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DEPRESSURISATION AND WAVE PROPAGATION 

IN WATER COOLED REACTORS 

by 

A. R. Edwards 

U. K.A. E . A . , Risley 

United Kingdom 

1. INTRODUCTION 

In the field of r eac to r safety invest igat ions, disrupt ive p r e s s u r e forces g e 

nera l ly originate from one of two pr inc ipa l mechan i sms . There is the c lass 

of accident which s t a r t s from a change in react ivi ty, leading to fuel ove r 

heating and mel t ing. Dispers ion of this hot m a t e r i a l may then give r i s e to 

rapid vapour production with the consequent r i s e in local p r e s s u r e which 

will propagate through the sys tem. The initiating mechanism might be con

t ro l rod or fuel movement or a change in flow condition aggravated by pos i 

tive t empera tu re or void coefficients. The other pr incipal mechanism occurs 

in water cooled r e a c t o r s when the normal fluid t empera tu re is above a t m o s 

pher ic boiling conditions. Normal ly using a high sys tem p r e s s u r e , fai lure 

of the p r e s s u r e boundary will allow loss of the coolant. If the failure occurs 

suddenly p r e s s u r e waves will propagate through the r eac to r sys tem subject

ing in ternal components to la rge fo rces , the duration of these forces will be 

dependent on the length of the path available for wave propagation. Of p r i n 

ciple concern is the fact that the co re and i ts surrounding s t ruc ture may be 

dis tor ted causing reactivi ty changes and preventing the inser t ion of control 

rods , thus aggravating the course of the accident . 

In addition to the p r e s s u r e loading on the in ternal components of a r eac to r 

sys tem, it is a lso neces sa ry to consider the effects of an accident on the ex

t e rna l components . This ■would include considerationof the containment 

s t ruc tu re or other building over the r eac to r and a lso equipment instal led in

side. Two main mechan isms exist for producing these p r e s s u r e forces , 

f i rs t ly with a high t empera tu re water r eac to r , r e l ea se of the coolant will 

allow some of it to flash into s team and the resul tant volume changes will 

give r i s e to p r e s s u r e waves . The second mechanism is basical ly a chemical 

react ion which l ibera tes energy, giving again a volume change and a p r e s s u r e 
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r i s e . The chemical react ion might be that of hydrogen-oxygen, the hydrogen 
having been generated by a m e t a l - s t e a m react ion inside the r eac to r co re . 
Alternat ively it could be a d i rec t react ion of the coolant with oxygen, such 
as might happen on a sodium cooled fast r eac to r sys tem. This mechan ism 
is considered in a separa te paper at this conference, other papers consider 
the react ion of s t ruc tu res to the p r e s s u r e forces we a r e d iscuss ing . In this 
paper we a r e concerned with the possible means of generat ing the forces 
inside the reac tor p r i m a r y c i rcui t . 

2. PROPAGATION OF PRESSURE WAVES IN TWO-PHASE MIXTURES 
(1 2 3) A number of theore t ica l and exper imenta l studies ' ' have been made 

into the speed of propagation of smal l amplitude waves in two-phase media . 
However much of the work has been c a r r i e d out on two-component sy s t ems , 
that is using a liquid with a non-condensible gas . In such mix tu res heat 
t ransfe r between the phases is of minor impor tance and reasonable c o r r e 
lation between theore t ica l predict ions and exper imenta l m e a s u r e m e n t s has 
been obtained. However, when a single-component sys tem is considered, 
the problem becomes m o r e complex. Heat t r ans fe r between phases now 
plays an important role in determining whether the appropr ia te amount of 
condensation or evaporation can take place , this is dependent on the f r e 
quency of the dis turbance and the size of the bubbles p resen t . The calcula-

(3) tions of Walle indicate that for a w a t e r - s t e a m mixture , at a voidage b e 
tween 40-60%, the sonic speed is about 10% of the liquid sonic speed for 

5 
frequencies above 10 c . p . s. and is independent of bubble size in the range 

-2 -4 
10 to 10 m. rad ius . As the frequency is reduced, the effect on the 
smal les t bubble size soon becomes marked , and the sonic speed rat io falls 
to 1 l / 2 % at 1 c . p . s. This is because heat t r ans fe r between the phases is 

-3 
now effective. Slightly l a r g e r bubbles, 10 m. rad. , do not va ry so much, 2 effects a r e smal l down to 10 c . p . s. , with the sonic velocity ra t io falling 

. -2 
to 4% at 1 c. p¡ s. The large bubbles, 10 m. rad . , a r e vir tual ly unaffected 
by frequencies down to 1 c . p . s. , indicating that heat t r a n s f e r is completely 
ineffectual as an energy t r ans fe r mechan ism in this situation. 

The fact that propagation velocity is so dependent on the heat t r ans fe r capa
bil i t ies of the two-phase mixture r a i s e s a query regarding the relevance of 
wave propagation l imits on the d ischarge flow ra te of two-phase mix tu re s , 
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for example, does c r i t i ca l flow have a cha rac te r i s t i c frequency controlling 

propagation veloci ty? This will be re fe r red to again la te r in the section 

dealing with theore t ica l s tudies . 

Of grea t importance in r eac to r safety studies is the propagation of the large 

dis turbance, ra ther than the smal l amplitude sonic wave. It is well known 

that the propagation of la rge amplitude waves can be significantly different 

from smal l waves, here again, heat t r ans fe r between the phases can be ex 

pected to play a controlling p a r t . In the case of the la rge compress ion wave, 

t ravell ing through an initially twophase mix ture , heat t ransfer prevents in

stantaneous collapse of vapour bubbles; hence it affects the depth of the wave 

front and any subsequent p r e s s u r e amplification effects, which may occur 

when the las t of the bubbles a r e collapsed. 

The case of the l a rge expansion, or decompress ion , wave propagating into 

an initially subcooled liquid is even m o r e complex, as bubble nucleation 

mechan isms will control the t ime and ra te at which bubbles a r e formed, with 

heat t r ans fe r controlling their subsequent growth. At the moment the re is 

(4) some evidence from the p r e s s u r e measu remen t s taken from shock tubes " 

which indicates that vapour bubbles a r e not formed immediately, but only 

after a delay of a mil l isecond or so. This allows the p r e s s u r e behind the 

wave front to fall to near ly a tmospher ic conditions, as the expansion of wa

t e r , as a liquid, will not c rea te a significant p r e s s u r e wave in the a i r into 

■which it is expanding. As has been mentioned e a r l i e r this effect would allow 

the core of a r eac to r to be subjected to a very large p r e s s u r e difference for 

the extent of this delay per iod. It is expected that a number of factors will 

have an influence on the init ial delay and growth period; amongst these a r e 

the water t empera tu re , controlling surface tension, the p resence of d i s 

solved gases or other pa r t i c les and ionizing radiation, controlling the num

ber of nucleat ion si tes avai lable. Some of these aspec ts a r e a l ready r e c e i 
( 6 7\ 

ving detailed investigation , but at 1 

whether any one effect will p redominate . 

IL η\ 

ving detailed investigation ' , but at this stage it is impossible to say 

It is important that a bet ter understanding of ■wave propagation is obtained, 

as it is impossible to calculate t rans ien t flow phenomena without introducing 

wave effects. 
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3. THE DEPRESSURISATION ACCIDENT 

Insufficient knowledge exis ts to allow accura te calculations to be ca r r i ed 

out on the sequence of events after a high t empera tu re water r eac to r suffers 

a p r e s s u r e c i rcui t fa i lure . But it is possible to c a r r y out simplified calcu
(5) 

lations , which indicate the main a r e a s of uncertainty and the problems 

to be answered if the safety of a r eac to r sys tem and the effectiveness of 

emergency cooling a r r angemen t s a r e to be proper ly a s s e s s e d . 

Briefly, the core will be subjected to an initial t rans ient , caused by the 

sudden rupturing of the sys tem boundary. It must be demonst ra ted that the 

core has not been so dis tor ted that heat t r ans fe r conditions a r e unpred ic 

table in the la te r s tages of the accident study. Subsequent s tages of the 

blowdown may subject the s t ruc ture to long durat ion loads significantly 

g rea t e r than normal design va lues , depending on the size and location of 

the break. Unacceptable dis tor t ion must again be avoided. 

At the other ex t reme , adequate s t rength must a lso be demonst ra ted to exist 

for sma l l e r b reaks , when, although the loads a r e low, over heating may 

take place leading to loss of s t rength. 

In al l but the minor break case , the r eac to r sys tem will lose most of i ts ori

ginal coolant, allowing the fuel to heat up before emergency coolant can be 

supplied. Most proposals to date, involve e i ther an overhead spray or a 

ve s se l flooding sys tem, which does not operate until the c i rcui t p r e s s u r e 

has fallen to a few a tmosphe res , so that heating up can take place over a 

period of seve ra l minutes . 

The var ious l imitat ions will not al l occur in the course of any one accident, 

so a range of break s izes and posit ions must be investigated to ensure ade 

quate coverage" has been obtained. At one ex t r eme , ■with a break near the 

outlet of the core , rapid loss of p r e s s u r e on this side will allow the core 

s t ruc ture to feel the full c i rcui t p r e s s u r e as a p r e s s u r e differential a c r o s s 

i t . The duration will depend on bubble nucleation, which will tend to r e s to r e 

the p r e s s u r e near the break to the saturat ion condition, and wave propaga

tion velocity, which will eventually reduce the p r e s s u r e acting on the bot

tom of the co re . Subsequently the p r e s s u r e difference a c r o s s the core falls 

to a value dependent on the break size and d ischarge ra te , but this may still 
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be severa l t imes that normally applied to the s t ruc ture so the re is great 
in te res t in knowing d ischarge r a t e s as accura te ly as poss ib le . 

The other ex t reme condition a r i s e s from a break positioned between the 
entry to the core and the circulat ing pumps. Such a break may diver t the 
pump flow causing rapid stagnation of the co re flow; the t ime scale involved 
in stopping the core flow will again be dependent on wave propagation effects 
as liquid iner t ia and compress ib i l i ty will be important fac tors . Here again, 
the des igner is in teres ted in knowing as accura te ly as possible the d ischarge 
ra te , par t icu lar ly how it may vary as the c i rcui t p r e s s u r e falls and m o r e 
and m o r e vapour is produced, a s this will influence the t ime that the core 
flow remains stagnant. 

Stagnant core flow conditions, pa r t i cu la r ly if it occurs before the r eac to r 
has been shut-down and t empera tu re equalisation taken place in the fuel, 
leads to rapid clad failure and potential p rob lems of explosive vapour gene
rat ion when some coolant eventually r e t u r n s . In this context, for a typical 
cyl indrical oxide-fuel pin, t empe ra tu r e equalisation will take 10-20 sees 
to occur . Without cooling for this period, the equalisation t empera tu re 
would be around 900-1000 C, clad failure would occur within a few seconds 
of the c i rcui t p r e s s u r e falling below the fission product gas p r e s s u r e inside 
the pin. These conditions can be avoided if cooling p e r s i s t s for the 10-20 sees., 
the clad t empera tu re will be held around 300 C and subsequently r is ing at 
10-20 C / s e c . , if cooling is then lost, hence a period of a few minutes is 
available before failure t empera tu re s a r e reached. 

To obtain a bet ter understanding of the depressur i sa t ion accident the A m e r i 
cans a r e building the LOFT facility. This consis ts of a 50 Mw P . W. R. in
stalled in a la rge containment building. Studies of the forces acting and the 
response of the r eac to r sys tem to depressu r i sa t ion will be made by open
ing a la rge vent in the p r i m a r y c i rcui t . To obtain the maximum possible in 
formation from these tes t s p re l iminary model t e s t s a r e being ca r r i ed out 
by both the Bri t i sh and A m e r i c a n s . 

4. MODEL SCALING CONSIDERATIONS 

Many discussions have taken place between the Br i t i sh and Amer icans r e 
garding the appropr ia te method of scaling to be adopted. As is usual , it is 
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impossible to satisfy al l the c r i t e r i a governing the flow distr ibution and 
losses once a depar ture from a full size copy of the sys tem under cons ide ra 
tion is made . 

The scaling laws for single phase fluids a r e fairly well understood and if 
a geometr ic model of a r eac to r sys tem is built, and the p r e s s u r e against 
t ime curve obtained for a specified break using compressed gas as the tes t 
medium, then fairly rel iable e s t ima tes can be made of the appropr ia te curve 
for the full scale reac to r with the same filling gas . This would involve m a 
king some correc t ion for the initial s tar t ing t rans ient , where wave propaga
tion effects play a pa r t , the cor rec t ing the quas i - s t eady-s t a t e blowdown for 
the effect of Reynold's number on the friction factor in the piping. 

When we look at the problem for two-phase flow conditions, however, la rge 
uncer ta int ies exist . Not enough is known about wave propagation and the par t 
played by bubble nucleation on wave speeds to co r rec t the init ial s tar t ing 
t rans ien t . Then at l a t e r t i m e s , the same cor rec t ion factors will not apply 
to the different pa r t s of the sys tem (e .g . , bends, sudden enlargements or 
contract ions , pipes e tc . ) as the proport ions of the two phases vary during 
the course of the depressur i sa t ion . It i s , therefore , neces sa ry to decide 
what information one hopes to ex t rac t from any pa r t i cu la r s e r i e s of model 
t es t s and then chose the scaling method. 

The Amer icans have decided to use s t r i c t geometr ic scaling and a r e to in
vest igate the performance of a 1/4 scale model of the i r r eac to r sys tem. On 
such a sys tem the t ime scale of events would, there fore , be shortened by 
a factor 4 if no dis tor t ion is introduced in the sma l l e r sys tem. It is argued 
that, if wave propagation does affect the initial pa r t of the t rans ient , then 
the scaled answers will be suitably pess imis t i c for the est imat ion of the du
ration of high p r e s s u r e differences a c r o s s the core s t ruc tu re . Also, in the 
context of the i r p r o g r a m m e , the la te r s tages of depressur i sa t ion a r e con
sidered to be more important , and it is thought that geometr ic scaling is 
the most suitable. 

F o r the Bri t i sh p rog ramme it was decided that the initial s tar t ing t rans ient 
was the important effect and we a r e using t r a n s v e r s e scaling only. This 
leaves the flow path lengths unal tered hence the tinne scale of events should 
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be the same as for a full sized sys tem, allowing for e a s i e r study of wave 
propagation and initial bubble nucleation. It was also decided that, whilst 
we would not at tempt to model the Amer ican LOFT reac to r sys tem exactly, 
we would at leas t simulate the core accura te ly . This means using a group 
of full size fuel rods , spaced at the appropr ia te cent re d i s tances . The ex
te rna l circui t is to be as simple as possible , using constant d iamete r piping, 
consistent with giving the right o rde r of overal l blowdown t ime, in o rde r to 
facilitate comparison with analytical methods . As the LOFT reac to r only 
uses one external circulat ion loop, it has been decided to c a r r y out two s e 
r ies of t es t s to s imulate one and four external loops to see if significant 
differences a r i s e in the flow pa t t e rns . 

5. EXPERIMENTAL PROGRAMME 

The exper imental p rog ramme is being ca r r i ed out at the AWRE tes t e s t a 
blishment at Foulness , and is divided into three phases . 

Phase I consis ts of a s e r i e s of t e s t s , utilising lengths of s t ra ight piping, to 
investigate on the s imples t possible geometry , nucleation delays and wave 
propagation. Two pipe s izes will be used ( 1 " and 3" i. d. ) and the length will 
be 12 ft. Each pipe will have an ins t rumentat ion section every 3 ft. along the 
length (fig. 1). Measurements of p r e s s u r e , t empera tu re and voidage will be 
taken as the system d é p r e s s u r i s e s . The star t ing p r e s s u r e will be 500-2500 
psi (33-160 atm) with the water t empera tu re from 50 C subcooled up to the 
saturat ion value. 

Heating elements a r e clamped around the outside of the pipe, with the rma l 
insulation fitted over everything. The hea ter rat ings a r e sufficient to r a i se 
the water t empera tu re in less than one hour and a period of a few minutes is 
allowed for t empera tu re equalisation to take place before depressur i sa t ion . 
The system p r e s s u r e is controlled by a gas p r e s s u r i s e r , par t ia l ly water 
filled, which is isolated just before blowdown. 

P re l imina ry proving t es t s have indicated that a double diaphragm burst ing 
disc assembly is not an ent irely sat isfactory method of initiating the blow-
down, as the volume change caused by the stretching of the diaphragm p r io r 
to bursting affects the system p r e s s u r e . It is now intended to use a glass 
disc , f racture being initiated by the firing of a s teel pellet , or a l ternat ively 
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a single strong c losure d isc , sheared by a p r e s s u r e operated r ing. 

Phase II consis ts of a s imi la r s e r i e s of t e s t s , but with a r e s e r v o i r connected 
to one end of the pipe. This means that the init ial wave reflection is now a 
compress ion wave, instead of a further expansion wave. The differences in 
wave propagation and nucleation will be studied. The r e s e r v o i r will be 
5 I / 4 ins . i. d. , and 8 ft. high, the piping will be 1 in. and 2 in. i. d. , 12 ft. 
long. The same range of initial p r e s s u r e s and t e m p e r a t u r e s will be covered 
as that used for Phase I t e s t s . 

