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PREFACE TO THE THIRD EDITION

During the years preceding 1960 plasma physics developped rapidly
and the pioneering mood of those days influenced many, including
the author of this book, to come out with articles and books in which
a fermenting, partial and somewhat hasty spirit prevails. The times
have changed and nowadays it is possible to attempt to write a text-
book rather than a work demonstrating novel or revolutionary features
of the subject. This edition is neant for graduate and post-graduate
students; wherever possible the treatment insists on physical insight
rather than on mathematical rigour. I have tried to treat the subject in
all its aspects without indulging in details and specialities (for which
exist now several excellent books) and nevertheless aiming at students
having a good background in physics and even having some acquaint-
ance with the concepts of physics of ionized gases. This should put
the present edition in a bracket between elementary books on plasma
physics and those dealing thoroughly with special domains, some of
which will be found among the recommended literature on p. 332.

Frascati, spring 1967.
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INTRODUCTION

Plasma physics is concerned with the behaviour of systems of many
free electrons and ionised atoms where the mutual Coulomb interactions
cannot be disregarded. In a restricted sense, such systems of particles
consist of nearly equal numbers of positive and negative charges.
Systems of this type are examples of a medium known as plasma which
in many respects behaves differently from the solid, liquid and gaseous
state of matter.

All states of matter represent different degrees of organization, to
which there correspond certain values of binding energy. Thus, in the
solid state the important quantity is the binding energy of molecules
in a crystal; in fact, a crystal could be considered as a macro- or super-
molecule. If the average kinetic energy per molecule W exceeds the
binding energy U (a fraction of an eV) the crystal structure breaks up,
either into a liquid or directly into a gas. A similar law operates in the
case of liquids, and in order to change a liquid into a gas, a certain
minimum kinetic energy per molecule is required to break the bonds of
the van der Waals forces. Matter can exist as plasma, i.e., in its fourth
state, when the kinetic energy W per plasma particle exceeds the
ionising potential of atoms which is usually a few eV, Thus the average
kinetic energy per particle determines the state in which matter exists.
A precise mathematical statement of this theorem is an equation of the
Saha: type. However, a simple criterion can be written as

Un < w < Un+1 ’ (1)

where U,, U,,; are the respective binding energies, expressing that
matter exists in the (n 4 1)st state.

The plasma state will correspond to an order-of-magnitude relation-
ship ‘
1< W, <108 (eV).

Extrapolating this principle to higher states of matter, so far unex-
plored, one may define the fifth state of matter as one in which

1< W5<500 (MeV).

This will be a gas of free nucleons and electrons — a “nugas”, The
sixth state would be, consequently, defined as

1/2 <W:;<10 (GeV)
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and would contain free mesons, nucleons in various states of excitation
and electrons, The fifth and sixth states of matter can be expected to
exhibit an even greater variety of bhehaviour than a plasma owing to
the action of short range internucleon forces in addition to long range
Coulomb forces.

On the other hand, according to eq. (1) for W, plasma spans a
broader energy band than any other state of matter; it encompasses
about 20 octaves on the kinetic energy scale. This width of the kinetic
energy spectrum of the plasma state is the reason for much common
ground between plasma physics and many other fields of physics, such
as the dynamics of single charged particles (in which many-particle
interactions are not considered), or the physics of electrical discharges
in gases (in which interaction between charged particles and neutral
atoms and molecules is of great importance), whereas some methods of
description and analysis used in plasma physics belong to the subject
of hydrodynamics, particularly magneto-hydrodynamics. Another phy-
sical discipline, indispensable for the theory of a plasma, is statistical
mechanics and there are yet other fields from which plasma physics
draws its mathematical formulation and its terminology.

Although probably more than 99.9 % of matter in our Universe is
ionised and therefore in the plasma state, on our planet plasma has to
be generated by special physical processes and under special conditions.
These processes are the subject of the physics of electrical discharges in
gases and this is the reason for the parental relationship between the
latter and plasma physics.

Using an anthropomorphic analogy one may say that whereas the
physics of electrical discharges is more specifically concerned with the
birth and metabolism of plasma, plasma physics concentrates mostly
on the anatomy and motion of plasma.

On our planet the medium which often resembles an ideal plasma
is a partially ionized gas. This medium enters in the experience of
prehistoric humanity in three forms; as fire, as lightning and as Aurora
Borealis. In this connection it is curious to note that a number of greek
philosophers, starting with Emnpedocles of Agrigentum (about 490-430
B.C.), held that the material Universe is built of four “roots”: earth,
water, air and fire. This, in modern terminology, may be compared
with four states of matter, solid, liquid, gaseous and the plasma state.
The privilege of identifying the medium created in electrical discharges
in gases as the fourth state of matter belongs to W, Crookes who writes
(1879): “The phenomena in these exhausted tubes reveal to physical
science a new world, a world where matter may exist in a fourth state...”.
At about this time it became obvious that this newly discovered state
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of matter is not very much at home on our dense and cold planet and
that special conditions must be realized in order to generate a plasma-
like medium in the laboratory. Investigation of these conditions were
the subject of the physics of electrical discharges in gases. It was
only when electrical and vacuum techniques developed to the point
when long-lived and relatively stable electrical discharges were available
that plasma physics emerged as a separate field of study.

Around 1923 I. Langmuir developed the appropriate basic theory
of an ionised gas and gave the medium the name “plasma” *. During
the period 1923-1938 the subject developed further due to the efforts
of L. Tonks, R. Seeliger, B. Klarfeld, M. Steenbeck, A. v. Engel, L.B.
Loeb, W. Bennett, F.M. Penning, J. Townsend, W. Rogowski and many
others.

At the beginning of this century astrophysicists became aware of
the importance played by ionised matter in the processes in outer
space and subsequently some of the finest contributions to plasma
physics came from their ranks. Here one may mention the work of
M.N. Saha, S. Chapman, T.G. Cowling, V.C. Ferraro, S. Chandrasekhar,
L. Spitzer, H. Alfvén and the german astrophysical school at the Max-
Planck Institute.

In 1929 F. Houtermanns and R. Atkinson suggested that the main
source of energy in stars is the fusion reactions among the nuclei of
the light elements. After 1945 a similar mechanism was exploited in the
construction of hydrogen bombs and at the same time some physicists
became interested in a controlled release of fusion energy.

However, it was appreciated that the energy output from fusion reac-
tions depends critically on the kinetic energy of the colliding nuclei
and that fusion outputs of practical interest depend on one’s ability
to produce temperatures of at least several million degrees Kelvin.
If explosions are to be avoided, then the pressure of atter at this
temperature must be balanced by external forces. This is within the
power of our engineers only if the density of the nuclear fuel is sub-
stantially less than the density of our atmosphere. The search for a
mechanism of a controlled release of fusion energy in the 1950’s became,
therefore, synonymous with the study of high temperature, low density
plasmas. However, it should not be forgotten that the notion of con-
trolled fusion is not inconsistent with controlled explosions as will be
mentioned on p. 308. In accord with such an extension of the scope of

* The word plasma occurs first in the term protoplasma which was originally
introduced into scientific terminology in 1839 by the czech biologist J. Purkynie
for the jelly-like medium interspersed by numerous particles which constitutes the
body of cells.
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controlled fusion is also the recent extension of our interest to very high
density plasmas.

The prospect of nuclear fusion gave a new lease of life to plasma
physies which was becoming rather unfashionable and as one of my
friends put it, regarded by most other physicists as a rather charming
subject, full of small, colourful experiments, where there was little left
to discover and whose only real justification was the amusement of those
who Dothered to waste their time on it. With the goal of a fusion reactor
as an incenlive, plasma physics became a subject of interest to many
physicists and engineers. More recently many other applications of
plasma physies have appeared, such as plasma rockets, direct conversion
of thermal energy into electrical energy, transmission of radio and tele-
vision signals through ionosphere and others. These are more than able
to sustain the interest of physicists and engineers in plasmas.

When the first edition of this hook was written in 1959 only very few
experiments on plasma had heen carried out and those that had been
done were useful only for a general orientation and could not be com-
pared with clear and precise experiments in other branches of physics.
In five vears this situation has changed considerably and there exist
now some “classical” experiments on waves, shocks, diffusion and dyna-
mics of plasma. I have attempted, therefore, to illustrate at least some
of the theoretical statements by means of related experiments. Owing
to the interplay of theory and experiment in the last decade it was
possible to gain a feeling for the plasma medium, appreciate its many
aspects which predominate according to the values assumed by the
density and by the temperature of the plasma and also according to
whether or not there is a magnetic field in the plasma. In order to
transmit some of this feeling the book starts with a rather lengthy
chapter on the general properties of the different types of plasma.

As in many problems dealing with a large ensemble of individuals
(e.g., star clusters), plasma physics uses two complementary modes of
description: the analysis of the movement of a single particle and the
fluid model. These two treatments are the subjects of chapters 2 and 3.

These modes of description are subsequently applied to equilibriuin
configurations, ie.. to plasma statics (chapter 4), to wave-motion and
instabilities in plasma (chapter 5) and to shocks in plasma (chapter 6).
This brings us to consider the dynamies of a plasma (chapter 7).

In order to complete our description of plasma it is important to
know how an equilibrium configuration is established. This problem
can be solved only if one can find a suitable description of the various
collision, diffusion and radiation processes that are operative in arriving
at an equilibrium. This is the aim of chapter 8.
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The eight chapters provide us with models of plasma processes
which are used in chapter 9 to describe some of the applications of
plasma physies to the research on the controlled fusion of light nuclei,
and in chapter 10 to electronics and to other problems in applied
physics and in engineering, Those who will be using this book as a text
book may not want to get involved with some of the more complicated
mathematical arguments. In such a case it may be advisable to only
gloss over paragraphs marked by an asterisk. The c.g.s. system of units
will be used unless specified otherwise.



CHAPTER I

1.1. Plasma State

Let us first restrict the applications of the word plasma to systems
in which the positive ions are not hound in any lattice in space. This
will exclude systems in which the positive ions belong to a conducting
or semi-conducting solid body, it will also exclude liquid conductors
and electrolytes in spite of the fact that the lattice in these latter cases
is ever changing. Such a restriction amounts to the requirement hat
the density of the kinetic energy of positive ions be much higher than
the density of binding energy corresponding to a lattice. By making
this restriction no offence is meant to thus excluded types of plasma,
the behaviour of electron plasma in conductors (ref. 1, 2) and semi-
conductors (ref. 3, 4) is of considerable theoretical and experimental
interest, however, it is more fitting to discuss such systems in another
book entitled perhaps “Electron plasmas in solids”. For similar reasons
it is advisable not to mix the physics of electron and of ion beams with
that of plasma physics proper, besides several books have already been
written on that subject (ref. 5, 6).

At this point it may be better not to go on deciding what is not a
plasma, instead we shall study some important properties of a system
consisting of many free electrons and ions and decide which are the
parameters corresponding to a typical plasma *.

Let us first consider a special case in which the system is of infinite
extension, with no fields of force imposed from the outside and the
velocity vectors of the particles randomly distributed both with respect to
their direction and their amplitude. Let the average density of either
type of particle be n. Let us try to find out how the lines of force e
of the electric field E of an electron Q are distributed in space.
Obviously most of these lines will be attached to the nearest positive
ions P; ... Py, some go to the more disiant ones such as Py, P; and some
(e’) leak out and travel far before they, too, get attached to positive
charges (fig. 1). It is easy to see that no e’ lines would exist in a per-
fectly ordered lattice, There all the lines emanating from the charge
Q finish on the oppositely charged nearest neighbours. Evidently the

* Lists of symbols are given at the end of cach chapter.
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. + valid for x>0
The sign
— valid for x<0
which gives for uniform n: E=—47ne (d—lx[).

The electrical energy stored in this field per cm?* of the surface of
the layer is

E2 4
dx= —=xnte*d® (erg/cm?) (2)
8= 3

This energy could have been generated only by drawing on the
random kinetic energy of the electron-layer. Since each electron has
3 degrees of freedom, each of which should be endowed with an energy
equal to 1/2 kT, we get for the available kinetic energy W, capable of
being converted into W.,.

1
W, = - " dET (erg/cm?) (3)
Putting W. < W,
we get
4

— kT = —=nned?

2 3
or

"3 . [ kT
VIV
2 4drne’
In the following we shall take for this critical distance, known as the
Debye distance, the expression '

kT
d= \/ — (4a)
47 e*n,

the numerical factor \/372 having been introduced by the mllersimpli-

fied nature of our analysis.
The maximum electric field corresponds to *

Ema.r = V4ﬂ7nkT (5)

EZIHI’IX

8T

* Defining the energy densities w, =

1

equation (5) can also be written w. = 3 w;.

3
and w, = N nkT respectively, the
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Considering a spherical rather than plane geometry we obtain using
similar arguments a critical distance d,p, ~ d and Eaxepn ~ Emgy. The E
field is composed only of the e’ lines and the distance d is then the
longest distance to which the field of a charge in plasma can penetrate
before being screened.

These ideas are similar to those used by Debye and Hiickel in the
theory of electrolytes (ref. 7) ) and the distance d is called the Debye
distance. In their theory, Debye and Hiickel have shown that the
distribution of electric field around a fixed charge ¢ in an electrolyte

. q9 r .
corresponds to a “screened potential” ¢ = -— exp [— —l} . Using a
r [/

simplified argument we shall show how such a potential distribution
arises around a fixed charge ¢ in a plasma of density n and tempera-
ture T, In absence of charge g the charge density of the electronic and
positive ion fluid is

Re=n;=n (6)
Introducing the charge +gq creates a spherical, positive potential wall

0
¢(r), and the electric field £ = —- —ﬂ—¢— will tend to bend the electron
or

trajectories towards the charge and deflect the ion trajectories, In a
spherical geometry the Poisson’s equation for ¢, n. and n; reads

1 d [ . d¢
_ re
dr

rr dr

] =4z (n,—n;)e (7)

According to a well-known theorem of statistical mechanics (ref. 8)
the distribution of electrons (temperature T) in thermodynamic equi-
librium in such a potential well is given by

ne (r) = n.-exp [j%(r):' (8a)
and of ions n; (r) =n;-exp [%T(r)] (8b)

e¢(r)

% &£ 1, the electron and ion distri-

For radii r so large that

bution will not be greatly perturbed and we can write

n.i(r)=n [1i—%f)—] (8c)

The potential ¢ can now be determined from
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1 d L de 8rne* 9)
N r: —
r* dr dr ] kT ¢ (
. kT ) .
The expression ———— must have a dimension of (length)2 From
Tne’

equation (4a) it is clear that this length d’ is
1 kT
d=—"—d= \/ R (10)
V2 87ne*

The solution of equation (9) must satisfy two boundary conditions. At
r = oo the potential ¢ = 0 and for r — 0 the solution must converge

to that of a point charge g in vacuum. i.e., ¢ (r - 0) = —.
r

Such a solution is

q r
¢ = - exp (— 7 ) (11)

If the ions owing to their inertia connot reach thermodynamic equili-
brium and thus cannot distribute thiemselves in the potential well
according to equation (8b) one finds in the solution (11) the Debye
length d instead of d".

As long as the charge g is much larger than the elementary charge e
a potential distribution of the type given by equation (11) will develop
and is encountered in experiments using spherical probes in a plasma
in which the Debye length is larger than the radius of the probe
(ref. 9). When the analysis is extrapolated to the problem of potential
distribution around a positive ion, i.e. for ¢ = e, it ceases to be valid.
Each ion creates and carries its own potential well and, as the mean
distance between the ions is n-'3, the formula (11) cannot be applied
to r < n'3, as the mean number of electrons within a volume

1
— capable of modifying the £ part of ¢ cannot exceed unity, On the
n r

other haud for r > n'/? the field of this ion is relatively weak and the
forinula (11) is, therefore, of little interest.

Consequently the only chance for potentials of the type of ¢ being
generated in a plasma is when local accumulations of ions arise, as
has been already mentioned. Only then the lines of force of a particle
in plasma may reach up to the Debye distance and one must, therefore,
admit that in such a case all particles within a sphere whose radius is
equal to d can mutually interact. In this respect plasma differs from
gases in which the trajectories of the molecules are influenced only by
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and consequently the oscillations are not transmitted to the rest of the
plasma.

Later on (chapter 5.1.6) we will see that such a process can propagate
owing to the randomness of v and that it is damped; nevertheless, its
persistence suggests that once an oscillating electric field is created
in the plasma it may be difficult to get rid of it and that there may be
a tendency in a plasma to establish an equilibrium between the stored
electric energy in oscillating fields and the energy of the random motion
of particles.

The frequency corresponding to the electron oscilations resulting
from a departure in the electric neutrality of a plasma can be obtained
from the motion of an electron in the field E,, . sinwt.

Thus

. eE .. .
X = — — sin ot (14)
m

from which follows after double integration and putting xu.,, = d that

2 eEmax (15)
® T Tmd
From equations (4) and (5)
Emﬂx — 47-
T = 4me

This substituted into eq. (15) gives for » (which we shall call the
plasma frequency o)

ne*
m

(16)

Wy =

This is quite generally the frequency with which any charge accumu-
lation in a plasma of density n will be neutralised by the inflow of
oppositely charged particles.

Having discussed the upper limit of the Coulombian interaction of
a charge in a plasma, let us say a few words about the shortest distance
8 corresponding to such an interaction. A natural choice for § is the

h

mv

de Broglie’s wave length &, =

In a plasma where the ion gas has the same kinetic energy of random
motion (thermal energy) as the electron gas, the average momentum
of the electrons will be much smaller than that of the ions and
consequently their Xp will limit the particle interactions at short

distances.
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Expressing

m*v? = 2m (V45 mv*) = 3mkT
we get
h 1

SZXB: .
V3mk . 2% VvV

(17)

T
If the density of a plasma is such that nkz* > 1, the interactions
have to be treated by quantum methods — let us call such a plasma a
quantum plasma or a degenerate plasma. The degenerate plasmas can
be described statistically by the Fermi-Dirac statistics — whereas the
non-degenerate plasmas are subject to the Boltzmann statistics. The
above mentioned inequality can be written as

h ni/s
2 (2mk)'z TR

=1 (18)

This relation is also plotted in the n,T diagramme (fig. 7), giving us thus
a boundary between degenerate and Boltzmannian plasmas, It is often
necessary that the Coulomb interaction has to be truncated at distances
larger than %X;. When an electron encounters another in a head-on
collision the minimum distance between them is given by energy

consideration. Thus when their kinetic energy is spent the electric
2
potential energy is equal to

. Taking for the kinetic energy the

mean thermal energy for two particles in one degree of freedom, i.e.,
kT we get *

o

e

S = T

(19)

Much the same argument could be made about p-p and e-p collisions.

In the latter case the minimum distance § corresponds to a deviation
of the electron trajectory by an angle =/2.

Let us find a criterion for the classical and quantum close-interaction.
Obviously when §, > X the close interaction will be described by classi-
cal mechanics, in the opposite case by quantum mechanics. The limit
is decribed by X = 8 giving T < (27)* - (3 e*m/kh?*) =~ 10 (°K) for
classical interaction.

Let us observe a region of space in plasma whose volume is equal to
that of the Debye sphere. Let us consider the case in which N; € 1,

which is also equivalent to Ns*> 1. From the latter we get using
eq. (12).

* Also called the “Landau distance™.
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for the capture of free electrons by ions. The relative frequencies of
these two processes: the ionization and the recombination, determine to
what degree the medium is ionized, i.e., to what extent it resembles an
ideal plasma. The corresponding relation for a medium in thermo-
dynamic equilibrium is known as the Saha equation and it reads (ref.

10)

i z T k 3 —_— Vi
elti _——V m T3* exp . (22)
n h kT

where n., n; and n are respectively the densities of electrons, ions and
neutral atoms and V; is the ionization potential. When kT > eV;, then
the exponential term is almost equal to unity and since for once ionized
atoms n, — n; we have

n, (\/Zwmk

af2
_ ’ ) el T, (23)

n

In order that kT > eV; the temperature must be of the order of 10%

ne

and it follows that the ratio

is very high as long as n < 10?2 The

dependence T%/* is to be expected, the higher the temperature, the
higher is the electron velocity and the higher the frequency of ionizing
collisions.

In the other extreme, i.e., kT < eV; the degree of ionization is dictat-
ed mainly by the exponential term. The ionization can be accomplished
only by the relatively few energetic electrons in the tail of the Maxwel-
lian distribution.

The dividing line between plasmas and gases can be fixed as cor-
responding to a certain degree « of ionization. If, e.g., we take

«=—" =1for hydrogen we get a relation
n
— 158 000
T3% exp — =1.45.10"® . n. (23a)

Another and more precise criterion for deciding whether a medium
is plasma or only a weakly ionized gas is provided by considering the
electron-ion and electron-neutral atom collision-frequencies (v.; and
ven). One may then define plasma by

Vei > Ven

where (using eq. (21) and eq. (8-56) )

Ve _ et n;

Vei = = \/2

- :
Aei VEm T3>

In A
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2k n
Ven — \/_ T2
m Ten

where ., 1s the collision crosssection between electrons and neutral

and

atoms.

Substituting into these expressions for n; and n from eq. (22) we
get a function of T and (n + n;) which is plotted in fig. 7 (curve C)
and represents the above mentioned criterion.

1.1.2. ELECTRIC FIELDS IN PLASMA

It is possible now to visualize the type of electric field an observer
will register inside a plasma in which collective interactions predomi-
nate, This is shown in fig. 6 where we have chosen a typical plasma
havingn = 10" and T' = 10°.

When external fields penetrate into a plasma the motion of individual
particles does not change appreciably. This is due to the external fields
being usually weaker than the microfields E,, E, and E. that are always
present in a plasma. This can be appreciated from the example shown
in fig. 7 and notling that in laboratory it is difficult to generate electric
fields much higher than 10* V/em. The same argument is valid, though
1o a lesser extent, for magnetic fields. In laboratory it is feasible to
generate fields of the order of 100 KGauss. An electron moving in a
magnetic field sees an equivalent electric field

E=_-2 B.300 (V/cm, Gauss). (24)
c

For a typical plasma-electron this is
E = 3.7.10% B\/JT (V/cm). (24a)
Thus for T' = 10 ("K) and B = 10° Gauss we get E = 3.7.10° V/cm,

again not a very high field compared to E, or E; in fig. 6.

1.1.3. RADIATION IN PLASMA

In any medium in thermodynamic equilibrium there should be a
radiation field whose photons are distributed in frequency according
to the Planck’s law

8 hf?
we(f) = __SA (25)

c? (eh//kT . 1)
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electron, in order that an arbitrary frequency distribution of photons
could relax into a Planck’s distribution, This condition for coupling is
satisfied in a plasma and consequently in an infinite plasma one will
find apart from thermal energy density W, = 3nkT also radiation

energy density W, = J'W w, - df which is the well known

2
w, = =77 14 (26)

c

The behaviour of a plasma in which W, > W, will be largely dictated
by the contained radiation fields. This will occur, therefore, when
270 T°

_— 1 27
3ck n > (27

The line corresponding to this boundary is also found in the n,T
diagramme (fig. 7).

In most laboratory plasmas, however, no such equilibrium can occur.
This is due to the small optical dimensions of such plasmas, i.e. to their
transparency. Thus most of the radiation generated by various emissive
processes in a plasma has no chance of being reabsorbed or trapped
and is lost out of the system. Let us find the minimum radius R of a
plasma sphere, which could approach the state of radiation equili-
brium. Such a sphere will tend to radiate as a black body, in which
case the radiation loss will amount to 4xR*¢T*. This must be continually
replaced by generation of radiation within the sphere. Let us put
g(T.n) equal to the rate of radiation energy generation and neglect
the absorption of this radiation. Then

R
4zR* ¢ T =Z4n [ r*.g-dr

Let us assume for simplicity that n and T are constant within the
sphere. This will yield an order of magnitude value of R. We get
(30T*) /g<R (28)

One of the most important radiation-emission processes in a fully
ionized plasma is that corresponding to the radiation emitted by
electrons during their collisions with positive ions, known as brems-
strahlung. The ion deflects the electron and, therefore, changes its

° e
It will be shown later (p. 70} that, averaging over all the electrons,
this process gives

gnT) =142.10% n 2 VT (ergs/cm?, sec)

e

velocity. The electron radiates at a rate
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Substituting into eq. (28) we get

1023 T.’i..")
Z w )

R >

Example: Z = 1, T = 10° n, = 10'" (a typical laboratory plasma),
then R > 30 Km.

It is to be understood that since the absorption of radiation has been
neglected, the criterion for R is valid only as long as R/A, 3 1 where
A, is the mean free path of a photon which in a completely ionized

hydrogen is

Ar = ! where o7 = 6.65 . 107%° (cm?).
n o
Plasma whose dimension is smaller than R can still radiate as a
black body, but only over that part of frequency spectrum in which
either g(n,T) is higher than that given by the bremsstrahlung process
or the photons can be conserved an appreciable time in the plasma.

1.1.4. CLASSIFICATION

It is now possible to discuss the n,T diagramme (fig. 7) which permits
us to divide plasmas into different types.

The realm of plasmas is limited on the low T side by the Saha’s
equation (eq. (22) ). Whether one agrees that the degree of ionization
corresponding to a gaseous state of matter is 50 % or 10 % does not
make much difference to the position of this low T boundary (see the
two curves S;, S: corresponding to the above-mentioned degrees of
ionization).

On the low n side the limitation is somewhat arbitrary, we shall take
n == 1 as the limit since this value corresponds to the mean interstellar
density and it is, therefore, unlikely that one will encounter in our
galaxy a plasma density lower than 1 particle/cm?. 4

On the high T side, an order of magnitude limitation is obtained by
making a distinction between plasma state and the fifth state of matter.
In this new state of matter nucleons are free. The maximum binding
energy of nucleons being 8 MeV/nucleon it follows that the transition
between pure plasma and the higher state will be around 1 MeV/
nucleon, i.e., corresponding to a temperature of the order of 10 (° K).
Just below this temperature is the realm of plasma in which the elec-
tron gas must be treated by relativistic mechanics as 3/2 kT > mc?,

from which T..; = 3.9.10° (° K).
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On the high density side there is first the boundary X; = [ defined
by eq. (18) which can be written as

n' = 2 . 10° T2,

For n higher than that which follows from this equation, there will
be more than 1 particle in a cube whose dimension is equal to the
Broglie wave length and the interaction of the particle will be governed
by quantum mechanics. The region to the right of the Xz =1 cor-
responds, therefore, to quantum plasmas. These are often called de-
generate plasmas since the relevant Fermi-Dirac description of such
plasmas uses the notion of degenerate degrees of freedom for the
particles. An interesting corner between the curve S; and the boundary
%s =1 corresponds to a plasma in which I=d. In such a plasma
collective interactions, such as the oscillation of a Debye layer or
sphere, are impossible as the corresponding volumes contain less than
one electron. The particles thus interact mainly by means of binary
collisions.

To s < I < & (region Q), does not correspond any plasma. One can

. . e
show easily that in such a case

> kT and, therefore, the binding

energy of an ion

is larger than the mean kinetic energy kT in one

degree of freedom which means that the electrons are no longer free.

The greatest part of the following chapters will be devoted almost
exclusively to the physics of classical, i.e., Boltzmannian plasmas, which
correspond to the clear area in fig. 4.

1.2. Plasma in Nature and in Laboratory

The most conspicuous condensations of matter in the Universe are
the stars, The stellar material is mostly in the plasma-state. In order to
represent the stellar plasmas in the n,T7 diagramme it is necessary to
discuss the types of stars and determine to which physical conditions
these correspond.

1.2.1. STARS AND INTERSTELLAR SPACE —
THE DIAGRAMME OF HERTZSPRUNG AND RUSSEL

A convenient mode of representation of different types of stars is the
diagramme of Hertzsprung and Russel (ref. 12). The two parameters
used are the absolute magnitude (corresponds to the light-output of
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temperatures, and above all, to high densities. The central densities
of some white dwarfs may reach 10*° ions/cm?®.

Apart from the stars mentioned sofar, all of whom are in
equilibrium, there exist also pulsating stars and exploding stars. Some
of these may reach a state in which the central part of their mass
reaches such temperatures and densities that an almost complete
collapse of the star occurs; the densities in the center of such a collaps-
ing mass may reach 10%%.10% ions/cm?® This corresponds to the density
of nucleons in an atomic nucleus and such stars are called neutron-stars.

All the stars possess an atmosphere, thus e.g., our sun’s atmosphere
consists of a so called reversing layer, then a layer known as the chromo-
sphere and finally the outermost - the corona. The temperature ranges
from 10* to 104, the densities from 10**-10% ions/cm3.

Most stars, especially the unstable omes, emit streams of plasma in
the interplanetary and interstellar space. The temperature and the den-
sity of these ejected plasmas diminish as the stream propagates away
from the star and as it expands, until in the interstellar space the
density drops to about 1 ion/cm?® and the temperature to an order of
one thousand degrees. The zones corresponding to all these states of
matter are plotted in fig. 9.

1.2.2. PLANETS

The plasma state is represented relatively poorly on planets. Those
planets possessing their own magnetic field are capable to reflect and
deviate the solar streams. The plasma free cavity is known in the case
of our earth as the geomagnetic cavity. Very energetic particles can
penetrate deeply into this cavity and create ionization in upper layers
of earths ionosphere. Important and interesting regions filled with
such plasma resembling onion-shells have been discovered recently and
are known as the Van Allen belts.

Electric fields can be generated in planetary atmosphere giving rise
to storms — during which electrical discharges occur. The gas in the
inner core of these discharges may reach very high temperatures
(T ~ 10* (°K) ) and must be, therefore, highly ionized. This is the
nearest, short-lived sample of a plasma-state in nature accessible to
human experience in the past.

1.2.3. PLASMA PRODUCED BY MAN

We are able to produce plasma either thermically or in electrical
discharges.
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List of symbols used in Chapter 1

B magnetic field strength x, coordinate

c velocity of light v velocity

d Debye distance V; ionization potential

e elementary charge W  energy density

E electric field strength z atomic number

f frequency 8,  Landau distance

h Planck’s constant A mean free path

k Boltzmann’s constant Az De Broglie length

1 mean distance between particles ¢ Stefan’s constant

m  electron mass 0., ; electron-ion cross-section
n particle density or Thompson cross-section
q charge ¢ potential

R radius wp,  plasma frequency

T temperature
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2eV [ oV
=e
R or ) 1

R=_Y (), 2)

)

This formula can be used very simply in a step by step graphical

and therefore,

plotting of the trajectory. It is also used in automatic trajectory
tracing in an electrolytic tank (ref. 1).

Motion of this type is of great interest in electron optics; in plasma
physics it enters only in connection with the classical description of
Coulomb scattering.

Let us give a brief treatment of this last problem, since it is connected
with many important phenomena such as particle diffusion and emis-
sion of the bremsstrahlung.

Let us consider first the motion of a particle having charge e and
mass m in the electric field of a relatively heavy particle of mass M
and charge Z.e. The motion is determined by the laws of conservation
of energy and of angular momentum. Let the velocity of the light par-
ticle at infinity be v, and let the distance of M from the line deter-
mined by v, be pg, the so called collision-parameter (fig. 12).

The vectors vy and p, determine the plane of motion. Using polar
coordinates in this plane, the two conservation laws can be written

. . Zet
r’ + r: e + 2 e:vo'-’ (3)
mr
Pov, = T* o (4)

the + is valid for charges of the same sign, the — for oppositely charged
particles.
The time derivatives can be eliminated by means of

d
do

d
— =9
dt
and substituting for o from equation (4) we get

( dr : ( I)UUo 2 + ( I)OUo 2 - 2 Ze"' . " (5
de r* r ] = T Y )

Separating the variables there is
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where
Ze?
a=——+— A=1\Vv®+
m pov,

Equation (6) is an expression for a hyperbolic or eliptic trajectory.
In the case of charge e starting its motion from infinity the motion
can be only hyperbolic. Considering the event as a collision of two
particles it is customary to talk of strong and weak collisions. In order
that a collision be considered strong it is necessary that the total devia-
tion of v, is equal or larger than 90°, i.e., # — 6y = «/4. The angle
6o = =/4 corresponds to the position r = » and can be realized only
if in equation (6) the denominator is equal to zero. Thus the criterion
for strong collisions becomes

1

44
or

m Po"-’o2

=1. 7
7o (7
All particles, having velocity v,, whose collision parameter is smaller

2

than p, = will effect strong collisions. The cross-section repre-

°

muv,*
sented by the field of Ze corresponding to such strong collisions is,
therefore,

Z'.z +
o = Pt = (8)

2 4
m*v,

2.2. Motion in a Magnetostatic Field

In a homogeneous magnetostatic field B a charged particle moves
on a helical trajectory (fig. 13) with an angular frequency

e

wc:

B. 9)
mc

The projection of the trajectory on a plane perpendicular to B is a
circle whose radius

B
— B2

c

is called the radius of gyration.
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The translation of the centre of gyration is, therefore,

GG =di=dr+p —p

e dpaB prdB pAaB ‘
— — —2 = 1B 17
d¢ dr+e{ T + B I } (17)
where
dr = vdt
and
e X
— BJAB
dpAB (5 vs B(v-B
pr = ¢ dt:——ivdt+—e——(z———)dt.
B: B2 c c 2
The equation for d¢ becomes
B(v-B dB B
M I B
2 e B: B

from which the velocity of the centre of gyration, often called the
drift velocity, is

u=§{=7y +

32 BB

c Av grad- B AB
_{L——E——_——2 P v-gradB}. (18a)
e

If the character of the particle motion is determined mainly by
the magnetic field B and the influence of v grad - B, grad B and 0B/oT
can be treated as small perturbations one may expand the velocity
vector v into three parts

v=1v + v + u (19)

where v, is the velocity vector of the cyclotron motion which rotates
in a plane ¢. perpendicular to B with the angular speed o, and v
is the component parallel to B and u. is the component of u in o.
According to our assumption u, is small compared with v, and v
(fig. 16). :

The vectors v grad - B and grad B can be similarly considered as
having one component parallel to B and a second one lying in the o
plane. Thus, for example,

grad B = grad; B + grad. B. (20)

Let us now introduce in the plane o, orthogonal cartesian coordinates
x, y, with unit vectors i, j. The coordinate axis z and the corresponding
unit vector k are then parallel to B. Let us also write* v, = g - v..

* g = ig: + j8u B: = Sin wcl, gy = €OS wcl.
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Let us neglect purely cscillatory terms in eqs. (22a, b) and consider

only u, and u;,. The oscillatory terms occur in connection with co-

efficients such as g, g,, g.8,- The mean value of terms g.*, g,* is 4.
We also note that the vector

grnk = —ig, + jgr

Putting eB/mc = o we get for &z, and i,

1 oB. oB
Bou, =i { — 0—~—vc2 + Y v

2 oy 0z

. {1 ¢B: | + oB, (23a)
— — Ve~ vy

J 2 ox | a
°oB 1 ¢B, 23b

Bo4; = Bo.yy + —v.? Oy —— v . ( )

2 ox 2 oy

Assuming that volume currents can be neglected, the second Maxwell
equation gives

curl B = 0

and therefore,

oB, B, @oB, 0B. @®B,  0B.

?

ox oy ¢z oy

o =

0z ox

Substituting these relationships into eqs. (23a, b) we obtain

B A grad B, .
e = ————— (You® + ) (24a)
B2w,
and
u = v : (24b)

We shall use these formulae to investigate the motion of charged
particles in three different magnetic field configurations (in the follow-
ing sections @ will be denoted simply by u).

2.2.1. MOTION OF CHARGED PARTICLES IN A TOROIDAL MAGNETIC FIELD

Let us consider a magnetic field which in cylindrical coordinates
has only a component By and which is uniform in the ¢- and z-direction
(fig. 17). In the absence of volume currents it follows from the
2" Maxwell equation that

= — . (25)
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In this section we shall deal with the motion for which

mv
P=E—

—B

[

£d

where d is some characteristic dimension of the lens, The description
of the motion of such a particle can be based on the drift-velocity
formulae. However, in order to apply these equations, information is
required on v, and v, This can be derived from the invariance of
the total kinetic energy of the particle, which is

W = Ym(v? 4+ v?) = const. (28)

and from the adiabatic invariance of the magnetic moment p.
Magnetic moment of a gyrating charged particle is

po=wp®i
.. . . . € Ve mv. - ¢
where i is the circulating current. As i = . , p =
c 2‘ﬁp eB
wc have
4 mv?
=Y v = 2 (29)
c B

[+

It is evident that p « where W is the energy of the cyclotronic

o

motion. It has been shown by Fhrenfest that the ratio of kinetic energy
W of an oscillator and its frequency o is an adiabatic invariant (ref. 4)
and therefore, in the case of a gyrating particle

# = invariant.

The magnetic moment u is only approximately invariant and its
variation Ay is critically dependent on the ratio

L Te
wl (30)

eBo_/21rmc Tt

where r. is the period of the cyclotron motion and r, is the transit time
of the particle through a non-uniformity whose dimension is L. It
can be shownthat

i = exp (a T ) (31)

© Tt

and a is a factor depending on the relative amplitude AB/B, of the
non-uniformity (ref. 5).
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o(rB,) oB.

