. 

The criterion for an electrostatic confinement of the ions is, therefore, 
not simply an inversion of the inequali ty (22), bu t 

P> > d (26) 

as already mentioned in the introduction to this chapter . 
Even this model of the electrostatic confinement within a layer d thick 

kT \ Λ 
is not realistic, as in such a case the »e is equal to c where 

4 ed Ba 
Ba r~- y/4nrnkT and therefore, ve <— c. In order tha t ve ^ vte as requires 
the assumption of small per turbat ion of the cyclotron motion of the 
electrons, the electric field must be distributed over a thickness 

c c 
D' ^ d = . This thickness is also known as the collisionless 

Vte ω ρ 

skin-depth (see later, p. 153). This consideration yields, therefore, 
another and more precise criterion for electrostatic confinement of the 
ions, i.e., 

P+ > · (27) 

Finally a word on the basic equations (8) and (9). 
Any magnetic field distr ibution satisfying eq. (7) determines a 

certain pressure distribution. However, inversely a pressure distr ibution 
could determine a magnetic field whose divergence does not vanish 
everywhere or the generation of such a field might require an addit ional 
current distribution within the plasma. 

An example of the latter is a spherically symmetrical pressure 
distribution where 

ρ = const, for r = const. 
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and therefore, according to eq. (43) Br = 0 and 

θρ 1 d(Bf + ß„„2) 

9r 2 ΘΓ 
const, for r = const. 

This requires that dBg/dr and dB,fl/dr do not vanish simultaneously 

on the spherical surface r = const, and therefore, the existence of a 

current distribution ir in which there are at least 2 poles at which 

ir—> co (fig. 58). We shall see later that if al ternating Β fields are 

admitted a spherically symmetrical distribution of pressure can be 

generated. 

Fig. 58. Supplementary currents needed to realize a given pdistribution. 

4.1.1. CYLINDRICAL AND CUSP GEOMETRY 

Many complex and interesting plasma configurations can be obtained 

by the superposition of cylindrical and cusped magnetic fields. 

Let us consider first the case of a cylindrical field produced by a 

current loop and an infinitely long solenoid (fig. 59). The field on the 

axis is 

BA = Bo + B I f(z) (28) 

21 
where Bu is the uniform field of the solenoid and Bi = , / being 

R 
the current in the loop and R the radius of the loop. Let us introduce 

oVp 
plasma into a flux tube φ on the axis. If β = —— <ζ 1, then evidently 

B 2 

the flux tube will change its form only slightly. Let the radius of φ in 

absence of plasma be r{z) <̂  R and let us assume tha t the region in 

dp 
which φ 0 is D thick and is relatively thin, i.e., tha t D <ξ. r. 

dr 
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""in 
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Fig. 59. 

The surface current induced on the plasma tube is given by 

i.e., 

— i-BA = p 
c 

Β 
(29) 

In equi l ibr ium we know tha t ρ is constant along lines of force and 

consequently i a —. 

If r <^ R the field Bp corresponding to this current distribution can 
be approximated by tha t of a solenoid whose current per uni t length 
is i. Thus 

B„ 
Ίττ β 

i = L· BA 
c 2 

ß„ 
β 

Bu f (ζ) 

(30) 

(31) 

This is the magnetic field due to the diamagnetic behaviour of the 

plasma. T h e total field is, therefore, 

Β = BA + Β -ΜΗ) (32) 

Since the total flux φ must remain constant even after the intro

duction of a diamagnetic medium it follows that the flux tube must 

expand. Thus 

πΒΛΓ2 =ττΒΑ i l — £ j ( r + Δ Γ ) 2 
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from which 

ΔΓ = L β. (33) 
4 

The tube expands more the larger is its radius, i.e., the weaker is the 

vacuum magnetic field Β Λ . 

Let us now consider the other extreme, i.e., β = 1. This means tha t 

a tube of plasma is able to exclude completely the vacuum field BA. 

We can imagine, e.g., tha t the axial region is in a direct contact with 

a large reservoir of perfectly conducting plasma at a pressure p . 

Such a plasma is known as a "freeboundary" plasma. The field Β 

must be parallel to such a boundary 2 and since ρ =: const, on % it 

ρ 
follows tha t Β = const, on 5 and also that i = 2c — = const, on 2 . 

Β 

It is clear that if B 0
2 < Snp no equi l ibr ium is possible, i.e. the plasma 

will completely enclose the currentloop I. However, if we assume tha t 

the B 0 field is generated by currents in a solenoid whose radius is B 0 , 

then the flux  Ru
2Bo is conserved within this solenoid (the flux 

B0R
2 is conserved within the loop in any case) and a plasma equil ibr ium 

becomes possible. The selffield of i is as before 

4π 8πρ 
— ß„ = ¿ = 

Β 

where Β = y/8p — Bp. 

The solution at |z| ^> ß is obtained from B(R0
2 — r0

2) = BoBo2 

and ß 2 = 8p and it is 

ro = Ro \ / l = · (34) 

Near the loop, four solutions are possible. In the first and second all 

or none of the plasma threads the loop (fig. 60a,b), in the third a par t 

of the plasma tube envelopes the loop and a par t threads it, in the fourth 

all the plasma envelopes the loop (fig. 61a,b). The first and second 

occur when r0 <̂  R. The presence of the plasmaconductor in the loop 

does not modify very much the vacuum field and if 

Bo + B i / > Vo>p 

the plasma cannot exist for |~| < z\, as determined from the above 

relationship. Of part icular interest is the configuration corresponding 

to 2! = 0, i.e., to 

Bo + Bi = Vö/> 
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V&rp Bx 
or b — where 6 = 1 - 1 is known as the mirror-ratio. 

Bo Bo 
In this case the field Bi is just sufficiently strong to confine the 

plasma on both sides of ζ = 0 (fig. 62). 

Fig. 62. Case of z, = 0 

The orthogonality of the grad ρ lines and Β lines enables us to use 
many well known methods of field computation, such as conformai 
mapping, to solve the problems of plasma equil ibrium. For instance, 
it is possible to transform a simple or even a trivial equil ibr ium 
configuration into a more complicated one. As an example let us 
consider a two-dimensional quadrupole magnetic field configuration, 
free of plasma. Such a field is produced, e.g., by four parallel l ine 
currents, the adjacent ones flowing in opposite directions (fig. 63). 

Fig. 63. Quadrupole confinement of a free surface plasma. 
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The vacuum magnetic field near χ = y = 0 can be expressed as * 

Bjo = bx 

BIJ0 = — by. (35) 

Let us consider a volume of plasma of such a large conductivity tha t 

the above mentioned vacuum field is completely el iminated from its 

volume. The field lines Β must be parallel to the plasma boundary. 

This gives us the first boundary condition Β · grad ß = 0 or 

A ^ A; = const, where Β = curl A. Let us integrate eq. (7) across 

such a free boundary a. One obtains 

4TT 

4ττρ = — y2B
2 = j Λ Β (36) 

c 

where ρ is a constant. 

This is equivalent to a second boundary condition. 

The other equation determining the shape of the boundary σ is 

the field equation ΔΒ = 0. 

The surface currents at the boundary σ must be able to produce 

a field 

Bx = — bx 

By = by (37) 

in order to cancel the vacuum field inside the plasma. 

I t can be shown that the curve representing this boundary is a 

hypocycloid 

x2/3 + y 2/3 = fl2/3_ ( 3 8 ) 

The family of boundaries of plasmas confined by the quadrupole 

field of four parallel conductors can be now obtained by conformai 

transformation of the hypocycloid boundary. Thus , e.g., an inversion 

with respect to a circle passing through the four line currents gives 

(fig 64). 

j.2/3 + y 2 / 3 r a y/3 

(x
2
 + y

2
)

2
'
3
 ~ { a é 

(38a) 

The cusp geometry is an example of a system in which the magnetic 

B 2 

pressure increases with the distance from the centre of the system. 

* This follows from eqs. (6b and d). Thus if div β = 0 and curl ß = 0 we have 
curl ß = — ΔΒ + grad div Β = 0. Therefore ΔΒ = 0. 
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Fig. 64. Two free surface-plasmas related 
by inversion with respect to the circle C. 

This : from 

β 2 b2(χ2 + y2 (39) 

I t is evident that the pressure increases with both χ and y. 
It is possible to add a constant bz field to the B^By field of a cusp. 

The magnetic pressure distribution has still a min imum on the z-axis, 
though this min imum is relatively more shallow than that of a purely 
cuspidal field. Superimposing the Bz field we have eliminated the 
zero-field on the z-axis. The system is known as the "stuffed cusp" 
and is a good example of a class of magnetic configurations called 
the non-zero min imum Β configuration (see p. 208). 

4.2. Confinement by Magnetic Fields Generated by 
Currents in the Plasma 

4.2.1. NON-RELATIVISTIC STREAMS 

Let us treat first the case of a non-relativistic axial electron flow in a 
cylindrical plasma. 

We shall use the two-fluid model of a plasma and restrict ourselves 
to the case of fully ionized hydrogen of such low density tha t electron-
proton collisions may be neglected. 

The vector equations (3.54c) and (3.54d) can be writ ten in cylindrical 
co-ordinates and for a current flow parallel to the z-axis as follows: 

dv. 
~dt 

dV; 

~~dr~ 
W r -

l l lC 
(cEo + cE' + vrB), (40) 
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dvr dvr e 1 9pe 
+ — vr = (cEr — V;B) f—, (41) 

9/ 9r mc nem dr 

"' wT  '  (cE0 + cE' + ivrB), (42) 
dt or Mc 

dwr dwr e 1 9pp 
+ wr = (cEr — W.B) , (43) 

dt or Mc npM dr 

where v., vr and wz, ivr are the z and rcomponents of », w. E0 is 

the applied electric field, E' is the selfinduced electric field generated 

by dB/dt, Er is the electric field due to a radial electronproton space

charge separation and B is the azimuthal magnetic field of the axial 

electric current. 

We now invoke the assumption of charge neutral i ty of the plasma 

and let 

This assumption results in neglecting radial oscillations of the 

electron gas with respect to the protons. This is justifiable as the 

processes of plasma contraction are slow compared with electron oscil

lations (chapter 5). 

T h e radial electric field can now be eliminated from eqs. (41) and 

(43). 

Also, owing to m/M <̂  1 and wzvz <ξ. 1, eq. (42) is of l i t t le import

ance. I t thus follows that only two equations need be used to describe 

the motion of the volume element of plasma column. These are (put

ting vz =■ v) : 

(44) 
9» 

dt 

CIV 

dv 
+ w 

9r 

dw 
+ w 

= 
eE0 

m 

vB 

eE' 

111 

1 

e 

111 

11! 

c 

, + 

β , 

p j . 
dt dr Mc nM 

(45) 

The fields E' and B can be expressed by means of a vector potential 

A having an axial component only; hence 

E' =  1 ™ (46a) 
c 9( 

dA 
B = . (46b) 

9r 
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From Maxwell's equations one obtains the relation between A and 

the current density 

1 9 ( dA \ 1 d2A ATT 
r — + —, r = i (47) 

r 9r ^ 9r J c2 9i2 c 

To these equations must be added finally the equation of continuity 

9re 

h div nw = 0. (48) 
9t 

Substituting (46a) and (46b) in eqs. (44) and (45), expanding eq. (48) 

and putt ing i — — nev we get the following system of equations : 

dv 

dt 

CIV 

dt 

+ w 

+ w 

— 

dv 

dr 

OW 

or 

r 9r 1 

9re 

e e dA 
E„ + ■ —— 

rei m c θ ί 

e cA 1 

Mc cr nM 

' dA \ 1 d2A 

k 9r J c2 9t2 

+ -

9 
9r 

= -

9re re 9 
w Η (rw) = 

dr r dr 

e dA 
W s ' mc or 

(Pe + Pp) , 

4TT 

c 

: 0. 

(44a) 

(45a) 

(47a) 

(48a) 

At this point the connexion of the pressures p e and p p with re, 
r and t must be introduced. Assuming a nearly Maxwellian distribution 
of random velocities in the electron and proton gases with temperatures 
T e and Tp, 

p e + pp = nk(Te + Tp) = reA-T. (49) 

In general, T e and Tp as well as re may be functions of the radius r. 
However, in most cases of interest the conduction and convection 
of heat in the cross-section of the plasma column is sufficiently intense 
to assume that the plasma is isothermal, i.e., * 

9Te 9Tp _ 

?r 

* Assuming that all changes of volume are adiabatic it can be shown that T obeys 
the following differential equation 

R 
3Γ 47Γ τ ι" a 

. = I „ (ru.) dr, (50) 
dt 3 Ν J dr 

ii 
where Ν is the number of electrons per cm length of the plasma column. 



CONFINEMENT BY MAGNETIC FIELDS 129 

In principle, using eqs. (44a) to (48a) and (50), one can determine 
the dependent variables v, w, re, A and Τ as functions of the indepen
dent variables r and t. 

Let us find the solution corresponding to a steady state, i.e. a case 
for which 

= 0, E 0 = 0, w = 0. 
dt 

The only equations that are not identically satisfied are eqs. (45a) 
and (47a), which become 

dA kT — dn/dr 
-!—> (51) 
re 

ree». (52) 
c 

The solution of these equations corresponding to » = const, is the 
well known Bennett distr ibution 

(53) 

9r 

1 9 
r dr 

(ev/c) 

ir dA ) 
I dr , 

{ l + r 2 / r 0
2 } 

where 

e-
mc2 

ich can be also written as 

e'2 N = 

n„ 

- V 

kT 
y2mv2 

kT 
(54) 

mc2 y2mv2 

where Ν is the electron line density and e2/mc2 is the classical electron 
radius. 

The plasma column is evidently a very sharply defined structure, 
one-half of its mass being concentrated within the cylinder of radius 
r0 (and 90 % of its mass located within r = 3r0) . 

This result and eq. (53) can also be obtained by considering the 
Boltzmann distributions of electrons and protons in their respective 
rest systems, due to each other 's electromagnetic fields (ref. 2). 

e 
Defining as the total current I = — Nv we can also wri te eq. (54) 

c 
as 

Γ- = 2 NK(T, + T_) (55) 

known as the Bennett 's relation. 
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This can be also derived directly considering a superficial current 
/ 

density i = . In order that the plasma pressure 2nkT can be 

B2 2 / 
balanced by the magnetic pressure , where Β = there must be 

nk(T+ + T.) = 

8,7 ' r 

1 /2 

%, 

2Nk(T+ + T.) = / 2 

I t can be shown that eq. (55) is qui te general and is valid for any 
distr ibution of re and » (ref. 3). 

It is interesting to follow the trajectories of individual particles in 
such a stream. The character of the trajectory depends on the ratio 
of stored magnetic energy WM to the kinetic energy of the electron 
flow WK· When the lat ter predominates the electron trajectory is 
sinusoidal, whereas when the magnetic energy is larger than the 
kinetic energy, the trajectory resembles a trochoid (fig. 65). 

Fig. 65. Motion of electrons for v < 1 (S) and for v > 1 (T). 

This criterion can he derived from the comparison of the radius of 
gyration pe of the electrons at r0 and of the radius r0 of the stream. 
The condition corresponding to the trochoidal path is 

pe < r0 

which is 
e 

rei» < —ΒοΓ 0 , where Bo = B(r0). c 

Using eqs. (51), (53) and (54) this becomes 

v > 1. (56) 

The smooth trajectory of fig. 65 corresponds to v < 1, whereas 
the tightly wound trochoid of corresponds to v > 1. 
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This is approximately equivalent to the above mentioned energy

condition as 

W* 

WK 

i / 4 J B 2 r d r 
o 

R 

τττην2 j nr dr 

7^('^P' 
where R ^> r0 . 

Thus 

The term 

W\ 
1 + 2 In 

ß 

r0 

WK 

1 + 2 In 

2 -

R 

r0 

(57) 

2-

in most cases does not differ from unity and therefore, eq. (56) can 

be also interpreted as an energy criterion. 

4.2.2. RELATIVISTIC STREAMS 

As a second example of plasma confined by selffields we shall t reat 

briefly the equi l ibr ium of a relativistic electronstream whose geo

metrical form is that of a shee t* (fig. 66). This can be done using 

the relativistic twofluid equations (56a,b) and (57) in chapter 3. 

* This model resembles a section of the E layer as proposed in the Astron fusion 
experiment (ref. 4). 
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Neglecting the scattering and radiat ion loss and assuming tha t in a 

relativistic case »j = constant, an equil ibr ium is possible if 

d 
E,, = 0', —— = 0, ν, = w± = ι»,, = 0, Ej. = E, 

dt 

»H = » = const., B i = By = Β. 

Eqs. (356) and (357) reduce to 

» 1 dpe 
eE = e — B ■ — (58) 

c ree dx 

1 dpp 
eE = — (59) 

rep dx 

whereas Maxwell's 1st and 3rd equations give 

9B 4rre 
ree» (60) 

= 4πβ(ιιρ — ree). (61) 

dx c 

iE 

dx 

In an isothermal and Maxwellian ensemble of particles one can put 

—— pe = kTe —— ree (62a) 
ox dx 

—— pp = kTp —— np (62b) 
dx dx 

where Te and Tp are related to the mean thermal velocity in the 

xdirection. 

From eqs. (58, (59), (60) and (62a) one obtains 

9 ( Te dnjdx dnJdx \ 4 e 2 

TPr + = — lPr—r v " ' n ' (63) 

dx \ I,, ree np ) klpc

whereas from eqs. (59), (61) and (62b) one has 

9 ( dnJdx \ Arre2 ( dnp/dx > 

dx ν n., I kT 
(np — ree). (64) 

P 

These simultaneous nonlinear differential equations are difficult 

to solve. A part icular solution is obtained if one assumes that (ref. 5) 

np = nree (65) 
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where η is a constant. In that case eqs. (63) and (64) are compatible if 

+ 1 ( 1  , ) =β2. (66) 

However, this set of par t icular solutions does not include some of the 

more realistic density distributions. We shall t reat two cases which 

are of interest here 

a) Te > Tp (Tp s 0) 

b) Tp > Te (T . S O ) . 

a) In this case eq. (63) simplifies to 

9 

dx 

( cne/dx Λ 

{ ne j 

Αττβ2β2 

kT„ ree 

whose solution is (fig. 67) : 

« 0 e 

(coshx /^o) 2 

(67) 

(68) 

Fig. 67. Density distribution in a sheet beam for Tt >̂ Tp. 

where 

" O e ^ O — 

1 kTe 
(69) 

2TT e2ß2 

which is the pinch relation for a sheetbeam. I t then follows from 

eq. (64) tha t 

"Op 

(cosh Λ;/Λ:Ο)2 
(70) 

«op — re0e > 0 as Tp  ^ 0. 

This leads us to a model of a quasineutral relativistic plasma; we 

shall call this configuration a mixed beam model. 
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b) In this case the electromagnetic forces balance the transversal 

pressure of the positive ions only. 

Eq. 63) gives 

- Í 
dx { 

dnJdx 

whereas eq. (64) is written as 

9 ( cnp/dx \ 

dx i, rep J 

Amé2 

kx„ 

Αττβ2β2 

kTr, 

( " ρ 

A solution satisfying both equations is possible only if 

— ηφ2 = n¡, — ree 

if 

ree = repy- = 
« O e 

(VI) 

(72) 

(73) 

(73a) 
(cosh x/xu)2 

If such a solution were to hold for the whole of the space occupied 

by the beam, the l inear densities of electrons and positives would 

have to be also in the ratio y2, and the solution would be of the type 

iip = ηη^ mentioned above. This corresponds to a nonphysical situation, 

as the stored electric energy tends to infinity. 

However, if one postulates an overall neutral i ty of the stream the 

electron distribution becomes cutoff at a certain distance X\. For 

χ > Xi there is only a positive ion atmosphere com ined by the electric 

field of the cold electron core (fig. 68). Eqs. (71) and (72) give for 

x < X\ 

ree = repy = , 

(cosh x/Xu)

whereas for .r > xi one has to consider only eq. (72) with ree = 0. This 

gives 

' Ί 

1 + 
X Xi 

■ ) ■ 

(74) 

«"~v,/7, 

Fig. 68. Density distribution in a sheet beam for ϊ \ . < 7',,. 
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where 

kT 

- X l 

477e2reüe(l — y~2)*o tanh ■ 

Πι = y 

Xu 

"Oe 

(cosh Χι/χ0)
2 

Matching the rep and dn^/dx distributions at χ = χχ one obtains 

for y > 1 

xi = *oy~\ χ2 Sá x0y (75a, b) 

and a p inch condition 

1 kTO 

■π mv-

where 

e
2
 f re0e dx 

v = 2 

(76) 

mc2 J (cosh * /*o) 2 

o 

This equi l ibr ium configuration will be called the cold electroncore 

model. 

4.3. Plasma Equilibrium in External and Self-Fields 

4.3.1. STARILIZED ZPINCH 

A plasma column confined by the B,( field of a current passing 

parallel to the axis of the column is, generally, not a stable configura

tion as will be shown in chapter 5. In order to improve the stability an 

axial magnetic field B~ can be superimposed. Let us discuss the 

equi l ibr ium of a plasma in such a combination of self and external 

fields. 

The nonrelativistic case can be treated using the onefluid model. 

The corresponding equations are 

(B„2 + B,2) (77) 

= 0. (78) 
0φ Cz 

I t is, therefore, possible to choose such functions Bv(r), B:(r) to 

which corresponds a p ( r ) in equi l ibr ium. 

dp 

dr 

1 

8TT 

dBrp 

9 

9r 

9B, 
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Let us first consider the case of superficial currents. In that case 
(fig. 69) Βφ

2 + Β/2 — Bi2 = 8-n-p, where Β 2 and Bi are the Β.- fields 
outside and inside the plasma column. 

Y 

Β, 

Fig. 69. Stablized Z-pinch with surface currents. 

In reality, owing to the finite conductivity of the plasma, the currents 
iz and i, spread radially and the distr ibution of Br and B; is not 
discontinuous. 

The situation becomes somewhat complicated if the plasma exhibits 
different conductivities <rll and σχ in the direction parallel and perpen
dicular to the magnetic fields. Let us assume, as an example, tha t the 
plasma pressure is negligible and that current can flow only parallel to 
the lines of magnetic field Β = Β , -f B-. Consequently 

-4- = 4V- (79) 
Ir. Β; 

where i,, and i:, the current-densities follow from Maxwell's 2nd 
equation : 
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4π r 9r 
(Β,τ), i„ = — 

dB; 

~dr~' 
(80a, b) 

The eq. (79) expresses also the pressure balance and is equivalent to 

eqs. (77) and (7i8) when = 0 (a special case of forcefree fields 

9r 

which will be discussed later on p . 140). 

Taking mean values of B , and Bz, e.g., 

where 

we get 

{Βφ) = y2B,, (B;) = Bi + y2AB = Β 

AB = B, — Bi 

Bm2 

ΔΒ = 
2 ß 

(81a,b) 

(82) 

Sheetpinch 

U« p/tich 

r 

h 

PLasma 

B 

C 

7 

i 

LD 
Β Ψ 

Plasma 

Fig. 70. The hardcore configurations. 
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This intensification of the Bz field occurs even if the conductivity 

does not assume such extreme values as considered here and the effect 

is known as the paramagnetic behaviour of a plasma (ref. 6). 

T h e geometry of stabilized pinches can be somewhat complicated 

by using a central conductor whose Βφ field is capable to create a 

cylindrical hole in a plasma. Such pinches are called hardcore or 

tubular pinches. A separate magnetic field is then required to balance 

the pressure of the plasma on the outer surface of the plasma tube. 

This can be achieved by ei ther Βφ or Bz field (fig. 70). In the first 

case the configuration is known as triax or sheetpinch, in the second 

case a nome of unpinch, has been used (ref. 7, 8). I t is evident tha t 

in equil ibr ium 

B2 

8
= Ρ = 

ß2 .n 

8π 
(83) 

whatever is the geometry of the inside and outside fields. 

4.3.2. TOROIDAL PLASMA LOOP 

Let us discuss briefly the equi l ibr ium of a plasma filament in which 

the plasma pressure is balanced by the constriction force of the 

magnetic field of a current flowing in the plasma, the position of the 

filament being determined by the force of an externally generated 

magnetic field on the plasma current. Such a model is usually called 

the string model. 

The most interesting application of the string model is to the toroidal 

pinch configuration. Let us consider a current carrying plasma beam 

forming a circle of radius R and whose crosssection is nearly circular 

with a radius r0 (fig. 71). 

Fig. 71. Field configuration of a current loop in equilibrium. 
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When 

ß 
> ι 

r0 

the pressure and the current distribution in the crosssection of the 

beam are of the Bennett type and are independent of R and the self

magnetic field at r < 2r,, can be represented as a sum of a Bennet t 

field distribution B , and an axial component B~ 

B; < B„. 

This axial field gives rise to a loop expanding force 

Fu = 2TTBZIR (84) 

where / is the total current in the plasma filament and FM is evaluated 

over the whole per iphery of the loop. 

The magni tude of this force can be calculated from the theorem of 

virtual displacement. Thus if the stored energy of the magnetic field 

of current I is W — y2LI2 where L is the corresponding selfinductance 

which is L — 4ττβ(1η (8R/r 0 ) + l/4) (henrys), the theorem of virtual 

displacement asserts that 

or 

As only L 

F8R 

F = 

is explicitely dependent 

Fu = — 2ΤΓ/2 

= — 8W 

dW 

9 ß 

on β one 

Í , »
S B 

gets 

+ 1.25 (84a) 

The force Fs[ is not the only force tending to expand the plasma 

filament. One should take into account also the centrifugal force 

Fc of the electrons and positive ions. For a hydrogen plasma 

F„ = Nm
R 

w2 Ί 
M 

R ) 
2,rR (85) 

ectrons in the filament, and 
be sho wn that, in most cases 

where Ν is the l inear density of 
rei = γίΐι0 is the electronic mass. I t can be 

την ~ Mw 
and, therefore, 

F c ==έ 2TrNm0yv2. (85a) 

In order to compare his force with the hoop force F M let us express 
the current I in terms of Ν and ». 
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Eq. (84a) can then be writ ten as 

Fu = —2π -L- N2v2 ί In + 1.25 ] 
c2 l r« J 

Let us form a ratio 

c2 | 8R 
JY In + 1.25 

(86) 
t c reioy 

I t is useful, when dealing with plasma filaments carrying electric 
currents, to define a new line density 

This is the number of electrons per e2¡m0c
2 length of the filament, 

where e2/rei0c2 is the classical radius of an electron. Using this quanti ty, 

it follows from eq. (86) that the force F M due to the selffield of the 

current loop predominates over the centrifugal force F c of the circu

lating electrons if 

Í , SB. Ì 
ν In + 1.25 

-2— - > 1. (87) 
y 

In order to obtain an equi l ibr ium it is necessary to balance this 

expanding force. This can be achieved by using an external axial 

magnetic field opposite to Bz. This compensating field is, therefore 

B'; = 
vR 

( 8B Ì 
In + 1.25 + γ (88) 

The proport ionali ty of B '  to / suggests that the field B ' should be 

produced by induction. Two induction mechanisms can be considered 

a) A betat ron type of induction, in which a pr imary current 

h cc ƒ cc Β';. 

b) Image currents. In this case the current I induces image currents 
I' on a suitably shaped conducting surface. Again I cc / ' oc B'- . 

4.3.3. FORCE-FREE MAGNETIC FIELDS 

An equi l ibr ium of hot plasma in a magnetic field generally requires 
a force distribution 

ƒ = ¿ Λ Β 
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in order to balance a pressure gradient distr ibution 

/ ' = — ƒ = grad p . 

If in addit ion to a set of currents ii there exists a set of currents i 

(i · Β) Β 
Β2 (89) 

the force distr ibution will remain unchanged. 
Let us now consider a cold plasma, or any other conductor in which 

ρ = 0 everywhere. In such a med ium a magnetic field could be 
generated by a system of i0 currents in a force-free manner . The 
differential equations which such a field obeys follows from eqs. (7) 
and (6b), i.e., 

curl Β Λ Β = 0 (90) 

div Β = 0. (91) 

Let us discuss a distr ibution having cylindrical symmetry and in 
which 9/9y> = 9/9z = 0. In this case only fields whose radial compo
nent is zero everywhere satisfy eq. (91), and eq. (90) can be wri t ten as 

d ß , 2 d ( r 2 B 2) 
r2 —— + \ Ψ' = 0. (90a) 

d r dr 

A trivial solution is, evidently, a purely axial homogeneous field 

B. = const., B , = 0. 

Nontrivial solutions would be those in which the energy density 

W = ( ß ; 2 + Β,f) could be prescribed and the individual B,p and 
8ir 

B; would follow from eq. (90a). Substi tuting W into eq. (90a) we get 

dW 
Be

2 =  y2r — (92) 
dr 

dW 
Bz2 = y2r ——+ W. (93) 

dr 

Although these equations may yield nontrivial solutions, such solu

tions can be shown to correspond to nonphysical configurations. By 

nonphysical one means that ei ther the field Β or the total stored energy 

W» = 2TT fWr dr 
o 

or some other component of Maxwell's stress tensor is infinite (ref. 9) . 
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Notwithstanding the nonphysical character of forcefree fields they 

are of interest as physically possible magnetic fields may be often 

approximately forcefree (ref. 10). 

A typical example of forcefree configurations is a thin tubular con

ductor in which the two component of surface currentdensity are equal, 

i.e., 

iz = Up 

in which case B = B,r taken at the surface of the tube, which implies 

a direct balance of magnetic pressures. In order that the conductor is 

not subjected to any pressure, the vector of current density i must be 

always parallel to B ; thus on the outer surface i = i,, whereas on the 

inside surface i — i. (configuration similar to that of fig. 69). 
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List of symbols used in Chapter 4 

A, A vector potential 

B, B magnetic field strength 

c velocity of light 

(/ Debye distance 

D length 

e charge of electron 

E, E electric field strength 

ƒ force density 
F force 
ι, j current density 
/ current 
A· Boltzmann's constant 
L self-inductance 
ni, M particle mass 
M magnetic moment density 
η number density 
Ν l inear number densitv 

/' 
q 
Γ 

R 
t 
T 
u, », 
W 
x,y, 
z 
β = 
y 
μ 
ν = 

ƒ' 

ωρ 

pressure 
charge density 
radial coordinate 
radius 
t ime 
tempera ture 

ι» velocity 
kinetic energy 

ζ cartesian coordinates 
atomic number 
v/c 
( 1 — »2 /c2)- ' /2 

magnetic moment 
e2N/mc2 normalized line-
density 
radius of gyration 
plasma frequency 



CHAPTER 5 

WAVES A N D INSTABILITIES IN PLASMA 

Introduction 

The total energy content of a plasma configuration is made up of 

four components. 

1. The thermal energy, i.e, the energy of random motion. The 

density of this energy is 

WT: = l/oiieireUr2 + y2npMup
2. 

2. The kinetic energy of ordered motion, whose density is * 

WK = i/o Σ nc,mvf + y2 Σ npjMvj2 

i j 

where i is the number of separate electron streams and j is the number 

of positive ion streams. 

3. Stored energy of electric fields in plasma. The energydensity is 

WE = E/8TT. 

4. Stored energy of magnetic fields in plasma. The density of this 

energy is Wu — Β2/8π. 

All these four energy reservoirs are mutual ly coupled through the 

motion and distribution of plasma particles and by their electro

magnetic fields. Such a coupling can give rise to either an oscillatory 

or a unidirect ional exchange of energy between these reservoirs 

(fig. 72). The equations of motion and Maxwell's equations suggest 

many such conversion possibilities. 

This chapter is devoted to such conversion processes and is divided 

into three main sections. In the first we shall study oscillatory pro

cesses in a plasma in which the motion of the electron gas plays the 

major rôle. The second section is devoted to oscillatory processes in 

which the motion of positive ions is of importance. The th i rd section 

* In a multistream plasma the distinction between the energy of random motion 
and the kinetic energy is not always very clear especially in turbulent plasmas. 
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treats the case where the energy conversion proceeds in one direction 
only. Such a process is known as plasma instability. 

jjj |-—] jj¡ 
Fig. 72. Energy exchange diagrammes. 

5.1. Electron Oscillations in Plasma 

High frequency waves in free space can be represented by a wave 
equation derived from Maxwell's equations 

1 92E 
curl curl E + = 0. 

c2 912 1.1) 

In such a wave electric energy is transformed into magnetic energy 
during each half a cycle according to the equation 

curl B = 1 9E 
et 

(2) 

In a plasma, the waves induce oscillating currents and eq. (2) must 
be modified to 

curl B = + ATT — (upZtc — ree») 
c dt c 

(2a) 

where w and » follow from the equations of motion of the two-fluid 
model of plasma. 

I t can be appreciated that the greatest contribution to the term on 
the r.h.s. of eq. (2a) comes from the electron motion and that the 
positives, owing to their large mass, can be considered in most cases 
as a stationary positive gas. 

From the same equation it follows that WE is transformed into Wu 
and into the kinetic energy of the electrons WKf. 
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The density of the kinetic energy of electrons WKe becomes com

ATT . e 
parable to WE and Wu when i = ·— 4π — re» becomes equal to 

c c 

the displacement flux (1/c) (9E/9f). 

For a harmonic oscillation with angular frequency ω the equation 

of motion for the electron gas becomes 

irejiü» = — e Ε Η Λ Β I . (3) 

In cases in which v/c <̂  1, 

« « j — (4) 
reio) 

and it follows, that only when 

e2 reE ω _ 
ATT < — E (5) 

mc ω c 

can one consider the effect of a plasma on the electromagnetic wave 

as a small per turbat ion. This criterion can be also written as 

4πβ2ιι 
ω2 >̂ = <DP

2 (5a) 

m 

where ωρ is a characteristic frequency of the electron component of 

plasma. The value of ωρ indicates also the range of the frequency 

spectrum in which we shall be interested in our analysis of electron 

oscillations in plasma. 

We shall treat first of all an infinite and uniform plasma in which 

the random velocity of the electrons is zero. However, the presence of 

a magnetostatic field will be admitted. 

The basic equations are : 

the wave equat ion 

1 92E e 9 
curl curl E + = 4π (nev) (6) 

c2 9ί2 c2 dt 

the divergence equation 

d i v E = 4τΓβ(ΖρΙ11) — ll e) (7) 

the equation of motion (eq. (3.57) ) 

9» , e 
h » g r a d · v = 

dt m 
E + — VA (B + B0) 

c 
(8) 
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and the equation of continuity 

Zn,, 

?t 
= div (nev). (9) 

In the presence of a strong magnetostatic field B 0 the term » Λ B„ 

must be retained. However, as in most cases 

\B\ < \E\ and » < c, 

the term » Λ Β will be neglected. 

If the ampli tude of oscillations is small, one may consider the t ime 

variation to be of the form e'"". This covers many cases of practical 

interests. Eqs. (6)(9) become 

ω2 e 
curl curl E — E = Arrj — <i>re0» (10) 

c2 c2 

div E = Arrenu (11) 

c 
E + — ν A B0 ì 

\ c ) 
j a» = E Η » Λ Bo (12) 

m \ c ) 

( the same as eq. (3) ) 

jiüfii = re0 div » (13) 

where we have put 

iie = n0 + ηιβ>ω· (14) 

and according to the small ampli tude model, « i <̂  n0 · 

The high frequencycomponent of the current density in the rest 

system of the electron gas is 

i = — en0». (15) 

Eqs. (10)(13) can now be written in terms of electromagnetic quantities 

only 

curl curl E 

— div E = ATT 

ATT 
E = ; jul" 

c2 

div i 

(10a) 

(Ila) 
J« 

ere0 e 
jo.i = E i A B„. (12a) 

m mc 

The form of these equations suggests that the field E is associated 

with two types of current ¿i and i2, one which is solenoidal, i.e., 

div f, = 0, curl ii ^φ 0 
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and the other one which is irrotational, thus 

div i2 =£ 0, curl io = 0. 

The first type of current distribution does not exhibit any accumula

tion of charge and represents therefore, a purely transversal wave, 

whereas the ¿odistribution belongs to a longitudinal oscillation. These 

two types of waves may be coupled through the magnetic field B 0 

and form a hybrid wave. 

As eqs. (10a)(12a) are l inear one may apply the superposition 

principle for their solutions. Thus a complex solution can be constructed 

out of simple waves having a harmonic variation along a certain 

direction, called the direction of propagation. If this direction is 

parallel to the ζ axis, all the oscillating quanti t ies vary as 

ei(««+*»). (16) 

Using these assumptions we shall investigate the propagation of 

elementary longitudinal, transversal and hybrid electron waves in 

an unbounded uniform cold plasma and give two simple examples of 

electron waves in a bounded and cold plasma. 

5.1.1. THE LONGITUDINAL OSCILLATIONS 

Eqs. (11a) and (12a) give 

c 4  . . . e2«o 

E; = ; — ι., ιωι = E; (17a,b) 
jo> m 

which determine a characteristic frequency 

0) — 0Jn (18) 

for which such oscillations are possible. The wave number k does not 

enter into the analysis and one may thus conclude that waves or 

oscillatory disturbances of the longitudinal type of any dimension can 

exist, always oscillating with the angular frequency ωρ (see hot plasma 

later in 5.2.1). 