Some additional t e s t s will a lso be ca r r i ed out using a simple bend and a pipe 
loop with a tee piece for the d i scharge . These pieces will be la te r used in 
the Phase III t e s t s . Typical configurations a r e i l lus t ra ted in fig. 2. Phase III 
consis ts of a r eac to r ve s se l simulation with a section of a core represen ted 
full s i ze . The genera l proport ions a r e based on the Amer ican LOFT reac to r 
p roposa ls , which uses a core length of 3 ft. and cyl indr ical fuel rods 0. 39 in. 
dia. at 0. 58 in. c en t r e s . A group of 25 rods will be used with internal hea t e r s 
designed to ra i se the t empera tu re of the rods to the normal operating condi
tion. It is hoped that the rod-hea te r unit can be designed to have the c o r r e c t 
heat s torage capacity, so that as the blowdown proceeds the appropr ia te heat 
t ransfe r conditions will be reproduced. The external c i rcui t of the actual 
r eac to r will not be reproduced, but a simple pipe loop of the right o rde r of 
internal volume and path length will be used to s imulate the effects (fig. 3). 
It has been est imated that a pipe loop 180 ft. long and between 1 l / 2 - 2 in. 
i. d. , will have a flow res i s t ance of the same o rde r as that encountered in the 
r eac to r , when computed for single phase conditions. To simulate the effect 
of different b reak posit ions provis ion will be made to instal l the blowdown tee 
piece at a l ternat ive locations round the pipe loop. 

The heating on the reac tor ve s se l and pipework will be so controlled that the 
top half of the sys tem can be ra i sed to a higher t e m p e r a t u r e , so simulating 
the differential t empera tu re a c r o s s the core which exis ts in a working r e a c 
to r . It is considered important to include this effect in the tes t s as it will 
control the region f irst producing s team. Similar ly it is a lso considered i m 
portant to include core heating as the hot core may produce sufficient vapour 
to disrupt the normal heat t r ans fe r mechan i sm. As flow conditions change to 
r e s to r e liquid flow through the core effective cooling may not be regained if 
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the rod surface t e m p e r a t u r e s have r i s en too fast. 

6. THEORETICAL WORK 

Studies on the exper imenta l data published by many worke r s in the field of 
two-phase c r i t i ca l flow d i scha rges have been in p r o g r e s s for some t ime . 
Most of this i s concerned with s teady-s ta te d i scharges from pipes and it has 
become evident that the common assumpt ion of t h e r m a l equi l ibr ium between 

(8) 
phases is e r roneous , see for example work by Faueke . This lack of t h e r 
m a l equil ibrium is probably the reason for the d iscrepancy between t h e o r e 
t ica l predict ions and exper imenta l r e s u l t s , pa r t i cu la r ly in the case of short 
p ipes . 

A theore t ica l model has been built up, based on the concept of a cloud of 
smal l vapour bubbles, which a r e c a r r i e d along in the flow. The growth of 
the bubbles is controlled by the heat conduction lags between the bulk of the 
liquid and the l iquid-vapour in te r faces . The set of equations has now been 
p rog rammed for a r e s t r i c t ed range of c a s e s . At the moment entry conditions 
a r e l imited to sub-cooled or just sa tura ted approach flow, with the a c c e l e 
rat ion p r e s s u r e drop into the pipe entry sufficient to cause nucleation in the 
bulk of the fluid. It is assumed that no slip exis ts between a bubble and i ts 
surrounding fluid. 

A number of approximations have to be made to enable the computations to 
proceed . These a r e : 

a) a short initial growth per iod in a constant p r e s s u r e field with no in te r fe-
(9) rence between bubbles. The re su l t s of P ies set and Zwick a r e used to 

give the bubble growth in this region. 
b) a period where the p r e s s u r e is falling along the axis of the pipe, but the 

t empera tu re fields around the bubbles a r e too l imited to in ter fere with 
one another . Heat conduction is based on a finite difference sys tem for 
an infinite s lab, with a cor rec t ion factor applied to the t empera tu re g r a 
dient to allow for the spher ica l geometry and moving interface. 

c) a final period where interact ion effects a r e p re sen t . In this region a 
function is introduced to compensate for the coalescing of bubbles, which 
causes a loss of heat t r ans fe r a r e a . Also the t empera tu re field is d i s t o r 
ted by the rapidly changing dis tance between the bubbles, and a moving 
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co-ordinate sys tem has to be applied to the heat conduction calculat ion. 

At the moment the p r o g r a m m e is l imited to relat ively low voidage conditions, 
say up to 60%, at the outlet plane, because of the bubble assumpt ion. It i s , 
however, ideally suited to examine the flow in short pipes and it i s hoped 
that it will successfully cover the region of ze ro length up to, may be, 
L /D = 50. 

The method of calculation is to a s s u m e an entry flow ra te and then follow 
the growth of the bubbles, calculating the r a t e of change of p r e s s u r e with 
length at success ive points along the pipe . The end of the calculation is 
reached when the p r e s s u r e gradient runs off to minus infinity. The form of 
the choking c r i t e r ion is fairly complex a s it contains t e r m s which or iginate 
from the ra te of change of quality as well a s the usual p r e s s u r e t e r m s . The 
full implicat ions of this l imit have not yet been a s s e s s e d . 

P r e l i m i n a r y resu l t s indicate that the model p red ic t s the right t rend of c r i t i 
cal flow var ia t ion with changing pipe length, and that the resu l t s a r e not too 
sensi t ive to the initial number of bubbles assumed in the calculation. 
It i s obvious, however, that m o r e information is needed on the factors af
fecting the init ial number of nuclei avai lable . It i s hoped to be able to extend 
the method to handle two phase approach flow conditions and a l ternat ive 
assumpt ions will be t r ied for the thi rd stage of the calculation which may 
be more appropr ia te at high voidage conditions. 

The main implication of this pa r t i cu la r theore t ica l model is to indicate that 
the flow sys tem cannot be scaled in a geometr ic manner , but has a strong 
dependent on the t ime of t r ans i t along the pipe. It is hoped that some curves 
showing the effect of number of bubbles e t c . , will be available for the con
ference . 

When the s teady-s ta te flow studies a r e further advanced, and assuming that 
the postulated heat t r ans fe r model is s t i l l thsught to be a reasonable one, it 
is intended to s t a r t writing a s imi l a r p r o g r a m m e foT t rans ien t flow condi
t ions . This will involve the introduction of wave t r ans i t t imes and will d e 
pend to a g rea t extent on the exper imenta l information obtained from Phase I 
of the tes t p r o g r a m m e descr ibed e a r l i e r . 
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7. CONCLUDING REMARKS 

The paper attempts to outline, very briefly, the areas where pressure 

wave effects could be important to reactor safety. The uncertainties that 

exist on wave propagation velocit ies have been mentioned and some tests 

to be carried out in the U. K. to improve our understanding of these pheno

mena are outlined. 

The uncertainties which arise in interpreting model results and the effects 

of scale are also mentioned. The tests to be carried out by ourselves when 

correlated with the American work on the LOFT project should help to c la 

rify many of our present doubts. 

On the analytical side it would appear that the relatively straight forward 

concepts of phase slip are not sufficient to explain critical flow phenomena 

in all cases , and the thermal conduction lags must be introduced. In this 

context it i s necessary to obtain a better understanding of the factors affect

ing nucleation. The work in Sweden on the effects of irradiation on nuclea

tion and that at Ispra on depressurisation is particularly interesting. 
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SOME THEORETICAL CONSIDERATIONS AND EXPERIMENTAL 
DATA ON PROPAGATION AND REFLECTION OF UNDERWATER 

PRESSURE AND SHOCK WAVES 
*y 

H. Holtbecker and A. Maserati 
Euratom, OCR Ispra 

Italy 

INTRODUCTION 
The study of the containment of accidental overpressures that 
may be created inside a reactor vessel by the actual vessel 
structures calls for a knowledge of their magnitude, the point 
at which the overpressure originates, the mode of wave propa
gation, i.e. whether they decay or grow stronger during pro
pagation, and the response of the structure and materials to 
such stresses. This report deals with the modes of propagation 
of waves due to rapid pressure rises caused, for example, by 
an uncontrolled reactor power excursion or, in the case of 
pressure-tube reactors, by the failure of one of these tubes, 
or else to reactions between a metal such as Al or UC with 
the water used as moderator or coolant, where the waves are 
propagated in water. 
The main interest was to see how a pressure wave generated by 
any cause decays during propagation, and what values the pres
sure reaches if the wave is reflected from a structure. 
A cylindrical propagation geometry was chosen because, first, 
the failure of a reactor pressure-tube leads to that geometry, 
secondly, it is easy to generate waves of approximately that 
form by means of line-charge detonating explosives, and thirdly, 
for model experiments the idealized structure sometimes chosen 
is a cylindrical shell, struck by a wave of cylindrical form, 
as described in the report No. EUR/C-IS/673/66 e "The Response 
of a Vessel to an Internal Blast Loading - Limits of Model 
Tests - Influence of Strain-Rate"^. 
The present report contains three sections ; the first concerns 
the propagation of a wave from source to structure, the second 
studies the behaviour of the wave from the moment of impact on 
r e 'ucture, and the third, dealing with the events that occur 
'i'ien a pressure wave impinges on a reactor channel, considers 
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the shadow phenomena due to the tube, the diffraction of the 
wave, its possible enhancement as a result of its travel 
through pressure tube reactor lattice and, lastly, the re
flection from a pressure tube. 

1. PROPAGATION OF A PRESSURE WAVE 

1.1. Statement of the problem 
The problem can be expressed in the following terms : 
inside the reactor pressure vessel, which contains light 
or heavy water, an accidental cause sets up overpressure 
in a certain zone, with a peak value that may range from 

( 2) tens to hundreds of atmospheresv . 
It is desired to know how the wave is propagated, whether 
the propagation geometry and dissipating factors will 
cause it to decay, and how these events can be predicted 
in theory. 

1.2. Hydrodynamlc considerations 
A violent power excursion, failure e a pressure-tube, a 
metal-wat'er reaction, any of these will provoke a rapid 
pressure transient in a certain zone in the water. There 
will be liquid or vapour pressures applied to water across 
a certain surface of separation. The boundary surface will 
move, generating disturbances which will be propagated in 
the form of waves. The first thing to establish is whether 
these are to be treated as shock or acoustic waves. This 
will depend on the magnitude of the pressure exerted on the 
water by the liquids or vapours, which may be considered as 
"pistons". 
As a guide parameter for the wave propagation phenomena, we 
may take the variations of density ρ due to a certain vari
ation of pressure ρ . 
The fluids considered are water and heavy water ; the 
latter will be approximated to ordinary water in resp 
of all the characteristics involved here^ . 
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Since the equation of state of the water is (5) (6) 

Ρ = A (-M7 - Β 
Po where ρ = pressure 

ρ = density of water at pressure ρ 
ρ = density of water at 1 atm, and 

with the coefficients A and Β practically independent 
of temperature for variations of the order of 80°C, it 
is obvious that very great variations of pressure are 
necessary to produce the significant density variations 
required to form shock waves^ . 
With pressure variations of the order of 500 kg/cm , 
the water density varies to the extent of about 2 %, 
which can be regarded as a negligible value. In these 
conditions the wave propagated may be approximated to 
an acoustic wave, and its motion can be described by 
the wave equation^ ' : 

v2 v = _ i _ . dp. (2) 
v v 2 dt 

where ^c 

V = velocity potential 
ρ = pressure 
t = time 
c = velocity of sound in the medium under consideration. 
As stated in the introduction, a cylindrical propagation 
geometry was chosen. 
With this geometry and with waves that fulfil the above 
description, the pressure decay is in inverse proportion 
to the square root of the radius, when the radius of the 
wave surface has become much larger than the water-
"piston" boundary surface, as may be verified by inte-
grating equation (1). 
For higher pressures the mathematical description of the 
events must take into account the fluid density va
riations and the equations concerned are changed. 
In general, with what are defined as strong shocks, in 
which the pressure behind the front is far higher than 
that of the fluid not yet affected by the shock (the 
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expression "far higher" must be understood in relation 
to the equation of state of the fluid ; for a gas it 
may be greater by a factor of some tens or hundreds 
only, but for a liquid, by a factor of tens or hundreds 
of thousands), account must also be taken of the dissi
pation phenomena that affect the front and are charac
terized by an increase of entropy. 
Numerous authors agree, however, that as regards water, 
even with extremely high pressures, such entropy va
riations can be neglected. In reference^ ' it is stated 
that for water, pressure is a function of the density 
only and not of the internal energy, i.e. the coeffi
cients A and Β of equation (1) are independent of the 
entropy, whose variations can thus be neglected. 

(7) Stanyucovitch^ ' states that for pressures up to 
10 kg/cm the density variations are such that the 
entropy can be shown to be virtually constant. 
The field of pressure we are concerned with ranges from 
a few tens of atmospheres up to the pressures, estimated 

C C Q 

at 0.5 x 10 to 10 kg/cm , due to a line charge of high 
explosives encased in a sheath ; the reason is that both 
in the experiments reported here and in the model expe
riments on cylindrical shells * ', the pressure wave to 
be expected from a reactor accident was generated by 
high explosives of that type. 
Under these conditions the equations describing the wave 
can be reduced to the two fluid dynamics equations for 
conservation of mass and conservation of momentum, which (5) may be expressed as v ' 

ff + div v = 0 (3) dt 
where v is the vector of velocity of a fluid element and 
conservation of momentum : 

p "ft + ^ x Srad) v = - grad ρ (k) 
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1.3· Calculation methods 
A calculating system was required that would describe 
the propagation of a wave in cases where the density 
variations were no longer negligible. 
The problem was submitted to a group of mathematicians 
at the Ispra computer centre and a report entitled 
"Computation of shock waves in water" is being pre
pared by L. Guerri and P. Stella. 
Various calculating methods were tested and will be 
described in the above-named report. 
The calculation is at present being effected only in 
one spatial coordinate. 

( 8) One system, evolved by R.D. Richtmyer and Von Neuman^ , 
is a finite difference calculating method, in which the 
equations are the fundamental equations of fluid dyna
mics. Its main characteristic is that it describes a 
shock front without having recourse to mathematical dis
continuities, but introducing a parameter - pseudovis-
cosity - which automatically creates steep pressure and 
density gradients where a shock is located. 
It is based on certain physical phenomena to which real 
fluids are subject, namely viscosity and heat conduction. 
These are the factors which make discontinuity of density 
and pressure physically impossible on the shock front. 
The discontinuity surface, as considered by Rankine and 
Hugoniot, is indeed a thin transition layer in which the 
parameters vary rapidly but continuously. 
The method in question introduces into the general equa
tions a term which accounts for the dissipation pheno
mena, and the equations thus written are valid everywhere, 
so that there is no need for boundary conditions corres
ponding to shock. This is the term which the authors have 
called pseudoviscosity. 
Another method tested is a finite difference method of 
implicit type in Lagrange coordinates, in which the 
Rankine-Hugoniot conditions are introduced directly 
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into the calculation (shock fitting method). Yet another 
line of study was the feasibility of directly solving 
the partial-derivative fluid dynamics equations with a 

(7) simplifying hypothesis, as K.P. Stanyucovitch did v . 
The second method seems to give the best results at pre
sent. Richtmyer's method for boundary conditions of very 

ρ 
high pressures (i.e. over 10,000 kg/cm ) gives strong 
oscillations in the wave pressure profile near the front. 
Certain considerations are called for in this connection. 
The calculating methods mentioned describe the motion and 
the characteristic parameters of the wave being propagated, 
as a function of the action of the explosive. It is thus 
necessary to determine what pressure the explosive exerts 
on the water through the interface, which is assumed to 
transmit pressure only. 
The pressures on the explosive detonation front are known 
and in the case of TNT are evaluated at about 
189,000 kg/cm ^y'. In our case the charge is initiated 
at one end and the detonation front proceeds at a speed 
of about 7,000 m/sec. As a consequence the pressure is not 
uniform, at a given instant, throughout the line charge. 
In the calculations, a simplifying hypothesis is assumed, 
namely that the detonating velocity is infinite and that 
the space initially occupied by the explosive is filled at 
the zero instant with a gas already at the same pressure 
as that at the detonation front. Since a rarefaction wave 
is propagated from the interface towards the axis of the 
explosive, so that the pressure at the interface varies 
with time, changing the boundary conditions for the 
equations relating to the wave in the time following the 
initial instant, this phenomenon needs to be described, 
and the hydrodynamic equations are written likewise for 
the gases produced by the detonation. 

(21 ) The equation of state for these is v ' 

ρ = A ργ 
c 

where γ = —Έ· = 3 · A is· a function of the explosive. cv 
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But another factor must be considered. In the case of 
the line charge used, not the explosive but a casing of 
hemp and plastic was in contact with the water. 
The wave generated by the explosive has to pass through 
this before reaching the water, and undergoes pronounced 
decay, greater than the decay that would ensue in water 
(which is already very considerable, considering that 
for a spherical charge experimental data show that at a 
distance of 3 diameters the pressure with TNT fell from 
189,000 kg/cm2 to about 3,700 kg/cm2) ^10^. 
It was assumed, then, that the pressure in the detonation 
products was lower than the real pressure, and that they 
were in direct contact with water. 
Various boundary conditions were then tested ; the enve
lope of the pressure wave peak versus the distance from 
the charge axis is shown in Fig. 1, for boundary con
ditions of 30,000 kg/cm2 and 50,000 kg/cm2. The graph also 
shows the experimental profile of the decay of the peak 
(determined as will be explained in paragraph 4), and if 
we compare it with the profile calculated for these 
boundary conditions, the calculated curves are quite sa
tisfactory. 
In the same graph, for comparison purposes, is shown 
the pressure peak envelope given by the second method and 
the one given by the Richtmyer method, for boundary con
ditions of 10,000 kg/cm . 
We intend to determine the boundary conditions (water ex
plosive interface) better by means of pressure measurements 
or, for the line charge with lead casing, by calculating 
the wave travel through the casing. It will then be 
possible to provide a definite check for the calculating 
methods. 