= —T7T .

or - 0z

Assuming that for r ~ p, 0B,/¢z is independent of r one obtains on
integrating this equation with respect to r:

1 ©B.
B, = —— S
2" oz
Substituting this into eq. (33) yields
1 oB,
Fi=——_ i"cP -
2 ¢ 0z
Ymv* 9B,
F, = — _/i_ (33a)
B 0z

or expressed in a vector form
Fy, = — p - grad B. (33b)
The equation of motion in the B-direction becomes

- M
v = —

- grad B.. (34)

This equation shows that charged particles, incident on a region of
strong magnetic field experience deceleration in the direction of B
and in some cases are reflected. However, as their total kinetic energy
remains constant, it follows that as v, decreases v. increases and vice
versa. This can be expressed mathematically using eq. (28) as

W
vt = — y (35)
m
The condition of reflection is that v; = 0. When this is so v, reaches a
maximum Ugy
2W
Ve = . (36)

m

Assuming the magnetic moment to be invariant it follows that

L4 mogy® w
po= 22" ) (37)
B\[ BM

It is clear that the smaller the magnetic moment, for a given total
energy W, the further will the charged particle penetrate along the
converging flux tube *.

* In this connection one defines J = f mudl, which can be shown to be inva-
riant in some situations (longitudinal invariant, ref. 6).
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A more general problem is represented by the motion of a charged
particle in a magnetostatic field whose flux tubes form a converging
and bent bundle (fig. 20). This is the configuration off axis of a cylin-
drical lens.

Fig. 20. Drift motion in the field of a magnetic mirror.

If B varies only slowly with respect to z one has B A grad B, =
B - 0B./cr and eqs. (24a), (34) become

oB. Bz
e [/ e

oB.
9z

v = vl B.? (39)
The reflection condition remains approximately the same as formulated
in eq. (37). However, the particle does not return after the reflection
along the same tube of flux but precesses in the ¢-direction during the
reflection process.

Let us study this precession in the case of a magnetic mirror (fig. 21).
This is a particular case of a lens geometry in which

B =Byforz<a, B=Bforz>1b
where B, > By and b > a.

Fig. 21. Flux-tube in a magnetic mirror.
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It follows from eq. (37) that particles for which

w
B,

will be reflected. Let us divide this inequality by (v®); where
(vy)o = v, for z < a. Then

vc 2 vc::

Uy Jo v? Jo
>

Bo Bl

Ve
( ] = tan §
Yy Jo

where 6 is the angle between the vector v, and the vector Bg, one can

>

Putting

write the condition for reflection as

B,

. 40)
B (40)

sin®* § >

We shall follow a typical particle which satisfies this inequality. The
angle of precession ¢ of such a particle will be

¢=2§"¢ de
r

b

5 € § AB./dz (ZW ]d’ a
=2\ g —#) 4D

‘0
This can be written as

c z§a oB./or ( W ) dz

rB B

vy

From eq. (39) it follows that

n 0B:
vy = —
ot
or
” 1/z
‘U“ == [ 2 ; (B:- — Bo) + ‘UHOZ] . (4’2)

Also near the z-axis (i.e., forr < b — a) one can expand B, as

B.(r,z) ¥ B, — 14r:B”,
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where 5°
= B.(0,2),B”", = ; B..
0z*
Using this expression and eq. (42) one obtains
2
[ B (g —n) e

(43)

a
[
X —

eg

a

which can be easily evaluated for a specific field geometry. It can be
appreciated that owing to B”, changing sign in the interval (a, b)

12
B. [2~(B~—Bo) +v”02]

the sign of ¢ may be either positive or negative.

The field of a magnetic dipole can be also regarded as a magnetic
lens of the type discussed in this section. However, as the field strength
of a dipole depends on the distance r from the centre of the dipole
as 1/r%, the motion of a charged particle in this field cannot be always
correctly represented by the drift motion of its centre of gyration.
In particular, the theorem of conservation of the magnetic moment
of the particle breaks down when the radius of gyration p becomes
larger than the distance r.

A very elegant experiment on particle trajectories in mirror-fields
has been based on the production of positrons and the tracking of
their excursions in the magnetic field (ref. 7).

2.2.3. MOTION OF CHARGED PARTICLES IN A HELICAL MAGNETIC FIELD

Let us consider the field of a cylindrical lens, to which a B,, compo-
nent has been added. The flux tubes of such a field possess a certain
twist around the axis of symmetry z. This twist can be specified by the
angle ¢ between the osculating plane of the field line and the axis z
(fig. 22).

It is evident that as the angle ¢ increases, the angle ¢’ between the
axis z and the drift-velocity vector u increases also. In order that the
progress of the particle in the z-direction be arrested one must have

¢':¢+tan‘( e ] = Lom

wy
or u. = uy - tan (Lom — ¢). (44)
From this it follows that the drift discussed on p. 38 inherent in

purely toroidal fields can be compensated for or even reversed by the
addition of a B,, B, field of a cylindrical lens, As in most cases of






MOTION IN A MAGNETOSTATIC FIELD 47

The equations of motion of a charged particle in this helical field are

. vy° e —e .
r— — v, B. = zB, (46)
r mc me
. e .
z + v,B, = rB,. (47)
mc
A
ﬂ:ﬁz*ﬂr
06’*;
—I—= r

Fig. 23. Geometry of a betatron field.

Let us expand r, B,, B, and B, about their respective values at
r=rg z=0.Thus

Bz = BOz + x 2 (483)
x 0z
¢B. oB,
B, = x z (48b)
ox 0z
oB
B, = By, + x —~ . (48¢)
ox

As the betatron field is produced by external currents only
curl B =0, divB:=0
and we get

oB. B, 7B 1 3(rB,)

ox oz 0z r or

As B, = 0 for z = 0 it follows from the last of these and from (48b)
that
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oB. _ aB, — 0
ox |.-a ? 0X |z-0 -
Eqs. (48 a, b, ¢) can, therefore, he written
¢B
B, = By, + x =2 (49a)
ox
oB.
B, =z = (49b)
ox
B,
B, = By, —x —2. (49c)
To

The value B, can be taken to be the field corresponding to the steady
state solution of egs. (46) and (47) for which the centrifugal force of the
rotating particle is exactly balanced by the magnetic force. Thus

v,* e

m --—-—- = — — U,IB():. (50)
Cc

With the help of eqs. (49a, b, ¢) and (50) the equations of motion can

be written:

. vt e ¢B. e . x L
xt+—Fx— v x=-— zBy, | 1 —— (31)
ro’ mc cx mc T
. e ¢B. e . x
z + v, z = IB(),,~ [1'——]- (52)
mc cx mc ro
Let us define the parameters
¢B.
T or
=0
—_——————=n (53)
B():’
B,. B
ey 2, (54a,b)
mc me

Neglecting all non-linear terms in x and z, the equations (51) and (52)
become

T4 0ol —n)x = — wez (55)

z 4+ u)()"'n.z = wX. (56)

These equations are of the same form as those for two coupled harmonic
oscillators and have two solutions of the form

x = felor z = neivr, (57a,b)
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two independent betatron oscillations of the particle, one in the radial
and the other in the axial direction.

In the presence of the toroidal field these two oscillations are coupled
and one must distinguish four different amplitudes

£1m1 and £omo.

From eq. (59) one obtains

(1)2"—(1)2
& —j Jroo” ek where k£ = 1, 2. (61)

% Wke

For a toroidal field much stronger than the betatron field, ie., for

@y > wo

one has from eq. (60)

wc 1( wo }*
- - [1 T2 [ 0 ] ] (623)
wQ wo 2 We

Vil —n) [1_— ‘°°: ) (62b)

Substituting these into eq. (61) one has

&
71

W

=—j [1_ (n +1/2) 22 ] (63a)

and

(1)02

& . n
- :__J\/l_n [l——(l—n) (n—1/2) mc:] . (63b)

The movement is, therefore, composed of two elementary motions
(fig. 25), one being nearly a cyclotron motion with angular frequency

J}Z

by /_;"]2
Xk_}/’ X

Fig. 25. Drift in a meridian plane of a betatron
with superimposed toroidal magnetostatic field.
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w1 == we, the other a slow elliptic motion whose angular frequency is

2
wo

we 7T \/n(l —n)

(64)

We

and for which the ratio of the major axis to the minor axis of the

ellipse is
& _ \/ n - (65)
n2 1 —n

In order to treat the case of B, > B,. by means of drift-velocity
formula (24a) we must define the force F and grad B. In a betatron
field this is the restoring {orce that the particle of speed v, experiences.

This force has two components, which were already formulated in
egs. (51) and (52)

oB. Bo.
F,:iv(po"x———e—vq, % x (66a)
c ox c Io
oB.
F.= 2 v, z (66b)
c ox

In the expression for B A grad B we shall neglect contributions
of second order in B, and B,. Substituting into formula (24a) and
assuming that v, € v, we get

¢c 0B, v mv,
M Tax B: (ZJ’ B: ] (67)
°oB; «x me vt 3 B x
M= U ox B, + e ron(l—E—B?_r_o)
mec 0B, - v,
e 0x B, (68)
Remembering that B, > B,. and using eq. (53) we obtain
. By. z .
X = U, =n B. v, (69)
B,. =«
z =u, = B o (n — 1)v,. (70)

These are the equations of motion of the centre of gyration in the
meridian plane of the betatron. Differentiating eq. (69) and substitut-
ing z from eq. (70) we get

. BOZ 2 ‘U,pg
x=n(n—1) ( ) x. (71)
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The solution is

x = feivr, (72a)
Similarly we find

z = peior, (72b)

The corresponding characteristic equation gives

- . w0
o = \Vn{l —n) — (73)
which is the same as eq. (64).

The ratio £/7 follows from either eq. (69) or eq. (70).

£ . n
_77——3\/ l1—n (1)

which agrees with eq. (65).

The comparison of the two analyses shows that the drift-velocity
description is less detailed than the full analysis of the equations of
motion; however, it is generally shorter and often easier to interpret
than the latter.

2.3. Motion of Charged Particles in Crossed Electric and
Magnetic Fields

In a plasma confined by a magnetic field the force of the electric
field eE on an electron is small compared with the Lorentz force
(e/c)v A B, even though the velocity v is often a small fraction of ¢.
This is not always true for the positive ions.

In this section we shall study the motion of charged particles in
combined electric and magnetic field, restricting our attention to the
situation mentioned above, ie., making the assumption that the effect
of the electric field on the particles can be regarded as a small pertur-
bation of their cyclotron motion. This leads to a description using the
concept of a drift velocity and therefore, it will be more often appli-
cable to electrons in a plasma rather than to positive ions.

We shall derive a formula for the radius of gyration of a particle
in an electric and magnetic field. The force balance in the o plane
gives (fig. 26)

v,* e

+

P vy

m

|E, A v,| = — v,B (75)
C

when recalling the assumption mnade above
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AB E Av
cr [1+c——|l—i}. (76,

p= e B v,*B
A differential translation of the centre of gyration is given by

dé=p' —p +dr.

41

Fig. 26. Motion in crossed electric and magnetic fields.

Let us assume that the magnetic field is uniform. Using a treatment
similar to that on page 34 we have

, c( dpaB pAB [ ¢
p _p:?{ = + T o d|E, Av,|
2
— = |E, av,|dv, (77)
v,3 .
From
dp = (eE+ iv/\B) dt
c
we get
dpAB B(v-B EAB
e L S P iLdt—}-e " e
B: c c B?

Substituting these into eq. (77) one gets

[

u=¢§¢(=7vy + BZ{eEAB+

mcvAB 1 d
Bv, v

e
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Some of the terms in the square brackets are of oscillatory nature, the
rest can be neglected in comparison with the E A B term *. Thus

EAB
B:

(79a)

uy = v (79b)

This formula does not contain the charge e of the particle and therefore,
the drift velocity in crossed electric and magnetic fields does not
depend on the sign of the charge. In uniform electric fields the
eq. (79a) is valid for any ratio of E and B.

The expression (79a) can be generalized for any force field F by
substituting

E=—.
e
The general result of eq. (79a) is that the drift velocity vector is per-
pendicular to both the force field F and the magnetic field B.

As our analyses of the effect of grad B in the previous section and
that of the electric field E in this section were both developed to the
first order in the magnitude of these perturbations one can super-
impose the expressions (24a) and (79a) and get a general formula for
u.:
¢ FaB B A grad B
J— " +
e B e

mc

u. =

(Yave* + vf¥) (80)
B."I

or, using the expressions for the magnetic moment n and the total
kinetic energy W one has

c 1 2
ucz?F{FAB+(T——,¢JBAgradB}. (80a)
The formula (79a) for the E A B drift has been derived on the assump-
tion of small perturbations to the cyclotron motion. It can be shown
that for this type of drift such an assumption is not necessary and we
shall derive the above mentioned formula directly from full equations
of motion. Let us assume that E = E,, B — B. and that these fields

EAB
* The second term, though usualy small compared to ¢ —, is of importunce
. . - . » mc‘:
in evaluating the transient current ew;n in a plasma of density n. Thus u, = E,
eB:

(see p. 58).
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are uniform. The motion of a charged particle is then described

by

mx = — yB (81a)
c

my = ¢E — — %B (81b)
C

Integrating the first and substituting into the second we get

- e .
y=——FE—oly—o %
m

whose solution is
y = Asin (0.t + ¢) — A sin p (82)

which gives for the x and y

. E
x=chsin(mct+¢)+c—§

).fzchcos (wc t + ¢)

The speed of the cyclotron motion is evidently
v= (x4 y)? = 0. 4 (83)

whereas a drift appears in the x-motion whose speed is

=

I

(o]
|

identical with expression in eq. (79a).

Comparing v and u it is possible to distinguish three types of motion

a) v > u — this is the case corresponding to the perturbational
analysis worked out on pp. 53 and 54 (fig. 27a).

b) v = u — the trajectory is the classical cycloid (fig. 27b).

¢) v € u — the trajectory corresponds to an epicycloid, generated
by a circular motion of small amplitude superimposed on fast
linear translation (fig. 27¢).

In conclusion let us mention the case in which E > B. The simple
formula (79a) gives u > ¢. This paradox is easily resolved writing the
original equations of motion (eqs. (8la, b) ) in a relativistic form. It can
be shown then that u < ¢, consequently at no time can the Lorentz force
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The power absorbed by the particle from the E field is, therefore,

. AW

W = . (86a)
T
Thus W = W, (B/B) where W, = Vymuv,*. (87)
Integrating we have
. B
W, = W, B_(. (87a)
Substituting for B/B, from eq. (85a) we have

W r()."
= ., 88
WO r: ( )

This ratio of initial energy to final energy is the same as would be
achieved by an adiabatic compression of a volume #ry® to a final volume
ar® containing particles possessing only two degrees of freedom, i.e.
r and ¢.

Our analysis has been based so far on the assumption of the invariance
of the magnetic moment. In case that the magnetic field rises very
rapidly this assumption may not be applicable and full equations of
motion must be used (ref. 9).

2.4. Motion in Crossed R.F. Electric Field and a
Magnetostatic Field

We shall study the motion of a charged particle in an alternating
electric and a magnetostatic field. Let the angular frequency of the
r.f. field be «, and the cyclotron frequency .. Four different cases
will be studied according to the value of w/w..

(l) We & O

In this case the r.f. field appears to be almost a static one and the
drift velocity u, derived in section 2.3. may be used to describe the
motion. Thus

E()
uUu = c

sin (ot + ¢) (89)
and the drift velocity oscillates * with the angular frequency o (fig. 29).

* Apart from this motion there exists a second order effect. The time variable E
field causes a drift in the direction of E (sce footnote p. 54). This ul|E generates
polaribation currents in a plasma in a magnetic field.
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The kinetic energy W of the particle is

W = Yom (= + y°). (95)
Differentiating (94a) and (94b) and substituting into (95) we have,
for ¢o = 0:

e’ 1 e Eg
Ey* + — -
m 8 m o®

sin? ot

1
W = Yomuy® + VoEgevet + r

E 1 e Ey
+ v, 20 in 20t + — 2
® 8 m [0}

t sin 20t. (96)

The first term represents the initial kinetic energy, the second
increases linearly with time t, the third increases as the square of &
the rest are oscillatory terms of little importance.

Let us now find the time f; for which the 3rd term in eq. (96) is
equal to the 2nd term. This is

4mu,

V eE()

tl—':

In other words, it is the time at which the impulse eEyt;, given to the
particle is 4 times the initial momentum muvy. The time t; is short and
one may consider that the 3rd term determines the absorption of
r.f. energy by the particle.

In eq. (96) we have considered only the particle for which ¢, =0.
The effect of ¢y£0 may be predicted from the expressions for x
and y (eqs. (94a) and (94b). As t increases the lst term in those ex-
pressions, which alone incorporates ¢,, becomes negligible compared
with the others. This means that the charges for which ¢o 520 are
eventually pulled into phase with the applied electric field and their
energy W increases approximately according to eq. (96).

(4) 0 = we

In this case the particle is accelerated up to a maximum kinetic
energy, after which it begins to lose energy to the r.f. field. This
process of energy exchange is periodic, the frequency being the beat
frequency

@ — @¢

f= 2t (97)

The maximum momentum py,,, gained from the r.f. field is

o1
DPmax = eE _ZT‘ (98)
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where E is the average field acting on the particle during the time
1/(2f); one has

E = LE,

and

1
Pmax = 1/217 eEo _ (983)

w— ¢

The maximum energy is

(anx)"‘ 7 Eo 2 0] -

and the maximum radius of gyration is

Pmax eEO (O] -1

Pmax = = Y= - 1— . (100)
i B Mo ¢
c

2.5. The Movement of a Charged Particle in the Field
of an Electromagnetic Wave

Let us consider a plane electromagnetic wave in vacuum. The field
components are

E. = E sin (ot — kz) (101a)

B, = E sin (ot — kz). (101b)

The equations of motion of a particle in this field can be written as

P (1_1) sin (ot — kz) (102a)
m C
eE =x |
z = — sin (ot — kz). (102b)
m C

In vacuum k = 2=/% = o/c,
and therefore:

z de.

w
kz = —
c

Ol ey ™

If the interaction of the particle and the field over many cyeles should
not be affected by the term kz one must have

kz<mt
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13

[i5) .
— z dt < wl
c [y
0
ie.,

<1 (103)
[

Provided this inequality is satisfied, the set of eqs. (102a, b) reduces to

X = ac sin ot (104a)
Z = ax sin ot (104b)

where

a = eE/cm.
Integrating eq. (104a) one has

ac .
cos ot + x¢

X = —
L]

and substituting into eq. (104b)

1 ac | .o
z=—— sin 2ot + axg sin ot
2 e
from which
1 a%c . axy | .
z = — sin 20t — sin ot + zgt. (105)
8 o ?

Thus, if z, =0, there is no mean drift in any direction, the particle
moves on a trajectory resembling a figure of eight (fig. 32).

>

Fig. 32. Motion in the field of an electromagnetic wave.
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Let us now suppose that a charged particle is located in a medium
which is able to advance the phase of E; with respect to Hy by 1/2x. *
Egs. (104a, b) are then written as

X = ac sin (ot + Yyr) (106a)
z = ax sin ol. (106b)
For x, = 2, = 0 these equations reduce to

z = a’cw! sin? ot.
The non-oscillating component of : is, therefore,

o

1
z0 = 5 t (cm/sec). (107)

[0}

This is the maximum speed a particle with a charge to mass ratio
e/m can attain in an electromagnetic wave E,, H,.
The average force per particle is then
1 eE*

F, = mz = —
2 mco

(108)

In the case of a single particle a phase shift ¢ is introduced owing
to the influence of the particle on the field-configuration of the wave.
The simplified equations of motion are

X =a-c-sin ot (109a)

Zz = ax sin (of — ¢) (109b)
eE

mc

where a=

the phase shift ¢ between the E and B vectors represents the reaction
of the charge on the radiation field. This is understandable if one
imagines the charge to be a perfectly conducting sphere of radius

2

r = — (classical radius of an elementary charged particle). The
mc*

c
thick.

* The phase-shift postulated above may be effected by a slab of plasma
Wp

The number of electrons/ecm? in the slab is N = n and the force per cm? of

wp
eE? c 47en
the slab is F = N . F, = 1/2 . n . Since «,® = we get
mcop, wp m

E2
= 8_ the total radiation pressure.
T
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Thus the energy radiated by the charge during dt in the direction r
into a solid angle dQ is

d'-‘w:;—(EAH)- (1_ d J r2 do dt. (116)

c::

Using eqs. (115a, b) and (116) one obtains for a power radiated into
unit solid angle

(117)

For v/c € 1 this expression reduces to the well known Hertzian formula

dw e? (. )2 (117a)
= =, a
do 4rc® vhae

Let us now integrate the equation (117) with respect to Q over a
large sphere. This gives the total radiation output from the moving
charge. The integral is

o

2e . .
w = {v’y® + vy} (118)

363
where v has components in the direction parallel and perpendicular

to v. Transforming v, and v: to the rest system of the particle, i.e.,

into vy, one obtains

2 o (118a)
w = Vo, a
3¢ ¢

Thus it follows that the power radiated by accelerated charges is
an invariant of the Lorentz transformation.

From these equations it would appear that charges can radiate only
if accelerated. However, eqs. (115) to (117) were derived only for
v < c. If a charge propagates in or near a medium in which the speed
of propagation of radiation is smaller than the speed of the charge
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Using eq. (118a) the total power radiated away during a collision
is (ref. 11)

2 e .
2 e S (v)? du. (121)
3

-

AW =

One may integrate with respect to the azimuth ¢ rather than t using
the law of constant areas. This is written as

dg
2 = 122
T Pvo (122)
and AW becomes
-y
2  ZteS 1 1
AW == Z¢ S - dg. (121a)
3 mic¢ py, r?
-(m-y)
As (see eq. (6) )
ptan ¢
r=-—
1 4+ xcosé

one obtains, after integration

2 Zet 1 3
AW = S {&—wﬂl+ LA . (123)
3 mic® piuy tan® ¢ tan ¢

The value of the angle { is generally larger * than 1/4=, e.g., for
electrons whose energy is approximatcly 100 eV an angle ¢y = 1/4x is
the smallest permissible. For larger electron energies the de Broglie
collision parameter

h

mv

P =

is always larger than the parameter p, corresponding to a deflection
of 2y = 90°, and therefore, the smallest permissible ¢ is yunin > 1/4w
(ref. 12). ‘

It thus appears that the value A of the expression in the curly
brackets in eq. (123) is approximately

A=Ay = Thn) = Ym.
Then
VAT 1

™
3 m**® piy

AW =

(124)

* Small angle scattering being the most frequent event.
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In a plasma whose electron density is n. the number of e—p collisions
per second with the collision parameter p in the interval (p, p + dp)
is 27p dpvgn,. Thus the total radiation power emitted by an electron is

plnux
W = § AW 2=puven.dp
Puin
where p,.i, follows from eq. (17) chapter 1: pui, = h/(27muv,). The
value of the integral is insensitive to the choice of ppay which could be
taken to be infinite and therefore,
43 Z2e®
W= +e n.vg.
3 mch
But v, can be expressed in terms of the temperature of the electron
gas. Assuming that v, is equal to the mean random speed \/2kT./m
one has

W =171 X 10% Z*n,T.. (124a)

This result agrees reasonably well with a more rigorous wave
mechanical calculation (ref. 13). A similar calculation can be perform-
ed for an e—e collision, in which the radiation has a predominantly
quadrupole character and is, therefore, generally less intense than
the dipole radiation from e—p collisions, treated above.

The wave length of radiation emitted corresponds at every instant
to the radius of curvature of the trajectory. Thus the shortest wave
length wille correspond to 2xr,,. For a strong collision (eq. (7))

Finin ~ and consequently

41

A 2% c
min ~ '41 Po Vaax .

o

An approximate value is, therefore,

c
Amin = 2-6 Po . (1258)

o

If the trajectory extends from o to — oo is is evident that Ay, — 0.
However, in plasma the upper bound for collision distance is usually
the Debye length d and consequently

c c kT
Amax =~ 27d = —.
Yy Vo ne-

(125b)

The approximate form of the bremsstrahlung spectrum emitted from
plasma is shown in fig. 36.
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k. = kst — k.* where kg = 2x/A. (133)
As k, = ky/f it follows that
1 1/2
k, = ik, (—F— 1] = jko/By. (133a)
The radial “fall off” distance is A = 1/k, = By/ko. (134)

Consider now the electron to be moving in a circle of radius R,
then the phase velocity of that part of the “slow wave” which extends
to a radius R/ is equal to ¢. Hence if the distance A’ between these
two circles A’ € A, the wave under consideration will radiate, if the
distances A’s, A it will not contribute appreciably to the radiation
from this rotating charge. Equating the distances A and A’ one obtains

Byx = R(1—1/B).
Now for y* € 1, 8 = 1 — L4,y™* whence
A = =R/ (135)

Radiation of shorter wavelength will not appear in the spectrum.
Eq. (135) is equivalent to eq. (131)

g/

le] R

Fig. 39. The cylinder of radius R/8 outside
of which the near-field becomes a radiation field.

The subject of emission of cyclotron radiation from plasma cannot
be treated in this chapler; a greater acquaintance with wave-propaga-
tion in plasma is necessary before one can calculate how much of the
cyclotron radiation from single particles is reabsorbed and how much
can escape from plasma. However, a useful approximation can be
derived by assuming that only the energy radiated in harmonics whose

frequency is higher than

wy 18 lost from the plasma, i.e., considering

“p

only I >

. This is obviously not true for infinitely thick plasma
o,

which would radiate as a black body, i.e., whose radiation output per
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unit volume tends to zero, Our approximation gives, in this sense, an
upper limit on energy lost per unit volume of plasma.
The power radiated in the I'th cyclotron harmonic is (ref. 14)
=g

Let us restrict ourselves to a non-relaiivistic plasma, ie., 8 <€ 1.
Since the first maxima of the Bessel functions J,;(x) and J%.;(x) occur
at x ~ 2l it follows that * = 2I8 is a relatively small argument of these

functions and one can use the approximation

v (1/2 x)» x*
~—— |[1——]- 1
wo = S0 [1- s
Then

:cu..- 2[ 2l gzt (9] 2 l
W, S gy DU (2L 2) (1-&,@2-] (138)

r (2) 21 (2) 1 (2L + 1) 2

21 (1 + 3)

where o =

(I+1) 20+3)°

Using the expansion p! = p - T(p) = /27 e?pr*'/2 we have for I > 1
20 1 21+ _ 1

WI: e'w - (Eﬁ] \/l- (1—,3"—] (139)
r AVE S 2 2

where ¢=2.72

Let us now calculate the power radiated by this electron in all harmo-

nics between [; =

? andl, = 2/B* This is approximately

L
:wp 1 2 Y
W%igla’(—_—_—ﬁ—\/l] dl (140)
2\/7rr \/l 2

where a = (—Ezﬂ—] & 1. The function of \/T in the brackets is varying

slowly and provides mainly an expression for a cut-off at l,. We shall,
therefore, use an approximation

w

IIZ

en. [ ¢
B VE \ a di (141)

2T \/7r

~

1

as an upper limit.
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Thus
2 02 l1
W 20 g % (142)
c \/27r [1 ]
In|—
a

The ratio of this output to that emitted by the particle in absence
of plasma (eq. (126) ) is

174 3 g8 1,-3/2
p = =2 2 (143)
1w 32v/=/2 ( 1 )
In|—-
a

where [, is determined only by the characteristics of plasma, whereas
a depends only on the speed of the particle. Let us take as an example
n = 10" el/em? B = 10* (Gauss), 8 = 0.1 thenl;, ~ 3 and p £ 4 - 102
Assuming a maxwellian distribution of velocities in a plasma whose
temperature is T, the power output of incoherent cyclotron radiation

will be

1 3
W, =2n[—— RW(BL)
( \/71',30) R

exp [— M] 2=B, dB, dB.

(144)

0

St g

1 2T
where 8, = —\/ and B3, corresponds to the velocity component
c m

perpendicular to B. Integrating first over 8, putting = V/x and
0
. 1 1
assuming In — ~ In
a a,
2.2 @glil/? 1
W.= e_w a0 n-. [l1 ———] ! (ergs/sec, cm®) *  (145)
c\m [ 1 ) 2
In
Qg

The ratio of this output to that which would be produced were the
plasma completely transparent is
W.

r = 146
P W, (146)

* This expression can be also written in terms of T as follows

det V& (s'—’kT]’—‘/'-’ It

We =~

_— — . n* (145a)
cmlinl/a,

2me® | 15/2
wp
where | = ——.
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where
2 et . B.*
Ww,=— ¢ 28,%exp | — -d
P g ) B ( Bu:) &
-2 e Bot-n (147)
3 c
and therefore,
ST (R
po= F 2 (148)

8 Vr ln[l]

Taking values of the last example in which we put B = 8
(T ~5-107-K) wegetp’ ~ 7-102

So far, we have treated the emission of cyclotron radiation as inco-
herent. If coherence exists, e.g., the electrons are bunched, the mean
number of electrons in a bunch being IV, the total radiation output will
be N times larger than the incoherent one.

2.6.3. CERENKOV RADIATION

Cerenkov radiation in the broadest sense is electromagnetic radiation
from charges in rectilinear and almost uniform motion. The earliest
experimental results (in 1934) have been correctly interpreted by
S.I. Wawilow, by .M. Frank and by LLE. Tamm.

It may be shown that such radiation cannot be emitted by electric
charges in free space. This is the result of both the energy conserva-
tion and the momentum conservation conditions. The relativistic energy
W of a particle of rest mass m, is given by

W2 = p%* + myic. (149)
Any differential decrease in energy is accompanied by a decrease
in the relativistic momentum p according to '

pc pe*

dw = dp = dp. 150
W r (p::cz + m0204)1/2 p ( )

It is evident that, when m, > 0,

AW < c dp. (151)

If, however, my = 0, as is the case with photons, then for plane waves
W’ = p’c (the prime denotes photons) and

aw’ = ¢ dp'. (152)
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For any type of waves other than plane waves
dw’ > ¢ dp". (152a)

Thus a spontaneous emission of radiation such as is depicted in
fig. 40a is forbidden, since it would leave the particle m with larger
momentum p than is consistent with eq. (150) (still assuming a recti-
linear trajectory). Thus if dW = dW”’ it follows from eqs. (151) and
(152) that dp > dp’.

If, however, this excess of momentum (dp — dp’) can be transferred,
say, to another particle M, the emission of a photon with energy dW’
and momentum dp’ becomes possible. Such a process is illustrated in
fig. 40b. It is evident that the radiation process represented by fig. 40b
varies in intensity as m passes M. In order to obtain a constant drain on
the excess momentum (dp — dp’) it is necessary to provide a system of
charges Q, uniform in the direction x (direction of the rectilinear
trajectory). With such a system the radiation output W is constant in
time.

Fig. 40a. Forbidden emission. Fig. 40b. Momentum absorber.

It is advisable here to abandon the photon description of the
radiation process and use the travelling wave picture instead. Assume
that the radiation output from the charge e is constant in time, due
to the presence of a suitable momentum absorbing structure S, extended
in the x-direction (fig. 41). In terms of travelling waves, such a constant

AV AV A

>‘é X e R
\\\ =)
TRTATITN
5

m
e
VLl L

———

P

Fig. 41. Distributed momentum-absorption

v
permitting the emission of Cerenkov radiation.
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The angle y is given by

. v, c 1
sin ¢ = = (158)

Ve Ve (5#)1/2 )

It is possible to gain insight into the nature of this type of Cerenkov
radiation by noticing that a detector placed near the trajectory will
record a sudden electric impulse E(t) (fig. 44). Since the impulse E(t)
has an infinitely steep front, it follows that its Fourier spectrum will
contain finite components whose frequency v — oo.

AE

t

Fig. 44. Field pulse generated by the passage

of the surface of the Cerenkov cone.

A more rigorous analysis of the process gives the following formula
for the energy frequency spectrum (ref. 17)

1
o) =ao |1 — 159
wlo) ( epf? ] (159)

where « = v.e*/c*and 8 = v./c.

The formula suggests infinite output at infinitely large frequencies
(this type of divergence has been known in the pre-quantum physics
as the ultraviolet catastrophe). This is not true because no dielectric
or plasma is ideally uniform and thus there are always the effects of
periodicity setting in at a wave length A, comparable with intermolecul-
ar spacing X,. It will be appreciated that for instance, for gases, the
wave length

Ao = euXo
is of the order of A, = (10) em and thus the maximum wpg,, lies
in the visible part of the spectrum.

In order to derive the spectral distribution for a plasma let us rewrite
eq. (159) as follows

Vs~

(o) = wo [1— : ] (160)
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where v, is the speed of propagation of signals of frequency o in the
medium considered. This speed is practically the same as the group
velocity v, for which we have

do where k = 3"— .

dk A

vy =
For a plasma without a magnetic field (see later p. 150), the dispersion-
relation for transversal waves is *

o — oy = ¢t k? (161)

from which the group velocity is

k )
v,:c2_=c\/1_ A, (162)

w [0}

Substituting for v, in eq. (160) and integrating over o we get the total
power radiated by the charge

oy

e'.! 1 . C'.' cﬂ . w,
=—0v| —0® | 1 —— + —tlnoe . (163)
2 * v*
The limits of integration are chosen as follows. The lower limit
w1 = w, since for w < w, plasma does not transmit tranversal waves.
The upper limit w> must be chosen so as not to make the integrand

become negative. This means that

o= . 164
@2 1—v?/c® (164)
Eq. (163) becomes
1 e c* 1

w=— % vu,,ﬁ[ _In —1 } (165)

2 et v? v?

1_ hl

P

Let us consider only non-relativistic particles. Then v € ¢ and expand-
ing the logarithm we get

wel

w = — nuvd, (166)

nmc?

* A more complicated result is obtained if longitudinal modes are also considered.
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In case of a relativistic particle in a plasma v ~ ¢ and eq. (163) gives

1  e%w)? w2
Wwe~— — In
2 c wy

in this case wy is given by the characteristic distance of the medium. In

v
case of plasma ws = —— ~ o, and consequently
vy
copy® c ,
w o~ In —. (163a)
¢ v

Using a more rigorous treatment, Kolomenski and Kihara (ref. 18)
obtain, instead of our eq. (165),

Ny S (167)

v v

w = lhe?

In a plasma having a temperature T the electron velocity-distribution
is

4 By! 2
Fv) = '8_‘_)_ c-n (v/c)? By exp (— bt - ) (168)
\/71' 21):‘
1 2kT \/T? V¢ . o e
where 8y, = — = . Provided the electron radiation
c m c

remains incoherent and the «(k) is not substantially affected by the
finite temperature effects we have for the intensity of Cerenkov radia-
tion *

W ~ j‘zF(v) w(v) do.
1
Using eq. (166) _
W ~ 0.37 . 10-* n* T2 (169)

It is instructive to plot the radiation power corresponding to the three
types of radiation considered so far, i.e. the bremsstrahlung the cyclo-
tron and the Cerenkov radiation. Let us, for this purpose, rewrite
the equations (124a), (145a), (169) in the following manner (for Z = 1)

Ry 10 « n* Wy ~ 1.7- T, (170a)
1!
R, 10% - n, 2 W, ~ 2 .10° (0.64 - 10 T,)+/2 T (170b)

R.. 10 n, 2 W. ~ 037107 T2 (170c¢)

* The lower limit of the integral is somewhat arbitrary, however, it is plausible
to exclude those elcctrons that move slower than the majority of the distribution.
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The corresponding curves are plotted in fig. 45. For the
unscreened cyclotron radiation we have used the formula (147) written

o

[for B ~2nkT] as

T

R, 10% - n, 2 W, ~3.75- 102 . T2
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List of symbols used in Chapter 2

unit vector field index of betatron

Planck’s constant or refractive index or par-
current density ticle density

A atomic mass number i, j, k unit vectors

B magnetic field strength J longitudinal invariant
c velocity of light ji= v—1

d Debye length k wave number or

E electric field strength Boltzmann’s constant
e elementary charge L length

F force l quantum number

f frequency m mass of particle

g n

h

-
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impact parameter,

momentum
momentum
charge

radius of curvature

position vector
velocity

time
temperature
drift velocity
potential
velocity

phase velocity
kinetic energy
power
coordinates

intermolecular spacing

atomic charge

v/c normalized speed

(1 _ v'.'/c'.’)—l/::
angle

' X 3

©

6 g N M qQ

o}

wp

angle or dielectric constant
or base of natural logarithm
mirror ratio B,/B,

angle

excentricity of a hyperbola
wave length

magnetic moment or mag-
netic susceptibility

radius of gyration

plane perpendicular to B or
cross-section

surface

time interval

magnetic flux

angle

position vector of centre of
gyration

solid angle

angular frequency
cyclotron frequency
plasma frequency



CHAPTER 3

FLUID DESCRIPTION OF PLASMA

Introduction

The behaviour of plasmas is often more appropriately described by
means of a fluid model, rather than by the trajectories of individual
particles. The fluid is made up from two electrically charged compo-
nents, one being the electron gas the other the gas of positive ions.