5.1.2. THE TRANSVERSAL OSCILLATIONS 

The only electric field components are Ex, E„. Let us analyse two 

cases: B 0 / / k and B„ 1 k. 

a) Eqs. (10a), (12a) corresponding to the case Bull k (fig. 73) 

have the following form 
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where 

("-5-) 
4τΓ . . 

E i — ;— ]wix 

4π . . 
—— i"¡lu 

ωρ 

Jtolj. — £fX <ocl|/ 

4π· 

]ωΙυ — C'y ω^Ιζ 

eßo 

Fig. 73. Vector diagramme for a tranversal wave with Bo // k. 

(19) 

(20) 

(21) 

(22) 

In order that this system of homogeneous l inear equations shall have 

a solution, its determinant D must be zero. This condition is a relation 

between k and ω and therefore, a dispersion relation governing the 

propagation of electromagnetic waves parallel to B 0 . 

One gets 

. V C2 ) e 2 V. <"2 J ti>2C4 \ 

from which 

k\2 = H-

= 0 

(23) 

The phase velocity of the wave is 
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for which one obtains 

c2 

»2pi,2 = „ ; ; . · (23a) 

The function »ρ(ω) is plotted in fig. 74 for several values of ωα/ΐιΐρ. 
Substituting the dispersion relation (23) back into eqs. (19) and (20) 
one finds that the minus sign in eq. (23) corresponds to a ratio 

Ex 
= +J Ey 

i.e., to a circularly polarized wave whose electric vector rotates in 
the same sense as the gyrating electrons, whereas the plus sign corre
sponds to Ex/Ey = — j , i.e., to a circularly polarized wave whose E-
vector rotates in the opposite sense. 

I t is evident, therefore, tha t a plane polarized wave incident on 
a slab of plasma in a parallel magnetic field will be split into two 
circularly polarized waves, the extraordinary and the ordinary wave, 
each propagating with a different phase velocity. After passing through 
the slab of thickness ζ the plane of polarization of the original incident 
wave will be rotated by an angle 

ψ = 2 - I — — ] = z(ki — k2) (24) 
Ι λι λυ ) 

which is analogous to the Faraday effect in crystals. 
The formula (23a) can be applied only to that par t of the frequency 

spectrum for which 

/here 

ω ^> <u i ons (25) 

4-e2Z2reD ' μ 

M 

For ω comparable to ü>¡on the electron wave is coupled to an ion 

hydromagnetic wave *. 

Let us plot »ρ(ω) for several values of ω,../ωρ. There are two branches 

to each curve, the »p tending to infinity for 

ω 0 0)p
2 

1 ± = ——. 

The left branches are not complete because of the criterion (25). 

* See section 5.2.2. 
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Of special interest is the case of B 0 = 0, i.e. ω0/ωρ = 0. Here the 

dispersion relation simplifies to * 

(26) 

which corresponds to the curve 0 in fig. 74. 

b) Purely transversal waves for which B 0 ¡ k can exist only if 

E // Bu (fig. 75). In this case i//Β and the magnetic field has no 

'Vc 'Ci , 

1.5 

0.5 

<Z± 

extraordinary wave 

ordinary wave 

Fig. 74. Graph of a dispersion relationship for a transversal electron 
wave when B„ // k. The attached numbers represent ω<·/ωΡ. 

* It is evident that t>„ > c. The signal velocity (or group velocity) v, is related 
to r,. by the relation 

f|>tl„ = c 

and consequently 
t)„ < c 

(see also ref. 1). 
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influence on the propagation of these waves. The wave is the same 

as the one described above for which B 0 = 0 and it conforms to the 

same dispersion relation as derived in eq. (26). 

5.1.3. HYRRID TRANSVERSAL AND LONGITUDINAL WAVES 

These are waves in which a transversal oscillating current is trans

formed by the action of a magnetostatic field B 0 into a longitudinal 

current (fig. 76). I t thus follows that if the transversal current density 

is iy the magnetic field required for such a transformation is Bux 

i
y 

Fig. 75. Vector diagrammes for 
a transeversal wave with E // B„. 

Fig. 76. Vector diagramme for a 
hybrid wave. 

and the longitudinal current density is i.. The corresponding equations 

follow from the general eqs. (10a)(12a) and are 

(*·-4)
£
> 

4-
— ]ω1ν 

E; = 
4-

J«
1
* 

ω ρ 

]U)1 — L·; lytäe 
ATT 

p
 IT ι · ]ωΙα — — £/¡, t Ιζωοχ 

A

(27) 

(28) 

(29) 

(30) 

which can be reduced to a characteristic equation (put ωοχ = MC.) 

, <V 

k2 

(31) 

1 
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I t is readily seen from eqs. (29) and (30) that for v>r = 0 the coupling 
between the transversal and longitudinal waves disappears and one 
recovers the two dispersion relations (18) and (26). 

The phase velocity »„ = ω/k is plotted for several values of the 
parameter ω€./ωρ (fig. 77). I t is seen tha t for <oc > 0 there is a band 
of frequencies for which k is purely imaginary and which therefore 
cannot propagate. 

Fig. 77. Graph of a dispersion relationship for hybrid electron waves; a = ωΓ/ω,, 

The width δω of this stop-band is obtained from eq. (31) by putt ing 
k = 0, co. For toc <̂  ωρ one obtains 

So (32) 

5.1.4. REFLECTION OF ELECTROMAGNETIC WAVES BY PLASMA 

Consider a simple dispersion relat ionship, such as expressed by 
eq. (26). It is evident that for 

> 1 (33) 

the velocity »p becomes an imaginary quantity. Remembering that 
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one may also say that k becomes imaginary, i.e., k = )K. This implies 

that the space variation of the oscillation corresponds to an evanescent 

wave. Thus 

E = E0eK=. (33a) 

Similar conclusion can be drawn, even when plasma is in a magneto

static field, (gyrotropic plasma), only the condition (33) involves 

also ü>c. An example of such a relation is eq. (23) which shows that 

transversal waves can propagate in a gyrotropic plasma even if their 

frequency is well below the plasma frequency. 

T h e depth at which the ampl i tude of a nonpropagating wave 

decreases by a factor e is called the reflection skindepth 8 *. Let 

us write eq. (26) as 

1 ωη~/ω" 

— Κ2 = 
C2/<ü2 

from which 

K = ^ - ( l - — Γ (34) 
c y ωρ- j 

and from eq. (33a) it follows that 

δ = —— (1 — o r / V )  1 ' 2 (35) 
tOp 

For ω <ξ ωρ one has δ SS 0.56 Χ ΙΟ'1«1/2 (cm) **. (35a) 

This reflection property of a plasma resembles the reflection by 

dielectrics, where it is found that a wave is totally reflected if its 

angle of incidence is larger than the Brewster's angle 0O (fig. 78) which 

is given by 

- V r -
ν εο 

tan θ 

In order tha t the reflection be total or all θ one must have 0O
 = 0 

and therefore, ει = 0. 

* In contradistinction to absorption skindepth δ' = Vp/ω. 
4 e= 

** If electrons filled space completely, i.e., if n "!rre
3 = 1 (where rc = 

3 mc2 

the classical radius of electron), the reflection skindepth would be 

ω,, = Λ / 3 

V iirein Λ/3 * r* 

— and ω,, = \ / 3 . (36) 
V 3 
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Fig. 78. Reflection at a boundary between two dielectrics. 

If now ε2 corresponds to vacuum and ει to a plasma medium one 

has 

e2 = 1, 

and from Maxwell's second equation and eq. (4) 

curl Β 
1 4  i 

— E + ■ 
c c 

j<i> Arme2 , 
— + —IE 

V c ]C<am 

-T-k-ïl (37) 

If plasma is to be compared with a dielectric then its dielectric constant 

is 

υ = 1 (38) 

and according to Brewster's condition for total reflection it becomes 

totally reflective for 

which is exactly the condition (33). 

The reflection criterion, i.e., ω < ωρ can be also derived using 

considerations based on microscopic processes of radiat ion scattering by 

a single electron. The scattering crosssection is the wellknown Thomson 

crosssection σ τ = rv
2 (see pp . 66 and 171). A bunch of Ν electrons 

scattering coherently will, therefore, present a crosssection Ν2σ τ . If the 

radius of the bunch is R all the incident radiat ion will be scattered 

when Ν2στ > ~R' from which R 1.35 . The coefficient 1.35 
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appears owing to the spherical geometry of the b u n c h ; in a plane case 

c 
ß = δ. 

This effect of total reflection can be used in measurements of plasma 

density. Plasma slab or cylinder is i r radiated by a beam of microwave« 

(fig. 79). I t is necessary that the dimensions of the plasma are much 

p/asma 

Fig. 79. Principle of density measurements with microwaves. 

larger than the wave length of the incident radiat ion. As long as at 

least a par t of the beam is transmitted, ωρ < ω and consequently 

rei 

re < 
4rre2 

ω2. When the density of the plasma increases so tha t ωρ > ω 

the transmission is cut off and the ω determines the plasma density at 

tha t moment. Using several beams at different frequencies (e.g. 

corresponding to wave lengths of 3, 0.8 and 0.4 cm) it is possible to 

estimate the t ime dependence of re (fig. 80, ref. 2). 

5.1.5. ELECTRON WAVES ON A PLASMA CYLINDER 

In this section we shall derive first the general wave equation of 

electron oscillations on a cylinder of plasma, and apply this to a 

cylindrical plasma in a magnetic field. 

Let us formulate eqs. (10a) and (12a) in cylindrical coordinates 

z, r, Θ. Fur the rmore we shall restrict ourselves to waves of rotational 

symmetry. 
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Fig. 80. Cut-off measurements of n(t). 

The wave eq. (10a) then becomes 

C2E; d2Er a 

I 

2 

92rEr 

dzdr 

9 

9z9r 

1 9 

r cr 

1 drEe 

dz2 c2 

r d E 
dr 

d2E„ 

t
-

t
r — 

ω" 

C" 

ω 

E r = - 47TJ 

E , = — 4^j 

(39a) 

i; (39b) 

E« 4vrj —— »#■ (39c) 

The equation (12a) for current density, considering only a B field, is 

(40a) ίωΐ; = E-
ATT 

. . . . ωΡ F ]ωΙΓ -+- Ι«ω0- — Cjr 
Α-

">ρ r, 
Jioltf — 1Γω,. ; — — Κ,β. 

Αττ 

(40b) 

(40c) 

Let us assume that the field B: is strong enough to prevent an 
appreciable h.f. current flow in the radial and azimuthal direction * 

* In other words ωΓ >> ω. 
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and that the field pat tern varies with ζ as e'kz. Eq. (39a) gives 

Er = jA k2 - . 
{ c2 ) dr 

Substituting eqs. (40a) and (41) into eq. (39a) we get 

1 9 9E: 
r 

r or 9 H~»)i 2 \ 
I E.~ = 0 

(41) 

(42) 

which is the wave equation describing the propagat ion of an electron-
wave in a plasma-cylinder. Comparing this equation with a wave 
equation in a dielectric medium one finds that the plasma behaves as 
an anisotropic dielectric with 

ε, = 1, = 1 

The solution of eq. (42) is * 

where 
E; = aJu(\x\r) 

(43a,b) 

(44) 

'"(4-") ω J 

The corresponding solution for Bg can be obtained from Maxwell's 
second equation. Thus 

curl E 

Using eqs. (41) and (44) one has 

B„ = i 

j-Be. 
c 

« UI 
•M Mr) (45) 

A·2 

Assuming tha t the space outside the plasma cylinder is vacuum, the 
appropr ia te solution of the wave equation for r ^> rn and for a guided 
cylindrical wave is 

E; = bK0(\xu\r), χ,,2 = A·2 (46) 

X" 
B, Ki(\xu\r). (47) 

* ]„ and K„ being the usual symbols for Ressel functions. 
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The constants α and b are obtained from the condition that the Ez 

and Bø components must be continuous functions of radius. Thus at 

the boundary of the plasma cylinder 

aio( |x | r0) — bKu(\xu\ru) = 0 

a M Ji(\xo\ro) — b |χο| Ki(|xo|r„) = 0. 

The secular equation of this system is 

io(|x|ro) |x| ^o(|xo|r0) 

•Mxh 

This can be writ ten as 

•M|xl
r
«) 

Λ ( | Χ | Γ 0 ) 

|χο| ^ i ( |xo | r 0 ) 

A1'2 Ko(|xo|r0) 
1 

Ki( |xo|r0) 

(48) 

(49) 

(50) 

(50a) 

It is useful to introduce the following system of nondimensional 

quantit ies 

i = 
k2c2 

r„ = 2Vv. 

In terms of these, eq. (50a) becomes 

J u { [ 4 v ( l  1 / | ) (ξκ)Υ'2} M 

J,{[4v(l — Ι/ξ) ( ¿ κ ) ] " 2 } U " 
1 

'/" Ε 0 { [ 4 ν ( κ  | ) Γ / 2 } 

Κι{[4ν(κ — ε)}1'2} 
(50b) 

which is the dispersion equation for the guided waves on a plasma 

cylinder confined by a B field. 

Interpretation of the Dispersion Relation 

The curve representing the dispersion equation (50b) can be plotted 

in a ξ, κ coordinate systems (fig. 81). One has 

ω
2
 i" ΤΓΓο Ì

 2 

ί = ~ τ _ \~T~ v 

ωρ V λ ) 

<V y \r. ) 

where \f. is the guide-wave length, X and r„ may be expressed as 
functions of ξ and κ. Thus 

= W T d r0 = ana r0 
\ /κΐ' . 
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From, these, and with the help of the κ = κ (ξ) curves one can plot 
curves representing 

λ = λ(Γ0) 

in which » and λε are parameters (fig. 82). 
I t follows from fig. 81 tha t waves whose frequency is larger than 

ωΡΙ2ττ cannot be guided, whereas waves whose frequency is much 
smaller than ωρ/2ττ are only weakly attached to the plasma cylinder, 
most of their energy being located outside the plasma, and their phase 
velocity approaches tha t of light. 
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Fig. 81. Fig. 82. 
Retween these two extremes lies a range of frequencies for which waves can be 

guided by the plasma cylinder, most of the wave energy being stored in the plasma. 

In the first experiments on plasma wave guides a cylindrical glass 
tube containing a positive column of a glow-discharge was used as the 
central conductor in a coaxial cable s tructure (ref. 3). Only coaxial-
modes of propagation were thus studied. Later, using a glass tube 
containing a high frequency discharge was used to study the propa-
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gation of surface waves (ref. 4). First experiments on propagation 

in free plasma columns, i.e., not in contact with a glass tube, were 

done in 1958 (ref. 5), using a plasma produced by a P IG discharge 

(PIG = Penning ionization gauge). 

5.1.6. EFFECTS OF RANDOM VELOCITIES ON WAVES IN PLASMA 

Up to now we have assumed that the electrons (and the ions) had 

no appreciable random velocities and plasma has, therefore, behaved 

as a perfectly stationary dispersive medium. In order to make our 

results more realistic it is necessary to consider a spacevelocity distri

bution f(v¡,x¡) of the electrons and also stochastic fluctuations of such 

a distribution, in the phasespace v„ χ·,. 

As soon as one considers a velocity spread, the model of cold plasma, 

so far used by us, has to be dropped. The fluid equations can still be 

used, containing now the pressure terms (see later 5.2.1.). The inclusion 

of these terms allows us to take into account the various sound pheno

mena and the dispersion relations of plasma oscillations are correspond

ingly modified. If analysis is to be further refined we have to use the 

BoltzmannVlasov equations ra ther than those corresponding to the 

twofluid model. Most of the dispersion relations derived so far remain 

practically unchanged, however, a new phenomenon makes its 

appearance: damping. 

The stochastic fluctuations are connected with phenomena similar 

to those encountered in gases, where small density fluctuations scatter 

a monochromatic wave. In hot plasmas such scattering of waves can be 

caused not only by density fluctuations but also by velocity fluctuations 

— a type of Doppler broadening. 

We shall first treat a typical case of damping, known as Landau 

damping and then we shall develop a simple theory of scattering due to 

plasma fluctuations. 

Landau damping 

T h e existence of damping of longitudinal plasma oscillations has 

been discovered by Landau (ref. 6). 

Starting from Vlasov and Poisson equations for electrons we write 

+ v · £ = 0 (5l ) 
dt dx m cv 

= — 47rere ƒ (ƒ — ƒ„) d» (52) 
dx 
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where ƒ = fix, v, t) is the per turbed distr ibution function, ƒ„ = /o(») 

is the unper turbed velocity distr ibution, E = E(x, t) and ƒ / u d» = 1. 

If we assume a spatial- temporal dependence ei(kx~ω,) and keeping only 
first order terms in E and fi = ƒ — fu we have 

e - Ε o/o 
j - U (-^ + k · ») = -^- (53) 

rei d» 

and the Poisson's equation becomes 

(' _ /̂°_ 
Αστβ2η „ I 9» 

,-feE = : E _ _ d» (54) 
yrei J —ω + fc» 

1 = - ^ 1 ( — ^ — d » . (55) 
fc J ID fc» 

Evidently there is a pole at ω = A» and the integration path has 
to be deformed around it. If the path of integration passes below the 
pole and if the distribution /o(») is Maxwellian we get 

= <op 1 -\ k2d2 — j Λ / —■ ωρ (kd)3 exp _ l ( / c d ) - _ l j (56) 

valid for A2cZ2 <̂  1. 

The first term on the r.h.s. corresponds to a new dispersion relation

ship, the second to damping. 

This result is open to criticism (ref. 8, 7) which touches such points 

as continuity of /0 , analytic behaviour of f'„ and the form of the initial 

perturbat ion. However, as we have not introduced any new physical 

mechanisms, it should be possible to interpret the eq. (56) in terms of 

particlewave interaction. This is easy for the undamped par t and 

will be done later (p. 173). The damping term will now be derived 

using the model of particlewave interaction in a l inear accelerator. 

Let us follow the movement of particles in the x, px space. This can 

be described by Hamil tonian equations written in the frame of refer

ence moving with the phasevelocity of the wave (ref. 10). 

dp,. dH dx dH 

 τ  = , — r  = (57> 5 8 ) 
di dx dt dp 
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where 

ν 
H = y/m^c* + p2c2 — p»p — eE cos kx; (59) 

»p (phase velocity). 

For nonrelativistic electrons we get H — rei0c
2 = Wlol — y2mv2 

E 
e — (cos kx — 1) corresponding to closed or open orbits in the ». χ 

k 

plane i.e., to t rapped " or free particles (fig. 83). The separatrix between 

these two classes of orbits corresponds to a particle initially at 

kx = — τ, ν = 0 and its WTOT is 

eE 
WTOT — 2 

A 

from which 
1/2 2 e E 

(cos kx + 1) 
rei A 

(60) 

The equation of motion is 

e 
ν = χ = E sin (kx). (61) 

For kx <̂  — we can use the approximat ion 

'x = ^ZL Ekx. (62) 
rei 

This shows that particles moving on closed orbits (inside a "bucket") 

rotate in the phase space with an angular frequency 

ω0 = λ / — E . A . (63) 
V m 

(e V ' 2 

The maximum speed is »im a x = —■ EA · x0. From conservation of 

ym ) 
energy (eq. (59) ) follows that the highest speed any particle can possess 

and still remain t rapped in the bucket is (fig. 83) 
I eE 

5 ν = 2 Λ / — 
V mk 

(64) 

The l inear approximation (ΑΛ <^ 7r/2) is certainly not t rue near 

the inside boundary of the bucket , however, we shall not make an 

* Particles in a "bucket". 
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© f~V4* % 

Fig. 83. Damping due to particle-wave interaction in a linear accelerator. 
a The bucket in phase space at t = 0; 
b The same alt. = τ / 4 ; 
c The potential φ in the wave. 

unreasonable error if we suppose that all the particles in the bucket 
rotate in it with the angular speed ω0 which tends to zero as E -> 0 and, 
therefore, for weak fields 

After a t ime τ /4 all the vi particles which at t = 0 occupied 

the cross-hatched crescent 2 i will be in Έ'λ. Similarly the group v2 in 
Ξο will rotate into %'2. In this new configuration the particles will damp 
or amplify the wave. The work done by these particles on the field of 
the wave is 

AW = eËVp (vi — v2) · At (65) 
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where Ë is the mean electric field "', e.g., Ë = E. The mean energy 

over a length λ is 

W = —!■ λ. (66) 
16ττ 

Let us write 

l ' I V o AW Ε2λ 

At 16TT 
32 e»n 

XE 
(67) 

v
i — v2 

If, as will be shown later — is independent of E, we can inte

grate equation (67) and get 

W = W„ · exp ( — 28 · t) 

where 

δ = 16 e»p 

l ' l 1'; 

AET 

(68) 

(69) 

is the damping coefficient. 

Let us now evaluate vi — v2 for a Maxwellian distribution. There 

'Ί — v2 = — re 
df — λ 

/here 

3/ 
.3/2 „·■' 

exp I 2"
2
 J 

\ / 2 

Σ = A 
2eE 

(cos A.r + 1) 

-λ/2 

u = o>pd, 8v 

Using eqs. (69)1 73) we get for δ 

δ 

dx = 4 · δι 

δ». 

= 0.73 
Ι ωΡ J ν-1 —̂— ι »ω)-

2 
Γ ω V 

{kd)3 exp 
ω„ Ι »ρ J 

wliere in the exponent (ω/ωρ)2 = 1 + 3 (kd)2. 

Comparing eqs. (74) and (56) we see that , apar t form the term 

(70) 

(71) 

(72) 

(73) 

(74) 

which is nearly always near unity, the formula (74) derived on the 

* The mean £ implies averaging over 
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basis of the physical model of l inear accelerators predicts a h igher 

damping than the Landau formula (fig. 84). At at t ime t0 = —, the 
δ 

bucket shrings vertically by factor e~1/2 (see eqs. (64) (66) (68) ) and 
some of the closed orbits will have been in the meant ime transformed 

@ represents eq. 74-
@ represents eq.56 

Fig. 84. 

into open ones (fig. 85). Since there are more particles lost in this way 
at the top of the bucket than at its bottom, more particles are accel
erated to »ρ + δ» than decelerated to vp — δ». This tends to flatten out 
the ƒ(») distr ibution around » = »p. Thus the depar ture from the equi
l ibr ium distr ibution for oscillating modes (only one being excited) is 
being eliminated (by damping the mode out) in favour of a depar ture 
of the ƒ (») from the Maxwellian distr ibution *. 

We have assumed that it is permissible to evaluate the interaction 
of particles and wave using maximum values of E and of (νχ — ν2). 
Consequently we must regard our δ as an upper l imit to a δ ( ï) . 
in fact near t = 0 no damping occurs since none of the V] particle has 

* As the degree of organization of our system remains unchanged, the total 
entropy is constant. 
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-t> Kx 

Fig. 85. Vertical shrink of the bucket. 

yet traversed the »„ boundary. This shows how the instantaneous 
damping coefficient depends on the initial distribution of ν in υ and 
χ and that for certain distributions no damping will occur for some 
period *. 

For a well developed Landau damping we require, therefore, that 
ίο > τ/4. This implies (for ω ■—' ωρ) that 

V'e/m ThT V E 
< 1930 

( Ί \ 
exp [1/2 (kd)'2]. (75) 

Introducing eEm = ωρ
2ιί, the maximum field in spontaneous 

oscillations in plasma (see p. 9), our condition can be written 

E 
E„ 

> 0.65. 10-3 ( Α ) Γ exp (-^-^2] ( 7 6 ) 

This shows that Landau damping is operative only when the induced 
electric field is comparable with the Em fields. 

On the other hand, if τ/4 <̂  T0, the vi and v2 will both partially 
spill out of the bucket and during the second τ/4 more particles will be 
decelerated than accelerated by the wave. This action causes amplifica-

* Most of the controversies concerning Landau's analysis are caused by the diffe
rences in the prescribed initial distributions. In this connection it is interesting to 
note that the electron distribution in the bucket is much less perturbed by the space 
charge induced by E than by the rotation corresponding to ωο. The two perturbations 

" d l~KrT E 
are in a ratio of approx. — — "\ / where Δη = 

2TT\e ' ν Δπ 
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tion of the wave and the total damping will have to be found averaging 

over τ. This will lead to a damping term much smaller than tha t of 

Landau. 

In an exper iment where a longitudinal wave is excited at one plane 

in a plasma and propagates through a thickness L of plasma, Landau 

τ 
damping should be observed only if L ¡=2 up · — which can be also 

writ ten as (see also ref. 10) 

L
 ~

 1
 / 

λ~~ 4Vi V 

Em\ 

ΑΛ/ΊΤ V E 

where Ε,,,χ = 4ττβιι — is the max imum field obtainable in plasma on 

fully separating negative and positive charges over a distance λ. 
Example : 

re = ΙΟ11, λ = 1, E = 30 eist · u / c m then E„,\ = 3 · 10° eist · u / c m and 
L <-> 15 cm. 

Scattering of waves by plasma fluctuations 

The fluid description of plasma, accomplished by means of the 
Boltzmann equation and of the Maxwell's equations, bréales down 

when a volume is considered whose dimensions are smaller than the 

Debye wave length d. In such a volume the fluctuations of both, number 

density re and fluid velocity », can become comparable with the mean 

values of density and random velocity, i.e., with n„ and u, where 

»=V-Zttl' 

. The fluctuations of re and » will, of course, be present 

m 

even in larger volumes than λη
3. In absence of particle interaction, i.e., 

for a perfect gas, the mean root square of a relative fluctuation in den

sity is given by the normal distr ibution law (ref. 9) 

<8nyi2 1 
δ = — — = Ν1 '2 = (77) 

re \ /ΛΙΩ 

where Ν is the mean number of particles in a volume Ω in which the 

fluctuation is observed. 

Let us consider a plasma in which the ions are infinitely heavier than 

the electrons. The ion distribution cannot change in response to electron 

fluctuations and these will be, therefore, l imited in ampl i tude by the 

electrostatic forces induced by the per turbed charge neutral i ty. The 

law governing δ in plasmas can be derived as follows. 
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Let us consider all the modes of oscillations in a cube whose side is 

. 2L LA¡ . 
L. Owing to boundary conditions only modes for which = is 

X¡ TT 

an integer (i = x, y, z) can exist. If two adjacent modes have wave 

numbers k, and A¡ + δΑ; then 

2L 
[A¡ + (A¡ + Sk,)] = 1 (78) 

Ski = — (79) 

and the density of modes in the (A¡, q¡) space is 

L3 

(80) 
δΑ., δΑ„ Sk. 

In a space Ω the principal fluctuation will have a wave length 

Ω1/3. Modes whose wave length λ is not much different from λ0 
2 

will contribute to the ampl i tude of the fluctuation, e.g., if 

< λ < the modes add up in a coherent manner over one 

4 4 

period of the fluctuation *. 

The corresponding number of modes is then 

_ (28k Y 
Νχ=ί - f (81) 

2 - TT 
where |δΑ| = :r ■ \8X\ = — . 

Xu~ Xu 

In thermodynamic equi l ibr ium, each mode should possess an energy 

KT. The energy associated with the principal fluctuation in 1 cm' is, 

therefore, ^ 

W = Ν ■ KT ■ = - ! L - . (82) 
λο' 

If the maximum electric field of the electron fluctuation is E, 

E2 

then the mean electrical energy density is and since at one moment 
1&7Γ 

all the energy of the fluctuation is in the electric field we get 

E = 8 

Ι χ,,
3
 J 

(83) 

* A rather arbitrary choice, implying that the numerical coefficient in eq. (87) is 
correct only to an order of magnitude. 
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The Poisson's equation gives for a plane per turbat ion 

Arre · Sn = AE (84) 

from which 

4 V 
δη = λ«"5'2 V κΤ (85) 

where Sn = (Sre2)1·'2. Finally 

8n Xd / „ 
S = = 8 - re-

1
'
2
 λ0-

3/2
 (86) 

re λ 0 

if Ν is the number of electrons in the space Ω we get 

Xd 
δ = y&v /v-

1
'
2
. (87) 

Xo 

The factor corresponds to the depar ture of plasma behaviour 
Xll 

from that of a perfect gas. The lat ter is recuperated only when 

λ0 = 8.9 d (more rigorous considerations can be found in ref. 11). For 

λ < tí it is doubtful tha t one can still talk of modes of oscillation and 

d 
the term is no longer applicable and consequently δ '—' Ν'1!'2. 

λο 

I t is to be expected that the propagation of any wave through a 

plasma will be affected by these fluctuations in a manner similar to 

that of scattering of l ight by density fluctuations in gases (ref. 9) , 

p. 214). 

The effect of the velocity fluctuation can be understood as a Doppler 

broadening of the frequency of the original wave. Thè density fluctua

tions scatter the wave by creating small changes in the mean dielectric 

constant of the medium. Both of these mechanisms cause the phase of 

the wave to fluctuate around the phase ψ0 which would be observed 

in a uniform plasma at zero temperature . As the wave progresses in 

t ime or space this fluctuation ψ increases and when < p 2 > 1 ' 2 = 2π one 

may consider the original wave to be essentially damped out. 

Let us consider a beam whose crosssection is λ2. Le t this beam be 

scattered by plasma inhomogeneities whose mean dimension is I (often 

called "blobs" in the scattering theory) . Thus there will be (X/l)2 

blobs in each section of the beam. The phase change δφ caused by the 

density fluctuation öre in one blob will be 

δφ 2TT^L(LY=2TT^±(L) 
χ yx) Vp x y χ) 

(89) 
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where τ is the transit t ime of the wave over I. Since there are (τ) 
scattering centra over the section of the beam the mean root square 
δφ over this section will be 

(δφ2)1'2 = Αφ = — 8φ. (90) 

These A^'s will add up statistically over a distance s to an average 
deviation (V2)1'2 from φ0. Thus 

(ΨΎ1 

tø 

1/2 

Αφ. (91) 

The distance s will be called the scattering or damping distance when 

(,,2)1'2 = 2TT. Then 

•Si 
(Δ,,)2 [8vp ) [l ) 

(92) 

We shall apply this formula to a transversal wave. Our results will 

be approximate since we have not evaluated rigorously the interaction 

of the fluctuation with the wave throughout the thickness — and also 

because the choise of s„ as the damping distance is somewhat arbitrary. 

I t is unlikely, however, tha t these assumptions would cause an order 

of magni tude error. 

The dispersion relation for tranversal waves is (p. 150). 

(93) 

from which 

Sfp ( ωμ y Γ ( ωρ γ V1 

»ρ 1 « J ί Ι ω ) J 

Substituting into equation (92) we get for ω <̂  ωρ 

δ n 
11 

(94) 

(95) 

and using equation (86) for 
δ II 

with λ0 = I we have finally 

1 
So = 

64ττ (e2/reic)2re [dj (96) 
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The scattering distance for Rayleigh scattering is (ref. 11) 

SR = »diere 
8-

0"x 
ηστ 3 

With diis we can write the formula (96) as follows 

[AY 

So 
5122 sR W-

(97) 

(98) 

This shows that the most intense scattering is due to fluctuations 

whose I <> d (for I < d our t reatment is not val id) . This can be confirm

ed by using directly the Rayleigh formula for s, generalized for scatter

ing blobs whose Ι <ξ λ, remembering that the scattering crosssection 

σρ corresponds to SN charges and therefore, one would expect tha t 

σ„ = σχ(δΝ)2 . Then 

where 
= l· 

and 

σ„ = 
3 ^ mc 

8N = δη ■ I3 = S · I3 ■ η 

Using equation (100) we get 

/·'' 

s0 = 

(δΝ)2 

στ · (re · I3 · δ)2 
64τ73 

SR 

tf 

(99) 

(100) 

(101) 

which is essentially the same as formula (98). 

I t is seen tha t the damping due to scattering is very small. 

Similar analysis could be done for the scattering caused by velocity 

fluctuations. The corresponding damping coefficient is of the same 

order of magi tude as .s0 in eq. (98). 

5.2. Positive Ion Oscillations 

In these oscillations the kinetic energy of positive ions is converted 

into electromagnetic energy and vice versa. Let the frequency of such 

conversion be ω,. A full conversion of ionenergy into an electric 

field energy is described by 

yoripM 

2E2 

M2. 10 i 

E2 

8— 
(102) 
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from which 

( 4ττβ2ιι, V ' 2 , 

-=ΗΗ ·
 (102a) 

This is the plasma ionfrequency. 

A similar order of magnitude argument applies to oscillatory con

versions of magnetic energy into the kinetic energy of ions. Thus 

it is evident that the frequencies at which such types of conversion 

would be expected to occur are by a factor yMjm lower than those 

corresponding to electron oscillations. 

This implies that during one period of an ion oscillation there will 

be, generally, enough time for the electrons to reach an equil ibr ium 

distribution, almost as if the oscillating electromagnetic field were a 

steady field for the electrons *. 

We shall divide the subject of ionoscillations into three par t s : 

a) purely electrostatic oscillations, 

b) hydromagnetic oscillations in stationary plasma, 

c) hydromagnetic oscillations in neutralized electron streams. 

5.2.1. ELECTROSTATIC ION OSCILLATIONS 

Let us consider the twofluid model of plasma in which all quantities 

depend only on z. As we shall be concerned with longitudinal oscilla

tions the only velocities entering the analysis are » and t». Using 

eqs. (356a), (357) one obtains (putt ing » = », i» ; = w, y = 1, Β = 0) 

3» dv 
+ » = E — (103) 

dt ez m 

dw dw Ze 
+ w = E — . (104) 

1 dpe 

nem dz 

1 cpp 

dt dz M 

Let the time variation be harmonic and consider only one Fourier 

component (whose wave number is A) of any of the oscillating quan

cu 
tities. Assume also an isothermal plasma, i.e., —— = 0 Keeping only 

first order terms we get 

e " l e 

¡ων — E — jA«,.2 (103a) 
ni ne 

* This is not true for some discharges, where the electric field is parallel to the 
velocity of the electronflow. There, the electrons may "runaway" (chapter 8). 
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Ze — Hip 
jojtc = E — jAiip2 (104a) 

M Up 

where Hip and reie are the time and space variable components of 

lip a n d ree. 

The equation expressing the dependence of E on re is the div E 

equation. Thus 

 — = Αττβ(Ζηρ — ree) (105) 
dz 

and from equations of continuity one has 

3re„ c dne 3 
(«pt»), — = —— (ree»). (106a,b) 

dt cz dt dz 

From these, the expression occurring on the right h a n d side of eq. 

(105) is to first order 

A 
Zrep — ree = (Znpw — ree») 

0) 

and eq. (105) can be wri t ten as 

4e 
— E = (Znpw — rec»). (105a) 

)»> 

Sustituting this equation into eqs. (103a) and (104a) there follows 

Απβ2 , » 
jio» = (Ζη,,ιν — ree») + jfc2ue

2 — (103b) 
jreiü> ω 

4ne2Z w 
]<úW — (Zrepii; — ree») + jA2rep

2 — (104b) 
]Mm ω 

and the dispersion relation follows from putt ing the determinant of 

these two simultaneous and homogeneous equations equal to zero. 

Remembering that for small ampli tudes ree ~ Znp, one has 

Ope' K'Ue Λ Ι ωρρ" kUp \ ω ρ ρ <ϋρβ 
_ 1 + - Z ^ _ + JL_ _ i + _ I Ï Ï L . + JL = ""■ . U o 7 ) 

\ OÍ" ω J y ω" ω" J ω 4 

For ω2 <̂  ωρριΐ)ρρ one gets a dispersion relat ionship for electron oscilla
tions 

upe k2u„ 
— 1 +-^r- + r-^0 

or OÍ" 

from which * 

ω2 s ω,,,.2 + A2ü7 = U)pe
2 [1 + (kd)2] (108) 

* For an adiabatic, rather than isothermic electron gas, one would obtain 

ω2 = ω2,,,. ΓΙ + 3 (fc á)2]. See p. 161 (also ref. 12). 
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For an electron gas at zero tempera ture ue = 0 and one recovers the 

frequency relation (18). 

For ω2 <̂  wpe2 the relation (107) simplifies to 

1 + 
k

2
Ue'

2 

— 1 + 
"pp" kUp <Opp 

As long as wave length of the oscillations is much larger than the 

Debye distance the following inequality applies 

fed V A2u„2 

— — < i 
Ope 

and we have 

o2 = k2up
2 

1 + 
ωρ ρ" He 

υ
2
 = A

2
Up

2 
1 + 

ω ρ β " Up / 

ΖΤΛ 

T h e phase velocity of these ion waves is given by 

1 ZTe 

ι +-=
JL 

(109) 

(109a) 

and is, therefore, [1 + (ZTe/Tp)]1'2 t imes larger than the velocity of 

sound in the ion gas. In the spectrum of ionfrequencies and for Te > Tp 

the plasma behaves as a med ium whose elasticity is provided by the 

electron gas, whereas the inertia is due mainly to the ions. 