1.4. Experimental results 
In the experiments carried out on full scale model for 

(11) the ESSOR test reactor v ' on the failure of a reactor 
channel containing organic liquid at 30 atm, it was found 
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that the wave, registered by a pressure transducer po
sitioned about 20 cm away from the point of generation 
of the disturbance, had a rise time of approximately 

ρ 
500 μ sec with a peak of 15 kg/cm . 
A problem for consideration was whether waves of this 
type could be regarded as acoustic from their start in 
the generating zone. That is to say, we wanted to see 
experimentally whether a shock wave can be propagated 
in water (the term "shock wave" is used here, for con
venience, to signify a wave with a very steep front and 
a rise time of less than 1 μ sec), if the "piston" behind 
it applied a pressure not exceeding about 500 atm, even 
assuming that the "piston" exerts the pressure in step 
form with a rise time of less than 1 μ sec. We likewise 
wished to verify the law of propagation, as regarding 
peak decay, of a wave of the type generated by a high 
explosive in cylindrical geometry. 
The method adopted for the first question was as follows. 
In order to obtain a pressure step of known value, the 
lower end of a vertical gas shock-tube was filled with 
water to various know levels, as shown in Fig. 2. When 

(12) 
the diaphragm fails a shock is, of course, propagated v ' 
through the low-pressure chamber until it encounters the 
free surface of the water. The shock wave is reflected 
at this free surface and passes through the water at the 
reflected pressure value down to the end of the tube, 
where it is again reflected. At the tube end is posi
tioned a pressure transducer of the steel bar and strain-
gauge types, as described in the above-cited report, which 
registers the evolution ρ = p(t) of the wave pressure. 
Experiments effected with various water-levels and various 
pressures for the wave impinging on the water, apparently 
showed how with pressure values ranging up to about 

p 
500 kg/cm the pressure-wave rise time increases with 
the travel. This tends to show that with these pressure 
levels, even if the initial wave is a shock wave, it must 
shortly lose this character. The oscillographs illustrating 
this event are given in Figs. 4-13. 
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Fig· 3 shows the signal given by the transducer used 
for these experiments, in a calibrating test on the 

p 
gas shock-tube. The pressure is about 120 kg/cm . The 
time bases are 2 μββο per square for the upper trace 
and 10 μθβο per square for the lower. This shows that 
the transducer rise time is approximately 2 μββο. 
Figs. 4-6 give the oscillographs for a wave propagated 
in water over the distances indicated, at a pressure 

p 
of 20 kg/cm . The rise times increase gradually up to 
30 μββο. 
Figs. 7-10 show the oscillographs for the same distances 

p 
of travel in water, but at a pressure of 120 kg/cm . The 
rise time is unchanged over 3 cm travel in water, then 
increases to about 15 μ sec. In Figs. 11-13, with the 

p 
same travels in water but with a pressure of 476 kg/cm , 
the rise time increases to about 7μ sec. These findings 
are in contrast with what was found by several authors, 
i.e. a steepening up of a wave front even at low pressure 
levels, and therefore, doubting that the effect found 
was due to a secondary effect of the gas shock tube, we 
have interposed rubber between the air and the water 
section, and substituted the steel low pressure section 
with one of aluminium. Nevertheless, no change in trans
ducer signals were found. Furthermore, on reference (5) 
increase in rise time of a shock wave propagating in water 
is reported. 
It must be observed, however, that in the measurements 
effected on shock waves generated in water by an explosive 
- dealt with more fully in the next paragraph - even with 
the transducer positioned at such distances that the peak 

p 
pressure has fallen to levels of about 100 kg/cm , the 
wave front is still very steep, with rise times of the 
order of 1 μββο. This would indicate that if a wave has 
initially the character of a violent shock wave it will 
continue to be propagated with a steep front even at 
pressures for which the density variations are very small. 
Nevertheless, the wave front is no longer as steep as it 
was when nearer to the explosive, where the pressure 



-32-

values are higher (some thousands of atm.). In the zone 
(5) where the wave is still very violent, many authors v ' 

consider that its rise time is of the nanosecond order. 
(12) Using a beryllium transducer v ' with a rise time of 

the order of 0.3- μββο (Fig. 14) we measured a wave ge
nerated by line-charge, at a distance at which the peak 
pressure of the incident wave was 350 kg/cm and, as 
Fig. 15 shows, the pressure rise time was about 2 μββο. 
It was decided to use a detonating explosive to propagate 
a wave simulating the wave caused by a reactor accident. 
The limitations of this method have been discussed at 
length by various authors^ 1 3^ 1 4 ^ 1 5 ^ 1 6 ^ 1 7 ^ ; never
theless the almost perfect reproducibility afforded by 
these explosives, the ease with which the wave intensity 
can be varied with their quantity, the simple scale laws 
governing them, all recommended their use. 
The aim was to secure information on the pressure values 
obtaining when the disturbance reaches a structure at a 
given distance. The experimental and theoretical data 
on the argument in cylindrical symmetry, as kxiown to 

( 1 8) us^ , were insufficient and new measurements were 
needed to provide information for use in further research. 
In particular, information was required on the type of 
wave and its decay, in relation to the explosives we 
intended to use both for the experiments reported here 
and for the model and materials experiments on cylindrical 
shells^ ' ; these are the explosives mentioned in the in
troduction and under head 1.2. 
The choice of explosive was based on the following cri
teria : 

a) Generation of a cylindrical wave. 
A line charge completely submerged in water and deto
nated at one end generates a wave which has approxi-

(5)(9) mately the form K>'K-" shown in Fig. 16. 
If the ignition end is positioned out of the water, this 
will cut out the detonator effect which can be fairly 
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considerable
ν
 , and the wave generated will be appro

ximately conical, the angle of aperture of the cone 

depending of course on the relation of the explosive 

detonation velocity to the velocity of propagation 

of the wave. 

Since the explosive used has a detonation velocity of 

7 mm/μ sec and the velocity of propagation of the shock 

wave in water  if we except a zone of about 20 diameters 

in the immediate neighbourhood of the explosive, where 

the pressures are extremely high  is approximately 

1.5mm/psec, the angle of aperture will be about 12°. 

It was therefore concluded that the wave could be consi

dered as approximately cylindrical. 

b) Use of limited quantity of explosive. 

The line charge had to be of very small diameter (a few mm), 

so that, in order to ensure satisfactory detonation, the ex

plosive had to be contained in a casing. The explosive used 

here is a PETN primacord made by the firm of Montecatini. 

The arrangement for the experiments described in this report 

were as follows : 

the water in which the wave was to be propagated was con

tained in a parallelepiped tank, internal dimensions 

1.70 χ 1 m, height 0.60 m. 

The water level in the tank was 0.40 m. The primacord was 

positioned vertically and detonated at its top end, outside 

the water so as to cut out the detonator effect. 

The pressure transducer was positioned 0.20 m from the 

tank bottom (Fig. 17). The measured pressure varies, of 

course, according to the transducer's position in depth, as 

there is an effect due to the rarefaction to which the wave 

is subjected towards the free surface of the water. 

The line charge is detonated with a Montecatini I.E.P.S. 

detonator, which in turn is detonated by the discharge 
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from a condenser forming part of a circuit illustrated in 
the Appendix. 
The pressure peak envelope as a function of distance from 
the charge axis is described in Fig. 18. For the pressure 
measurements the transducer, a steel bar type with strain-

( 12) gauge sensitive elementv ' was mounted on a heavy-gauge 
steel plate as in Fig. 19. 
The reason underlying this assembly is that in order to 
obtain a correct pressure measurement, the impact of the 
wave front must be perpendicular to the axis of the bar. 

(12) As will be seen from the drawing of the transducerv ' 
the bar, of 6 mm diameter, is surrounded by a support clamp 
which has a diameter of 12 mm at the bar head. Under these 
conditions the incident wave, which starts reflecting at 
the head of the transducer, almost doubling its pressure in 
that region, is subjected to a rarefaction wave coming from 
the zone surrounding the head where the incident wave is not 
reflected, and reaches the edge of the bar in about 2μ sec. 
As the pressure duration for the incident waves is about 
40 μββο, it was necessary to prevent the rarefaction wave 
from reaching the bar in this time. Assuming that the rare
faction wave is propagated at the velocity of sound, a plate 
of at least 60 mm radius had to be fitted around the trans
ducer head, so this was done. 
Figs. 20 and 21 give two oscillographs of the pressure versus 
time, the first without the plate and the second with the 
plate in position, and both obtained under exactly the same 
conditions of charge and distance from charge. The influence 
of the plate is manifest. 
The pressures measured are therefore the pressures transmitted 
from the water into the bar, and the ratio between incident 
and reflected pressure is 0.52, as will be shown in Chapter 2. 
In Fig. 18 different zones can be distinguished, in which the 
peak decay versus distance follows different laws, according 
to the distance from the axis of the explosive charge. 
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From the first measuring point, 5 cm away from the charge 
axis, to the measuring point 30 cm away, the decay curve 
is intermediate between type ± and type JL· 

*̂r* r 
From a zone of about 40 cm distance out to about 80 cm the 1 decay is of the — type. 
Beyond that point it is reasonably close to the 4 type· 

All this is in partial agreement with the theory predictions 
described in paragraph 2. 
A typical graph of the pressure generated by the line charge 
used, as a function of time, is shown in Fig. 21. Here, the 

p 
pressure attained is 900 kg/cm , the time base is 
10 μ sec/square. 

f 12) The pressures, as stated in the report No. EUR/C-IS/698/66ev ', 
can be calculated on the base of the signal given by the 
strain-gauge, the strain-gauge factor and the constants for 
the circuit used, and the results are in close agreement with 
the calibration readings. The error assumed to occur in the 
peak value is due chiefly to the transducer and amounts to 
+ 10 f°. 

Good reproducibility was found with respect to the pressure 
peaks in the various explosions, as shown by the experimental 
points on the graph at Fig. 18, and to the evolution of the 
pressure with time. The pressure curve after the peak is 
nearly exponential, as was to be expected. 

2. REFLECTION 

2.1. Statement of the problem 
We wished to find out to what extent a pressure wave, having 
once struck a structure could, as well as damaging it, be 
reflected so as to reach and damage other structures. Wave 
reflection from a rigid wall is a familiar topic which has 

( 5) been dealt with theoretically by a number of authors v. 
We wished, however, to obtain experimental evidence on the 
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subject. We also wanted to know how the bulk movement 
of a structure that is shifted considerably by an 
incident wave influences the reflected wave. There could 
be cavitation phenomena^ '̂  ' which could have a great 
influence on reflection at the wall, but here we are 
only interested with the wave as it is travelling away 
from the wall. 
The problem falls into two parts : 
a) reflection from a rigid wall 
b) reflection from a wall which is shifted significantly 

by the incident wave. 
This chapter deals with the acoustic type of wave, bearing 
in mind that the pressure peaks of disturbances resulting 
from a reactor accident would most probably be in that 
range by the time they reach the vessel wall. It is in
tended, however, to extend the research to cover shock 
waves with higher pressure peaks. 

2.2. Case a) General considerations and experimental data 
The rigid wall concept is, of course, ideal. But since the 
parameters involved in the transmission and reflection of 
a wave from one medium to another are the density and 
elastic modulus of the media, or their acoustic impedances 
pc, and since the media we are considering are water and 
steel, then from the formulae that express the ratio between 
transmitted pressure p. (which coincides with the pressure 
of the reflected wave when the latter is still in contact 
with the wall and is therefore in a zone of fluid at the 
incident wave pressure) and incident pressure p., we 
find<5> 

Pi " Ø2W1 (6) 

where the indices 2 refer to the steel and the indices 1 
to the water. This is valid where the wave is of the 
acoustic type and its impact is normal to the wall ; 
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substituting the relevant values for ρ and c, we obtain 
a ratio 

pt 

which is very close to the value 2 which would be obtained 
in the case of a rigid wall under the conditions stated. 
A steel wall of such thickness that it will not undergo 
bulk movement during the brief time when it reflects a 
wave of the explosive-generated type may therefore be 
considered as practically rigid. 
For the purpose of determining a wave reflected from such 
a wall, pressure measurements were effected for waves re
flected from a steel plate of 30 mm thickness, a gauge 
adopted as permitting the incident wave to be reflected 
long enough to involve the front and part of the wave 
without the plate undergoing bulk displacement. With this 
thickness the wave takes about 10 μββο to travel back 
and forth through the plate. 
The waves were, as usual, generated by a pentrite line 
charge ; Fig. 22 shows the layout as seen from above. 
The measurements were of necessity effected on the oblique 
reflection, because a true measurement of the pressure of 
a perpendicularly-reflected wave cannot be obtained, since 
the transducer must be positioned between the explosive 
and the wall. If, alternatively, the explosive is placed 
between transducer and wall a similar difficulty arises, 
as the gas bubble generated by the explosive obstructs the 
path of the reflected wave ; so that some arrangement on 
the lines of Fig. 22 had to be adopted. 
So that the shock wave generated by the explosive should 
not disturb measurement by reaching the transducer ahead 
of the reflected wave, a shock damper, consisting of a 
steel plate with rubber cemented to both sides, was placed 
between the explosive and the transducer. Tests effected 
to see what signal the transducer would give in spite of 
the damper showed that it was wholly negligible. 
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It is possible to work out what the peak pressure of the 

reflected wave should be, from the formulae which express 

it in the acoustic theory. 

(5) 
These formulae derive

w
' from the relation 

ρ = ρ .cu (7) 

where 

ρ = pressure 

ρ = density of medium in which wave is propagated 

u = particle velocity 

and from the condition that the tangential velocities of 

the incident and transmitted waves (see Fig. 23), in re

lation to the boundary surface of the two media, are equal : 

c.| . sinocĵ  = c2 . sinats (8) 

where 

c.|= velocity of wave in medium 1 

Cp= velocity of wave in medium 2 

a.= angle formed by front of incident wave with the 

boundary plane between the two media, AA 

a.= angle formed with plane AΑ by wave transmitted 

in medium 2. 

(7) of course is only valid where the motion can be des

cribed by an equation of type (1). 

Moreover, there must be continuity of velocity of the par

ticles on the boundary surface : 

u1 cosa.  u '.. cosa = Up cosa. (9) 

where 

a = angle formed with plane AΑ by reflected wave 

u= velocity of particles in the incident wave in 

medium 1, 

Up= velocity of particles in the transmitted wave in 

medium 2, 

u'¿= velocity of particles in the reflected wave in 

medium 1, 
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From ( 7 ) , ( 8 ) , (9) we can d e r i v e t h e d e s i r e d e q u a t i o n s ^ : 
P r o2c2 c o s a i - Plc1 c o s a t ( 1 0 ) 
P i P2C2 c o s a i + P i c i c o s a t 

P t 2p 2 c 2 c o s a 1 

pi P2
C2COSai + P1 c1 C08«t 

(10) is relevant here. 

If medium 1 consists of water and medium 2 of steel, in 
the case of waves of small amplitude such as we are con
sidering, the wave velocity is equal to the velocity of 
sound in the medium, so that 

sinô . = -^- βΐηο^ = ̂ ^ sinct̂  = 0.2^6 sina., (12) 

where the velocities are expressed in mnyfcsec. 

In (10) the numerator differs from the denominator in that 
whereas in the numerator the second term is subtracted, in 
the denominator it is added. 
But it is clear from (12) that the angle a. will be small 
even where ai assumes very high values, hence the variation 
of the cosines of a. will be very small and the two terms 
of the ratio cannot differ greatly from one another. 

e.g. for ai = 15° we find a+ = 3°39' 

Pi 
and the ratio -~ is therefore : 

pr 
pf = 0.934 

Similarly for a± = 60°, we obtaina^ = 12°18', 
and the ratio p^ becomes : 

pr 
—· = 0.884 . 
pi 

Hence even with wide angles of incidence the value of the 
reflected pressure is not much lower than that of the 
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incident pressure, where the media are water and steel. 

We wished to verify these laws experimentally. The arran

gement used is shown in Fig. 22. The type, quantity and 

positioning of the explosive and the position of the 

transducer are as described in Chapter 1, in order to 

ensure the same experimental conditions. 

The angle â  selected is 28°. The distance of the explo

sive from the steel plate and of the plate from the trans

ducer is 29.3 cm. The measured pressure of the wave re

flected from the steel plate was found in two tests to be 

ρ ρ 

150 kg/cm and 130 kg/cm respectively. The first test 

signal is shown in Fig. 24 . 

To calculate the pressures by expression (10) we used the 

graph shown in Fig. 18 to evaluate the pressure incident 
p 

on the plate. At the distance adopted this is 262 kg/cm . 

From (10) with an angle of 28° we obtain 

Pr = 0.932 p± = 245 kg/cm
2 

The wave thus reflected now travels another 29.3 cm, and 

from the abovementioned graph we obtain an indicated 
p 

pressure of 133 kg/cm , which tallies well with the mea

surements quoted above. 