In this chapter we shall derive the equations of motion of these two
fluids and transform them into the form used in plasma analysis.

Let us consider a flow in which adjacent particles have vanishingly
small velocity relative to each other, the major portion of their total
velocity being, therefore, in the direction of the flow. In such a case
the flow is called a single stream flow and can be treated appropriately
in ordinary configuration space. This description is still adequate for
a multi-stream flow provided the component streams are not in any
way coupled. If a multistream exists, in which the component streams
are coupled, e.g., by collisions between particles composing these
streams, a phase-space representation is appropriate (fig. 46).

x

U
Fig. 46.
The phase-space may be constructed out of canonical variables

qip; corresponding to all the degrees of freedom; however, it is often
convenient to use a simpler system of orthogonal coordinates q;
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The first general observation one can make about a system of n
non-interacting particles located in a small volume A = 8q,8p,...8¢38py
of the piq; space is known as Liouville’s theorem.

Let the surface of the volume be marked out by the coordinates
pig; of a few particles. We then assume that the interaction between
the particles themselves can be ignored. The trajectory of each
particle in the pq space obeys the Hamiltonian equations (la, b).
The rate at which the volume A changes, as the particles move, is

given by

da d(3q1) d(3p1)
— 8 -
de [ de Pt de sql)

8q28p28qa8ps + ... permutations (3)
where (fig. 49)
8qi = qi* — qi% 8pi = pi' — pi*

A%
>: &7,' -

: s ,

q’i) p (1 A// --------------
Y/ 7 % 7

q"(;);(;(-é-)-_..A
ql.

Fig. 49.

and, therefore, using eqs. (1a, b) one obtains *

dqil dqi: 8H1 8H~’ a
— (8qi) = — = - — = (8H)
de dt de op: op; opi
oH o*H
=8 |— = ——-0¢q;. (da)
api p; =conslL. aplaql

* For interacting particles

oH
(8H) #* 8 (—} as H' is a function of not
P 5px

only p',q" but also of p*q*.
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Similarly,
d dp,'1 dp,',", oH! oH*
—— Bpi) = — =— + -
de dt dt 9q; 0qi
oH 0*H
=—39 = — 3pi. (4b)
oq; | _ 0qiopi
g =const.
Substituting eqs. (4a, b) into eq. (3) we get
dA_[ 0:H 0*H )A-}— +
dt op18qq 0q:10p, ‘
0*H ¢*H
( __° ] A=0. (5)
ap;;atp; a¢I3aP3

This is the mathematical proof of Liouville’s theorem. The theorem
asserts that

The phase volume occupied by a system of non-interacting particles
is an invariant of their motion.

The result of eq. (5) is often interpreted as the proof of the invariance
of particle density in the phase space. However, this formulation of the
theorem assumes that there are enough particles in the volume §q;8p;
to enable us to use the concept of density.

Let us assume that one deals with such a large number of particles
that the concept of density is applicable and let us define

f(qipit)3q18p:...8qx8 px

as a number of particles in the volume element 8q, ... 8px. Then the
second version of the Liouville’s theorem asserts that

df

7 =9 6
7 (6)
whicli can be expanded as
of .
S + Div (Vf) = 0 (6a)
or
of . ,
—— + fDivV + V.Grad f =0 (6b)

ot

where V is the velocity of particles in the phase space

V =V (qipi)
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and the operators Div and Grad are a divergence and a gradient in
the phase space. From Hamilton’s equations it follows (similar to
eq. (5) ) that *

2 dq; o dp;  °H H

DivV = + = — =0. (7)
aqi de ap; de aqiapi apiaqi

Therefore,
0 dg; © dp; of
- [ ¢ o  dp =0 (8)
ot dt 9q; dt  op,

or
0 oH 0 oH of
f + [ f — : = 0. (8a)
ot opi 90q; oq; dp;:

This equation can be expressed in a more concise form by using the
Poisson bracket notation

of

ot

+ {f, H} = 0. (8b)

This is a differential equation of flow in the phase space of a system
of particles whose individual motion can be derived from a Hamiltonian

H.

3.1. Stationary Distributions

Let us now briefly mention the properties of a stationary density
distribution in velocity space i.e., a distribution in which the motion
of individual particles does not affect the statistical value of the particle

density f (ref. 3, 4). Thus

of
N . ®)

and consequently

°H  of oH  of
_ = 0. (10)
opi 0q; GL PG 2

It can be shown that if initially the density f(piq;) is only a function

of the Hamiltonian H of the particles located at piq;, then the distri-
bution of f in the p; space will remain stationary.

. . . . izn
* Using the summation convention, i.e., aib; =2i=1 aib;.
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In order to prove this, put
f = f[H(pigi)]

of of oH of _ of oH
aq,- N oH Eq, ’ ap, - oH 8[),‘ )

then

Putting these expressions into the Poisson’s bracket (eq. (8a) ) we get
{f7 H} =0

and therefore 3f/0t = 0 and the f distribution is a stationary one.

Systems in which the particle density in phase-space is a function

of the Hamiltonian only, are called “ergodic”. Thus we have a theorem:
ergodic distributions are stationary.

3.2. The Collisionless Boltzmann Equation

Let us transform Liouville’s equation (8) into an equation in the g;v;
space. This is often more useful than the g;p; formulation. The

equation for f(q;v;) in the q;v; phase space is then called the collision-
less Boltzmann equation (ref. 3).

Let us define the appropriate canonical variables for a relativistic
particle in an electromagnetic field. These are

e
qi, Ppi = Mov;y + ':Ai (11)
with
1

(=)
=

The corresponding relativistic Hamiltonian is

2 1/2
H=c{m0'-’c2 +(p—iA) } + eo.
e

Using Hamilton’s equations the terms dg;/d¢t and dp;/dt become

y =

— = = v; (12)
dt epi
dp; oH e e oAy ¢
——P =—— =+ (Pk——Ak) k_e f¢
de 0qi cmyy ¢ 0q; oqi
A ¢
L L A T



THE COLLISIONLESS BOLTZMANN EQUATION 93

With the help of these expressions, eq. (8) can be written

c 0 oAy 0 0
(P T ‘) j
ot Bq, ap;

c 0q; oq;
This equation can be simplified by interpreting wu:(64,/0q;) in

— 0. (14)

terms of the force of magnetic field B = curl 4 on a particle with
a velocity vector v. This force is F, where

C—szvABszcurlA. (15)
e

Substituting this expression into the term v; 94y/cq;) one obtains

oAy ,
vy 2 =wv.grad 4; + [v (VA A)]:. (16)

Let us now transform the expressions &f/dpi, 8f/0q: and &f/ot. As

pi is a function of v; and of ¢q; (through the 4,’s) one has to consider
the following transformation of independent variables.

e
Pi = moyv; + 7Ai,

9 = ¢ (17)
t =t
It follows that
offor(pi), 'k U 0 ovx of oq’x 0 ot
of{oe(pi)s ' ]:A! L+ﬁj qh+ﬂf__ (18)
epi Svy  Opi 2q's  Opi ot Op;

The coefficients dvx/dp; and 0q’x/Cp; can be calculated using the
Jacobian of the transformation (17), and are ¥ '

ka 1 ViU Bq’k ot
= Six — " » = 0, = 0. (183)
api moy ¢ aPl 8p,
Similarly
of[vk(p), ¢'xs U of ou of Oq’x 0 or
fos(p)o a1 _ ‘o f . (19)
Bq,» o 8q,- aq’/; aq,' o aq,'
Using the same Jacobian one finds
ovg —1 e 34, vivx 0q’ or
L= — [Sik"— f), LA = 0.(19a)
0q; myy ¢ 04; c 0q; aq,'

* 8,4 is the Kronecker delta.
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for a plasma near thermal equilibrium in which the distribution is
Maxwellian with a temperature

T < 6.107 (°K)
in which the mean random speed of the electrons is only

2KT.

m,

=0.lc

7o =

In this case eq. (21) simplifies to (dropping the primes)

F,
a_f + v a_f + k "af = 0. (22)

ot oqx m vy

It is clear that the description of plasma processes in terms of the
density f in phase space is appropriate only if there are enough particles
per unit volume to give f a meaning. This is possible if both in the
velocity space and in the configuration space the fluctuations in f are
much smaller than f itself.

This renders the Boltzmann equation inapplicable to regions of
velocity space for which the random speed is many times tlie mean
termal speed. A similar limitation applies to the configuration space
where processes occurring in too small a volume cannot be described
by eq. (21).

The equations (21) and (22) have bheen derived form the Liouville’s
theorem and therefore, only considering a system of non-interacting
particles. For this reason the potentials ¢ and 4 must correspond to
fields generated hy sources outside the plasma. The treatment is
applicable, therefore, only to plasmas whose density and pressure are
low enough not to perturb noticeably these fields. However, this is too
strong a restriction. The Liouville’s theorem requires only that there
should be no interaction between particles within the small volume
A = (8x 8y 8z) (8p. 8p, 8p.) where A is very much smaller than the
phase space effectively occupied by the plasma. Interaction between
particles whose separation L in configuration space is much greater
than L, = (8x 8y §z)"/* will render equation (21) inapplicable only after
a certain relatively long time. In such a case the contributions to ¢
and 4 from particles located relatively far from A can be included in
the collisionless Boltzmann equation. The far-field extension of the
B-equation is known as the Vlasov equation in which only near
interactions are not taken into account. Let us define as a near inter-
action one in which the distance between two interacting particles is
L < L. Since Ly > I = n7'/* it follows that L > L It is evident that
the Vlasov approximation may become rigorously valid if such near
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interactions could be completely neglected. Such a situation may be
realised by dividing all electrons and ions into k parts where k— oo,
mass and electric charge density remaining invariant. In such a case
the new interparticle distance is

l
Li/3

U =

and it is obviously possible to define A and therefore L, as small as
one wishes. Moreover, within the new A’ the force F’ between two
charges becomes

P e B e/k Y2 P s (23)
- (T] - [1/1:1/3] -

1
and therefore, F’ = 0 even faster than P

It is interesting to find out how the Debye distance d is influenced
by such a subdivision. Recalling (eq. (4a), chapter 1) that

d=\[= =220 (24)
4re’n 4we’n
where @ is the mean thermal speed of electrons and considering that
m = %, n’ = kn and e”* = e*k* it follows that d’ = d. The Debye
distance remains constant after suddivision to any k.

The subdivision in which &k — <« corresponds to a model of a homo-
geneous fluid and let us repeat that the Vlasov equation describes
perfectly such a fluid, even to the level of collective interactions *.

Real plasmas, of course, depart in their behaviour from such a
model. Let us mention, e.g., the phenomenon of oscillation of a Debye
sphere or a Debye layer. We have explained on p. 13 that generating
such oscillations by a stochastic process is improbable if the number of
electrons N in a Debye sphere is very large. In the homogeneous fluid
model the number N’ = N.k — c and therefore, the spontaneous gener-
ation of plasma oscillations becomes impossible, Consequently in prob-
lems in which one wishes to find out the levels of various fluctuations
and oscillating modes in plasma the Vlasov equation is not applicable.

In order to modify the Vlasov equation so as to include at least some
of the near-interactions in a real plasma one must add a new ¢f/ot term
corresponding to collisions. This is done for distant collisions in

* Compare with the Hartree self-consistent model of atom in wave-mechanics.
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where g is normalized as

g = 2= f v, f dv,, v, = Vv, + v 27)
0

3.3. Integrals of Boltzmann’s Equations over the
Velocity Space

One is usually interested in the macroscopic properties of a plasma,
i.e. in averaged quantities. Let us consider some particle property, for
instance, the velocity of the ions and electrons or their energy. Call
this particle quality Q, and let it depend on v of the particles only.

In order to obtain equations concerning Q we multiply the Boltz-
mann’s equation by J and then integrate over the velocity space =.
In order to obtain an average per particle the integrated equation will
be divided by the number n(r, t) of particles per unit volume; where

nir, t) = [ f(v, r, t) d=. (28)

Thus the formula defining the average quantity Q (depending on r
and t only) is:
J Qv)f(v,r,t) d=

] = . 29
Qlrt) f flo,r,t) d= (29)

3.3.1. NON-RELATIVISTIC CASE

We consider the non-relativistic Boltzmann equation first. Multi-
plying eq. (22) by Q(v) and integrating over = one obtains the transport
equation for the particular average quantity Q.

In the process of averaging one encounters the following three
integrals:

of _ 0
ct ot

| 0rdn ==~ n0) (30a)

dr = — n(v;Q) (30b)

SQ do; af*dﬁ':“{lf(.) dv.

+m “n 0 dv:
—\f Q 1 dv, ¢ dv, dv,

- av: at

dt ov; de

T, T -

+ ... the same terms with v, and v,. (30c)
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The last integral is developed by integration by parts. The first

term of the integrand in eq. (30c), containing |fQ(dvi/dt)|” is zero
in all physical problems as f has usually the Maxwellian form whereas
the particle property Q can increase only as some finite power of v.

Each term of the remaining integrals in (30c¢) has a form

Sf ai (Q (:l?)dw'

T

The integral (30c) can thus be written:

o = o (2]

m

The transport equation for the quantity Q follows now by writing the
previous results as

¢ ~ 0 — d‘Ui
- (nQ) + f. [n(v.-Q)]—n[ d (Q JJ:O. (31)

ot oq; cv; de

In order not to complicate our analysis unnecessarily we shall consider

8 dv,- -0
8v,- de ) o

If Q denotes the identity of a particle; then Q =1 and eq. (31)
becomes

only such forces for which

on ¢
n‘l-),' = 0.
¢t aq, ( )

This could be transformed into

on a‘l_Ji _ Bn
n + v;
ot aq.' aCIi
or
on

ot

+ div (nv) = 0 (32)

which is the situation of continuity of a flow of particles.
We shall now describe the transport of momentum. This is obtained *

by letting Q = .

* In the non-relativistic approximation.
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Putting this in eq. (31) we obtain

_ o — ov  dv;
(nv) + — [nvv;] —n [ ( )] = 0. (33)
oq;

~

i ov; dt

The first term in eq. (33) may be expanded as

- 2 ov
v o n v . (34)
¢t ot
The last term is
dv
—_n — 35
" (35)

The second term is a little more difficult. It can be written as:

o o o
\ v f d= + vv,f de + —— \ vv.f d=
x A oz )

T L3 T

. 0
=1
ox
™ w w

e S
+ k... L. (36)

- ~ a o~
Sv‘_:y‘ 4o 4 \v,vyf dr + — \v,v:fdw}
. dy . cz

i
o

where (v = vv, + vr, + vv.).
It is now convenient to define a random velocity related to the
average velocity T and the velocity v of a particle by

u=7v— v (37)

u= lg uf d= = 0. (38)

Let us substitute
v. + u, for v,

etc., into eq. (36). All products in which one component of the average
velocity ¥ multiplies any component of u drop out because v is not
effected by integrations over = and because of eq. (38). There will
remain only terms such as wu,f and v.v,f integrated over all the
velocity space. Thus eq. (36) becomes
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o — 0 — o -
i n{v,® + u*) + ¢ n(v,0, + usuy) + —— n(v,0: + usl:)
ox oy oz
. 0 —. T3
+]{. e e e e . —n@AH+)+. 0. 0L }
oy
+ k.. . oo e e e e e e e s (36a)

This array can be expressed using a tensor notation. It is composed
of two tensors: the Vy¢y tensor which can be written in the ordinary
language of tensor algebra as V(nwv) and the Vy, tensor, written as
V(nuu) (notice the different way of averaging).

Thus

V(e + ¢u) = V(nov) + V(nuu). (36b)

In applying the tensor notation to the expansion of eq. (36a) let
us first examine the dyadic corresponding to v, i.e., V(nvv). This can
be expanded, as:

V(nvv) =novVo + vV - (nv). (39)
Thus, the term (36) may be introduced in (33) written as

noVo + oV - (nv) + V(nuu). (36c)

Let us remember that the term V(nuu) is a complex of integrals
and can be evaluated only if the velocity distribution is known,
which means that one would first have to know the solution of the
Boltzmann equation. However, one is often justified in using a guess
at the distribution in the velocity space, compute the V(nuu) and
obtain a solution for n and Q’s. _

Recalling the continuity equation and using eqs. (36c) and (34)
one obtains for eq. (33):

n(av +5V-5)=n£—V(nEﬁ) ) (40)
ot m
where F = m(dv/dt).

This is the equation for transfer of momentum in a non-relativistic
plasma.

Let us consider an ensemble of particles in which u is isotropic, i.e.,
a distribution which is spherically symmetrical in the velocity space.
An example of this is a Maxwellian distribution.

In that case

V(nuu) = V(nu?). 41)
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One can also include other non-electromagnetic forces, for instance a
gravitational force, which, however, is of interest only in astrophysies.

Let us now consider the transport of energy. This corresponds
to the second moment of f(z) in the velocity space Taking Q = v* =
3.(Pa + ug)® and substituting in egs. (30a,b,c) we get for the three
terms:

1st i 2 4+ S\ futdr] = 0
st.: W[HU > uu(“]_at

(9° + 3 u.®)-n
a

~ ~

2nd: —%—2 S fui (Ba® + 1 4 2 Daug) de =

a - - - — - — —\ -
= lva*vi + 3 (viug® + 2 v ugu; + wing")j < n
i a

‘ Fi 0 2 F; _
3rd: —3\f—0 vidr = — vin
a m  ov; m
- _ F;
where * = 37,% and = 0.
a avi

Apart from the expression nm(wgu;), which is the pressure-tensor
pai already discussed on pp. 101-102, a new quantity appears, i.e., the
vector Q; = Vomn 3 w;us®. The physical meaning of this vector is

a

related to the heat-flux. Let us recall that 5 V4nmi,* is the density of
a

internal kinetic energy of our fluid, which in thermal e;uilibrium can
be described by 3/2nkT. Evidently ; expresses the heat transport in
the i-th direction, due to i;. Using this nomenclature and calling 3p =

S, nmii,®, the second moment of the Boltzmann-Vlasov equation can be
a

written as follows

0 _ ¢ 0v; 1 _ 3 0 _
( + v; + J (— fJ'UJ + —p) + = (Pvupui) +
oq

ot aq; aqi 2 2

[é} i Fi
+ ¢ — p;
aqi m

=0 (45)

In deriving the successive moments of the B-V equation each new and
higher moment required the definition of a new quantity. Thus in
writing the equation continuity of flow [(eq. (32) ), the zeroth moment
of f(v)] it was necessary to introduce the expression for mass-velocity
vector v;, iu deriving the equation for the momentum transfer (i.e.,
1st moment of the B-V equation) a definition of the pressure — tensor
Pai was needed and the equation for energy — transfer (2nd moment)
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which is the mean y for the particles in the S-space.
Also

i, i, - i, -

— - — -1 — —~
— = — =7 — =y (47)
w, g w,

Let us multiply eq. (25) by v and assume that the u,, u,, u. are small
in comparison with C. Then

o - _ Y
ot (vn) + V(nuu) + V(nvv) + | Fi = vmy 'ty dn
, o

-i-\v [Fi of __F. of ) Uit dw—§Fz vt o o, (48)
. ov. ov;

mocy myc’y  Ov

The integration of this equation is too complicated to be performed
here. Instead we shall use a simpler argument to obtain a fluid equation
whose form is essentially the same as that of the integrated eq. (48).
In the absence of random speeds, i.e., in the limit of u, = u, = u.
= 0, the equation of the flow of momentum is the well known hydro-

dynamic equation
i + vgrad - v = k. + by . (49)

ot mo;l m(,;ﬁ

It is possible to define additional transversal and longitudinal forces
representing pressures in a gas in which i 5~0. From eq. (47) it
follows that

onm i onirey
grad,p = OB g, Y (50)
0q. g,
aan—" dnutyt
gradpy= — ' —my T | (51)
oqy oq,
Wrriting 4
mew? = kT’ (52)

and adding the pressure terms {50) and (51) to eq. (49) we get

0 - - F F 1 3 (nkT
hd +vgrad.-v = l‘_ + _‘_I — — (nkT7)
ot myy myy* mony 0q .
1 3 (nkT'y1
— (kT (53
mony? oq

which is the equation for momentum transport in a relativistic gas.
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3.4. Fluid Models

The moments of the B-V equation can be written in several different
ways, according to the physical situation studied.

As plasma is a medium composed of ions and electrons we shall need
two systemns of equations, one for the ion gas and one for the electron
gas *. Let us denote the quantities related to electrons by a subscript e,
those related to ions by a subscript i, except the masses and flow velo-
cities which will be labeled m, M and and v, w respectively.

In absence of dissipative processes (collisions, turbulence) and prov-
ided energy transport equations are either unimportant or can be
approximated by simple equations of state, it is possible to describe a
plasma by continuity of flow and momentum-transport equations. These

are
on. on;
+ Vv (nev) =0, + Vv (niw) =0 (54a’b)
ot ot
a v etlejliek
° + vV v:—i (E+—vABJ—M (54c¢)
b} m c n,
: 1 Viniian
——alf +wV.w=—1:; [E+7wAB]————(nui]uk) (54d)
together with Maxwell’s equations
V - E = 4ze(n; — n.), vV-B=2¢ (55a.b)
1 2B 1 ¢E
VAE= — — —, VAB =4ze(njw —n.v) + — (55¢,d)
c ot c Ct

These equations represent the simplest non-relativistic fwo-fluid model
of a plasma. This model is useful with plasmas in which the system of
electron and ion gases is far from thermodynamic equilibrium, such as
e.g., in two-streamn plasmas.

If either of the plasma components possesses a relativistic flow speed
(this is usually the electron gas) one has to use one relativistic equation
of momentum transfer, such as eq. (53) and one non-relativistic equation.
Such a formulation is always possible as one can choose a system of
reference in wlich one of the components is at rest. Thus assuming
the ions to be non-relativistic

0 (meuyty)

(56a)

L[ dv e
"\ 4 )n =—9E[|—7(‘UAB)||——

aq, ne

* We shall consider only once ionized atoms.
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d 0 oty %y
my| o ] e eB,— S (oaB), 0 ) e
dt . c oq . ne
Jw e 1 V(n,u,u,)
—+wgrad-w=—|E +—wAB|— ———— . (57)
ot M c n,

This describes the relativistic two-fluid model (the equations of con-
tinuity being the same as in the non-relativistic case).

In many cases of interest the flow velocity for both components is
smaller than the mean thermal speed of the ion gas. In that case both
components occupy the region of the velocity space near the origin
(fig. 50). If the extension of the system one studies is very much larger
than the Debye wave length one can assume a nearly neutral plasma,
ie. a plasma in which the densities of the two components are almost
equal everywhere. In such a case, the movement of both components
is coupled to such an extent that it can be represented by equation
for a single fluid. One may define the following quantities associated
with such a fluid.

Plasma density p =n(m+ M) (58a)
Plasma momentum pV = n(mv + Mw) (58h)
Current density j = —ne(lv—w) (58¢)
Charge density o = (n,—n)e. (58d)

The equations of continuity can be written as a law of conservation
of mass and an equation for electric current and charge. Thus adding
and subtracting eqs. (54a,b) we get

0 0
P v P) =0, L 4v.j=o0 (59a,b)
ot ot '
Let us now form the sum of the momentum-transport equations, i.e.,
nm X eq. (34¢) + nM X eq. (54d). We obtain
( oV m

+
ot M

vgrad-v+wgrad-w]=

1 - _
= oF 4+ — jAB — V[n(mu.u. + Mu,u,)]. (60)
C

Substracting eq. (54c) from eq. (54d) both multiplied by ne, we have
0j 11
! en(vgrad-v——wgrad-w) = ezn[_ + _]E

m M

0 M - —_
+ e(v — w) aLt + e"n-i[‘;ﬂv— AB + eV[n(u.u. — uyu,)]. (61)

mc
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Our assumptions are equivalent to considering a plasma which is
not far from thermal equilibrium, i.e., in which mu,* ~ Mu;® and
v* € ut w? € u)l, ujuy; € wl

With this eqs. (60) and (61) can be simplified to

oV 1
p— =—jaB + ¢E—Vp (62)
ot c
1 0 ? 1
o1 on e (E+-—VAB) — 2 _jaB+ S vp. (63)
ot n ot m c mc m

As the flow of the electric current is given mainly by the motion of
electrons having a velocity v, whereas the variation of plasma density
is related to the ion motion (velocity w) we shall neglect the term

1 ¢n 1 9j
— Ga in comparison with — —J-— In cases where p. ~ p; ~ l4p
n 0t j
we may write the last equation as
oj en 1 e e
—= E+—VaAB| — jaB + Y% —Vp. (64)
ot m c mc m

The eq. (62) has the character of an equation of motion, whereas
eq. (64) is known as the generalized Ohm’s law and the terms on its
right-hand side can be interpreted as electromotive force, electromotive
force induced by moving through a magnetic field, the Hall electro-
motive force and the thermo-electric force. These are the equations of
the single-fluid model. The surface representing ii; in velocity space
often possesses central symmetry, in which case

S uiw = 23 Sy
ik ik
and the terms

- Opxi

m - Vouiu, =

(65)
aqk

where py; is the component of the pressure-tensor.

In many cases the energy-transport and dissipative processes may alter
the pressure-tensor, in which case it is necessary to consider the energy-
transport equation for the single fluid model. This is obtained by
summing equations for energy transport in ion and electron gases
(eq. (45) )} and adding to this sum eq. (62) multiplied by V. The result is

(_37 +V. V] (3/2p + 1/2p V*) + V- (Q + puVr) = E (j + o¥). (66)
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All this is not applicable to systems in which pF* > p. In these,
although p may be sometimes neglected, the pF’'V . ¥ may often be
important (e.g., centrifugal forces).

The single fluid model can be still further simplified for situations
in which the inertial term may be neglected, where pressure is isotropic
and where the moving particles of one fluid experience friction against
the other fluid. This friction force Fy will be assumed proportional to
the difference between the flow velocities of the two components. Thus

F. — Mm ( )
L 7 R
-, 2 '67)
e
Eqgs. (62) and (63) become
1,
— jaB =grad p 68)
c
2 1
vj= en[E+-—VAB]— © _jaAB +Z grad p.. (69)
m c mc m

Substituting eq. (68) into eq. (69) one obtains

en

1
vj= (E + - VA B] —% grad p,. (69a)

These equations are often used in analysing equilibrium configurations
in a magnetic field.

In the hydrodynamical treatment of conducting fluids in a magnetic
field one is often justified in putting

v =0, grad p < forces of electromagnetic origin

In that case eq. (69a) reduces to
1
E=——V AB. ‘ (70)
c

At this point it is convenient to use Maxwell’s first equation which
reads:

curl E = —1— LB.
c ot

Combining this and eq. (70) one obtains

B
%- = curl (V A B). (71)
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The eqgs. (70) and (71) are known as the hydromagnetic equations, and
the corresponding system of approximations as the hydromagnetic
approximation.

More complicated fluid models than those discussed sofar can be
constructed out of eqs. (56a,b), (57). One of these is a three-fluid model,
the fluids being a relativistic electron gas and two components of a
plasma whose flow velocity are lower than the mean thermal speed.
The appropriate equations are then eq. (56) and eqs. (54) and (55).
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List of symbols used in Chapter 3

A vector potential Q property of particle

B magnetic field strength  Q; heat-flux vector

c velocity of light r radial coordinate

d Debye distance t time

e charge of electron u velocity

E electric field strength T temperature

f. 8 density in velocity space v, w velocity

F force vV velocity in phase space
H (g; p; t)Hamiltonian w energy

Lk unit vectors XY, 3 coordinates

j current density vy = (1 —v*/c?)-?

k, Boltzmann’s constant Six Kronecker delta

L length @ potential

m, M mass of particle v; coefficient of friction
n particle density p plasma density

P momentum or pressure  Ap Debye wave length
Pai pressure tensor ™ volume in velocity space
q coordinate o charge density



CHAPTER 4

EQUILIBRIUM CONFIGURATIONS
(Plasmastatics)

Introduction

In this chapter we shall discuss the equilibrium of some typical
plasma configurations. As in equilibrium the values for plasma density,
velocity and temperature remain constant the time-variation term
in eq. (3.62) drop out and the forces acting on plasma are considered.
to be constant in time *. We shall use mostly the fluid models for the
description of these equilibrium configurations; however, occasionnally
it will be instructive to interpret the results in terms of the motion of
individual particles.

The simplest example of plasma equilibrium is an isothermal plasma
of infinite extension, with no macroscopic internal fields. Such a
situation is often approximated in the positive column of large electrical
discharges.

As soon as one considers a bounded plasma, pressures arising from
gradients in plasma density and temperature appear which cause a
flow to the boundaries. In order to reach an equilibrinm one must
either supply fresh plasma ** at the rate at which it streams away
or one must balance the pressures by some system of forces. The latter
is achieved on the cosmic scale by gravitational forces, and on the
laboratory scale by forces of electromagnetic origin. These forces
balancing the plasma pressure are often called the confining forces
and if a balance is achieved the plasma is said to be confined.

The confinement by electromagnetic forces can be of four types:
purely electrostatic,
magnetostatic and electrostatic,

magnetostatic,

B o

high frequency electromagnetic.

* This does not exclude the steady radiation pressure of alternating electromagnetic
fields.

** This is connected with the problems of diffusion and will be studied in
chapter 8.
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Examples in the first class are rare. One usually requires a plasma
in which the electron charge density is only partially neutralised by
the charge of positive ions (ref. 1).

The second class contains mostly situations in which the electron
gas is immobilized by a magnetic field whereas the positive ion gas
is bound by an electric field to this core of the electron gas. Such
confinement can be better understood by comparing the radius of
gyration p of electrons and ions with the dimensions D of the confined
plasma. The confinement is characterised by the inequality

pe < D < Py- (1)

When the confining magnetic field is so strong that

Pe<Pp<D (2)

one obtains a situation belonging to the third class. Although the
inequality (2) suggests an independent magnetostatic confinement of
both plasma components one cannot disregard a confinement mecha-
nism of the second class operating in this case too. This mixture of the
second and third class situations occurs when

where d is the Debye shielding distance for the positive ions. This partic-
ular situation applies to almost all plasma configurations encountered
in the research on thermonuclear reactions.

In the fourth class are configurations in which the plasma pressure
is balanced by radiation pressure of a high frequency electromagnetic
field. As this type of confinement relies on the reflection of h.f. fields
by the plasma we shall mention this problem in chapter 5, which is
devoted to oscillatory phenomena in plasma.

The examples of plasma equilibria studied in this chapter are drawn
mainly from classes 2 and 3 of electromagnetic confinements.

4.1. Plasma in an External Magnetic Field

When only external magnetic fields are used for the confinement
of plasma one is usually not interested in confining a plasma one of
whose components possesses a large stream velocity.

It thus follows that a plasma in an external magnetic field can be
adequately described by means of the single-fluid model. On the other
hand, owing to the anisotropic nature of the Lorentz force it can be
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expected that the velocity distribution of both the electron gas and
the positive ion gas will be somewhat anisotropic.

The equations corresponding to this model are eqs. (3.68) and
(3.69a) in which v; = 0.

Thus cgrad p = jA B (4)

1
E+ —VaAB= grad p,. (5)
¢

en,

The field intensities E, B, the current density j, and the charge density g
are related by the time independent Maxwell’s equations.

Thus

curl E = 0 (6a)

curl B = 4 j (6b)
c

div E = 4xq = 4we(n,Z — n.) (6¢)

div B = 0. (6d)

Let us consider first a plasma with an almost isotropic velocity
distribution. Using egs. (4) and (6b) we get

47 grad p = (curl B) A B. (7)

Equation (5) does not contain additional information on the distri-
bution of B and p, this can be determined from the equations (7) and
(6d) alone. We shall write these together as they are the basic equations
for the calculations of plasma equilibria

VB = 0 (8)
vB: — 2BVB = — 8aVp : 9)
and multiplying eq. (40) by A B we get
. B Agrad p
]1 = C ——T— (10)

At this point one may make a fundamental observation.

It follows from eq. (7) that the pressure-gradient is perpendicular

to B and j (fig. 54). This can also be expressed by saying that the

magnetic field-lines and stream-lines of electric current are loci of

constant plasma pressure. :
In many geometries the term BV - B = 0 and eq. (9) can then Le

integrated with respect to r. One gets

B
p + o const. (11)
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gradp

Fig. 54. Current densities in a plasma
confined by a magnetic field.

This shows clearly the diamagnetic behaviour of plasma in a magnetic
field; as the plasma pressure increases the magnetic field inside plasma
decreases (fig. 55). Evidently B?/8x can be regarded as a magnetic
pressure and eq. (11) represents the balance of this pressure and the
pressure of plasma.

B@).n(x)

n
! X

Fig. 55. Magnetic field and particle
density in a confined plasma.

It is instructive to interpret the fluid description of this simple
plasma - equilibrium in terms of particle orbits, Each particle will
exhibit three types of motion

a) a cyclotron motion with a frequency o. = eB/me,

b) a drift motion due to the non-uniformity of the magnetic field,
¢) a drift motion due to the presence of the radial electric force

E = grad p,.

ne

Only the first two motions give rise to a current distribution *. The
corresponding current densities can be evaluated as follows.

* When the grad p, is large the c¢) drifts generate electrical currents. See p. 118.
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Each gyrating particle possesses a magnetic moment (eq. (2.29) ).

m= B .
In a plasma with a Maxwellian velocity distribution one can express
W, = ET.
The magnetic moment density is then
nkT
M=— P = i where s = e, p. (12)
B B

The current density generated by this magnetic moment distribution
is
oM
i, =c¢c—. (13)
or

The drift velocity of the electrons due to inhomogeneous field is

B
v= ST (14)
e B:

and the corresponding current density

oB
0
2= —cp— (15)
The total current density is, therefore, *
c op
[ =17+ i = — — 16
i is ia B o , (16)
and the magnetic field follows from
o(pe + Py)
B
curl B=— 0 =_4w—f_3r—__
or B
or
0 1 0B
r (1)
or 8% or

which is the same as eq. (11).

* The cancellation of i and the term — c(p/B?) (0B /2r) of i, has been analysed
in detail by L. Tonks (Phys. Rev., 97, p. 1443). The term — c(p/B*) (9B /9r) is shown
to represent a circulating current due to the gradient in the radius of gyration of the
confined particles.
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In order to examine to what extent the ions are electrostatically
confined, let us make use of the, so far neglected, eq. (5).
Multiplying eq. (5) vectorially by B, we have
1
VB: —B(V-.-B) = CBA(—E + ——grad p, ]
en

giving ¥V, = ¢

A (—E + grad ppJ . (18)

en

For infinitely heavy ions, exercising a pressure p;, the confinement
cannot be other than electrostatic and therefore,

1
E = —vp, (19)
en

in such a case ¥, = 0. This field is also called the ambipolar field E,.
On the other hand, one can imagine that the magnetic field can be so
strong that even ions are confined magnetically and then E =0 and

c

V, = — B A Vp,. (20)
enB?
This formula can be rewritten using p, = p. = nkT, T = const.,
kT M
v = and p = vt as follows
M e/c
on
o
V,=o 2 2 (21)
2 n

This can be interpreted considering two adjacent ion orbits a and
b, whose plane is perpendicular to B and to Vn (fig. 56). The centra of
these orbits are 2p apart and consequently if the number of particles
circulating in the orbit a is proportional to n, the number in orbit b

n
is proportional to n + 2p g Let us observe a strip of the ¢ plane
x

intersected by these particles, The net flow of ions is proportional to

on .
v p = The same argument gives the same flux for electrons, however,
x

since electrons are much lighter than ions the net mass-flow is essen-
tially given by the flow of ions, hence the expression for V', =~ 0, eq.
(21).

We see now that the V', exists only because of the gradient in density
of the magnetically confined plasma.

Let us discuss now the criterion determining whether the ions are
confined electrostatically or magnetically. It is evident that when the
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which is held to the electron current region (D thick) by the electric
field E (fig. 57). This boundary layer and electric field resembles very
much the situation of a Debye-layer, whose thickness is d, discussed in
chapter 1, on page 8. It is clear that the E field does not cause any
drift in the ion gas since its extension is only D + d < p, and our
formula (2-79a) corresponds to a whole ion orbit and not to only
a small section of it. If, on the other hand, p_ < d the electrons drift

. a
with a speed v, = ¢

which corresponds to a Lorentz force
D
F = neDE, ~ nkT T (25)

using the equation (25) in which D ~d, F is, therefore, equal to
nkT, the pressure of the ion gas.

The criterion for an electrostatic confinement of the ions is, therefore,
not simply an inversion of the inequality (22), but

pe > d (26)

as already mentioned in the introduction to this chapter.
Even this model of the electrostatic confinement within a layer d thick
kT 1

e a

where

is not realistic, as in such a case the v, is equal to ¢

B, ~ V4=nkT and therefore, v, ~ c. In order that v. € v, as requires
the assumption of small perturbation of the cyclotron motion of the
electrons, the electric field must be distributed over a thickness

c c . . . .
D >d = . This thickness is also known as the collisionless
Vte oy

skin-depth (see later, p. 153). This consideration yields, therefore,
another and more precise criterion for electrostatic confinement of the

ions, i.e.,

c

P+ > (27)

@p

Finally a word on the basic equations (8) and (9).