The random velocities of the ions will be also responsible for a 

Landau damping and a phase mixing mechanism described on pp . 160 

and 169 and consequently tbe wave will be damped. The coefficient of 

damping can be derived in the same way. 

5.2.2. HYDROMAGNETIC OSCILLATIONS IN A STATIONARY INFINITE 

PLASMA. WAVES ON A PLASMA CYLINDER 

If the speed of flow of ei ther of the plasma components is much 

smaller than the mean thermal speed one may use the fluid equations 

corresponding to the one fluid model of plasma (eqs. (3.62) and (3.63) ) 

and the appropr ia te Maxwell equations. As we wish to investigate 

oscillating processes in which ions play a dominant rôle, the frequencies 

will be of the order of magnitude given by eq. (102) and we can neglect 

the term representing the displacement flux in Maxwell's first equation. 
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Again restricting ourselves to a small ampl i tude analysis we write 

eqs. (3.62) and (3.63), as 

4 ^  =  po div V 
at 

dv ι 
po ^r— = — i A B0 CI 

grad pi 

curl B j = 
Am 

curl (V A B0) = 
dBi 

IT 

(HO) 

( H I ) 

(112) 

(113) 

where Β = B0 + Bx, ρ — p0 + pi, ρ = Po + p i . 

These equations are l inear in pi Bi i and V and i t follows, therefore, 

tha t a complex solution can be constructed from elementary Fourier 

components having a variation 

e i ( ini + Arj)_ 

At this point one may note tha t two types of hydromagnet ic waves 

are evidently possible. Firstly the longitudinal waves in which V = Vz 

and secondly the transversal waves in which Vz r= 0. 

For the first group the eqs. (110)(113) have the following form 

Dpi — po AF 

)ωΡον — l ß 0 jAp! 
c 

ATT 

jABi = i 

(114) 

(115) 

(116) 

(117) kVBu = o>Bi 

where V — V., i = ix, B0 = B0v, B i = Blu. 

The structure of such a wave can be deduced from the form of 

these equations (fig. 86). 

i k 

>z 

Fig. 86. Vector diagramme for a longitudinal hydromagnetic wave. 
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One requires an additional equation i.e., one connecting p i and pi. 

Let us employ the equation of state for a monomolecular adiabatic 

gas with a degrees of freedom. Then 

Pi L=(_!!L)i i+Ai. (us) 
p» y po ) y a) 

Eliminat ing p iB] and i from eqs. (115), (116), (117) and (118) one 

obtains two equations for V and pi 

ωρ, + pokV = 0 (119) 

k í l +  i — p ! + (oypo — k2~^)v = 0. (120) 
V « J Pn y ω ATT ) 

The dispersion relationship for these longitudinal waves is obtained 

by putt ing the determinant of these equations equal to zero. Thus 

B' +¡1+1)12. (121) fi+lÜ. 
(. « ; PO 

Α2 4τΓρ0 

Interpret ing Bo''/oV as the magnetic pressure pM one has 

»Ρ = \ / ^ + ( l + 2A)p„ ( 1 2 2 ) 

Pn 

which can be compared with the equation for the speed of sound in 

the plasma. Evidently as pu/p,, —* 0, the velocity of a longitudinal 

hydromagnet ic wave approaches the speed of sound. In the opposite 

extreme, i.e., when pu/pu <ξ 1, the velocity »p approaches that of 

transversal hydromagnetic waves. 

The equations for transversal waves can be appreciable simplified 

owing to the fact that in transversal waves (ref. 13) 

Eqs. (110)(113) become 

po -

curl Bi 

curl 

E 

div V = 

grad pi = 

dv ι 
dt c 

4 
= i 

c 

E = — 

= ±V 
c 

0 

 0. 

i A 

+ 

1 

c 

Λ B 

Bo 

1 

c 

dBi 

dt 

'u-

dE 

dt 

(123) 

(124) 

(125) 

(126) 
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I t is instructive to retain the displacement current in the eq. (124) 

as in this way one is able to appreciate the relation of transversal 

hydromagnetic waves to transversal electron waves in a gyrotropic 

plasma (p. 149). If F is perpendicular to the direction of propagation 

(i.e., z) then it follows from eqs. (123)(126) that B 0 is longitudinal and 

i, E and Bi are transversal (fig. 87). 

Fig. 87. Vector diagramme for a transversal hydromagnetic wave. 

From eqs. (124) and (125) one has 

curl curl E = 
ATT d 1 

— í I 
c2 dt c2 

can be expressed as 

p0c dV 

Bo dt 

p0c
2 dE 

Bo2 dt 

d2E 

dt2 
(127) 

(128) 

Substi tuting into eq. (127) one obtains a homogenous wave equation 

for E 

1 Í 4ττροθ2λ d2E 
curl curl E 1 + — — = 0. 

c
2
 l ß„

2
 ) dt* 

(127a) 

Comparing this wave equation with tha t representing electromagnetic 

waves in a medium whose dielectric constant is ε one can ascribe to 

plasma (for frequencies lowerthan ioncyclotron frequencies) a di

electric constant 

= 1 + 
4rrpoC2 

B,,2 
(129) 
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and a phase velocity, known as the Alfvén's speed 

c c 

, / 1 + 47TP0C2 

V> 
(130) 

B«2 

As po —> 0 the character of the hydromagnet ic wave changes into an 

electron wave and finally for p0 = 0 into a free space electromagnetic 

wave. 

Hydromagnetic waves in a plasma cylinder. 

I t was shown that electron waves on a plasma cylinder are a mixture 

of transversal and longitudinal oscillations. T h e same can be said 

about hydromagnetic waves. 

Let us note tha t for Β2/8ττ >̂ p u the dispersion relation for longi

tudinal waves is the same as tha t for transversal waves and therefore, 

a plasma cylinder can be compared to a dielectric cylinder whose 

dielectric constant is isotropic and given by eq. (129). However, this 

analogy cannot be applied to large ampl i tude oscillations. This can be 

understood as follows. In solving the wave equation for propagation 

on dielectric cylinders one assumes tha t the dielectric boundary is 

unper turbed by the electromagnetic field. This is not so for hydro

magnetic waves in plasma cylinders, where the boundary moves with 

the speed » of the oscillating plasma. Apar t from the mass motion, 

there will also be separate motion of the two plasma components, 

which at a plasma boundary will produce surface charge distribution. 

These polarisation charges occur on oscillating dielectric cylinders too 

but are associated with material displacements of only atomic dimen

sions. 

If we restrict ourselves to a small ampli tude theory, the results of 

the dielectric wave guide analysis are applicable to propagation of 

hydromagnetic waves in a plasma cylinder in a uniform magnetic 

Fig. 88. Rotationally symmetric hydromagnetic wave on a plasma cylinder. 
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field Bo = B0; in free space. In par t icular one finds tha t for circularly 
symmetrical modes (fig. 88) there is a cut-off frequency * at (ref. 14). 

J min 
2.4c 

-To \/ε — 1 

= O j « / B p ^ 
ro V 4l7rpo (131) 

There is no cut-off frequency for the dipole mode (fig. 89). 

r-~ 

1 

> 

_ -r· | 

' 

f 

Fig. 89. Dipole hydromagnetic wave on a plasma cylinder. 

Even within the limits of small ampl i tude analysis the dielectric 
analogy cannot be usefully applied to plasmas in non-uniform magnetic 
fields, such as, for instance, generated by an axial current in a plasma 
cylinder. Here the corresponding dielectric constant varies in space 
and an approximate analysis has to be used. T h e dielectric analogy 
fails also in cases in which the plasma pressure p 0 cannot be neglected 
in comparison with the magnetic pressure Β0

2/8ττ and this is for two 
reasons. The first is tha t the dielectric constant is anisotropic, i.e., 
it depends on the angle between » and B 0 . The second reason is tha t 
the boundary conditions at the plasma surface are no longer a field-
matching problem but are also a pressure-matching problem. If the 
pressure balance at the surface shows a lack of restoring force, a 
per turbat ion of the plasma may result in an instability. This problem 
will be treated in section 5.3. 

An interesting characteristic of hydromagnet ic waves is that the 
plasma moves together with the magnetic field lines, i.e., in a hydro-
magnetic motion plasma fluid is coupled to the tubes of magnetic flux 
or as Alfven describes it the magnetic field-lines are 'frozen' into the 
moving plasma. 

* I.e., a frequency below which guided waves cannot be propagated. 
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This follows directly from the theorem of conservation of magnetic 

moment, (p. 40) according to which a gyrating charged particle 

encircles always the same amount of magnetic flux. The assumptions, 

on which the theorem is based, of adiabatic variation in t ime and 

space of the magnetic field constitute a l imitation of our t reatment 

of hydromagnet ic oscillations. Thus, e.g., collisions and large non

uniformities or high rates of change in the field Β will permit a magnet

ic flux tube to penetrate a plasma (see later p. 226). 

The first at tempts to detect MHD waves in l iquid metals did not 

meet with a great success owing to the large resistivity of these media 

(ref. 23). The first satisfactory study of these oscillations were made on 

cylindrical or toroidal plasmas (ref. 24). Transmission of slow trans

versal hydromagnetic waves along magnetic lines of earth 's magnetic 

field has also been observed — a phenomenon known as whistlers. 

5.2.3. HYDROMAGNETIC OSCILLATIONS IN PLASMA STREAMS 

The analysis of hydromagnetic propagation on a plasma cylinder 

in an external axial magnetic field was based on the assumption that 

the plasma pressure was appreciably inferior to the magnetic pressure 

and therefore an idealized plasma density distribution could be con

sidered, as the presence of such a tenuous plasma does not affect the 

externally generated magnetic field. 

In situations, where the magnetic field is produced by a current 

distr ibution in a plasma one must choose a selfconsistent equil ibr ium 

distribution of re, » and B in order to analyse the hydromagnetic 

oscillation of such currentcarrying plasma. 

In this section we shall consider the well known Bennet t distr ibution 

in a fully neutral ized electron stream. T h e relationship corresponding 

to this density distrbution was derived in chapter 4, p. 129. 

We shall start from eqs. (4.44a) to (4.49) which still contain the 

3/3i operators which are essential for problems concerned with oscilla

tions (ref. 15). 

In order to solve these equations we assume that , in spite of small 

ampli tude oscillations, the plasma column does not depar t appreciably 

from the sharply defined cylindrical structure obtained from the 

steady state analysis (eq. (4.53) ). 

Let us now describe the motion of a small volume element located 

at r = r,„ the characteristic radius of the Bennett distribution. The 

equations (4.44a) to (4.47a) become 

dvb e „ e d A e d A , , „ „ , 
E« + — + wp ——, (132) 

Pf rei mc 3í 
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dwb dA 

Mc 

cA 

+ 
2k(Te + Tp) 

cr dr 

et 

1 d2A 

c2" 3t2 

Mr0 

4re 
ree»b, 

(133) 

(134) 

where the subscript b denotes the quanti t ies at the r = r0 boundary. 

If the Bennet t density distr ibution is to apply at all times then 

the equation of continuity is satisfied only if 

t» = (r /r0) t»b . 

Evidently this does not correspond to a physically realizable model 

and one expects that for r ^> r0 the Bennet t distr ibution breaks down. 

This does not represent an appreciable error owing to the sharp fall 

in particle density in the region of r > ru. 

Eq. (4.50) can be simplified if one makes an approximation, which 

is consistent with the previous assumptions, tha t 

2- (rw) dr — (wb/r0) \ nr dr — 2wbN/r0. 

Then 

f-(sr (135) 

where r1 0 is the initial value of r0 , Ti = T e i + T p l is the init ial temper

ature of the plasma and a is the number of degress of freedom. 

The vector potential A follows directly from eqs. (4.51) and (4.53) 

ra ther than from eq. (2a) as in the hydromagnet ic approximat ion the 

displacement flux (1/c) (dA¡dt) is neglected. Thus 

e 1 + R 2 / r 0
2 

A = Nv In — 
c 1 + r2/r0

2 
(136) 

From this one may derive both dAb/dt and dAbjdr. 

These are 

3A 

rt 
■ Nv 

wb 1 — R2/r0
2 

r0 1 + R2/r„2 

1 d» 

» dt 

dAb 

dr 

' ( R2 Ì 
In 1 + , 

. V
 r

o
2
 ; 

= -Î _ Nv i 
c rc 

— In 2 1 (136a) 

(136b) 
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When one substitutes eqs. (135), 136a) and (136b) into (132) and 

(133) one obtains (writing now d/d t for 3/3t and r for r0) 

d υ 

~dt~ 

f f R2 \) e vw 2R2/r 
j l + v l n t ø 1 + — j  = Eo + v „ 
( ^ r2 J J rei r 1 + R/r

dt» rei v»2 2kTir10
4/a 

= | , rWa+l) 

df M r M 

(137) 

(138) 

For large R/r one has 

In l/2 1 + —— h = 2 In 0 . 3 5 . 

Let us define a mass rei * = m{ 1 + 2v[ ln (R/ r ) — 0.35] } which is 

the effective longitudinal mass of the electrons in the stream *. 

Provided ν ^ 1 and the changes in r0 are not larger than two 

orders of magnitude one may assume tha t 

i n ' 
const. = ψ1. 

The final form of eqs.(137) and (138) is, therefore, 

di 

di» 

UT 

Efj + Ζην , 
rei r 

m ν»2 

+ ac2T^la+^ 

(137a) 

(138a) 

where α = 2ATirio4 / a /Mc2 . 

Smallamplitude solution 

Eqs. (137a) and (138a) can be solved analytically for small oscilla

tions of the quantit ies », ι» and r0. Let us put 

υ = »o + »i ; t» = t»o + rx ; r = r0 + π ; 

Neglecting all secondorder quantit ies one has 

Eo = 0. 

»i 3= 2ψ·ν0 

ru 

Γι = 
m »o2 [ 2»ι 

Έ »o r0 
+ 1 acri 

r„ 4/a+2 

(139) 

(140) 

* The added inertia, represented by the term 2»[In (R/r) — 0.35], results from 
the participation of each electron in the generation of the magnetic field ¡Ì.. around 
the beam. 
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If the quanti t ies »! and ri change harmonical ly with t ime, i.e., as 

e>ut, one obtains from these equations a characteristic equation for ω 

{ m ( »o V (A \ ac2 yi2 

From the original eq. (138a) one gets for the steady state 

rei » o
2 

OCVQ-I
4
'""

1
"

2
' = — ν 

M r0
2 

Substituting this into eq. (141) the frequency of small ampl i tude 

oscillations of the plasma channel becomes 

»o / ( rei ( A\ 
(141a) 

The value of a depends on the ratio of collision frequency between 

plasma particles and the hydromagnet ic frequency ω. The value of 

this ratio for the electron gas is different from that for the positive 

ion gas. In all cases a lies in the range 

2 < a. < 3. 

The frequency given by eq. (141a) is, of course, the frequency of the 

circularly symmetrical mode of infinite wavelength only and in thi? 

sense it represents a cutoff frequency, i.e. the lowest frequency at 

which radial oscillations can be supported by the plasma stream. 

A true dispersion relationship would be obtained only if the 3/3z 

operator had been retained in eqs. (4.40) to (4.43). For waves whose 

guidewave length λκ = 2ττ/Α is shorter than r0 one can assume that 

their propagat ion is similar to tha t in an infinite plasma, i.e. tha t 

their dispersion relationship is that of eq. (130), where B 0 and p0 are 

to be interpreted as some characteristic mean values of dA/dr and 

nM, such as the values of these quantit ies encountered in the steady 

state at r0. 

5.3. Growing Waves and Instabilities 

An instability of a system of fields and particles has been defined 

on p. 144 as a unidirect ional conversion of one type of energy of this 

system into another. 

Every system can be characterised hy a set of parameters èk. 

Let us consider an arbitrary small change 8è.k in each of these para

meters. To each S$k corresponds a change δWk of energy W of the 
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system. The total change 8W due to an arbi trary combination of 
e&'s is 

sw = Σ ur*. 
According to the well known principle of virtual displacements a 
system is in equi l ibr ium if the first variation 8W of its total energy 
is equal to zero. 

In order that the above mentioned energy conversion should not 
occur, i.e. that the system is in stable equi l ibr ium it is necessary tha t 
not only the first variation must be equal to zero but also the second 
variation must he positive. 

This can be illustrated in the case of a drop of l iquid, having a 
certain amount of kinetic energy 1/2MV2 on a slope of a potential hil l 
(fig. 90). A stable situation, exists evidently, at W = W3 where 

dW 
~dj = 0, 

d2W 
ΐξ2 — > 0 assuming that AW > y2MV2. 

Fig. 90. Energy hill. 

One of the most frequently used methods for investigating plasma 
stability is the "normal mode analysis". This consists of setting up 
a linearized wave equation in the plasma and outside it. The wave is 
supposed to have a variation of exp (j ωί) . F(k . r). The matching of 
the two wave equations at the plasma boundary yields a dispersion 
relation 

ω = ω(Α). 

The evidence for stability is tha t ω is real for all real values of A. 
The normal mode method is often applied to systems assumed to 

be loss-less. However, it is well known in the theory of oscillators, 
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especially microwave oscillators, tha t oscillations will bui ld up only 

when the electron current injected into such an oscillator exceeds a 

certain min imum value, known as the starting current. This corre

sponds, in plasma physics, to a certain min imum of energy which 

must be available in the system, before it can be converted into ei ther 

electromagnetic or kinetic energy of the plasma. 

We shall use the normal mode analysis in this section as it follows 

natural ly from the fluid equations developed so far. At the same time 

we shall try to evaluate a quanti ty corresponding to a "start ing 

current" or at least point out the energy aspect of instabilities predicted 

by the normal mode analyses. 

This section is divided into subsections dealing with different 

types of energy conversion. 

5.3.1. CONVERSION OF KINETIC ENERGY OF PARTICLE STREAMS INTO 

THE ENERGY OF LONGITUDINAL PLASMA OSCILLATIONS 

Let us consider an infinite, neutra l and uniform plasma in which 

the electron gas has a velocity »z := »0 and the positive ion gas a 

velocity i»z = ι»ο· Let us assume that bo th these steady velocities are 

per turbed by a small ampl i tude wave, whose spacetime variation 

is e'(""^'"). The situation is then described by eqs. (3.56a), (3.57) which 

in our case can be linearised and become * 

e "le 
jm»! + jA»i»o = Ει — jA ree

2 (142) LEI 
m 

eZ 
»„

 E
i 

Hie — 
jfc U, 

ne 

. , " I P — 

— J« " t 
jtot»i + jAi»it»o — —— Ei — jA up

2. (143) 
M np 

T h e relationships for Ej and ree and nv follow from the equation 

for divergence of Ei and from the continuity equat ion (see eqs. (105) 

(106a,b) ) . T h u s 

jAEi = 4e(Zreip — rele) (144) 

jtullie = —jA(re le»o + ne»i) (145) 

j<oreip = — jA(reipiü0 + ripWi). (146) 

Substituting Ei, nie and relp from eqs. (144)(146) into eqs. (142) 

and (143) one obtains (choosing Ζ = 1) 

— ω + A»o 
flippe2 — (ω I A»0)2 + A2Ue

2] — U'KUpe2 = 0 (142a) 
οι + kivo 

* Compare with eqs. (103), (104). Hypothesis of isothermal plasma retained in 
eqs. (142) and (143). 
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ω + Al»o 

A»o 
l f :

l 
m 

M 
(ω + Alüo)2 + k2Up

2 0. (143a) 

The dispersion equation is derived by putt ing the determinant of 

this system equal to zero. Thus 

[—ω,,,.2 + (ω + A»o)2 — A2Ue
2] 

M 
"pe" + (ω + kwo) — klip

M 

Put t ing (m/M) ω„,.2 

tion can be written 

ρ2, which is the ion plasma frequency this equa

+ = 1. (147) 
(ω + A»o)2 A2Ue

2 (ω + kw,,)2 A2ltp
2 

This equation is of the 4th order in ω. The condition for stability 

is that all the four roots ω;(Α) are real numbers . 

Let us consider first a simplified case in which 

tt'o = 0, Up2 = Uf = 0. 

Eq. (147) becomes 

1 

(ω + A»o)
2 + 

III 1 

M 
(147a) 

Let us plot the lefthand side of this equation as a function /(ω) 

(fig. 91). Imaginary roots appear for 

/ ( ω ) , η ί η > 
1 

th 

/(ω)ιχ,ί,ι — 1 + 

from which it follows that for 

\ i /a-

M J 
(kv0)~ 

k2< 1 + m" (148) 

the electron stream will become unstable and convert its kinetic 
energy into longitudinal electric field E\. The same results is obtained 

* As the minimum is very near to ω = 0, we may take as a first approximation 
1 

/(ω)„,„ _ 
k2 ν«2 

of the minimum /(ω). 

-. The corredini: term 
λ 1/3 

M 
corresponds to a precise calculation 
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Fig. 91. Graphical representation of eq. (147a). 
Ω', belongs to a stable mode, U"t to an unstable one. 

for a relativistic stream, only ire must be interpreted as the longitudinal 

mass ιτίογ' T h i 

A:2< + I M J . 
<»pe 

Vu2 
(148a) 

This type of instability occurs, therefore, at long wave lengths. 
I t is obvious that the smaller <ope (i.e., the lower the plasma density) the 
higher »0 and the h igher γ the longer is the wave length at which 
instabilities set in. 
Instabilities will occur for wave lengths 

> 2TT 
vo 3 ( m0 

~ ~IyW 
1/2' 

(cm). (149) 

This result is not applicable to a plasma whose dimension D at 
r ight angles to »0, t»o and Ei is smaller than 1/2 Xinstab as in tha t case, 
the frequencies <ope, ωρρ of the longitudinal oscillations depend on k, 
i.e., the field equation is no longer a simple div Ει equation. A similar 
problem, namely one concerned with propagation of electromagnetic 
waves on plasma cylinder, was treated on p. 155 and the correspond
ing dispersion relationship found (eq. (50b) ). I t can be shown tha t for 
small A's this dispersion relation is approximately 

2ττΓ0 
In 

>/2 

2"7ΓΓ 0 

(150) 



188 WAVES AND INSTABILITIES IN PLASMA 

This is the frequency tha t must be used in eqs. (148)(149) instead 

of ωρβ. The criterion for instability for cylindrical streams thus 

becomes 

, Alnetab „ vo 

I n — > 
2ΤΓΓ0 r0

2 
1 — 3 

ilio 

M 
(151) 

which in many cases yields Xinsmb larger than the length of plasma 

cylinders likely to be used in practice. 

So far we have not taken into account the energy losses from the 

longitudinal mode Εχ. These may be represented by a damping coeffi

cient δ operat ing on the assumed form of spacetime variation of 

Εχ. The total variation is then 

eJ(ûM + fcl)-5<_ 

I t follows that if an instability generating mechanism exists it must 

be associated with an imaginary component of ω 

I m U ) > — δ 

in order that the corresponding pe i turba t ion eik: can grow inspite 

of the energy loss. 

This energy loss from modes propagated in plasma cylinders may 

be very large as such modes can be coupled to a suitable waveguide 

outside the plasma. 

5.3.2. RAYLEIGHTAYLOR INSTABILITY 

Of part icular interest is the instability in which potential energy 

of a fluid is steadily converted into its kinetic energy. A classical example 

of this situation is a per turbed equi l ibr ium of a fluid supported by a 

l ighter fluid against gravitational forces. When the heavy fluid is a 

plasma (or another electrically conducting fluid) it is possible to 

substitute for the light fluid a magnetic field. In such a case we require 

D ì 

Pm =  ; < n(m + M). (152) 
8TTC

As on the boundary the pressure of the plasma is equal to tha t of the 

magnetic field it is evident that a non relativistic plasma will always 

behave as a heavy fluid when supported by a magnetic field. 

Let us now consider a slab of a perfectly conducting fluid of thick

ness a supported against a gravitational field g by a uniform magnetic 

field Β (fig. 92). Let us further suppose the fluid is of uniform density 
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Fig. 92. Conducting fluid layer supported by a magnetic 
field against a gravitational field g. 

ρ (therefore, incompressible). T h e last assumption is not necessary 
and is introduced only to simplify the analysis (ref. 25). 

The equi l ibr ium requires tha t 

B 2 

~&7 = ρ apg. (153) 

Let us now consider a per turbat ion periodic in z, which does not 
bend lines of magnetic field. I t will be shown later tha t such a per
turbat ion leads often to the so called exchange instability and is 
generally the most readily growing one. We shall use the method of 
oscillating modes for the analysis of the stability of our system. 

The displacement of an element of the fluid at y, ζ is then 

ξ = f(y) · exp [j(o>i + kz)] (154) 

and the function ƒ(y) is equal to | i at y = 0 and ξ 2 at y■= a. 

The velocity in the fluid is » = ξ. Since initially rot » = 0 then 

owing to the conservation of angular momentum rot » = 0 at any t ime. 

The velocity field is, therefore, i rrotat ional and can be derived from 

a potential φ, i.e., 

ν = —νφ. (155) 

As the fluid is supposed incompressible 

div v = 0 

and consequently 

Αφ = 0. (156) 

The solution of this equation in two dimensions y and ζ is well known, 

i.e., 

φ = (Aek* 4 Beky) · βί<""+*' (157) 
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Our problem evidently corresponds to the onefluidmodel. The equa

tion of motion related to this model is 

c» 

~dT 

Using eq. (5) we get 

= — grad (gy) 
1 

grad p . 

df Ρ r 

-r- = gy + — + C-
Ot p 

(158) 

(159) 

The constant C can beasily determined, aussuming tha t originally the 

per turbat ion φ = 0. Then for y = α we have ρ = 0 and C = — ga. 

Let us write these equations for y = 0 and for y ■= α in order to find 

the constants A and B . 

We get 

g Ι ΰφ λ 
)ωψα + - . -Γ- = 0 

]ω ν 3y j u 

-Μ—Ì =°· 
j"> \ dy Jo 

J<i>po 

(160a) 

(160b) 

Substi tuting in eq. (160) from eq. (157) for φ have 

Λ (ω2 — kg)ek" + Β(ω2 + Ag)e'"' = 0 (161a) 

Λ (ω2 — Ag) 4 Β (ω2 4 Ag) = 0. (161b) 

Put t ing the determinant of this system equal to zero we obtain five 

solutions 

fc = 0, ω2 = Ag, ω2 = Ag. 

The first one corresponds to a trivial case of a static equil ibr ium. 

The second and third solutions represent steady ascillations of the 

y=a 

y=o 

% 

Fig. 93. 
a : instability b . surface wave 
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slab with frequencies ± \/kg, therefore, waves propagating either in the 
+ ζ or — ζ rirection. The perturbation resembles a surface wave whose 
amplitude is largest at the upper surface of the fluid (fig. 93b). 

The last two solutions, i.e., ω = ± j\/kg imply a damped and a 
growing perturbation, the growing one obviously related to an instabi
lity of the system in which 

ioc e~k* · eV*« · ' . (162) 

The perturbation at y = α is, therefore, smaller than that at y = 0 
(fig. 93a). 

In case of a compressible fluid in equilibrium, the density distri
bution is that of a gaseous atmosphere in a gravitational field, i.e., 

poe •y/a (163) 

Fig. 94. 
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where δ is known as Haley's thickness and 

Po 
δ = — . (164) 

Pog 

The result of the analysis of the RayleighTaylor instability is, in this 

case, the same as in the case of the incompressible fluid, the distance a 

must be substituted by δ. 

The assumption of small ampl i tude per turbat ion always made when 

the method of oscillating modes is used implies that 

λ TT 

ξ <^ o and also ξ <ξ. — = — . 
¿á κ 

This assumption makes it possible to linearise the equations and 

resolve them analytically. When the ampl i tude of the unstable mode 

becomes comparable or larger than — the problem has to be resolved 

by numerical methods, or by experiments. In the case of the Rayleigh

Taylor instability it has been thus demonstrated that the perturbat ion 

grows into tongues of fluid which finally form drops (or ra ther detached 

cylinders of fluid, fig. 94). The exponential growthrate (eq. (162) ) is no 

longer applicable and the drops fall freely in the gravitational field. 

The £y(t) at the surface of the growing instability is represented by 

a curve which starts as an exponential and after a t ime τ of the order 

of several times (fcg)1/2 merges into a l inear section i; —' gt + const. 

5.3.3. MAGNETOHYDRODYNAMIC INSTABILITY 

This instability has to do with a transformation of thermal (internal) 

energy of plasma into its kinetic energy and in some cases also into the 

energy of the magnetic field. 

a. Stability of a linear Z-pinch 

Let us consider a cylindrical column of plasma of radius r0, surround

ed by a perfectly conducting rigid wall of radius R = ßrn. There will 

be three magnetic fields in this system: Βφ and B„ outside the plasma 

and B;p t rapped inside the plasma. Let us also make the following 

assumptions. 

1. All the currents are surfacecurrents (i.e., the thickness of the 

surface currentlayer is much smaller than r 0 ) . 

2. Plasma is a perfect conductor. There will be, therefore, no 
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diffusion of magnetic fields and we shall be able to use the MHD 
model. 

3. Our pinch is initially in equi l ibr ium (p. 135) and is per turbed 
by a small ampli tude r ipple whose form is exp. j (kz + τηφ 4- ωί). 

4. All dynamical processes are isentropic (no shocks). 

We shall use the following nomenclature B , = B 0 , BCT = avB0, 
r 

B;p = ctpB0. This allows us to measure all fields in terms of B 0 , the Βφ 
field at the plasma surface. 

We shall use the method of normal modes. The result which we shall 
be looking for is of the form 

ω = ω (α,·, αρ, β, k, rei) (165) 

real ω corresponds to stationary oscillation, complex ω to either damped 
oscillations or to instability. 

We shall proceed as follows: corresponding to the form of the 
per turbat ion we shall find the per turbed magnetic field outside and 
the per turbed magnetic field and plasma pressure inside the plasma. 
Matching the two solutions (outside and inside one) at the plasma 
boundary gives a characteristic equation and the dispersion relation 

Let us now write the equations corresponding to the MHD model 
and to our case. 

First the Maxwell's equations 

— Β = rot — VAB , r o t B = —— i, div Β = 0, (166a,b,c) 
c \ c ) c 

then the equations of continuity and of plasma motion 

1 
ρ = div pv, pv = — i Λ Β — grad ρ (167a,b) 

c 

and finally the equation of state in the form 

d di 
(pp-^) = 0. (168) 

Let us now find the expression for the per turbed magnetic field in 
vacuum. 

This can be writ ten as 

Β ~ Βφ 4- ovBo + δΒ = F + SB. (169) 



194 WAVES AND INSTABILITIES IN PLASMA 

As there are no currents outside the plasma 

rot δΒ = div 8B = 0 (170) 

which allows us to write 

δΒ = νψ and Αψ = 0. (171a,b) 

The solution of this equation in cylindrical geometry is 

Ψ = [a Jm(jkr) + b Hm(jkr)] e>«"+""P). (172) 

T h e constants a and b are to be determined from the boundary 

condition 

B n = 0 (173) 

on r = R and on the surface of the plasma, η being the vector normal to 

these surfaces. On the outer surface we have 

>-=m 8Br=\— = 0 . (174) 

The plasma surface is described by 

r = r„ [1 + δ0 e^k'+"·^]. (175) 

The component of the field normal to the surface is 

jBoöo (Aroa, + rei) e^+™?> = 0. (176) 
, dr J r=r0 

From equations (172)(176) we have 

—— (ka,.r0 + rei) 

a = B0 (177) 
J'm(jkroß) 

J'm (jAro)  H'„, (jfcro) Τ Ϊ Γ Τ Τ ^ Τ 
H'm(]kroß) 

J'm(jkr0ß) 
6 = — a —  . 178) 

H'„,(ikr0ß) ' 

Knowing SB it is easy to calculate the magnetic pressure δρ,· from the 

outside on the plasma surface. Thus 

( Β2 \ Β, 
Spv = 8 —  = — — (8Br + <x,.SB;,. — B080 · e^+»"P>). (179) 

Using equations (171a), (172), (177) and (178) we get 

BPr = δ0 4
2 1 ^+m9) \ (™ + «.·>02 GßmK'"Lm  1 1 (180) 

8τΓ ( 1 Irßm ) 
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where Y = fcr0, Km = — ———, Lm = 

G«,,, — 

)YJ'.„,(jY) ' )YH'm(jY) 

H'm(jßY) J'm(jY) 

H'.m(]Y) J'm(jßY) 

Let us now find the perturbation in the plasma. It is convenient to 

introduce (as we did on p. 183) a new variable 

ξ = ƒ » dt (181) 
o 

which represents the displacement of an element of fluid. Taking into 
account only first order terms, equation (166a) becomes 

δΒ = rot (» Λ Β) (182) 

and integrating both sides and using equation (181) one has: 

δΒ = rot (£ Λ Β). (183) 

The equation of motion can be written as 

p% = (rot δΒ) A Β — grad δρ. (184) 

4ττ 

Substituting eq. (183) into eq. (184) we get 

pi = [rot rot ( | Λ Β)] Λ Β — grad δρ. (185) 

ATT 

The equation of continuity writ ten in Langrangian coordinates becomes 
8p = — po div ξ (186) 

and the equation of state and eq. (186) gives 

op = — ypo div ξ. (187) 

Using eq. (187) the equation of motion becomes finally 

— 4πρω2ξ = Β Λ rot rot (Β Α ξ) + Αττγρ0 grad div ξ. (188) 

The per turbat ion exp. j (kz 4- τηφ) is symmetrical in both ζ and φ 
and when ω is real, the difference between exp. (jmt) and exp. (— jmt) 
is only in the direction of propagation. I t is evident that the solution 
of equation (188) must be ω2 so that both 4- ω and — ω is a solution. 
Changing one of the parameters of the per turbat ion, e.g., A, both roots 
+ ω and — ω will move symmetrically along the real axis in the 
ω-plane (fig. 95). Before the ω(Α) values can become purely imaginary 
they must pass through ω(Α) = 0. This corresponds to the passage from 
a stably oscillating system (fc < fc0) through labile situation (fc = fc0), 
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o 

il m (k) 
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Fig. 95. 

TTP- Re (ω) 

to an unstable system (A > A0). This can be represented by the energy 
well of diminishing depth in fig. 96. 

Let us now examine the case ω = 0, which represents the margin 

w 
A > ka 

t = -o — > 

Fig. 96. 
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of stability. As the solenoidal and irrotat ional parts of ξ cannot cancell 
each other, it is obvious from equation (188) that 

rot ( ξ Λ Β ) = 0 and div ξ = 0 ( ie9a,b) 

which is equivalent to saying that 

ξ = grad φ where Δφ = 0. (190a,b) 

We have, therefore, in cylindrical geometry, in the region containing 
the axis, 

ξ = c grad Jm(jkr) βΗ**+"·?>. (191) 

The boundary condition on r = r u ( l + δoei(,"!+m',', ) gives 

ξ, = Γ0δ0 ei(**+m?> (192) 

from which 

ΤΌδο 
jA7'm(jAr0) 

(193) 

I t is now possible to calculate the change δρρ in the internal pressure 
on the plasma surface. As the volume of the plasma did not change 
the kinetic pressure of the plasma remains constant and the δρρ cor
responds to only the changed magnetic pressure inside the plasma. 
Thus 

δρ, -if-Çi-l 
y 8ττ ) r=r0 

Β;„ 
SB; 

ATT 

From eq. (183) and with eq. (189b) follows tha t 

(194) 

■~s£ J S 2 1 

SB; = (B V) ξ = Β , — = ccpBo —  . (195) 
dz dz2 

Using eqs. (190) and (191) we get 

SPv = ap
28o —— eH*'+"?> Y2Km(Y). (196) 

OTT 

To a certain ampli tude δο of the per turbat ion corresponds, therefore, 

a pressure difference 

δρ = δρρ — 8pv. (197) 

Since our system is labile (indifferent equil ibr ium, ω = 0) it follows 

that δρ = 0. For δρ > 0 and r — r0 > 0 the surface will be displaced 
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further and the per turbat ion is unstable. Using eqs. (180) and (196) 

we get 

C K — / 

δρ oc a,2Y2Km — (m + ανΥ)2 ' " " „ 4  1 = 0 (198) 
1 

and the condition for stability becomes 

 *p2Y2Km + (rei 4 avY)2 V  > 1. 
1 — G«m 

(199) 

This criterion can be interpreted as follows. Let us choose the geometry 

(. Y N 

of the per turbat ion i.e., ire and A = 

r0 

and the geometry of the 

magnetic fields (i.e., av and ap). I t is then possible to calculate from 

R 
equation (199) the β = corresponding to a plasma column, stable 

r.i 

against the perturbat ion considered. This gives a curve in the graph 

«μ2, β (fig. 97). To every m corresponds a different curve. The simplest 

graph is obtained for av = 0. In such a case no equi l ibr ium is possible 

for a„ > 1 (p. 135, eq. (77) ). Above each curve (for fixed ire) is the 

°<c 

no equilibrium 

I ni = Í 

zero plasma density 

'5 /3 

Fig. 97. Stability diagram for m = 0, 1, 2 and a, = 0. 
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zone in which the plasma is stable. The common zone of stability for 

all rei is the zone of absolute stability. 