Fig. 25 shows the signal given by the pressure wave pro

pagated for 60 cm on an unobstructed path. 

It will he noted that the two signals have peaks of about 

the same value, whilst the pulse diminishes in the case 

of the reflected wave. This is thought to be due to the 

the fact that after 10 μ sec the steel plate begins to 

undergo a bulk shift whioh subtracts impulse from the 

reflected wave. 

(ï) The pressure in the graphs are relative to the wave trans

mitted in the transducer steel bar, whereas we refer here 

to the pressure of the incident wave. 
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2.3. Case b) General considerations. Experimental results. 
Comparison with previous case 

In order to have a wall that would undergo a bulk shift 
after a time of insufficient length to allow the entire 
front of the wave to be reflected, a sheet of 0.5 mm 
thickness was selected, through which the impinging wave 
travels in less than 0.1 μ sec. 
The same distance between charge and sheet was adopted as 
in the case a) experiments, i.e. giving a peak value of 

2 
about 250 kg/cm for the incident wave pressure. As stated 
in Chapter 1.4., the rise time for the type of wave in 
question was found to be of the order of 2 μ sec. The sheet 
is therefore sufficiently thin to start its bulk movement 
before the entire front has been reflected. 
It was also imperative that there should be no water behind 
the sheet, as this would oppose rapid movement of the sheet. 
We therefore devised an assembly (see Fig. 26) in which the 
sheet is bolted all along its edge on to the open side of 
a water-tight metal box, the whole being mounted so that 
there is air in the box behind the sheet. 
We then set this up in the geometry (see Fig. 22) used for 
reflection from a thick plate, so as to compare the re
flected wave intensities. 
The transducer signal for the wave reflected from the thin 

p 
sheet is shown in Fig. 27, the peak value being 54 kg/cm . 
A comparison of Fig. 27 with Fig. 24 shows that the wave 
reflected from the thin sheet is considerably weaker. 

2.4. Numerical wave-reflection calculations. 
While endeavouring to find a calculation method to describe 
the propagation of a wave, attempts were also made to de
scribe its reflection both from a "rigid" wall and from a 
wall that is displaced by the wave. On the subject of the 
numerical processing of this problem, a report by L. Guerri 
and P. Stella is in course of publication. 
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We wished to investigate by calculation the evolution of 
the pressure values in the reflected wave, in cases where 
the wave pressure rise-time is 100 f 500 μ sec, and the 
wave is reflected from a structure which undergoes a 
considerable bulk displacement. 
The calculation method employed is Richtmyer's, which is 
applicable here as the pressure peaks involved are not very 
high. 
It was also desired, in connection with the cylindrical 

( 1 ) shell model experimentsx ' to describe the reflection of 
a cylindrical wave generated by explosives impinging on a 
cylindrical wall coaxial with the wave. 
As stated in the above report, the equation for the motion 
of the wall of the cylindrical shell was written, and it was 
found experimentally that the calculated wall motion approxi
mates satisfactorily to the measured value. 
Also for the wave with large rise-time a cylindrical geometry 
was chosen. The result in this case shows that the peak 
pressure of the reflected wave is not doubled at the structure 
wall but is becoming lower with increasing bulk movement of 
the wall (Fig. 28 A). 
The result for the wave generated by explosives is given 
in detail in the next paragraph. 
The calculation was effected for an incident wave generated 
by a pentrite line charge with step pressure peak of 
355 kg/cm and nearly exponential decay, for which the 
pressure curve ρ = p(t) had been obtained by means of the 
bar and strain-gauge pressure transducer already cited. 
This p(t) was converted to a graph p(x) (Fig. 28), where χ 
is the spatial co-ordinate, supposing that every part of 
the wave travels at the velocity of sound in water, i.e. 
1500 m/sec, and assuming the decay of each of its pressure 
levels to be that shown in the graph at Fig. 18. 
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At the moment of impact on the wall the wave front is 
2(*) reflected with a pressure of the order of 700 kg/cm v '. 

This means that the movement of the wall is in this 
case negligible in the first instants when the front is 
reflected (the calculation takes the wall thickness into 
account for wall-mass purposes, but the traversing time 
of the wave is not taken into consideration). The front 
now starts its return travel in a pressurized region 
since the fluid is affected by the wave tail which is 
duly approaching the wall. As the pressure levels of 
the incident wave fall off towards the tail, the re
flected wave peak will also fall until on reaching the 
undisturbed zone the wave assumes its normal pressure 
value. 
The wave peak pressure envelope versus distance tra
velled is illustrated in Fig. 28. 
An interesting feature is that, as the graph shows, after 
entering the zone where the water is no longer affected 
by the incident wave tail, the reflected wave, which is 
propagated towards the cylinder axis, heightens its peak 
pressure. This is explained by the fact that it is an 
imploding cylindrical wave, and a geometric factor of 
pressure-level enhancement is therefore present. 

3. EFFECT OF THE PRESENCE OF REACTOR CHANNELS ON THE PROPA
GATION OF PRESSURE WAVES 

3.1. Statement of problem 
We wished to throw light on the complex events that occur 

(Ï) The peak value achieved cannot be precisely stated because, 
as this is a finite difference calculation, that value will 
not usually coincide with one of the instants in which the 
calculation is written, but will generally fall into one of 
the time intervals between those instants. 
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where pressure waves are generated inside a vessel con
taining reactor Channels of various types (see report 
No. EUR/C-IS/683/66 e - "Full scale experiment on the 
consequence of the rupture of a pressure tube in Essor 

(11) reactor vessel"v ' ) . 
Our particular concern was with the ESSOR test reactor 
and the problems encountered in experiments carried 
out on full scale. 
We attempted to reduce the general question to separate 
more easily formulated problems, with the dual aim of 
achieving the more general experimental conditions with 
fewer full-scale tests and of obtaining a clearer inter
pretation of the events encountered. 

The following points have been dealt with so far : 
1. Shadow and diffraction effects due to a channel lo

cated in the path of a wave. 
2. Influence of a tube lattice on the propagation of a 

wave. 
3. Wave reflection from a channel. 
Up to now the problems have been tackled from the expe
rimental angle, because no calculating processes have yet 
been devised to describe these complex phenomena. 
To effect measurements we employed the tank described in 
Chapter 1.4., using the same type and arrangement of 
explosive. 
The reactor calandria-tube diameters were adopted for the 
tubes simulating the reactor channels, i.e. 108 mm external, 
104 mm internal. The material chosen was aluminium ; for the 
type of measurements effected the choice of material is 
considered to be of no importance. The tubes were always 
positioned at a distance where they would not be exposed 

p 
to incident wave peak pressures of more than 200 kg/cm . 
The wave is characterized by a steep front, with a rise 
time of about one microsecond, whereas in reality the waves 
propagated in reactor may have much longer rise times as 
stated in Chapter 1.4. 
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We intend to extend our research to that type of wave 

as well, to ascertain its behaviour. 

3.1.1.Shadow and diffraction effects 

The tube axis is positioned parallel to the axis of 

the line charge, i.e. vertically. 

The tube is fixed rigidly at both ends. Tests were 

effected with a waterfilled tube and with a tube con

taining air. 

The experimental arrangement is shown in Fig. 29 (seen 

from above). The distance selected between the explosive 

and tube axes is 100 cm. The transducer was positioned 

behind the tube as shown in Fig. 29, at various distances 

from it. 

The results were as follows : 

Case a  tube containing water 

Figs. 31, 32, 33 show the oscillographs given by the trans

ducer at distances of TQ, p, and 1 tubediameter from the 

tube wall. These oscillographs, compared with the one in 

Fig. 30 for the pressure under the same conditions but 

without tube (peak pressure value 42 kg/cm ), show that the 

tube shadow effect is not very significant. The pressure 

reaches an initial peak of about 11 kg/cm , remains nearly 

steady for about 40μ3βο, then reaches a second peak, again 

of fairly low magnitude, and thereafter a peak of conside

p 

rable magnitude (31 kg/cm with transducer at 1 diameter 

from t u b e ) ^ . 

It is thought that the phenomena can be explained as follows, 

The pressure wave colliding with the tube generates a wave 

in the tube wall which is propagated as a transversal wave ; 

this, on reaching the area diametrically opposite the impact 

area, transmits into the water a disturbance which is the 

(ï) The pressure in the graphs are relative to the wave trans

mitted in the transducer steel bar, whereas we refer here to 

the pressure of the incident wave. 
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first to reach the transducer, since the velocity of 
the transversal wave in the wall is greater than that 
of a wave in water. 
The wave which collided with the tube also travels as 
a longitudinal wave through the tube wall, through the 
water contained in the tube, through the wall in the 
area diametrically opposite the impact area, and finally 
into the water surrounding the tube. This wave appears 
to be represented on the oscillograph by the highest 
peak, which occurs about 50μ sec after the first. 
The time difference between these two peaks corresponds 
to a transversal wave velocity of about 2,500 m/sec in 
the tube. Before the principal peak there appears a peak 
of far lower intensity for which it is difficult to find 
an explanation. One characteristic shown by the oscillo
graphs is that the intensity of the principal peak in
creases with the distance of the transducer from the tube 
wall. 
Since some diffraction of the incident wave is to be ex
pected after it has passed round the outside of the tube, 
and since that wave must be travelling only slightly behind 
the wave which passed through the tube (the delay being 
caused by the fact that the latter wave travels through 
6 mm of aluminium in which the speed of sound is approxi
mately 6,500 m/sec) it was thought that the peak enhan
cement can be explained by the diffracted wave. 

At a greater distance from the tube the transducer still 
registers a pressure with the same shape but, naturally, 
with lower levels. 

Case b - tube containing a gaseous medium (air) 

The chief effect of the absence of water in the tube is, 
predictably, the elimination of the wave transmitted 
across the tube ; this is demonstrated in Figs. 34 and 
35, where the higher peak, present in the previous 
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oscillographs, is absent, thus confirming the predic
tion. 
Another feature is that the wave caused by the trans
mission of the disturbance by the tube wall is of 
greater duration when the transducer is positioned at 
a distance of one diameter away from the wall, a fact 
which seems to indicate that this greater duration is 
due to the superimposing of the diffracted wave. If 
this assumption is true, then the intensity of the 

ρ 
diffracted wave would be of the order of 10 τ 12 kg/cm . 
In conclusion it may be said that with an incident wave 
of the type described, the shadow effect of a reactor 
channel is only significant if the channel is filled 
with a gaseous fluid in which the wave transmitted 
thereto by the tube wall is negligible - i.e. the in
cident wave cannot travel through the tube. 
Where the channel is filled with a liquid, the wave 
transmitted to the liquid from the wall is considerable 
and the incident wave travels through the tube. 
The diffracted wave, at distances of up to two or three 
diameters from the tube, is of no great significance. 
A disturbance is furthermore transmitted by the trans
versal waves travelling in the tube wall. 

3.1.2.Influence of a tube lattice on the propagation of a wave 
We were interested in discovering how the wave would be 
affected by travel through a lattice of the type of tubes 
used in the ESSOR reactor. 
As before, we used the wave generated, by a line charge. 
The initial arrangement chosen was that shown in Fig. 36 
the distance χ between the tubes was varied, while the 
distances of the line charge and the transducer from the 
tubes remained constant. 
In this experiment we found ourselves faced with an in
teresting phenomenon. With χ = 10 cm the pressure wave, 
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after travelling through the space between the two tubes, 
p 

has a peak enhanced from 139 kg/cm without tubes present 
(Fig. 37) to 201 kg/cm2 with the tubes present (Fig. 38). 
Thus the pressure is some 1.45 times greater in the second 
case. 
It will be seen from the oscillographs that the pressure 
decay behind the front is more rapid in the second case. 
Although an exact calculation was not effected, it appears 
that the ratio between the impulses does not correspond to 
the peak ratio. The event still occurs even at greater 
distances from the tubes, but weakens. The transducer, po
sitioned 60 cm from the tube axes, registered an incident 

p ρ 
wave pressure of 62 kg/cm , as against the 57 kg/cm re
corded with the tubes absent. 
With shorter distances between the tube the phenomenon is 
attenuated, but with distance χ = 6 cm the enhancement ratio 
is still 1.15. 
A qualitative explanation of the phenomenon may be as 
follows : The wave colliding with the tubes is affected in 
the same way as a wave propagated in a cone, i.e. guided la
terally by the walls of the two tubes, the particles are 
driven towards the centre and the wave emerges enhanced. 
After having travelled between the tubes the wave undergoes 
a lateral dilation which weakens it. 
We then tried passing the wave through a lattice of 4 tubes 
of the ESSOR reactor type (see Fig. 39). The figure also 
shows the relative positions of the line charge and trans
ducer. Fig. 40 gives the oscillograph for a pressure measu
rement and Fig. 41 the oscillograph signalled by the trans
ducer with lattice absent but at the same distance from 
the charge. It will be seen that the pressure peak enhan
cement observed when only two tubes were present is far 
less conspicuous. 

A transducer so positioned as to be "covered" by two 
tubes (Fig. 42) gave a signal (Fig. 43) wholly similar in 
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form to those described under head 3.1. 1. 

It was also desired to ascertain whether the enhancement 
phenomenon was evident with the arrangement as in Fig. 36 
and χ = 10 cm, but with the tubes filled with a gaseous 
medium (air, in our case). 
The transducer signal is as shown in Fig. 44, and the 

ρ 
pressure peak in this measurement is 149 kg/cm (it should 
be observed here that all measurements quoted in this re
port were found reproducible within + 5 i») . 
In this case, too, the enhancement effect is considerably 
lower. 

3.1.3.Reflection of a wave from a pressure-tube 
Various experiments in reflection from a tube simulating 
a channel were carried out. 
The most pessimistic conditions were adopted as regards the 
intensity achieved by the reflected wave. The test channel 
is filled with water, is fixed at its two ends and is much 
shorter than a real channel, so that it is far more rigid 
than the real one ; its bulk movement will therefore be 
less, so that the reflected wave will be of maximum pressure. 
It was found that, predictably, the peak pressure of the 
reflected wave is a great deal lower, not only than that 
reflected from a heavy-gauge plate, but also than the 
pressure reflected from the thin sheet which had considerable 
bulk movement. 
The arrangement isas in Fig. 45. The angle formed by the 
incident wave with the bisector of the angle of reflection 
was the same as in the previous tests, but the distances 
from line charge to tube and from tube to transducer were 
shorter. In spite of this the pressure attained is 
49 kg/cm2 (Fig. 46). 
This is easily explained by the fact that the angle of 
incidence varies rapidly along the periphery of the tube, 
and a minimal part of the wave is reflected in a direction 
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forming a reflection angle equal to the angle of in
cidence. 
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APPENDIX 

ELECTRONIC DETONATOR-FIRING DEVICE 

(Y. Lachapelle) 

It was necessary to have a noise-free firing device 
capable of initiating the detonator which in turn fires 
the line charge. Furthermore, a signal was needed that, 
at the instant of ignition of the charge, starts the 
oscilloscope traces through a delay-line. 

The detonators used, of commercial type, are characte
rized by a response time, from the instant when the wire 
that fires the primary charge burns to the moment when 
the terminal section detonates, of about 57μ sec, repro
ducible within a range of + 4 μββο. 
It was then poseible "to devise an electronic circuit in 
which a condeneer feeds current to the detonator, and 
from the inetant ite wire burne, the current decreaees to 
zero in about 4 μ sec. Thie traneient is used to trigger 
the delay-line. 
The control circuit (Fig. 47) comprisse a 2 Ν 1671 A uni
junction traneietor. The power circuit coneiets of the 
condenser C5 and the controlled silicon rectifier. The 
reeistor R 13 picks up the triggering signal. 
If II ie cloeed, a single pulse switches the controlled 
silicon rectifier and a current paseee abruptly into the 
detonator wire and R 13. 
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SHOCK WAVES AND TRANSIENT LOADING 
FROM CHEMICAL REACTIONS 

by 

J.G. Moore 
U.K.A.E.A., Risley 
united Kingdom 

Design problems can arise in any system in which shock waves can be 
produced and transient loading occur as a result. There are a number of 
possible causes of such shock waves including chemical reactions, the sudden 
release of a pressurized medium and the rapid conversion of thermal energy 
into mechanical energy. This paper is chiefly concerned with the problems 
arising from chemical reactions. 

The Sodium-Air Reaction 
One hazard which has been envisaged in sodium cooled reactors in the 

release of a fine spray of sodium which partly fills an air filled enclosure. 
The problem is to estimate the transient loading on the enclosure during 
combustion of the sodium; this has been reported in ref. (1). The pressures 
produced when sodium is uniformly dispersed throughout the enclosure may be 
obtained from experimental work done in the U.S. ref. (2). 

Form of Combustion 
The basic mechanism for shock wave formation during combustion is the 

expansion of combustion products producing compression of the surrounding 
gas in the form of pressure waves. The pressure waves may be formed imme
diately as shock waves or may subsequently coalesce to form shock waves 
as they travel out from the combustion region, depending on the rate of 
reaction considered. 