Any magnetic field distribution satisfying eq. (7) determines a
certain pressure distribution. However, inversely a pressure distribution
could determine a magnetic field whose divergence does not vanish
everywhere or the generation of such a field might require an additional
current distribution within the plasma.

An example of the latter is a spherically symmetrical pressure
distribution where

p = const. forr = const.
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from which
r
Ar = — B. (33
i )
The tube expands more the larger is its radius, i.e., the weaker is the

vacuum magnetic field B,.

Let us now consider the other extreme, i.e., # = 1. This means that
a tube of plasma is able to exclude completely the vacuum field B,.
We can imagine, e.g., that the axial region is in a direct contact with
a large reservoir of perfectly conducting plasma at a pressure p.
Such a plasma is known as a “free-boundary” plasma. The field B

must be parallel to such a boundary 3 and since p = const. on 3 it
. p
follows that B = const. on ¥ and also that i = 2¢ 7= const. on 3.

It is clear that if By* < 8xp no equilibrium is possible, i.e. the plasma
will completely enclose the current-loop I. However, if we assume that
the B, field is generated by currents in a solenoid whose radius is R,
then the flux = R¢*By is conserved within this solenoid (the flux
7ByR? is conserved within the loop in any case) and a plasma equilibrium
becomes possible. The self-field of i is as before
4=  8wp

i =

c B

- BP = t]
where B = \/8zp = B,.

The solution at [z| > R is obtained from B(R¢* — ro®) = ByRo*
and B® = 8=p and itis

B
To = R() \/1 —_— 0_ . (34)
V8xp

Near the loop, four solutions are possible. In the first and second all
or none of the plasma threads the loop (fig. 60a,b), in the third a part
of the plasma tube envelopes the loop and a part threads it, in the fourth
all the plasma envelopes the loop (fig. 61a,b). The first and second
occur when ry € R. The presence of the plasma-conductor in the loop
does not modify very much the vacuum field and if

By + Bif > V8zp

the plasma cannot exist for |"| < 3z, as determined from the above
relationship. Of particular interest is the configuration corresponding
toz, = 0,1.e,to

By + B; = V8=p
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The vacuum magnetic field near x = y = 0 can be expressed as*
B.I‘O = bx
By, = — by. (35)

Let us consider a volume of plasma of such a large conductivity that
the above mentioned vacuum field is completely eliminated from its
volume. The field lines B must be parallel to the plasma boundary.
This gives us the first boundary condition B - grad B = 0 or
A = A. = const. where B = curl 4. Let us integrate eq. (7) across
such a free boundary ¢. One obtains

4r
4zp = — B> = " jAB (36)
[+

where p is a constant.

This is equivalent to a second boundary condition.

The other equation determining the shape of the boundary o is
the field equation AB = 0.

The surface currents at the boundary ¢ must be able to produce

a field
B, =—bx
B, = by (37)
in order to cancel the vacuum field inside the plasma.
It can be shown that the curve representing this boundary is a
hypocycloid
x2/3 + y‘:/a — az/a' (38)

The family of boundaries of plasmas confined by the quadrupole
field of four parallel conductors can be now obtained by conformal
transformation of the hypocycloid boundary. Thus, e.g., an inversion
with respect to a circle passing through the four line currents gives

(fig. 64).

(38a)

xz/a +y2/3 ( a 2/3
(x* + y'.’)'_’/:x - ) :

o

The cusp geometry is an example of a system in which the magnetic

B2

pressure increases with the distance from the centre of the system.

* This follows from eqs. (6b and d). Thus if div B = 0 and curl B = 0 we have
curl B = — AB 4 grad div B = 0. Therefore AB = 0.
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v, v, e 1 Ope
v, = — —— (CE,- —_— U;B) _ L] (4'1)

¢l or mc n.m ¢r
o, dw, o, — e (cEy + cE' + w.B), (42)

ot or Mc

ow, ow, e 1 Py
+ w, = (CE, —_— w:B) - » (4‘3)

ct cr Mc nM or

where v., v, and w., w, are the z- and r-components of v, w. E, is
the applied electric field, E’ is the self-induced electric field generated
by 0Bjot, E, is the electric field due to a radial electron-proton space-
charge separation and B is the azimuthal magnetic field of the axial
electric current.

We now invoke the assumption of charge neutrality of the plasma
and let

vV, =W, = W, N = Ny = N

This assumption results in neglecting radial oscillations of the
electron gas with respect to the protons. This is justifiable as the
processes of plasma contraction are slow compared with electron oscil-
lations (chapter 5).

The radial electric field can now be eliminated from eqs. (41) and
(43).

Also, owing to m/M €1 and w.v, € 1, eq. (42) is of little import-
ance. It thus follows that only two equations need be used to describe
the motion of the volume element of plasma column. These are (put-
ting v, = v):

v + ov _ ek, . ek’ e w B, (44)
ot or m m m c

ow ow e 1 X

4 = B — e + . 45
ot ¥ or Mc v nM (p Py) (45)

The fields E’ and B can be expressed by means of a vector potential
A having an axial component only; hence

1 o4
F=—__"C (46a)
c 0ot
24
B=_""", (46b)
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From Maxwell’s equations one obtains the relation between 4 and
the current density
1 ¢ cA 1 ¢4 4= |

r ) + = i (47)

¢t ot c

r or or

To these equations must be added finally the equation of continuity

~

on

+ div nw = 0. (48)
ot
Substituting (46a) and (46b) in eqs. (44) and (45), expanding eq. (48)
and putting i = — nev we get the following system of equations:
ov ov e e 04 e oA
+ w - — — E() + =+ w b (4'4'3)
ot or m mc 0t mce or
ow + ow e oA 1 0 (pe + 1) (45a)
R = — v i e ’
ot v or Mc or nM or P Pr ?
1 © oA 1 24 4=
—_ r + = — nev, (47a)
r ocr or ¢t ot c
on on n 0
+ — (rw) = 0. (48a)
ot or r or

At this point the connexion of the pressures p. and p, with n,
r and ¢t must be introduced. Assuming a nearly Maxwellian distribution
of random velocities in the electron and proton gases with temperatures
T. and T},

pe + pp = nk(T. + T,) = nkT. (49)

In general, T. and T, as well as n may be functions of the radius r.
However, in most cases of interest the conduction and convection
of leat in the cross-section of the plasma column is sufficiently intense
to assume that the plasma is isothermal, i.e., *

oT. oT,

=~ = 0.

cr cr

* Assuming that all changes of volume are adiabatic #t can be shown that T obeys
the following differential equation
R
oT 47 T |

(rw) dr, (50)

— n
ot 3 N | or
0

where IV is the number of electrons per cm length of the plasma column.
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In principle, using eqs. (44a) to (48a) and (50), one can determine
the dependent variables v, w, n, 4 and T as functions of the indepen-
dent variables r and ¢.

Let us find the solution corresponding to a steady state, i.e. a case
for which

The only equations that are not identically satisfied are egs. (45a)
and (47a), which become

Y| kT —on/o
= — n/or (51)
or (ev/c) n
0 oA 4
i ¢ (r ] = nev. (52)
r or or c
The solution of these equations corresponding to v = const. is the

well known Bennett distribution

ne—__ " (53)
{1 + r*/ry*}?
where
e’ , kT
S ,
mc? oo Lymuv?

which can be also written as

: kT
C N=, =

mc* 1, my? ’

(54)

where N is the electron line density and e*/mc? is the classical electron
radius.

The plasma column is evidently a very sharply defined structure.
one-half of its mass being concentrated within the cylinder of radius
ro {(and 90 % of its mass located within r = 3ry).

This result and eq. (53) can also be obtained by considering the
Boltzmann distributions of electrons and protons in their respective
rest systems, due to each other’s electromagnetic fields (ref. 2).

Defining as the total current I = £ N we can also write eq. (54)
c
as
I' =2NK(T, + T.) (55)

known as the Bennett’s relation.
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This can be also derived directly considering a superficial current

density i = P In order that the plasma pressure 2nkT can be
=T
balanced by the magnetic pressure e where B = there must be
v r
1 B
nk(T, + T.) = —
2= re

or

2NK(T, + T.) = I*

It can be shown that eq. (55) is quite general and is valid for any
distribution of n and v (ref. 3).

It is interesting to follow the trajectories of individual particles in
such a stream. The character of the trajectory depends on the ratio
of stored magnetic energy Wy to the kinetic energy of the electron
flow Wyx. When the latter predominates the electron trajectory is
sinusoidal, whereas when the magnetic energy is larger than the
kinetic energy, the trajectory resembles a trochoid (fig. 65).

Fig. 65. Motion of electrons for v < 1 (8) and for v > 1 (T).

This criterion can be derived from the comparison of the radius of
gyration p. of the electrons at ry and of the radius ry of the stream.
The condition corresponding to the trochoidal path is

Pe < To
which is

mv < £ Byro, where By = B(ry).
c

Using eqs. (51), (53) and (54) this becomes
v> 1. (56)

The smooth trajectory of fig. 65 corresponds to v < 1, whereas
the tightly wound trochoid of corresponds tov > 1.
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This is approximately equivalent to the above mentioned energy-

condition as

R
Vi S Brdr
0

Wi R

mv® § nrdr

where R > r,.

Thus
14+2In
w
Mo v To ) (57)
Wk 2=
The term
1+2In
Ty
25

in most cases does not differ from unity and therefore, eq. (56) can
be also interpreted as an energy criterion,

4.2.2. RELATIVISTIC STREAMS

As a second example of plasma confined by self-fields we shall treat
briefly the equilibrium of a relativistic electron-stream whose geo-
metrical form is that of a sheet* (fig. 66). This can be done using
the relativistic two-fluid equations (56a,b) and (57) in chapter 3.

[<4-2.0 5> %,
X
#
S P A
Fig. 66.

* This model resembles a section of the E layer as proposed in the Astron fusion
experiment (ref. 4).
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Neglecting the scattering and radiation loss and assuming that in a
relativistic case v; = constant, an equilibrium is possible if

d
E =0, —=0,v,=w, =w,=0, E, =E,
I de 1 L 0 L

vy=v =-const, B, =B,=B8.

Egs. (3-56) and (3-57) reduce to

v 1 ape
ek = e—B — — (58)
c n. ox
1 @
eE = i (59)
n, ox
whereas Maxwell’s 1st and 3rd equations give
oB 4w
_— = - —i n.v (60)
ox c
oE
— = 47re(n, — n.). (61)
ox

In an isothermal and Maxwellian ensemble of particles one can put

c 0

— P = kT, = (62a)
a ~
Tox po = kT, ¢ n, (62h)

where T, and T, are related to the mean thermal velocity in the
x-direction.

From eqgs. (58, (59), (60) and (62a) one obtains

0 T. ©on.3 on,/d 4ze®
( no/ox + ny/ox = — i v’n, (63)
ox \ T, n, n, kT,
whereas from eqs. (59), (61) and (62b) one has
0 ( on,/ox 4re* ( ) 64)
= n,—n,).
3 m ) W, ‘

These simultaneous non-linear differential equations are difficult
to solve. A particular solution is obtained if one assumes that (ref. 5)

n, = 7n, (65)
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where 7 is a constant. In that case eqgs. (63) and (64) are compatible if

T, )
[ - +1)(1—n>:ﬁ~- (66)

However, this set of particular solutions does not include some of the
more realistic density distributions. We shall treat two cases which
are of interest here

a) Te > T, (T, = 0)
b) T3 > T. (T.=0).

a) In this case eq. (63) simplifies to

0 one/o 4-e*p?
onefox ) R (67)
o0x n. kT,
whose solution is (fig. 67):
n. = e (68)
(cosh x/x¢)*

Fig. 67. Density distribution in a sheet beam for T. > T,.

where
1 kT,

Roexo® = ——

2 e'ft (69)

which is the pinch relation for a sheet-beam. It then follows from
eq. (64) that

Nop -

(cosh x/x4)?

(70)
and
nogp —nge—> 0 as T, — 0.

This leads us to a model of a quasi-neutral relativistic plasma; we
shall call this configuration a mixed beam model.
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b) In this case the electromagnetic forces balance the transversal
pressure of the positive ions only.

Eq. 63) gives

¢ on,/0 4re*f3*
0 ( ony/ox __ Hae B n. (1)
ox n, K1y
whereas eq. (64) is written as
0 ony/0x 4re? ( (12
= —n,). i
ox n, ] ki, ) )

A solution satisfying both equations is possible only if

— nf* = n, — n, (73)
ie., if
LTS
e = s 73
" o (cosh x/xq)* (3a)

If such a solution were to hold for the whole of the space occupied
by the beam, the linear densities of electrons and positives would
have to be also in the ratio y*, and the solution would be of the type
n, = yn. mentioned above. This corresponds to a non-physical situation,
as the stored electric energy tends to infinity.

However, if one postulates an overall neutrality of the stream the
electron distribution becomes cut-off at a certain distance x;. For
x > x; there is only a positive ion atmosplere contined by the electric
field of the cold electron core (fig. 68). Eqs. (71) and (72) give for
x < x1

Moe

e = My = (cosh x/x¢)*

whereas for x > x; one has to consider only eq. (72) with n. = 0. This

gives
n;
n, = - (714)
L
x2
n
n, e
7p
N Xy Xo X X

Fig. 68. Density distribution in a sheet beam for T. € T,.
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where
kT
Xo =
X1
dre*ng.(1 — y#)x, tanh
Xo
o Nge
ng=y?——
1Y (cosh x1/x4)?
Matching the n, and 0n,/0x distributions at x = x; one obtains
fory> 1
1 = 2oyl X = xgy (75a, b)
and a pinch condition
1 kT,
Xaov — — " (76)
T mv?
where
e? nge dx
v=2 .
mec? ] (cosh x/x¢)*

This equilibrium configuration will be called the cold electron-core
model.

4.3. Plasma Equilibrium in External and Self-Fields

4.3.1. STABILIZED Z-.-PINCH

A plasma column confined by the B, field of a current passing
parallel to the axis of the column is, generally, not a stable configura-
tion as will be shown in chapter 5. In order to improve the stability an
axial magnetic field B, can be superimposed. Let us discuss the
equilibrium of a plasma in such a combination of self- and external
fields.

The nonrelativistic case can be treated using the one-fluid model.
The corresponding equations are

op 1 0
= B, + B.: 11
or 8 or (B, ) (77)
eB, oB.
= = 0. (78)
Co 0z

It is, therefore, possible to choose such functions B,(r), B.(r) to
which corresponds a p(r) in equilibrium.












PLASMA EQUILIBRIUM IN EXTERNAL 139

When

> 1

Ty

the pressure and the current distribution in the cross-section of the
beam are of the Bennett type and are independent of R and the self-
magnetic field at r < 2r, can be represented as a sum of a Bennett
field distribution B, and an axial component B,

B. £ B,.
This axial field gives rise to a loop expanding force
FM = 27TB:IR (84’)
where I is the total current in the plasma filament and Fy is evaluated
over the whole periphery of the loop.
The magnitude of this force can be calculated from the theorem of
virtual displacement, Thus if the stored energy of the magnetic field
of current I is W = 14LI? where L is the corresponding self-inductance

which is L = 4xR(In (8R/r¢) + 14) (henrys), the theorem of virtual
displacement asserts that

FSR = — W
or
_ oW
R’
As only L is explicitely dependent on R one gets
8R
FM = — 27I* [ln + 1.25] (843)
L

The force Fy is not the only force tending to expand the plasma
filament. One should take into account also the centrifugal force
F . of the electrons and positive ions. For a hydrogen plasma

2

Fo=[Nm-2— 4 NM l) 2R (85)

R R
where N is the linear density of electrons in the filament, and
m = ym, is the electronic mass, It can be shown that in most cases

mv =~ Mw
and, therefore,

F,, = 27er(,yv"’. (853)

In order to compare his force with the hoop force Fy let us express
the current I in terms of IV and v.
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Eq. (84a) can then be written as

2 SR
Fy = — 27— N (ln + 1.25) :
c? ro
Let us form a ratio
c* 8R
— NV | In + 1.25
FM _ e ro ) (86)
Fc m()‘y

It is useful, when dealing with plasma filaments carrying electric
currents, to define a new line density
62

v = N.

myc*

This is the number of electrons per e?/moc? length of the filament,
where e*/mc® is the classical radius of an electron. Using this quantity,
it follows from eq. (86) that the force Fy due to the self-field of the
current loop predominates over the centrifugal force F. of the circu-

lating electrons if
8R
viln + 1.25

Ty

> 1 (87)
Y

In order to obtain an equilibrium it is necessary to balance this
expanding force. This can be achieved by using an external axial
magnetic field opposite to B.. This compensating field is, therefore

I 8R
B’. v (ln +125| + v | (88)
vR ro
The proportionality of B’. to I suggests that the field B, should be
produced by induction. Two induction mechanisms can be considered

a) A betatron type of induction, in which a primary current
11 o< I o< B';.

b) Image currents. In this case the current I induces image currents
I’ on a suitably shaped conducting surface. Again I « I’ « B'..

4.3.3. FORCE.-FREE MAGNETIC FIELDS

An equilibrium of lot plasma in a magnetic field generally requires
a force distribution

f=iaB
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in order to balance a pressure gradient distribution

f=—f=gradp.
If in addition to a set of currents i. there exists a set of currents i,

i = % (89)
the force distribution will remain unchanged.

Let us now consider a cold plasma, or any other conductor in which
p = 0 everywhere. In such a medium a magnetic field could be
generated by a system of i, currents in a force-free manner. The
differential equations which such a field obeys follows from eqs. (7)
and (6b), i.e.,

curl BAB =0 (90)
div B = 0. 91)

Let us discuss a distribution having cylindrical symmetry and in
which 8/0¢ = 0/¢z = 0. In this case only fields whose radial compo-
nent is zero everywhere satisfy eq. (91), and eq. (93) can be written as

dB.? d(r*B,?)

2 = 0. 90
T dr + dr (90a)

A trivial solution is, evidently, a purely axial homogeneous field
B. = const., B, = 0.
Non-trivial solutions would be those in which the energy density

1
W = —8——(3:2 + B,*) could be prescribed and the individual B, and

B. would follow from eq. (90a). Substituting W into eq. (%0a) we get

dw
B, = — Yr (92)
dr
dw
B2 = Yr + W. (93)
dr

Although these equations may yield non-trivial solutions, such solu-
tions can be shown to correspond to non-physical configurations. By
non-physical one means that either the field B or the total stored energy

W, =2 f Wrdr
0

or some other component of Maxwell’s stress tensor is infinite (ref. 9).
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Notwithstanding the non-physical character of force-free fields they
are of interest as physically possible magnetic fields may be often
approximately force-free (ref. 10).

A typical example of force-free configurations is a thin tubular con-
ductor in which the two component of surface current-density are equal,
ie.,

i, = i,
in which case B. = B, taken at the surface of the tube, which implies
a direct balance of magnetic pressures. In order that the conductor is
not subjected to any pressure, the vector of current density i must be
always parallel to B; thus on the outer surface i = i, whereas on the
inside surface i = i, (configuration similar to that of fig. 69).
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List of symbols used in Chapter 4

A, A vector potential p pressure

B, B magnetic field strength q charge density

¢ velocity of light r radial coordinate

d Debye distance R radius

D length t time

e charge of electron T temperature

E, E electric field strength u, v, w velocity

f force density w kinetic energy

F force x, y, z cartesian coordinates
i, j current density Z atomic number

1 current B = v/c

k Boltzmann’s constant y (1 — /e

L self-inductance © magnetic moment

m, M particle mass v = e*N/mc* normalized line-
M magnetic moment density density

n number density p radius of gyration

N linear nuinber density w; plasma frequency



CHAPTER 5

WAVES AND INSTABILITIES IN PLASMA

Introduction

The total energy content of a plasma configuration is made up of
four components.

1. The thermal energy, i.e, the energy of random motion, The
density of this energy is

We = Yon.mu? + Yon,Mu?.
2. The kinetic energy of ordered motion, whose density is *

WK = 1/2 2 ncimvﬁ + 1/2 2 npl‘Ml?j2
i i

where i is the number of separate electron streams and j is the number
of positive ion streams.

3. Stored energy of electric fields in plasma. The energy-density is
WE = E2/87T.

4. Stored energy of magnetic fields in plasma. The density of this
energy is Wy = B*/8x.

All these four energy reservoirs are mutually coupled through the
motion and distribution of plasma particles and by their electro-
magnetic fields. Such a coupling can give rise to either an oscillatory
or a unidirectional exchange of energy between these reservoirs
(fig. 72). The equations of motion and Maxwell’s equations suggest
many such conversion possibilities.

This chapter is devoted to such conversion processes and is divided
into three main sections. In the first we shall study oscillatory pro-
cesses in a plasma in which the motion of the electron gas plays the
major rdle. The second section is devoted to oscillatory processes in
which the motion of positive ions is of importance. The third section

* In a multi-stream plasma the distinction between the energy of random motion
and the kinetic energy is not always very clear especially in turbulent plasmas.
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treats the case where the energy conversion proceeds in one direction
only. Such a process is known as plasma instability.

W "
W s

Fig. 72. Energy exchange diagrammes.

5.1. Electron Oscillations in Plasma

High frequency waves in free space can be represented by a wave
equation derived from Maxwell’s equations

1 o€ _ (1)

curl curl E +
c? ot?

In such a wave electric energy is transformed into magnetic energy
during each half a cycle according to the equation
1 BoE
curl B = — ——.
c 0ot

(2)

In a plasma, the waves induce oscillating currents and eq. (2) must
be modified to
curl B = i —E + 4dx i (n,Zw — n.v) (2a)
c ot c
where w and v follow from the equations of motion of the two-fluid
model of plasma.

It can be appreciated that the greatest contribution to the term on
the rlis. of eq. (2a) comes from the electron motion and that the
positives, owing to their large mass, can be considered in most cases
as a stationary positive gas.

From the same equation it follows that Wy is transformed into Wy
and into the kinetic energy of the electrons W..
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The density of the kinetic energy of electrons Wy, becomes com-

e
i = — 4r — nv becomes equal to
c c

the displacement flux (1/c) (2E/ot).

For a harmonic oscillation with angular frequency o the equation

parable to Wy and Wy when

of motion for the electron gas becomes

mjmv=_e(E+iAB]; (3)
Cc

In cases in which v/ec € 1,

v (4)
Mo
and it follows, that only when
2 E
PR (5)
mec o c

can one consider the effect of a plasma on the electromagnetic wave
as a small perturbation. This criterion can be also written as

4we’n

o® > = wp2 (Sa)

m

where o, is a characteristic frequency of the electron component of
plasma. The value of w, indicates also the range of the frequency
spectrum in which we shall be interested in our analysis of electron
oscillations in plasma.

We shall treat first of all an infinite and uniform plasma in which
the random velocity of the electrons is zero, However, the presence of
a magnetostatic field will be admitted.

The basic equations are:
the wave equation

1 ©¢E 0
curl curl £ + — — = 4m ‘e —— (n.v) (6)
¢t ot c? ot
the divergence equation
div E = 4xe(Z,n, — n.) (7)

the equation of motion (eq. (3.57) )

ov

1
+vgrad-v=——i[E+—vA(B+Bo)-l (8)
514 m c .
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and the equation of continuity

on,
ot

= div (n.v). (9)

In the presence of a strong magnetostatic field B, the term va B,
must be retained. However, as in most cases

|B] < |E| and v < ¢,

the term v A B will be neglected.

If the amplitude of oscillations is small, one may consider the time
variation to be of the form ei“*, This covers many cases of practical
interests. Egs. (6)-(9) become

curl curl £ — —m—— E = 4=j iﬂ olgv (10)
¢t c?

div E = dzen,, (11)

1
jmvz_ﬁ(E+_vABo] (12)

m c
(the same as eq. (3) )
jon; = ng div v (13)

where we have put

n. = ny + nei* (14)

and according to the small amplitude model, n, < n,.
The high frequency-component of the current density in the rest
system of the electron gas is

i = — engv. (15)

Egs. (10)-(13) can now be written in terms of electromagnetic quantities

only
: dr
curl curl E — w'. E = — — joi (10a)
¢t ¢
divi
—AVE = 45 2 (11a)
Jo
.. €ng . ,
jol = D i B, (12a)
m mc

The form of these equations suggests that the field E is associated
with two types of current i; and i., one which is solenoidal, i.e.,

divi; = 0, curli; £ 0
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and the other one which is irrotational, thus
divis =£ 0, curl i, = 0.

The first type of current distribution does not exhibit any accumula-
tion of charge and represents therefore, a purely transversal wave,
whereas the i.-distribution belongs to a longitudinal oscillation. These
two types of waves may be coupled through the magnetic field B,
and form a hybrid wave.

As eqs. (10a)-(12a) are linear one may apply the superposition
principle for their solutions. Thus a complex solution can be constructed
out of simple waves having a harmonic variation along a certain
direction, called the direction of propagation. If this direction is
parallel to the z axis, all the oscillating quantities vary as

eilwt+kz), (16)

Using these assumptions we shall investigate the propagation of
elementary longitudinal, transversal and hybrid electron waves in
an unbounded uniform cold plasma and give two simple examples of
electron waves in a bounded and cold plasma.

5.1.1. THE LONGITUDINAL OSCILLATIONS
Egs. (11a) and (12a) give

47 2
i.:w j(')i: = e E: (173,1))

jm m

E.= —

which determine a characteristic frequency
o = wop . (18)

for which such oscillations are possible. The wave number k does not
enter into the analysis and one may thus conclude that waves or
oscillatory disturbances of the longitudinal type of any dimension can

exist, always oscillating with the angular frequency «, (see hot plasma
later in 5.2.1).

5.1.2. THE TRANSVERSAL OSCILLATIONS

The only electric field components are E,, E,. Let us analyse two

cases: B, // kand B, L k.

a) Eqs. (10a), (12a) corresponding to the case B,//k (fig. 73)
have the following forn:
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: 4n
[k'-‘— > JE,:— T jois (19)
Ly
[k'—'— ‘:_’ ]E,,:— — Joly (20)
juis = ‘:’T’ E, — wdi, (21)
s e “’p2 E .
Joiy = —— Ey — o (22)
o
where
_ eB(,
Ge = mc

Fig. 73. Vector diagramme for a tranversal wave with B, / k.

In order that this system of homogeneous linear equations shall have
a solution, its determinant D must be zero. This condition is a relation
between k and o and therefore, a dispersion relation governing the
propagation of electromagnetic waves parallel to B,.

One gets

DEI:[k:— o° )_ wp:z [1— wc':J-x ]2_ wp'lwcg [1_ wcz J-z “ 0
c? c? 2 wct 2

from which

@ wp® we -1
koo = [1_ ? (1—_*- J J (23)
ct |, [ o
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for which one obtains

c’_‘

‘L’zplvg = " o (2321)
12 {1+ —°’°—)
LL)2 w

The function vy(w) is plotted in fig. 74 for several values of wc/amy.
Substituting the dispersion relation (23) back into eqs. (19) and (20)
one finds that the minus sign in eq. (23) corresponds to a ratio

E;
E,

i.e.,, to a circularly polarized wave whose electric vector rotates in
the same sense as the gyrating electrons, whereas the plus sign corre-
sponds to E,/E, = — j, i.e., to a circularly polarized wave whose E-
vector roiates in the opposite sense.

It is evident, therefore, that a plane polarized wave incident on
a slab of plasma in a parallel magnetic field will be split into two
circularly polarized waves, the extraordinary and the ordinary wave,
each propagating with a different phase velocity. After passing through
the slab of thickness z the plane of polarization of the original incident
wave will be rotated by an angle

z z
v = 21_1 — =z k — k: 24
o= 2o (- D =t — (24)
which is analogous to the Faraday effect in crystals.

The formula (23a) can be applied only to that part of the frequency
spectrum for which

[ > Wions . (25)
where
d=e*l’n,
I .

a
W ions —

For o comparable to wj,, the electron wave is coupled to an ion
hydromagnetic wave *.
Let us plot v,(w) for several values of o./w,. There are two branches
to each curve, the v, tending to infinity for
We (L)p::

1=+ =

2
w [0}

The left branches are not complete because of the criterion (25).

* See section 5.2.2.
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one may also say that k becomes imaginary, i.e.,, & = jK. This implies
that the space variation of the oscillation corresponds to an evanescent

wave. Thus
E = E()e““. (333)

Similar conclusion can be drawn, even when plasma is in a magneto-
static field, (gyrotropic plasma), only the condition (33) involves
also w.. An example of such a relation is eq. (23) which shows that
transversal waves can propagate in a gyrotropic plasma even if their
frequency is well below the plasma frequency.

The depth at which the amplitude of a non-propagating wave
decreases by a factor e is called the reflection skin-depth §*. Let
us write eq. (26) as

from which

», _mz l/‘.:
=" (1_—:-) (34)

and from eq. (33a) it follows that

§ = — (1 — w/wp) (35)
U)p
For v € o, one has § = 0.56 X 10°727'/* (cm) **. (35a)

This reflection property of a plasma resembles the reflection by
dielectrics, where it is found that a wave is totally reflected if its
angle of incidence is larger than the Brewster’s angle 6, (fig. 78) which

£1
tan 6, = \/ -.
€2

In order that the reflection be total or all § one must have o=20
and therefore, ¢; = 0.

is given by

* In contradistinction to absorption skin-depth 8’ = Vp/w.

** If electrons filled space completely, i.e., if n —3— 7r.3 = 1 (where ro =

the classical radius of electron), the reflection skin-depth would be

c re c
s = = — and Wy = 3 . (36)
\/ 4en V3 Te
m
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i
!
!
I
]
Fig. 78. Reflection at a boundary between two dielectrics.

If now ¢, corresponds to vacuum and &; to a plasma medium one
has

£y = 15
and from Maxwell’s second equation and eq. (4)

4xi

1
carl B= —E +
c

( jo 4rne? )

c jeom
= (1_ il JE (37)
c ©”

If plasma is to be compared with a dielectric then its dielectric constant
is

(38)

and according to Brewster’s condition for total reflection it becomes
totally reflective for

a2

21

[}

which is exactly the condition (33).

The reflection criterion, i.e., o < o, can be also derived using
considerations based on microscopic processes of radiation scattering by
a single electron. The scattering cross-section is the well-known Thomson

8=

r.* (see pp. 66 and 171). A bunch of N electrons

cross-section gp =

scattering coherently will, therefore, present a cross-section Ny, If the
radius of the bunch is R all the incident radiation will be scattered

when Nor > =R* from which R =< 1.35 . The coefficient 1.35

@p
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and that the field pattern varies with z as e/*>. Eq. (39a) gives

2 1 9K,
E, = jk ( l —kﬂ] :. (41)
c* or
Substituting eqgs. (40a) and (41) into eq. (39a) we get
1 0 oE. o® =
L ~+( _kz)(l_‘"*’ )Ez=o (42)
r or or c? w®

which is the wave equation describing the propagation of an electron-
wave in a plasma-cylinder. Comparing this equation with a wave
equation in a dielectric medium one finds that the plasma behaves as
an anisotropic dielectric with

e, = 1, e = 1 — U)?- (4‘3371))
[0
The solution of eq. (42) is *
E. = alo(|x|r) (44)

where

()2
c- w”

The corresponding solution for By can be obtained from Maxwell’s
second equation. Thus

Clll'lE:—jiBo.
c

Using eqs. (41) and (44) one has

. alxl% |
By=j— " Lo (45)
(JJA, ____k'.5
g

Assuming that the space outside the plasma cylinder is vacuum, the
appropriate solution of the wave equation for r > r, and for a guided
cylindrical wave is

2
[0}

E: = bKo(lxolr),  xof = —— — K (46)
b fxol <
By = j ——F—— Ki(|xo|r). (47)
L2
C'.Z

* J. and K, being the usual symbols for Bessel functions.
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The constants @ and b are obtained from the condition that the E,
and B, components must be continuous functions of radius. Thus at
the boundary of the plasma cylinder

a.’o(lxlro) — bKu(lXol"o) =0 (48)
a le J1(IX0|TO) —b IX()I Kl(l)(nl"o) =0. (49)

The secular equation of this system is

Jo(|x|ro) B x| Ko(]xo|ro) (50)
Jl(lxlro lXOl K1(|Xo|"o) .
This can be written as
Jo(|x|ro) wp® 12 Ko(|xo|ro)
= —— _— (50a)
Jl(lxl"o) w” Kl(‘)(nlro)
It is useful to introduce the following system of non-dimensional
quantities
® k2c? op —
f: L) K = T p=To :2\/1/.
wp” wp” c

In terms of these, eq. (50a) becomes
Jo{[4v(l —1/8) (€ —«)]V*} _ (_1___ 1] 2 Kof [4v(x — £)]1/7)
L% (1—1/8) (E—n) ') K [4v(c— )

£
which is the dispersion equation for the guided waves on a plasma

(50b)

cylinder confined by a B. field.

Interpretation of the Dispersion Relation

The curve representing the dispersion equation (50b) can be plotted
in a ¢, x coordinate systems (fig. 81). One has

o® 7T :
S ponrd = ( ] y‘l
0p? A

k"‘C"’ 7ry ?
K = = = y‘l
wp® A

where A, is the guide-wave length, X and r, may be expressed as

functions of £ and «. Thus

"k S
A= ? and ry = V kv

™
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gation of surface waves (ref. 4). First experiments on propagation
in free plasma columns, i.e., not in contact with a glass tube, were
done in 1958 (ref. 5), using a plasma produced by a PIG discharge
(PIG = Penning ionization gauge).

5.1.6. EFFECTS OF RANDOM VELOCITIES ON WAVES IN PLASMA

Up to now we have assumed that the electrons (and the ions) had
no appreciable random velocities and plasma has, therefore, behaved
as a perfectly stationary dispersive medium. In order to make our
results more realistic it is necessary to consider a space-velocity distri-
bution f(v;, x;) of the electrons and also stochastic fluctuations of such
a distribution, in the phase-space v;, x;.

As soon as one considers a velocity spread, the model of cold plasma,
so far used by us, has to be dropped. The fluid equations can still be
used, containing now the pressure terms (see later 5.2.1.). The inclusion
of these terms allows us to take into account the various sound pheno-
mena and the dispersion relations of plasma oscillations are correspond-
ingly modified. If analysis is to be further refined we have to use the
Boltzmann-Vlasov equations rather than those corresponding to the
two-fluid model. Most of the dispersion relations derived so far remain
practically unchanged, however, a new phenomenon makes its
appearance: damping,

The stochastic fluctuations are connected with phenomena similar
to those encountered in gases, where small density fluctuations scatter
a monochromatic wave, In hot plasmas such scattering of waves can be
caused not only by density fluctuations but also by velocity fluctuations
— a type of Doppler broadening.

We shall first treat a typical case of damping, known as Landau
damping and then we shall develop a simple theory of scattering due to

plasma fluctuations.

Landau damping

The existence of damping of longitudinal plasma oscillations has
been discovered by Landau (ref. 6).
Starting from Vlasov and Poisson equations for electrons we write

0 0 ¢
U . (51)
ot ox m cv
oE e
i dmwen § (f — fy) dv (52)
x -



ELECTRON OSCILLATIONS IN PLASMA 161

where f = f(x, v, t) is the perturbed distribution function, f, = f¢(v)
is the unperturbed velocity distribution, E = E(x, t) and § fydv = 1.

If we assume a spatial-temporal dependence e/**—%" and keeping only
first order terms in E and f; = f — f, we have

e 0
jfil—e +k-0v) = fo (53)
m ov
and the Poisson’s equation becomes
ofo
dme? :
kE=—"""F K ¥ (54)
jm —w + kv
or +7
op® fO
1=—~———S——dv. (55)
:li W — kU

-

Evidently there is a pole at v = kv and the integration path has
to be deformed around it. If the path of integration passes below the
pole and if the distribution fo(v) is Maxwellian we get

3 [T , 1 .3
o = wp []. + -—?T k"’dz] — _] \/—;L wp (kd)"‘ exp ,:—? (kd)"" —E] (56)
valid for k*d* € 1.

The first term on the r.h.s. corresponds to a new dispersion relation-
ship, the second to damping.

This result is open to criticism (ref. 8, 7) which touches such poin:s
as continuity of f,, analytic behaviour of f; and the form of the initial
perturbation. However, as we have not introduced any new physical
mechanisms, it should be possible to interpret the eq. (56) in terms of
particle-wave interaction. This is easy for the undamped part and
will be done later (p. 173). The damping term will now be derived
using the model of particle-wave interaction in a linear accelerator.

Let us follow the movement of particles in the x, p, space. This can
be described by Hamiltonian equations written in the frame of refer-
ence moving with the phase-velocity of the wave (ref. 10).

dp. oH dx oH
= , = (57, 58)
de ox de op
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where

- v
H = Vmy*c® + pc® — pv, — eE —2 cos kx; (59)

w

w .