The most dangerous instabilities are the rei = 0 and rei = 1. T h e 

m = 0 is known as sausage instability, whereas the m = 1 is called 

the kink instability (fig. 98). I t is seen from fig. 97 tha t the sausage 

instability can be suppressed by making «p
2 > I/o. Stability against 

kinks can be obtained only for tube to plasma radius ratios smaller 

than 5. 

© 
m=-a 

φ 
m= i 

Fig. 98. Deformations corresponding to (a) sausage and (b) kinkinstability. 

In order to obtain the growthrates of the various unstable modes 

it is necessary to resolve eq. (188) for imaginary ω. 

This equation can he transformed into 

α'ξ = 2jAz0 Λ rot ξ — b' grad div ξ (200) 

vh ere 

δττροω 
o' = ——r——, b' = y(av <*p

2 + 1 ) ffP~2. 
«pDo 

The components of these equations are (using operators jk, jm) 

j de; 
er = 

k dr 

2fc m \ m 
ξ, + Ηφ\ +r—èz 

r ) kr 

(201a) 

(201b) 
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a' 1 3 jire 

 rur & =   τ  ( r ^ + — £* + i*«*· 
yfo'fc r or r 

(201c) 

Substituting for £r and £,, in the last equat ion we have from eqs. 

(201a,b) 

1 3 ( 3|, 

r 3r 

the solution of which is 

r ξ* ) + — A2 
Ér = 0 

ξ = C · J, (V4 fc2r 

and one finds from the first boundary condition | r =: Γ0δο tha t 

δο^οΑ 
C = 

XJ'(jXr„) 

where X2 = fc2 ■ 

(202) 

(203) 

(204) 

From the second boundary condition, i.e., from 

δρρ = δρ» 

we get the dispersion relationship ω = <i>(fc,rei) 

1—έτ ί VX2 K„,(jXr„) + 
2X2 . 

v » Gßm(Y)Km(Y)Lm(Y) 
+ (m + avY) —  — = 1 (205) 

ι — Gø,,, ( Jr ) 

from which the growthrate of any mode (k,m) can be calculated. 

This equation merges into equation (199) when ω = 0, i.e., when X = fc. 

b. Systems with diffused (volume) currents 

Let us consider two adjacent flux tubes, containing plasma. We shall 

assume that the tubes are locally parallel to each other, i.e., there is no 

shear in the lines of force (fig. 99). Let the tubes be tied to the plasma, 

which for grad |BI =̂= 0, co leads to a continuous currentdistribution. 

Let li Αι Ωί Bi Νχ and çS, be the length, crosssection, volume, field, 

total number of ions and flux in the first tube (system Sj) and l2 A2 

Ω2 B2 N2 and φ2 the corresponding quantit ies in the second tube 

(system S2). 
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Fig. 99. Adjacent parallel flux tubes. 

We shall calculate the energy AW involved when the systems Si 
and S2 exchange places, i.e. when the flux φι and particles Νχ are fitted 
into Ω2 and φ2 and N2 are put into Ωί. Evidently 

AW = AWx + AW2 (206) 

where AWi corresponds to the first operation, AW2 to the second. 
I t will be assumed tha t the changes are made adiabatically. When 
AW > 0, the exchange Si = ï S2 can be made only if an energy. AW 
is supplied from external sources, i.e., our configuration of magnetic 
field and plasma is stable against Si = ϊ S2. If, on the contrary AW < 0, 
energy is l iberated. This energy can be transformed in the energy of 
motion of the plasma and the configuration is unstable against the 
exchange considered. 

The three basic equations are those of conservation of number of 
particles, of flux and of energy : 

η-ιΩι = η'χ€12 = Νχ, 

ΒχΑχ = Β'χΑ2 = φι, 

where 1 + 

Τ'χ 
Τχ 

2 

Ωί V " 1 

π.2Ω2 = η'2Ωχ = Ν2 

Β2Α2 = Β'ο^ι = φ2 

Τ'2 ( Ω2 V - 1 

(207a,b) 

(208a,b) 

(209a,b) 

and a is the number of degrees of freedom of the 

plasma particles. 
The two energy differences are 

AU7a = WikATi + (ΒΊ 2Ω 2 — BS-Qi) (210a) 
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AW-, = 3/Υ.,ΑΔΤ., 
8n 

(Β'.,ΐί, — β,,2Ω2 

From eqs. (206), (208) and (209) we get 

AW = 3A ΝιΤχ 

1 
+ 8-

Ω·> 
+ N,T2 , αχ ) 

ν A2 Ai ) y Αι Α.- ) 

(210b) 

+ 

(211) 

T h e simplest case to which we can apply our formula is a perturbat ion 
of a free-surface plasma *. We shall consider an exchange of flux and 
plasma, both occupying the same volume Ω = Ωί = Ω2. We have, 
therefore, φΛ = 0 and N2 = 0. 

From eq. (211) we get 

AW = 
Ü -

íAs - h (212) 

and the system is stable if h > I2. This is possible only if the free surface 
is concave (fig. 100). 

h<li 

plasma 
Fig. 100. An example of a stable plasma surface. 

* This our first example still corresponds to surface currents rather than to volume 
currents. 



GROWING WAVES AND INSTABILITIES 203 

Let us now consider two adjacent flux tubes, containing the same 
flux bu t different number of particles. Thus φι = φ2 and from 
eq. (211) we get 

AW = ΜΝχΤχ 1 m"-1 (213) + 3fcN.,T., 
ΙΛ Ω2 ) 

where we have assumed that γ — 1 = 2 / 3 , corresponding to 3 degrees 
of freedom. Substi tuting for 2fc/V]Ti = ρ ιΩ! 

AW = 3/2Ωιρι Ωι_ 
Ω2 

2/3 

2kN2T2 = ρ2Ω2 

4- 3/2Ω2ρ2 — 1 
Ωί J J 

(214) 

Since the tubes are adjacent 

Ω2 = Ω 4- δΩ, 

where we put Ω = Ωί, ρ = ρχ. Expanding 

10 

ρ2 = ρ + δρ 

Ω 4- δΩ Ì 2 '3 

(215) 

Ω 
we obtain 

AW = 3/2Ωρ 
10 f δΩ V δρ δΩ 

f 2 /3 — — I = Ωτδ (ρΩτ)δΩ. (216) 

In some cases it is of interest to consider AW resulting from the 

exchange of two tubes all along the length I of the system containing 

plasma. Then 

Ω = \ A dl. (217) 

As the flux in the tube is constant, φ = A · Β and 

Ω = φ 
dl 

~B 
(218) 

where / and I' are the lengths in the 4 and — axial direction u p to 

those points of the tube beyond which the configuration is known 

to be stable or not to be of interest any longer. 

I t can be shown tha t the term Γ = δ(ρΩ'ν) in eq. (216) is always 

negative: 

( δρ δΩ 
4  γ — I Ωv. 

ν Ρ Ω 
(219) 

In the outer regions of the confined plasma δρ < 0 and ρ > 0, whereas 

Ω does not change rapidly. Therefore, 
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fp_ 
Ρ 

> 
δΩ 

7 Ω 
(220) 

and ΓΩ-y < 0. (221) 

In order tha t the system is stable, i.e., tha t AW > 0 it is, therefore, 
necessary tha t 

δΩ < 0 (222) 

dl 
IT <o. (223) 

Let us apply this criterion to a simple symmetric magnetic bott le 
(fig. 101). The variational form of the stability criterion can be 
transformed as follows 

Fig. 101. 
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·ί-τ--ί-Η4--1-(τ)« <-> 
1 'ι ' ï ' 

where Ιχ and Z2 are the lengths of two adjacent tubes, whose separation 

is D (I). If the pressure of the plasma is relatively small i.e., if 

8irp 
β = — <ξ l w e can assume tha t rot Β ~ 0 and we get 

B 2 

SB D
 (225) 

Β R 

and noting that the flux between the two lines B i and B2 is 

Αφ = 2TTD · rB = const. (226) 

the above criterion (eq. (223) ) can be wri t ten 

dl 
> 0. (227) 

rRB
2 

ι 

The sign of the integral depends on R. In the concave par t of the 

φ
2 

bottle, R > 0; in the convex par t R < 0. However, as rB2 ¡x it 

r3 

follows tha t the integrand is largest for ζ = 0 and therefore, the nega

tive contr ibut ion of the central par t of the bott le predominates and the 

simple magnetic bott le is thus unstable against flute (exchange) 

instabilities. 

c. Systems of confinement and their stability 

The stabilized l inear Zpinch is a typical representative of plasma 

confinement in which the plasma pressure is, at least partially, balanced 

by selffields. Using the model of surface currents we have derived the 

criteria for the stability. According to this (ref. 16), this stability 

against the most dangerous mode, i.e., the sausage instability, is assured 

when = V 2 for Bzv — 0, where B 0 is the intensity of the B T 

B 

field at the plasma surface. The kink instability can be stabilized only 

if t h e conducting wall is near enough to the plasma, so tha t the 

Foucault currents (image currents) are able to repel a growing kink 

(fig. 102). This is expressed by requir ing that β < 5. If t he modes 

ire = 0,1 are thus stabilized, the higher modes will not t rouble the 

confinement. I t has been found tha t the stability of a laboratory plasma 
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er ν 

Fig. 102. 

cannot be achieved by satisfying these criteria for stability. This is due 
to principally three reasons: 

a) the i-, i, currents are never surface currents, bu t are diffused 
throughout the pinch, 

b) the cooling effects of electrodes and plasma radiat ion loss, 

c) two-stream and other "micro" instabilities tend to destroy the 
configuration even if it is hydromagnetically stable. 

In 1958 Suydam has generalized the stability criterion, taking into 
:count the d 

be written as 
account the diffuse na ture of the currents iz and iv. This criterion can 

4π dp 

Β/2 dr 
4-

( Bz 

B, dr I r B , J > 0. (228) 

In order that a diffuse Z-pinch should be stable at every point, 
the criterion (228) implies existence of a central B- reversed with 
respect to Bz in the outer regions of the pinch. I t has been shown later 
that the above criterion has to be made still more stringent, since in the 
above written form it is a necessary bu t not a sufficient condition for 
stability. 

The effect b) responsible for the destruction of stability has been 
observed experimentally (ref. 17, fig. 103) and in the long run cannot 
be entirely eliminated, even so as effect c). These two effects will 
cause a loss of plasma from the confined region, however, may not lead 
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Fig. 103 
Development of sausage instability near an electrode. 
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to a lasting gross instability. In such a case the duration of the configu
ration may be infinite, provided energy and new plasma particles are 
continuously supplied. The typical time corresponding to such a 
confinement is known as the energy-confinement time and corresponds 
to the recycling of the energy originally contained in the confined 
plasma (see fig. 103). 

The simple magnetic bottle is an example of configurations without 
self-fields. Although the criterion (227) shows that it is unstable against 
flutes, experiments habe been made in which no gross instability has 
been observed (ref. 18). It has been suggested that this apparent 
stability is due to the anchoring of the ends of the flux tubes on 
conductors at the ends of the bottle. Even if there are no conductors, 
insulating surfaces in vacuum and in contact with the plasma may 
become temporarily good conductors. If such flux-trapping existed it 
may make te exchange of two-flux tubes impossible and the criterion 
(227) becomes too pessimistic. 

However, for long term confinement this fortuitous effect is insuffi
cient and it is necessary to find magnetic field geometries which are 
basically stable. A forerunner of these is the magnetic cusp (ref. 19). 
Experiments have demonstrated that this bottle is hydromagnetically 
stable, however it is relatively leaky. This is due to the zone of nearly 
zero magnetic field at its centre, in which particles tied normally to 
flux tubes can become untied and slip onto tubes leading the particles 
out of the bottle (non-adiabatic orbits). 

This defect can be eliminated by superposing on a linear cusp-
field (Bc) an orthogonal (B-) axial field (fig. 104). This configuration 

Fig. 104. 
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is known as the stuffed cusp or the Ioffe's bottle. I t has been shown 

later (ref. 20) that Ioffe's bott le is only a special case of a class of 

similar configurations, now known as the nonzero min imum Bconfi

gurations. 

In order to el iminate particle endlosses from an open magnetic 

bottle, efforts have been made to close it into a torus. An example of 

such a t rend is the Stellarator geometry. However, many variants of 

such a toroidal system ei ther do not possess an equil ibr ium, or the 

lines of the magnetic field intersect the toroidal vacuum envelope, 

or the system is not stable. One of the best compromises is shown in 

. dl 
fig. 105 (ref. 21) in which δ (J) < 0. The system, known as toroidal ι 

Β 

mult ipele , does not possess a local stability everywhere 

zones in which Β is convex. 

there 

t 

. " > ι 

I 
Ri 

pia 

ejfua ro rial £ _ \ ^N 

ne ¿oroiota l 

^conductors 

Fig. 105. 

5.3.4. HYDRODYNAMIC INSTABILITY 

We have seen in section 5.3.1. how a kinetic energy of a neutralized 

electron stream can be converted into the energy of growing longitudinal 

electron oscillations. We have also shown in section 5.3.2 how the 

energy of a magnetic field of a current flow can become a source 
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for the flute instability. In this section we shall analyse an hydro

dynamic instability in electron streams in which the kinetic energy 

of the stream is converted into the energy of transversal motion, 

a mechanism related to the well known kink instability. This type of 

energy conversion becomes impor tan t when the kinetic energy of an 

electron stream is much larger than the magnetic energy associated 

with it. The kinetic energy per uni t length of the stream is 

WK = (reioyc2 — m0c
2)N (229) 

where N is the l inear density of electrons. The corresponding magnetic 

energy for a plasma cylinder of uniform density whose radius is r0 is 

Wu = e2N (■„A 
+ 

1 
(230) 

and where one assumes that the magnetic field extends radially to a 

radius R. T h e ratio of these energies is * 

Wk 

wM 

1 

In 
R 

rn 

(231) 

4-

where ν = (e2/mc2)N. 

The hydrodynamic instability becomes an impor tan t feature of a 

neutralized electron stream when 

κ > 1. (232) 

I t can be shown that this criterion can be also derived from a com

parison between hydrodynamic and magnetic forces driving a kink 

instability. 

In order to do this let us consider an electron beam (fig. 106) 

îA=x* ^ 

Fig. 106. Hydrodynamic kinkinstability. 

Compare with a related equation (4.57) for a non relativistic Bennett distribution. 
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constrained to move along a sinusoidal curve L = χ = xm sin Az. The 

centrifugal force on a uni t segment of the beam is 

Nmyif 
E„ = — (233) 

where r0 is the radius of curvature of the curve L at the segment 

considered. If x„, <̂  1/2λ the radius becomes 

ι 
= — a:m

_1A_2(sin fcz)1 

3
2
* 

dz2 

and 

F h = k2x„,yNmv2 sin Az. (233a) 

The magnetic force F,a is found by using the BiotSavart law. Thus 

the force d2F,„ exerted by a current element dli on a current element 

dl2 is 

d I i Λ η 2 
d

2
Fra = ds — I. 

r3v2 

The total force Fm on a uni t length element d/ due to all other 

current elements of the sinusoidal beam is then obtained by integration 

F = krx In 
2·7]·Γ0 

(234) 

If a conducting cylindrical wall exists at r = R then owing to the 

« . Anime n 

appearance ot imagecurrents we must put —■ = R. 
2TT 

Let us form a ratio FhIFm using eqs. (233a) and (234) 

F|, γ 

, Β 
ν In 

(235) 

r„ 

It is, therefore, obvious that if inequality (232) is obeyed, the hydro

dynamic forces play a more impor tant rôle than the selfmagnetic 

forces in the excitation of instabilities. 

Let us use an idealised model for a plasma stream, consisting of 

two cylindrical beams of radius r0, one formed by the fast electrons, 

the other by almost stationary positive ions (these will be considered 

to be protons). This model is often referred to as a twostring model 

of a neutralized (or even partially neutralized) electron beam. In an 

unper turbed state the axes of these beams coincide; however, when 



GROWING WAVES AND INSTABILITIES 211 

transversal forces are applied tire electron beam can partially separate 

from the positive ion beam (fig. 107). Such a separation is an impor tant 

feature of energetic electron beams in plasmas. 

Let us assume that no redistr ibution of charges occurs in the two 

beams. Then a displacement χ of the axis of one of the two cylinders 

gives rise to surface charges 4 σ and — o, which generate a field E 

inside the still neutra l plasma. This field causes an attraction force to 

appear between the two beams whose magni tude is 

F e = 7rr0
2reeE 

where E = 2ττσ and σ = (lAr)iie:r. 

Wi th these, F e becomes 

Fe = 
2e 2 ¿V2 

Lirenrox = x. 

(236) 

(236a) 

I t is interesting to estimate to what extent the motion of the electron 

beam is decoupled from the shape of the positive beam. In order to 

do this let us consider a sharp bend in the positive beam (fig. 108). 

Fig. 107. Electric field 
induced by a displace
ment of the "strings". 

Fig. 108. The cohesion of a positive and 
negative string. 

The fast electron beam will shoot off at a tangent making initially 

an angle ψ wth the new direction of the positives. Taking into account 

only Fh and F e forces we have for the electric stored energy resulting 

from the separation of the two beams 

We = \ Fe dx 

The initial kinetic energy available for movement in the «direction 

at χ = 0 is 

Wk = y2TTr„2nmy(ßcip)2. (237) 
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The distance xm of maximum separation is obtained from 

We = Wy. 

Thus 

Xm = V V W ^ r o VTA (238) 

The wave length Xc corresponding to one full oscillation of the electrons 

about the positive beam is 

Xe = 2TT  Í 2  = \/2ττ3Ι2βΓ0 \Fy7v~. (238a) 
ύ 

From this it follows that any perturbation of the positive beam, 
whose wave length is smaller than Xf will not be impressed on the 
electron beam. 

This relationship can be also derived from the equations of motion 
for the two strings. These follow directly from the two-fluid equations 

y i V r e i 0 i — 4 · » — Ì = — F e (239a) 
y dt dz ) 

"«(l^-■£)-'-
In terms of the deflections Χχ and x2 of the two strings, eqs. (239a,b) 

become 

Nreio h » xi = α(χχ—x2) (240a) 
(d 3 V 

ι0 h » xi = α(χχ — x2 
K dt dz J 

[ O 'S v o 

h i » 1 x2 = a(x2 — xi). (240b) 
dt dz j 

Let us consider a Four ier component of the actual per turbat ion, 

i.e., let us study xx and x2 of the form β'(ω'^"λι). Then eqs. (240a,b) 

become algebraic equations and by putt ing their determinant equal to 

zero one derives the dispersion equation 

ΩΓ ΩΟ2 

+ : —ΓΖ7 = l i (241) 
(ω — »Α)

2
 (ω—t»A) 

where 

2v f c V , 2 mo f c V 

Try { ro ) ττ M y r„ ) 

which has the same form as eq. (147). 
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The criterion for the onset of instabilities will have, therefore, 

the same form as eq. (148a) and for iv = 0 one obtains for the longest 

stable wave length 

— Γ ( mu V
/ 2

 1 -
3
'
2
 / y 

Amax=V2^2[l + ( r ^ J fay! 
(242) 

Remember that in evaluating the coupling force F e between the 

strings we have taken as our model beams of equal characteristic 

radius r0. If one considers a coldcore model (p. 135) the dimension 

of the electron stream is considerably smaller than that of the positive 

ion stream. In that case, in order to evaluate F e , one should consider 

only that port ion iVp of the positive cloud which is located inside the 

electron beam. I t has been shown (eq. (4.73a) ) tha t for a flat stream 

N/Np = y2 

and from eq. (236a) one has for F e 

2e2 N2 

F e = —— x. (243) 
 y2ra

2 

Substituting this into eqs. (239a,h) one obtains for the longest stable 

wave length 

= V2-
3
'

2 ( mu \
 l

¡
2
 1 -

3
'
2
 / γ 

i +
 [?«-J *·ν-τ 

(242a) 

which suggests considerable stability. 

Evidently the criterion of stability depends on the structure of the 

neutralized beam, but one may expect that the corresponding value 

of Xmax will lie somewhere between the values given by eq. (242) and 

eq. (242a). 

The behaviour of a relativistic beam immersed in a plasma is more 

stable (ref. 22). 
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List of symbols used in Chapter 5 

215 

A 
B,B 
c 
d 
e 
E, E 
f 
F 
g 
H 
i 
l 

j 
k 

K 

ι 
m, M 
n 
N 
P 
r, s 
R 
t 

vector potential or surface 
magnetic field strength 
velocity of light 
distance, Debye length 
charge of electron 
electric field strength 
distribution function, 
frequency 
force 
gravitational field 
Hamiltonian 
electron current density 
current 

V —ι 
wave number or 
Boltzmann's constant 
abs. value of the imaginary 
part of the wavenumber 
dimension 
particle mass 
particle density 
linear density 
pressure 
coordinates, distance 
radius 
time 

u, v, w velocity 
Vp phase velocity 

W 
x,y,z 
Ζ 
a 

β = 
y = 
s 
ε 
Χ 
XD 
ν 

Ψ 
θ 
θο 
Ρ 
σ 
στ 
τ 
11) 

ω,. 

">ρ 

ξ 
Φ 
Ψ 
Ω 

Φ 

energy density 
coordinates 
atomic number 
number of degrees of free
dom 
v/c 
(1 — »2/c2)_1/2 or Cp/cv 
skin depth, damping coef
ficient or mean fluctuation 
dielectric constant 
wave length 
Debye length 
frequency 
phase angle or potential 
coordinate 
Brewster's angle 
density 
surface charge density 
Thomson cross-section 
period of oscillation 
angular frequency 
cyclotron frequency 
plasma frequency 
displacement 
flux 
potential 
volume 
magnetic flux 



CHAPTER 6 

SHOCK WAVES IN PLASMA 

Introduction 

In the previous chapter we have described various energy conversion 
processes which give rise to oscillations in plasma. The propagation 
of small ampli tude oscillations through plasma as investigated by 
solving the linearized wave equations for a part icular wave form, 
whose space-time variation was assumed to he exp [j(o>t 4- Az)}. It 
was argued that any small ampli tude perturbation could be expressed 
hy its Fourier components and, therefore, its progress in space and 
time can always be found from the dispersion relation ω(Α) for the 
individual components. Thus if the perturbat ion has a form 

fu(z) = ƒ F(*)ei*' dA (1) 
t f. 

at the time t = 0, it will be transformed into 

ƒ(=) = ƒ FlAM*-«**»] dA ( la) 
Í  r. 

at some later time t. 

It was also mentioned that for most types of oscillations, the dis

persion relationship ω = ω(Α) is valid only within certain frequency 

range, e.g., for hydromagnetic waves the validity of the dispersion 

relation is in doubt ('or wave lengths λ , shorter than the gyration 

radius of the ions. Thus only propagation of perturbations whose 

initial distribution ƒ,,( = ) docs not contain harmonics whose wave length 
is shorter than λ,π|η can be described by the dispersion relations derived 
in chapter 5. 

When the ampli tude of a wave becomes so large that the quadratic 
and higher terms in iii, Ι Ί , ΚΊ cannot be neglected the fluid equations 
cannot, as a rule, be resolved analytically. No simple dispersion equa
tion is obtainable, in fact, the frequency of an oscillation will depend 
on its ampli tude and consequently its phase and group velocity will 
also depend on the ampli tude. 
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It is obvious that , owing to the above mentioned two limitations, 
propagation of strong disturbances in a plasma cannot be described 
using the dispersion relations derived for small ampl i tude waves. 

Nevertheless, certain concepts in the propagation of large ampl i tude 
waves resemble the concept of group velocity. This can be demonstrated 
in a simple way for disturbances having a plane geometry. The equa
tions of an ideal fluid in absence of external forces are (from eqs. (2.59a) 
and (2.62) ). 

3p 3 

at ax 
(vp) (2) 

3» 3» 1 dp 
+ » = — (3) 

3t ex ρ dx 

pp-"< = const. (4) * 

Let us define a new variable 
Ρ 

y — J — \ c where c 
"J Ρ Ρ 

and po is the undis turbed fluid density. 
I t follows tha t 

ƒ = — ^ - r - (c - Co). (5) 
7 — 1 

Using this quanti ty eqs. (2) and (3) can be now writ ten as 

= 0 (6) 

= 0. (7) 

Adding or subtracting these equations we obtain 

(ƒ 4- ») 4- (» + c) —— (ƒ + » ) = 0 ' (8) 

df 
dt 

dv 

dt 

- + 

+ 

c 

V 

dv 

dx 

dv 

ox 

+ 

+ 

V 

c 

df 
dx 

df 
dx 

dt dx 

a 
(ƒ - ») 4- (» - c) - — (ƒ — ») = 0. (9) 

3t dx 
These equations have the form of wave equations for the quanti t ies 

f 4- » and ƒ — ». The velocity of propagation of these waves is » + c 

* y = 1 -| where a is the number of degrees of freedom. 
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and » — e. Thus for an observer travelling with one of these speeds 
one of the quantities ƒ 4- », ƒ — ν remains invariant. These quantities 
are known as Riemannian invariants and the curves in the x, t space 
on which ƒ ± » = const, are called the characteristics. The two Riemann 
invariants are equivalent to the following two invariants 

2 9 
Ri = — c + v, R2 = c — » (10) 

y — 1 y — 1 

where c has the meaning of a local speed of sound. 
Let us now consider the propagation of a plane fluid distribution 

shown in fig. 109 for t — 0. 
If at this time the ρ, ρ and » are known functions of x, it is possi

ble to find the angles of characteristics in the x, t plane for t = 0. It 
is evident that the characteristic passing through the point A corres
ponds to a faster signal than that passing through B. At some later 
time te these characteristics will intersect suggesting that a zone is 
being created where the values Ri(A) = Ri(B). As this is physically 
impossible a discontinuity in ρ, ρ and » must exist at the point C 
or possibly even at an earlier t ime. In this case the family of charac
teristics between A and B has an envelope 2 which represents the 
formation of such a discontinuity. The fluid region at Σ is known as 
the shock front (ref. 1). 

Since the occurence of shocks is related to intersecting characteristics 
let us derive a criterion for the intersection of two adjacent characte
ristics » + c. The difference of speeds of two points following these 
curves is 

cv ( δρ δρ "\ 
δ = δ» + Sc = δρ + y, c — — 111) 

dp \ Ρ Ρ) 
δρ y 

as ρ ■— ρ" we have = δρ and 
/ ' Ρ 

CV y — 1 

δ =  _ δ ρ + ^  — c  δ ρ . (12) 
' Ρ 2 

If the characteristics are to intersect we must have δ > 0 and, there

fore, 

' ?» -, I ï 

^ dp 

y 
c 

δΡ > 0. (13) 

If the opposite is true the zone near the two characteristics is develop

ing a rarefaction wave. 
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ρ,Ϋ,ν (t = o) 

*~λ 

*ι (A) 
Fig. 109. Formation of a shock. 

Most of these observations are t rue for a plasma in a magnetic field, 
the sound speed c must be in such a case interpreted as the speed of 
longitudinal hydromagnetic waves. 
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6.1. Relations of RankineHugoniot. Shockspeed 

The behaviour of a plasma invested by a shockwave can be described 

by the equations of continuity, conservation of momentum, magnetic 

flux and energy. We shall use the model of one fluid with infinite 

electrical conductivity. We have (see eqs. (3.59a), (3.CO) and (3.66) ) 

dp d 
(pv) eq. of continuity (14) 

Ρ 

at ; 

a» a» ι oB dp 
h ρ» = Β eq. of cons, of momentum 

3t dx Απτ dx dx 

(15) 

a aß 
(»ß) = —— eq. of cons, of mag. flux (16) 

a» 3 a Ï 

+ —— + » 

dx dt 

Ρ 

dx dt dx \y ι 
+ y2pv

d(pv) 1 a(»B2) 
| 1 = 0 energy flow. (17) 

dx OTT dx 

Let us assume that some t ime τ after the passage of the shockfront 

2 the fluid settles into a new equil ibr ium state. 

This usually implies the existence of some dissipation mechanism 

such as viscosity. As r can be chosen very large, the damping mechanism 

can be so weak tha t it does not has to be represented by a special term 

in the above equations. 

In order to eliminate the t ime dependence, let us transform our 

equations into a frame of reference in which 2 is stationary. Thus, 

if in the laboratory frame of reference the undisturbed region in front 

of 2 (upstream) is stationary, in our new frame of reference the fluid 

speed there will be equal and opposite to the shock speed » s in the 

laboratory frame. 

I t is now possible to choose two points Χχ and x0, the first situated 

in the shocked, steady flow behind 2, the second in the still undisturb

ed plasma in front of 2 . Let us integrate the eqs. (14) and (15) between 

a 
Xx and x0. As according to our model = 0 we get 

3t 

pi»! = p0»o (18) 

Βχ2 B0 . . l'*o 3»2 

Pi + ~r\ PO 
8TT 8  x,\ r dx 

. . *o c»

= 72 \ P^—àx (19) 
χ, ι dx 
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Integrating by parts and using eq. (17) one has 

C'a dv2 

72 \ p — — d . r = — pj»!2 4 ρο»ο" (20) 
*,) dx 

and, therefore, 

D 2 D 'I 

pxvx2 4 p i + —— = p o V + po + —— . (21) 
87Γ 07Γ 

Eq. (16) gives 

B a »! = B0»o. (22) 

The equation of energy t ransport can be writ ten 

B2 

dx ky 
+ y2pv2 + pv + ν 

— 1 ' « " " J , ry 
= 0 (23) 

which can be directly integrated. Remembering tha t pi»i = p0»o we 

get 

y2vi2
 +  2  ^  + ^ = y 2 v u 2

 + ^  ^ +  ^ L . (24) 
y — 1 pi 4πρι y — 1 ρο 4προ 

Eqs. (18), (21), (22) and (24) are the generalised RankineHugoniot 

relations. These equations were orignally derived for shocks in a gas, 

in which case their form is obtained by put t ing B 0 = Bi = 0 in the 

eqs. (21), (22) and (24). 

We have now four equations for pi, »i, p i and Bi and it is, therefore, 

possible to determine any of these in terms of p0, »o, Po and B0 . Let us 

eliminate ρχ, »ι and Β χ. The remaining equation will contain »0, po> Bo, 

po and pi. Solving this equat ion for »o, we obtain the shockspeed 

»o = — »s in terms of p(), p0, Bo and pi/po· I t reads 

1+ ^ [ι+(ι_Χ)μ^_ι)1 
4ττγρο c

2
 L <· 2 A p0 ) J 

7 + 1 po γ —1 
(25) 

Pi + 1 

When pil pu tends to unity the shock becomes "weak" and » s tends 

to vA, the speed of sound waves in a gyrotropic plasma. If, at t he same 

time, ß 0 —> 0 then »„ —» c„. 

r + ι 
On the other hand, as pi/po increases and tends to the shock 

7 — 1 
speed tends to infinity, showing tha t for strong shocks the density ratio 
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7 + 1 
across the shockfront cannot exceed the value of (fig. 110). A 

7 — 1 

vs 
convenient measure of the strength of the shock is then Ms = , the 

«A 

Mach number of the unsteady flow, ra ther than pi/po· I n absence of the 

»8 

magnetic field M¡ = and for strong shocks we get 

M.= 

(y + D 
po 

pi 
(7-

1/2 

(26) 

a 

6 

4 

1 2 3 4 5 6 o< 

Fig. 110. Dependence of density step on number of degrees of freedom (a). 

6.2. Structure of the Shock Front in Absence of Magnetic Field 

The simplest demonstration of a shock is the old schoolexperiment 

(fig. I l l ) with beads of equal mass ire suspended by threads of equal 

length I hi which the separation of adjacent beads is λ. If 

λ < I 

then the momentum m» is nearly constant during the transit of a 

bead from zero to λ with respect to its equi l ibr ium position. The 

transit t ime is then 
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τ A X/v 

and the speed of propagation »s of a shock is 

»s ~ ν, 

provided the time consumed during a collision TC between two beads 
can be neglected in comparison with τ. 

i,!„,ii,,,tit,..,.,,,,i,,,i,i,i,i.,u,,,iii,n, 

*όό ό oò, 
Λ : 

Fig. 111. Transmission of a shock in a mechanical model. 

The width of the shock front in the experiment is obviously λ, 

the distance between two collisions. 

This mechanism operates in the same manner in monomolecular 

gases, in which a layer of the gas has been set into motion with the 

speed ». The shock front is a few mean freepaths wide. The main 

difference between the schoolexperiment and the shock in a gas is the 

number of degrees of freedom. In gas the molecules involved in the 

transport of momentum from the shocked region into the as yet un

disturbed gas do not meet generally in headon collisions and therefore, 

some of the energy of the directed flow behind the shock front is con

verted in increasing the enthalpy of the gas invested hy the shock. 

The greater is the number of degrees of freedom of the molecules 

the more rapidly the shock looses its strength. 

In plasma a shock corresponds to a momentum transfer in two fluids, 

electrons and ions, whose motion is coupled by an electric field arising 

from nonidentical density distributions in these fluids. Owing to this 

coupling the width of the shock front corresponds to the mean free 

path of the ionion collisions; the shock form being impressed on the 

electron gas through an electric field of the shock front. As, in absence 

of a magnetic field, the transfer of momentum in plasma is effected 

through ionion collisions it follows that their temperature rises rapidly 
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immediately behind the shock front. The electrons are heated only in 

contact with this hot ion gas and consequently their tempera ture T e 

will V M 
(see 

ire 

later p. 267). On the other hand the hea t conduction in the eletron gas 

will tend to diffuse the electron heat by 8,, well ahead of the point A 

(fig. 112). 

Fig. 112. A typical structure of a shock wave in plasma. 

The heat skin depth Sb is 

V nk 
(27) 

where rh is the durat ion of the diffusion heating, before the Tj ^ Τ 

transfer takes over. Thus 

8h 

and therefore, 

T|, 

8., = 
«At 

(28) 

(29) 

Using expressions to be derived in chapter 8 (eqs. (71a,b) ) we get 

put t ing y2Mvf =; 3AT¡ 

Ä A . 

Vfr 

(30) 
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suggesting that for plasma densities re ^> 1010 

will broaden considerably the shock front. 
the diffusion of hea t 

6.3. Shocks in a Gyrotropic Plasma 

If the direction of propagation of the shock in an infinite and 
uniform plasma is parallel to the magnetic field B , the mechanism of 
shock propagation described for a magnetic field-free plasma remains 
essentially unchanged. However, if the direction of propagation, i.e., 
the shock velocity is at right angles to Β a new situation arises. 

Let us consider a layer of plasma whose mass velocity is ». The 
movement of this layer causes a compression of magnetic field in 
front of the layer. The kinetic energy of the layer may thus be con
verted into a stored energy of a magnetic field layer, which in tu rn 

Normalized distance JL 
D 

Fig. 113. Isolated magnetic pulse. Curves for Ms = 1.2, 1.6, 2. 
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can exercise pressure on a plasma layer further ahead. Consequently 
the transfer of momentum can be effected even in absence of collisions. 
T h e mechanism of such energy and momentum transmission has not 
been adequately described so far, al though a large amount of valuable 
work has been published. 

The most relevant discovery was made by Adlam and Allen (ref. 2) 
who described how a single pulse (or a series of pulses) of magnetic 
field can propagate in collision-less plasma. Choosing a coordinate 
system travelling with the pulse they have found a non-linear solution 
of the two-fluid model corresponding to an accumulation of magnetic 
flux held stationary by the flow of the plasma across it. The particles 
must possess large enough speeds so tha t the ion Larmor radius is larger 
than the effective width D of the magnetic pulse and tha t the electric 
field of the ions is able to pull the electrons across D. T h e part icle 
density and the s tructure of the magnetic pulse is shown in fig. 113. 

c 
I t is found that if »2 ^> u2, the width D is of the order of , the 

ω,, 

collision-less skin depth (see p. 153) and that the strength of the magnetic 

pulse depends on Ms 
VA 

The analysis is valid only for 1 <; Ms <; 2, 

however, it is not un th inkable tha t more complicated solutions exist 
even for Ms > 2. 

^X 

Fig. 114. 
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I t has been shown recently (ref. 3) tha t Ms of such pulses is l imited 

by the development of a twostream instability with a subsequent 

generation of turbulence. 

I t is plausible tha t the structure of a collisionless shock in a gyro

tropic plasma resembles a succession of damped AdlamAUen waves, 

as has been shown theoretically in a special case of B 0 = 0 (ref. 4) , 

fig. 114). 

6.4. Diverging and Converging Shocks 

So far we have considered shocks having a plane geometry, whereas 

shocks generated in plasmas are mostly ei ther spherical or cylindrical. 

Typical examples of diverging spherical shock waves are provided by 

pointlike explosions, e.g., supernovae (ref. 5) or an Abomb explo

sion (ref. 6). Cylindrical shocks can be of the diverging type in 

exploding wire experiments or of the converging type in rapid implo

sions in Ζ or öpinches. Let us treat first the diverging shocks. 