The problem of calculating the formation of shock waves from the com
bustion of a fuel air mixture can be described by a set of partial diffe
rential equations which cannot be solved analytically. The usual method of 
solution, known as the method of characteristics, consists of constructing 
a wave diagram which shows the propagation of the pressure waves. The method 
can become tedious, especially when the entropy of the system is varying but 
in some cases certain simplifying assumptions can be made which enable wave 
diagram construction to be limited to certain regions or eliminated entirely. 
These assumptions form the basis of the three methods of calculations. 
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The simplest and most pessimistic assumption is that the combustion 
takes place instantaneously throughout the whole mixture. This is the 
basis of the "instantaneous combustion model". 

The second model assumes that chemical reaction takes place instanta
neously as the unburned gas passes through an advancing flame front. This 
is referred to as the "flame front model". 

The third model assumes that combustion is taking place uniformly 
throughout the volume involved but at a finite rate. This is the "uniform 
combustion model". 

Since the kinetics of the sodium-air system are not known the results 
from all three theoretical models were compared and their relevance assessed. 
In order to simplify the calculations spherical symmetry was assumed for the 
combustion zone and enclosure; this enabled the attenuation due to three-
dimensional spreading of the shock system to be calculated fairly easily. 
The pressure on the enclosure was calculated by adding the momentum of the 
gas behind the wave to its static pressure profile. 

The shock pressures were calculated as a function of mass of sodium 
released and size of enclosure which was characterised by a linear dimension. 
The flame front model gave very low pressures as was expected. The uniform 
combustion model gave pressures which varied up to a maximum of about 2 
atmospheres assuming a total combustion time of 30 msec. This was the 
shortest experimentally measured time of reaction. The instantaneous 
combustion model produced pressures up to a maximum of about 1U atmospheres. 
The results are shown in fig. (1) for stoichiometric mixtures of sodium and 
oxygen. Calculations were also done for different molar ratios of sodium 
to oxygen. The shock pressure was found to be relatively insensitive for 
ratios greater than unity, as shown in fig. (2). This is because dilute 
mixtures correspond to large initial volumes which therefore means less 
attenuation of the shock wave due to three-dimensional spreading. 

The rate of reaction between sodium and air is a function of the 
temperature and the rate of exposure of the sodium surface which in turn 
depends upon the mass of sodium involved and the degree of dispersion. In 
the experiments described in ref. (2) liquid sodium was explosively injected 
into a vessel. It might be expected that the injection energy would increase 
the surface to volume ratio of the sodium and hence reaction rate. It was 
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found however that provided the injection energy was greater than about 
5 cal/gm of sodium, the peak pressure produced were relatively insensitive 
to variations in injection energy. The highest peak pressures occured how
ever when the injection energy per unit weight of sodium was greatest. 

Humphreys has suggested that the insensitivity of peak pressure to 
ejection energy is due to a secondary dispersion mechanism. The explosive 
ejection of finely divided sodium into a large atmospheric volume leads to 
an intense local heating about the point of injection. This results in a 
violently expanding turbulent gas zone within which a large portion of the 
ejected sodium is trapped. This secondary dispersion phenomenon has the 
characteristic of a mild explosion ignited by the initial sodium reaction. 
Once initiated, the thermal expansion dispersion mechanism is progressive. 
As the larger sodium particles are broken apart, the resulting increase 
in reaction rate supplies additional energy to the expanding gas zone, thus 
promoting further breakdown and dispersion of the entrapped sodium particles. 

It will therefore be seen that none of the theoretical models explains 
this phenomenon in detail but is partly described by the uniform combustion 
model and partly by the instantaneous combustion model. 

In the design of the containment vessel for a nuclear reactor the 
instantaneous combustion model would certainly provide the most pessimistic 
values of pressure. The restriction on design may not be too severe for the 
case of small amounts of sodium producing a relatively small combustion region 
though undoubtedly this approach is over-pessimistic when the theoretical 
combustion region almost fills the containment vessel. In this latter case 
it is suggested that the uniform combustion model be used; the calculation 
being done at least to the point where the shock front first reaches the wall. 

The existing measurements by Humphreys apply only to the case where the 
sodium is mixed, relatively uniformly throughout the whole test volume. A 
more realistic test as regards reactor containment design, and which would 
also confirm the appropriateness of the varioms models, could be performed 
in which sodium was dispersed locally in a much larger volume of confined 
air. 

Explosion Hazard Following a Release of Hydrogen into a Reactor Containment 
(Ref. 3) 

In a water cooled reactor a loss of coolant due say to a fracture in the 
primary circuit can cause fuel overheating which can in turn lead to a metal-
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water reaction which will liberate hydrogen. The hydrogen produced may react 
with the air in the containment system and it is the purpose of this section 
to consider the possible hazards from this reaction. 

When hydrogen is released into a vessel containing steam and air the 
possibility exists of spontaneous ignition. If the hydrogen burns as it 
enters the containment volume additional energy will be released. In any 
calculations of pressure therefore this additional energy will have to be 
included in the heat balance for the containment. The rate of burning in this 
instance will be determined by the rate of metal water reaction. Provided 
the rate of heat release from hydrogen burning is not too large compared with 
the rate of loss of heat from the system the pressure rise should be much 
less than the explosion pressure rise. 

If however hydrogen collects in the containment instead, then an explosion 
could occur which may destroy the building. The spontaneous ignition of the 
hydrogen-steam mixture as it escapes into the containment will depend on the 
temperature of the escaping mixture and the proportion of hydrogen in the 
mixture. Since these quantities are likely to be different for every accident, 
in any safety assessment it would seem necessary to assume that the hydrogen 
did not react with the air as it escaped. 

The results of the theory of spontaneous ignition and the limited available 
data indicated that spontaneous ignition was unlikely to occur when the hydrogen 
collected in the containment. It is necessary therefore to consider initiation 
of an explosion by external means. However since the spark ignition energy 
requirements are so small it must be considered in any safety analysis that a 
large enough spark would be available to cause an explosion if the other 
conditions are favourable. The flammability limits of the hydrogen-air-steam 
mixture were also estimated from the limited data available. 

The explosion pressure was calculated for mixtures lying within the 
flammable limit by assuming adiabatic conditions. The heat generated by 
combustion was equated with the heat of dissociation of combustion products 
and the heat required to raise the temperature of the final mixture to the 
final temperature. The final pressure was then the sum of the partial pressures 
of the constituents at this temperature. 

Calculations of this type were carried out for a typical PWR with a high 
pressure, low leakage containment design, typical parameters are given in 
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Table I. It was not possible to do a typical case for a BWR or SGHWR since 
the distribution of air is not fixed as with a PWR due to the use of pressure 
suppress ion containment. 

TABLE I 
TYPICAL PWR PARAMETERS 

Thermal power 
Mass of primary water 
Mass of UO fuel 
Mass of zirconium clad 
Can surface area 
Net containment volume 
Cooler area 
Cooler inlet temperature 
Cooler heat removal capacity/unit 

= 
= 
= 
= 
= 
= 
= 
= 
ζ 

= 

1500 MW 
450,500 lb. 
168,000 lb. 
25,000 lb. 
34,000 ft.2 
1.5 χ 106 ft.3 
19,000 ft.2 
18°C 
1 MW at 90 F containment temp. 
18.8 MW at 250°F containment temp. 

Calculations were performed of the containment pressure during depres
surisation as a function of time following a fracture of the primary circuit. 
The results are shown in fig. (3) with various assumptions about the emergency 
heat removal capacity. It should be noted that a high concentration of steam 
and hence a high containment pressure is effective in preventing an explosion. 

The mass of hydrogen liberated as a function of time was specified in 
fig. (4). Curve B, represents hydrogen generation with no cooling to the 
cladding during blowdown and unlimited steam for the reaction whereas A2 
represents cooling during blowdown with a limited supply of steam. The inter
section of the curve of required hydrogen and hydrogen produced from the 
metal-water reaction gives a time at which a hydrogen explosion is first 
possible. The final explosion pressures calculated were about 60 to 80 psia. 

These calculations however assume a uniform distribution of hydrogen; 
if non-uniform concentrations are assumed to occur then a calculation similar 
to the one for the sodium air case can be carried out. This mode of explosion 
in which a local concentration burned very quickly and in expanding produced 
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α shock wave was found to give pressures about 200 psia using the instanta-
neaous combustion model. These shook pressures are shown in fig. (5). 

In addition to explosion there is the possibility of detonation in which 
the chemical reaction takes place in a shock wave travelling through the gas. 
Available theories on detonationhave been extended to the hydrogen-air-steam 
mixtures without any experimental confirmation. In particular the detonation 
limits for various mixtures were computed and also the detonation pressures 
if these mixtures were ignited. The detonation pressures were found to be 
several hundred psia. However, because detonation in free space requires at 
least an initiation energy of several joules as compared with millijoules 
for an explosion and the fact that steam is a very efficient diluent, detonation 
is less likely to occur. 

When explosion occurs due to a combustion wave travelling through the 
mixture, the pressure is more or less uniform throughout the volume though 
increasing with time until the whole mixture is burnt. The rate of rise of 
pressure on the vessel wall will determine whether the loading is effectively 
applied statically or under transient conditions. The rise time of an explosion 
in a typical PWR vessel will always be greater than about a second for all 
conceivable hydrogen-air mixtures. Since the natural period of vibration of 
the vessel will be very much less than this the loading can obviously be 
treated as if applied statically. 

Shock waves generated from local pockets will have a duration depending 
on the original size of the pocket so that each case would have to be 
considered separately. Very approximately the duration of the pulse will be 
the time taken for a rarefaction wave to travel the diameter of the local pocket 
before explosion, assuming the theoretical model of instantaneous combustion. 

In the case of a detonation wave as with most shock waves the leading 
edge is a pressure discontinuity and therefore loads the structure dynamically. 
However, the actual duration of the pulse will probably depend on the confi
guration, mixture composition and shock strength. Experimental measurements 
made of stoichiometric hydrogen-oxygen mixtures showed̂  that the pressure 
fell exponentially after the initial peak. If the presssure at any point is 
written therefore as Ρ = Ρ e Τ, where t represents time and T the time 
taken for the pressure to fall by a factor e, then ref. (4) showed for 
stoichiometric mixtures that T was about 220 microseconds. This type of pressure 
time profile is identical to that of shock waves generated from conventional 
high explosives. 
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The Hazard Associated with a Sodium-Water Reaction in a Sodium Heated Steam 
Generator 

Most present day designs of heat exchangers for sodium cooled reactions 
have a single tube arrangement rather than a double walled construction 
separating the sodium and water. This produces a saving of capital costs but 
also leads to an increased possibility of a tube leak leading to a sodium-water 
reaction. 

If a leak occurred then shock pressures can arise from the expanding 
hydrogen bubble formed from the chemical reaction. It can be shown ref. (5) 
using a simplified mathematical model that the maximum pressure in the sodium 

1/2 surrounding the hydrogen bubble is given by ρ = 500 W /r psi, where W is 
ΤΩ3Χ 

the leak flow rate in lb/sec. from the pressurized water tube and r the distance 
in in. from the fracture. Thus if the flow rate is 20 lb/sec. the pressure 
will be 500 psi at a distance of 4.5 in., which on reflection will produce 
a pressure of 1000 psi. Dynamic analysis of the hydrogen gas bubble formed 
shows that these pressures last for a fraction of a millisecond and therefore 
are unlikely to produce damage. 

After several pressure reflections the bubble will fill the whole diameter 
of the vessel and the pressure will remain more or less constant until the 
first rarefraction wave returns from the liquid surface. The pressure during 
this time may be several hundred psi depending on flow rate and geometry of 
the system. The duration of the loading will be at least the time taken for 
a pressure wave to travel to the nearest free surface and back. It is during 
this period of time that the most severe loading will occur on the vessel. 
It is significant that bursting discs in the gas space above the liquid do not 
relieve the pressures during this phase of the loading. 

The UKAEA has undertaken experimental work with a view to ultimately 
producing a safe design and refining methods of analysis, and therefore have 
constructed a sodium water rig which is a scaled version of a typical heat 
exchanger, fig. (6, 7 and 8). Experiments are being done with the rig in which 
a tube failure is simulated by fracturing a bursting disc on a tube containing 
pressurized water which is surrounded by a ring of pressurized tubes as shown 
in fig. (9). The parameters under investigation are pressures and temperatures 
as a function of initial temperature, leak rate etc. In tests carried out so 
far the maximum pressures measured have been about 300 psi. These pressures 
occured at about one second after the tube failure. 
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Figure (9) shows bowing of the tubes around the reaction point and fig. 
(10) a localised view of one of the damaged tubes showing that failure pro
pagation had taken place. 

No shock wave effects have been observed so far although this is probably 
due to inadequate instrumentation. The test vessel which has been designed to 
300 psi has withstood all the tests without any visible signs of damage. 

The results of the tests so far have shown that the propagation of tube 
failure cannot be ruled out as tubes adjacent to the fracture have sometimes 
failed, fig. (10). The mechanisms for failure propagation are also being 
investigated. It has been suggested that there are two main mechanisms for 
failure propagation namely, corrosion/erosion processes and the loss of tube 
strength due to the high temperatures of the exothermic reaction. Temperatures 
as high as 1300 C have been measured. A larger rig is at present being built 
with a view to increasing the head of sodium in the vessel since this will 
increase the duration of the pressure loading and corrosion processes. In 
addition the new rig is to have larger pressurized water supplies so that 
more realistic discharges can be achieved. Tests on the new rig are expected 
to begin in early 1967. 
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WATER DEPRESSURISATION STUDIES* 
by 

T.A. Zaker and A.H. Wiedermann 
IIT Research Institute 
Chicago, United States 

I. INTRODUCTION 
Sudden rupture of a pressure tube in a pressurized-water 

reactor leads to a decompression or blowdown process accompan
ied at early times by transient wave propagation through the 
system. Pressures generated in the containment volume, and 
thrust forces induced on coolant circuits, are of importance 
in assessing the safety of such reactor systems. These effects 
can be studied conveniently in a laboratory depressurization 
apparatus which is essentially a water-driven shock tube. 

Early experimental studies with a water-driven shock tube 
1 "fc were performed at IIT Research Institute by E. A. Brown. 

Brown used water as the driver fluid at temperatures up to about 
212°F and at pressures up to about 25 psia. He used air in the 
driven section of the shock tube under a partial vacuum at 
pressures of about 0.5 to 6.0 psia. Transient overexpansions 
to pressures below the saturation pressure, lasting for the 
order of a millisecond, were attributed to the attainment of 
nonequilibrium (metastable) states and subsequent relaxation 
effects in the fluid. A theory based on the assumption of a 
two-stage, nonequilibrium expansion was proposed to explain 
the phenomenon. 

In more recent work, initial pressure and temperature con
ditions representative of those in pressurized-water coolant 
loops have been examined. In some experiments an expansion 
tube equal in diameter to the pressure tube has been used, 
while in others a much larger low-pressure reservoir has been 
coupled to the pressure tube, the volume ratio being roughly 
representative of coolant loading and containment volumes in 
power reactor facilities. 

II. EXPERIMENTAL STUDIES 
This section presents a brief description of equipment used 

in depressurization experiments and some observations on blow-
down phenomena. 

* Superscript numerals designate appended references 
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A. Equipment and Instrumentation 
The pressure tube used in current studies is of stainless 
steel 6 feet in length, 2 inches in inside diameter, and has 
a 1/2-inch wall thickness. Ports are provided at several posi
tions to accommodate transient pressure and temperature gages. 
An expansion tube of the same dimensions as the driver has been 
used in some experiments (Fig. 1). In others, the expansion 
chamber is a vessel 3-1/2 feet in diameter with a 1/4-inch wall 
thickness (Figs. 2 and 3). Initial pressures and temperatures 
up to the critical state (3200 psia, 705°F) can be contained in 
the driver. The driver water is heated by electric coils in 
insulation blocks external to the tube. About two hours is 
generally required for heating. 

The pressure tube has two 1-1/4-inch diameter ports located 
about an inch upstream of the diaphragm. These permit visual 
observation of the flow field using high-speed photography to 
observe bubble formation. The diaphragm is of tempered glass, 
ranging in thickness from 1/4 inch to 3/8 inch, clamped between 
the driven and driver sections. Rupture of the glass is ini
tiated by impact of a small lead pellet fired from a gas gun 
mounted at the closed end of the expansion chamber. 

A longitudinal section at the junction between the pressure 
tube and expansion chamber is shown in Fig. 4. The method of 
mounting the glass diaphragms and the glass porthole windows 
to prevent leakage, and breakage from clamping pressures, is 
depicted in this figure. 

Instrument stations are located at five positions in the 
pressure tube. These accommodate either transient pressure sen
sors or fast-response thermocouples in appropriate adapter units. 

The pressure transducers used are Kistler Model 601 piezo
electric quartz-crystal gages. Since the output of these gages 
is affected by temperature above 300°F, each transducer is mount
ed in a water cooling jacket. 

Two types of thermocouples are used. One type has the junc
tion of dissimilar metals encased in a stainless-steel sheath, 
and is used for control of temperature during heating. The 
second type has the junction of dissimilar metals exposed to 
the flow, and has a very short response time. 
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Β. Pressure Records 
Typical pressure-time records obtained at the closed end 

of the pressure tube are shown in Fig. 5. These represent data 
from different shots at the same gage location, where different 
temperatures (as noted) were used on each shot» In each case 
the plateau on the left represents the pressure level in the 
water prior to arrival of the decompression wave at the gage 
location. At the extreme right in each record is another 
pressure plateau which represents the magnitude of the satura
tion pressure. Between the two pressure plateaus there is a 
sudden drop in pressure from the initial value to nearly zero 
for a very short period of time. 