= v, (phase velocity).
For non-relativistic electrons we get H — myc®* = W = Lomv* -
e " (cos kx — 1) corresponding to closed or open orbits in the v, x

plane i.e., to trapped * or free particles (fig. 83). The separatrix between
these two classes of orbits corresponds to a particle initially at
kx = —7,v=0and its Wror is

eE
Waor = 2 %
from which
2ell 1/2
v = [ € (cos kx + 1)] . (60)
mk
The equation of motion is
. . e
v = x = — —— FE sin (kx). (61)
m

For kx £ —‘2— we can use the approximation

. —e
x = Ekx. (62)

m

This shows that particles moving on closed orbits (inside a “bucket”)
rotate in the phase space with an angular frequency

w=\/—E-k (63)

m

e 1/2
The maximum speed is V1 = (—~ Ek) + xo. From conservation of
m

energy (eq. (59) ) follows that the highest speed any particle can possess
and still remain trapped in the bucket is (fig. 83)

ek
Sv=2 \/ . (64)
mk

The linear approximation (kx <€ w/2) is certainly not true near

the inside boundary of the bucket, however, we shall not make an

* Particles in a “bucket”.
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_ _ 2
where E is the mean electric field *, e.g., E = (—a) E. The mean energy
™

over a length A is

E:
W =——\ (66)
16+
Let us write
AW E2) ' — vy
— = —— 32 ey, T (67)
At 16= AE
If, as will be shown later — ; ” s independent of E, we can inte-
grate equation (67) and get
W =W, .exp (—28 1) (68)
where
] — Vo ,
§ = 16 ev, ———— 69
ey — (69)

is the damping coefficient.
Let us now evaluate vy — v, for a Maxwellian distribution. There

¢ — A
Py —va = —n o l Sv.X .. —— (70)
Ev ls=v,, 27.'
where
of 2 vy° _
= ——— exp | — 71
cv fv=v, AT TE I ( 2u* ) (7h)
N2 E ,
* 2 1/2
}::k\[ ¢ (coskx-{-l)] dx = 4- st (72)
M mk
=Nz
— b 2
u = wd, Sv = 5 = — . 8¢ (73)

&

Using egs. (69)-(73) we get for §

= 0.73 ( ¢ ): {kd)™ exp [—— 1/_3( ¢ ]: (l-’d)‘”] (74)

wp wp

@y

o

where in the exponent (w/w,)* = 1 + 3 (kd)>

Comparing eqs. (74) and (56) we see that, apart form the term
oy

which is nearly alwavs near unity, the formula (74) derived on the

- A
* The mean E implies averaging over -—.
2
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tion of the wave and the total damping will have to be found averaging
over 7. This will lead to a damping term much smaller than that of
Landau.

In an experiment where a longitudinal wave is excited at one plane
in a plasma and propagates through a thickness L of plasma, Landau

damping should be observed only if L =~ v, - —z% which can be also

written as (see also ref. 10)

L 1 Em)
AT a7 E
A, . . . .
where E,\ = 4wen — is the maximum field obtainable in plasma on

&

fully separating negative and positive charges over a distance .
Example:

n=10"x=1E = 30elst- u/cm then E,,, = 3.10° elst - u/cm and
L ~15cm.

Scattering of waves by plasma fluctuations

The fluid description of plasma, accomplished by means of the
Boltzmann equation and of the Maxwell’s equations, breaks down
when a volume is considered whose dimensions are smaller than the
Debye wave length d. In such a volume the fluctuations of both, number
density n and fluid velocity v, can become comparable with the mean
values of density and random velocity, ie, with n, and u, where

Zrd’ . .
N :'\/ . The fluctuations of n and v will, of course, he present
m .

even in larger volumes than A% In absence of particle interaction, i.e..
for a perfect gas, the mean root square of a relative fluctuation in den-
sity is given by the normal distribution law (ref. 9)

2\1/2
(8n?)! = N-U =
n VnQ

(77)

where N is the mean number of particles in a volume Q in which the
fluctuation is observed.

Let us consider a plasma in which the ions are infinitely heavier than
the electrons. The ion distribution cannot change in response to electron
fluctuations and these will be, therefore, limited in amplitude by the
electrostatic forces induced by the perturbed charge neutrality. The
law governing 3 in plasmas can be derived as follows.
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Let us consider all the modes of oscillations in a cube whose side is

2L Lk;
L. Owing to boundary conditions only modes for which = is
i v
an inieger (i = x, ¥, z) can exist. If two adjacent modes have wave
numbers k; and k; + 8k; then
2L
(ki + (ki + 8ki)] = 1 (78)
™
or
s
8k; = —— (79
T (79)
and the density of modes in the (k;, g;) space is
L3
V= ———— = 8z (80)
8k, 8k, 8k,

In a space Q the principal fluctuation will have a wave length
Ao

~ Q¥4 Modes whose wave length A is not much different from A

will contribute to the amplitude of the fluctuation, e.g., if
3o
4

period of the fluctuation *.

3A
<A< —41 the modes add up in a coherent manner over one

The corresponding number of modes is then

28k 3
N, = (——] (81)

T

Iy

_.|3,\|=1,

where |8k| = \., ;
Ao 0

In thermodynamic equilibrium, each mode should possess an energy
«T. The energy associated with the principal fluctuation in 1 cm? is,
8«T

W=N.-T.=_—. (82)

therefore,

If the maximum electric field of the electron fluctuation is E,

and since at one moment

then the mean electrical energy density is

g

all the energy of the fluctuation is in the electric field we get

«T Y
E:g(i_) X (83)
Ao?

* A rather arbitrary choice, implying that the numerical coefficient in eq. (87) is
correct only to an order of magnitude.
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The Poisson’s equation gives for a plane perturbation
dze - 8n = kE (84)

from which

e
M P IEIRVIY (85)

Sn =

where §n = (§n2)'/?, Finally
én Ad
8

5 = - ol Ny (86)

- w

n Ao
if N is the number of electrons in the space Q we get

___Ad
Ao

5 = V8= N-12, (87)

The factor

corresponds to the departure of plasma behaviour
0

from that of a perfect gas. The latter is recuperated only when
Ao == 8.9 d (more rigorous considerations can be found in ref. 11). For
A < d it is doubtful that one can still talk of modes of oscillation and

the term

: is no longer applicable and consequently § ~ N-1/2,
0

It is to be expected that the propagation of any wave through a
plasma will be affected by these fluctuations in a manner similar to
that of scattering of light by density fluctuations in gases (ref. 9),
p. 214).

The effect of the velocity fluctuation can be understood as a Doppler
broadening of the frequency of the original wave. The density fluctua-
tions scatter the wave by creating small changes in the mean dielectric
constant of the medium. Both of these mechanisms cause the phase of
the wave to fluctuate around the phase ¢, which would be observed
in a uniform plasma at zero temperature. As the wave progresses in
time or space this fluctuation ¢ increases and when <¢*>%? = 27 one
may consider the original wave to be essentially damped out.

Let us consider a beam whose cross-section is A% Let this beam be
scattered by plasma inhomogeneities whose mean dimension is [ (often
called “blobs” in the scattering theory). Thus there will be (A/I)?
blobs in each section of the beam. The phase change §y caused by the
density fluctuation 8r in one blob will be

Svpr (L)? sv, 1 (1)®
8¢ = 2x (~ = 2r R (89)
N GY v, A LA
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l

2
where r is the transit time of the wave over l. Since there are (T]

scattering centra over the section of the beam the mean root square
8¢ over this section will be

A
(S‘PZ)I/Z = Ap = _l_. 8¢. (90)

These A¢’s will add up statistically over a distance s to an average
deviation (¢*)'/* from ¢,. Thus

1f2
(p2)V? = (-f-) Agp. (91)

The distance s will he called the scattering or damping distance when

(¢*)* = 27, Then

4"_‘,'.5 vp 2 A’ 4
o=t (Ev—) ' (T] ' ©2

We shall apply this formula to a transversal wave. Our results will

be approximate since we have not evaluated rigorously the interaction
of the fluctuation with the wave throughout the thickness > and also

because the choise of s, as the damping distance is somewhat arbitrary.
It is unlikely, however, that these assumptions would cause an order
of magnitude error.

The dispersion relation for tranversal waves is (p. 150).

v = —————— (93)

from which

81)11:(40[)]2 [1_[ wp);,]_l_ﬁ' (94)
Yp o o n

Substituting into equation (92) we get for v <€ o

AN (0] 4 n :
=) ) G .

with Ay = I we have finally

and using equation (86) for
n

3 1 AL
S0 = 64= (e*/mc)*n ) (E] ) (96)
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The scattering distance for Rayleigh scattering is (ref. 11)

1 8r e \?
Sp = where gr = ——— ( ) . (97)
nor 3 mc*
With this we can write the formula (96) as follows
9 AL
= — . 98
T 51 * (d) (98)

This shows that the most intense scattering is due to fluctuations
whose | ~ d (for Il < d our treatment is not valid). This can be confirm-
ed by using directly the Rayleigh formula for s, generalized for scatter-
ing blobs whose I <€ A, remembering that the scattering cross-section
o, corresponds to 8V charges and therefore, one would expect that

a, — GT(SN)2. Then

s = where v=13 and
vo,
8 2\ 2
oy = — ( eo] (8N)? (99)
3 mc?
SN=¢%n-B=8-0-n. (100)

Using equation (100) we get

= r -3 ik (101)
O T T n P8 64 *ld

which is essentially the same as formula (98).

It is seen that the damping due to scattering is very small.
Similar analysis could be done for the scattering caused by velocity
fluctuations. The corresponding damping coefficient is of the same
order of magitude as s, in eq. (98).

5.2. Positive Ion Oscillations

In these oscillations the kinetic energy of positive ions is converted
into electromagnetic energy and vice versa. Let the frequency of such
conversion be ;. A full conversion of ion-energy into an electric
field energy is described by

el? E?

Yon,M = 102
Yor, Mo, & (102)
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from which

. 4re*n, 1z (102
wj — '—M—- . ._d)

This is the plasma ion-frequency.

A similar order of magnitude argument applies to oscillatory con-
versions of magnetic energy into the kinetic energy of ions. Thus
it is evident that the frequencies at which such types of conversion
would be expected to occur are by a factor \/M/m lower than those
corresponding to electron oscillations.

This implies that during one period of an ion oscillation there will
be, generally, enough time for the electrons to reach an equilibrium
distribution, almost as if the oscillating electromagnetic field were a
steady field for the electrons *.

We shall divide the subject of ion-oscillations into three parts:

a) purely electrostatic oscillations,
b) hydromagnetic oscillations in stationary plasma,
¢) hydromagnetic oscillations in neutralized electron streams.

5.2.1. ELECTROSTATIC ION OSCILLATIONS

Let us consider the two-fluid model of plasma in which all quantities
depend only on z. As we shall be concerned with longitudinal oscilla-
tions the only velocities entering the analysis are v and w.. Using
eqs. (3-56a), (3-57) one obtains (putting v, = v, w: = w,y X1, B = 0)

ov ov e 1 ©pe.

+ v = — E — (103)
¢t tz m n.m 0z
cw ow Ze E 1 opy 104)
ot + oz = M - nM oz ¢

Let the time variation be harmonic and consider only one Fourier
component {whose wave number is k) of any of the oscillating quan-

. . . cugt .

tities. Assume also an isothermal plasma, i.e., — = 0 Keeping only
¢z

first order terms we get
ni.

(103a)

e -
jov = — —— E — jku?
m

(g

* This is not true for some discharges, where the electric field is parallel to the
velocity of the electron-flow. There, the electrons may “run-away” (chapter 8).
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Ze ny,

E — jku?

ju)l(’ =

(104a)

n,
where n,, and n,. are the time and space variable components of
n, and n..
The equation expressing the dependence of E on n is the div E
equation. Thus
cE
0z

= 4re(Zn, — n,) (105)

and from equations of continuity one has

¢ on. ¢
= 2 )y — = eU). 10‘6 ,b
ot () ot 5z () (106a,b)

-
on,

From these, the expression occurring on the right hand side of eq.
(105) is to first order

Zn,—n, = — — (Zn,w —n.v)
w

and eq. (105) can be written as

4re
— F = —— (Znyo — n.w). (105a)
Jo
Sustituting this equation into eqs. (103a) and (104a) there follows
) 47e* R
JoU = = (Zn,w — ne) + jk*u? — (103Db)
Jmoe 5]
4re’Z w

(Znao — no) + jkiu?

j(uw = —

- — (104b)
]Mm w

and the dispersion relation follows from putting the determinant of
these two simultaneous and homogeneous equations equal to zero.

Remembering that for small amplitudes n, == Zn,, one has

2

(—1 Loy ku_) (—1 T ku—) - o)

o
o~ ) A

w o~

For * € wpope one gets a dispersion relationship for electron oscilla-
tions

wpe"’ kz_u—e?
—14+ 24 =~
(O o~
from which *
o® =2 Lul,..: + k':E = u)pe: [1 + (kd)"l (108)

* For an adiabatic, rather than isothermic electron gas, one would obtain

w? = w2 [1 + 3 (k d)2]. See p. 161 (also ref. 12).
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For an electron gas at zero temperature u, = 0 and one recovers the
frequency relation (18).
For w* € wp.* the relation (107) simplifies to

(1 + ku? ) (_ 1+ wx:pz + ku,? ) _ "’pp:

wpez o~ «

As long as wave length of the oscillations is much larger than the
Debye distance the following inequality applies

kd:\/ —<1

Wpe”

and we have

o = ki (1 g B ]

mpez u,,z
or
— ZT,
o = k?n? (1 + ) (109)
Tp
The phase velocity of these ion waves is given by
— ZT,
vt = u,’ (l + ) (109a)
T,

and is, therefore, [1 + (ZT./T,)]** times larger than the velocity of
sound in the ion gas. In the spectrum of ion-frequencies and for T, > T
the plasma behaves as a medium whose elasticity is provided by the
electron gas, whereas the inertia is due mainly to the ions.

The random velocities of the ions will be also responsible for a
Landau damping and a phase mixing mechanism described on pp. 160
and 169 and consequently the wave will be damped. The coefficient of
damping can be derived in the same way.

5.2.2. HYDROMAGNETIC OSCILLATIONS IN A STATIONARY INFINITE
PLASMA. WAVES ON A PLASMA CYLINDER

If the speed of flow of either of the plasma components is much
smaller than the mean thermal speed one may use the fluid equations
corresponding to the one fluid model of plasma (eqs. (3.62) and (3.63) )
and the appropriate Maxwell equations., As we wish to investigate
oscillating processes in which ions play a dominant réle, the frequencies
will be of the order of magnitude given by eq. (102) and we can neglect
the term representing the displacement flux in Maxwell’s first equation.
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Again restricting ourselves to a small amplitude analysis we write
eqs. (3.62) and (3.63), as

°
a”; = — po div ¥ (110)
oV 1
Po L = 7 iA Bo —_— grad P (111)
4
curl B, = " i (112)
oB;

carl (V A By) =

113
= (113)
where B = By + B1,p = po + p, P = po + P1-

These equations are linear in p; B; i and ¥ and it follows, therefore,
that a complex solution can be constructed from elementary Fourier
components having a variation

ei(wt+kz)

At this point one may note that two types of hydromagnetic waves
are evidently possible. Firstly the longitudinal waves in which V = V.
and secondly the transversal waves in which ¥V, = 0.

For the first group the eqs. (110)-(113) have the following form

op; = — pokV (114)
1
ju)poV = —c—' lB() — jkpl (115)
4
jkBy = — i : (116)
kVB, = B, (117)

where V =V, i = i,, B, = By, B, = By,-
The structure of such a wave can be deduced from the form of
these equations (fig. 86).

Fig. 86. Vector diagramme for a longitudinal hydromagnetic wave.
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One requires an additional equation i.e., one connecting p, and p;.
Let us employ the equation of state for a monomolecular adiabatic
gas with « degrees of freedom. Then

2
P _ ( P ] (1 +_]. (118)
Po Po a
Eliminating p;B; and i from eqs. (115), (116), (117) and (118) one

obtains two equations for V and p,

wopr + pokV = 0 (119)

2 1 B¢
k(l +—] Po pl+(wpo—k'—’— "]V=0. (120)
o Po L0 471’

The dispersion relationship for these longitudinal waves is obtained
by putting the determinant of these equations equal to zero. Thus

o* B(,g 2] Po
— =y = + (1 +— . (121)
k* ? 47pg ( a) po

Interpreting B,*/8« as the magnetic pressure py one has

2 142
v, = \/ Pu + ( P+ /a)PU (122)
0

which can be compared with the equation for the speed of sound in
the plasma. Evidentlv as py/p, — 0, the velocity of a longitudinal
hydromagnetic wave approaches the speed of sound. In the opposite
extreme, i.e.,, when py/p, < 1, the velocity v, approaches that of
transversal hydromagnetic waves.

The equations for transversal waves can be appreciable simplified
owing to the fact that in transversal waves (ref. 13)

divV =0
grad p; = 0.
Egs. (110)-(113) become
oV 1
Po T = T iA Bo (123)
d= 1 ¢FE
curl B, = i+ — — (124)
¢ ¢ ct
1 oB
curl E = — — —~ (125)
c 0t

1
E = —V A B, (126)
¢
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It is instructive to retain the displacement current in the eq. (124)
as in this way one is able to appreciate the relation of transversal
hydromagnetic waves to transversal electron waves in a gyrotropic
plasma (p. 149). If ¥ is perpendicular to the direction of propagation
(i.e., z) then it follows from eqgs. (123)-(126) that B, is longitudinal and
i, E and B, are transversal (fig. 87).

A By

o
— T ——

-z
b

Fig. 87. Vector diagramme for a transversal hydromagnetic wave.

From eqs. (124) and (125) one has

4= 2 . 1 OE
4+

curl curl E = - i+ —_— (127)
¢t ot ¢ ot
Using egs. (123) and (126), i can be expressed as

_ P()C BV

- B_o ot

P()C2 aE
= —_— 128
By ot (128)

Substituting into eq. (127) one obtains a homogenous wave equation

for E

= 0. (127a)

c?

1 47rp(,c:) K
leurl E—— |1 + o=
curl cur ( BOQ a[—ﬂ

Comparing this wave equation with that representing electromagnetic
waves in a medium whose dielectric constant is ¢ one can ascribe to
plasma (for frequencies lower-than ion-cyclotron frequencies) a di-

electric constant

47TP()C?'

B,*

(129)



178 WAVES AND INSTABILITIES IN PLASMA

and a phase velocity, known as the Alfvén’s speed

c c

‘Up = — = . (130)
'\/E \/ 4-‘7.'p0C:£
1 -
+ 5

As po— 0 the character of the hydromagnetic wave changes into an

electron wave and finally for po = 0 into a free space electromagnetic
wave,

Hydromagnetic waves in a plasma cylinder.

It was shown that electron waves on a plasma cylinder are a mixture
of transversal and longitudinal oscillations. The same can be said
about hydromagnetic waves.

Let us note that for B*/8z > p, the dispersion relation for longi-
tudinal waves is the same as that for transversal waves and therefore,
a plasma cylinder can be compared to a dielectric cylinder whose
dielectric constant is isotropic and given by eq. (129). However, this
analogy cannot be applied to large amplitude oscillations. This can be
understood as follows. In solving the wave eguation for propagation
on dielectric cylinders one assumes that the dielectric boundary is
unperturbed by the electromagnetic field. This is not so for hydro-
magnetic waves in plasma cylinders, where the boundary moves with
the speed v of the oscillating plasma. Apart from the mass motion,
there will also be separate motion of the two plasma components,
which at a plasma boundary will produce surface charge distribution.
These polarisation charges occur on oscillating dielectric cylinders too
but are associated with material displacements of only atomic dimen-
sions.

If we restrict ourselves to a small amplitude theory, the results of
the dielectric wave guide analysis are applicable to propagation of
hydromagnetic waves in a plasma cylinder in a uniform magnetic

Fig. 88. Rotationally symmetric hydromagnetic wave on a plasma cylinder.
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field By = By in free space. In particular one finds that for circularly
symmetrical modes (fig. 88) there is a cut-off frequency * at (ref. 14).

24c
.fmin e —
2177'“ \/s _— ].
_ 0.38 By: (131)
Ty 4"—‘P0

There is no cut-off frequency for the dipole mode (fig. 89).

S
-

Fig. 89. Dipole hydromagnetic wave on a plasma cylinder.

Even within the limits of small amplitude analysis the dielectric
analogy cannot be usefully applied to plasmas in non-uniform magnetic
fields, such as, for instance, generated by an axial current in a plasma
cylinder. Here the corresponding dielectric constant varies in space
and an approximate analysis has to be used. The dielectric analogy
fails also in cases in which the plasma pressure p, cannot be neglected
in comparison with the magnetic pressure By*/8x and this is for two
reasons. The first is that the dielectric constant is anisotropic, i.e.,
it depends on the angle between v and B,. The second reason is that
the boundary conditions at the plasma surface are no longer a field-
matching problem but are also a pressure-matching problem. If the
pressure balance at the surface shows a lack of restoring force, a
perturbation of the plasma may result in an instability. This problem
will be treated in section 5.3.

An interesting characteristic of hydromagnetic waves is that the
plasma moves together with the magnetic field lines, i.e., in a hydro-
magnetic motion plasma fluid is coupled to the tubes of magnetic flux
or as Alfvén describes it the magnetic field-lines are ‘frozen’ into the
moving plasma.

* Le., a frequency below which guided waves cannot be propagated.
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This follows directly from the theorem of conservation of magnetic
moment, (p. 40) according to which a gyrating charged particle
encircles always the same amount of magnetic flux. The assumptions,
on which the theorem is based, of adiabatic variation in time and
space of the magnetic field constitute a limitation of our treatment
of hydromagnetic oscillations, Thus, e.g., collisions and large non-
uniformities or high rates of change in the field B will permit a magnet-
ic flux tube to penetrate a plasma (see later p. 226).

The first attempts to detect MHD waves in liquid metals did not
meet with a great success owing to the large resistivity of these media
(ref. 23). The first satisfactory study of these oscillations were made on
cylindrical or toroidal plasmas (ref. 24). Transmission of slow trans-
versal hydromagnetic waves along magnetic lines of earth’s magnetic
field has also been observed — a phenomenon known as whistlers.

5.2.3. HYDROMAGNETIC OSCILLATIONS IN PLASMA STREAMS

The analysis of hydromagnetic propagation on a plasma cylinder
in an external axial magnetic field was based on the assumption that
the plasma pressure was appreciably inferior to the magnetic pressure
and therefore an idealized plasma density distribution could be con-
sidered, as the presence of such a tenuous plasma does not affect the
externally generated magnetic field.

In situations, where the magnetic field is produced by a current
distribution in a plasmz one must choose a self-consistent equilibrium
distribution of n, v and B in order to analyse the hydromagnetic
oscillation of such current-carrying plasma.

In this section we shall consider the well known Bennett distribution
in a fully neutralized electron stream. The relationship corresponding
to this density distrbution was derived in chapter 4, p. 129.

We shall start from eqs. (4.44a) to (4.49) which still contain the
9/dt operators which are essential for problems concerned with oscilla-
tions (ref. 15).

In order to solve these equations we assume that, in spite of small
amplitude oscillations, the plasma column does not depart appreciably
from the sharply defined cylindrical structure obtained from the
steady state analysis (eq. (4.53) ).

Let us now describe the motion of a small volume element located
at r = ry, the characteristic radius of the Bennett distribution. The
equations (4.44a) to (4.47a) become

ovy __ E, + e od + e w, EiA , (132)

ct m mc ot me or




POSITIVE ION OSCILLATIONS 181

owy e 04 2k(T, + T,)

—_— = —— ) y 133
ot Mc v ot + Mr, (133)
1 9 o4 1 24 4n 134
T ) TEe T e e 134

where the subscript b denotes the quantities at the r = ry boundary.
If the Bennett density distribution is to apply at all times then
the equation of continuity is satisfied only if

w = (r/ro)w.

Evidently this does not correspond to a physically realizable model
and one expects that for r > r, the Bennett distribution breaks down.
This does not represent an appreciable error owing to the sharp fall
in particle density in the region of r > r.

Eq. (4.50) can be simplified if one makes an approximation, which
is consistent with the previous assumptions, that

R R
A
27 S n f (rw) dr = (7wy/ro) S nrdr = 2w,N/r,.
cor
b 0

Then

i/a
T _ ("0) (135)
Tl To

where ryg is the initial value of ro, Ty = T.; + T} is the initial temper-
ature of the plasma and « is the number of degress of freedom.

The vector potential 4 follows directly from eqs. (4.51) and (4.53)
rather than from eq. (2a) as in the hydromagnetic approximation the
displacement flux (1/c) (34/2t) is neglected. Thus '

1 + R?/ry?
A= % Nowa LERY/ (136)
c 1+ r3/ry®
From this one may derive both 94,/0t and 0A4,/or.
These are
o4, e w, 1—R?*ry
=——Nv
ot c Ty 1+ 1{2/7'()2
1 dv R?
L1 dv 1n(1+ |~z (136a)
v dt ro?
04 1
b & Ne. (136b)
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When one substitutes eqs. (135), 136a) and (136b) into (132) and
(133) one obtains (writing now d/dt for 8/t and r for ry)

A (14 E C g4, Ry

dt{ vn/z( r"]}_—; CTVT 1+ R*/r* (137)
dw m vv? 2kT1r10‘/“

-7 “laty), 138

dt e (138)

For large R/r one has

R: R
In 14 (l + — ] ~ 2 (111——0.35].
r: r
Let us define a mass m* = m{1l + 2y{In(R/r) — 0.35] } which is
the effective longitudinal mass of the electrons in the stream *.
Provided v < 1 and the changes in r, are not larger than two
orders of magnitude one may assume that

mi

~ const. = g1,
m

The final form of eqs.(137) and (138) is, therefore,

dv e vw
e % By 4o ™, (137a)

de m* r
dw m vv? gt tles (1382)

—— T e— — r a
de M r % _ a

where a =2kT;ro'/*/Mc2.

Small-amplitude solution

Egs. (137a) and (138a) can be solved amalytically for small oscilla-

tions of the quantities v, w and ro. Let us put

v =119 + v;; w=1wy + 3 r=ryg+ r; E, =0.

Neglecting all second-order quantities one has

T

v = 2o, (139)
To
- m vy® ({20 r 4 ac’r,
= — — J— | — 1] ———
r MV e [ o . ] (a + ] potiars (140)

* The added inertia, represented by the term 2¢[In (R/r) — 0.35], results from
the participation of each electron in the generation of the magnetic field B, around

the beam.
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If the quantities v; and r; change harmonically with time, i.e., as
ei*!, one obtains from these equations a characteristic equation for «

m={%( v ) (v — 1) + (%H)—‘“——}' (141)

o r04/a+2

From the original eq. (138a) one gets for the steady state

m vy
actrytlat?) = —

r02

Substituting this into eq. (141) the frequency of small amplitude
oscillations of the plasma channel becomes

Vg m 4
w = 2 - v '\/{—1‘4— (77 + ;) } (141a)

The value of « depends on the ratio of collision frequency between
plasma particles and the hydromagnetic frequency . The value of
this ratio for the electron gas is different from that for the positive
ion gas. In all cases « lies in the range

2 < a< .

The frequency given by eq. (141a) is, of course, the frequency of the
circularly symmetrical mode of infinite wavelength only and in thir
sense it represents a cut-off frequency, i.e. the lowest frequency at
which radial oscillations can be supported by the plasma stream.
A true dispersion relationship would be obtained only if the 3/oz
operator had been retained in eqs. (4.40) to (4.43). For waves whose
guide-wave length A, = 2x/k is shorter than r, one can assume that
their propagation is similar to that in an infinite plasma, ie. that
their dispersion relationship is that of eq. (130), where By and p, are
to be interpreted as some characteristic mean values of 94/or and
nM, such as the values of these quantities encountered in the steady
state at ro.

5.3. Growing Waves and Instabilities

An instability of a system of fields and particles has been defined
on p. 144 as a unidirectionul conversion of one type of energy of this
system into another.

Every system can be characterised by a set of parameters #&.
Let us consider an arbitrary small change 3& in each of these para-
meters. To each 8& corresponds a change 8W) of energy W of the
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system. The total change 8 due to an arbitrary combination of
8&’5 iB

W =3 W..
k

According to the well known principle of virtual displacements a
system is in equilibrium if the first variation 8W of its total energy
is equal to zero.

In order that the above mentioned energy conversion should not
occur, i.e, that the system is in stable equilibrium it is necessary that
not only the first variation must be equal to zero but also the second
variation must be positive.

This can be illustrated in the case of a drop of liquid, having a
certain amount of kinetic energy 1/2MV? on a slope of a potential hill
(fig. 90). A stable situation, exists evidently, at ¥ = W3 where

ow e 4 .
— =0, — > 0 assuming that AW > 1LM)V2,
of o&* -
“W
AW T

LA

|
1
I
§1 3 §

Fig. 90. Energy hill.
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One of the most frequently used methods for investigating plasma
stability is the “normal mode analysis”. This consists of setting up
a linearized wave equation in the plasma and outside it. The wave is
supposed to have a variation of exp (jot).F(k.r). The matching of
the two wave equations at the plasma boundary yields a dispersion
relation

w = m(k).

The evidence for stability is that » is real for all real values of k.
The normal mode method is often applied to systems assumed to
be loss-less. However, it is well known in the theory of oscillators,
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especially microwave oscillators, that oscillations will build up only
when the electron current injected into such an oscillator exceeds a
certain minimum value, known as the starting current. This corre-
sponds, in plasma physics, to a certain minimum of energy which
must be available in the system, before it can be converted into either
electromagnetic or kinetic energy of the plasma.

We shall use the normal mode analysis in this section as it follows
naturally from the fluid equations developed so far. At the same time
we shall try to evaluate a (uantity corresponding to a “starting
current” or at least point out the energy aspect of instabilities predicted
by the normal mode analyses.

This section is divided into sub-sections dealing with different
types of energy conversion.

5.3.1. CONVERSION OF KINETIC ENERGY OF PARTICLE STREAMS INTO
THE ENERGY OF LONGITUDINAL PLASMA OSCILLATIONS

Let us consider an infinite, neutral and uniform plasma in which
the electron gas has a velocity v, = vy, and the positive ion gas a
veloeity w, = wo. Let us assume that both these steady velocities are
perturbed by a small amplitude wave, whose space-time variation
is e/(ur+*k). The situation is then described by eqs. (3.56a), (3.57) which
in our case can be linearised and become *

Nye ——
jov1 + jkvivy = — £ E, — jk ! u.’ (142)
m ne
: . eZ . Mp —
jow; + jkwiw, = E, — jk ul. (143)
np

The relationships for E; and n. and n, follow from the equation
for divergence of E, and from the continuity equation (see eqs, (105)

(106a,b) ). Thus

jkE, = 4ze(Zn,, — ny.) . (144)
jorse = — jk(naavy + novy) (145)
joni, = — jk(niwe + nuw;). (146)

Substituting E;, n;. and n;, from egs. (144)-(146) into egs. (142)
and (143) one obtains (choosing Z = 1)
—_— ® + kvo

m [a)pez — ((u + k‘l.)())2 + kzuez] —wlmpe" — =0 (1423)
0] + klU()

* Compare with egs. (103), (104). Hypothesis of isothermal plasma retained in
eqs. (142) and (143).
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m e+ kw, m
e Pty
IM w + kv() ﬂ]

— U1 = 0pe” — u)pe: — (u) + kwu)"' + lfll?:l = O (1433)

The dispersion equation is derived by putting the determinant of

this system equal to zero. Thus

[— ope” + (0 + kvg)? — k'l?]

[—%wnez + ((u + kwu)-'——lr'rp-'] = ;l—la)pe4.

Putting (m/M) ,.* = o,°, which is the ion plasma frequeney this equa-
tion can be written

o o
Wpe” app”

4 =1 (147)
(a) + kv',)z — kgue"’ (a) + kw(,)” — kgupg

This equation is of the 4th order in ». The condition for stability
is that all the four roots v;(k) are real numbers.
Let us consider first a simplified case in which

Wy = Oa ;;—w: - uug = O
Eq. (147) becomes
1 N m 1 1 (147a)
.~ J— = . a
(a) + kl'(,): /‘l w* mm."'

Let us plot the left-hand side of this equation as a function f()
(fig.- 91). Imaginary roots appear for

f(‘”)min >

Wpe

from which it follows that for

< |1 +( ) (118)
< M ry?

where *

the electron stream will become unstable and convert its kinetic
energy into longitudinal electric field E;. The same results is obtained

* As the minimum is very near to @ = 0, we may take as a first approximation

m \1/3
f(@)min = The correcting term [7] corresponds to a precise calculation

vt

of the minimum f(w).
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This is the frequency that must be used in eqs. (148)-(149) instead
of wp. The criterion for instability for cylindrical streams thus

netal 1 2 1/2
LN ,,.”"2[1—3("”) ] (151)

271y ro®  wpe M

becomes

which in many cases yields Aipsan larger than the length of plasma
cylinders likely to be used in practice.

So far we have not taken into account the energy losses from the
longitudinal mode E;. These may be represented by a damping coeffi-
cient § operating on the assumed form of space-time variation of
E,. The total variation is then

el(we+kz)-8¢

It follows that if an instability generating mechanism exists it must
be associated with an imaginary component of

Im(w) >—3

in order that the corresponding perturbation ei*: can grow inspite
of the energy loss.

This energy loss from modes propagated in plasma cylinders may
be very large as such modes can be coupled to a suitable waveguide
outside the plasma.

5.3.2. RAYLEIGH-TAYLOR INSTABILITY

Of particular interest is the instability in which potential energy
of a fluid is steadily converted into its kinetic energy. A classical example
of this situation is a perturbed equilibrium of a fluid supported by a
lighter fluid against gravitational forces. When the heavy fluid is a
plasma (or another electrically conducting fluid) it is possible to
substitute for the light {luid a magnetic field. In such a case we require

2

8=c*

< nim + M). (152)

Pm =

As on the boundary the pressure of the plasma is equal to that of the
magnetic field it is evident that a non relativistic plasma will always
behave as a heavy fluid when supported by a magnetic field.

Let us now consider a slab of a perfectly conducting fluid of thick-
ness a supported against a gravitational field g by a uniform magnetic
field B (fig. 92). Let us further suppose the fluid is of uniform density
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where § is known as Haley’s thickness and

s = P (164)

pog
The result of the analysis of the Rayleigh-Taylor instability is, in this
case, the same as in the case of the incompressible fluid, the distance «
must be substituted by 3.
The assumption of small amplitude perturbation always made when
the method of oscillating modes is used implies that
A £
¢<La and also L — = —.
2 k
This assumption makes it possible to linearise the equations and
resolve them analytically. When the amplitude of the unstable mode

A
becomes comparable or larger than £y the problem has to be resolved

by numerical methods, or by experiments. In the case of the Rayleigh-
Taylor instability it has been thus demonstrated that the perturbation
grows into tongues of fluid which finally form drops (or rather detached
cylinders of fluid, fig. 94). The exponential growth-rate (eq. (162) ) is no
longer applicable and the drops fall freely in the gravitational field.

The £,(t) at the surface of the growing instability is represented by
a curve which starts as an exponential and after a time r of the order

of several times (kg)-'/? merges into a linear section § ~ gt + const,

5.3.3. MAGNETOHYDRODYNAMIC INSTABILITY

This instability has to do with a transformation of thermal (internal)
energy of plasma into its kinetic energy and in some cases also into the
energy of the magnetic field.

a. Stability of a linear Z-pinch

Let us consider a cylindrical column of plasma of radius ry, surround-
ed by a perfectly conducting rigid wall of radius R = Br,. There will
be three magnetic fields in this system: By and B., outside the plasma
and B., trapped inside the plasma. Let us also make the following
assumptions.

1. Al the currents are surface-currents (i.e., the thickness of the
surface current-layer is much smaller than ry).

2. Plasma is a perfect conductor. There will be, therefore, no
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diffusion of magnetic fields and we shall be able to use the MHD

model.

3. Our pinch is initially in equilibrium (p. 135) and is perturbed
by a small amplitude ripple whose form is exp. j (kz + m¢ + ot).

4. All dynamical processes are isentropic (no shocks).

Ty

We shall use the following nomenclature B, = B, , B, = ayBy,

r
B., = a,B,. This allows us to measure all fields in terms of By, the By

field at the plasma surface.
We shall use the method of normal modes. The result which we shall
be looking for is of the form

o = m(a,~, Oy ,B, k, m) (165)

real » corresponds to stationary oscillation, complex » to either damped
oscillations or to instability.

We shall proceed as follows: corresponding to the form of the
perturbation we shall find the perturbed magnetic field outside and
the perturbed magnetic field and plasma pressure inside the plasma.
Matching the two solutions (outside and inside one) at the plasma
boundary gives a characteristic equation and the dispersion relation

Let us now write the equations corresponding to the MHD model
and to our case.