6.4.1. DIVERGING SHOCKS 

It is always gratifying and helpful if in treat ing a ncnl inear pheno

menon one is able to discover some characteristic feature which is 

independent of ampl i tude. Such a feature in the theory of the shock 

waves is known as the similarity of flow distributions. I n diverging 

shocks this is exemplified by solutions of t h e type 

m F(r,t) = R"(t)  f ^ — I (31) 

where F is one of the quantit ies characterising the flow (such as p, 

ρ or »), R is the radius of the expanding shock front and r is the radial 

coordinate. If solutions of this type exist, then the profile óf F beh ind 

the shock front remains functionaly the same and the distr ibution of 

F at ti is similar to tha t at t2, i.e., 

Fi(rx) __ TR(tx) 

F2(r2) ~ L B(t2) 
where  — = —  = ξ. (32) 

t\i t\2 

I t is not difficult to find what the exponent re should be in the 

case of a pointlike l iberation of an energy W. At a t ime t after the 

explosion this energy must be found as the internal and kinet ic energy 

of the expanding plasma. Therefore, 
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R 

W = \ [ZJ + V2pA r2 dr. (33) 
ATT 

Since we know tha t in strong shocks the pi/pu across the shock front is 

7 + 1 . 
equal to it must be 

7  1 

f»> -(-f) (34) 

without depending explicitly on R(t). Pu t t ing = Rn · θ and 
Po 

ν = R"'2 · φ we get 

W 

Am 
o 

1 

Rn+' \ (~=T θ + ΚΡοψΑ i · dt (35) 

As only R"+ ' contains t ime and as W = const., it follows tha t 

π = — 3. 

Let us now try to substitute the expressions for ρ, ρ and » in the 

three equations of the onefluid model (without electromagnetic forces) 

dp dp ( dv 2v \ 
h » \ ρ 1 = 0 eq. of continuity (36) 

ot dr y cr r J 

dv cv 1 3p 

+ » —— = — eq. of motion (37) 
et dr ρ cr 

d ì 
+ υ —— (pp~y) = 0 eq. of energy transport . (38) 

d 

, dt 

If these are to be satisfied by solutions of the type (31) the following 

must be t rue 

dR 

= A R3'2 (39) 

dt 

or 

R = (5/2 A ■ t ) 2 ' 5 (40) 

and ^— oc tG/\ » cc f3 ' · ' . (41) 

Po 

In order to reduce eqs. (36), (37) and (38) to a nondimensional from 

let us put 

„ c' Ψ , „ P o 
O = θ , φ = where c = γ . 

Α
2
 Α ρο 
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T h e n 

φ' φ' + 2φξ> 

ξ — ' 

1 θ
φ (ξ—φ) = — · — — 

7 Ψ 

30 + ξθ' + y^—θ(φ — è)

3/2ψ 

 φθ' = 0. 

(42) 

(43) 

(44) 

Substituting into the last one from eqs. (42) and (43) we get 

 Η + φ ( 3 + ^  )  2 γ φ 2 |  1 

θ' = . (45) 

βα - Φ)
2 -r' 

Thus knowing θ, φ and φ at one point it is possible to find by 

numerical methods these functions everywhere. 

Such a start ing point is on the shock front, i.e., ξ = 1. Then θ χ, φι 

and ψι are given by the Hugoniet relations (18), (21), (22) and (24) 

which for strong shocks become 

2γ γ + 1 2 
ψι =L—r, Φχ = — — τ  (46) 

γ + 1 γ — 1 7 + 1 

The numerical solution of eqs (42), (43) and (44) has been obtained 

for plasma (γ = 5/3) and the form of θ, φ and ψ is shown in fig. 115 

(ref. 6). 

I t is seen tha t in the central region, i.e., for ξ < y2 the pressure 

(oc θ (i) ) is approximately constant and, therefore, the internal energy 

ρ 

density is also nearly constant. Since the density decreases with 

7 — 1 

decreasing ξ (for ξ = 0, ψ = 0), the tempera ture must tend to infinity 

near the centre of the explosion. Similar analysis for diverging cylin

drical shocks shows tha t re = 2 and R = y 2/41 ; pa Rr2, v a R"1. The 

functions Θ, \¡i and φ show similar behaviour as those of spherical shocks 

(ref. 7). 

6.4.2. CONVERGING SHOCKS 

The method of similarity solutions can be used for converging shocks 

too. This has been done by Guderley and Somon (refs. 8 and 9). 

The lat ter finds tha t for y = 5/3 the pressure behind the converging 

shock front increases as R°·905 for spherical shocks and as R~°·452 for 

cylindrical shocks. As the denstiy behind a strong shock front is always 
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Fig. 115. 

approximately 
4- 1 

4 it follows that the tempera ture of d ie plasma 
7 - 1 

behind the shock front increases as the pressure does. This suggests 
that converging shock waves could be used as a mechanism to heat 
plasma to very high temperatures. This is generally not t rue owing to 
three reasons. Firstly, the efficiency of such heat ing is low—most of the 
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shock energy is used up to heat the bulk of the plasma to only moderate 

temperatures. Secondly, the radial collapse is usually destroyed by an 

instability (overstability) of the shock front. Thirdly the convergence 

will cease to incéease the temperature when the shock front will 

approach the centre of implosion to less than a few mean free paths. 

This third limitation, the mildest of all three, gives for maximum 

temperature in a spherical implosion of the Guderley type 

- τ i
ß o

i 

Using for R the expression for mean free path (also the thickness 

of the shock front, pp. 223 and 265) we get an approximate criterion 

( e4 

In Λ 
T0R(>n 

1/3 

(47) 

Thus, e.g., for deuterium and T0 = W', Ro = 100 we get Τ ~ 10 · re1'3. 

Obviously, thermonuclear temperatures can be reached only at solid 

state densities. 

Although the Guderley solution corresponds to only a special case 

of a converging wave it has been shown that a converging shock distri

bution tends to transform itself into a selfsimilar distribution of the 

Guderley type (ref. 9) and thus it appears that selfsimilar solutions 

are the basic shock distributions. 

Converging cylindrical shocks have been produced in a conventional 

shock tube behind a pearshaped obstacle (ref. 10, fig. 116). A plane 

Fig. 116. 

1. Original plane shock; 
2. Split plane shock; 

3. Converging cylindrical shock. 
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shock front is split and guided round the corner of the pear. A well 
defined converging shock front was produced only when the original 
Mach number of the plane shock was smaller than 1.7. At higher 
Mach numbers the bending of the shock round the corner did not prove 
feasible. The temperatures reached in this device are also l imited by the 
proximity of the walls of both the pear and the shock tube. 

Strong converging cylindrical shocks are produced in some fast 
pinches especially in Z-pinches (in which the converging shock does 
not encounter any magnetic field). The current layer driven by the 
i7Bv Lorentz forces acts as piston and drives a cylindrical shock 
towards the axis. The progress of both, the piston and the shock-
front can be observed by means of a smear camera, which also 
shows the collision of the front on the axis (ref. 11). 
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t 
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magnetic field strength 
speed of sound 
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particle density 
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energy 
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depth 
wave length or width of a 
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mass density 
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heat conductivity 
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CHAPTER 7 

PLASMA DYNAMICS 

Introduction 

Having studied shocks we have already encountered several typical 
problems and concepts of plasma dynamics. In this chapter we shall 
study the motion of plasma bunches and the steady plasma flow, 
choosing these as representatives of two contrasting dynamical situations. 

7.1. Plasmoids 

Individual clouds of plasma are known as plasmoids. Plasmoids 
can be generated by electrical discharges and may possess an internal 
distribution of currents, charges and electric and magnetic fields. 
Such distributions are the result of the birth-conditions of the plasmoid 
and of its interaction with the external fields. 

Let us discuss first the interaction of a nearly spherical plasmoid 
with a magnetic field. We shall assume tha t the random velocities 
of the particles in the plasmoid are very small compared with their 
directed velocity. In that case the plasmoid expands by only a small 
fraction of its diameter whilst it traverses a distance of several dia
meters. Let such a plasmoid be shot into a magnetic field Β (fig. 118). 
As the plasma is good conductor the magnetic field will penetrate only 
to a certain skin depth, which we shall assume to be small compared 
with the diameter of the plasmoid. 

The plasmoid will, therefore, expeli the magnetic field from a 
certain volume Ω. The magnetic field Β on the surface of the plasmoid 

G plasmoid B 

Fig. 118 
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will induce surface currents £ and compress the plasmoid by a pressure 

ρ = i Α Β. 

The same pressure will also compress the magnetic field. T h e energy 
expended in these compression processes is of the order of Ω(Βί/8ττ). 

This energy has to be supplied from the kinetic energy of the plas
moid. Thus on entering the magnetic field the plasmoid will be decel
erated and compressed. Pa r t of the lost kinetic energy will be converted 
into the stored energy of the magnetic field and par t into the heat ing 
of the plasmoid. Depending on the shape of the lines of force the 
plasmoid may, of course, expand in the direction parallel to these lines 
and change its shape from tha t of a sphere to tha t of an elongated 
ellipsoid (fig. 118). 

Let us now observe two such plasmoids, each possessing a system of 
surface currents, in a magnetic field. I t is evident tha t these two 
plasmoids can interact through their surface currents. As long as 
such currents are induced by the magnetic field, the plasmoids may 
pass through each other, as the lines of magnetic field between them 
can slip to the side and the currents can join (fig. 119). During the 
passage of these plasma clouds through each other the collisions 
between the positive ions and electrons will convert par t of their 
kinetic energy into hea t *. This may result in the plasmoids being 
unable to separate from each other after the collision and thus lead to a 
formation of a single slow plasmoid. Tha t plasmoids can interact in 
such a way has been demonstrated in experiments on the formation 
of plasma rings out of several colliding plasmoids (ref. 1, fig. 120). 

Hydromagnet ic elements of a turbulent gyrotropic plasma are proba
bly structures similar to plasmoids. Let us consider a plasmoid shot 

.'/ 
v—",""T">-. 

"-/./"' 
;/ 

ι , - - . ■· 

'O.V 

Fig. 119. Collision of two 
plasmoids. 

Fig. 120. Formation of a plasma ring from 4 
colliding plasmoids as evidenced by light emitted 

at 2, 4 and 6 /¿sec. 
Source: W. H. Bostick, Phys. Rev., 106 (1957) 

409, fig. 13. 

* Apart from binary interactions cooperative interactions may be responsible for 
such conversion. 
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into a viscous, gyrotropic plasma. The viscous forces cause an instability 
of the boundary of the plasmoid (chapter 8, p. 277). This instability 
gives b i r th to a new generation of small plasmoids (fig. 121) which 
in the i r turn produce others. In this way a whole spectrum of plasmoids 
having smaller and smaller dimensions is produced. The kinetic energy 
distr ibution in this spectrum will probably resemble the Kolmogoroff 
spectral law for eddies in the turbulen t state of a magnetic field-free 
plasma (ref. 2). 

1s'geneiah'on 

2nd generation 

Fig. 121. Formation of a new generation of plasmoids. 

We have mentioned tha t plasmoids of sufficiently large kinetic 
energy can move across a magnetic field. If, therefore, plasmoids are 
generated in a plasma immobilized by an external magnetic field, 
one may expect tha t some of these will b reak away from t h e main 
body of the confined plasma. T h e loss of particles due to such a process 
can be substantially h igher t han the diffusion loss discussed in chapter 
8. The theory of such a disassembly of a turbulent plasma in a magnetic 
field has not yet been.worked out. 

When plasmoids are accelerated or decelerated by a magnetic piston 
it is convenient to consider an equivalent situation of a plasma in a 
strong gravitational field g supported by a magnetic field. This model 
has been already used in chapter 5 (p. 189) where i t has been 
demonstrated tha t in a plane geometry one can expect the plasma-
magnetic field interface to be unstable. Before an instability develops, 
the plasma will reach an equi l ibr ium density distr ibution which will 
follow the barometr ic law, i.e., 

re = reo · exp 
χ 

Ύ (1) 
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where 

δ = 
k(Te + Ti) Β2 

ntí 8rrk(Te + Ti) 
(2) 

g(M + rei) 

The thickness δ is also known as the Haley thickness. 

Plasmoids are accelerated in devices known as plasma guns. These can 

be divided in two classes, those in which the plasmoid is in contact with 

electrodes and induction or electrodeless ones. The representatives of 

the first group are the T-tube, the rail- and the coaxial gun. The 

devices of the second group are all derivatives of the theta t ron guns. 

The T-tube (fig. 122). A breakdown between two electrodes generates 

a current channel in a plasma. T h e magnetic field of this current is 

stronger on the side of the back-conductor (back-strap) S than on the 

external side of the circuit and the force F = ƒ Β , . izdQ (Ω is the 
Ω 

volume of the channel) drives the plasma out of circuit, forming thu" 
a fast plasmoid which may or may not have an internal t rapped 

•VI 

Fig. 122. The T-tube. 
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magnetic field. This plasmoid may be then guided by an auxiliary 

magnetostatic field and kep t away from the walls of the vacuum 

vessel. 

The rail-gun (fig. 123). In the T-tube the action of the magnetic 

field is l imited in space and, therefore, also in t ime. In order to provide 

a prolonged acceleration of the plasma, rail-electrodes are used. In 

most plasma guns the plasma in formed by ionizing an injected gas 

cloud. Such inpection is achieved by fast gas valves (ref. 3) in which 

case it is almost always difficult to generate well localized plasmas 

(ref. 4) . In rail-guns the plasma to be accelerated has been often 

generated by an electrically exploded th in wire connected to the two 

rails (ref. 5). 

I - ■ I t I ' ι ! I I J I / J Ι Γ " j / ì r J j J t rj 

Fig. 123. The rail-gun. 

The coaxial gun (fig. 24). This represents an improvement on the 

rail-gun as far as the efficiency of propulsion is concerned. Here all the 

magnetic field is behind the plasma. In the rail-gun par t of the 

magnetic field was being used in a Z-pinch of the driven plasma, 

in the coaxial gun all of it is used for propulsion. On the other hand 

B 2 

the force is not uniform behind the plasma, it has its max imum 

on the inner conductor (ref. 6). 

Topologically related to the coaxial gun is a cylindrical gun in which 

a plasma layer is driven by an azimuthal magnetic field (a dynamic 

hollow Z-pinch, ref. 7). 
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> i i > ΓΎ- I / , / I I I. „ ' 

/ / / / / _ 
"/ / /" / / / / / 

/ / / / / / / / / / / 7y 777 
■~Γ7 7 ■ / / TTT/ / / ,'.—r 

Fig. 124. The coaxial gun. 

We shall give a short analysis of such a magnetically driven cylin

drical layer of plasma as this is a configuration often approximated 

by experimental arrangements. 

T h e motion of a cylindrical plasma shell due to a magnetic field Β 

of the current I flowing through the plasma in the direction of axis of 

symmetry (fig. 125) can be described by the following set of equations 

Be
2 

lMsr = 2TT I 
8ττ 

(3) 

Fig. 125. A cylindrical shock magnetically driven into vacuum. 

whe 

Ms is the mass of the plasma shell per cm length 

/ is the length of die shell 

B$ is the selfmagnetic field at the shell and it is 
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Β . - ™ , 4 , 

where / is the total current in amps, 
and therefore, eq. (3) can be wri t ten as 

lOOMg 

The equation for the current / is 

(cm, cm/sec2 , amps, g). (5) 

dv a2 

I = — C = — C (LI) 6 
at dt2 

yhere 

C is the capacity of the condenser bank (F) 
V is the voltage across the same bank (volt) 
L is the total inductance of the circuit (H) . 

The lat ter is 

R 
L = L 0 4- 2 X 10-9Z In — (henry) . 

r 

In many impor tan t cases the variable par t of the inductance is compar
able or smaller than L0 and also owing to the logari thmic dependence 
on R/r the inductance is ι slowly varying function the shell-radius r. We 
shall, therefore, assume tha t for r/R > 0.5 the L = const. = L 0 ( l 4- ƒ) 
and the ƒ < 1. In tha t case eq. (6) can be wri t ten as 

ω2/ = — I (6a) 

here 

1 

CLo(l 4- ƒ) 

The solution of eq. (6a) is 

ƒ = Io sin ωί. (7) 

As at t = 0, one has I = 0, V = Vn it follows tha t 

Io = tXVo = λ / C Vu. (7a) 
Lo\i + J) 

As a result of the assumption about L and L0 the equations (5) and 
(6) are not coupled. The discharge is current-fed and its motion 
does not influence the current flow appreciably. Substituting, there-
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fore, eq. (7) into eq. (5) one obtains a simple differential equation 
for the radial motion 

CVo2 sin 2ωί 
— rr = . (8) 

100MSL0(1 4 - / ) 

If r varies slowly with regard to t ime as compared to r one may 
investigate the equation (8) for r > y2R by assuming that 

r = const, i r %R. 
Thus 

where 

The solution is 

— r = ι 

r = — a sin2 ωί 

CVo2 

lOOMLoU + / ) 3 / 4 R 

1 

(8a) 

r = y2a it 
2a, 

■ sin 2<i)t 

1 — cos 2<ÜÍ 

(9a) 

(9b) 

Let us calculate r and r at t = ττ/ω, i.e., at the first reversal of current 

/. These are 

TTCV0
2\/CLO(1 + ƒ)' 

Τχ = ~ 1 0 -
150M sLo(l 4- f)R 

Ar = R — Γ! 

2C3'2Vo2 

V L 0 ( 1 4- f)MsR 

TT2C2VO2 

300MSB 

(cm/sec) (10a) 

(cm). (10b) 

Example: C = y2lO~s (F) , V„ = 104 (volts), R = 10 (cm), L 0 ( l 4- ƒ) 
= IO"7 ( H ) , M ^ 10° g. Then : 

R—ri = 8 (cm), π = 2 /3 X IO7 (cm/sec) , 

t = TrVCLod 4- ƒ) = 2 (usee). 

The major loss of electromagnetic energy from the L, C circuit 
is in the conversion to the kinetic energy of the driven plasma. This 
kinetic energy is 

JPkin = y2Msr2. 

After the first half cycle of current there is 

(11) 

wMn = y2iMsrx2 = y2iMs 1 0 -
2OIW0

2 

y/LMsR J 
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i.e., 

rkin = 2 χ io-» 
MSL R 

 V0* (joule). ( H a ) 

Whilst the plasma shell travels between the two discelectrodes it 

l iberates and ionizes gas molecules from the electrode surfaces. These 

new ions may slow down the radial motion of the plasma and in some 

experiments this appears to be a dominant feature. As this effect 

depends on the surface conditions and other factors, it seems that the 

analysis of our problem need not be refined by removing the assump

tions we have made, i.e., the assumptions about L0 and the slow 

variation of r. 

Thetatrongun (fig. 126). Relies on the onesided pressure developed 

by a fast rising cusplike field, the breakdown of the injected gas being 

1 dφ 

effected by the azimuthal electric field Εψ = , where φ is the 

2ircr d t 

magnetic flux threading the E~ loop. The required convergence of the 

field lines can be achieved by making the ötron coil conical or by 

inserting a cone like conductor into a cylindrical coil (ref. 8). 

Fig. 126. The thetatrongun. 
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7.2. Steady Plasma Flow 

Let us imagine that a high pressure reservoir of plasma A is connected 
to a low pressure reservoir Β through a region bounded by electrodes 
or magnetic flux tubes. The plasma will begin to flow, building up 
in certain cases a steady distribution of p, » and p . Such a flow consists 
generally of two basic regimes related to the classical examples of 
viscous flow between parallel plates in a magnetic field: the Poiseuille 
and the Couette flows. 

Tree Poiseuille flow 

In this type of flow the force is provided by a pressure gradient 
directed along the stream lines. The resistance to the flow is the 
Lorentz force and the friction between the fluid and the walls. In the 
one-fluid model approximation we have 

(pv) = 0 (12) 
3.x 

dp d2v 
= ί υ Β ζ - μ - ~ . (13) dx 

The only electromotive force capable of driving iy is — vxBz. This can 
c 

locally induce 

iy = — vvBz (14) 
c 

provided lossless i ; currents can exist so that div i = 0. Assuming that 
dp dp 

= 0 and tha t = Ρ is given, these equations give us » = »(y). dx dx 
We have 

32» riBf 
V = Ρ/μ (15) 3y2 cp. 

whose solution is 

P c 
» = « · exp(ay) 4- β · exp(—ay) —— (16) lB; 

where a2 = — 
Cp. 
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If we require that » = 0 at the Avails (y = ± D) we get 

■P cosh (ay) 

B;2 
1 

* " > ? cosh (aD) 
(17) 

In absence of magnetic field (a = 0) the velocity distr ibution becomes 

parabolic 

PD2 

2μ 
1 f — 1 (18) 

a result well known from hydrodynamics of viscous fluids. In fig. 127 

are plotted three profiles of »(y) for aD = 0, 2.5 and 5. The presence 

of the magnetic field flattens the »distribution and diminishes the 

rate of flow. 

-10 O io*
 y

/f) 

¿Mg. 127. Velocity profiles for aD = 0, 2.5, 5 (Poiseuille flow). 

Tree Couette flow 

This flow is driven by the viscous shear alone. There is no pressure 

gradient. T h e equations are 

a
2
» 

i„Bz = 
cy

2 

Iy = »B~ 
c 

(19) 

(20) 

having made again the assumption tha t the continuity of current flow is 

dp 
made possible by dissipationless iz currents and tha t = 0. 

dx 
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Then 

whose solution is 

<;2v 

dy2 

, Β 2 

l'i , 

C¡1. 

sinh (ay) 

(21) 

(22) 

where a2 = 
Τ,Β; 

Cμ 

sinh (aD) 

and vD is a given velocity at y = D. In absence of 

magnetic field, i.e., for a = 0 we have the classical l inear law (fig. 128), 

y 
» = »D 

D 

0 02 04 06 

Fig. 128. Velocity profiles for aD = 0, 2.5, 5 (Couette flow). 

More realistic results would have been obtained if the equation for 

the current densitv were written as 

i(R 4 R„) 
B; 

¡ι 

\v dy (23) 

which respects directly the current continuity and the resistance R of 

an external circuit. 
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Magnetohydrodynamic propulsion 

The force i A Β can he applied equally well for steady deceleration 
as for steady acceleration of plasma. This momentum-transmission 
property of magnetic fields in conducting fluids is of importance in 
magnetic pump (ref. 9) and explains also the distribution of angular 
momentum in an evolving solar system where the central solar mass 
transmits most of its angular momentum to the planets (ref. 10). 
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c 
D 
e 
E 
i 
I 
k 

ι 
L 
m, M 
n 
N 

P 
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magnetic field strength 
velocity of light 
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charge of electron 
electric field strength 
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pressure 
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R 
t 
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a 

S 
V 
μ 
Φ 
Ρ 
τ 
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radius 
time 
temperature 
velocity 
voltage 
energy 

ζ coordinates 
atomic number 
number of degrees of 
freedom 
depth 
conductivity 
coefficient of viscosity 
magnetic flux 
mass density 
time interval 
angular frequency 



CHAPTER 8 

COLLISION AND RELAXATION PROCESSES 

Introduction 

This chapter is devoted to the study of collisions in plasma and their 
effect on the density distribution /(g¡»¡) . 

There are three impor tant types of collisions. The first and simplest 
is a binary collision of two electrically charged particles such as an 
electron-positive ion (e — p) , electron-electron (e — e) or an ion-ion 
(p—p) collision. 

The second type of collision belongs to the class of collective inter
actions in which a single charged particle is influenced by many other 
charged articles. 

The third is a collision between plasma bunches, such as two 
plasmoids or two electron bunches. Such an event will be called a 
coherent collision (ref. 1). 

We shall study mainly the binary and collective collisions. The 
coherent collisions have been treated already in the chapter on plasma 
dynamics and will be mentioned here only in connection with the 
mechanism of turbulence. 

We shall describe first the elementary dynamics of a binary collision. 
As we shall see binary collisions produce a diffusion of particles, both 
in velocity-space and in configuration-space. We shall, therefore, derive 
an equation governing the diffusion in the velocity-space. As an exam
ple of the application of this equation we shall calculate the electric 
current induced by an electric field in an infinite plasma. Another 
example of diffusion in velocity space is the heat transfer between the 
electron and the positive ion gas. 

The collision-induced diffusion in ordinary space will be studied for 
three part icular cases: the diffusion of particles, of heat, and of electric 
charge, in a non-uniform plasma. 

The transfer of momentum by viscous effects will be also discussed. 
The chapter will be terminated by a few remarks on turbulence. 
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8.1. Dynamics of a Collision of two Charged Particles 

In a two component plasma one is concerned with ei ther collisions 
between like particles, i.e., particles having equal masses and charges, 
or unl ike particles, i.e., electron-positive ion collissions. 

Both these types belong to the simplest binary collisions as in the 
first case both part ic ipants in the collision suffer the same deflection 
and in the second case the electron is deflected, whereas the position 
of the heavy positive ion, is virtually unchanged during the collision. 

T h e angle of deflection χ follows from a Kepler ian analysis of a 
related gravitational problem and is given by 

mp(v — ι»)2 

2Z2e2 

for e — ρ collisions ( l a ) 

for ρ — ρ collisions. ( l b ) 

Here ρ is the collision (inmact) parameter , i.e., the smallest distance 
between the trajectories of the two particles were they not affected 
by the Coulomb forces. T h e actual distance p' of closest approach 
is smaller than ρ in e-p collisions (fig. 129) bu t larger than ρ in l ike 
part icle collisions (fig. 130) which is due respectively to the attractive, 
repulsive force active in such collisions. 

Λ/,+Ze 

'M+Ze 

Fig. 129. Geometry of an 
electron-nucleus collision. 

Fig. 130. Ion-ion collision. 
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Let us find the cross-section d<r, corresponding to a differential 
range of scattering angles χ, χ + αχ. For small angles χ one has, 
for e—ρ collisions 

χ--π" (2) 
rei(» — i f ) -

dx 2Ze2 rei(» — w)2 

P'2 = τ^~, X" dp rei(» — ι»)2 2Ze2 

T h e cross-section is, therefore, (fig. 131) 

do- = 2irp dp 

8πΖν dx 

ire2(» — ι») 4 χ3 
(3) 

Fig. 131. 

Evidently, as χ -> 0 so ρ and da -> co. In plasma there exists an 
upper limit to ρ which is approximately equal to the Debye distance 
λΒ *. A collision whose impact parameter ρ is larger than Xd cannot 
be regarded as a binary collision, because of the screening (polarizing) 
effect of charges surrounding the target particle. In spite of this cut
off in the collision parameter , the form of eq. (3) suggests that small 
angle collisions will influence the trajectory of a charged particle 
more than comparatively rare large angle scatterings. 

The effect of these mul t ip le collisions may be taken into account as 
follows. Considering only small scattering angles (for which a deflection 
is an event independent of the previous collisions (fig. 132) the mean 
square deflection after Ν collisions is 

* Xd must be redefined for a fast incident particle. However, as will be seen, 
(χ2) is not critically dependent on Xd. 
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<r>= Σ <xr> (4) 
¡=1 

t>>° 

Fig. 132. Cumulative effect of small angle scatterings. 

where (x¡2) is the mean square deflection in a single collision and is 

<Xi2>= ƒ X2dA, χ = χ[ρ(Α)] 
In 

The probabil i ty dA of a collision in the interval ρ, ρ + dp is a 
simple ratio of areas 

2 p d p 
^A = — —^ . (5) 

Ρ max Ρ m in 

Restricting ourselves to e—ρ collisions for which ν <^ w and 
expressing χ in terms of ρ we get 

"mai 
2 Γ ( 2 Z e 2 γ 

<Xi2> = — ; Ρ ¿Ρ 

Pmax P2mìn J V mvp ) 
alilla 

8Z2e4 p m a x 

In . (6) 
mVip'max Pra i η 

As statistically all the Λ̂  collisions are equivalent 

<X2> = ^V<xi2> (4a) 

where W is equal to the number of positive ions in a cylinder of radius 

Pmax and length I. This number is 

Ν = reZirp2
max. 

Therefore, 

87rreZZe4 p m a x 

<X> = ;  :  In . (4b) 
rei2»4 p n l l n 
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As we have postulated only smallangle deflections let us have p m i n 

correspond at most to χ = 1. Thus * 

2Ze
2 

Pmin = 
rei»-

T h e p,„ax must be comparable with the Debye shielding distance ** d 

(eq. (1.4a) ). Wi th this eq. (4b) can be writ ten 

8rrZ2e4 

<X2> = — — — l n l n 
mv 

d 
2Ze2 

(4c, 

T h e value of the logari thm lies in the range between 1 and 20 in 

most cases in which we are interested. 

T h e corresponding diffusion coefficient ( (A» x ) 2 ) is the mean square 

of the perpendicular velocity change per second and is (Le., I — ») 

< (Δ» 1 ) 2 >^<(χ») 2 >. 

Thus 

öVZ2e4 

<(Δ»±)2> = re In Λ, (7) 

where 

f T V ' 2 mv2 

= 5 
k re ) Ze2 

A similar coefficient can be defined for the diffusion parallel to ». 

This is usually denoted by (Δ»Β) and has been called by Chandrasekhar 

(ref. 2) the coefficient of dynamical friction. 

For electrons this coefficient follows from the energyconservation 

principle, 

— y2m {(AvL)2) = rei» <Δ»„> 

and using the expression (7) for ( (Δ» ± ) 2 ) one gets 

4*ZVre In A 
<Δ»„> = — . (8) 

mv

The third impor tant coefficient is ((Δ»Ν)2) representing dispersion 

in velocity in the direction paral lel to ». This can be shown to be 

4πβ4Ζ2η In A 
<Δ»„2> = — ι»2. (9) 

mv* 

* In plasmas where the minimum interaction distance is governed bv quantum 
h 

mechanics p,„i„ = XB = ———— (see p. 15). 
2ir\f~3rñkT 

** Unless I = nr1!3 > d (see footnote p. 13) 
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Such a dispersion is due to the motion of the target particles. In 

case of fluids the target particles are called the field particles, the 

incident particles are called iesi particles. If the mean speed of the field 

particles is ι», then in some collisions ι» is added, in others w is substract

ed from the vector » of the test particles. This results in dispersion 

above and below the arc A (fig. 133) representing the constant 

speed |»| in the velocity space. 

Fig. 133. Diffusion in velocity space caused by collisions after 1 sec. 

With the aid of these three coefficients it is possible to describe the 

diffusion of a group of particles (test particles) in velocity space 

resulting from their collisions with another group of particles (field 

particles). The meaning of all these coefficients is i l lustrated in fig. 133. 

8.2. Fokker-Planck Equation 

Having defined the friction coefficient (ΔυΒ) and the dispersion 

coefficients ((Avy)2), ( (Δ» χ ) 2 ) we shall formulate mathematical ly the 

problem of scattering of many particles by many particles as a problem 

of diffusion in a phase space </;,»,·. Following the notat ion of chapter 3, 

we shall define f(qi,v¡) as the particle density in the phase space. 

Liouville's theorem is not valid for an ensemble of colliding particles 

and we must add a term to eq. (3.8b) expressing the dispersing action 

of collisions. This can be done formally as follows (in nonrelativistic 

approximation) 

df_ 

dt 
+ »i 

df_ 

dqi + 
Fj df 

m 3»i 

'df_ 

. dt 
(10) 
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Let us consider first an infinite and homogeneous plasma in the 
absence of external forces. 

Eq. (10) must be applied to electrons and ions separately. Thus 

dfe 
dt 

dfp 
dt 

'JM + ι 
, dt ) ee 

'dfp\ 

I dt ) + 

y dt 

(dfp^ 

I 3i J 

(10a) 

(10b) 

where the subscript denotes the type of collision responsible for the 
0 / / 3 i ) . 

Let us now consider a small group of particles located between » 
and » 4- Δ» at ί = 0 (fig. 134) and assume tha t all quantit ies depend 
only on a single velocity component ». 

■>. Λ US 

VÏAV
'ï t 

<p
J
-r- Α ψ 

Φ' 
Fig. 134. 

The flux of particles across a uni t crosssection σ of the surface 

at » caused by dynamical friction is 

φ' = f · <Δ»> 

where (Δ») is related to the concept of (Δ»Β) (eq. (8) ). 

The divergence of this flux in the velocity space and, therefore, die 

change in the number of particles in a uni t velocity volume per second 

is 

df d 

rt dv 
[ ƒ < » ] ( H ) 

A change in the number of particles in our velocity volume can 
also be caused by diffusion processes, characterised by the diffusion 
coefficients (eqs. (7) and (9) ). In our one-dimensional case let us denote 
this coefficient by (Δ»2). 
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The diffusion equation in the velocity space must have the form 

df 

ct 
= div φ" 

where φ" = grad (fD), D being the diffusion coefficient defined in 

all theories of diffusion processes as the mean square displacement per 

unit t ime. In our case 

D = <Δ»2> 

and consequently the divergence of the flux φ" is 

dp' d
2 

dv dv2 
[/<Δ»2>]. (12) 

The outflow per uni t volume of the velocity space due to the 

combined effect of friction and dispersion is from eqs. (10), (11) 

andi (12) 

-4-=- τ — (/<
Δυ

» + Τ Γ
 (
'<

Δν2
>

}
·
 (13) 

oí tí» συ

Generalizing this expression for all three velocity components and 

for both l ike and unl ike part icle collisions one obtains for electrons 

' {fe({AVj)ee 4 <Δ»;>βρ) } 
dt dvj 

1 32 

+ ΊΓ T~;—{f e((£VjAv k) e e + (AvjAvk)ep) } (13a) 
2 dVjdvk 

and a similar equation for the positive ions. These equations are 
known as the Fokker-Planck equations. 

The coefficients of friction and dispersion in these equations are, 
of course, not the simple ones defined by expressions (7), (8) and (9) 
bu t must include the scattering action of all other particles on the 
particles at ». They must, therefore, involve integartion over the entire 
velocity space of expressions like /(Δν2) . 

In order to do that let us first consider the effect of friction of field 
particles of one type (β) in a velocity volume άττβ on test electrons (a) 
in a volume αττα. For simplicity sake let us consider only two velocity 
components v¡ and vk (fig. 135). The friction coefficient for the a 
particles is (eq. (8) ) 

4rrZ2e4 In A 
d<A»>a|3 = - · ίβάττβ . 

ma-\va — νβ\-
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Fig. 135. 

This friction coefficient expresses the mean spread of the a particles in 

one second and in the direction parallel to the vector va — »β· Put t ing 

4rrZ2e4 

ln Λ = Γα, the component of this spread parallel to v¡ is 
reia-

evidentlv 

d ^ » ; ) a ø = — Γα 

■ν ¡β 

\Va — Vß\
3 

f β · dß (14) 

In order to take into account the effect of the β fieldparticles in all 

the ττβ space on the a testparticles at dna we must integrate the eq. (14) 

over all ττβ. Thus 

< Δ » ; > α β = — Γ α fa(vß) 
Vjß 

άττβ 

o r 

(AVj)aß = Ta ■ 

dVja 

fß(Vß) 

Va Vß\ 

άττβ (14a) 

Γα mult ipl ied by the integral is designated by Ηαβ(να) and called the 
first potential in the velocity space. When the field particles are not 
infinitely heavy, as was postulated in deriving the eq. (8), the expres
sion (14a) must be writ ten as 

( Δ ν , > α 0 = 
ma 4 - reiß 

τη β dVja 
Haß(va) (14b) 



FOKKERPLANCK EQUATION 255 

Using similar reasoning and analysis as above we can obtain the 

expression for (Δ»;Δ»;Δ0β. T h e result is 

(AVjAvk)aß = Γα \ \Va — Vß\ fß(vß)dß 
dVjadvka J 

ΤΓβ 

=   Gaß(va) (15) 
aVjadVica 

Gaß being known as the second potential in velocity space (ref. 3). 

The form of the potential Haß(v) suggests an analogy from electro

statics, where the field strength E and the electrostatic potential c/>(r) 

a re expressed as 

1 pir', t) 
E =  grad φ, φ(Γ) = ,PV ' J dx' d / dz' 

and p(r', t) is the density of electric charge. 

Thus in our case (Δ»;·)αβ is analogous to Ε, Ηαβ(ν) to c/>(r), fß(vß) to 

p(r") and |» a — »ß| to \r — r' | . 

In chapter 3 on the fluid description of a plasma we have shown 

tha t the integration of the Boltzmann equation over velocity space 

yields fluid equations which describe t h e t ransport of part icle density, 

momentum or energy. Let us now integrate over velocity space the 

Boltzmann equation containing the collision terms of the FokkerPlanck 

equation, mult ipl ied by a quant i ty Q characterising some part icle 

property. In order to obtain an equation for momentum transfer we 

take Q = ire». T h e integration of the left hand side of the Boltzmann 

equation proceeds as on p . 100 i.e., independent ly of the effets of 

collisions. T h e r ight hand side involves integrals such as 

3 
reia»-— 

3»,· 
fa(v)~Ha0(v) 

dv. 

d

Γ 3
2 

1 V \ m η 
J dvjd Vk 

d2 

fa(v)  Gaß(v) 
dVjdVk 

I t can be appreciated tha t encounters between l ike particles do 

not alter the total momentum of the parent gas. Similarly the dispersion 

in velocity space (the dispersion coefficients refer only to (»2)) leaves 

the momentum of a gas element unchanged. 