The records from pressure gage locations in the expansion 
tube were quite similar to each other and showed no qualitative 
difference with variations in the temperature and pressure of 
the driver fluid. The arrival time of the wavefront at any 
given gage location depends on the distance of the gage from 
the diaphragm, and yielded wave velocities consistent with the 
magnitudes of the overpressures observed. Some representative 
pressure and temperature records taken simultaneously are shown 
in Fig. 6. 

The overexpansions visible on the records taken in the pres
sure tube have been considered tentatively as evidence of the mo
mentary attainment of nonequilibrium states in the expanding 
fluid. These have been observed consistently. The time dura
tion has been observed to be as high as 1 msec for an initial 
driver temperature of 400°F, and generally less than 0.5 msec 
for temperatures of 500°F and higher. 

It is possible, however, that these overexpansions can be 
explained on the basis of initially nonuniform temperature" or 
fluid quality (see Section III). The effect of a vapor blanket 
adjacent to the diaphragm is to induce supersonic flow at the 
exit after the vapor is blown out of the pressure tube (Fig. 19). 
On the other hand, a blanket of liquid at lower temperature than 
the bulk of the fluid in the pressure tube leads to a water-
hammer type pressure-time history immediately inside the exit 
(Fig. 22). 
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C. Photographic Observations 

A Fastax high-speed moving-film camera with a rotating-
prism shutter has been used for visual observations of flow at 
the test section in the driver near the diaphragm station. 

The layout of the camera and light source, relative to the 
test section porthole windows, is shown in Fig. 7. Fig. 8 shows 
three individual frames of film obtained at a framing rate of 
3000/sec in this case. In the first of the three frames no 
vapor can be seen in the flow field. The camera views the face 
of a flush-mounted thermocouple at the opposite port. 

In the second frame of Fig. 8, the first frame differing in 
appearance from those preceding, a region of vapor appears in 
the center of the frame and three or four much smaller regions 
appear on the face of the thermocouple. In the third frame of 
Fig. 8, the vapor region is seen to be larger than the previous 
frame, and a cloud of vapor appears to be moving very slowly 
to the right toward the freshly broken diaphragm. On subse
quent frames of this film, motion to the right continued as 
more vapor was formed in the field of view, and finally a frothy 
mixture of liquid and vapor filled the entire field of view. 

III. DEPRESSURIZATION ANALYSIS 

Some theoretical studies of one-dimensional depressurizing 
systems have been performed» The objective of these studies is 
to predict the transient phenomena observed in specific experi
ments, and thus to assist in interpreting the observed results. 
This type of analysis can also be used to design experiments and 
establish response criteria for the instrumentation systems which 
are needed to define better the decompression process. Finally, 
some insight into the scaling laws of the phenomena can be es
tablished, 

A significant characteristic of the decompression process 
is its transient nature, That is, significant changes in pres
sures, reactions, and internal loads occur in relatively short 
periods of time. Pressure waves are generated, and thus the 
effects of inertia of the fluid medium are significant. If a 
small break occurs in the system, a quasisteady flow process 
develops after the initial flow transients. In this type of sit-
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uation the usual steady flow process predominates, and transient 
inertia effects are unimportant. The geometries of pressurized 
water systems can be roughly categorized as combinations of long 
narrow ducts, tubes, and reservoirs. Pressure-wave propagation 
within the ducts and possibly within the reservoirs can be treat
ed by a one-dimensional nonsteady flow analysis. Water is known 
to exhibit some metastable effects near saturation states; how
ever, it appears that these states exist for times of the order 
of a millisecond, and hence they will not significantly influence 
phenomena which occur over many tens of milliseconds or longer. 
These metastable effects will be even less important in the pro
totype situations which are dimensionally much larger than typi
cal laboratory apparatus. 

Ao Fundamental Considerations 

For the problem of one-dimensional nonsteady flow both mass 
and momentum are conserved. One form of these basic equations is; 

3Έ + u i +
 ¿ |§ " ° Ö—»tu) (1) 

§ §
+ u

 fc
 +

 p i  ° <
mass

>
 (2) 

where: u = particle velocity 

ρ = pressure 

ρ = density 

χ = distance 

t = time 

An energy equation could also be formulated. However, we 

will defer writing this equation and assume that the flow process 

is adiabatic; that is, no heat transfer occurs between adjacent 

particles of the fluid, or between the fluid and the walls of 

the pressure vessel. 

A third equation describes the behavior of the fluid medium 

in the environment of interest. This equation is called the 

equation of state. It relates one thermodynamic variable to the 

others, e.g. 

Ρ  Ρ (p,s) (3) 

where s = entropy. If this equation can be simplified to the 

form 

Ρ = Ρ (ρ) (4) 
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in any solution zone (region of χ,t), then we can eliminate 
either ρ or ρ and reduce the system of equations to two equa
tions. 

These two equations form a system of quasilinear partial 
differential equations of the first order for functions of two 
independent variables. A fairly complete and elegant mathema-

2 
tical theory —the method of characteristics— has been formula
ted for the case where the system of equations is of the hyper
bolic type. The notion of characteristics plays a dominant role 
in this type of mathematical problem. 

Characteristic lines, along which certain flow parameters 
are constant, exist in the planes of both the independent and 
dependent variables. The solution of a problem is obtained by 
calculating corresponding changes along and across characteris
tics in each of the two domains. 

A weak disturbance of intensity Δρ propagates through a 
medium at the sound velocity c, and changes the particle velocity 
u by an amount + Au. Conservation of momentum across such a 
wavelet can be written as: 

Δρ = + (pc) Au (5) 
The characteristics in the hodograph or state plane (p,u) 
(i,e. the plane of the dependent variables) are the loci of 
these infitesimal changes of state. The characteristics, which 
we can designate as C and C , are given by 

u = + / ^-^N + constant (6) 
where the quantity (pc) is a function of ρ alone. Such a weak 
disturbance propagates in both directions in a medium at the 
velocity c relative to the medium; hence in any fixed coordinate 
system, a weak disturbance propagates at an absolute velocity 

u + c (7) 
where u is the local particle velocity. These disturbance paths 
are the characteristic lines in the wave diagram (x,t), the plane 
of independent variables. There are two sets associated with the 
double sign. We designate these sets of characteristics D and 
D". 

Changes of state which occur along the characteristic C" 
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in the hodograph plane occur across the characteristic D or 
along the characteristic D" in the wave diagram. Similarly, 
changes in state which occur along the characteristic C corres
pond to changes along D , Boundary conditions are specified 
in both the hodograph plane and in the wave diagram and will 
generally be given on some noncharacteristic curve. 

B. Equation of State of Water 
We assume that the water is always in thermodynamic 

equilibrium and that the process is locally isentropic. If this 
is the case then sufficient data exist and an analysis can be 
initiated. Metastable states are ignored and complete equilibrium 
between the vapor and liquid phases is assumed when two-phase 
flow occurs. 

1. Compressed Liquid 
In the compressed liquid state an isentropic change in 

state is also approximately an isothermal change in state, 
provided that the temperature is not greater than approximately 
600°F. Figure 9 presents the sound velocity over a wide range 
of pressures and temperatures. The acoustic impedance (pc) varies 
over the range from approximately 60 psi/fps at 32°F to approxi
mately 20 psi/fps at 600°F. These large values indicate that 
for significant pressure changes relatively little motion is 
induced in the medium. The resulting state is one of low subsonic 
(u«c) flow. Relatively little energy is released during a 
decompression to the saturation pressure, and the wave propagation 
closely resembles a classical "water-hammer" phenomenon provided 
the pressure does not drop below the saturation pressure. 

2. Mixture Region 
Steam-table data were used to construct the density 

variation with pressure for a number of specific entropy values. 
The tabular data were then numerically differentiated to obtain 
the corresponding sound velocity. The sound velocity in saturated 
liquid states is of the order of hundreds of feet per second. 
The characteristic curves of the hodograph plane were plotted 
from these data with initial states on the saturation line, and 

"X 
The sound velocity changes in a discontinuous manner across the 
saturation line (see Ref. 4). 



96 

it was discovered that the characteristics were straight lines in 
a In ρ versus u representation (see Fig. 10). Subsequent inves
tigation indicated that this behavior still exists at higher 
values of entropy corresponding to the saturated vapor phase. 

Thus it is possible to write a simple equation for the character
istics in the mixture phase: 

In £- = + — + constant (8) 
o uo 

where Ρ = saturation pressure 
o r 

u = inverse slope of the characteristic, o 
This equation is valid for any initial state in the mix

ture region, a fact which permits us to develop the equation for 
all isentropes in the mixture region. 

We can rewrite Equation (8) for the case of a saturated 
initial state as: 

ρ = Po exp (-u/uQ) (8a) 

noting that ρ = Ρ when u = 0, 
Differentiating Equation (8) or (8a) yields: 

d£ . „ _o ( ) . . £_ (9) 
du u r v ' o/ u v ' 

o o 
for the C characteristic. 
Recall that the momentum equation corresponding to this charac
teristic is 

dp 
Hu = Pc 

Therefore 

pc = £_ 
u o 

c 2 = dP-

dp 
Γ τ, Ί 2 Ρ . I 
pu I 

- H O J 

(10) 

(H) 
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Separating and integrating yields the isentrope 
Ρ Po __ y_ _ % 

Ρ vo co 
-°- - 1 Ρ + 1 (12) 

where ν is the specific volume ί = — ), and the subscript zero 
refers to the saturation state. Use was made of Equation (10), 
in that ρ 

u = — 5 - (13) 0 C~P~ ô o 
We can now derive an expression for the sound velocity. 

From Equation (10) we obtain 

L. = Lxío = !£.£_Í!£. ι) (14) 
c P p c P i c V

 y *J 

o o
 K

 o o \ o / 

Thus the sound velocity varies linearly with pressure from the 

value c along the saturation curve to the value u at zero 

pressure. The constant u is a function of entropy only. 

In some problems it will be necessary to consider con

stantenergy processes, that is, changes of state in which 

1 2 
h + γ u = constant (15) 

where h is the enthalpy per unit mass. For an isentropic 

process 

dh  - dp = 0 (16) 

Using Equation (12), one can integrate Equation (16) from an 

arbitrary initial state (subscript 1) in the mixture region to 

an expanded state (unsubscripted), with the result 

^ *0fi£)ÍPPi) 
l n

£ «"> 

For initial states on the saturation curve, p, = Ρ 
'

 rL o 

and h, = h . On the vapor branch of the saturation curve the 

Logarithmic term on the right in Equation (17) dominates, and 

the relation is well approximated by a family of straight lines 

in a In ρ versus Ah representation, where Ah = h  h (Fig. 11) 
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Substituting Equation (17) into Equation (15), one ob
tains the relation between pressure and velocity in constant-
energy processes: 

2 2 u - ul 1 j) -Inj- (18) 
o 

C. Decompression Solutions 
We present a series of specific decompression solutions in 

this section. These solutions generally deal with the decompres
sion process from a constant-area tube of finite length and with 
initial states on the saturation line; 

The results have been obtained by using a conventional 
graphical technique, modified for the peculiarities of the 
pressurized-water equation of state. The results are generally 
presented in a series of three figures: (1) the hodograph plane, 
(2) the wave diagram, and (3) a series of pressure histories. 
The pressure-time curves will generally correspond to: (A) the 
closed end of the pressure tube, (B) the midpoint of the pressure 
tube, and (C) the diaphragm station. 

1. Homogeneous Region at Saturation 
Consider a constant-area pressure tube closed at both 

ends and filled with water at rest at some saturation condition 
(liquid or vapor). At time t = 0, one end (the diaphragm) of 
the pressure tube is ruptured such that no flow restriction oc
curs. The region outside of the pressure tube is very large and 
maintained at an ambient pressure Ρ (= 14.7 psia) which is much 
lower than the saturation pressure Ρ . The pressurized water 
starts to flow from the tube and a centered rarefaction wave sys
tem propagates upstream into the water. The flow is choked (i.e., 
sonic flow) at the diaphragm station. The centered rarefaction 
wave reaches the closed end of the pressure tube, reflects, and 
propagates back toward the diaphragm station. The boundary con
dition for the closed end of the pressure tube is that of no 
motion (u = 0). The reflected disturbance reverberates between 
the two ends of the pressure tube. The pressure continues to 
drop as the water continues to leave the tube. As long as the 
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pressure at the open end or diaphragm station is greater than 
the ambient pressure Ρ , the fluid is further accelerated by this 
pressure gradient. However, the limit of this local velocity 
increase is given by the sonic condition, since any disturbances 
which could further accelerate the fluid locally would be swept 
out of the region. Thus the boundary condition at the diaphragm 
station for outflow is either sonic flow or equality of pressure 
to the outside ambient pressure. We have treated only the sonic 
boundary condition, since the most significant decompression ef
fects are completed prior to full decompression. This is due to 
the fact that Ρ » Ρ . Actually at very late times the pressure 
within the tube will drop below Ρ and reverse flow (inflow) 
will subsequently occur. 

The first problem which we have solved in some detail is 
the case of a saturated liquid at 550°F (P = 1Q45 psia). The 
results are given in Figures 12 thru 14. The initial expansion 
through the centered rarefaction wave corresponds to the change 
in state from the initial state, S , to the sonic state S,. The 

o L 

reflection of this wave system at the closed end of the pressure 
tube corresponds to the change of state from S-. to S«. Thus a 
series of states S-,, S2, So, ... will exist which will corres
pond to the various reflection cycles occurring in the wave dia
gram. The point b in the wave diagram corresponds to state S and 
the line a-c corresponds to the initial choked state, S-, . The 
other states are identified by their corresponding number. For 
this particular case approximately five and one-half reflections 
are needed before the pressure drops to the ambient pressure, 
Ρ . It should also be noted that the characteristics (u + c) in 
the wave diagram become flatter at late times (i.e. speeds great
er in absolute magnitude) since the sound velocity increases sub
stantially with decreasing pressure. The pressure histories pre
sented in Fig. 16 are characterized by a number of specific cusps 
due to the reflected wave systems. Furthermore, much of the axial 
pressure variation in the tube exists near the diaphragm station. 

The solution for a saturated vapor at 500°F (P = 681 
psia) was also obtained. We find significant differences between 
this case and the previous solution, although qualitatively the 
decompression process is the same. Characteristic of the satura
ted vapor states, the sound velocity is much larger than those 
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of the saturated liquid states, and the sound velocity does not 
vary as much with the pressure. For this particular case the sound 
velocity decreases from 1600 fps at the saturated state to approxi
mately 1350 fps at very low pressure. The solution for this case 
is presented in Figures 15 through 17. The number of reflections 
needed to drop the pressure to the ambient level is just over 
three. This solution is similar to that which one would obtain 
for the decompression of a pressurized gas system. Perhaps the 
most significant feature of this decompression solution is the 
very short time (approximately 15 millisec) needed to reduce 
substantially the pressure and the decompression loads on the 
pressure tube. 

2. Mixed Regions 
We now treat cases in which two homogeneous regions of 

fluid of different entropies exist adjacent to each other. The 
fluids are initially at rest and at the same pressure. We 
simultaneously solve two problems, one for each entropy value, 
and match the solutions at the interface separating the fluids, 
recalling that the boundary conditions at the interface are those 
of equal pressure and particle velocity. 

Consider a vapor blanket of length L adjacent to the dia
phragm station and backed by an infinite length of saturated liquid. 
The only disturbance that can propagate into the saturated 
liquid is a simple wave system corresponding to states which 
exist on its initial expansion characteristic. That is, there 
exists only one set of characteristics, the D" characteristic 
set. The left-hand boundary condition for the vapor is this liquid 
expansion characteristic. The right-hand boundary condition for 
the vapor is the choked outflow condition at the diaphragm 
station. The left boundary of the vapor (the liquid-vapor 
interface) is a moving boundary whose path is determined as the 
solution is advanced in time. The wave diagram of Fig. 18 
indicates the interface as the path b-c. The vapor behaves much 
as it does in the simple decompression process in that a centered 
rarefaction wave originates at the diaphragm station and propa
gates into the saturated vapor. The interaction of this wave 
system with the interface results in the transmission of distur
bances into the saturated liquid and the reflections of signals 
back into the vapor, now actually a mixture. 
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The initial outflow of the liquid is supersonic. The 
interaction of these characteristics with the diaphragm station 
will not result in a reflected wave due to the supersonic nature 
of the flow. At late times the outflow of the liquid will approach 
the sonic condition which would exist in the absence of a vapor 
blanket. Fig. 19 presents the pressure histories at three 
positions: (A) at the original interface position x=-L, (B) at 
x=-L/2, and (C) at the diaphragm station. The pressure at the 
diaphragm position drops down to 300 psia corresponding to the 
sonic state, and then continues to drop as the interface reflected 
signals interact with this boundary. After the vapor is blown 

/ tc \ out of the pressure tube o _ o ,^\ the pressure rises to the 
\ L ' I 

liquid sonic expansion pressure (525 psia for c = 1600 fps). 
Consider the case where a short section adjacent to the 

diaphragm station is filled with a liquid whose temperature is 
slightly below that of the remainder of the liquid. The bulk of 
the liquid is at a saturation state (T = 550°F, PQ = 1045 psia) 
and the short section of liquid is at a temperature of 500°F. 
Both regions of liquid are initially in pressure equilibrium at 
1045 psia. The saturation constants for the compressed liquid 
are TQ = 500°F, PQ = 681 psia. 