First the Maxwell’s equations

. 1
1—B=rot (—‘UI\B], rot B =

e

i, divB =0, (166a,b,c)

c c c

then the equations of continuity and of plasma motion
. A
p = div pv, pv = —iaB—gradp (167a,b)
c
and finally the equation of state in the form

d
ar (pp™) = 0. (168)

Let us now find the expression for the perturbed magnetic field in
vacuum.
This can be written as

B=B,+aBy+ $B=F + 35B. (169)
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As there are no currents outside the plasma
rot 8B = div 8B = 0 (170)
which allows us to write
8B = vy and Ay = 0. (171a,b)
The solution of this equation in cylindrical geometry is
4 = [a Ju(jr) + b Hy(jkr)] oithern®, (172)

The constants a and b are to be determined from the boundary
condition

B.n=0 (173)

onr = R and on the surface of the plasma, n being the vector normal to
these surfaces. On the outer surface we have

0
3B, = [ d ) 0, (174)
or r=fr,
The plasma surface is described by
r=re [l + 8 eiltistnp)], (175)

The component of the field normal to the surface is

2
[ a*” ] = jBoSo (krea + m) eiltsstm®) = 0, (176)
r r=ry

From equations (172)-(176) we have

8o

(karro + m)
a = B, (177)

. . J'm(jkroB)
(o) — Hg(jhirg) ~mtrC)
J m (J rO) H (] rO) H’,,.(jkroﬂ)

J'l]\(‘kr
b= g Jmlkref) (178)
H'm(]’t"‘oﬂ)
Knowing 8B it is easy to calculate the magnetic pressure §p, from the
outside on the plasma surface. Thus

B: B
§p, =8 [——) =2 (8B, + ar8B., — B8, - eitk=+m9)) (179)

8= 4
Using equations (171a), (172), (177) and (178) we get
2 G me — Lﬂl
8§pe = 8o ei““*'""‘){ (m + aY)? i S | (180)
‘o 1— Gﬁ,,.
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Jn(jY) H,(jY)
where Y = kry, K, = - L, = FCTTTTREICTN
0 ]YJ’»m(JY) JYH"”'(JY)

H’,,(jBY) Jm(jY)
H’-m(jY) J’m(leY)

Let us now find the perturbation in the plasma. It is convenient to
introduce (as we did on p. 183) a new variable

Gﬁm -

£= fvdt (181)
0

which represents the displacement of an element of fluid. Taking into
account only first order terms, equation (166a) becomes

8B = rot (v A B) (182)
and integrating both sides and using equation (181) one has:

8B = rot (£ A B). (183)

The equation of motion can be written as

. 1
ps = ym (rot 8B) A B — grad dp. (184)

T

Substituting eq. (183) into eq. (184) we get

p5 =

[rot rot (¢ A B)] A B — grad 8p. (185)

I

The equation of continuity written in Langrangian coordinates becomes

8p = — po div § (186)
and the equation of state and eq. (186) gives

8p = — ypo div E. (187)

Using eq. (187) the equation of motion becomes finally

—47po®t = B Arotrot (B AE) + 4=yp, grad divE. (188)

The perturbation exp. j (kz + myp) is symmetrical in both z and
and when o is real, the difference between exp. (jot) and exp. (— jot)
is only in the direction of propagation. It is evident that the solution
of equation (188) must be »* so that both + » and — o is a solution.
Changing one of the parameters of the perturbation, e.g., k, both roots
+ o and — o will move symmetrically along the real axis in the
w-plane (fig. 95). Before the (k) values can become purely imaginary
they must pass through w(k) = 0. This corresponds to the passage from

a stably oscillating system (k < ko) through labile situation (k = k),






GROWING WAVES AND INSTABILITIES 197

of stability, As the solenoidal and irrotational parts of £ cannot cancell
each other, it is obvious from equation (188) that

rot EAB) =0 and divg =0 (189a,b)
which is equivalent to saying that
£ = grad ¢ where Ap = 0. (190a,b)

We have, therefore, in cylindrical geometry, in the region containing
the axis,

& = c grad J,(jkr) eitkstm®), (191)

The boundary condition on r = ry(1 + §,eitk=tm%) ) gives

E,- = T080 ei("“"‘?’) (192)
from which
)
6= 0 (193)
Jk-”m(,]kro)

It is now possible to calculate the change §p, in the internal pressure
on the plasma surface. As the volume of the plasma did not change
the kinetic pressure of the plasma remains constant and the §p, cor-
responds to only the changed magnetic pressure inside the plasma.

Thus

Bz, B.
Spp =8 [ > ) =| " 3B, (194)
871’ 1'=1'0 471' =T,
From eq. (183) and with eq. (189b) follows that
0&. o2
8B.=(BV) & = B, : = «,By ¢ (195)
0z 0z2
Using eqs. (190) and (191) we get
By
Spp = %8 eilkstme) Y2K (), (196)
v

To a certain amplitude 8, of the perturbation corresponds, therefore,
a pressure difference

8p:= 3pp, — 8pv. (197)

Since our system is labile (indifferent equilibrium, » = 0) it follows
that §p = 0. For 8p > 0 and r — ro > 0 the surface will be displaced
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a

5—1 a(£)+jm£+'k5 (201
T T e U A Ik °)

Substituting for £, and £, in the last equation we have from egs.

(201a,b)
1 3 3¢, a . m?
r or [r or ) * [[_I;’_k)— r ]&—0 (202)

the solution of which is

g:C-Jm(\/ Z/,—k'-'.r) (203)

and one finds from the first boundary condition £, = r¢8, that

80r0k

= (204)
XJ'(jXro)
al
here X* = k* — .
where ™
From the second boundary condition, i.e., from
8pp = 8p»
we get the dispersion relationship v = w(k,m)
n a, o o .
— |1 — o ro*X?* Kn(jXro) +
Gan(Y)K,(Y) —L(Y
b4y eI )

1— Gﬂm( Y)

from which the growth-rate of any mode (k,m) can be calculated.
This equation merges into equation (199) when » = 0, i.e., when X = k.

b. Systems with diffused (volume) currents

Let us consider two adjacent flux tubes, containing plasma. We shall
assume that the tubes are locally parallel to each other, i.e., there is no
shear in the lines of force (fig. 99). Let the tubes be tied to the plasma,
which for grad |[B|5£0, « leads to a continuous current-distribution.

Let I, 4, Q; By N, and ¢, be the length, cross-section, volume, field,
total number of ions and flux in the first tube (system S,) and I, 4.
Q, B, N. and ¢. the corresponding quantities in the second tube
(system S.).
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Let us now consider two adjacent flux tubes, containing the same
flux but different number of particles. Thus ¢; = ¢2 and from
eq. (211) we get

Q 2f3 Qs 2/3
AW = 3kN,T, [( S ) — 1] + 3EN.T. [( o ) — 1] (213)
5 1

where we have assumed that y 1 = 2/3, corresponding to 3 degrees
of freedom. Substituting for 2kN,T| = p1Q;

2kN2T2 = ngg

we have

Q 2/3 Qs 2/{3

2 1

Since the tubes are adjacent

Q+ 80 )2
where we put Q = Q, p = p;. Expanding (——-;——) we obtain
10 ( 8Q sp 80
AW =3/20p |— —) +2/3— —— | =78 (pav)sQ. (216)
9 Q P 9)

In some cases it is of interest to consider AW resulting from the
exchange of two tubes all along the length I of the system containing
plasma. Then

Q = ‘ A dl (217)
;
As the flux in the tube is constant, ¢ = 4 - B and

+i

Q= x—dl (218)
= ¢ |5
-r
where I and I’ are the lengths in the + and — axial direction up to

those points of the tube beyond which the configuration is known
to be stable or not to be of interest any longer.

It can be shown that the term I' = §(pQ") in eq. (216) is always
negative:

T dp 8Q
= + v )Q”f. (219)
p p Q

In the outer regions of the confined plasma §p < 0 and p— 0, whereas
Q does not change rapidly. Therefore,
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dl dl dl ‘ 1

{ { {

where I, and I, are the lengths of two adjacent tubes, whose separation
is D(l). If the pressure of the plosma is relatively small i.e., if

8
B = ﬂj < 1 we can assume that rot B ~ 0 and we get
D
B __2 (225)
B R
and noting that the flux between the two lines B; and Bs is
A¢ = 27D - rB = const. (226)
the above criterion (eq. (223) ) can be written
di >0 (227)
rRB? )

i

The sign of the integral depends on R. In the concave part of the

P

bottle, R > 0; in the convex part R < 0. However, as rB? « it

r3
follows that the integrand is largest for z = 0 and therefore, the nega-
tive contribution of the central part of the bottle predominates and the

simple magnetic bottle is thus unstable against flute (exchange)
instabilities.

c. Systems of confinement and their stability

The stabilized linear Z-pinch is a typical representative of plasma
confinement in which the plasma pressure is, at least partially, balanced
by self-fields. Using the model of surface currents we have derived the
criteria for the stability. According to this (ref. 16), this stability
against the most dangerous mode, i.e., the sausage instability, is assured

B
when —

= \/E for B,, = 0, where By is the intensity of the B,

field at the plasma surface. The kink instability can be stabilized only
if the conducting wall is near enough to the plasma, so that the
Foucault currents (image currents) are able to repel a growing kink
(fig. 102). This is expressed by requiring that g < 5. If the modes
m = 0,1 are thus stabilized, the higher modes will not trouble the
confinement. It has been found that the stability of a laboratory plasma
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constrained to move along a sinusoidal curve L=x = x,sin kz. The
centrifugal force on a unit segiment of the beam is
Ivm'y‘u2
Fp = ———— (233)
rC
where r. is the radius of curvature of the curve L at the segment
considered. If x;,, <€ 1/2A the radius becomes

r. = 1 = — x, k2 (sin kz)?
0%x
022
and
F, = E*xqayNmv* sin kz. (233a)

The magnetic force F,, is found by using the Biot-Savart law. Thus
the force d*F,, exerted by a current element d/; on a current element

dlg is

dl, Ars
d°F,, = ds, — 2212 |
riis

The total force F, on a unit length element dI due to all other
current elements of the sinusoidal beam is then obtained by integration

1 A
Fo = EBxp, — [ln ] sin kz. (234)
Tro

If a conducting cylindrical wall exists at r = R then owing to the

/\mu

= R.

appearance of image-currents we must put

Let us form a ratio Fy,/F, using eqs. (233a) and (234)

F
R LA (235)
F. R

vin

To

It is, therefore, obvious that if inequality (232) is obeyved, the hydro-
dynamic forces plav a more important réle than the self-magnetir
forces in the excitation of instabilities.

Let us use an idealised model for a plasma stream, consisting of
two cylindrical beams of radius ro, one formed by the fast electrons,
the other by almost stationary positive ions (these will be considered
to be protons). This model is often referred to as a two-string model
of a neutralized (or even partially neutralized) electron beam. In an
unperturbed state the axes of these beams coincide; however, when
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The distance x,, of maximum separation is obtained from

We = Wk.
Thus
xn = VVenByre Vy/v. (238)

The wave length X, corresponding to one full oscillation of the electrons
about the positive beam is

Ae = 2m i}“- = V2 2Bre \y/v. (238a)

From this it follows that any perturbation of the positive beam,
whose wave length is smaller than A, will not be impressed on the
electron beam.

This relationship can be also derived from the equations of motion
for the two strings. These follow directly from the two-fluid equations

avz avz
N =_—F, 239a
7m°(az+vaz) (239)
ow; ow;
NM[ Y rw “’]: R (239b)
ot 0z
In terms of the deflections x; and x. of the two strings, eqs. (239a,b)
become
0 9 }?
yNm, + v x; = alx; — %) (240a)
ot 0z
0 2 \* ,
NM (—— + w ) Xo = a(xo — x1). (240b)
ot 0z

Let us consider a Fourier component of the actual perturbation,
i.e., let us study x, and x» of the form ei®*=*) Then egs. (240a,b)
become algebraic equations and by putting their determinant equal to
zero one derives the dispersion equation

le Q2°

(w—vk)z + (m——~l,4.)k)2 -

. 2y c )* . 2  my c \?
2" = s et = v
Ty Ty ki M Ty

which has the same form as eq. (147).

1, (241)

where
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The criterion for the onset of instabilities will have, therefore,
the same form as eq. (148a) and for 1w = 0 one obtains for the longest
stable wave length

—_ 1/2 ] -3/2 I
Amax = \/2773/2 ,:]. + (‘)/ ']:;0 ) :| .ﬁro \/l. (24-2)
v

Remember that in evaluating the coupling force F, between the

strings we have taken as our model beams of equal characteristic
radius ro. If one considers a cold-core model (p. 135) the dimension
of the electron stream is considerably smaller than that of the positive
ion stream. In that case, in order to evaluate F., one should consider
only that portion N, of the positive cloud which is located inside the
electron beam. It has been shown (eq. (4.73a) ) that for a flat stream

N/N, = y*
and from eq. (236a) one has for F,

2 2 N‘.!
F, = =% x. (243)

™ ')’2"().',

Substituting this into eqs. (239a,b) one obtains for the longest stable
wave length

. m, 1/2 -3/2 ,Y:;
Amax = \/2773/2 1 + ('y i ) ] ‘,BTO\/ (24-23)
v

which suggests considerable stability.

Evidently the criterion of stability depends on the structure of the
neutralized beam, but one may expect that the corresponding value
of Anax will lie somewhere between the values given by eq. (242) and
eq. (242a).

The behaviour of a relativistic beam immersed in a plasma is more
stable (ref. 22).
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List of symbols used in Chapter 5

vector potential or surface
magnetic field strength
velocity of light
distance, Debye length
charge of electron
electric field strength
distribution function,
frequency

force

gravitational field
Hamiltonian

electron current density
current

v—1

wave number or
Boltzmann’s constant
abs. value of the imaginary
part of the wavenumber
dimension

particle mass

particle density

linear density

pressure

coordinates, distance
radius

time

u, v, w velocity

Up

phase velocity

w

x,y,%

VA

a

B

o <

energy density

coordinates

atomic number

number of degrees of free-
dom

v/c

(1 —v%/c*) V2 or cp/cy

skin depth, damping coef-
ficient or mean fluctuation
dielectric constant

wave length

Debye length

frequency

phase angle or potential
coordinate

Brewster’s angle

density

surface charge density
Thomson cross-section
period of oscillation
angular frequency
cyclotron frequency
plasma frequency
displacement

flux

potential

volume

magnetic flux



CHAPTER 6
SHOCK WAVES IN PLASMA

Introduction

In the previous chapter we have described various energy conversion
processes which give rise to oscillations in plasma. The propagation
of small amplitude oscillations through plasma as investigated Dby
solving the linearized wave equations for a particular wave form.
whose space-time variation was assumed to be exp [jlot + kz)]. Tt
was argued that anv small amplitude perturbation could be expressed
by its Fourier components and, therefore, its progress in space and
time can alwayvs be found from the dispersion relation o(k) for the
individual components. Thus if the perturbation has a form

folz) = f  Fikers dk (1)

r o

at the time t = 0, it will be transformed into

f(z) = Fuikyeilk-emd dk (1a)

at some later time 1.

Tt was also mentioned that for most types of oscillations. the dis-
persion relationship o = (k) is valid only within certain frequency
range, e.g.. for hvdromagnetic waves the validity of the dispersion
relation is in doubt for wave lengths A,;, shorter than the gyration
radius of the ions. Thus ounly propagation of perturbations whose
initial distribution f,(z) does not contain harmonics whose wave length
is shorter than A,,;, can be described by the dispersion relations derived
in chapter 5.

When the amplitude of a wave hecomes o large that the quadratic
and higher terms in ny, vy, w0, cannot he neglected the fluid equations
cannot, as a rule, be resolved analytically. No simple dispersion equa-
tion is obtainable, in fact, the frequency of an oscillation will depend
on its amplitude and consequently its phase and group velocity will
also depend on the amplitnde.
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It is obvious that, owing to the above mentioned two limitations,
propagation of strong disturbances in a plasma cannot be described
using the dispersion relations derived for small amplitude waves.

Nevertheless, certain concepts in the propagation of large amplitude
waves resemble the concept of group velocity. This can be demonstrated
in a simple way for disturbances having a plane geometry. The equa-
tions of an ideal fluid in absence of external forces are (from eqs. (2.59a)
and (2.62) ).

dp G
= — ) 2
= P (vp) (2)
ov ov 1 op
Y- 3)
ot cx p Ox
ppY = const. (4) *

/'p d
f= 5 ¢ — where ¢ = y--I—)-
Py P P
and pg is the undisturbed fluid density.

It follows that
2

f=——(c— co). (5)
y—1
Using this quantity eqs. (2) and (3) can be now written as
of ov of
+ + =0 6
ot x| U os (6)
0 o 2
7 +v—0-1-)—+c f =0 - (7N
ot ox ox

Adding or subtracting these equations we obtain

~—;—(f+v)+(v+c) ™ f+v)y=0 - (8)

~

[

0
a_t(f'—v) + (v—o¢) o

(f—v) =0 9)

These equations have the form of wave equations for the quantities
f + v and f — v. The velocity of propagation of these waves is v + ¢

z
* ¥ =1 4+ —— where « is the number of degrees of freedom.
@
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and v — ¢. Thus for an obhserver travelling with one of these speeds
one of the quantities f + v, f — v remains invariant. These quantities
are known as Riemannian invariants and the curves in the x,t space
on which f == v = const. are called the characteristics, The two Riemann
invariants are equivalent to the following two invariants

2 2

Rlz—c+v, 1{2:———-0—1] (10)
4 —1 v 1

where ¢ has the meaning of a local speed of sound.

Let us now consider the propagation of a plane fluid distribution
shown in fig. 109 for t = 0.

If at this time the p, p and v are known functions of x, it is possi-
ble to find the angles of characteristics in the x,t plane for t = 0. It
is evident that the characteristic passing through the point A corres-
ponds to a faster signal than that passing through B. At some later
time 1. these characteristics will intersect suggesting that a zone is
being created where the values R;(A4) = R;(B). As this is physically
impossible a discontinuity in p, p and v must exist at the point C
or possibly even at an earlier time. In this case the family of charac-
teristics hetween 4 and B has an envelope I which represents the
formation of such a discontinuity. The fluid region at X is known as
the shock front (ref. 1).

Since thie occurence of shocks is related to intersecting characteristics
let us derive a criterion for the intersection of two adjacent characte-
ristics © + ¢. The difference of speeds of two points following these

curves is
cv 81) 8p
§ =8 + ¢ =—358p + Lse — (11)
¢p P p
[} -
as p ~ p* we have P__r Sp and
p p
‘v —1
L R A T (12)
cp 2
If the characteristics are to intersect we must have § > 0 and, there-
fore,
cv Y 1
— + ——¢c| & > 0. (13)
1‘p 2

If the opposite is true the zone near the two characteristics is develop-
ing a rarefaction wave.
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6.1. Relations of Rankine-Hugoniot. Shock-speed

The behaviour of a plasma invested by a shock-wave can be described
by the equations of continuity, conservation of momentum, magnetic
flux and energy. We shall use the model of one fluid with infinite
electrical conductivity. We have (see eqs. (3.59a), (3.€0) and (3.66))

2 o
LA —— (pv) eq. of continuity (14)
ot cx
0 o 1 oB 9
p 8:) + pv a: == B ;x — ai) eq. of cons. of momentum
(15)
o ¢B
= (vB) = eq. of cons. of mag. flux (16)
x
ov 0 0] p
+ Lopv®
[ax ot +Uax)[y_1+/2"v)
d(pv 1 o(vB?
+ (pv) + (vB7) =0 energy flow. a7

cx 8r tx

Let us assume that some time r after the passage of the shock-front
3, the fluid settles into a new equilibrium state.

This usually implies the existence of some dissipation mechanism
such as viscosity. As 7 can be chosen very large, the damping mechanism
can be so weak that it does not has to be represented by a special term
in the above equations.

In order to eliminate the time dependence, let us transform our
equations into a frame of reference in which = is stationary. Thus,
if in the laboratory frame of reference the undisturbed region in front
of 3, (upstream) is stationary, in our new frame of reference the fluid
speed there will be equal and opposite to the shock speed v, in the
laboratory frame.

It is now possible to choose two points x; and xg, the first situated
in the shocked, steady flow behind ¥, the second in the still undisturb-
ed plasma in front of 3. Let us integrate the eqs. (14) and (15) between

~

x; and x,. As according to our model =0 we get
plvl = p()‘U() (18)
Bl'.: BO ¢ x, ouvt
+ — po — =1 \ dx. 19
P1 or Po . /21“ p ox x (19)
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Integrating by parts and using eq. (17) one has
EN av:!
1/2 S P dx = ——-P1U12 + Povo2 (20)
x, ox
and, therefore,
B2 Bo®
pvl® + p1 + = povo® + po + =2 (21)
Eq. (16) gives
B1U1 - B()‘U(). (22)
The equation of energy transport can be written
a[(p+1"++320 (23)
v =
|\ T pv T Ve

which can be directly integrated. Remembering that p,v; = povy we
get

v Pa B,* Y Py By*
Lhv® + + = Lhvy* + + . (24)
o y—1 p dmpy oo v—1 po 4mpo

Egs. (18), (21), (22) and (24) are the generalised Rankine-Hugoniot
relations. These equations were orignally derived for shocks in a gas,
in which case their form is obtained by putting B, = B; = 0 in the
eqgs. (21), (22) and (24).

We have now four equations for pj, vy, p; and B, and it is, therefore,
possible to determine any of these in terms of py, vo, po and By. Let us
eliminate p,, v; and B;. The remaining equation will contain v, po, B,
po and p;. Solving this equation for vy, we obtain the shock-speed

vy = — v, in terms of py, pg, By and p1/po. It reads
B 1)z
SR )
2 4arypy €* 2 po
Vg = Cg . (25)
vy +1 I
p1 y +1

When p1/pe tends to unity the shock becomes “weak” and v, tends
to vy, the speed of sound waves in a gyrotropic plasma. If, at the same
time, By, » 0 then v, = c,.

. +1

On the other hand, as p;/p, increases and tends to 24 1
y—

speed tends to infinity, showing that for strong shocks the density ratio

the shock
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It has been shown recently (ref. 3) that M, of such pulses is limited
by the development of a two-stream instability with a subsequent
generation of turbulence.

It is plausible that the structure of a collision-less shock in a gyro-
tropic plasma resembles a succession of damped Adlam-Allen waves,
as has been shown theoretically in a special case of By = 0 (ref. 4),
fig. 114).

6.4. Diverging and Converging Shocks

So far we have considercd shocks having a plane geometry, whereas
shocks generated in plasmas are mostly either spherical or cylindrical.
Typical examples of diverging spherical shock waves are provided by
point-like explosions, e.g., supernovae (ref. 5) or an A-bomb explo-
sion (ref., 6). Cylindrical shocks can be of the diverging type in
exploding wire experiments or of the converging type in rapid implo-
sions in Z or §-pinches. Let us treat first the diverging shocks.

6.4.1. DIVERGING SHOCKS

It is always gratifying and helpful if in treating a non-linear pheno-
menon one is able to discover some characteristic feature which is
independent of amplitude. Such a feature in the theory of the shock
waves is known as the similarity of flow distributions. In diverging
shocks this is exemplified by solutions of the type

Foo =R () (31)
R

where F is one of the quantities characterising the flow (such as Ds

p or v), R is the radius of the expanding shock front and r is the radial

coordinate. If solutions of this type exist, then the profile of F behind

the shock front remains functionaly the same and the distribution of

F at t, is similar to that at ¢, i.e.,

Fy(ry) _ [ R(t,)
Fy(r,) R(t.)

T T2

R, R,

] R where £ (32)

It is not difficult to find what the exponent n should be in the
case of a point-like liberation of an energy W. At a time ¢ after the
explosion this energy must be found as the internal and kinetic energy
of the expanding plasma. Therefore,
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R

1 (P 2) e
. W = S (7_ 1 + l/zpv-) r: dr. (33)
0

Since we know that in strong shocks the p;/po across the shock front is

equal to it must be
y—
p r
= (34)
po i [ R ]
without depending explicitly on R(z). Putting P _ R* - © and
Po
v=~R*.p weget
Y e ( 26 + Yopops?| £- dé (35
e — /zPow)é' £ )

As only R*** contains time and as W = const., it follows that
n=—3.

Let us now try to substitute the expressions for p, p and v in the
three equations of the one-fluid model (without electromagnetic forces)

0 0 0 2
ap t+v ‘P +p [ Lz ) =0 eq.of continuity  (306)
ct cr cr r
¢ ¢ 1 ¢
z + v T - P eq. of motion (37)
ct or p or
¢ 0
( ” + v— ) (pp™) = 0 eq. of energy transport. (38)
or

If these are to be satisfied by solutions of the type (31) the following
must be true

dR
— = A R (39)
de
or
R = (5/2 4 - v)** (40)
and « 8 poac i, (41)
Po
In order to reduce eqs. (36), (37) and (38) to a non-dimensional from
let us put
:()L ¢=L where cgzyﬂ.

e A po
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Then
Vo ¥ )
v §—¢
1 ’
p(E—¢) = - —3/2¢ (43)
30 + £0" + v ‘ij 6(¢p — &) — 98" = 0. (44)
14
Substituting into the last one from eqs. (42) and (43) we get
—3t+ ¢ [3 +%) —2ygE?
¢ = . (45)

66— ) —y!

Thus knowing 4, ¢ and ¢ at one point it is possible to find by
numerical methods these functions everywhere.

Such a starting point is on the shock front, ie., ¢ = 1. Then §,, ¢,
and y; are given by the Hugoniet relations (18), (21), (22) and (24)
which for strong shocks become

2
b = --y, 1:y+1’ b1 = 2~
y+1 y—1 y+1

The numerical solution of eqs (42), (43) and (44) has been obtained
for plasma (y = 5/3) and the form of 6, ¢ and ¢ is shown in fig. 115
(ref. 6).

It is seen that in the central region, ie., for § < 14 the pressure

(46)

(« 6 (£)) is approximately constant and, therefore, the internal energy

density is also nearly constant, Since the density decreases with

y—
decreasing ¢ (for ¢ = 0, y = 0), the temperature must tend to infinity
near the centre of the explosion. Similar analysis for diverging cylin-
drical shocks shows that n = 2 and R = \/24t; p a R?% vaR' The
functions 6, ¢ and ¢ show similar behaviour as those of spherical shocks

(ref. 7).

6.4.2. CONVERGING SHOCKS

The method of similarity solutions can be used for converging shocks
too. This has been done by Guderley and Somon (refs. 8 and 9).
The latter finds that for y = 5/3 the pressure behind the converging
shock front increases as R for spherical shocks and as R for
cylindrical shocks. As the denstiy behind a strong shock front is always
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shock front is split and guided round the corner of the pear. A well
defined converging shock front was produced only when the original
Mach number of the plane shock was smaller than 1.7. At higher
Mach numbers the bending of the shock round the corner did not prove
feasible. The temperatures reached in this device are also limited by the
proximity of the walls of both the pear and the shock tube,

Strong converging cylindrical shocks are produced in some fast
pinches especially in Z-pinches (in which the converging shock does
not encounter any magnetic field). The current layer driven by the
i,B, Lorentz forces acts as piston and drives a cylindrical shock
towards the axis, The progress of both, the piston and the shock-
front can be observed by means of a smear camera, which also
shows the collision of the front on the axis (ref. 11).
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M, Mach number shock front
n particle density p mass density
p pressure £y ¢ reduced variables
R radius K heat conductivity
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0.21
By = (4)
r
where I is the total current in amps.
and therefore, eq. (3) can be written as
F e (om, om/sec? ) (5)
= — 1, cm/sec?, amps, g).
rr 100, cm, ¢ ps, &
The equation for the current I is
oV 0*
I=—C—=—C— (L (6)
ot ot*

where

C is the capacity of the condenser bank (F)
V' is the voltage across the same bank (volt)
L is the total inductance of the circuit (H).

The latter is

L=Ly+2x10% lnE (henry).
r
In many important cases the variable part of the inductance is compar-
able or smaller than L, and also owing to the logarithmic dependence
on R/r the inductance is a slowly varying function the shell-radius r. We
shall, therefore, assume that for r/R > 0.5 the L = const. = Ly(1 + f)
and the f == 1. In that case eq. (6) can be written as

ol = — 1T (6a)
here '
. 1
T CL T
The solution of eq. (6a) is
I = I, sin ot, (7)

Asatt = 0,one has I = 0, ¥V = ¥V, it follows that

C
I() = (DCVO = -
\/ Lt h V. (7a)

As a result of the assumption about L and L, the equations (5) and
(6) are not coupled. The discharge is current-fed and its motion
does not influence the current flow appreciably. Substituting, there-
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fore, eq. (7) into eq. (5) one obtains a simple differential equation
for the radial motion

CV* sin 20t
100MsLo(1 + f) ~

—rr = (8)
If r varies slowly with regard to time as compared to 7 one may
investigate the equation (8) for r > 14R by assuming that

r = const. =~ 34 R.
Thus

F = — a sin? ot (8a)
where
CVy:

100MLy(1 + f)34R "

a =

The solution is

_;-:l/za {z— ;w sin%t} (9a)
1 — cos 2wt
R_"=1/2 {]/ztz——w—}a- (9b)

Let us calculate r and r at t = =/, i.e., at the first reversal of current

I. These are

. 7CV o2\ CL,(1 + f) 2032V ¢
r o= ~ 10 (cm/sec) (10a)
150MsLo(1 + /)R VLo(1 + f)MsR
72C2V02
r r 300MSR (Cm) ( )

Example: C = 10° (F), Vy = 10* (volts), R = 10 (cm), Lo(1 + f)
= 10" (H), M = 10-° g. Then:
R—r, =8 (em),r, = 2/3 X 10° (em/sec),
t = m\/CLo(1 + f) = 2 (psec).
The major loss of electromagnetic energy from the L, C circuit
is in the conversion to the kinetic energy of the driven plasma. This
kinetic energy is
Wiw = YMgr, (11)
After the first half cycle of current there is
. 2C3/2V02 712
Wk“, = l/lesrl"' = ]/QIMS [10—-"‘ ——_——J
vV LMsR
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7.2. Steady Plasma Flow

Let us imagine that a high pressure reservoir of plasma .4 is connected
to a low pressure reservoir B through a region bounded by electrodes
or magnetic flux tubes. The plasma will begin to flow, building up
in certain cases a steady distribution of p, v and p. Such a flow consists
generally of two basic regimes related to the classical examples of
viscous flow between parallel plates in a magnetic field: the Poiseuille
and the Couette flows.

The Poiseuille flow

In this type of flow the force is provided by a pressure gradient
directed along the stream lines. The resistance to the flow is the
Lorentz force and the friction between the fluid and the walls. In the
one-fluid model approximation we have

0

cx

(pr) = 0 (12)

0 o0*
P Y (13)

ox ) ov?

1
The only electromotive force capable of driving i, is — v.B.. This can
c

locally induce

) 1
iy = — quB; (14)
c
provided lossless i. currents can exist so that div i = 0. Assuming that
0 0
P = 0and that P _pis given, these equations give us v = v(y).
ox ox
We have
0% nB.*
i -v =P/ (15)
ay- Cu
whose solution is
Pc

(16)

v = a - explay) + B - exp(—ay) — .
7B.*

where a*> =









STEADY PLASMA FLOW 245

Magnetohydrodynamic propulsion

The force i AB can be applied equally well for steady deceleration
as for steady acceleration of plasma. This momentum-transmission
property of magnetic fields in conducting fluids is of importance in
magnetic pump (ref. 9) and explains also the distribution of angular
momentum in an evolving solar system where the central solar mass
transmits most of its angular momentum to the planets (ref. 10).
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List of symbols used in Chapter 7

B, B magnetic field strength R radius

c velocity of light t time

Cc capacity T temperature

D distance u, v velocity .
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i current density %, y, z coordinates

1 current Z atomic number

k wave number or « number of degrees of
Boltzmann’s constant freedom

1 length b} depth

L self-inductance 7 conductivity

m,M mass 2 coefficient of viscosity

n particle density ¢ magnetic flux

N linear density p mass density

2 pressure T time interval

r coordinate o angular frequency



CHAPTER 8

COLLISION AND RELAXATION PROCESSES

Infroduction

This chapter is devoted to the study of collisions in plasma and their
effect on the density distribution f(q;v;).

There are three important types of collisions. The first and simplest
is a binary collision of two electrically charged particles such as an
electron-positive ion (e — p), electron-electron (e —e) or an ion-ion
(p—p) collision.

The second type of collision belongs to the class of collective inter-
actions in which a single charged particle is influenced by many other
charged articles.

The third is a collision between plasma bunches, such as two
plasmoids or two electron bunches. Such an event will be called a
coherent collision (ref. 1).

We shall study mainly the binary and collective collisions. The
coherent collisions have been treated already in the chapter on plasma
dynamics and will be mentioned here only in connection with the
mechanism of turbulence.

We shall describe first the elementary dynamics of a binary collision.
As we shall see binary collisions produce a diffusion of particles, both
in velocity-space and in configuration-space. We shall, therefore, derive
an equation governing the diffusion in the velocity-space. As an exam-
ple of the application of this equation we shall calculate the electric
current induced by an electric field in an infinite plasma. Another
example of diffusion in velocity space is the heat transfer between the
electron and the positive ion gas.

The collision-induced diffusion in ordinary space will be studied for
three particular cases: the diffusion of particles, of heat, and of electric
charge, in a non-uniform plasma.

The transfer of momentum by viscous effects will be also discussed.

The chapter will be terminated by a few remarks on turbulence.
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6= 2 ) (@

Fig. 132. Cumulative effect of small angle scatterings.

where (x;*) is the mean square deflection in a single collision and is

1

= J x*dd,  x=x[p(4)]
The probability d4 of a collision in the interval p, p + dp is a
simple ratio of areas
2pd
4 = — PP (5)
P-mnx_p-min
Restricting ourselves to e—p collisions for which v € w and
expressing x in terms of p we get

. r 2Ze* \*
Xi*) = — ) pdp
P max—p min o mv p

822 * max
~ ¢ p Pme (6)

2,4 2
m)v P max pmin

As statistically all the NV collisions are equivalent

) = N(x:®) (4a)
where N is equal to the number of positive ions in a cylinder of radius
Pmax and length I. This number is

N = nlrp*nax-

Therefore,

871'",[228"l max
o) = o In P (4b)

2403
m-v pmln
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As we have postulated only small-angle deflections let us have p.,,
correspond at most to y = 1. Thus *

2Ze*

mv?

Pmln =

The p,.; must be comparable with the Debye shielding distance ** d
(eq. (1.4a) ). With this eq. (4b) can be written

8rnZ%et mv®
()=———1Inln [d ] (4c)

m2y* 2Ze?

The value of the logarithm lies in the range between 1 and 20 in
most cases in which we are interested.
The corresponding diffusion coefficient {(Av,)?) is the mean square

of the perpendicular velocity change per second and is (ie., ] = v)
((Av,)?) = ((xv)?).
Thus
8=Z%*
((AU_L)Z) = n ln A, (7)
m2v
where

T Y12 my*
v (1)

n Ze?

A similar coefficient can be defined for the diffusion parallel to wv.
This is usually denoted by {(Av,) and has been called by Chandrasekhar
(ref. 2) the coefficient of dvnamical friction.
For electrons this coefficient follows from the energy-conservation
principle,
— Yym ((40,)%) = mo (avy)

and using the expression (7) for {(Av,)?) one gets

4z2%*nIn A
Qy) = — ——————. (8)

m2p?
The third important coefficient is {(Av;)?) representing dispersion
in velocity in the direction parallel to v. This can be shown to be
. 4re*Znlna
Ay = ————— w?, 9)

m '.’.vli

* In plasmas where the minimum interaction distance is governed by quantum
mechanics puin = kg = ————— (see p. 15).
27V 3mkT
** Unless I = n-1/3 > d (see footnote p. 13)
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Let us consider first an infinite and homogeneous plasma in the
absence of external forces.
Eq. (10) must be applied to electrons and ions separately. Thus

afe _ afe afe
TH (‘aTL * ( o ) (102)

0 0 o

o () (3 10n)
ot ot ) 0t ) pe
where the subscript denotes the type of collision responsible for the
(of [or).

Let us now consider a small group of particles located between v

and v + Av at ¢t = 0 (fig. 134) and assume that all quantities depend
only on a single velocity component v,

A o2

vrAav

$#

Fig. 134. -

The flux of particles across a unit cross-section o of the surface
at v caused by dynamical friction is

¢’ = f-(av)

where {Av) is related to the concept of {Av,) (eq. (8) ).
The divergence of this flux in the velocity space and, therefore, the
change in the number of particles in a unit velocity volume per second
is
of 0
_ = — Av . ].].
= — ()] ()
A change in the number of particles in our velocity volume can
also be caused by diffusion processes, characterised by the diffusion
coefficients (eqs. (7) and (9) ). In our one-dimensional case let us denote
this coefficient by (Av?).
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The diffusion equation in the velocity space must have the form
o
—ai— = div ¢”
where ¢” = grad (f.D), D being the diffusion coefficient defined in

all theories of diffusion processes as the mean square displacement per
unit time. In our case

D = (av?)
and consequently the divergence of the flux ¢ is
" P
)] a2)
ov ov*

The outflow per unit volume of the velocity space due to the
combined effect of friction and dispersion is from eqs. (10), (11)
and; (12)

of 0 0° .
= — D (a0 + — (a0)). 13)

5
ot ov ov?