As a result of these considerations the equations of momentum 

transfer become : 
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for the electron gas 

3» e grad pe 
+ » · grad » \ (E + ν Α Β) Η 

dt 

and for the positive ion gas 

fe(v, t) grad. Hep d (16) 

Si» e grad p p 

+ iv · grad w (E + w Α Β) + 
dt M npM 

fp(v, t) grad,, Hpe απ. (17) 

I t is evident tha t one must know fe and fp before these equations 

can be solved. However, in many cases the solutions are not very 

sensitive to the choice of these two functions and an approximate 

form of these follows from order of magnitude physical considera

tions. 

8.2.1. CONDUCTION OF ELECTRICITY IN PLASMA — CONDUCTION OF 
ELECTRICITY IN A GYROTROPIC PLASMA 

From the generalised Ohm's law (eq. (3.64) ), derived in chapter 3 

it follows that an electrical current in a plasma can be induced by 

electric and magnetic fields and by pressure gradients. 

In this section we shall discuss the induction of electric current by 

an electric field in the absence of a magnetic field in a spatially 

homogeneous plasma and later study the influence of a magnetostatic 

field on a current flow. 

In the l imit of strong electric fields the effect of electronion en

counters may be considered as a small per turbat ion on the motion 

which the electrons and ions execute in the applied electric field. To 

a good approximation the electrons and ions are accelerated inde

pendently (and at a constant rate) and owing to collisions between 

like particles their velocity distributions will tend asymptotically 

in t ime to Maxwellian distributions which are centered about the 

drift velocities. 

This consideration leads us to the model (fig. 136) of the displaced 

Maxwellian distr ibution (ref. 4) 

fa(r,v,va(t) ) = na(r) 
ß« 3/2 

e x p ( — βα[ν — va(t)]
2) (18) 
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Fig. 136. 

where ßa = mal(2kTa) and a is ei ther e or ρ, as an approximate 

solution which on the average satisfies the Bol tzmann equation. 

Subsequent analysis shows tha t this distr ibution leads to many correct 

results even in the l imit of weak electric fields. T h e He,v function 

required for the solution of eqs. (16) and (17) may now be evaluated by 

substituting eq. (18) into eq. (14). Straightforward integration results in 

He,p = nTe 

m+M <K/y'2ç) 

M 
(19) 

Φ(*) 

V" 
\ exp (— t2) di, q = |»e — vp\, /?„ = 

M 

2kTp 

In most problems the average random electron speed greatly exceeds 

the random ion speed, and we can simplify fle,p appreciably by 

assuming that the ion gas is at zero temperature . Thus 

He 
nTe 

»e 
(19a) 
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and after another integration equation (16) takes t h e form 

3». 
111 

dt 
+ eE = — eEot(z) 

where 

Φ(ζ) — ζ 

ψ(ζ) = 

αΦ(ζ) 

dz 

(20) 

(21) 

ire ire 

Z = ße'l2 »e , ße =  , _ , E0 = rt r«j8.. 
¿kl e e 

The φ function (fig. 137) expresses the variation with relative 

drift velocity of the dynamical friction force exerted by the ions on 

the electron gas. The total magni tude of this force depends also upon 

the coefficient Eu which, as we shall demonstrate shortly, plays the 

rôle of a critical electric field parameter . 

*9ξ = 5$π 

O ~z 

Fig. 137. The "runaway" potential. 

In the l imit of small ζ 

φ{ζ) 
Sy/ττ 

Solving eq. (20) for this value of ψ(ζ) one has 

3\ΛΓ E 
v(t) 

After a t ime 

E0 

■ß. 1expr i ^ E o / 3 o l / 2 t i 
I, 3\'7T m ) 

ο\/ττ m , „ 
i s —  Λ (¿V/?)"1 '2 

4 e 

(21a) 

(22) 

(23) 
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the drift speed of the electrons saturates and the current density 

becomes 

3m= (Z2e2ße3>2 In A)4F. (24) 
16\/TT 

T h e conductivity thus calculated is 

3rei ( 2kTe Λ 3'2 

16\/Z2e2 In A Γ 
(25) 

which is about y2 of the σ calculated on the basis of a per turbat ional 

theory (ref. 5). The assumptions on which this theory is based are more 

appropr ia te for E < E„ than the ra ther crude assumption of a displaced 

Maxwellian distr ibution. The value of conductivity derived by the per

turbat ional method for a hydrogen plasma is 

σ = 1.53 Χ IO"* ( m h o / c m ) . (25a) 
ln A 

In the l imit of large ζ eq. (21) gives 

ψ(ζ) A  i . . (26) 
z

The maximum of ψ(ζ) occurs for 

ζ = 1 

i.e., for a drift speed equal to the mean random speed. Substi tuting 

expression (26) into eq. (20) we see at once that when 

Ε>Ε0ψ(ζ) 

»(f) starts increasing monotonically with t. As φ,η!ίΧ(ζ) = ψ(1) ~ 0.43 
the above inequali ty becomes 

E > 0.43£0 s 2 X IO"8 -L- (vol t /cm). (27) 

This instability of the / e(») distr ibution in the velocity space is known 
as the runaway effect. As the electrons run away more readily than 
the positive ions one speaks often of "runaway electrons". 

Let us now consider the problem of runaways not as a movement 
of a compact Maxwellian distribution given by eqs. (18) and (20), 
bu t ra ther as a distortion of this velocity distribution. To this end, 
let us evaluate the friction force experienced by a small sub-group 
of the electron populat ion in the velocity space. This force F is parallel 
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to » and consists of the friction forces between electrons of our sub

group and all the other electrons and all t h e positive ions. Thus 

F = F + F 
* * ee ι * ep· 

We shall neglect F e e as it is initially smaller than Fep. T h e F e p will be 

evaluated for ions at zero temperature . Then from eq. (8) and for 

1: 

F = 
4πβ 4 In Λ 

rei»-

(28) 

The necessary condition for our subgroup running away is tha t the 

component of F parallel to E should be smaller than eE. Thus 

E > 4π 
e ' In Λ 

(29) 
rei (vz

2 4 »χ2 + »¡,2)3 '2 

This determines a curve C in the »»^ plane. T h a t portion Διι of 

the electron populat ion situated outside the curve C will, therefore, 

according to this criterion, begin running away in the »¡¡direction. 

Although the simple criterion (29) can be refined in several ways *, 

the number Δη is insensitive to the shape of curve C at large vx. 

In calculating this number we shall assume, in fact, tha t the boundary 

of the runaway populat ion is vz = const. ►•here 
corresponds to the peak of the C curve and follows from eq. (29) bv 
putt ing vx = »,. = 0. Thus 

4τ7θ3 I n A 

mE 

Let us define a field Ec for which v. max — y/2kTe/m. 

(30) 

Fig. 138. The contour C above which electrons may runaway. 

* Thus one should stipulate that the movement of runaway electrons in the 
velocity space must not lead to recrossing of the boundary C. This gives a new, 
more realistic, boundary C' (fig. 138). 
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For this E the run-away process begins to resemble the mass-run
away described by eqs. (20) and (27). Thus 

E„ = 
In Λ 

k Te 

or in practical units and for rep = ree = re 

n 
Ec = 1.5 X IO"8 (vol t /cm) (31) 

Let us now calculate the portion Διι of n which is decoupled from 
the Maxwell distribution by a field E. Th i s is 

An — S ƒ f(v;,vx)2-vxdvxdv;. 
y max : m i n 

Assuming tha t ƒ(») was originally Maxwellian one obtains (ref. 6) 

ΔΙΙ = y4 1 — φ [V4-J]- (32) 

where φ is the error function (fig. 139). 
Owing to collisions, the velocity distr ibution of those electrons that 

did not runaway will not remain cut off by the surface C'; these 
electrons will cross the surface C' and they too will be decoupled by 
the field E. 

η 

0.2 

0.1 · 

'i Ήε 
Fig. 139. Relative fraction of runaway electrons as a function 

of the ratio of the critical field Ec to the applied electric field E. 

Let us assume that the surface C' is a hemisphere , whose radius is 
v. max > i/2kTe/m. Then the flux ψ of electrons out of this hemisphere 
is a sign of a tendency to reestablish the high energy tail of a Max-
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wellian distr ibution and it follows by integrating the FokkerPlanck 

equation over the volume of the sphere, 

rf 

φ = — 2ττ j »2 d» 
3i 

= 2π»2
 maT { (/<Δ»,|>ββ + /<Δ»„>βρ) 

+  — (/<Δ»„2>ββ 4 /<A« ,%) } (33) 
3» " -"» m.x 

As the surface C' was defined in such a way that the dynamical 

friction was balanced by the action of the electric field E, the 

(Δ»,,) terms can be ignored. 

The positive ions were assumed to have zero random velocity, 

and therefore, in a spherically symmetrical electron distribution 

their contribution to ψ must be zero. Thus using eqs. (15) and (33) 

one has (putt ing ». m a i =■ v0) 

φ = 2nvo2 

(On" 

" 3 
({(Av^ee) 

. 3» 

Í
 V

 Ì e x P 
vt Κ Vf 

(33a) 

where »,2 = /?e
_1. 

This is the runaway flux tha t can be drawn from a quasi Maxwellian 

plasma by weak electric fields, i.e., by E <^ Ec (ref. 7). 

In bounded plasma the runaway process will not he adequately 

described by the analysis developed here and this for several reasons 

of which we shall mention the two most impor tant ones. The first 

is tha t as Ec depends on re and Te, there may be portions of plasma 

yielding more runaways than others. This will lead to accumulation 

of spacecharges and to a redistr ibution of the field E (ref. 8). 

T h e second factor of importance has to do with the two stream 

instability mechanism mentioned in chapter 5. Thus the kinetic 

energy of runaway electrons can be converted into a h.f. electro

magnetic field. Such a conversion implies a new friction force, which 

in many cases can be larger than the F e p taken into account so far 

(ref. 9) . 

Conduction of electricity in a gyrotropic plasma 

In a homogeneous plasma a uniform magnetostatic field has no 
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influence on the conduction of electricity parallel to itself. This 

follows directly from Boltzmann equation in which E // Β. 

When the applied electric field E is at right angles to B, the equa

tion for the single fluid model of plasma (eq. (3.64) ) gives 

en. 
vj = E+— VAB) — — gradpp. (34) 

c I m 

In a homogeneous plasma grad pp — 0 and in the absence of collisions 

ν = 0. Thus the massvelocity V is 

EAB 

F = — 
B2 

which is the drift velocity of both electrons and ions in crossed E 

and Β fields and no current flows in the direction perpendicular to B. 

Let us now imagine that the flow V is stopped, e.g., by confining 

the plasma by a plane perpendicular to E A B. 

From eq. (34), written in component form, follows 

e2re 
νφ = E; (34a) 

ere 

111 

1 

ρ 

3 
vyjy = PP (34b) 

rei dy 

Thus the current parallel to E flows now as if there were no inter

vening magnetic field and another current has made its appearance, 

flowing in a direction perpendicular to both E and B. This is the 

well known Hall current. 

A detailed examination (ref. 10) shows that the conductivity 

e2m/v;m appearing in eq. (34a) is about one third of that of uniform 

plasma without a magnetic field, owing to the nonuniform spatial 

distribution of the centra of gyration. This "perpendicular" con

ductivity is for a hydrogenic plasma 

J'3/2 

σ± = 0.5 X 10̂  (mho/cm). (35) 
In A 

There are many plasma geometries in which the drift » can form 

a closed flow and, therefore, no pressure gradient can be built up. 

In such a case the magnetic field impairs the conduction of electri

city in the direction of E(lB) and the corresponding conductivity is 

(35a) 

1 4 (-VÏ 
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However, these are already topics related to diffusion of electric 

charge in nonuniform plasma and therefore, belonging to the next 

section. 

8.2.2. STOPPING POWER — RELAXATION TO MAXWELLIAN DISTRIBUTION 

— EQUIPARTITION OF ENERGY 

The problem of how long i t takes for a test particle to loose either 

most of its directed velocity or most of its kinetic energy is related 

to the already analysed problem of t h e runaway electrons. Let us 

assume first tha t the field particles β are infinitely heavy and 

stationary and, therefore, the test particles a do not change their 

kinetic energy in collisions with the ß,s. T h e motion of the centre of 

gravity (in the va space) of the a's is then described by the equation 

(20) in which E = 0 and ζ is originally very large. In this case eq. (20) 

becomes 

d»a 
= — ίΐβΓα»α

-2 (36) d/ 

which gives for the time required to reduce the initial speed »0 to 

■—SST
 <37) 

The total kinetic energy of the test particles will, however, remain 

constant. In absence of collisions between the testparticles them

selves their individual velocities will remain always equal to v0, i.e. 

in the velocity space they will populate a circle (arc A in fig. 133). 

I t is, therefore, obvious that our original assumption of a displaced 

Maxwellian distribution is no longer valid when »( i ) < y2 »0 and the 

formula for the stopping time f„ is only an approximation. 

Eq. (37) can be generalised for relatively light field particles whose 

mean speed (/3/Γ1'2) is appreciably smaller than »0 a . I n tha t case one has 

ire„ 4 reiß 

to consider the factor appearing in eq. (14b) and in 
reiß 

eq. (19): 

reiß 1 »o3 

t. = f — . (37a) 
reiß + ma άΤα nß 

Let us define an energy- and density-normalized stopping time as 
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rei« / reia 1 

Ts = t.  W3'2. Zßnß = το — y — TTT ( 3 8 ) 

reiß + τηα
 v m ¿aZ>ß 

where τ0 = — which is the normalized stopping t ime for 

3V27re' In A 

fast electrons on slow protons. 

For fast electrons stopped by slow electrons r s = ^ τ ο . Fast protons on 

ι /~M~ 
slow protons are stopped after τ3 =

 l/2 1/ τ0. The shortest s topping 
y m 

t ime corresponds to heavy mult iply ionized atoms stopped by electrons, 

■ ( W T O * 

A quanti ty used more often than the stopping t ime is the range of 

a fast test part icle which is * 

reiß W2 \ , 
R~y2v0t.s = 1 „ . (39) 

m,ß 4 ma 2AZaZßei ln Λ ιΐβ 

The largest range corresponds to fast tritons impinging on a hydro
gen target. 

When is refers to particles all of the same kind (e-e, p-p collisions) 
it can be interpreted as the self-collision time, i.e., the t ime in which 
two groups of particles of the same kind, whose original velocity 
difference is »0 , relax to an almost isotropic distr ibution characterised 
by a temperature 

r = r e W na ( 4 o ) 

3/c na 4- «β 

The same t ime is then a characteristic t ime Tm for Maxwellisation of such 
a distribution. When we have na ' - ' rtß and using eqs. (37) and (40) 

there is 

13.5 ( ma\
 1/2 T3 '2 

im = (sec) (41) 
Za1 ln Λ ν rei,, ) re 

where reip is the mass of a proton. Evidently the l ighter the particles 

the shorter is the selfcollision and the Maxwellisation t ime. 

Another impor tant situation corresponds to both a and β particles 

having concentric Maxwellian distributions with temperatures Ta 

and Τ β. 

According to thermodynamics, in the final state the two groups 

will b e at the same temperature 

* It can be shown (ref. 11) that a better approximation is ί ί κ W'òl2, e.g., the 
range of H e + + in air at atmospheric pressure is given by R =s 0.32 . W3I2 (Mev, cm). 
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Τ = 
ηαΤα 4- τΐβΤβ 

«α 4- ΙΙβ 

Let us assume that na = ιΐβ = n and that during the temperature 
equil ibr ium both groups retain their Maxwellian distributions. 
In order to see how Ta and Τβ depend on time we must solve the 
Fokker-Planck equations for fa,ß. 

Let 

/o = η(\/-ιια)-:ί exp | 

2/£Γα.β 
(-ΐ) 

α.β 

(42a) 

(42b) 
Τ-α,.β 

Having assumed a Maxwellian distr ibution at all times we may 
forget the self-collision terms a-α and the differential operators will 
be only those corresponding to a spherically symmetric solution in 
the velocity space. Thus eq. (13) becomes 

3/a 

til 
~V2fa(Av)aß] + (/α<Δ»2>αβ) 

(43) 

Multiplying both sides by l^reia»
2 and integrating over Πα we get an 

equation for the change of total energy of the a particles, i.e., 

„ , cTa I cfa 
. 2ιιΑ· = \ —— · y, 

?t ' ct 
d n 0 \ O— [v2fa(Al%ß] 4^»2d» 

I c» 

4 y2ma (fa(AV2)aß) 4rr»2d». (44) 

If ιιια .> niß the problem reduces to that of the Maxwellisation 

time (eq. (41) ). Let us, therefore, study the case when reiß <ξ; m a 

and, therefore, in most cases ιΐβ -^ ua. In that case using eqs. (14b), (7), 
(8) and (9) we have * 

* For spherical symmetry only the factor has to be considered out of the 
m β 

m« + m f 
factor present in eq. (14b). For the same geometrical reason the 

<ΛΡ18> = - _ < Δ « 1 2 > = 0. 
?φ- ιθ2 

Furthermore (Αι·'-')„„ can be ignored owing to the smallness of Hß2/v2. 



DIFFUSION I N CONFIGURATION SPACE 267 

τη. re 
<Δ»>αβ = Γ0 —f (45a) 

reiß » -

reiiß
2 

<V2)aß = W)aß = Ta —■ (45b) 
»3 

These simple expressions are not valid in the small region where 

the a and β distr ibution overlap and, therefore, the lower l imit of 

the integrals cannot be zero, instead one must choose some » lnin 

whereu 2
m i n > up2. 

Substituting eqs. (45a,b) into eq. (44) we get 

3\tkua
3 dTa ma 

— = ua — F(» r a l n) · up. (46) 
4irearaii 31 reiß 

When the temperatures Ta and Tß of the a and β particles are equal, 

dTa 
—'— = 0 and, therefore, we shall require tha t 

3i 

F(»min) = L 

Then 

3T a 32 \Λτε4Ζα
2Ζβ2 . reIn Λ 

(Ta  Tß). (47) 
3ί 3ιτΐβΐηαιια

3 

Evidently the characteristic t ime of energy transfer from a to β is 

te = ^ l ^ L ^ TJ!1. (48) 
16"\/TT ma Za

2Zß2ei In Λ np 

For the specific case of cooling of hot electrons by cold protons 

we have (ref. 12) : 

244 Te3'2 , , 
ie = γ — (49) 

In Λ re» 

8.3. Diffusion in Configuration Space 

Having discussed how, in an infinite and uniform plasma, collisions 

are responsible for the diffusion of particles in the velocity space we 

shall now tu rn our attention to the effect of collisions on a diffusion 
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in a spatially nonuniform plasma *. Such a diffusion may be stimulated 

by a nonuniformity in the density, in tempera ture or in the stream 

velocity of the plasma. Accordingly the response, i.e. the diffusing 

quanti ty, may be particles, heat, electric charge or the momentum of 

the stream. The stimulus is related to the response hy a corresponding 

diffusion coefficient. Thus for instance part icle flux induced by a 

density gradient can be expressed by 

φ = D grad re (50) 

where D is the coefficient of diffusion. These coefficients depend on 

externally applied constraints impeding the diffusion. The most im

portant constraint influencing the value of all t h e diffusion coefficients 

is a magnetic field. 

An approximate but very simple method which allows us to estimate 

the value of diffusion coefficients is based on the theorem of stochastic 

processes of equal probabil i ty such as we have already used in deriving 

the angle caused by mult iple scattering (p. 249). 

Let Αξ he the mean step in space that a particle makes between 

two successive collisions. Provided tha t such collisions do not alter 

the probabil i ty of the particle making another such step, the distance ξ 

covered by this particle after Ν collisions is given by 

ξ = Αξ ■ \/~w. ( s i ) 

The mean square distance moved per uni t t ime is, therefore 

D = (Δέ)2ν (52) 

where ν is the collision frequency. 
The flux φ of particles in the direction parallel to the density 

gradient in an isothermal plasma can be computed as follows (see 
eqs. (11) and (12) on p . 252 in the l ight of footnote on p. 268). This flux 
is composed of two opposed fluxes φι and φ2 where 

φι = (ηνΑξ) Δ« = 
Χ = Χο 

2 

dφι dn dφl 3(νΔ|) Φο f-—%&i -LL Ì^l/οΔξ 
3re dx ο(νΑξ) dx 

* There is an essential difference between the diffusion in velocity space and 
that in configuration space. In the absence of collisions and external forces the 
points representing particles in the velocity space do not move, whereas those in 
the configuration space execute rectilinear uniform motion. 

The effect of collisions on the movement of representative points in velocity 
space is, however, analogous to the effect of collisions on the movement of centra 
of gyration of particles in a magnetic field. 
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φ2 = (ηνΑξ) Δξ 
Χ = Χο Η 

2 

dφχ dn dφl 3(νΔ|) 
Φο + f τ— 1/2Δ| 4 —  £  1/2Δξ 

3 η. σ* 3(νΔ§) 3Λ; 

3rt 3(νΔ|) ,„ ν 

φ = φ2 — φχ = ν · Δ | 2 ·  — + η · Δ | . (53) 
tí* σ* 

3("Δξ) 
I t will be shown later tha t for isothermal plasma = 0 and 

1 dx 

we obtain in tha t case 

ere 
φ = D 

cx 

which is the same as eq. (50). This demonstrates tha t the coefficient 

of diffusion can be defined as the mean square distance a particle covers 

per unit time. 

If one wishes to find the value of a diffusion coefficient pertaining 

to the diffusion of a property q of plasma, one must find the flux ψ 

of this quanti ty in the same way as was found the flux φ. 

The corresponding flux equation is then 

ψ = Dq grad q (54) 

or taking the divergence 

dq 
= div (D,, grad q). (54a) 

3í 

This can be often transformed into the classical diffusion equation 

dq 

c t 
= SAq (54b) 

whose solution is a diffusion wave which progresses with the speed S. 

Let us now evaluate, using this approximate method, the diffusion 

coefficients corresponding to particlediffusion, to heatdiffusion and 

to the diffusion of the momentum of plasma flow. 

8.3.1. FLUX OF PARTICLES 

Magnetic fieldfree plasma 

The mean step executed by a part icle between two successive colli

sions in a fieldfree isothermal plasma is equal to the mean free path 

Thus 



270 COLLISION AND RELAXATION PROCESSES 

Δ| = — (55) 
ν 

ν can be defined using the (Δ»ϋ) coefficient by 

— <Δ»„> = ν 
ν 

or 
AirZ2e4n In A 

(56) 
ire'»·' 

The diffusion coefficient for electron follows from eqs. (52), (55) 
and (56) is 

»2 

De = 

De = re-1. (57) 
4rrZ2e4 In A 

In an isotropic hydrogenic plasma in which drift velocities are less 
than the mean thermal speed it is clear that the diffusion coefficient 
for electrons will be v/w, i.e., \/M/m times higher than that for the 
positives. 

Unequal diffusion of electrons and positive ions gives rise to an 
electric field, which in turn slows down the diffusion of electrons and 
speeds up that of the ions. Thus the effect of the density-gradient in 
the electron gas, coupled through this electric field to the motion of 
the positive ion, must be added to the effect of density-gradient in 
the ion gas and the total diffusion, known as the ambipolar diffusion, 
is characterised by a diffusion coefficient *. 

D = 2D, 

2 y 2 (kT)3'"-

VMe 4 In A 
re-1. (58) 

Gyrotropic plasma 

The effect of a magnetic field on plasma has been discussed in chap
ter 4. It has been shown tha t in absence of collisions a density gradient 
is responsible for the appearance of various drift motions, all of them 
in the direction perpendicular to both Β and grad re. A diffusion 
parallel to grad re is the result of collisions. 

* For non-isothermal plasma and Γ,, ^ To (see ref. 13). 
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T h e mean step the centre of gyration of an electron makes as a result 

of a ep collision is equal to the radius of gyration p. Thus using eq. (52) 

there is 

De = 
I mv \ 2 ArrZ^e* I n A reP 

LB 
V c 

■ re = 4πΖβ2»2 ln A · —— . (59) 
vB2 

The mean shift of the centre of gyration of a positive ion as a result of 

an ep collision is, according to eq. (2.18) 

Δ ρ 
Αξ = — ί — (60) 

LB 
c 

where Δρ can be at most equal to the momentum of the electron. 
T h e collision frequency is still determined by eq. (56) because ν ^> ι». 
I t thus follows tha t 

Dp « De. 

In case tha t Dp^ De a phenomenon similar to ambipolar diffusion 
will ensure t ha t the electron flux due to diffusion is the same as that 
of the positive ions. 

The speed of diffusion of isothermal plasma across a magnetic 
field as a result of e-p collisions is from eq. (54) 

Ψ grad ne 
= S s IO"2 . (61) 

re B2T'I2 ' 

Let us consider the effect of e-p and p-p collisions on the diffusion 
process across a magnetic field. T h e result of a single collision of like 
particles of equal energy is a shift of the guiding centra of the two 
interacting particles by equal and opposite amounts (fig. 140). Such 
collisions will not alter a density distribution, except where such a 
distr ibution exhibits a large variation within a radius of gyration p, 
i.e., where 

ρ · grad re <£ re. 

An example of such a distr ibution is one for which the density of the 
centra of gyration is uniform in a given volume. T h e particle density 
falls to zero within a distance ρ from the boundary of such a volume. 
I t is evident tha t in this case collisions between like-particles will soon 
blunt the sharp density distribution. T h e diffusion speed found for 
this process does not depend linearly on grad re and has been shown 
t o b e 
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s = K y&p vp 
dx 

1 d2reï 

k re da;2
 J 

(61a) 

where vp is the collision frequency of the positive ions (ref. 14). 

Fig. 140. Shift in the position of centre of gyration 
in a magnetically immobilized plasma. 

In all the calculations of diffusion coefficients the value of the mean 

step has been defined by the interval between part icle collisions. How

ever, the motion of a part icle can be considerably per turbed by rapidly 

oscillating electric fields in the plasma. In thermodynamic equi l ibr ium 

one would expect tha t all the possible modes of oscillation of a plasma 

are excited, each having an energy 1/2 kT (see p . 168). The particle

phonon (or photon) collisions are then of great importance in plasma 

diffusion across magnetic fields. 

Let us consider a part icular situation in which the mean step of the 

centre of gyration between two successive particlephoton collisions is 

equal to the Larmor radius and the collisionfrequency is equal to 

the gyrofrequency. The corresponding coefficient of diffusion is then 

D = (Δ | ) 2 · ν = 
1 

pVx (62) 

where 

Mv, 

Β 

(63) 



, therefore, 

D = 
1 

2ττ 

M » j . 2 

e 
— Β 

kc 

e 

Τ 
= 0.83 

Τ 
• IO4 — * 

Β 
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(64) 

Many experiments on plasma diffusion across a magnetic field are 

in agreement with this diffusion coefficient and the process itself 

is known as Bohm diffusion (ref. 15). F rom eqs. (59) and (64) i t follows 

that for a deuter ium plasma the classical diffusion is more impor tan t 

than the Bohm one only for (taking ln /. <— 10) 

> 2.7 · 103 · B. (65) 
J'S/2 

If plasma is confined by the magnetic field then 

¿SB2 > 16 TrnkT (66) 

and, therefore, 

—L > 2.2 · ΙΟ4 ,β1'2. (67) 

One sees that (fig. 141) for thermonuclear temperatures (T > 108 °K) 

the density of a plasma which would diffuse mainly owing to electron

ion collisions must be greater than 5 . 1024 ions/cm2 . I n order tha t (65) 

be true for most plasmas produced in laboratory (re r~> 1015) the tem

perature must be very much lower than 4 · ΙΟ4 ( aK). I t follows that , 

provided Bohm diffusion is always operative, the classical diffusion 

can be observed only in experiments in low tempera ture caesium plasmas 

(ref. 16). 

8.3.2. CONDUCTION OF HEAT AND ELECTRICITY 

Let us consider a heat conduction in an isotropic and fieldfree 

plasma. The density of heat energy is 

We = 3/2nefcT„ 

Wp = 3/2rep/cTp. 

Let us assume for the moment tha t ree zz np and T e = Tp . Employing 

an argument similar to that used in eq. (53) we obtain for the heatflux 

Q due to the electrons 

* Practically the same for both electrons and ions. 
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Fig. 141. Graph of eq. (67) f or β = 1 . 1(Η 

Q = — (3/2reÄT . ν · Δξ) · Δξ 
3Λ 

(68) 

/ 2ΛΤ Λ2Γ2 

where ν · Δξ = υ = Λ/ and Αξ = (see eq. (56) ). 
V rei —e4re In A 

Let us separate the effect of density variation from that of tempera

ture by assuming that grad re is equal to zero. Then 

3 refe3'2 3(T3/2) 

V2 rei1'2 3* 

The heat conductivity is usually defined as 

Q 

grad T 

(69) 

(70) 
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and therefore, the heat conductivity of the electron gas is 

QfcT/2 J'S/2 J'S/2 
= 1.95 · IO-5 · (erg/cm2 sec deg). (71a) 

2V2-7re4rei1/2 In Λ 

In evaluating the total heat flux Qe + Qp the concept of ambipolar 
diffusion cannot be used in the simple form outlined on p. 270. 

The value of Q to be taken for heat conduction depends on several 
assumptions concerning the neutral i ty of plasma, the current i t can 
carry in the direction of grad T and on the coupling of Te and Tp 

through e-p collisions. For a Lorentz gas in which an electric current 
flows as a result of grad T Spitzer obtains 

J-3/2 
KL = 4.67 X IO"12 (cal sec"1 cm"1 deg-1). (71b) 

Z in A 
The same reasoning can be applied to the conduction of heat in a 

gyrotropic plasma. According to eqs. (59) and (60) 

12TT n2 

Ze2cl\lkm In A (72) \/2 T'I2B2 

or for a hydrogen plasma 

κΉ = 2.1 X IO"18 " , . (72a) 
J g2J ' l /2 ' 

In the general case of gyrotropic plasma in an electric field the equa
tions describing the electric current and hea t flow are (|| and JL to B) 

EAB C grad TAB 
i = σΕ„ 4- σ'Ε, + σ" — - + σ τ — grad,, Γ 4- «/τ — (73) 

Β e LB 
c 

Q = κ grad± T 4- κ' grad,, T 

grad TAB e EAB 
+ K" — 4-Ke — £„ + «'„ . (74) 

B c e 
— B 
c 

The form of these equations follows from the momentum and energy 
conservation equations of the two fluid model of plasma, the coeffi
cients can be evaluated on the basis of the approximate diffusion 
theory outlined here or more rigorously by considering small deviations 
from a Maxwellian distribution (ref. 17). 

The various terms appearing in these equations for i and Q are 
associated with effects discovered experimental ly by physicists investi
gating electricity and heat conduction in metals. 
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Thus in the equation for electric current density the first and second 
terms represent the currents induced by the two components of the 
applied electric field, the first parallel, the second perpendicular to 
the magnetic field B. The thi rd term represents the well known Hal l 
current, the fourth term describes the thermo-electric (Seebeck) effect 
and the fifth term corresponds to the Nernst effect. 

In the equation of heat-flow the first and second term are the heat 
flows parallel and perpendicular to Β induced by the temperature 
gradient. The thi rd term represents the Righi-Leduc effect, the fourth 
term the Pelt ier effect, whereas the fifth term is associated with the 
Ett inghousen effect (ref. 18). 

8.3.3. DIFFUSION OF MOMENTUM. VISCOSITY 

Let us consider two streams of charged particles flowing parallel 
to each other with different velocities of flow (fig. 142). The particles 
whose random velocity has a component perpendicular to the velocity 
of flow will cause a mixing of the two streams. The mixed streams will 
then exchange momentum through collisions. As a result of this 
exchange the fast stream will be slowed down, whereas the slow 
stream will be speeded up and the same time some of the kinetic 
energy of the flow will be converted into the energy of random motion. 

^ ~ ~ ~ - ->-ΚΊ 

Wi 

Fig. 142. Exchange of particles between streams of 
different momentum. 

The diffusion of momentum can be calculated by a procedure similar 
to that used on p. 269 for the diffusion of the fluid property q. 
Here the flux of momentum is mainly due to the heavy positive ions 

Ρ = M 
( 1 3re 

η+-2^χ-Λξ" 

( i dw 
iv + — —— Δ|ρ 

Δ ΟΧ 
Μρ· 

( 1 dn W 1 Sto 1 
_ A f n — - — — Δ Ε , t o — — —— Δ|ρ Δίρ-vp 

^ 2 3 ι ) y 2 cx j 
d 

= MD (tere). (75) 
3* 
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In a plasma of uniform density 

3i» 
Ρ = nMDp . (75a) 

dx 

This momentum transport is equivalent to a shearing stress exerted 
paral lel to w- This stress is proport ional to dw/dx. Thus 

3i» 
Ρ = μ . 

^ dx 
The constant μ is known as the coefficient of viscosity and is, in our 
approximation 

μ = nMDp. (76) 

In a magnetic field-free plasma 

V 2 \/~M(kTp)3l2 

μ = In Λ 
(76a) 

In a gyrotropic plasma the coefficient of viscosity becomes, using the 
expression for Dv derived on p. 271 

4 - ln Λ Ze2Mc2y/m re2 

μ = 
V2 yfc R 2T'/ 2 

= 1.6 Χ 10-211 AZ — — - (76b) 

where A is the atomic number of the positive ions. 
The viscous forces can cause instability (the break-up) of a laminar 

flow. T h e criterion for the onset of such an instability is expressed by 
a quanti ty known as Reynold's number which is for a cylindrical flow 
with » = 0 at r = o 

R = 2ρανμ-1 (77) 

or more generally 

» Λ curl » 
R = μ ρ ν2» 

For conditions for which the Reynold's number exceeds a certain 
value, which depends on the geometry of the flow, the laminar flow 
produces eddies and becomes turbulent . 
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List of symbols used in Chapter 8 

A 
B, 
Ρ 
c 
d 
D 
E, 
e 
F, 

f 
G, 
g 
j 
k 
l 
m, 
n 
N 

P 
P 

q 

Q 
R 
s 
t 
T 
u, 

B 

E 

F 

H 

M 

mass number 
magnetic field strength 
impact parameter 
velocity of light 
Debye distance 
coefficient of diffusion 
electric field strength 
electronic charge 
force 
density distribution 
potential functions 
plasma characteristic 
current density 
Boltzmann constant 
length 
particle mass 
number density 
number of collisions 
momentum or pressure 
flux of momentum 
coordinate in configura
tion space 
heat flux 
Reynold's number 
velocity 
time 
temperature 

», w velocity 

V 
W 
x,y,z 
Ζ 

β = 

ε 

θ, φ, χ 
κ 

Λ = 

ν 

μ 
TT 

Ρ 
σ 

τ 

Ψ 

ξ 
ζ 
ω 

coc 

electrostatic potential 
energy density 
coordinates 
atomic number 
v/c normalized speed 

βττρ 
or 

B2 
electric charge density 
angles 
heat conductivity 

Pmin . . . . . 
a ratio of critical 

Pmax 
impact parameters 
collision frequency 
coefficient of viscosity 
probability 
radius of gyration 
collision cross-section or 
electrical conductivity 
normalized stopping time 
flux of particles in con
figuration space 
flux of particles in velocity 
space 
distance 
normalized velocity 
angular frequency 
cyclotron frequency 



APPLICATIONS 

In these two chapters on applications of plasma physics we shall 
l imit ourselves to a brief appraisal of projects that have not yet passed 
from a research laboratory to a development laboratory. To such 
belongs the research on controlled thermonuclear reactions to which 
we shall devote chapter 9. In chapter 10 we shall mention research 
projects on plasma rocket-motors, the direct conversion of chemical 
energy into electrical energy, energy storage, plasma-oscillators and 
plasma-accelerators. In all these cases only basic physical criteria will 
be given and much of the subject mat ter will be treated as an exercise 
in applying the theorems derived in the first eight chapters of this book. 
I t must be appreciated that in these potential applications the rôle 
played by plasma physics is not always the most impor tant one. 
Thus surface phenomena, ionization processes, nuclear transformations 
and purely engineering considerations may often be the source of 
l imitations of the proposed devices. Some of these limitations will be 
mentioned but not studied, such study being more appropr ia te to 
publications on the separate fields of such applications. 



CHAPTER 9 

RESEARCH ON CONTROLLED FUSION 

Introduction 

Thermonuclear research is a subject that will remind many physicists 

of the research on the properties of ordinary chemical flames. This is 

particularly noticeable when one sub-divides the subject matter into 

its two component disciplines. The first is concerned with the nuclear 

reactions and with the manner in which the nuclear energy is released. 