When the diaphragm is removed an initial disturbance 
propagates rapidly through the compressed liquid region, dropping 
the pressure to the saturation pressure (681 psia) corresponding 
to its temperature. This wave propagates at approximately 2800 
fps. The hodograph plane is presented in Fig. 20 and shows this 
initial change in state (from S to S-,) . A centered rarefaction 
wave system is also generated at the diaphragm station, and pro
pagates into the liquid region behind the initial disturbance as 
shown in Fig. 21. The head characteristic will propagate at a 
much slower velocity. This centered rarefaction wave system will 
expand the fluid from state S-, to its sonic outflow state, S,-. 

The only possible states for the saturated liquid (T = 
550°F) are those associated with its initial expansion charac
teristic passing through state S ; hence we have a simple wave 
system in this region. A small change in pressure in the satura
ted liquid results in an appreciable particle velocity increment, 
whereas a large change in pressure of the compressed liquid pro-
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duces only a small increment of particle velocity. Thus the ini
tial interaction at the interface results in the reflection of a 
rather strong compression wave and only a small drop in pressure 
in the saturated liquid. The state S2 exists as a result of this 
interaction. 

The reflected wave interacts with the centered rarefaction 
wave system and further accelerates the fluid. This wave is re
flected and reverberates between the interface and the rarefac
tion wave system, alternately expanding and compressing the liquid. 
The disturbance which penetrates the rarefaction wave system ac
celerates the fluid to a supersonic state, and as a result this 
signal is not reflected from the diaphragm station. In fact, the 
rarefaction wave system is completely blown out of the pressure 
tube at the point a in the wave diagram. Thereafter the distur
bances in the compressed liquid reverberate between the interface 
and the diaphragm station. The interface is further accelerated 
and reaches the diaphragm station at the point b in the wave dia
gram. Both the compressed liquid and the saturated liquid (now a 
mixture) reach state S^ at this time. Since state So is a sub
sonic state for the saturated liquid, the fluid expands through a 
centered rarefaction wave system to the sonic outflow state, S,. 

The pressure histories at three stations are presented in 
Fig. 22. Station A is at χ = -5 inches (the original interface 
position), station Β is at χ = -2 inches, and station C is at the 
diaphragm station. 

3. Area Change Solution 
This section treats a problem in which a change in flow 

cross-sectional area is present. In one-dimensional nonsteady 
flow problems it is assumed that the values of the flow variables 
which are used are average values for the cross section of inter
est. Area changes in such systems can be treated locally as dis
continuities across which steady-state flow equations are valid. 
This implies that the local two-dimensional transient effects 
associated with diffraction phenomena from incident disturbances 
are short-lived compared to the time scale of interest. 

The steady-state equations which must be satisfied at the 
area change are continuity of mass, 

puA = constant (19) 
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and possibly the energy equation, (15). One can also use some 

type of modified momentum equation to account for pressure losses 

which might occur in some special cases. 

Consider an area enlargement (area ratio = 1.5) in a pres

sure tube containing saturated vapor at 500°F. The area change 

is located a distance L from the diaphragm station. 

When the diaphragm is removed the vapor expands from the 

initial state S to the sonic state S,. The centered rarefaction 
o 1 

wave system propagates towards the area change. The only permis

sible state which can exist upstream of the area change for this 

pressure tube are those associated with the initial expansion 

characteristic of the vapor. These states will be located be
tween state S and the sonic state S,. Thus we can expect to 

o 1 

observe a simple wave upstream of point B. 

We must now establish the upstream boundary condition for 

the larger area pressure tube, that is at point B. Since the per

missible states at B, are those given by the initial expansion 

characteristic, we can map these states into a single compatibili

ty characteristic with the aid of the energy and mass conservation 

equations. State S. ι at Β corresponds to state S, at B,. If 

the pressure at Β drops below the pressure associated with state 

S, ι it becomes impossible to satisfy both the energy and mass con

servation equations simultaneously. It is quite clear that mass 

must be conserved; hence we can expect that some nonisoenergetic 

process will exist at the area change. The smallerarèa pressure 

tube will become choked at Β and a standing shock forms. The 

upstream boundary at Β can now be extended from state S,ι to 

the sonic state S« by requiring mass conservation. The non

isoenergetic process at Β results in entropy production. We 

have assumed that the entropy change is sufficiently small so that 

it can be neglected. 

The boundary conditions in the hodograph plane are illus

trated in Fig. 23. The corresponding wave diagram is presented 

in Fig. 24. The centered rarefaction wave reflects from the 

area change and the states at B_ follow the compatibility charac

teristic until state S, ( is reached. This state occurs along 

the C~ characteristic from state S^ within the centered rarefac

tion system. As the remainder of the centered rarefaction wave 

reflects, the pressure at Β continues to fall. A shock forms 
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at the area change. At late times the flow in the larger area 
tube also becomes sonic. The associated pressure histories are 
presented in Fig. 25. The pressure at B, drops more rapidly than 
that at B_ since the particle velocity is greater. This is par
ticularly true as the particle velocity at B_ increases. Finally 
the pressure at B, drops suddenly and the flow becomes choked. 
The pressure at Β and at C (the diaphragm station) both approach 
the choked flow conditions associated with state S2 (p = 160 psia). 

4. Comparison with Experiment 
An experiment was conducted which consisted of a liquid 

column whose initial average temperature was approximately 545°F 
and whose initial pressure was approximately 1280 psia. The 
equilibrium saturation pressure corresponding to 545°F is 1003 
psi; therefore there existed an overpressurization of nearly 300 
psi. The experimental results will be compared to the theoreti
cal predictions for a saturated liquid column at 550°F and 1045 
psia. The theoretical pressure histories for this case are pre
sented in Fig. 14. The overpressurization results in an initial 
decompression wave which drops the pressure from its initial value 
to the corresponding saturation pressure assumed in the theoreti
cal model. The propagation velocity of this disturbance is approxi
mately 2300 fps, and the wave traverses the 6-foot long water co
lumn in approximately 2.6 milliseconds. The velocity change im
parted to the water due to this initial decompression wave is ap
proximately 12 fps. This value is small compared to the value 
of the sound velocity (130 fps) associated with the saturation 
state. Thus we assume that the overpressurization will not in
fluence the decompression process significantly, and that we can 
compare the experimental results directly to the theoretical pre
diction for the case whose initial conditions correspond to a 
saturation state. The primary difference is the initial rapid 
pressure drop which occurs during the first few milliseconds. 

The experimental pressure-time curves are presented in 
Fig. 26 for this problem. The curves are labeled with the appro
priate gage position (GP). This figure also presents the corres
ponding predicted pressure histories, shown by the dashed curves. 
The pressure plateau which is predicted at A and Β is observed 
on GP6 and GP8, except that the mean value of the plateau observed 
in the experiment is approximately 970 psia rather than 1003 psi 
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(1045 psia for Τ = 550°F). This difference can be accounted for 

by an initial temperature of 441
C
F, representing a measurement 

error of only 4°F. The pressure plateau which is predicted at C 

is observed approximately on GP4. The pressure level of this pla

teau, corresponding to a saturation pressure of 970 psia, is 580 

psia. The three pressure plateaus are not perfectly flat on the 

experimental records; however, initial axial temperature gra

dients in the water column could produce this effect. Further

more, the axial pressure gradients near the diaphragm station 

(GP4 and C) are quite large; hence small differences in position, 

initial temperature conditions, or overpressurization are reflect

ed as large differences in pressures. 

The arrival of the centered rarefaction wave (pressure 

drop) at GP6 does not occur at t = 20 ms as predicted (B) but 

does occur at a somewhat later time (t = 35 ms). On the other 

hand, the pressure drop predicted to occur at A at t = 40 ms does 

occur at GP8; however, the rate of pressure decay is smaller than 

predicted. At later times (t)> 60 ms) all three experimental ob

servations are in reasonable agreement with the theoretical pre

dictions. During the intermediate range of time (35 <̂  t <̂  60 ms) 

the experimental observations do not show a consistent major 

wave pattern such as is predicted theoretically. One would expect 

that the propagation velocities of disturbances would be consis

tent with the state or changes of state of the media; the experi

mental data do not indicate this. It may be that random or local 

effects may be causing some perturbation on the pressure observa

tions such that the fine details predicted by the theoretical 

model cannot be observed. 

In addition to comparing specific pressure time histories, 

we have computed and compared the reaction impulse, I, acting on 

the pressure tube. For the simple straight pressure tube this 

impulse is given as 

■ ƒ [p<o - P.] I = p(t) - Ρ I dt (20) 

where p(t) is the predicted or experimentally observed pressure-
time curve at the closed end of the tube (GP8 or A). 

Before we compare the reaction impulse observed for the 
experiment with the predicted value, we present a correlation of 
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the theoretically predicted reaction impulses for a number of 
cases with the total stored enthalpy in the pressure tube. Fig
ure 27 presents the variation of enthalpy per unit volume as a 
function of stagnation temperature for both branches of the satura
tion line. It should be noted that the enthalpy per unit volume 
for the liquid phase is much greater than that for the vapor phase 
at the same temperature, except near the critical state. Further
more, the enthalpy is not too sensitive to the saturation temper
ature except near the critical state. 

The correlation between the reaction impulse and the total 
enthalpy is presented in Fig. 28. The impulse is given in units 
of psi-sec as measured for the 6-foot long pressure tube. A 
linear relationship exists between the reaction impulse and the 
total enthalpy and is presented in this Ini versus H representa-

3 tion. The constant of proportionality is 0.00269 psi-sec/Btu/ft . 
The two solid circles represent the calculated impulses for a 
saturated liquid at 550°F and at 600°F. The open circle repre
sents the calculated impulse for a saturated vapor at 500°F. The 
half solid circles represent the calculated impulses for the two 
mixed (saturated liquid/saturated vapor) problems treated. Final
ly, the open triangle represents the calculated impulse for the 
pressure tube containing saturated vapor at 500°F with an area 
reduction (area ratio = 0.5) at the diaphragm station. All of 
these calculated impulses are within 10 percent of the average 
I/H ratio. 

The value of the reaction impulse computed from the pres
sure-time data of the experiment considered above was 68.1 psi-sec, 
and is to be compared with a predicted value of 67.5 psi-sec cor-
responding to a total enthalpy of 25,100 Btu/ft . This experi
mental data point is shown in Fig. 28 as a small open box repre
senting an estimate of the uncertainties in the observations. 

Two other experimental results for widely different initial 
states are also shown. 
IV. CONCLUSION 

Depressurization of heated pressurized water and 
water-steam mixtures leads to blowdown phenomena qualitatively 
different in some respects than those in rupture of a gas 
pressure tube. This is due to the variation of sound speed 
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with mixture quality in two-phase flow of water and steam. 
Blowdown of a tube 6 ft in length from an initial liquid state 
is essentially complete in times of the order of 100 msec. 
Blowdown from a vapor state at the same initial pressure occurs 
about an order of magnitude more rapidly, resembling more closely 
the behavior of a perfect gas in decompression. These blowdown 
times must, within broad limits, scale directly with tube length. 
Choked flow at the tube exit controls the decompression time, 
being slower in liquid depressurization owing to the low sound 
speeds attained in expanded states in that case. 

Momentary overexpansions to very low pressures have 
been observed for durations of the order of a millisecond in 
the pressure records. If they are due to relaxation phenomena 
intrinsic to the fluid, these overexpansions, being of short 
duration, would not affect significantly the over-all response 
of systems of practical dimensions. In fact, the depressuriza
tion analyses presented in Section III suggest that these 
phenomena are possibly attributable to nonuniformities of initial 
fluid conditions, such as the presence of a vapor blanket or 
a subcooled liquid blanket at the diaphragm station. A vapor 
blanket can induce supersonic flow momentarily at the exit, 
while a subcooled liquid blanket induces local water-hammer 
phenomena. 

The analysis of one-dimensional unsteady flow in the 
pressure tube during decompression assumes a homogeneous mixture 
of phases in thermodynamic equilibrium during the process. 
Slip between the phases is assumed to be zero. The analysis 
confirms the over-all blowdown time found experimentally for a 
liquid decompression, and predicts pressure-time variations 
having roughly the same major features as those observed 
experimentally. 

High-speed motion picture film strips show evidence of 
individual bubble formation within a small fraction of a 
millisecond. A uniform dense population of small vapor bubbles 
develops throughout the field of view within a few milliseconds, 
indicating a finely divided two-phase mixture which persists 
thereafter. This tends to support the assumption of thermal 
equilibrium between phases which is made in the analysis. 
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A correlation has been found between the reaction 
impulse exerted axially on the pressure tube and the total 
enthalpy initially stored in the fluid. This thrust force is 
significant in determining damage to coolant-line networks in 
the event of gross line rupture. 
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EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF 
SODIUM-WATER REACTIONS IN TUBES 

by 
K. Dumm, H. Mau s be c k and W. Schnitker 

Internationale Atomreak to rbau , Bensberg , Germany 

1. INTRODUCTION 

INTERATOM recent ly s ta r ted the construct ion of the compact sodium r e a c 
tor exper iment (KNK). This plant, which includes a sodium-cooled z i r c o 
nium hydride-mode rated reac to r of 20 megawatt e lec t r ic output, will be 
equipped with two s team genera to r s of the concentr ic tube- in- tube design 
as shown in fig. 1. The inner tube contains the ups t reaming water and s team. 
Sodium flows downward in the surrounding annular tube. In this design, 
sodium and water a r e isolated only by a single tube wall . Because of un
cer ta int ies with regard to long- te rm cor ros ion and durabil i ty of protect ive 
magnet i te - layer s on the w a t e r - s t e a m side, the possibi l i ty of tube fai lures 
cannot be excluded al together inspite of close quality control of tubes and 
welds during manufacture. 

The size of leaks to be considered va r i e s from pin-holes to total rupture of 
the inner tube. Also a subsequent rupture of the outer tube cannot be en t i r e 
ly excluded. F r o m the view point of safety we have to solve the problem to 
prevent the adjoining sodium-loop and in termedia te heat exchanger from be 
coming p re s su r i zed above design p r e s s u r e . In this manner it has to be en
sured that the reac tor sys tem is not affected by such a conventional fai lure. 
In case of a rupture of both tubes, the sys tem will be dep res su r i zed i m m e 
diately. F o r a rupture of the inner tube alone, we had to develop a p r e s s u r e -
relief sys tem as shown in principle in fig. 2. At the sodium outlet we instal l 
a d e p r e s s u r i z e r with an orifice at its outlet and a rupture disc at the top 
which, by means of a blow-out line, leads into a react ion products s e p a r a 
tion tank. At the sodium inlet the sys tem is secured by non- reve r s ib le shut-
off devices as shown in fig. 3. Additional hydrogen bubble indicators at the 
outlet of each sodium line serve as an ear ly indication of smal l s team gene
ra to r leaks . As a second remedy, remote-cont ro l led valves which a r e auto
matical ly actuated by high p r e s s u r e signals and independent e lec t r ica l con
tacts behind the rupture d isc , separa te the leaking s team genera to r . 
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F r o m the safety point of view the layout incident of the s team genera tor is 
the full rupture of the inner tube. Breaks of m o r e than one tube need not be 
considered because of the independence of the tubes in this concentric tube 
design. 

Basing on the aforementioned facts and in the light of the lack of r e p r e s e n 
tative operating experience on s ingle-wall sodium-heated s team gene ra to r s , 
we s tar ted an exper imenta l and theore t ica l p r o g r a m on sodium-water r e a c 
tions in tubes, in o rde r to support the safety-layout of our s team genera tor 
by more exper ience . We performed a s e r i e s of basic exper iments with the 
a im of obtaining a bet ter understanding of the react ion behaviour of sodium-
water react ions in tubes and of developing an adequate mathemat ica l p r o 
g ram for thei r descr ipt ion. The resu l t s gained have to be verified by fur
ther exper iments with a concentr ic tube s team genera tor model and i ts safe
ty devices . 

2. DESCRIPTION OF THE TEST FACILITY (see fig. 4) 

The tes t facility consis ts of the following main components: 

- h igh -p re s su re water container 

- quick-action valve 
- tube tes t section 
- p r e s s u r e - r e l i e f sys tem 
- react ion products tank. 

The following auxil iary sys tems a r e instal led: 

- p r e s s u r e gas sys tem 
- cover gas sys tem 
- vacuum system 
- sodium filling sys tem. 

The design of the h igh -p re s su re water container pe rmi t s al l water condi
tions which may a r i s e in a s team genera tor to be s imulated. The usable 
p r e s s u r e range extends from 50 to 160 kp /cm , the t empera tu re range 
from 120 to 350 C. The container has a total volume of about 75 dm . Water 
conditions corresponding to the preheating zone of the s team genera tor a r e 
simulated by a nitrogen o v e r - p r e s s u r e supplied to the container via the 
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valves EV2 and V3. Water conditions according to the beginning of the boi l 
ing zone a r e reached without an additional gas cover . In addition to the s a 
fety va lves , a remote-cont ro l led relief valve EVI allows depressur iza t ion 
in case of sys tem fa i lu res . During the hea t -up per iod the container is c lo 
sed by a quick-act ion valve VS1. The valve has been designed by INTER-
ATOM for this special purpose . It is kept in closed position by p r e s su r i zed 
gas in a pneumatic cyl inder . F o r s tar t ing the t es t , the gas p r e s s u r e is r e 
lieved and the water p r e s s u r e itself opens the valve. After a t ime of about 
20 to 30 mil l iseconds the nominal valve a r e a will be open. The closing t imes 
vary from 10 to 20 mi l l i seconds . The nominal d iameter of the valve is 25 m m . 