Generalizing this expression for all three velocity components and
for both like and unlike particle collisions one obtains for electrons

Zf: T ai,- {fe(Avdee + (Avjder) }
1 02 ( A .
? anaUk {.fe (AUjA‘Uk>ee +( vjAvk>ep) } ( a)

and a similar equation for the positive ions. These equations are
known as the Fokker-Planck equations.

The coefficients of friction and dispersion in these equations are,
of course, not the simple ones defined by expressions (7), (8) and (9)
but must include the scattering action of all other particles on the
particles at v. They must, therefore, involve integartion over the entire
velocity space of expressions like f{Av®).

In order to do that let us first consider the effect of friction of field
particles of one type () in a velocity volume d=g on test electrons (a)
in a volume d=,. For simplicity sake let us consider only two velocity
components v; and v; (fig. 135). The friction coefficient for the «
particles is (eq. (8) )

4nZ%*In A
d(Av)ap = —;

mazlva - vﬁ|2

- fgdrg .






FOKKER-PLANCK EQUATION 255

Using similar reasoning and analysis as above we can obtain the
expression for {Av;Avg).g. The result is

{(AvjAU)gp = Tg —— - vﬁ' fa(vg)dmg

av,aavka S

ﬂ
o°
= m Gaﬁ(va) (15)
'Gaﬁ being known as the second potential in velocity space (ref. 3).
The form of the potential H,g(v) suggests an analogy from electro-
statics, where the field strength E and the electrostatic potential ¢(r)
are expressed as

r,t
E=—grad ¢, ¢(r) = TFF)'(_——'—")T—

and p(7’, t) is the density of electric charge.

do’ dy’ dz’

Thus in our case {(Av;).p is analogous to E, Hug(v) to ¢(r), fa(vs) to
p(r’) and |v, — vg| to |r — 7’|

In chapter 3 on the fluid description of a plasma we have shown
that the integration of the Boltzmann equation over velocity space
yields fluid equations which describe the transport of particle density,
momentum or energy. Let us now integrate over velocity space the
Boltzmann equation containing the collision terms of the Fokker-Planck
equation, multiplied by a quantity Q characterising some particle
property. In order to obtain an equation for momentum transfer we
take Q = mv. The integration of the left hand side of the Boltzmann
equation proceeds as on p. 100 i.e., independently of the effets of
collisions. The right hand side involves integrals such as

_ S mew [f,,(u) - aﬁ(v)} d

+ 1 gmav ° [fa(v) ° Gaa(v)} du
R av,-avk anaUk
T
It can be appreciated that encounters between like particles do
not alter the total momentum of the parent gas. Similarly the dispersion
in velocity space (the dispersion coefficients refer only to {(v*)) leaves
the momentum of a gas element unchanged.
As a result of these considerations the equations of momentum
transfer become:



256 COLLISION AND RELAXATION PROCESSES

for the electron gas

ov e grad p.
+v-gradv+ — (E+vAB) + ————
ot m n.m
1
= S fe(v, t) grad, H,, d= (16)
ne
and for the positive ion gas
w e rad
'—6t—- +w-gradw——M—— (E +WAB) +'—g—in{lPip—
1
= g folv, t) grad, H, d=. (17)
np, |

s

It is evident that one must know f. and f, before these equations
can be solved. However, in many cases the solutions are not very
sensitive to the choice of these two functions and an approximate
form of these follows from order of magnitude physical considera-
tions.

8.2.1. CONDUCTION OF ELECTRICITY IN PLASMA — CONDUCTION OF
ELECTRICITY IN A GYROTROPIC PLASMA

From the generalised Ohm’s law (eq. (3.64) ), derived in chapter 3
it follows that an electrical current in a plasma can be induced by
electric and magnetic fields and by pressure gradients,

In this section we shall discuss the induction of electric current by
an electric field in the absence of a magnetic field in a spatially
homogeneous plasma and later study the influence of a magnetostatic
field on a current flow.

In the limit of strong electric fields the effect of electron-ion en-
counters may be considered as a small perturbation on the motion
which the electrons and ions execute in the applied electric field. To
a good approximation the electrons and ions are accelerated inde-
pendently (and at a constant rate) and owing to collisions between
like particles their velocity distributions will tend asymptotically
in time to Maxwellian distributions which are centered about the
drift velocities.

This consideration leads us to the model (fig. 136) of the displaced
Maxwellian distribution (ref. 4)

a

3/2
.fa(r, v, va(t) ) = nq(r) [ﬁ__—jl exp (— Ba[v_va(t)]z) (18)









FOKKER-PLANCK EQUATION 259

the drift speed of the electrons saturates and the current density
becomes

3
= ™ (2222 In A)E. (24)
16v/=
The conductivity thus calculated is
3m 2kT, 32
o= — ( ) (25)
16v/wZ%*In A m

which is about 14 of the o calculated on the basis of a perturbational
theory (ref. 5). The assumptions on which this theory is based are more
appropriate for E < E, than the rather crude assumption of a displaced
Maxwellian distribution. The value of conductivity derived by the per-
turbational method for a hydrogen plasma is

3)2

¢ = 1.53 X 10~ (mho/cm). (25a)
In A
In the limit of large z eq. (21) gives
1
Wz) = —. (26)
22

The maximum of ¢(z) occurs for
z=1

i.e., for a drift speed equal to the mean random speed. Substituting
expression (26) into eq. (20) we see at once that when

E > Eyy(z)

v(t) starts increasing monotonically with t. As Y. (z) = ¢(1) = 043
the above inequality becomes

E > 043E, =~ 2 X 10~ (volt/em). (27)

o
This instability of the f.(v) distribution in the velocity space is known
as the runaway effect. As the electrons run away more readily than
the positive ions one speaks often of “runaway electrons”.

Let us now consider the problem of runaways not as a movement
of a compact Maxwellian distribution given by eqs. (18) and (20),
but rather as a distortion of this velocity distribution. To this end,
let us evaluate the friction force experienced by a small sub-group
of the electron population in the velocity space. This force F is parallel
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wellian distribution and it follows by integrating the Fokker-Planck
equation over the volume of the sphere,

§ max af
= — 27 2 d
¥ f v » v
0

= 270:% max { (f{AV))ee + KAVep)

o (oo + RS0, (3)

As the surface C’ was defined in such a way that the dynamical
friction was balanced by the action of the electric field E, the
{Av)) terms can be ignored.

The positive ions were assumed to have zero random velocity,
and therefore, in a spherically symmetrical electron distribution
their contribution to ¢ must be zero. Thus using eqs. (15) and (33)
one has (putting v; max = v)

9
¢ = 2av,° I:?(f(Av“z)ee)]

2 v 2
=~ Vom3I2 mps - exp (— —00—) -lnA (33a)
Uy v

where v, = 8,7.
This is the runaway flux that can be drawn from a quasi Maxwellian
plasma by weak electric fields, i.e., by E € E, (ref. 7).

In bounded plasma the runaway process will not be adequately
described by the analysis developed here and this for several reasons
of which we shall mention the two most important ones. The first
is that as E, depends on n and T,, there may be portions of plasma
yielding more runaways than others. This will lead to accumulatioa
of space-charges and to a redistribution of the field E (ref. 8).

The second factor of importance has to do with the two stream
instability mechanism mentioned in chapter 5. Thus the kinetic
energy of runaway electrons can be converted into a h.f. electro-
magnetic field. Such a conversion implies a new friction force, which
in many cases can be larger than the F,, taken into account so far

(ref. 9).

Conduction of electricity in a gyrotropic plasma

In a homogeneous plasma a uniform magnetostatic field has no
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influence on the conduction of electricity parallel to itself. This
follows directly from Boltzmann equation in which E // B.

When the applied electric field E is at right angles to B, the equa-
tion for the single fluid model of plasma (eq. (3.64) ) gives

en

vj-=
m

1
(E + —VAB] —Z grad p,. (34)
C m

In a homogeneous plasma grad p, = 0 and in the absence of collisions
v = 0. Thus the mass-velocity V is

V=—c¢
B:
which is the drift velocity of both electrons and ions in crossed E
and B fields and no current flows in the direction perpendicular to B.
Let us now imagine that the flow V is stopped, e.g., by confining
the plasma by a plane perpendicular to E A B.
From eq. (34), written in component form, follows

veje = e': E. (34‘3)
. 1 o
Vuly = — oy Pyp- (34b)

Thus the current parallel to E flows now as if there were no inter-
vening magnetic field and another current has made its appearance,
flowing in a direction perpendicular to both E and B. This is the
well known Hall current.

A detailed examination (ref. 10) shows that the conductivity
e’mfv.m appearing in eq. (34a) is about one third of that of uniform
plasma without a magnetic field, owing to the non-uniform spatial
distribution of the centra of gyration. This “perpendicular” con-
ductivity is for a hydrogenic plasma

Tsiz

e, = 05 X 10+ (mho/em). (35)
In A

There are many plasma geometries in which the drift » can form
a closed flow and, therefore, no pressure gradient can be built up.
In such a case the magnetic field impairs the conduction of electri-
city in the direction of E(L B) and the corresponding conductivity is

U’J. = Pan (353)




264 COLLISION AND RELAXATION PROCESSES

However, these are already topics related to diffusion of electric
charge in non-uniform plasma and therefore, belonging to the next
section.

8.2.2. STOPPING POWER — RELAXATION TO MAXWELLIAN DISTRIBUTION
— EQUIPARTITION OF ENERGY

The problem of how long it takes for a test particle to loose either
most of its directed velocity or most of its kinetic energy is related
to the already analysed problem of the runaway electrons. Let us
assume first that the field particles B are infinitely heavy and
stationary and, therefore, the test particles « do not change their
kinetic energy in collisions with the 8’s. The motion of the centre of
gravity (in the v, space) of the «’s is then described by the equation
(20) in which E = 0 and z is originally very large. In this case eq. (20)
becomes

dvg
dt

= — nglavg? (36)
which gives for the time required to reduce the initial speed v, to
zero

an

3ngl, )

t; = (37)

The total kinetic energy of the test particles will, however, remain
constant. In absence of collisions between the test-particles them-
selves their individual velocities will remain always equal to vy, l.e.
in the velocity space they will populate a circle (arc A in fig. 133).
It is, therefore, obvious that our original assumption of a displaced
Maxwellian distribution is no longer valid when v(t) = 1% vo and the
formula for the stopping time ¢, is only an approximation.

Eq. (37) can be generalised for relatively light field particles whose
mean speed (857'/*) is appreciably smaller than vy, In that case one has

. mg, + mg . . .
to consider the factor appearing in eq. (14b) and in
mg
eq. (19):
mg 1 vo?

t, =

. (37a)
mg+ m, 3T, ng

Let us define an energy- and density-normalized stopping time as
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mg my 1

s =t W32 . Zgng = 74+ 38
T pRE T mg + mg m Z,}Zg (38)
Vm N . N
where ¢ = ——-——— which is the normalized stopping time for
3v2retIn A

fast electrons on slow protons.
For fast electrons stopped by slow electrons =, = l47,. Fast protons on

M
slow protons are stopped after r, = 14 ‘/— 7o The shortest stopping
m

time corresponds to heavy multiply ionized atoms stopped by electrons,

M\ -2
Ts = [ } * TOZa—z-
m

A quantity used more often than the stopping time is the range of

a fast test particle which is *
mg W=
mg + mg 24=Z2Zg%e* In A ng

R ~ Yvy - t, = (39)
The largest range corresponds to fast tritons impinging on a hydro-
gen target.

When t; refers to particles all of the same kind (e-e, p-p collisions)
it can be interpreted as the self-collision time, i.e., the time in which
two groups of particles of the same kind, whose original velocity
difference is v,, relax to an almost isotropic distribution characterised

by a temperature
po D R | (40)
3k ng + ng

The same time is then a characteristic time 7, for Maxwellisation of such
a distribution. When we have n, ~ ng and using eqs. (37) and (40)
there is

tn = (sec) (41)

13.5 (ma }‘/" T3/

ZilnA \m, n

where m, is the mass of a proton, Evidently the lighter the particles
the shorter is the self-collision and the Maxwellisation time,

Another important situation corresponds to both o and B particles
having concentric Maxwellian distributions with temperatures T,
and Tj.

According to thermodynamics, in the final state the two groups
will berat the same temperature

* It can be shown (ref. 11) that a better approximation is R o W3/2) e.g., the
range of Hett in air at atmospheric pressure is given by R =~ 0.32 . W3/2 (Mev, cm).
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T — n,T. + nﬁTﬂ

ng, + ng
Let us assume that n, = ng = n and that during the temperature
equilibrium  both groups retain their Maxwellian distributions.
In order to see how T, and Tg depend on time we must solve the
Fokker-Planck equations for fq g.

Let
— v?
fa = n(V/~ug)™ exp (— " ] (42a)
ug’
2kT.
uga.B = . (4-21))
mgy.g

Having assumed a Maxwellian distribution at all times we may
forget the self-collision terms a-e and the differential operators will
be only those corresponding to a spherically symmetric solution in
the velocity space. Thus eq. (13) becomes

¢fa 1 c 1 ¢ L C s
— = — — —— [v}faQQ0)ap] + — — v —— (fa{Ar%)ap) | -
ct [ cr - cv cr

(43)
Multiplying both sides by 14mga® and integrating over I, we get an

equation for the change of total energy of the « particles, i.e.,

cT, tfa . C , .
3:2nk — = \ — - Vamardll, = — Vomg \ — [v¥fo{Ardag] dmridy
ct A cl rocr
Ta 0
+ Yoma & X |:L"" 2 (fa(A'“‘:>aB):| - dzeide, (44)
cv fv

0

If m, ~ mg the problem reduces to that of the Maxwellisation
time (eq. (41)). Let us, therefore, study the case when mg < m,
and, therefore. in most cases ug € 1y In that case using eqs. (14b), (7),

(8) and (9) we have *

mq
* For spherical symmetry only the factor has to be considered out of the
m;
me + Mg N .
———— factor present in eq. (14b). For the same gcometrical reason the
mg

P -

Ay, 2y = ﬂ'_ Ar,2) = 0.
cg:

‘g

Furthermore (Ar2)qs can be ignored owing to the smallness of us2/v2.
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(Av)ag =

(45a)

nug*

vﬂ

(v)ap = (Uy*ap = Ta (45b)
These simple expressions are not valid in the small region where
the « and B distribution overlap and, therefore, the lower limit of
the integrals cannot be zero, instead one must choose some wvnin
where v?,;, > ug’
Substituting eqs. (45a,b) into eq. (44) we get
3vVwkug? oT, m,

- = a.2 - F min) * % 46
4dmT,n 0t mg " (¥min) - g (46)

When the temperatures T, and Ty of the « and 8 particles are equal,

oT,

_8;— = 0 and, therefore, we shall require that
F(vmin) = 1-

Then

oT. 32/ 17275 -n+In A
_ e RVmedZgncInbh gy, (47)

ot 3mgmau,®

Evidently the characteristic time of energy transfer from « to 8 is

3 iy k3iz Ta3/2
o= OYE M . (48)
16V mg Z,°Zg¢*ln A  ng

For the specific case of cooling of hot electrons by cold protons
we have (ref. 12):

244 T3

T Ina ne

L,

(49)

8.3. Diffusion in Configuration Space

Having discussed how, in an infinite and uniform plasma, collisions
are responsible for the diffusion of particles in the velocity space we
shall now turn our attention to the effect of collisions on a diffusion
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in a spatially non-uniform plasma *. Such a diffusion may be stimulated
by a non-uniformity in the density, in temperature or in the stream
velocity of the plasma. Accordingly the response, i.e. the diffusing
quantity, may be particles, heat, electric charge or the momentum of
the stream. The stimulus is related to the response by a corresponding
diffusion coefficient. Thus for instance particle flux induced by a
density gradient can be expressed by

¢ = Dgradn (50)

where D is the coefficient of diffusion. These coefficients depend on
externally applied constraints impeding the diffusion, The most im-
portant constraint influencing the value of all the diffusion coefficients
is a magnetic field.

An approximate but very simple method which allows us to estimate
the value of diffusion coefficients is based on the theorem of stochastic
processes of equal probability such as we have already used in deriving
the angle caused by multiple scattering (p. 249).

Let A¢ be the mean step in space that a particle makes between
two successive collisions. Provided that such collisions do not alter
the probability of the particle making another such step, the distance £
covered by this particle after IV collisions is given by

£ =a¢- VN (51)
The mean square distance moved per unit time is, therefore
D = (Af)* (52)

where v is the collision frequency.

The flux ¢ of particles in the direction parallel to the density
gradient in an isothermal plasma can be computed as follows (see
egs. (11) and (12) on p. 252 in the light of footnote on p. 268). This flux
is composed of two opposed fluxes ¢, and ¢, where

¢1 = ("1'A§)x af =

21 on 041 2(vaf) |
on ax AT 2(vAE) w2

Po —

* There is an essential difference between the diffusion in velocity space and
that in configuration space. In the ahsence of collisions and external forces the
points representing particles in the velocity space do not move, whereas those in
the configuration space execute rectilinear uniform motion.

The cffect of collisions on the movement of representative points in velocity
space is, however, analogous to the effect of collisions on the movement of centra
of gyration of particles in a magnetic field.
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w = Af =
b2 (nvAf)x — o ——
o1 on O¢1 o(vAg)
+ — At + Yo
bot o e AN 2(vaf) Pl
and
0 a(va
¢=¢2—¢1:v-A§3-L+n-A§ (vi_ (53)
ox ox
. . o(vaf)
It will be shown later that for isothermal plasma N = (0 and
x

we obtain in that case

-~

cn

¢ =D—

cx

which is the same as eq. (50). This demonstrates that the coefficient
of diffusion can be defined as the mean square distance a particle covers
per unit time.

If one wishes to find the value of a diffusion coefficient pertaining
to the diffusion of a property ¢ of plasma, one must find the flux y
of this quantity in the same way as was found the flux ¢.

The corresponding flux equation is then

¢y = D, grad ¢ (54)

or taking the divergence

vl div (D, grad q). (54a)

This can be often transformed into the classical diffusion equation

9q
= q (54b)
whose solution is a diffusion wave which progresses with the speed S.
Let us now evaluate, using this approximate method, .the diffusion
coefficients corresponding to particle-diffusion, to heat-diffusion and
to the diffusion of the momentum of plasma flow.

8.3.1. FLUX OF PARTICLES
Magnetic field-free plasma

The mean step executed by a particle between two successive colli-
sions in a field-free isothermal plasma is equal to the mean free path

Thus
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Al = — (55)

v can be defined using the {Av,) coefficient by

1
—(ay) = v
14

or
4=Z%e*nn A
, o drfenimd (56)
m.'v.i
The diffusion coefficient for electron follows from egs. (52), (55)

and (56) is

D, =

Y (57)
4zZ%e* In A
In an isotropic hydrogenic plasma in which drift velocities are less
than the mean thermal speed it is clear that the diffusion coefficient
for electrons will be v/w, i.e.,, \VM/m times higher than that for the
positives.

Unequal diffusion of electrons and positive ions gives rise to an
electric field, which in turn slows down the diffusion of electrons and
speeds up that of the ions. Thus the effect of the density-gradient in
the electron gas, coupled through this electric field to the motion of
the positive ion, must be added to the effect of density-gradient in
the ion gas and the total diffusion, known as the ambipolar diffusion,
is characterised by a diffusion coefficient *.

D = 2D,
2V2 (kT)3/*

= — nl. (58)
™ VMe*ln A

Gyrotropic plasma

The effect of a magnetic field on plasma has been discussed in chap-
ter 4. It has been shiown that in absence of collisions a density gradient
is responsible for the appearance of various drift motions, all of them
in the direction perpendicular to both B and grad n. A diffusion
parallel to grad n is the result of collisions.

* For non-isothermal plasma and T, % T, (see ref. 13).
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The mean step the centre of gyration of an electron makes as a result
of a e-p collision is equal to the radius of gyration p. Thus using eq. (52)
there is

mv \* 4nZ%*lnA ) n,
D, = — en =4nZe*c*In A -
g m*v? vB*

[

(59)

The mean shift of the centre of gyration of a positive ion as a result of
an e-p collision is, according to eq. (2.18)
A
ag = —F (60)
e
-—B
c

where Ap can be at most equal to the momentum of the electron.
The collision frequency is still determined by eq. (56) because v, w.
It thus follows that

D, = D..

In case that D, D. a phenomenon similar to ambipolar diffusion
will ensure that the electron flux due to diffusion is the same as that
of the positive ions.
The speed of diffusion of isothermal plasma across a magnetic
field as a result of e-p collisions is from eq. (54)
¥ grad n,
— =85 =10 —. (61)
n BT
Let us consider the effect of e-p and p-p collisions on the diffusion
process across a magnetic field. The result of a single collision of like
particles of equal energy is a shift of the guiding centra of the two
interacting particles by equal and opposite amounts (fig. 140). Such
collisions will not alter a density distribution, except where such a
distribution exhibits a large variation within a radius of gyration p,
i.e., where ‘

prgradn 4 n.

An example of such a distribution is one for which the density of the
centra of gyration is uniform in a given volume. The particle density
falls to zero within a distance p from the boundary of such a volume.
It is evident that in this case collisions between like-particles will soon
blunt the sharp density distribution. The diffusion speed found for
this process does not depend linearly on grad n and has been shown
to be






DIFFUSION IN CONFIGURATION SPACE 273

and, therefore,

1 My, ke T T
D = = . — = 0.83 .10 —* (64)
2% e e B B
—B
C

Many experiments on plasma diffusion across a magnetic field are
in agreement with this diffusion coefficient and the process itself
is known as Bohm diffusion (ref. 15). From eqs. (59) and (64) it follows
that for a deuterium plasma the classical diffusion is more important
than the Bohm one only for (taking In .. ~ 10)

— > 27.10°- B. (65)

If plasma is confined by the magnetic field then

BB > 16 =nkT (66)

and, therefore,

vn
5 > 2.2 - 10 g (67)
One sees that (fig. 141) for thermonuclear temperatures (T > 10® °K)
the density of a plasma which would diffuse mainly owing to electron-
ion collisions must be greater than 5.10* ions/cm?® In order that (65)
be true for most plasmas produced in laboratory (n ~ 10'%) the tem-
perature must be very much lower than 4 . 10* (°K). It follows that,
provided Bohm diffusion is always operative, the classical diffusion
can be observed only in experiments in low temperature caesium plasmas

(ref. 16).

8.3.2. CONDUCTION OF HEAT AND ELECTRICITY

Let us consider a heat conduction in an isotropic and field-free
plasma. The density of heat energy is ‘

W. = 3/2n.kT.
W, = 3/2n,kT,.

Let us assume for the moment that n. = n, and T. = T,. Employing
an argument similar to that used in eq. {53) we obtain for the heat-flux
Q due to the electrons

* Practically the same for both electrons and ions.
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and therefore, the heat conductivity of the electron gas is

YAIE T5!2 T5!2
K= —— = 195.10°
2v/27e*m'* InA n

(erg/cm?® sec deg). (7la)

In evaluating the total heat flux Q. + Q, the concept of ambipolar
diffusion cannot be used in the simple form outlined on p. 270.

The value of Q to be taken for heat conduction depends on several
assumptions concerning the neutrality of plasma, the current it can
carry in the direction of grad T and on the coupling of T, and T,
through e-p collisions. For a Lorentz gas in which an electric current
flows as a result of grad T Spitzer obtains

3/2

= 4.67 X 102
e X Z1

— (cal sec em™ deg™). (71b)

The same reasoning can be applied to the conduction of heat in a
gyrotropic plasma. According to eqs. (59) and (60)

2% _
K = E— Zezcz\/km In A (72)
2

Ti2g>
or for a hydrogen plasma

2

g = 21 X 10 BT

(72a)

In the general case of gyrotropic plasma in an electric field the equa-
tions deseribing the electric current and heat flow are (]| and L to B)

EArB

. c grad TAB
1= O’E“ + JdE, + o + O'T? gradu T+ op— (73)
e
—B
c
Q=xgrad, T + « grad, T
gradTAB e
+ k" + ke _E” + ke (74)
B c e
-—B
c

The form of these equations follows from the momentum and energy
conservation equations of the two fluid model of plasma, the coeffi-
cients can be evaluated on the basis of the approximate diffusion
theory outlined here or more rigorously by considering small deviations
from a Maxwellian distribution (ref. 17).

The various terms appearing in these equations for i and Q are
associated with effects discovered experimentally by physicists investi-
gating electricity and heat conduction in metals.
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In a plasma of uniform density

ow
P = aMD, —. (75a)
ox
This momentum transport is equivalent to a shearing stress exerted
parallel to w. This stress is proportional to dw/éx. Thus
ow
P=p—.
ox
The constant x is known as the coefficient of viscosity and is, in our
approximation

p = nMD,. (76)

In a magnetic field-free plasma

= V2 VM(kT,)*? . (76a)

= e*loa

In a gyrotropic plasma the coefficient of viscosity becomes, using the
expression for D, derived on p. 271

4=Inn ZeMc*\m n?
r= p— —
V2 VE BT

n?
= 1.6 X 10 4Z BT (76b)
where A4 is the atomic number of the positive ions.

The viscous forces can cause instability (the break-up) of a laminar
flow. The criterion for the onset of such an instability is expressed by
a quantity known as Reynold’s number which is for a cylindrical flow
withv=0atr=a

R = 2pav,u._1 (77)
or more generally
R L, UA curl v
—Hr Vi

For conditions for which the Reynold’s number exceeds a certain
value, which depends on the geometry of the flow, the laminar flow
produces eddies and becomes turbulent.
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List of symbols used in Chapter 8

mass number
magnetic field strength
impact parameter
velocity of light

Debye distance
coefficient of diffusion
electric field strength
electronic charge
force

density distribution
potential functions
plasma characteristic
current density
Boltzmann constant
length

particle mass

number density
number of collisions
momentum or pressure
flux of momentum
coordinate in configura-
tion space

heat flux

Reynold’s number
velocity

time

temperature

u, v, w velocity

Q ®» 3§ F®

-

g o om

electrostatic potential

energy density

coordinates

atomic number

v/c normalized speed
Bnp

g

electric charge density

or

angles
heat conductivity
Pmi n

Pmax
impact parameters

a ratio of critical

collision frequency
coefficient of viscosity
probability

radius of gyration
collision cross-section or
electrical conductivity
normalized stopping time
flux of particles in con-
figuration space

flux of particles in velocity
space

distance

normalized velocity
angular frequency
cyclotron frequency



APPLICATIONS

In these two chapters on applications of plasma physics we shall
limit ourselves to a brief appraisal of projects that have not yet passed
from a research laboratory to a development laboratory. To such
belongs the research on controlled thermonuclear reactions to which
we shall devote chapter 9. In chapter 10 we shall mention research
projects on plasma rocket-motors, the direct conversion of chemical
energy into electrical energy, energy storage, plasma-oscillators and
plasma-accelerators. In all these cases only basic physical criteria will
be given and much of the subject matter will be treated as an exercise
in applying the theorems derived in the first eight chapters of this book.
It must be appreciated that in these potential applications the rdle
played by plasma physics is not always the most important one.
Thus surface phenomena, ionization processes, nuclear transformations
and purely engineering considerations may often be the source of
limitations of the proposed devices. Some of these limitations will be
mentioned but not studied, such study being more appropriate to
publications on the separate fields of such applications.



CHAPTER 9

RESEARCH ON CONTROLLED FUSION

Introduction

Thermonuclear research is a subject that will remind many physicists
of the research on the properties of ordinary chemical flames. This is
particularly noticeable when one sub-divides the subject matter into
its two component disciplines. The first is concerned with the nuclear
reactions and with the manner in which the nuclear energy is released.
The second is that of the kinetic theory of plasma, and it is concerned
with the heating and confinement of the nuclear fuel.

The first discipline will be the subject of an introductory section,
whereas the second one will be discussed mainly in sections 2 and 3.
A survey of the various approaches to the problem will be attempted
in section 4.

9.1. Sources of Nuclear Energy

9.1.1. ELEMENTARY NUCLEAR CONCEPTS

The atomic nucleus is composed of approximately equal numbers
of protons and neutrons. The number of particles within the nucleus
belonging to these two groups (nucleons) is equal to the mass number 4.
If the number of protons is Z, the number of neutrons is 4 — Z.
There are certain rules according to which an atomic nucleus is built.
These permit reasonably stable nuclear structures to occur only for
certain combinations of 4 and Z. Thus e.g., the population of these
stable nuclei is clustered along a curve C in the 4 — Z, Z diagramme
(see fig. 143) *.

The reason for the very narrow spread in 4 — Z (at any particular
Z) is to be found in the nature of forces between the nucleons, evidently
neutrons and protons prefer to be bound together in pairs.

* This diagram is also known as the “Segré chart”. See e.g., E. Fermi: Nuclear
Physics (Univ. of Chicago Press, 1955).
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1. Surface energy is always proportional to the surface area. The
surface of the prolate spheroid is

b ib :
S = 47ab {— <+ sin™! \/l — —] }
a a

where a, b are the major and minor semi-axis respectively.
However, the volume of the nucleus does not change (constant density
of nucleons is always preserved) and therefore, if

a=R(1 + &)
the volume Q is (for small deformations, i.e., for ¢ € 1)
Q = 4/3zR(1 + £)b* = 4/3xR® = const.

and therefore

b=

——— = R(1 — Yhe + 35¢3).
VI +e
The surface becomes
S = 4zR*(1 + 2/5¢* + .. .).

and the surface energy is

W, =2 X 107°4*3(1 + 2/5¢* + ...). (4)

2. The electrostatic energy of the prolate spheroid is (ref. 1)
W, =11 X 107 4°3(1 — 1/5¢%). (5)

Thus the surface energy increases and the electrostatic decreases with
the elliptical deformation. The total change is

AWV = (843 — 0.0344%3) X 10 (6)

When AW = 0 a spherical nucleus will be unstable. This happens for

A4 >
— 0.034

= 235. (7)

Even when AW > 0 but very small compared with W, a division
of the nucleus is possible if such a nucleus is bombarded by particles
capable of supplying the energy AW, The energy AW may be thought
of as a triggering energy, which starts the nuclear division. The
energy liberated in sucli a division comes mainly from the Coulomb
field of the protons. It may be calculated from the difference between
the energy of the orginal spherical nucleus and the energy of the two
daughter nuclei. Thus using eqs. (4) and (5)
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A Z ]
W(AZ) —2W (T, —

=2 X 107 4*[1 —2(14)**] + 1.7 X 107 4°#[1 —2(14)%7).  (8)

’

Substituting 4 = 236 into this one obtains an approximate value
for the fission energy Wy, of uranium

Wpi ~ 2.68 X 10+ erg = 169 MeV. (9)

The fission energy output per nucleon being W, = 0.72 MeV.

9.1.3. NUCLEAR FUSION

The energy liberated in a fusion of two hydrogen nuclei (the Q-value
of that reaction) is mainly the surface tension energy. As an example
let us apply eq. (8) to a compound nucleus whose 4 = 4. Then

W o (A 2 W (A, Z)
Fusion — T, —2—‘ — 9
WFusion = —0.62 X 107 X 10.1 4+ 0.52 X 107 X 2.51 (83)
AWelsl. AWsurl’nce

it is obvious that AW iyrrace > AW ois... Thus
WFusion = 1-22 X 10_5 erg = 7.9 MeV. (98)

This value represents the order of the Q-values of fusion reactions.
Evidently the fusion energy output per nucleon is then W, =~ 2 MeV.
This is about 3 times larger than W, encountered in fission. Some
typical fusion reactions are described in the following table.

D+D —T +p +40 MeV
L, He® +n + 3.25 MeV } equally probable
T+ D =He* + n + 17.6 MeV
T+T = He* 4+ 2n + 11.4 MeV
He? + D =He'+p + 18.3MeV.

Not all the nuclear reactions between light elements are fusion
reactions; there are some important fission reactions as well. This is
due to the dependence of binding energy on the number of unpaired
nucleons and some other binding energy terms that we have mentioned
in the footnote on p. 285. Owing to these components of the total
binding energy the energy per nucleon W, varies rather rapidly and
unevenly for 4 < 15 (ref. 1). Thus it is evident from the plot in
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where

P, is the probability that the nuclei will penetrate each others Coulomb
potential barrier,

P, is the reaction probability T'/h, i.e., the probability that the desired
reaction will take place within the compound nucleus,

Pj is the probability that the particle evaporated from the compound
nucleus will penetrate the Coulomb potential barrier.

If the evaporated particle is a neutron, then
P3 = 1.

As P is also the number of reactions per unit time we have for the
reaction cross-section

P = nve (11)

where n is the number of bombarding particles per cm? and v is their
velocity. The general formula for ¢ as a function of collision energy

E is (ref. 5).

E) == 0.989Z,Z \/7 1 (12)
a(E) ——Eexp [—— Y Lo E] barn
where a is in MeV barns, E in MeV and

Ay + A4y

The cross-sections for the two most important thermonuclear reac-
tions, i.e., T(D, n) He* and D(D, n) He* have been measured and are
plotted.in fig. 151 *.

When fusion reactions proceed in a hot gas (e.g., mixture of T and D)
near thermal equilibrium one would be tempted to substitute

E = 3/2kT

into eq. (12) and calculate the rate of the reaction v as
V2ET/M .
v = lion — (reactions/sec, cm?)
where A is the mean free path between the reactions, i.e.,

1

no

* E. J. Stovall, Phys. Rerv., 88 (1952) 159, Summer Meeting of American Phys. Soc.,
1952.
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where the mean reaction rate (ov),. between species 1 and 2 is
numerically calculated by integrating eq. (13). It is seen from fig. 153
that the maximum for the (ov)yr is equal to about 0.9 - 10-® and
occurs at a temperature of about 6 - 10® (°K) (ref. 6).

9.1.4. FISSION AND FUSION REACTIONS AS SOURCES OF ENERGY

The energy of radioactive decay is supposed to contribute a certain
amount to the heat and magnetic field sources of the planets. There
exists also a theory according to which some components of cosmic rays
are generated during the disintegrations of heavy nuclei. However, even
assuming that these theories are correct, from a cosmic point of view
the fission reactions appear as freaks.

The source of energy in our Universe is the energy liberation in
fusion reactions. Most stars have been and still are receiving their
energy from this type of nuclear reaction. There are, of course, many
types of fusion reactions and at present it is difficult to determine which
is the most widely used and which stars use which reaction (ref, 2).

However, it appears that the basic energy giving transformation is the
formation of an He* nucleus out of four protons;

4p — He.* + 2e* + energy.

It is thought that stars of the same type as our own sun effect this
transformation through the p(pe*)D reaction (ref. 7).

However, other types of reactions effecting the same transformation
may also occur in the stars (ref. 2).

The calculations of energy production show that this process accounts
satisfactorily for energy radiated away from our sun. Which reaction
cycle is operative in a star is determined by the material, temperature
and pressure distribution in that star.

These exothermic reactions can occur in the interior of the stars
owing to the high temperature and pressure maintained there and of
course, owing to the fact that the material from which our Universe
is built is mainly hydrogen.

The reason for the steady maintenance of these reactions is the large
gravitational pressure of the external layers of the stars. This pressure
balances the pressure of the hot plasma in the interior. However, large
deviations from this pressure equilibrium may occur. When the gas
pressure prevails the star expands rapidly, the process resembling an
atomic explosion on a cosmic scale. This expansion causes the nuclear
furnace in the interior to cool and the gas pressure drops. The expansion
is in many cases eventually arrested by the gravitational pull and the
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star begins to collapse towards its centre. This condensation causes
the temperature of the star-centre to rise and eventually leads to a new
explosion. The stars showing this behaviour are known as pulsating
stars (Cepheids) (ref. 2).

Considered as sources of power for mankind the fusion reactions
appear at first sight more commendable than the fission reactions. This
is due mainly to the followirz reasons:

1) The fuel for the DD fusion reactions is practically inexhaustible.

2) The final products of fusion reactions are usually not radioactive,
or ih they are, theire half-life is short.

The only important radioactive element in all the faster thermo-
nuclear reactions is tritium with a half-life of 12 years. This will occur,
however, in very small quantities as an intermediate product. On the
other hand the fusion reactions are a source of neutrons and therefore,
just as in the case of fission reactions, appropriate screening facilities
must be provided.

Recently the situation has, however, changed in favour of fission.
Firstly the breeding reactors are now capable of transforming naturally
plentiful materials such as uranium 238 and thorium 232 into fissile
materials such as plutonium 239 and uranium 233 by neutron-absorp-
tion. The reserves of uranium 238 and thorium 232 on earth are such
that mankind should not worry about lack of energy for at least another
millenium (ref. 8). Secondly the technological developments in dealing
with radioactive materials and selecting materials which are resistant
to radiation damage has advanced so far that one feels confident that in
the future radioactive ashes can be stored or disposed off and reactor
accidents rendered extremely improbable. One may even conceive
shooting the long lived radioactive products into outer space.

Looking at fusion as an energy source for power plants one may ask.
therefore, whether its development is about as untimely as the develop-
ment of fission reactors would have been at the beginning of the
industrial revolution. One may proceed by saying that the problem of
fusion reactors should be perhaps reexamined in about 100 vears time
when it may be resolved faster and better than today or when it may be
perhaps recognized as a problem not worth solving. However, this point
of view is too conservative. Thus. although fission may meet the power
consumption requirements, fusion may do it better — by better is meant
more economically, using less complicated technology or having some
other substantial advantage.