The second is that of the kinetic theory of plasma, and it is concerned 

with the heating and confinement of the nuclear fuel. 

The first discipline will be the subject of an introductory section, 

whereas the second one will be discussed mainly in sections 2 and 3. 

A survey of the various approaches to the problem will be attempted 

in section 4. 

9.1. Sources of Nuclear Energy 

9.1.1. ELEMENTARY NUCLEAR CONCEPTS 

The atomic nucleus is composed of approximately equal numbers 

of protons and neutrons. The number of particles within the nucleus 

belonging to these two groups (nucléons) is equal to the mass number A. 

If the number of protons is Z, the number of neutrons is A — Z. 

There are certain rules according to which an atomic nucleus is built. 

These permit reasonably stable nuclear structures to occur only for 

certain combinations of A and Z. Thus e.g., the population of these 

stable nuclei is clustered along a curve C in the A — Ζ, Z diagramme 

(see fig. 143) *. 

The reason for the very narrow spread in A — Ζ (at any particular 

Z) is to be found in the nature of forces between the nucléons, evidently 

neutrons and protons prefer to be bound together in pairs. 

* This diagram is also known as the "Segrè chart". See e.g., E. Fermi: Nuclear 
Physics (Univ. of Chicago Press, 1955). 
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The variation in the degree of nuclear stability is not only noticeable 

perpendicular to the populat ion curve C bu t also along it. Thus if 

two nuclei A ' and A " collide with each other a nuclear reaction may 

take place, the products of the reaction being represented by two 

points B ' and B " in the Z, A — Z diagramme different from those 

representing the original nuclei (fig. 144). I t is then observed that, if 

one of the colliding nuclei belongs to a group in the middle of the 

periodic table (i.e., nuclei centred around Ζ = 50), one of the products 

of the reaction will be again in this centre group (fig. 145). If, however, 

IO 20 30 40 SO 60 70 80 CO Ζ 

Fig. 143. Line L represents the 
equation A — Ζ = Ζ. 

\0 W 30 40 SO 60 70 SO 90 Ζ 

Fig. 144. Reaction A"(A'B')B". 
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Fig. 145. 

one of the colliding partners is a heavy one (Z ^ 90) it is possible 

that both the reaction products will appear in the centre group 

(fig. 146). Example : 

235 - 94 140 

LI»» 4 η = Sr3 s + Xer,4 + 2n. (1) 
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A similar tendency for a shift of Ζ in the direction of the centre 

group is noticed in a reaction between two l ight nuclei. Here one of 

the reaction products is usually heavier than ei ther of the nuclei 

entering the reaction (fig. 147). Example , 

D + Τ > He4 + η. (2) 

This stability in nuclear reactions of the medium mass nuclei can 

be explained by observing the dependence of the binding energy of 

nuclei on Ζ (or A). 
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Fig. 146. A typical fission reaction. Fig. 147. Reaction D(t, n)He4. 

9.1.2. BINDING ENERGY 

The binding energy of a nucleus is the energy difference between a 

system of A free nucléons and a system of these nucléons forming an 

unexcited nucleus. 

The total b inding energy W is bui l t up of several contributions. 

1. First of all there is the energy due to charge independent forces 

between adjacent nucléons. These are short range forces similar to the 

forces between molecules of l iquids. A nucleón well inside the nucleus 

interacts with its immediate neighbours and one may assign to it a 

binding energy u>i (which is found to be close to 8.5 MeV). Thus A 

nucléons in an infinitely large nucleus will have a binding energy 

Wx = ΑνΟχ. 

2. The atomic nuclei are, of course, not infinitely large. There 

are always nucléons situated on the surface of the nucleus; the value 

of their binding energy is not i»i bu t i»i — t»2 < M>I< A S the number 

of surface nucléons is proport ional to the surface 47rR2 of the nucleus 
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and fi ^ 1.5 X 10~13 A113 (cm) (owing to the constant density of nuclear 

mat ter) we have for the negative component W2 of the binding energy 

of the surface nucléons. 

Wo = vA2'3 

3. The other impor tant energy component is due to coulomb repul

sion between the protons within the nucleus. This is the potential 

energy WA of a uniformly charged sphere of radius R and containing 

a total charge Ze. Thus 

W3 = 
(Ze)2 

R 

as Ζ zz y2A and R is proport ional to Ar'l'3 one gets 

W3 = — «M5 '3 . 

There are other energy components involved in the binding energy 

W oî a nucleus, such as the energy of unpai red nucléons and energy 

due spinorbit and spinspin interactions inside the nucleus. However, 

for the purpose of our discussion we may ignore these energies. Thus 

the total binding energy is 

W = wiA — ow2A
2l3 — α'Α'Ι3. (3) 

A more important expression is the binding energy per nucleón Wp 

Wp = ι»! — aWoA1'3 — a.'A2'3. (3a) 

W 

Fig. 148. Binding energy per nucleón. 

I t can be appreciated that at high A the last term will predominate 

and the W„ will decrease as A increases (fig. 148). Thus there will be 
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an A = A0 for which Wn becomes a maximum *. Lighter nuclei will 
then show a tendency to build up into A0 nuclei and similarly nuclei 
heavier than A0 will decay into l ighter ones. 

In each of these transformations energy will be l iberated, the 
bui lding up of nuclei representing the fusion reactions, the splitting 
of nuclei the fission reactions. 

A nucleus undergoing fission will presumably depar t from the 
spherical shape (fig. 149a) and pass through the shapes of a prolate 
spheroid and a dumbel l into two spherical nuclei of approximately 
equal size ** (some more recent theories suggest s tr ipping of the outer
most shells of the spherical nucleus (fig. 149b). 

Fig. 149a. Mechanism of a fission event. Fig. 149b. 

The changes of surface energy and electrostatic potential energy 
respectively resulting from the change of shape of the nucleus are 
obtained as follows: 

* The rigorous expression for W„ is more complicater than eq. (3a) and can be 
written as : 

z°-
rr„ = 1.28 χ 10-= — 2.37 χ 10-"' Α-Φ — 0.09 χ 10-" 

ΑΦ 

1.195 χ 10-·· F^) + δ (erg) 

where δ = — 5.18 χ 10~5 Α~'ίΛ for A even and Ζ even, 
δ = 5.18 χ ΙΟ-s Λ-7/4 for A even and Ζ odd, 
δ = 0 for all other cases. 

This formula does not describe satisfactorily the variation Wn for nuclei whose 
A <C 12. However, it does show that there are several values of A for which Wa 
becomes a maximum (compare Fermi, loc. cit., p. 7 and fig. 1.2). 

** See Fermi, op. cit., p. 164. 
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1. Surface energy is always proport ional to the surface area. The 

surface of the prolate spheroid is 

where a, b are the major and minor semiaxis respectively. 

However, the volume of the nucleus does not change (constant density 

of nucléons is always preserved) and therefore, if 

α = R ( l + ε) 

the volume Ω is (for small deformations, i.e., for ε <5ξ 1) 

Ω = 4 / 3 T T R ( 1 + ε) o2 = 4/3rrR3 = const. 

and therefore 

Γ» 

b = S Ä ( 1  y2e + Με2). 

V I + ε 

The surface becomes 

S = 4TTR2(1 + 2/5ε2 4 . . . ) . 

and the surface energy is 

W2 = 2 X 10M2/3(1 + 2/5ε2 + . . . ) . (4) 

2. The electrostatic energy of the prolate spheroid is (ref. 1) 

W3 = 1.1 Χ ΙΟ"7 A''3{\ — l/5<r). (5) 

Thus the surface energy increases and the electrostatic decreases with 

the elliptical deformation. The total change is 

AW = ε2(8Λ2/3 — OMAA"'3) Χ 10°. (6) 

When AW < 0 a spherical nucleus will be unstable. This happens for 

A > = 235. (7) 
 0.034 

Even when AW > 0 but very small compared with W¿ a division 

of the nucleus is possible if such a nucleus is bombarded by particles 

capable of supplying the energy AW. The energy AW may be thought 

of as a triggering energy, which starts the nuclear division. The 

energy liberated in such a division comes mainly from the Coulomb 

field of the protons. It may be calculated from the difference between 

the energy of the orginal spherical nucleus and the energy of the two 

daughter nuclei. Thus using eqs. (4) and (5) 
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(Α Ζ Λ 

= 2 Χ ΙΟ-5 A2'3[l — 2(i/2)2 '3] + 1.7 X 10"T A«l*[l — 2(ΐ /2)5 /3] . (8) 

Substituting Α = 236 into this one obtains an approximate value 
for the fission energy WFl of u ran ium 

WFi s* 2.68 X IO-4 erg = 169 MeV. (9) 

The fission energy output per nucleón being Wn = 0.72 MeV. 

9.1.3. NUCLEAR FUSION 

T h e energy l iberated in a fusion of two hydrogen nuclei ( the Çvalue 

of tha t reaction) is mainly the surface tension energy. As an example 

let us apply eq. (8) to a compound nucleus whose A — A. Then 

^Fusion = 2W 

(Α Ζ \ 
W(A,Z) 

. 2 2 . 

^Fusion = — 0.62 X 107 X 10.1 4 0.52 Χ 10~Γ' X 2.51 (8a) 

^■Welst. AWgprta.ee 

it is obvious that AWs„ruve '$>&.We\si.· Thus 

HVsion = 1.22 X IO5 erg = 7.7 MeV. (9a) 

This value represents the order of the Çvalues of fusion reactions. 

Evidently the fusion energy output per nucleón is then W„ ~ 2 MeV. 

This is about 3 times larger than Wn encountered in fission. Some 

typical fusion reactions are described in the following table. 

D + D , > Τ + ρ 4 4.0 MeV ] 

' > He 3 + η + 3.25 MeV ] e c î u a l l y P r o b a b l e 

Τ + D = He4 4 η + 17.6 MeV 

Τ + Τ = He 4 + 2η 4 11.4 MeV 

He 3 + D = He4 + ρ + 18.3 MeV. 

Not all the nuclear reactions between light elements are fusion 

reactions; there are some impor tant fission reactions as well. This is 

due to the dependence of binding energy on the number of unpai red 

nucléons and some other binding energy terms tha t we have mentioned 

in the footnote on p. 285. Owing to these components of the total 

b inding energy the energy per nucleón W„ varies ra ther rapidly and 

unevenly for A < 15 (ref. 1). Thus it is evident from the plot in 



288 RESEARCH ON CONTROLLED FUSION 

fig. 150 tha t there are two regions in which one may expect the 

occurrence of fission reactions, these regions are 

6 < A + Ζ < 11 

12 < A + Ζ < 16. 
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Fig. 150. Binding energy per nucleón of light nuclei. 

Typical fission reactions in the first region a re : 

Li e 4 η = He4 + Τ 4 4.8 MeV 

Li» + D = 2He4 + 22.4 MeV 

LiT + Η = 2He4 4 17.3 MeV. 

The second of these is one of the richest reactions in ou tput energy 

per nucléons of all fission reactions; i t yields wa — 2.8 MeV/nucleon. 

The exact calculation of fusion energy output is ra ther difficult and 

the accurate Çvalues are obtained by experiments. The reaction cross

sections σ are also determined by experiment, except for relativelv 

low kinetic energies of the reacting nuclei, where the crosssections are 

computed as follows (ref. 3, 4) . 

First of all one calculates the probabil i ty Ρ per uni t time tha t a 

collision between two light nuclei will lead to a fusion. This probability

is 

P = P1.p,.p3 (10) 
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where 

P i is the probabil i ty that the nuclei will penetrate each others Coulomb 
potential barrier, 

P2 is the reaction probabil i ty T/h, i.e., the probabil i ty tha t the desired 
reaction will take place within the compound nucleus, 

P 3 is the probabil i ty that the part icle evaporated from the compound 

nucleus will penetrate the Coulomb potential barr ier . 

If the evaporated particle is a neutron, then 

P:i = L 

As Ρ is also the number of reactions per unit time we have for the 
reaction cross-section 

Ρ = ηνσ ( Π ) 

where η is the number of bombarding particles per cm3 and ν is their 
velocity. The general formula for σ as a function of collision energy 
E is (ref. 5). 

σ(Ε) = ^ e x p ί — 0.9ο9ΖχΖ2 Λ / — | barn (12) 

where α is in MeV barns, E in MeV and 

ΑχΑ2 
A = 

Αχ + Aa 

The cross-sections for the two most impor tan t thermonuclear reac
tions, i.e., T (D, n) H e ' and D(D, n) He 3 have been measured and are 
plot ted in fig. 151 *. 

When fusion reactions proceed in a ho t gas (e.g., mixture of Τ and D) 
near thermal equi l ibr ium one would be tempted to substitute 

E = 3/2ÄT 

into eq. ( 12) and calculate the rate of the reaction ν as 

\/2kT/M 
ν = y2n (reactions/sec, cm3) 

λ 

where λ is the mean free path between the reactions, i.e., 

1 
λ = . 

ησ 

* E. J. Stovall, Phys. Rev., 88 (1952) 159, Summer Meeting of American Phys. Soc, 
1952. 
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Fig. 151. Collision cross-sections for the two most 
important fusion reactions. 

However, this approach is wrong at temperatures below 109 °K 
because σ is an extremely sharp function of the velocity of the colliding 
particles. If the velocity distr ibution of both types of nuclei is Maxwell
ian then the n u m b e r of reactive collisions (per cm3, per sec) with 
collision-energy between E and E + dE is 

dv = 
4CiC2ft2 

-ElkT 
'(E) 

\/2ττΑιΑ2γΑ kT \tk'T/M 
dE (coll s/cm3sec) (13) 

where A = ΑχΑ2/(Αχ + A2), and Cx, c2 are the respective concentra
tions of the two types of nuclei. 

The function Ee~ElkTa(E), occurring in eq. (13) shows a very sharp 
maximum at (fig. 152) 

- ( ■ 

Τβ2\/ΜΑΖχΖη 
(kT)-1'3 

kT y y/2h 

For hydrogen isotopes Ζχ = Z 2 = 1, A ^ 1. Therefore 

E 820 

3/2kT T1 '3 

(14) 

(14a) 
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(Example : Τ = IO7 °K, 2EßkT = 3.8.) 

This shows that the reaction output is due to a small group of 

nuclei whose velocity is several t imes larger than the mean random 

velocity. 

Fig. 152. Most of the fusion events in a plasma pos
sessing a Maxwellian velocity distribution occur 
between ions having an energy well in excess of the 

mean thermal energy. 

Knowing 
( dv 

and the effective width AE of the 
dv 

peak, it 
, dE ) max dE 

is now possible to calculate the reaction output Wx (per cm3) . Thus 

(ref. 4) 

wn = ρ ƒ 
dE dE 

' dv \ 
~àË), ■ΔΕ. (15) 

T h e complete formula for T(D, n) He reaction is 

W* = 0.65 X l O - 1 6 - ^ - Χ 10-19·7'Γ (erg/cm 3 sec). 

where Τ is in 10" °K. 

This formula is valid only as long as the assumption concerning the 

dv 
sharpness of holds. This is not so for temperatures of several tens 

of millions of degrees for D,T reactions. In such a case it is necessary to 

calculate the reaction output using the following formula 

Wn = nin2(o-t;)i,2 · f u s i o n (16) 
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where the mean reaction rate (σν)χ ,2 between species 1 and 2 is 
numerically calculated by integrating eq. (13). I t is seen from fig. 153 
that the maximum for the (O-I;)D,T is equal to about 0.9 · 10 1 5 and 
occurs at a temperature of about 6 · 108 (°K) (ref. 6). 

9.1.4. FISSION AND FUSION REACTIONS AS SOURCES OF ENERGY 

The energy of radioactive decay is supposed to contribute a certain 
amount to the heat and magnetic field sources of the planets. There 
exists also a theory according to which some components of cosmic rays 
are generated during the disintegrations of heavy nuclei. However, even 
assuming that these theories are correct, from a cosmic point of view 
the fission reactions appear as freaks. 

The source of energy in our Universe is the energy liberation in 
fusion reactions. Most stars have been and still are receiving their 
energy from this type of nuclear reaction. There are, of course, many 
types of fusion reactions and at present it is difficult to determine which 
is the most widely used and which stars use which reaction (ref. 2). 

However, it appears tha t the basic energy giving transformation is the 
formation of an He4 nucleus out of four protons; 

4p -» He 2
4 + 2e+ + energy. 

I t is thought that stars of the same type as our own sun effect this 
transformation through the p (pe + )D reaction (ref. 7). 

However, other types of reactions effecting the same transformation 
may also occur in the stars (ref. 2). 

The calculations of energy production show tha t this process accounts 
satisfactorily for energy radiated away from our sun. Which reaction 
cycle is operative in a star is determined by the material , temperature 
and pressure distribution in tha t star. 

These exothermic reactions can occur in the interior of the stars 
owing to the high temperature and pressure maintained there and of 
course, owing to the fact that the material from which our Universe 
is buil t is mainly hydrogen. 

T h e reason for the steady maintenance of these reactions is the large 
gravitational pressure of the external layers of the stars. This pressure 
balances the pressure of the hot plasma in the interior. However, large 
deviations from this pressure equil ibr ium may occur. When the gas 
pressure prevails the star expands rapidly, the process resembling an 
atomic explosion on a cosmic scale. This expansion causes the nuclear 
furnace in the interior to cool and the gas pressure drops. The expansion 
is in many cases eventually arrested by the gravitational pull and the 
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star begins to collapse towards its centre. This condensation causes 
the temperature of the star-centre to rise and eventually leads to a new 
explosion. The stars showing this behaviour are known as pulsating 
stars (Cepheids) (ref. 2). 

Considered as sources of power for mankind the fusion reactions 
appear at first sight more commendable dian the fission reactions. This 
is due mainly to the following reasons: 

1,) The fuel for the DD fusion reactions is practically inexhaustible. 

2) The final products of fusion reactions are usually not radioactive, 
or ih they are, theire half-life is short. 

The only important radioactive element in all the faster thermo
nuclear reactions is t r i t ium with a half-life of 12 years. This will occur, 
however, in very small quantit ies as an intermediate product. On the 
other hand the fusion reactions are a source of neutrons and therefore, 
just as in the case of fission reactions, appropr ia te screening facilities 
must be provided. 

Recently the situation has, however, changed in favour of fission. 
Firstly the breeding reactors are now capable of transforming natural ly 
plentiful materials such as uran ium 238 and thorium 232 into fissile 
materials such as plutonium 239 and uran ium 233 by neutron-absorp
tion. The reserves of uranium 238 and thor ium 232 on earth are such 
that mankind should not worry about lack of energy for at least another 
mil lenium (ref. 8). Secondly the technological developments in dealing 
with radioactive materials and selecting materials which are resistant 
to radiation damage has advanced so far that one feels confident that in 
the future radioactive ashes can be stored or disposed off and reactor 
accidents rendered extremely improbable. One may even conceive 
shooting the long lived radioactive products hito outer space. 

Looking at fusion as an energy source for power plants one may ask. 
therefore, whether its development is about as untimely as the develop
ment of fission reactors would have been at the beginning of the 
industrial revolution. One may proceed by saying that the problem of 
fusion reactors should be perhaps reexamined in about 100 years t ime 
when it may be resolved faster and better than today or when it may be 
perhaps recognized as a problem not worth solving. However, this point 
of view is too conservative. Thus, al though fission may meet the power 
consumption requirements, fusion may do it better — by better is meant 
more economically, using less complicated technology or having some 
other substantial advantage. 

Man-produced thermonuclear fusion can be divided into two classes 
— the uncontrolled fusion, i.e., the H bombs and the controlled fusion. 
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Even the first one is not really uncontrolled, as the maximum final 

energy released by a bomb is determined by its size. 

9.1.5. UNCONTROLLED FUSION REACTIONS 

The example of the uncontrolled fusion reactor is the hydrogen 

bomb. T h e "modus operandi" of these bombs has not been officially 

disclosed. However, the guess work of some of the scientists outside this 

effort provides probably a good picture of how these "fast reactors" 

work. 

I t is thought that the bomb mechanism is based on the T(D, n) He4 

and T ( T , 2n)He4 reactions. The fuel could be a mixture of t r i t ium and 

deuter ium but as this would have to be provided in a l iquid state it 

would require a large refrigeration plant. The result would be a very 

bulky installation hardly suitable to be used as a bomb. The solution 

to this problem could be found in the use of solid or l iquid chemical 

compounds of Τ and D. Some physicists suggest that the t r i t ium may 

be continually produced by another reaction Li e(n, He 4 )T , so that the 

whole reaction chain is 

Τ + D > He4 4 η 4 17.6 MeV 

Τ Ι (π) 
4.8 MeV 4 Τ + He4 ^  LiG 4 η . 

Thus the most suitable form in which the Li, Τ and D may be provided 

is tha t of l i th ium hydrides. 

I t is even possible that some of these fusion reactions work in 

conjunction with a fission reaction, the fusion reactions delivering fast 

neutrons for the fission processes, the fission reaction energy is capable 

of compensating for heat losses and thus sustaining the fusion reaction. 

In such a case U238 could be used (ordinary uran ium) , which is relati

vely cheap and does not normally sustain a neutron chain reaction. 

Thus there would be no difficulty about critical size and the bomb 

could be made much larger than fission bombs using U23r' ór plutonium. 

Whichever fusion reaction one employs one must, in order to start it, 

produce stellar temperatures in the fusioncapable material . I t is 

usually held that a u ran ium bomb explosion is necessary for this 

purpose. I t has been suggested that even ordinary chemical explosives 

may produce spherical shock waves strong enough to hea t the fuel for 

the fusion reaction (at the centre of the sphere occupied by it) to high 

enough temperature to start the reaction off. 

Calculations have been carried out on such a converging shockwave 

ignition (ref. 9) which show tha t for bomb radi i of the order of a 
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meter ordinary chemical explosives could generate nei ther the required 

energy density tu nor the total energy W necessary for triggering off a 

selfsustained thermonuclear fusion detonation (see also p. 231). 

The two quanti t ies w and W can be calculated relatively simply. Let 

us consider a fusionable medium (e .g , deuter ium or a mixture of deu

ter ium and tr i t ium) of uniform ion density n, (or it two species are 

present ηχ and n2). At the t ime t = C a spherical volume Ω of this 

medium, whose radius is r0, is heated instantly to a tempera ture Τ 

whereas the rest of the medium is at a temperature T 0 <̂  T. The expan

sion of the hot volume generates a shock wave which heats the cold 

surrounding medium. Both the expansion and the shock transmission 

cools the hot plasma contained initially in Ω. When the shock advances 

to a radius r zz 2ru the temperature , in absence of any energy input, 

will undoubtedly drop to value much smaller than T. Thus the cooling 

t ime is approximately 

το = 
2v„ 

(18) 

V ZK.1 
——— (see 6.4.1.). 

If the hot focus were to start a spherical fusion detonation, the fusion 

energy deposited in Ω during τ would have to at least compensate 

the cooling, i.e., 

Ω · ηιΛ2<ου>ι,2 Q · τ» > 3(ηι + n2)kT ■ Ω (19) 

where Q is the energy (per reaction) of the charged products — which 

are the only ones which can be hoped to be absorbed localy, i.e., 

within r < 2ru. This gives 

V M 2 T3· '2 

^ > - 7 ^ 7 T =
 /(T) (20) 

a Q IM 2 T3 ' 
Γ0ηχ Λ / > 

1 + « 3 V 2fc3 (σν)1>2 

Μι 4 αΜ2 
where « = ——, Μ = 

" ι 1 + α 

Graphs of f(T) for DD and DT reactions are plotted in fig. 154, 

from which it follows dia t die minima are 

for DT : ƒ„„„ = 0.45 · 102S at T s 1.5 · IO8 (°K) 

for DD : ƒ„„„ = 0.34· IO30 at Τ =s 3.6 · ΙΟ8 ("Κ). 

If the medium is a 50/50 mixture of D and Τ we have β = 1, 
Q = 2.2· 10 G (erg) and criterion (20) becomes 



\ ] kr* 102ί 
■ 

\ Α θ * Ό * 9 

Kfl Κ> U i * · IJl ff, M ( » « 1 10* 

Fig. 154. 

τ (OK) 
α . . j . υ , <h -M Ca <O ^107 

C/3 
O 
C 
W 
n 
M 
en 
O 
*1 

n 
w 
► 
w 2 w 
o 
Ν

ΙΟ 
o 



298 RESEARCH ON CONTROLLED FUSION 

nr0> 2 · 1022 ( ions/cm3 , cm) (20a) 

which at solid density (n = 5 · 1022; D, Τ ice) corresponds to r0 > 
0.4 cm and to an initial thermal energy 

W ^ —— r()
3 · 3/ifcT at 65 (MJ) . (21) 

This is equivalent to an energy liberated by 13 kg of high explosive. 
If the medium is pure deuter ium then the eq. (19) must be writ ten 

y2n(crv)DD Qm, · τ > 3/cT (22) 

where Qm, = 0.77 · 10 r' (erg) and one obtains 

nru > 3.4 · IO23 (22a) 

which at solid density corresponds to r0 > 6.8 (cm) and to an initial 
thermal energy W0 equal to 21 (GJ), equivalent to energy l iberated 
by 4.2 ktons of TNT. The magnitude of this ignition energy excludes 
all triggers except an A-bomb. 

This analysis can be refined in many ways (including radiation loss, 
an accurate description of the diverging shock, the non-local deposition 
of the charged nuclear products, etc.), however, even without these 
improvements of analysis, the order of magni tude of W is correctly 
predicted by eq. (21). 

If one could use the H-bombs as energy sources, the world power-
problem could be considered as solved for all foreseeable future. 
Research on this possibility and also on other uses of H-bombs (canal-
excavation, cratering, launching of space vehicles, etc.) is going on in 
several laboratories — in the USA under the name of Plowshare. 

9.2. Controlled Fusion Reactors 

Because of the appall ing values of temperature and pressure required 
to sustain a fusion reaction it is na tura l to enquire whether the 
ordinary laboratory methods used to investigate fusion reactions may 
not be amplified so as to generate power. This means tha t one would 
use a beam of fast particles (say Τ nuclei) to bombard a target (say 
Do ice), the beam particles and the target particles being the part icipants 
in a fusion reaction. 

The most suitable reaction is certainly the T(D, n)He 4 reaction. The 
cross-section σ becomes maximum for tritons possessing 107 keV energy 
(fig. 151) where it is 
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0"inax = 5 X 10-24 cm2. (23) 

If each Τ reacted with one D, the ratio b of output energy over 
input energy will be 

17.6 X 10" (eV) 
b = — = 165, 24) 

0.107 X 10° (eV) 

which is promisingly large. 
Unfortunately the bombarding part icle will lose its energy very 

quickly, mainly in collisions with electrons. This loss is given for l iquid 
deuter ium by (see also p. 264) 

dW Arrean 
In Λ. (25) dx 

We must, therefore, calculate the probabil i ty Ρ tha t an incident tri ton 
will react with one of the deutons in the target. The fusion output per 
tr i ton is 

WF = Ρ · 17.6 · 10G (eV) (26) 

and must be compared with the init ial t r i ton energy which is 
W = 3/2 Mv2, where M is the mass of a proton. The ratio of these 
energies is 

WF P(v) 
= 1.17 · IO10 - - . (27) W 

The probabil i ty Ρ can be calculated as follows. Let us denote the range 
of the tritons in the target (p. 265) by R, then the probali t i ty tha t a 
fusion reaction occurs along R is 

Β 1 
Ρ = where XF = . (28) 

λ ρ ηοΊγτ 

Using eq. (8.39) we get 

τη σοτ W2 

Ρ = · . (29) 

3Λί 24πβ41ηΛ 

and finally (putt ing InA = 1) 

τ, ^ 2 · ΙΟ15 · W(e\) σ„ τ . (30) 
The maximum of the function σητ -W is at W — 160 (kev) and is 
equal to 6.4 . IO"19. Therefore 

η =* 1.28 · IO"3. (30a) 
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I t is thus obvious that nuclear energy output is extremely small 
compared with the beam input energy and consequently this process 
cannot be exploited for power generating purposes. 

If a beam of tritons were shot into a plasma in which the mean 
energy of the electrons was much smaller than that of the tritons the 
proport ion between energy lost and nuclear energy l iberated would 
be about the same as that found for a target of a l iquid deuterium. 

However, if the mean random energy of the particles in a deuter ium 
plasma is the same as the kinetic energy of the bombarding tritons the 
lat ter will not lose energy on the average. The direction of their motion 
will be changed in collisions with the deuterone and therefore, the 
energy of their initially directed motion will be transformed into 
thermal energy. Thus from the point of view of the bombarding tri tons 
no energy is lost and after a time 

1 
η(σν) 

(31) 

60 % of them undergo a nuclear reaction with deutrons. A graph 
showing the dependence of τ on η for two different energies of the 
tri tons is found in fig. 155. From Ulis graph it is evident that these 
times are longer than mean reaction times for chemical reactions for the 
same particle densities. 

The relationship between energy lost from the system of tritons — 
hot plasma cannot be evaluated as simply as that of the system tr i ton 
beam — cold deuter ium target, derived in the preceding pages. The 

WWWWWW^O^ 
Fig. 155. The mean DT reaction time in a 

plasma of density η and Τ = 10, 100 (keV). 
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energy, no longer lost by the tritons, is lost by the ho t plasma target. 

Thus in order to obtain a net energy gain from the system one must 

1) increase the number of bombarding tritons, 

2) improve the thermal insulation of the plasma target. 

This leads us natural ly to a reactor with a plasma mixture of 

energetic deuterone and tri tons confined by some field of force in 

vacuum. If there is no such confining field an energy gain is still 

possible in devices resembling the hydrogen bomb. 

The criterion of net energy gain known also as the reactor cri terion 

has much the same form as the relationship (19) except that Q is now 

t h e total energy yield of one reaction, τ is the cooling (or dispersal) 

t ime of the plasma and ε is the efficiency with which the fusion output 

can be converted into the thermal energy of the plasma. Thus we have 

ηιη2{σν)ι2 eQ τ ^ 3(n¿ 4 n2) kT(l — ε) (32) 

which gives 

ε a Q Τ 
ηχ τ ί - > = f (Τ). (33) 

1 — ε 1 + α Sk (<η>)ι,2 

In the case of a 50/50 mixture of deuter ium and t r i t ium we have 
" i = y2n, Q = 2.82 · IO"5 (erg) and we get 

1 — ε 
m > 0.58 · IO"10 f(T) (34) 

ε 

known as the Lawson's criterion. 
This determines a set of curves in a T, n- d iagramme (see fig. 156). 

which are boundaries of a reactor region. The min imum of f(T) occurs 
at Τ s¿ 1.7 . 10s and is equal to 0.34 . 1024. 

Thus the condition for an op t imum zeroenergy reactor is (putt ing 

u r > 6 · 1013. (35) 

Eq. (33) suggests that a reactor could be possible even at comparatively 

low temperatures provided the ητ is sufficiently large. This is unfor

tunately unt rue and such a conclusion is due to our neglect of the radia

tion loss from the plasma. Of the three types of radi t ion (pp. 6885) 

the Bremsstrahlung is one t ha t one cannot hope to recuperate (soft 

and ha rd Xrays for thermonuclear temperatures) and, therefore, at 

least this radiation must be considered as a loss. Eq. (32) is then written 

ε\ηχη2{σν)χ2 Q + 2 ■ ΙΟ"27 (ηχ + η2)
2 y/T] τ > 

(1 — ε) · 3(/ι, + η,) kT + 2  ΙΟ"27 (ηχ + η,)2 y/T · τ. (36) 
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^LoaT 

logTL ■ 

10 12 13 14 15 16 17 ^("Τ) 

Fig. 156. Simple Lawson's criterion for 50/50 D, Τ and ε = 1/3. 

I t is obvious that, even if τ—> co, the inequality can be satisfied 

only when 

mn2(<Tv)i2 Q > (1 — ε) · 2 · IO"27 (ni + n2)
2 y/T. (36a) 

for 50/50 mixture of D and Τ and if ε = 1/3 we have 

(ov)E 

y/T 
> 2 · 1022 (37) 

from which the limiting temperature is T L s 40 . IO15 (°K). Below this 

temperature the losses due to Bremsstrahlung cannot be compensated 

by the fusion output. If other radiat ion losses are present the l imiting 

tempera ture T L will be higher than tha t for Bremsstrahlung alone. 

I t is clear that the D,T plasma forming the core of any future reactor 

must have a temperature of the order of 108 (°K). I t is also equally 

clear that such a reactor will have to burn a mixture of deuter ium and 

tr i t ium — in which case t r i t ium must be bred using the fast neutrons 

coming mainly out of the D,T reaction as suggested by equation (17). 

As it is unlikely that all the neutrons coming from D,T can be utilised, 

some neutron mult iplying reaction must also be used such as 

Be* 4 η » 2 He4 + 2n. (38) 
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All this implies a presence of a fairly thick blanket of Li°, Be9 

around the envelope containing the reacting plasma (ref. 10). 

All the proposals for a fusion reactor may be divided in two classes. 

The first is tha t of stationary or quasistationary machines, the second 

corresponds to machines in which the plasma pressure is so high tha t 

it cannot be balanced statically by magnetic and mechanical forces. 

9.2.1. STATIONARY FUSION REACTORS 

Almost all the structures proposed for the confinement of plasma can 

be discussed in terms of a cylindrical system in fig. 157. T h e central 

hot plasmacore (radius r) is confined by the magnetic pressure 

wall 

Fig. 157. 

—■—■ (B2 — 62) and loses energy mainly due to diffusion of particles 
OTT 

to the wall (radius R) *. In absence of all macroinstabilities it has been 

found experimental ly that the diffusion rate is given by the Bohm's 

formula (see p. 273, ref. (815) ). The diffusion loss per uni t length of 

the system amounts to 

dn n 
φ = DB 2ΤΓΓ — DB 2ΤΓΓ. (39) 

dr r 

T 
Using eq. (8.64) we get φ = 1.7 · IO4 — · η ( ions/cm, sec) from which 

Β 
the confinement time (defined by the loss of y2 of all the ions) is 

* The radiation losses can be made relatively small in a D, Τ plasma at a temper
ature Τ ~ 10« (°K). 
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N r2B 
= 0.9 · IO4 . (40) 

2φ 

Writing Lawson's criterion as m = a.. 1014 where α(ε) > 1 and 

assuming that Τ — 2 . 10s we get for the line density 

Ν = 7ΓΓ2Π = ΙΟ14 ΤΤΓ2 — (41) 

τ 

Ν e* α · ΙΟ27 R1 ( ions/cm). (42) 

In a system in which plasma is magnetically confined one must satisfy 

the pressure balance, i.e., : 

B2 — b2 = lòrrnkT. (43) 

2nkT 
Defining; = β we write the pressure balance as 

6 ο2/8ττ 4 2nkT H r 

βΒ2 = lÔTrnkT. (43a) 

Using eq. (40), the Lawson's criterion and eq. (43a), we get for r 

2 · IO10 

r s 
ΒΦ V-r-

 (44) 

There exist now two different possibilities for the projet of a sta

tionary fusion reactor: 

a) The magnetic fields B, b are produced by supraconducting coils — 

in which case the energy stored in these fields does not enter critically 

in the energetics of the reactor and, therefore, the radius R can be made 

much larger than r. The max imum field Bm is then l imited by that 

at tainable using hard supraconductors. I t does not appear likely that 

Bm could exceed 250 kG in large coils, whereas β must be sufficiently 

small in order that the plasma does not per turb the confining magnetic 

fields. 

Considering as a basis for discussion toroidal systems with average 

min imum Β (see p. 214, ref. (21) ), we are forced to assume that β 

will be of die order of 102. 

We get then 

r ss 1.6 · 103 y/ã (cm). (45) 

The plasma density is then of the order of 1014 (ions/cm3). The 

radius of the wall is determined by the considerations of walldissipa

tion. In a steadystate reactor the wall must not be heated to more than 

about 1000 (UC). This is possible only if the power density does not 



CONTROLLED FUSION REACTORS 305 

exceed the order of a few hundred wat ts /cm 2 (ref. 12). Taking 

W = 500 wat ts /cm 2 we get using eqs. (40), (41) and (45). 

3NkT 
W = s IO14 R-1 (ergs/cm2 , sec) (46) 

2TTTR 

and 
R =; 2 · 104 (cm). 

I t is clear that the volume of such a system will be of the order of 
a cubic kilometer and, therefore, out of bounds of reality. I t is interest
ing to speculate on how much weaker the diffusion flux φ would have 
to be in order that R would correspond to a practicable apparatus . Let 
us suppose that the Bohm diffusion is cut by a factor y. As 

n cc const, τ cc const, N cc γ-1, r cc .-1/2 

and 

R cc γ 1 . 