Man-produced therinonuclear fusion can be divided into two classes
— the uncontrolled fusion, i.e., the H bombs and the controlled fusion.
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Even the first one is not really uncontrolled, as the maximum final
energy released by a bomb is determined by its size.

9.1.5. UNCONTROLLED FUSION REACTIONS

The example of the uncontrolled fusion reactor is the hydrogen
bomb. The “modus operandi” of these bombs has not been officially
disclosed. However, the guess work of some of the scientists outside this
effort provides probably a good picture of how these “fast reactors”
work.

It is thought that the bomb mechanism is based on the T(D, n) He*
and T(T, 2n)He* reactions. The fuel could be a mixture of tritium and
deuterium but as this would have to be provided in a liquid state it
would require a large refrigeration plant. The result would be a very
bulky installation hardly suitable to be used as a bomb. The solution
to this problem could be found in the use of solid or liquid chemical
compounds of T and D. Some physicists suggest that the tritium may
be continually produced by another reaction Li®(n, He*)T, so that the
whole reaction chain is

T+D — He'+4 n+ 17.6 MeV

1 ) (17)
48MeV + T 4 He! « Li® 4 n.

Thus the most suitable form in which the Li, T and D may be provided
is that of lithium hydrides.

It is even possible that some of these fusion reactions work in
conjunction with a fission reaction, the fusion reactions delivering fast
neutrons for the fission processes, the fission reaction energy is capable
of compensating for heat losses and thus sustaining the fusion reaction.
In such a case U**® could be used (ordinary uranium), which is relati-
vely cheap and does not normally sustain a neutron chain reaction.
Thus there would be no difficulty about critical size and the bomb
could be made much larger than fission bombs using U**® 6r plutonium.

Whichever fusion reaction one employs one must, in order to start it,
produce stellar temperatures in the fusion-capable material. It is
usually held that a uranium bomb explosion is necessary for this
purpose. It has been suggested that even ordinary chemical explosives
may produce spherical shock waves strong enough to heat the fuel for
the fusion reaction (at the centre of the sphere occupied by it) to high
enough temperature to start the reaction off.

Calculations have been carried out on such a converging shock-wave
ignition (ref. 9) which show that for bomb radii of the order of a
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meter ordinary chemical explosives could generate neither the required
energy density w nor the total energy W necessary for triggering off a
self-sustained thermonuclear fusion detonation (see also p. 231).

The two quantities w and W can be calculated relatively simply. Let
us consider a fusionable medium (e.g, deuterium or a mixture of deu-
terium and tritium) of uniform ion density n, (or it two species are
present n; and n,). At the time ¢t = ¢ a spherical volume Q of this
medium, whose radius is ry, is heated instantly to a temperature T
whereas the rest of the medium is at a temperature Ty € T. The expan-
sion of the hot volume generates a shock wave which heats the cold
surrounding medium. Both the expansion and the shock transmission
cools the hot plasma contained initially in Q. When the shock advances
to a radius r = 2ry the temperature, in absence of any energy input,
will undoubtedly drop to value much smaller than T. Thus the cooling
time is approximately

To

18
7. (18)

To =

(see 6.4.1.).

LK1
where the shock speed v, ~ v, = \/ o

If the hot focus were to start a spherical fusion detonation, the fusion
energy deposited in Q during r would have to at least compensate
the cooling, i.e.,

Q - nln‘.'(o'v)l.Q Q c 1o > 3(ny + n)kT - Q (19)

where Q is the energy (per reaction) of the charged products — which
are the only ones which can be hoped to be absorbed localy, i.e.,
within r < 2r,. This gives

« Q@ N/M 2T (20)
R I 2k T (oohe
9 M M‘)
where a = n', M:—l_:z———'—.
m 1+ a

Graphs of f(T) for DD and DT reactions are plotted in fig. 154,

from which it follows that the minima are
for DT : foin=045-10" at T =15.10°%(°K)
for DD :fuin=0314-10" at T =3.6-10%(°K).

If the medium is a 50/50 mixture of D and T we have a = 1
Q = 2.2-10° (erg) and criterion (20) becomes

1
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nro > 2.10*  (ions/cm®, cm) (20a)

which at solid density (n = 5-10**; D, T ice) corresponds to ry, >
0.4 cm and to an initial thermal energy

4

3

ro* « 3nkT = 65 (MJ). (21)

This is equivalent to an energy liberated by 13 kg of high explosive.
If the medium is pure deuterium then the eq. (19) must be written

1/271(01)>DD QDD cT > 3kT (22)
where Qy,;, = 0.77 - 10-° (erg) and one obtains
nry > 3.4 . 10% (22a)

which at solid density corresponds to r, > 6.8 (cm) and to an initial
thermal energy W, equal to 21 (GJ), equivalent to energy liberated
by 4.2 ktons of TNT. The magnitude of this ignition energy excludes
all triggers except an A-bomb.

This analysis can be refined in many ways (including radiation loss,
an accurate description of the diverging shock, the non-local deposition
of the charged nuclear products, etc.), however, even without these
improvements of analysis, the order of magnitude of W is correctly
predicted by eq. (21).

If one could use the H-bombs as energy sources, the world power-
problem could be considered as solved for all foreseeable future.
Research on this possibility and also on other uses of H-bombs (canal-
excavation, cratering, launching of space vehicles, etc.) is going on in
several laboratories — in the USA under the name of Plowshare.

9.2. Controlled Fusion Reactors

Because of the appalling values of temperature and pressure required
to sustain a fusion reaction it is matural to enquire whether the
ordinary laboratory methods used to investigate fusion reactions may
not be amplified so as to generate power. This means that one would
use a beam of fast particles (say T nuclei} to bombard a target (say
D, ice), the beam particles and the target particles being the participants
in a fusion reaction.

The most suitable reaction is certainly the T(D, n)He* reaction. The
cross-section o becomes maximum for tritons possessing 107 keV energy
(fig. 151) where it is
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Omax = o X 10-** em?®. (23)

If each T reacted with one D, the ratio b of output energy over
input energy will be

17.6 X 10° (eV)

b = = 165, (24)
0.107 X 10° (eV)

which is promisingly large.

Unfortunately the bombarding particle will lose its energy very
quickly, mainly in collisions with electrons. This loss is given for liquid
deuterium by (see also p. 264)

dw 4dre'n
= In A. (25)

dx muv?

We must, therefore, calculate the probability P that an incident triton
will react with one of the deutons in the target. The fusion output per
triton is

We =P .176 - 10° (eV) (26)

and must be compared with the initial triton energy which is
W = 3/2 Mv*, where M is the mass of a proton. The ratio of these
energies is
w Pv
n = — 1= 117 - 10% . )
|/ 4

v2

(27)

The probability P can be calculated as follows. Let us denote the range
of the tritons in the target (p. 265) by R, then the probalitity that a
fusion reaction occurs along R is

R 1
P = where My = . (28)
)\F nopr
Using eq. (8.39) we get
) Ww:
p=_ . ™7 | (29)
3M 24metIn A
and finally (putting InA = 1)
7 =2.10". W(eV) opr. (30)

The maximum of the function opr. W is at W = 160 (kev) and is
equal to 6.4 . 10, Therefore

7 = 1.28 - 10-, (30a)
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energy, no longer lost by the tritons, is lost by the hot plasma target.
Thus in order to obtain a net energy gain from the system one must

1) increase the number of bombarding tritons,

2) improve the thermal insulation of the plasma target.

This leads us naturally to a reactor with a plasma mixture of
energetic deuterons and tritons confined by some field of force in
vacuum. If there is no such confining field an energy gain is still
possible in devices resembling the hydrogen bomb.

The criterion of net energy gain known also as the reactor criterion
has much the same form as the relationship (19) except that Q is now
the total energy yield of one reaction, r is the cooling (or dispersal)
time of the plasma and ¢ is the efficiency with which the fusion output
can be converted into the thermal energy of the plasma. Thus we have

nina{ovh e eQ v > 3(ny + no) KT(1 — &) (32)
which gives
€ a Q T
P s Tl s A (33)

In the case of a 50/50 mixture of deuterium and tritium we have
ny= Yon, Q = 2.82 .10 (erg) and we get

£

1—
nr > 058 - 10" —— {(T) (34)

known as the Lawson’s criterion.

This determines a set of curves in a T, nr diagramme (see fig. 156).
which are boundaries of a reactor region. The minimum of f(T) occurs
at T =~ 1.7.10°% and is equal to 0.34 . 10>, :

Thus the condition for an optimum zero-energy reactor is (putting
e=14)
nr > 6 - 10", (35)

Eq. (33) suggests that a reactor could be possible even at comparatively
low temperatures provided the nr is sufficiently large. This is unfor-
tunately untrue and such a conclusion is due to our neglect of the radia-
tion loss from the plasma. Of the three types of radition (pp. 68-85)
the Bremsstrahlung is one that one cannot hope to recuperate (soft
and hard X-rays for thermonuclear temperatures) and, therefore, at
least this radiation must be considered as a loss. Eq. (32) is then written

E[nlng((ﬂ))-lg Q + 2.10% (ﬂl + n,;g)2 \/T] T >
(1—¢)-3(ny +nu) kT + 2107 (nq + na)* /T - 7. (36)
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N r‘B
= —— =09 .10
2¢

Writing Lawson’s criterion as nr = .10 where a«(¢) > 1 and

(40)

assuming that T ~ 2. 10* we get for the line density

N = zrin = 10" or* — (41)

T

N a - 10 B! (ions/cm). (42)

R

In a system in which plasma is magnetically confined one must satisfy
the pressure balance, i.e.,:

B?* — b* = 16=nkT. (43)
2nkT .
Defining ————————— = f we write the pressure balance as
b*/8x + 2nkT
BB = 16=nkT. (43a)

Using eq. (40), the Lawson’s criterion and eq. (43a), we get for r

2.10% \/ a m
There exist now two different possibilities for the projet of a sta-
tionary fusion reactor:

a) The magnetic fields B, b are produced by supraconducting coils —
in which case the energy stored in these fields does not enter critically
in the energetics of the reactor and, therefore, the radius R can be made
much larger than r. The maximum field B, is then limited by that
attainable using hard supraconductors. It does not appear likely that
B., could exceed 250 kG in large coils, whereas 8 must be sufficiently
small in order that the plasma does not perturb the confining magnetic
fields.

Considering as a basis for discussion toroidal systems with average
minimum B (see p. 214, ref. (21) ), we are forced to assume that 8
will be of the order of 102

We get then

r

R

1.6 - 10° VVa (cm), (45)

The plasma density is then of the order of 10'¢ (ions/cm?®). The
radius of the wall is determined by the considerations of wall-dissipa-
tion. In a steady-state reactor the wall must not be heated to more than
about 1000 (°C). This is possible only if the power density does not
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exceed the order of a few hundred watts/em?® (ref. 12). Taking
W = 500 watts/cm? we get using eqs. (40), (41) and (45).

3NET
W =——— = 10 R (ergs/cm? sec) (46)
27TTR

and
R=2.10* (cm).

It is clear that the volume of such a system will be of the order of
a cubic kilometer and, therefore, out of bounds of reality. It is interest-
ing to speculate on how much weaker the diffusion flux ¢ would have
to be in order that R would correspond to a practicable apparatus. Let
us suppose that the Bohm diffusion is cut by a factor y. As

n « const, + o const, N «x vy, ra y!?
and

R « .

It seems that a torus whose minor radius is of the order of a few
meters could be constructed. In such a case y = 100-1000. It appears,
therefore, that a stationary fusion reactor using supraconducting coils
would be conceivable only if the rate of Bohm’s diffusion were cut by
at least two orders of magnitude (ref. 13).

b) The second possibility is already a step towards pulsed systems.
The magnetic field is not produced by superconductors and the only
limitation on its intensity is the mechanical strength of the coil. It is
conceivable that conductors with a steel core and jacket of a suitable
copper alloy may generate fields up to 1/2 MGauss without suffering
meachanical damages. If the plasma is confined in a §-pinch geometry
in which end-losses are made small (ref. 14) we can assume that g
is not far from unity and

r ~ 10® Ve 4 (47)

Since we have to include the energy lost in the coil in the energy-
balance equation of the reactor, it is important that R is not much

R

r‘.’

greater than r (for _ > lalsoa> 1).

This leads to wall dissipations which are very much higher than
500 Watts/cm® The only way to absorb such energy bursts is by wall-
sweating, i.e., by letting a thin layer of the wall vaporize. In order that
the vapours do not polute the plasma during its useful lifetime + we
require that the transit time of these vapours is longer than r. As the
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speed v, of expansion of wall vapour is of the order of 10° cm/sec,

we get:
R—r
> T (48)
Vo
R > 9 B (49)
—r
T
Assuming that R > r we get
R > 225 a. (50)

If, e.g.. « = 4 than the radius of the plasma is 2 meters and that of
the inner wall 9 meters. The plasma density is of the order of 10%
(ions/cm?®). After a time r ~ 6 (msec) the machine must be emptied of
plasma, wall surface reformed before a new pulse can start. Reactor
of this type represents a gigantic enterprise — the stored energy W, in
the magnetic field is of the order of 10* GJoules — and it lies, therefore,
at present in the realm of science fiction. As

Wa o« RO o« y3

it seems that already y ~ 20 would bring W, within engineering
concepts.

9.2.2. PULSED FUSION REACTORS

When pressure of plasma or of the magnetic field exceeds the mecha-
nical strength of an envelope or a coil the time of plasma confinement
is limited by the characteristic expansion time 1, of the confining
structure. This can be, in many cases, sufficiently long to permit the
reactor criterion to be satisfied and we shall call this mechanism — the
inertial confinement. Let us choose for the hase of our analysis a simple
cylindrical model (fig. 158) in which a hot plasma core is compressed
or held compressed during r. by a relatively heavy cylindrical enve-
lope — the liner *. The thermal insulation of the core from the liner
is achieved by means of a magnetic field — either By or B,. Without
confinement the hot core would practically cease to produce fusion
after it freeley expanded to twice its original radius. Its lifetime would

b i t}l To \/
el1ln at case = =r
V¢ 2kT

* Known also as tamper.
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are considerable and that this is due mainly to the presence of the factor
£o® in the formula for W.

One way to diminish W is, therefore, to use systems in which the
energy in the liner and in the zone B at the moment of maximum
compression is not much larger than the plasma energy in the core
and consequently g, is relatively large, let us say equal to or larger
than 1/3. This implies a use of thin liners and relatively small volumes
for the zone B. Experiments have been started to do this using highly
compressible plasma liners (focal machines, ref. 15).

A second way to reduce the rdle plaved by &, is to regard the hot core
as a trigger of a vaster fusion reaction. Let us suppose that the region B
contains cold D,T plasma whose density is n’. The layer L of this cold
plasma adjacent to the hot core can be heated to the same temperature
as that of the core if the fusion input (charged particles, i.e., He*, only)
during a time «7o is at least equal to the loss of heat to the layer L.
This can be expressed as

1/4 n"'(a'v)xr(, Q+ w2 27r - 8§ - 3nkT (56)

where Q1 = 0.5 64.10-° (erg). The thickness 8§ can be determined on
the basis of either heat-skin-depth or interdiffusion of the two plasmas.
In many cases it is conceptually correct to take § ~ ry in accordance
with the deminition of « (expansion of the hot core to 2r), In this case

o

Kr > 4- . 10"’:. (57)

n

If one is to pay for the energy of the magnetic field in the B-zone
by the fusion energy coming from n’ plasma in the same zone we
have n’ ~ 2/3n and

ner > 8/3 - 102 (58)

much the same as condition (57), the neutron dissipation outside
making up the degradation of energy expressed by e The energy
needed is, therefore,

r

W = 700

(MJ/cm). (59)
KEo
Taking the same values as in previous example we get W =23
(MJ/em). Projects based on this trigger concept tend to assume a form
of small bombs which could be periodically exploded in a suitably
lined underground cavity-boiler, whose radius is of the order of ten
meters (ref, 16).
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List of symbols used in Chapter 9

atomic mass

S o

speed of light
degree of concentration

s}
-
-

o e

magnetic field strength
distance

diffusion coefficient
charge of electron
energy

frequency

current density
current

Boltzmann’s constant
length
self-inductance

1nass

=

particle density

2/ 3T E N O& W

linear density

=
>
~

probability
quality factor

QR

energy output of a nuclear

reaction
r, R radius
S surface
T teniperature

s, v, w velocity

14
w
Z

A

<

e g-

potential

energy or energy output
atomic number

nuclear constants

ratio of plasma pressure to
magnetic pressure

nuclear constant
excentricity

efficiency

quality factor of confine-
ment

mean free path

min . .
——— ratio of critical

max
impact parameters
collision frequency or nor-
malized linear density
angle

cross-section

characterisitic time
diffusion loss

angular frequency

volume
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da
de
/

and if one can disregard all energy losses, then the compression can

<A 1)

be regarded as adiabatic and one can apply the adiabatic theorem
which states that *

energy of the oscillating mode
= const. (2)

the resonant frejuency

The compression of the volume of the resonator leads to an increase
in the resonant frequency and, therefore, according to the adiabatic
theorem, to the increase of the electromagnetic energy stored in the
resonator. Thus one achieves not only a frequency multiplication but
also a generation of electromagnetic energy.

Let us calculate the rate at which the energy is generated. Consider
a cavity filled with a photon gas. If the cavity volume is reduced by
— AV, the work done on compressing the plioton gas is

where p, is the radiation pressure and p, = 2w,cos’ a.

Here, w, is the radiation energy density and « is the average angle
at which the photons strike the walls of the resonator. If the total
energy of the electromagnetic field is W then w, = LW /V and the
equation for AW becomes

AW AV
—_— cos’ a
! 4
or
W - Vl cos® a
- __] : (4)
W, 4

If the volume-compression is three-dimensional

cos’a = 14
and
w Vi
= | (4a)
Wl V

* This corresponds to conservation of the number n of photons in quantum
mechanics. Thus
n.h.o

= const. > n = const.
[A)
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as also follows directly from eq. (2) which gives

W e (V)P
W, u,_(Vl)

for a uniform decrease in size of a resonator.

Let us now compare the energy input, due to compression, with the
losses in the resonator. These losses W’ can be expressed by means of
the quality factor Q of the resonator. Thus

4
Q

and from eq. (4a) we have for the input due to uniform compression

dWw 1 dV W
— . (5)
de 3 dt Vv

If a characteristic linear dimension of the resonator is denoted by
A one has
dv das da

_— = = 3/&2 _— 6
de de de (6)

Substituting this equation into eq. (5) one obtains

. A
W=——_W. (5a)
A
Let us form a ratio of W and W. This is
W —
WI

A Q
— 3 (7)

If this ratio is larger than unity a generation of electromagnetic energy

by radiation-compression becomes possible. Thus the criterion for a
generator is

A
— g > 1, (7a)
A o

However, in most cases

Ao = invariant = A2xc/A

and eq. (7a) becomes

A (7b)
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For a resonator oscillating in the principal mode

A 1 1
» 2 Ve
and one has
A>c —I—_— . (7c)
QVen

The Q-factor of an orthodox cavity resonator is rarely larger than
3 X 10 This implies compression speeds

A>3 X 108 (cm/sec) (8)

which is about 3 times larger than the escape speed from earth’s
gravitational field.

It is clear that the compression speeds required for an efficient
radiation compression (eq. (7c)) are not obtainable by ordinary
mechanical tuning of cavity resonators. However, such speeds are
often attained in fast pinches of plasma cylinders (ref. 2) or in
magnetically driven plasmas. Also the r.f. losses in a plasma can be
smaller than those in metals.

Experiments have been carried out on this principle (ref. 3, 4).
Although the effect has been observed, sofar the technical difficulties
are such as to exclude its practical exploitation.

10.2. Direct Conversion of Chemical Energy into Electrical Energy

We have shown in chapter 8, eq. (8.73) that a temperature gradient in
a plasma gives rise to a thermoelectric force

[

Er=— fgrad T.dL (9)
e
{

1

A drop of temperature across a certain length of plasma makes it into
a thermocouple whose output current is

I = I"'SocEq (10)

where S is the cross-section and I is the length of the plasma conductor.
However, as a result of the temperature gradient a heat-flow Q will
also appear (eq. (8.79) ). The efficiency of the conversion of heat into
electricity taken per unit volume is, therefore,
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. c
l_
e
No =
. c
IL— + k + ke
e
1
= . (11)
K + Ke
1+ -
c 2
o (—J grad T
e

Averageing over the whole volume of such a plasma thermocouple
one obtains the total efficiency, which in most cases is higher than that
of any bimetal thermocouple. However, it seems that efficiencies larger
than 15 % cannot be obtained in this way (ref. 5).

A completely different method of converting heat energy into
electrical energy is based on the following principle. Plasma is produced
by some source of heat, e.g., an explosion of a combustible mixture.
The hot plasma expands into a volume occupied by a magnetic field
and if it is conducting enough it will act as a piston and convert some
of its kinetic energy into electrical energy.

In order to understand the relation of this process to the orthodox
conversion by mechanical and electrical machinery, let us consider a
resonant circuit (LoCy) coupled to an inductive load (L,). Let us
assume that due to the action of external mechanical forces the value
of the inductance L; can be varied at a frequency corresponding to the
resonant frequency of the resonant circuit LoCy (fig. 161). The voltage
induced across the inductor L, is then

) ol oL,
V=—(U]) =L + I . 12
= (LyI) 1 = (12)
Ly
L.
Lo
Fig. 161.

The second term corresponds to the voltage induced by the change
of the inductance L,. If the phase of the variation of L, with respect
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It is most unlikely that the large efficiencies suggested by the large
ratio of (&ya11/Tmin)? can be realised. This is connected with the con-
ductivity of plasma at explosion temperatures being much smaller
than that of copper. This would be evident to any electric engineer
who would have to use a high resistance alloy for conductors in a
dynamo. This could be done, provided the frequency of revolution
of the dynamo and the frequency of the generated magnetic field is
higher than a certain critical value. The criterion, corresponding to the
critical value of the speed of the lossy conductor, is similar to that
derived for the plasma piston in a tunable cavity on p. 315.

A similar mechanism could be also used in the conversion of energy
of fission reactions into electrical energy (ref. 6) although here the
long mean free path of neutrons in appropriate fuel gases, such as
UFg, would require high gas pressure in a large combustion chamber.

Some of the propositions of direct conversion of fusion energy into
electrical energy are based on the mechanism discussed in chapter 9.
However, this depends on a fusion reactor being available in the first
instance.

A somewhat different mechanism of generation of electricity is based
on the induction of electromotive force in a plasma stream moving
across a magnetic field. This effect is described by eqgs. (3.62)
and (3.63). Neglecting plasma pressure, these can be written as

oV . B
—_ = A
P 5t J
m
E=—— VaB+ jAB.
elnc enc

If the velocity of plasma flow is perpendicular to the magnetic field
an electromotive force is induced. If this e.m.f. can force a current
through some external impedance, electric energy is generated at the
expense of the kinetic energy of plasma. This electromagnetic reaction
on the flow is represented by the last term in the first equation.

The mechanism resembles that of a homopolar generator, the rdle
of the rotor being played by a plasma jet. This can be accomplished in
two ways.

In the first, known as the open cycle MHD generator, the jet is
formed by combustion products similar to the exhaust jet of jet-engines.
As the temperature is relatively low, the degree of ionization is often
too low for an efficient momentum transfer.

A better method, known as the closed cycle MHD generator, is based
on the recycling of the same fluid, usually an inert gas (e.g., He) to
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which a small amount of material having a low ionization potential
has been added (e.g., Cs). This “seeded” substance provides a relatively
high degree of ionization, which means a good conductivity and a
good efficiency of the “plasma rotor” (ref. 7).

10.3. Applications to Particle-Accelerators

An accelerator consists of four basic components:

1) the injection system,

2) the mechanism for guiding and focusing of the accelerated
particles,

3) the accelerating mechanism,

4) the ejector.

It appears that some of the properties of plasmas may be exploited
in the construction of the first of these components.

10.3.1. PLASMA BETATRON

The injection of electrons into a betatron has been for a long time
an imperfectly understood subject. Only recently it has been shown
(ref. 8) that some of the electrons injected into the toroidal betatron
chamber from an electron gun are retained in the chamber during the
initial phase of acceleration owing to the electric field of the space
charge built up by the injected current. The percentage of the captured
electrons is generally very low, usually of the order of 1% of the
injected charge.

Let us now consider a plasma of low and uniform density located in
the betatron chamber. It has been shown (chapter 8, p. 259) that a
strong electric field applied to a uniform plasma induces a run-away
current of electrons. In order that the collisional friction on these
electrons could be neglected E > 2 X 10-°n/T. (volt/cm) (eq. (8.27) ).

Furthermore if such a field is applied parallel to a plasma cylinder,
the skin depth § in the plasma must be very much larger than the
radius of the cylinder. Thus from eq. (5.35a)

10¢

> To.

1
2

Both these conditions must be satisfied in order that the plasma in the
betatron chhamber could become a source of electrons for the betatron.
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The last condition puts an upper limit on the linear density * of
such plasmas. Thus

anrg® = N < Yr X 102 (15)

or putting e*/mc* N = v (see eq. (4.54) ) one has

v < 0.23. (16)
If all the electrons were accelerated by the hetatron mechanism to
relativistic energies the circulating current corresponding to v = 0.23

would be 3750 (amps).

Apart from the centrifugal force F. of the accelerated electrons there
is also the force Fy of the self-magnetic field of the electron current,
both of which have to be compensated by the centripetal forces of
the betatron field, The ratio Fy/F. has been shown to be (p. 140,
eq. (4.86) ).

8R

vin —

Fy _ To
F. v

It follows that if the magnetic field of an orthodox betatron is to
keep the intense electron current in an orbit near the equilibrium
orbit then

F
M <1

I

This gives us a condition for y (or a condition for v if v ~ 1).
Thus

8R
vy>vin——o0o:. (17)

To
For the vy, given by inequality (16) and for 1n 8R/r, = 10 one has
vy > 23. (17a)

A further condition, binding the minor and major radii of the
electron beam, y and v follows from the considerations of hydro-
dynamic stability discussed on p. 213, There, we have shown that
according to the two-string model of a neutralized electron beam a
kink instability occurs for wave lengths

A > \2areB \/—%—

* This limitation is not very siringent owing to the form of the electron trajectory
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In order that the electron beam in a plasma betatron be stable the
periphery 27R of this beam must be shorter than 2X *. Thus

R < V/2r,B \/l ) (18)

Substituting for v and y values consistent with the previous criteria,

e.g.,
v=01,y =10

one obtains

< 14.
To

On the basis of these considerations it appears that a plasma betatron
with a circulating current of the order of 100 amps is feasible. This is
two orders of magnitude higher than the circulating current in orthodox
betatrons and with such a current some new experiments in low energy
nuclear physics could be contemplated.

The experimental work on these plasma rings has been up to now
marred by other instabilities (ref. 8a) some of which are related to
the two-stream instability (see p. 185).

10.3.2. COLLECTIVE ION-ACCELERATION

In 1956, Veksler proposed a new acceleration mechanism, now known
as the “collective acceleration”, for the acceleration of ions.

The idea can be described as follows:

Let us consider a bunch of N electrons and N, ions (N, € ), and
let us suppose that this bunch remains confined during the acceleration.
If, owing to external fields, the electrons are accelerated, the ions may
become trapped in bunch owing to the action of an ambipolar electric
field created inside the bunch and thus accelerated together with the
electrons up to a common final velocity. Each ion is dragged by

electrons so that, within certain limits, the length of the accelera-
P

tor can be reduced by the same factor with respect to a machine

p
accelerating ions only. Experiments have been carried out (ref. 8b) on

a prototype of such an accelerator. If this principle should prove to be

* If 2mR = A, the kink instability transforms the originally circular beam into
a oircle again. This is stabilized by the betatron field and does not lead to instability.
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applicable, one could hope of obtaining 102 protons at 1.000 Bev with a
machine of only 1.500 m long.

A particularly interesting version of a collective accelerator is known
as the electron-ring accelerator (ERA) or “smokotron”, in which the
electron bunch has the form of a self-focusing electron ring of relati-
vistic electrons. ERA should function as follows:

The generation of the ring

An intense beam of electrons is fired into an “injection box”, A
magnetic field B, applied across the box turns the electrons around the
axis of symmetry so that they form a ring, initially with a radius ro. The
magnetic field is increased rapidly, and the ring shrinks down to a
B,

1/2
radius r = ( ) ro. This increases the transverse energy of the

electrons (see pp. 40-57). After this, hydrogen gas is fed in and is ionized
by the fast moving electrons,

The positive ions are attracted into the deep potential well which
the intense ring of negative electrons sets up and the slow electrons
join the electrons in the ring.

Acceleration

In accelerating the rings, it is important not to pull so hard that the
stability is destroyed — 1i.e., the electrons are pulled away from the
protons.

Two methods of acceleration are possible. The first has been called
“expansion acceleration”. It involves setting up a magnetic field which
is progressively weaker along the accelerator tube. In travelling through
such a field, the radius of the ring grows; the tranverse energy of the
electrons falls and reappears as increased longitudinal energy — increas-
ed energy of the ring as a whole travelling down the tube. The energy
gain is inversely proportional to the square root of the strength of
the magnetic field. Thus if the field decreases by a factor of four over
some distance the energy of the protons would be doubled as the ring
travels that distance (see pp. 41-42).

An electron ring accelerator (ERA) using only expansion acceleration
might be suitable for protons up to energies around 1 GeV. Such an
ERA could be a fairly compact machine giving this order of energy
over a length of about 10 m. For higher energies, “electric acceleration”
is needed, using, for example, r.f. cavities. Here electric fields would
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accelerate the rings, while an axial magnetic field is continuously
applied to keep the ring radius small.

10.4. Rocket Propulsion

In order that a certain load whose mass is M can be lifted against
the gravitational field by a rocket motor, the thrust Py of the motor
must be larger than the weight of the load. Thus

Py = myv; > Mg (19)

where m, is the mass of the jet expelled per second
v; is the jet-velocity
g is the acceleration in a gravitational field.

Apart from this consideration of momentum-balance one must also
take into account the power consumed by the jet which is

W > Yomgv;s. (20)

Assuming that m, v; and g are constant, the equation of motion of
the rocket is

% (MV) = — mo(v; — V) — Mg (21)

where V is the speed of the rocket.
However, M is variable as it includes the jet mass also. Thus

M= MO + amy — myt (22)

where M, is the payload.

Obviously, after a time ¢t = « all the jet mass is exhausted and the
thrust of the rocket vanishes. We shall distinguish, therefore, two
phases of the flight — a powered flight and a free flight.

For the first phase the equation (21) can be written as

dv — myv;
= — 8 (23)
de M, + m(a—1t)
whose solution is
M, +
V(1) = |vj] In o Mor g (24)

M(] + m-o(a—— t)

If one aims at escaping from the gravitational field then at the end
of the powered flight the speed V(«) must be at least equal to the
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escape velocity ¥, from that field. Owing to inequality (19) the term
— gt can be neglected at t = « and one gets

Vo ] mea
ex =14 —. (24a)
P (Ivjl M,
It follows that if V,/v; is a large quantity, the ratio of weight of the
jet-fuel to payload must be also very large. However, in the opposite
case, i.e. for v;/V, > 1, one has

My v

moya V()

(24b)

and the mass of the payload can be many times the mass of the jet-fuel

This desirable result is unobtainable with chemical fuels, as can
be seen from the following simplified consideration. Let all the heat
energy liberated in a chemical reaction be converted into the kinetic
energy of a unidirectional flow. Let us take for this the 2H, + O,
reaction which is one of the more favourable reactions for this purpose.
The energy liberated per H.O is approximately 1.6 X 102 erg. The
velocity which this amount of energy imparts to one molecule of
H>0 is 1/3 X 10° cm/sec. This is the maximum velocity that a burning
mixture of oxygen and hydrogen could aquire. In practice the jet
velocity would be lower by about 50 % because of energy losses, etc
Somewhat higher jet velocity would be obtained from the combustion
of hydrofluoride fuels. Thus, as the escape velocity from earth’s
gravitational field is about 10° cm/sec the payload to total load ratio is
in the region of 0.2 to 0.1.

We have seen in the section on magnetically driven plasmas that
a plasma gun can accelerate a bunch of ionized.gas to a speed of
10" em/sec without employing any special sources of stored electrical
energy. Such a jet speed would, according to eq. (24b), reduce the
mass of the jet fuel to a small fraction of the payload. However, there
are two major problems connected with a plasma jet:

a) the development of a plasma gun having an appreciable thrust,

b) the energy supply for such a gun.

The first problem is a technological one and can probably be solved
by engineering development (ref. 9).

The second problem forces us to look for energy sources other than
chemical ones. This can be shown by calculating the power of the jet as
a function of jet velocity, keeping the thrust constant. Thus if

myv; = P
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one has for the power consumed by the jet
W = 14Pv;. (25)

This is such a high value, counted per particle, that only nuclear
sources can provide the answer. Even if nuclear sources of energy are
admitted, further problems must be solved such as the transfer of power
from the nuclear reactor to the plasma gun.

In some astronautical applications a large thrust may not be necessary,
e.g., in the case of interplanetary probes, where the probe may first
be placed into a suitable orbit around the Earth and only subsequently
spiral out using a small plasma engine. Encouraging results have been
obtained on such small continuously operated plasma guns (ref, 10).

’

10.5. Energy Storage

The art of storing energy in such a way that it can be rapidly released
has its beginning in the invention of bows, battering rams, hammers
and other devices. In present day engineering energy is stored mainly
in four different forms:

1. chemical energy of fuels and nuclear energy,

[\

. kinetic energy of flywheels,

3. magnetic energy of currents flowing through some large inductance
or energy of atomic currents in permanent magnets,

4. electric energy in condensers.

The maximum energy density W, has been obtained so far with
chemical explosives in which Wy = 10* J/cm?.

In order to obtain the same in magnetic storage systems, the magnetic
field-strength would have to be 1.6 X 10° gauss.

Assuming that the rim of a flywheel has the speed of sound and is
made of steel one finds that the kinetic energy density at the rim is
500 joule/cm®, This is also a value dictated by the mechanical strength
of flywheels.

The density of electrical energy stored in ordinary condensers is
about 10! J/cm?® and is, therefore, far below the values of W, achieved
by the methods 1 — 3. Recent development in titanium oxides having
a dielectric constant of the order of 1000 raises hopes that an electric
energy "density of over 1 J/em*® can be obtained with condensers
(ref. 11). This is still rather low for some purposes, such as the dynamic
pinch and others.
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ml nMc
P=] —iBdt= V. 28
fc ' Bd (28)
0
This follows directly from eq. (2.79a), where it was shown that
charged particles in crossed electric and magnetic fields acquire a
drift velocity vq4 = c(E/B). In our case E = V'/d and therefore,

V
P=cnM —.
Bd

The electric energy 1/2qV supplied to the plasma is, therefore, stored
mostly as the kinetic energy of the plasma flow. This kinetic energy
can be converted back into electrical energy and the plasma flow will
stop. Such a “discharge” of the plasma capacitor can be effected
within a very short time. The shortest attainable discharge time is
of a few periods of the ion-cyclotron motion.

For the same reasons as those which apply to any flywheel storage,
our plasma layer must be wrapped into a ring (radius R). A rotating
ring of plasma is subjected to centrifugal forces which must be
balanced. For our magnetically confined plasma such a balance will
result from the magnetic field B on the outside of the plasma ring
being compressed until

B: ndMuvg®

= . 29
8x R (29)

From this simple formula follows at once that the ratio of stored
kinetic energy to the stored magnetic energy is of the order of R/4d.

In experiments on a plasma homopolar devices, energy densities
of 1 J/ecm*® were achieved (ref. 12). With large dimensions (R of
the order of 100 ecm) and with insulation between the electrodes o,
and o2 capable of withstanding 100 kV, energy densities up to 100 J/em?
seem to be attainable. This implies a total stored energy of the order
of 10° J which would be of considerable interest in research on
fast pinclies and would be especially useful for the dynamic pinches.
However, in spite of many attempts to improve the insulation between
the electrodes, no encouraging results have been so far obtained. A
short-circuit has been always observed even when the insulating wall
has been removed relatively far away from the rotating plasma (ref. 13).
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List of symbols used in Chapter 10

a amplitude S surface

B magnetic field strength t time

c velocity of light v velocity

Cc capacity vV volume or voltage

e charge of electron w energy density

E electric field w energy

f frequency x coordinate

F force o angle

g gravitational acceleration B = v/

i current density y = (1—v¥/c*) V2

1 current £ dielectric constant

k Boltzmann’s constant ] efficiency

l length K coefficient of thermal con-

L self-inductance ductivity

m, M mass A wave length

n particle density or index of A characteristic linear dimen-
the betatron field sion

p pressure u magnetic permeability

P momentum v normalized linear density

Q quality factor p resistivity

q electric charge o electric conductivity

r, R radius ® angular frequency
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