I t seems tha t a torus whose minor radius is of the order of a few 
meters could be constructed. In such a case γ = 100-1000. I t appears, 
therefore, tha t a stationary fusion reactor using supraconducting coils 
would be conceivable only if the rate of Bohm's diffusion were cut by 
at least two orders of magnitude (ref. 13). 

b) The second possibility is already a step towards pulsed systems. 
The magnetic field is not produced by superconductors and the only 
l imitation on its intensity is the mechanical s trength of the coil. I t is 
conceivable that conductors with a steel core and jacket of a suitable 
copper alloy may generate fields up to 1/2 MGauss without suffering 
meachanical damages. If the plasma ίε confined in a 0-pinch geometry 
in which end-losses are made small (ref. 14) we can assume tha t β 
is not far from unity and 

r ~ 102 y/7. (47) 

Since we have to include the energy lost in the coil in the energy-
balance equation of the reactor, it is important that R is not much 

/?-
greater than r (for —— >̂ 1 also a ^> 1). 

This leads to wall dissipations which are very much higher than 
500 Watts/cm2 . The only way to absorb such energy bursts is by wall-
sweating, i.e., by letting a th in layer of the wall vaporize. In order tha t 
the vapours do not polute the plasma during its useful lifetime τ we 
require that the transit t ime of these vapours is longer than τ. As the 
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speed v0 of expansion of wall vapour is of the order of 105 cm/sec, 
we get: 

R — r 

v0 

> τ (48) 

r2B 
R — r > 9 —— . (49) 

Assuming that R ^> r we get 

R > 225 a. (50) 

If, e.g., a = 4 than the radius of the plasma is 2 meters and tha t of 
the inner wall 9 meters. The plasma density is of the order of 1017 

(ions/cm3). After a t ime τ r~> 6 (msec) the machine must be emptied of 
plasma, wall surface reformed before a new pulse can start. Reactor 
of this type represents a gigantic enterprise — the stored energy Wm in 
the magnetic field is of the order of 104 GJoules — and it lies, therefore, 
at present in the realm of science fiction. As 

Wm ce R3 oc y-3 

it seems that already γ —· 20 would br ing Wm within engineering 
concepts. 

9.2.2. PULSED FUSION REACTORS 

When pressure of plasma or of the magnetic field exceeds the mecha
nical strength of an envelope or a coil the t ime of plasma confinement 
is l imited by the characteristic expansion t ime re of the confining 
structure. This can be, in many cases, sufficiently long to permit the 
reactor criterion to be satisfied and we shall call this mechanism — the 
inertial confinement. Let us choose for the base of our analysis a simple 
cylindrical model (fig. 158) in which a hot plasma core is compressed 
or held compressed during τ,, by a relatively heavy cylindrical enve
lope — the l iner *. The thermal insulation of the core from the liner 
is achieved by means of a magnetic field — either Be or B:. Without 
confinement the hot core would practically cease to produce fusion 
after it freeley expanded to twice its original radius. Its lifetime would 

r Ι M 
be in that case το = = r \ -

v, V 2kT 

* Known also as tamper. 
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Liner 

Fig. 158. 

Let us now define a coefficient of confinement as 

* = — (51) 
T(l 

where τ is the lifetime of the core achieved as a result of confinement 

(or thermal insulat ion). The Lawson's cri terion (eq. (32) ) gives then 

fi1n2(oL')i.2 εζ> KT,, ¡> 3(ni + n2)kT(l —■ ε). (52) 

Let ε0 be the efficiency with which one is able to produce 1 cm3 

of plasma in the hot core using an electromagnetic energysource and 

ει the conversion efficiency of heat into electricity. For a D, Τ plasma we 

get at Τ = 2 . 10s (°K) and for ε = ε ι ε ο <ξ 1 

ηκΓ ~ 1/3 · ΙΟ22 εο"1 εχ'1 (53) 

which gives for the minimum plasma energy per uni t length of the 

core 

Wp < 0.87 · 10s —  — (J / cm) (54) 

ειε(,κ 

and the total energy input per uni t length is 

W = εο'1 Wp = 87 — ( M J / c m ) . (55) 
ειε0

2κ 

Take as an example ει = 1/3, ε0 = 1/10, κ = 1000 and r — 0.33, 

then W — 8.7 (MJ/cm), η — 3 . IO20 (ions/cm3) and the pressure in the 

plasma core is 16.5 . 10" (atm) which corresponds to a magnetic pressure 

exerted by a field of 20 MG (*). I t is evident that the energies involved 

* The magnitude of κ assumed here is not in conflict with *n derived on the basis 
of Hohm diffusion. Thus: κκ = τ /τ0 ^ rBT1!2. In the above example "n = 500. 
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are considerable and that this is due mainly to the presence of the factor 

εο2 in the formula for W. 

One way to diminish W is, therefore, to use systems in which the 

energy in the liner and in the zone Β at the moment of maximum 

compression is not much larger than the plasma energy in the core 

and consequently ε„ is relatively large, let us say equal to or larger 

than 1/3. This implies a use of th in liners and relatively small volumes 

for the zone B. Experiments have been started to do this using highly 

compressible plasma liners (focal machines, ref. 15). 

A second way to reduce the rôle played by ε0 is to regard the ho t core 

as a trigger of a vaster fusion reaction. Let us suppose that the region Β 

contains cold D,T plasma whose density is n'. The layer L of this cold 

plasma adjacent to the hot core can be heated to the same temperature 

as that of the core if the fusion input (charged particles, i.e., He4 , only) 

during a time κτ0 is at least equal to the loss of heat to the layer L. 

This can be expressed as 

1/4 η2{σν)κτ0 Q+  r 2 > 2ΤΓΓ · δ · Sn'kT (56) 

where Q+ = 0.5 6 4 . IO5 (erg). T h e thickness δ can be determined on 

the basis of ei ther heatskindepth or interdiffusion of the two plasmas. 

In many cases it is conceptually correct to take δ — r0 in accordance 

with the deminit ion of κ (expansion of the ho t core to 2r) . In this case 

L KT > 4 · 1022. (57) 

If one is to pay for the energy of the magnetic field in the Bzone 

by the fusion energy coming from n' plasma in the same zone we 

have η' ^ 2/3n and 

nKr > 8/3 · IO22 (58) 

much the same as condition (57), the neutron dissipation outside 

making up the degradation of energy expressed by ε. The energy 

needed is, therefore, 

W = 700 L (MJ /cm) . (59) 
κε„ 

Taking the same values as in previous example we get W = 2.3 

(MJ/cm). Projects based on this trigger concept tend to assume a form 

of small bombs which could be periodically exploded in a suitably 

lined underground cavityboiler, whose radius is of the order of ten 

meters (ref. 16). 
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9.2.3. EXPERIMENTS IN THE RESEARCH ON CONTROLLED FUSION 

Most experiments on controlled fusion aim at finding more about 
ways to hea t plasma and about confinement of hot plasma. There is not 
an extremely large choice of different methods and consequently it is 
possible to catalogue most experiments using two labels: heat ing and 
confinement. This has been done in table I. Whenever possible the 
experiments are given general descriptive names ra ther than local 
laboratory nick-names. The numbers in brackets correspond to suitable 
references in l i terature (found at die end of chapter 9). 

I t is frequently difficult to assess the importance of these experiments 
for controlled nuclear fusion — sometimes the results may not be 
significant for plasma physics ; instead they may he indispensable for the 
solution of technical or technological problems. Perhaps the most rele
vant criterion for the importance of the experiment is its position in 
the η-, T diagramme (fig. 159 in which is drawn the most optimistic 
boundary of the reactor region given by eq. (36) ). For many experi
ments this boundary should be shifted much further to the r ight side 
of the diagramme owing to unavoidable waste of energy associated with 
the generation and confinement of the hot plasma (e.g., 0-pinches and 
injection devices). 

T(eVJ 

Fig. 159. 
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List of symbols used in Chapter 9 

A 
c 
CiC2 

B,B 
d 
D 
e 
E 
! 
i 
1 
k 
I 
L 
m, M 
II 

N 
P,P 
Q 
Qn 

r,R 
S 
T 

atomic mass 
speed of light 
degree of concentration 
magnetic field strength 
distance 
diffusion coefficient 
charge of electron 
energy 
frequency 
current density 
current 
Boltzmann's constant 
length 
self-inductance 
mass 
particle density 
linear density 
probabil i ty 
quality factor 
energy output of a nuclear 
reaction 
radius 
surface 
temperature 

S, V, u 

V 
W 
Ζ 
a, a' 
β 

δ 
E 

V 
K 

Χ 

A = 

1' 

θ 
σ 

τ 

0 
οι 

Ω 

< velocity 
potential 
energy or energy output 
atomic number 
nuclear constants 
ratio of plasma pressure to 
magnetic pressure 
nuclear constant 
excentricity 
efficiency 
quality factor of confine
ment 
mean free pa th 

Ρ . 
1 min . ~ . . -, 

ratio ot critical 
r^max impact parameters 

collision frequency or nor
malized l inear density 
angle 
cross-section 
characterisitic t ime 
diffusion loss 
angular frequency 
volume 



CHAPTER 10 

OTHER APPLICATIONS 

10.1. Generation of Electromagnetic Waves 

The research on controlled l iberat ion of fusion energy had its 
stimulus and origin in astrophysics. A similar situation may develop 
in the research on new sources of h.f. electromagnetic waves where a 
study of the origin of cosmic radio noise may result in reproducing 
the cosmic mechanism on a laboratory scale. As the emission of radio-
waves from stars and cosmic clouds seems to be related to plasma 
oscillations it is na tura l to ask how the propert ies of a plasma can be 
employed in the control and generation of h.f. oscillations. 

The low inertia of plasma conducolrs has been already used in the 
tuning of microwave cavities (ref. 1). An extension of the tuning 
mechanism may be used for parametr ic generation of micro waves. 

Consider a resonator in which a par t icular resonant mode is excited. 
This can be, for i l lustration purposes, a piston-tunable cylindrical cavity 
(fig. 160). Let us now decrease the volume of this resonator by pushing 

\A 

pr Λ 

Fig. 160. A cavity analogue of Einstein's pendulum. 

in the piston. This increases the resonant frequency of the cavity. If the 
change of cavity dimensions Λ during one period of oscillation is small 
compared to the wave length λ of the oscillating electromagnetic field, 
i.e., if 
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dA 

di 
< λ (1) 

/ 
and if one can disregard all energy losses, then the compression can 
be regarded as adiabatic and one can apply the adiabatic theorem 
which states tha t * 

energy of the oscillating mode 
= const. (2) the resonant frequency 

The compression of the volume of the resonator leads to an increase 
in the resonant frequency and, therefore, according to the adiabatic 
theorem, to the increase of the electromagnetic energy stored in the 
resonator. Thus one achieves not only a frequency multiplication but 
also a generation of electromagnetic energy. 

Let us calculate die rate at which the energy is generated. Consider 
a cavity filled with a photon gas. If the cavity volume is reduced by 
— AV, the work done on compressing the photon gas is 

AW = — AV · p r (3) 

where pr is the radiation pressure and p r = 2ti>rcos2 a. 
Here, wr is the radiat ion energy density and a is the average angle 

at which the photons strike die walls of the resonator. If the total 
energy of the electromagnetic field is W then wT = y2W/V and the 
equation for Δ IF becomes 

AW 

w 
w 

AV 

V 

t VΊ ^ cosI α 
or 

Wx { V ) 

If the volume-compression is three-dimensional 

COS2 a = % 

(4) 

W 

~W~x 

■ Vx \ Φ 

7v~) 
(4a) 

* This corresponds to conservation of the number η of photons in quantum 
mechanics. Thus 

η . h . ω 
= const. —* η = const. 
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as also follows directly from eq. (2) which gives 

W ωχ ( V V / 3 

~- fr] 
for a uniform decrease in size of a resonator. 

Let us now compare the energy input , due to compression, with the 
losses in the resonator. These losses W' can be expressed by means of 
the quality factor Q of the resonator. Thus 

mW 
W' = 

Q 
and from eq. (4a) we have for the input due to uniform compression 

dW 1 dV W 
(5) dt 3 dt F 

If a characteristic l inear dimension of the resonator is denoted by 
Λ one has 

dV dA3 dA 
= 3Λ2 — - . (6) dt dt dt 

Substi tuting this equation into eq. (5) one obtains 

W = — — W. (5a) 
A 

Let us form a ratio of W and W. This is 

W λ Q 
~Wr ' 1 ~ω~ 

(7) 

If this ratio is larger than unity a generation of electromagnetic energy 
by radiation-compression becomes possible. Thus the criterion for a 
generator is 

A O 
- - > 1. (7a) 
Λ ω 

However, in most cases 

Λω = invariant = A.2TTC/X 

and eq. (7a) becomes 

2irc Α , , , 
Λ > — T . (7b , 



316 O T H E R APPLICATIONS 

For a resonator oscillating in the principal mode 

A l l 

λ 2 y/εμ 

and one has 

A > c L= . (7c) 
Qy/εμ 

The Çfactor of an orthodox cavity resonator is rarely larger than 

3 X 104. This implies compression speeds 

A > 3 X 10e (cm/sec) (8) 

which is about 3 times larger than the escape speed from earth'e 

gravitational field. 

It is clear that the compression speeds required for an efficient 

radiation compression (eq. (7c) ) are not obtainable by ordinary 

mechanical tuning of cavity resonators. However, such speeds are 

often attained in fast pinches of plasma cylinders (ref. 2) or in 

magnetically driven plasmas. Also the r.f. losses in a plasma can be 

smaller than those in metals. 

Experiments have been carried out on this principle (ref. 3, 4) . 

Although the effect has been observed, sofar the technical difficulties 

are such as to exclude its practical exploitation. 

10.2. Direct Conversion of Chemical Energy into Electrical Energy 

We have shown in chapter 8, eq. (8.73) that a temperature gradient in 

a plasma gives rise to a thermoelectric force 

ι., 

ET = L f grad T · dZ. (9) 

A drop of temperature across a certain length of plasma makes it into 

a thermocouple whose output current is 

I = Ζ^σχΕτ (10) 

where S is the crosssection and I is the length of the plasma conductor. 

However, as a result of the temperature gradient a heatflow Q will 

also appear (eq. (8.79) ). The efficiency of the conversion of heat into 

electricity taken per uni t volume is, therefore, 
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■no 

ί h K + Ke 
e 

1 + 
K + Ke 

( H ) 

στ 
fl' 

grad Τ 

Averageing over the whole volume of such a plasma thermocouple 
one obtains the total efficiency, which in most cases is higher than that 
of any bimetal thermocouple. However, it seems that efficiencies larger 
than 15 % cannot be obtained in this way (ref. 5). 

A completely different method of converting heat energy into 
electrical energy is based on the following principle. Plasma is produced 
by some source of heat, e.g., an explosion of a combustible mixture. 
The hot plasma expands into a volume occupied by a magnetic field 
and if it is conducting enough it will act as a piston and convert some 
of its kinetic energy into electrical energy. 

In order to understand the relation of this process to the orthodox 
conversion by mechanical and electrical machinery, let us consider a 
resonant circuit (L0Co) coupled to an inductive load (Lx). Let us 
assume that due to the action of external mechanical forces the value 
of the inductance Lx can be varied at a frequency corresponding to the 
resonant frequency of the resonant circuit L0Co (fig. 161). The voltage 
induced across the inductor Lx is then 

ct 
(ία/) = ία 

dl 
+1 

din 
~dT (12) 

Fig. 161. 

The second term corresponds to the voltage induced by the change 
of the inductance h\. If the phase of the variation of Li with respect 
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to the phase of the oscillations in the circuit L0Co is suitably chosen, 
the induced voltage I(dLxdt) will increase the stored energy in the 
system. This increase in energy can be traced back to the work of 
the external mechanical forces performed in varying the value of the 
inductance Εχ. 

In all the methods of conversion of mechanical energy into electrical 
energy the variation in Li is performed by mechanical motors, such 
as combustion engines, turbines, etc. The motion of these motors is 
transmitted to electrical generators. 

For the purpose of illustrating this let us consider the inductor L t 

to be composed of two separate coils Xi and X2 connected in series 
(fig. 162). These are fixed to the two piston rods of a Diesel engine D. 

m**® 

ν 

Fig. 162. Mechanical and electrical elements involved 
in the conversion of heat energy into electrical energy. 

The combustion of the injected fuel F forces the pistons apar t ; the 
distance between the coils Xi and X2 grows and if the electric current 
flowing through the coils is I then the voltage across the two coils 
Xi and Xo due to the motion is 

V = I 
SL 

~8t~ 
= I 

SM 
(12a) 

where M is the mutual inductance between the two coils. 
This is a typical arrangement and its drawbacks are mainly the 

following: 

a) A large proportion of the heat of combustion is wasted in heating 
up the walls of the combustion engine and the pistons. 

b) Mechanical devices for t ransmitt ing the motion of the pistons 
to the coils Xi and X2 must be employed, such as piston rods, bearings, 
flywheels. The introduction of moving metal components results in 
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large inert ia and therefore limits the speed of repeti t ion of the cycle 

and the speeds of all the moving components. 

I t has been suggested that one could employ plasma in place of bo th 

the piston and the inductor Li the simplest form of such a moving 

plasma member being a hollow cylindrical arc carrying a heavy current 

I between two plane electrodes (see fig. 163). Such a current flow 

produces a magnetic field Ηφ which at the outer surface of d ie dis

charge column reaches a maximum value 

Ηφ — 
0.2/ 

(ro + y2d) 
(gauss, amps) . (13) 

>>WWtt^ 

Fig. 163. A plasma shell as a piston in the scheme 
for direct conversion of chemical energy into electrical energy. 

At the inner surface of the current column one has Ηψ = 0. The 

mean value of this field inside the current shell is 

0 .1 / , 
Ηφ s¿ (gauss, amps) . 

The action of the field Ηφ on the current I produces a force 

Ρ — 1/10 i;H,f (dynes/cm2 , amp, gauss), (14) 

where i is the surface current density (on the outer suf ace) 

/ 

Therefore 

Ρ = Hh2 

2ττΓο 

I2 

2rr„2 

( amps /cm) . 

(dyne/cm 2 , amps) . (14a) 
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This force is directed radially inwards and tends to constrict (pinch) 

the current cylinder (p. 238). The constricting current channel com

presses the gases that are inside the cylindrical hollow. If these gases 

form a combustible mixture and their temperature reaches the ignition 

temperature an explosion will take place. 

The gas pressure of the gases inside the current cylinder will rise 

sharply and cause an expansion of the plasma cylinder *. This expan

sion is analogous to the separation of the coils Xi and X2 in fig. 162. The 

voltage induced across the discharge is 

V = 1 
dLx 

where Li is the inductance of the current channel. 

T h e expansion can be conveniently continued unti l the current 

channel is expelled and thrown on the walls of the confining vessel 

which represents, at the t ime of maximum expansion, a small loss 

of energy. After this the discharge may be struck again and the cycle 

of compression and expansion can be repeated. The fuel injection 

must be coordinated with the initiation of a new cycle. One can 

represent the work done in a cycle by a pressurevolume diagramme (or 

as the expansion is a radial one by the P, r0
2 d iagramme (fig. 164) ). The 

IP 

ES â 

Fig. 164. 

discharge is started always at r0 = r0 initiai· The ignition of the com

pressed fuel occurs at ra = r i ( . n m o n after which the pressure Ρ rises 

rapidly and the compression is finally arrested at some r r a in < r i g n i t l o n . 

After this the column expands and the pressure decreases. The work 

done by the plasma piston is proport ional to the area enclosed by the 

P, r2 curve. 

* The density of plasma in the current channel must be large enough not to let 
the gas molecules leak out radially. 
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It is most unlikely that the large efficiencies suggested by the large 

ratio of (îwaii/rmin)2 can be realised. This is connected with the con

ductivity of plasma at explosion temperatures being much smaller 

than that of copper. This would be evident to any electric engineer 

who would have to use a high resistance alloy for conductors in a 

dynamo. This could be done, provided the frequency of revolution 

of the dynamo and the frequency of the generated magnetic field is 

higher than a certain critical value. The criterion, corresponding to the 

critical value of the speed of the lossy conductor, is similar to that 

derived for the plasma piston in a tunable cavity on p. 315. 

A similar mechanism could be also used in the conversion of energy 

of fission reactions into electrical energy (ref. 6) although here the 

long mean free path of neutrons in appropriate fuel gases, such as 

UFe, would require high gas pressure in a large combustion chamber. 

Some of the propositions of direct conversion of fusion energy into 

electrical energy are based on the mechanism discussed in chapter 9. 

However, this depends on a fusion reactor being available in the first 

instance. 

A somewhat different mechanism of generation of electricity is based 

on the induction of electromotive force in a plasma stream moving 

across a magnetic field. This effect is described by eqs. (3.62) 

and (3.63). Neglecting plasma pressure, these can be written as 

Ρ 

m 

dV 

dt 

V 

= JAB 

1 
AB + JAB 

If the velocity of plasma flow is perpendicular to the magnetic field 

an electromotive force is induced. If this e.m.f. can force a current 

through some external impedance, electric energy is generated at the 

expense of the kinetic energy of plasma. This electromagnetic reaction 

on the flow is represented by the last term in the first equation. 

The mechanism resembles that of a homopolar generator, the rôle 

of the rotor being played by a plasma jet. This can be accomplished in 

two ways. 

In the first, known as the open cycle MHD generator, the jet is 

formed by combustion products similar to the exhaust jet of jetengines. 

As the temperature is relatively low, the degree of ionization is often 

too low for an efficient momentum transfer. 

A better method, known as the closed cycle MHD generator, is based 

on the recycling of the same fluid, usually an inert gas (e.g., He) to 
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which a small amount of material having a low ionization potential 
has been added (e.g., Cs). This "seeded" substance provides a relatively 
high degree of ionization, which means a good conductivity and a 
good efficiency of the "plasma rotor" (ref. 7). 

10.3. Applications to Particle-Accelerators 

An accelerator consists of four basic components : 

1) the injection system, 

2) the mechanism for guiding and focusing of the accelerated 
particles, 

3) the accelerating mechanism, 

4) the ejector. 

I t appears that some of the propert ies of plasmas may be exploited 
in the construction of the first of these components. 

10.3.1. PLASMA BETATRON 

The injection of electrons into a betat ron has been for a long t ime 
an imperfectly understood subject. Only recently it has been shown 
(ref. 8) tha t some of the electrons injected into the toroidal betat ron 
chamber from an electron gun are retained in t h e chamber during the 
initial phase of acceleration owing to the electric field of the space 
charge buil t up by the injected current. The percentage of the captured 
electrons is generally very low, usually of the order of 1 % of the 
injected charge. 

Let us now consider a plasma of low and uniform density located in 
the betatron chamber. I t has been shown (chapter 8, p . 259) tha t a 
strong electric field applied to a uniform plasma induces a run-away 
current of electrons. In order that the collisional friction on these 
electrons could be neglected E ^ 2 X 1 0 s n / T e (volt /cm) (eq. (8.27) ). 

Fur thermore if such a field is applied parallel to a plasma cylinder, 
the skin depth δ in the plasma must be very much larger than the 
radius of the cylinder. Thus from eq. (5.35a) 

1 106 

— > »V 
2 y/n 

Both these conditions must be satisfied in order tha t the plasma in the 
betatron chamber could become a source of electrons for the betatron. 
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The last condition puts an upper l imit on the l inear density * of 

such plasmas. Thus 

π η Γ ο
2 = Ν < y4TT X IO12 (15) 

or put t ing e2/mc2 Ν = ν (see eq. (4.54) ) one has 

ν < 0.23. (16) 

If all the electrons were accelerated by the betatron mechanism to 

relativistic energies the circulating current corresponding to ν = 0.23 

would be 3750 (amps) . 

Apar t from the centrifugal force F c of the accelerated electrons there 

is also the force F M of the selfmagnetic field of the electron current , 

both of which have to be compensated by the centripetal forces of 

the betat ron field. The ratio FM/FC has been shown to be (p. 140, 

eq. (4.86) ). 

ι 8R 

ν In —'— 
FM ro 
' e y 

I t follows tha t if the magnetic field of an orthodox betatron is to 

keep the intense electron current in an orbit near the equi l ibr ium 

orbit then 

This gives us a condition for γ (or a condition for ν if γ r~> 1). 

Thus 

, 8R 
7 > v l n . (17) 

For the vmax given by inequality (16) and for In 8R/rfì çz 10 one has 

γ > 2.3. (17a) 

A further condition, binding the minor and major radii of the 

electron beam, γ and ν follows from the considerations of hydro

dynamic stability discussed on p. 213. There , we have shown that 

according to the twostring model of a neutralized electron beam a 

kink instability occurs for wave lengths 

λ > \/2ττΓ0β γ Ζ . 

* This limitation is not very stringent owing to the form of the electron trajectory 
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In order that the electron beam in a plasma betatron be stable the 
per iphery 2TTR of this beam must be shorter than 2X *. Thus 

R < V2r0B -\JL (18) 

Substituting for ν and y values consistent with the previous criteria, 
e.g·, 

„ .= Ο.Ι,γ = 10 
one obtains 

R 
< 14. 

r0 

On the basis of these considerations it appears tha t a plasma betat ron 
with a circulating current of the order of 100 amps is feasible. This is 
two orders of magnitude higher than the circulating current in orthodox 
betatrons and with such a current some new experiments in low energy 
nuclear physics could be contemplated. 

T h e experimental work on these plasma rings has been up to now 
marred by other instabilities (ref. 8a) some of which are related to 
the two-stream instability (see p. 185). 

10.3.2. COLLECTIVE ION-ACCELERATION 

In 1956, Veksler proposed a new acceleration mechanism, now known 
as the "collective acceleration", for the acceleration of ions. 

The idea can be described as follows: 
Let us consider a bunch of Ν electrons and Np ions (Np <^ N), and 

let us suppose that this bunch remains confined during the acceleration. 
If, owing to external fields, the electrons a re accelerated, the ions may 
become t rapped in bunch owing to the action of an ambipolar electric 
field created inside the bunch and thus accelerated together with the 
electrons up to a common final velocity. Each ion is dragged by 

Ν 
electrons so that , within certain limits, the length of the accelera-

Np 
Ν 

tor can be reduced by the same factor with respect to a machine 
y Np F 

accelerating ions only. Experiments have been carried out (ref. 8b) on 
a prototype of such an accelerator. If this principle should prove to be 

* If 'ITTR — λ, the kink instability transforms the originally circular beam into 
a circle again. This is stabilized by the betatron field and does not lead to instability. 
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applicable, one could hope of obtaining 1012 protons at 1.000 Bev with a 
machine of only 1.500 m long. 

A part icularly interesting version of a collective accelerator is known 
as the electron-ring accelerator (ERA) or "smokotron", in which the 
electron bunch has the form of a self-focusing electron ring of relati
vistic electrons. ERA should function as follows: 

The generation of the ring 

An intense beam of electrons is fired into an "injection box". A 
magnetic field B0 applied across the box turns the electrons around the 
axis of symmetry so that they form a ring, initially with a radius r0. The 
magnetic field is increased rapidly, and the ring shrinks down to a 

(Bo)1'2 

radius r = r0. This increases the transverse energy of the 
, Β I 

electrons (see pp . 40-57). After this, hydrogen gas is fed in and is ionized 
by the fast moving electrons. 

The positive ions are attracted into the deep potential well which 
the intense ring of negative electrons sets up and the slow electrons 
join the electrons in the ring. 

Acceleration 

In accelerating the rings, it is impor tant not to pull so hard that the 
stability is destroyed — i.e., the electrons are pulled away from the 
protons. 

Two methods of acceleration are possible. The first has been called 
"expansion acceleration". I t involves setting up a magnetic field which 
is progressively weaker along the accelerator tube. In travelling through 
such a field, the radius of the ring grows; the tranverse energy of the 
electrons falls and reappears as increased longitudinal energy — increas
ed energy of the ring as a whole travelling down the tube. The energy 
gain is inversely proport ional to the square root of the strength of 
the magnetic field. Thus if the field decreases by a factor of four over 
some distance the energy of the protons would be doubled as the ring 
travels that distance (see pp. 41-42). 

An electron ring accelerator (ERA) using only expansion acceleration 
might be suitable for protons up to energies around 1 GeV. Such an 
ERA could be a fairly compact machine giving this order of energy 
over a length of about 10 m. For higher energies, "electric acceleration" 
is needed, using, for example, r.f. cavities. Here electric fields would 
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accelerate the rings, while an axial magnetic field is continuously 
applied to keep the ring radius small. 

10.4. Rocket Propulsion 

In order that a certain load whose mass is M can be lifted against 
the gravitational field by a rocket motor, the thrust P 0 of the motor 
must be larger than the weight of the load. Thus 

Po = moVj > Mg (19) 

where m0 is the mass of the je t expelled per second 
Vj is the jet-velocity 
g is the acceleration in a gravitational field. 

Apar t from this consideration of momentum-balance one must also 
take into account the power consumed by the jet which is 

W > y2m0Vj2. (20) 

Assuming that m0, v¡ and g are constant, the equation of motion of 
the rocket is 

(MV) = - mo(v¡ -V)—Mg (21) 
dt 

where V is the speed of the rocket. 
However, M is variable as it includes the jet mass also. Thus 

M = M0 + amn — m0t (22) 

where M0 is the payload. 
Obviously, after a t ime t = a all the jet mass is exhausted and the 

thrust of the rocket vanishes. We shall distinguish, therefore, two 
phases of the flight — a powered flight and a free flight. 

For the first phase the equation (21) can be writ ten as 

dV — m0v¡ 
- g (23) dt M„ + m(a— t) 

whose solution is 

V(t) = H In M° + m°a gt. (24) 
1 , 1 Mo-r-mo(a-t) S ' 

If one aims at escaping from the gravitational field then at the end 
of the powered flight the speed V(a) must be at least equal to the 
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escape velocity Vu from that field. Owing to inequali ty (19) the term 
— gt can be neglected at t = a and one gets 

exp , N J " 
moa 

1 + — r _ . (24a 
Mo 

I t follows that if Vo/vj is a large quanti ty, the ratio of weight of the 
jet-fuel to payload must be also very large. However, in the opposite 
case, i.e. for Vj/V0 ^> 1, one has 

Mo H 
mna V0 

(24b) 

and the mass of the payload can be many times the mass of the jet-fuel 
This desirable result is unobtainable with chemical fuels, as can 

be seen from the following simplified consideration. Let all the heat 
energy l iberated in a chemical reaction be converted into the kinetic 
energy of a unidirect ional flow. Let us take for this the 2H2 + O2 
reaction which is one of the more favourable reactions for this purpose. 
The energy l iberated per HoO is approximately 1.6 X 10~12 erg. The 
velocity which this amount of energy imparts to one molecule of 
H 2 0 is 1/3 X 106 cm/sec. This is the maximum velocity that a burning 
mixture of oxygen and hydrogen could aquire. In practice the jet 
velocity would be lower by about 50 % because of energy losses, etc 
Somewhat higher jet velocity would be obtained from the combustion 
of hydrofluoride fuels. Thus, as the escape velocity from earth 's 
gravitational field is about 106 cm/sec the payload to total load ratio is 
in the region of 0.2 to 0.1. 

We have seen in the section on magnetically driven plasmas tha t 
a plasma gun can accelerate a bunch of ionized gas to a speed of 
107 cm/sec without employing any special sources of stored electrical 
energy. Such a jet speed would, according to eq. (24b), reduce the 
mass of the jet fuel to a small fraction of the payload. However, there 
are two major problems connected with a plasma je t : 

a) the development of a plasma gun having an appreciable thrust , 

b) the energy supply for such a gun. 

The first problem is a technological one and can probably be solved 
by engineering development (ref. 9). 

The second problem forces us to look for energy sources other than 
chemical ones. This can be shown by calculating the power of the jet as 
a function of jet velocity, keeping the thrust constant. Thus if 

m0Vj = Ρ 
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one has for the power consumed by the je t 

W = y2Pv¡. (25) 

This is such a high value, counted per particle, that only nuclear 
sources can provide the answer. Even if nuclear sources of energy are 
admitted, further problems must be solved such as the transfer of power 
from the nuclear reactor to the plasma gun. 

In some astronautical applications a large thrust may not be necessary, 
e.g., in the case of interplanetary probes, where the probe may first 
be placed into a suitable orbit around the Ear th and only subsequently 
spiral out using a small plasma engine. Encouraging results have been 
obtained on such small continuously operated plasma guns (ref. 10). 

10.5. Energy Storage 

The art of storing energy in such a way that it can be rapidly released 
has its beginning in the invention of bows, bat ter ing rams, hammers 
and other devices. In present day engineering energy is stored mainly 
in four different forms: 

1. chemical energy of fuels and nuclear energy, 

2. kinetic energy of flywheels, 

3. magnetic energy of currents flowing through some large inductance 
or energy of atomic currents in permanent magnets, 

4. electric energy in condensers. 

The maximum energy density W0 has been obtained so far with 
chemical explosives in which Wu ~ 104 J/cm3 . 

In order to obtain the same in magnetic storage systems, the magnetic 
field-strength would have to be 1.6 X 10" gauss. 

Assuming that the rim of a flywheel has the speed of sound and is 
made of steel one finds that the kinetic energy density at the rim is 
500 joule/cm 3 . This is also a value dictated by the mechanical strength 
of flywheels. 

The density of electrical energy stored in ordinary condensers is 
about 10"1 J / cm 3 and is, dierefore, far below the values of W0 achieved 
by the methods 1 — 3. Recent development in t i tanium oxides having 
a dielectric constant of the order of 1000 raises hopes that an electric 
energy density of over 1 J/cm3 can be obtained with condensers 
(ref. 11). This is still ra ther low for some purposes, such as the dynamic 
pinch and others. 
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Some propert ies of rotating plasma discs suggest that a method of 
storing electric energy can be developed in which W0 will be compar
able to that achieved by flywheels. 

Consider a sheet of plasma confined by a magnetic field Β between 
two conducting planes σι>2 (fig. 166). Let us apply an electric voltage 
between the planes. We have shown in chapter 5, p . 177 tha t plasma 
behaves as a dielectric whose dielectric constant is 

= 1 + 
AnrnMc2 

B2 (26) 

provided the frequency of variation of the electric field is much 
lower than the ion-cyclotron frequency. At the moment of application 
of the voltage V a current ic will start to flow which will t ransport 
a total charge q per cm2 

q = CV (27) 

where C is the effective capacity per cm2. This current is the polari
zation current in the plasma and is due to the shift of the guiding 
centra of positive ions and e lec t rons* (fig. 167). As it flows at r ight 

.m» 

Fig. 165. Fig. 166. 

angles to the magnetic field it gives rise to a force (l/c)icB which sets 
the plasma layer into motion. If, for the moment, we assume tha t 
D s d , i.e., the plasma fills completely the space between the planes 
then 

nMc2 

and the total momentum accumulated by the action of the force 
( l / c ) i c B is 

* See also footnotes, pp. 54 and 58. 
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„ , nMc „ 
c ß dt =  — — V. (28) 

Bd 

This follows directly from eq. (2.79a), where it was shown that 

charged particles in crossed electric and magnetic fields acquire a 

drift velocity va — c(E/B). I n our case E = Vjd and therefore, 

V 
Ρ = cnM 

Bd 

The electric energy l/2qV supplied to the plasma is, therefore, stored 

mostly as the kinetic energy of the plasma flow. This kinetic energy 

can be converted back into electrical energy and the plasma flow will 

stop. Such a "discharge" of the plasma capacitor can be effected 

within a very short t ime. The shortest at tainable discharge t ime is 

of a few periods of the ioncyclotron motion. 

For the same reasons as those which apply to any flywheel storage, 

our plasma layer must be wrapped into a ring (radius R). A rotating 

ring of plasma is subjected to centrifugal forces which must be 

balanced. For our magnetically confined plasma such a balance will 

result from the magnetic field Β on the outside of the plasma ring 

being compressed unti l 

B2 ndMvå
2 

(29) 
&V R 

From this simple formula follows at once tha t the ratio of stored 

kinetic energy to the stored magnetic energy is of the order of RjAd. 

In experiments on a plasma homopolar devices, energy densities 

of 1 J / cm 3 were achieved (ref. 12). With large dimensions (R of 

the order of 100 cm) and with insulation between the electrodes σι 

and σ2 capable of withstanding 100 kV, energy densities up to 100 J/cm3 

seem to be attainable. This implies a total stored energy of the order 

of 107 J which would be of considerable interest in research on 

fast pinches and would be especially useful for the dynamic pinches. 

However, in spite of many at tempts to improve die insulation between 

the electrodes, no encouraging results have been so far obtained. A 

shortcircuit has been always observed even when the insulating wall 

has been removed relatively far away from the rotat ing plasma (ref. 13). 
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magnetic field strength 
velocity of light 
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electric field 
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gravitational acceleration 
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S 
t 
v 
V 
w 
W 
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a 
β = 
y = 
ε 
V 
κ 

Χ 
Λ 

μ 
ν 

Ρ 
σ 
ω 

surface 
time 
velocity 
volume or voltage 
energy density 
energy 
coordinate 
angle 
v/c 
( 1 — v'-Jc2)-1'2 

dielectric constant 
efficiency 
coefficient of thermal con
ductivity 
wave length 
characteristic linear dimen
sion 
magnetic permeability 
normalized linear density 
resistivity 
electric conductivity 
angular frequency 
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