Between the quick-action valve and the beginning of the tes t section, a p r e s s 
u re - r e l i e f section is instal led. More detai ls of this section a r e given follow
ing the descr ipt ion of the t e s t sect ion. A tube of 2 m length, with an inner 
d iamete r of 60 m m and a wall thickness of 8 m m , se rves as tes t sect ion. 
F e r r i t i c s teel 13 CrMo 44 (C: 0 . 1 - 0 . 1 8 % , Cr : 0. 7 - 1.0%, Mo: 0. 4 - 0.5%) 
is used. At both ends the tes t section is closed by rupture d iscs Bl and B2. 
The rupture d i scs we use a r e nickel sheets with th icknesses from 0. 07 to 0. 2 
m m . Burs t p r e s s u r e s at a d iamete r of 50 m m up to 350 C a r e for ins tance: 
0. 07 mm = 8 - 9 k p / c m , 0. 1 m m = 1 8 - 1 9 kp / cm , 0. 2 m m = 60 - 64 kp/cm . 

The evacuated test> section is filled from a sodium container , connected to 
the tes t section by valves EV3 and V4. An expansion line between the tes t 
section and the sodium container is opened during the heat -up per iod. The gas 
dome shown in fig. 4 is closed by a s teel plug. (It was used only during the 
initial t e s t s ) . 

The p r e s s u r e - r e l i e f section consis ts of the said quick-action valve, inlet rup 
tu re disc Bl and the vacuum sys tem. The rupture disc is nece s sa ry because 
it has not been possible to find a h igh- tempera tu re valve with an absolutely 
sealed seat . On the other hand, the burs t p r e s s u r e of the disc mus t be lower 
than the water p r e s s u r e . F o r this reason a leakage at the valve seat would 
des t roy the disc at an unknown t ime when al l the other t e s t p repara t ions a r e 
not yet ready. Therefore , valve EV5 is open and the section is connected to 
the vacuum sys tem by valve V27 during the heat -up per iod. Immediately be 
fore s tar t ing the tes t , valve EV5 is closed e lec t r ica l ly . F o r safety r easons , 
valve EV5 is e lect r ica l ly interlocked with the quick-act ion valve in a manner 
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ensuring that the quickact ion valve can be opened only with va lve EV5 closed. 

A blowout tube is connected to the outlet flanges of the tes t section. This tube 

has a d iamete r of 25 m m and a length of 1600 m m . It feeds into the p r e s s u r e 

relief sys tem. Sodium, react ion products , and water flow through a 250 m m 

d iamete r tube to the react ion products tank. The react ion products tank itself 
3 

has a total volume of about 13 m . It is closed at the outlet by a rupture disc 

of 400 m m d iamete r which opens at an o v e r p r e s s u r e of about 300 m m Hg. The 

tank is filled with n i t rogen in o rde r to avoid hydrogenoxygen reac t ions . The 

oxygen content is reduced to l ess than 4%. 

The two other tanks seen in fig. 4 a r e a l ready instal led for the t e s t s with the 

s team genera tor model . The whole tes t se t up without the react ion products 

tank is located in a s teel tank ( 2 x 8 x 3 m) . Between the tes t se t up and the 

control room a dis tance of about 25 m is provided. In case of damage in the 

se t up , the opera tors a r e protected by an ear th wall . The tes t se t up is com

pletely remotecont ro l led . 

3. REACTION MEASURING EQUIPMENT (see fig. 5) 

During the react ion, the following m e a s u r e m e n t s a r e per formed: 

 P r e s s u r e cha rac t e r i s t i c s at cer ta in points of the tes t unit: 

P I ) P r e s s u r e in the gas a r e a of the h i g h  p r e s s u r e water container 

P2) Outlet line of the water container (25 JÓ) 

P3) Starting end of the tes t section (60 fty 

P4) Centre of t es t section (60 JÓ) 

P5) Closing end of tes t section (60 JÓ) 

P6) Beginning of blowout tube (25 JÓ, behind rupture disc B2). 

 Velocity of the sodium face after breakdown of B2. 

These measu remen t s a r e taken at cer ta in dis tances in the blowout tube 

(shown in fig. 4 as Ζ1 to Ζ5). 

Moreover , some tes t s were made to m e a s u r e react ion t empera tu re and wall 

s t r e s s e s in the tes t section. 

Because of the quick movement of the react ion face it has been impossible to 

achieve reproducible t empera tu re c h a r a c t e r i s t i c s . The measuremen t of m a t e 
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r ia l s t r e s s e s was a lso not sat isfactory, as the t empe ra tu r e compensation 
during the tes t was not fast enough. 

With respec t to p r e s s u r e m e a s u r e m e n t s , theore t ica l predic t ions indicated 
that in the instant of the react ion a very rapid p r e s s u r e inc rease will occur . 
Therefore it was neces sa ry to use p r e s s u r e pickups with a very high natu
ra l frequency. Only quartz pickups were taken into considerat ion. Based on 
such calculations the following equipment was chosen: 

a) P r e s s u r e pickup 

Supplier: AVL Graz , Labora tory for in ternal combustion 
engines . 

Range: 0 to 10, 000 kp / cm 
2 P r e s s u r e sensit ivi ty: 2. 2 p C / k p / c m 

Natural frequency: 180 kcps 
14 Insulation r e s i s t ance : 10 Ohms 

Accelera t ion sensit ivi ty: 0. 001 k p / c m / g 
Maximum t e m p e r a t u r e : 240 C 

F r o m these data it can be seen that the c r i t i ca l l imitat ion for the pickups 
is the t empera tu re of 240 C max . To avoid damage and to reach sodium 
t empera tu re s higher than 240 C, we use smal l cooling tubes with a length 
of about 120 m m between the pickup and the tube wal l s . To avoid gas 
bubbles inside, these tubes a r e filled with an organic g r e a s e . Data of in
t e r e s t on the grease a r e : 

Velocity of sound: 1, 500 m / s 
Specific weight: 0. 86 - 0. 9 kg /dm 

This shows that the compress ib i l i ty of the g rea se is near ly equal to that 
of sodium. 

b) Piezo-Amplif ier 

By means of a 35 m coaxial cable, the pickup is connected to a P i e z o -
amplif ier . 

Technical data: 

Supplier: Vibromete r AG, Fr ibourg /Swi tzer land 
14 Input impedance: about 10 Ohms 
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Output: 
Output impedance: 
Linear i ty : 
Rise t ime : 
Frequency range: 

+ 5 Volts maxjmum 
about 100 Ohms 
+ 0. 25% with respec t to full output 
about 5/us for 10-90% 
0-100 kcps (-3 d Β) 

c) Dr ive r Amplif ier 

To dr ive the ga lvanometers of the osci l lograph, an additional amplif ier 
has been found n e c e s s a r y . 

Technical data: 

Input impedance: 
Source impedance: 

100 kilo ohms nominal 
1 kilo ohms 

Values up to 10 kilo ohms a r e poss ible , but will dec rea se the stabili ty. 

Input voltage: 

Output vol tage: 
Output cu r r en t : 
Output impedance: 
Noise: 
Linear i ty : 
Rise t ime: 

+ 0. 5 - + 1. 6 Volts for full output, depending 
on gain adjustment. 

+ 10 Volt, l imited at 13 Volts 
+ 150 mA 
1 ohm nominal 
l e ss than 1/u Volt effective 
from 0 - + 10 Volts bet ter than + 0. 5% 
10-90% les s than 25/us Τ 

d) Velocity of the Sodium Face 

F o r measur ing the velocity of the sodium face, we use spark plugs which 
a r e mounted into the blow-out tube. Every spark plug is connected to its 
own e lec t r ic c i rcui t . By the movement of the sodium face, the e lec t r ic 
c i rcui t s a r e shortened. As the dis tances between the spark plugs a r e 
known, the velocity of the sodium face can be calculated. Moreover , as 
the d iamete r s of tes t section and blow-out tube a r e known, it is possible 
to calculate the velocity of the react ion zone by means of this simple 
measur ing equipment. 

e) Recording Systems 

P r e s s u r e cha rac t e r i s t i c s and speed of the sodium face a r e recorded at 
a 25-channel galvanometer osci l lograph: 
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Supplier: Har tmann and Braun AG (Lumiscr ipt 25/300) 
max. speed of the r e g i s -
t rat ing paper : 3 m / s 

As galvanometers for the p r e s s u r e m e a s u r e m e n t s we use the Har tmann 
and Braun type HMK 4000 H: 

natural frequency: 4000 cps 
useful frequency range: about 0-2500 cps 
delay t ime : 0. 055 mil l i seconds 
t ime constant: 0. 07 mil l i seconds 

In the spark plug c i rcui t s we use the type HMK 100 I, with a 

natural f requency: 100 cps 
useful frequency range: 0-70 cps 
delay t ime: 2. 2 mi l l i seconds 
t ime constant: 2. 8 mi l l i seconds 

The above mentioned data show, that the maximum frequency of the p r e s s 
u r e recording sys tem is l imited by the frequency of the HMK 4000 H ga l 
vanomete r s . In o rde r to improve the resolut ion t ime considerably, we use 
in para l le l a Tectronix cathode ray osci l loscope Type 502 A, with a m a x i 
mum frequency of 2 Mcps. The ca thode- ray oscil loscope is connected to 
the output of the p iezo-ampl i f ier (max. frequency 100 kcps) . The cathode-
ray is t r iggered by the p r e s s u r e signal itself. F o r recording purposes , we 
use a Polaroid-Land c a m e r a . 

4. TEST PROGRAM 

With the above descr ibed tes t se t -up we have performed about 30 basic expe
r iments during the past 1 l / 2 y e a r s . In addition, we conducted a number of 
special t es t s to check the p roper functioning of the shut-off devices instal led 
at the s team genera tor . 

The large number of basic exper iments was neces sa ry to vary the p a r a m e 
t e r s which may have an influence on the react ion behaviour, namely, on the 
water side, t empera tu re and p r e s s u r e , for subcooled and sa tura ted water a s 
well; and, on the sodium side, the t empera tu re and, to some extent, geome
t ry of the tes t section. 
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The water t empera tu re was var ied from 120 C to 323, C. The waters ide 
p r e s s u r e was var ied from 80 to 140 k p / c m . On the sodium side, t e m p e r a 
tu res from 150 C to 390 C were applied. F o r the major port ion of t e s t s , 
the outlet rupture disc B2 was instal led in the blow-out tube behind p r e s s u r e 
pickup P 6 . 

5. TEST RESULTS 
a*aa«—>wa·«—·*Μ·Ι ΙΒΒ^—.»»Baaa^aa^aw^apaaaa^paaaaav 

F i g . 6 shows a t y p i c a l r e s u l t r e c o r d e d by the G a l v a n o m e t e r - o s c i l l o g r a p h . 

The t e s t p a r a m e t e r s c h o s e n w e r e : 

t.T = 300°C , t u _ = 250°C , P u _ = 80 k p / c m ( subcoo led w a t e r ) JNa ri_vJ r i _ 0 

The r e a c t i o n s t a r t s i m m e d i a t e l y a f t e r d i s c B l i s r u p t u r e d . The f i r s t p r e s s · 
- 5 u r e p e a k i s r e a c h e d a f t e r s o m e 10 s. 

T h i s f a s t r i s e - t i m e w a s m e a s u r e d by an a d d i t i o n a l ca thode r a y - o s c i l l o s c o p e . 

Whi le only the f i r s t p e a k c a n be a t t r i b u t e d to the r e a c t i o n i tself , t he fo l low

ing p e a k s a r e due to r e f l e c t i o n e f fec t s a t t he s o d i u m s u r f a c e s . The t r a v e l l i n g 

t i m e »f the f i r s t shock wave c a n be s e e n f r o m the d i f fe ren t p r e s s u r e r e a d i n g s 

( P 3 , P 4 , P 5 ) . A s e c o n d g r o u p of p r e s s u r e p e a k s wi l l be induced a t the m o 

m e n t when the s o d i u m face e n t e r s the cone b e t w e e n t e s t s e c t i o n and b l o w - o u t 

t u b e . 

T h e s e p r e s s u r e p e a k s a r e o b s e r v e d f i r s t a t P 5 and t r a v e l b a c k to the t e s t 

s e c t i o n . The r e f l e c t e d h igh p r e s s u r e w a v e s e x i s t in the l iquid zone only . Tha t 

m e a n s for the p i ckup , t hey a r e e x i s t e n t only for the t i m e d u r i n g which the 

p i ckup i s in c o n t a c t wi th s o d i u m . T h e y a r e h igh ly d a m p e d in the c o m p r e s s i b l e 

r e a c t i o n p r o d u c t zone wh ich c o n s i s t s m a i n l y of h y d r o g e n , m i x e d with s o m e 

oxydes and w a t e r v a p o u r . The s p a r k p l u g s Z l to Z5 i n d i c a t e the v e l o c i t y of 

the s o d i u m f a c e . In t h i s c a s e the v e l o c i t y of 175 m / s in the b low-ou t tube 

c o r r e s p o n d s t o ' 3 0 m / s in the t e s t s e c t i o n . A f t e r 1 0 to 20 m s following the 

s t a r t of the r e a c t i o n , the t e s t s e c t i o n p r e s s u r e r e m a i n s for s o m e t i m e a t a 

poin t a r o u n d the i n i t i a l w a t e r p r e s s u r e , if t he l e a k a g e w a s suf f ic ient ly l a r g e 

( e . g . c o m p l e t e tube r u p t u r e ) . If, in the c a s e of s a t u r a t e d w a t e r , the i n i t i a l 

s o d i u m t e m p e r a t u r e i s m u c h h i g h e r t h a n the w a t e r t e m p e r a t u r e , a d e l a y e d 

s e c o n d a r y p r e s s u r e s u r g e s u p e r i m p o s e d on the p r i m a r y r e a c t i o n p r e s s u r e 

can be o b s e r v e d ( see fig. 7) . The d a t a for t h i s s p e c i a l t e s t w e r e : t , . = 370°C, 
IN eL. 
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tp. n = 323 C, p__ - = 120 kp /cm (saturated wate r ) . The effect can be i n t e r -
ù CÊ 

pre ted as s team flashing due to a sudden re l ease of heat, s tored in the hot 
tes t section, to the introduced sa tura ted water . The high t empera tu re differ
ence between the tes t section and the water causes initially s team blanketing 
of the wall (film boiling); the s team layer col lapses some t ime l a t e r usually 
after a random p r e s s u r e dis turbance s tar ted at the outlet of the blow-out 
tube, about 40 ms after the beginning of the react ion. Before and after the 
second p r e s s u r e oscillation, the quas i - s ta t ionary p r e s s u r e equals a lso the 
initial water p r e s s u r e . 

Fig . 8 shows a typical tes t resul t , where the location of the rupture disc 
has been changed. Now the sodium filling extends to the p r e s s u r e pickup P 6 . 

The tes t data were : t_.T = 370°C, t „ = 290°C, p „ = 90 k p / c m (slightly 
INa r i _ U r i - U 

subcooled water ) . The travel l ing velocity of the f i rs t shock wave is seen 
much more c lear ly than in fig. 6 and 7. Included into the figure is a r e p r o 
duction of the recorded ca thode-ray reading. It shows c lear ly that due to the 
limited frequency resolut ion, the p r e s s u r e peaks measu red by the galvano
m e t e r s a r e p r e s s u r e - t i m e in tegra ls of the real, t r e s s u r e s t ruc tu re . At the 
cathode-ray osci l logram we found a r i s e t ime , up to the f irs t peak, of about 
2. 10~5s . 

6. MATHEMATICAL MODEL 

Existing mathemat ica l models of the sodium-water react ion normal ly p r e 
sume that the amount of water entering the sodium volume reac t s immedia t e 
ly and completely with the sodium. This means no t ime is needed for the 
react ion itself. The amount of react ion m a t e r i a l s is only given by t r anspor t 
phenomena. This leads to an infinite p r e s s u r e at t ime ze ro , which d e c r e a s e s 
very quickly. We have developed a refined model which gives us a chance to 
predic t more rea l i s t ica l ly the f i rs t p r e s s u r e peak and the t ime of p r e s s u r e 
development. 

The react ion between sodium and water takes place in two s teps : 

Na + H 2 0 »* NaOH + | H - 33. 7 kca l /mol 

Na + NaOH » Na O + \ H + 2. 7 kca l /mol 
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The second react ion follows the f i rs t one only if sodium is available e x c e s 
sively. The heat quantity of the f i rs t react ion is as la rge as to heat up the 
developed hydrogen to the boiling t empera tu re of the sodium hydroxide or , 
in case of both reac t ions , to the sublimation t empera tu re of the sodium 
oxide. Because of the vaporisat ion heat of NaOH or the sublimation heat of 
Na_0 , these t empe ra tu r e s will probably not be exceeded during the r e a c 
tion; they a r e 1390 C and 1260 C respect ively , at normal p r e s s u r e . 

The model is r e s t r i c t ed to one-dimensional behaviour, which means for 
react ions in tubes only. As seen in fig. 9, we a s s u m e that immediately 
after the react ion has s ta r ted a hydrogen bubble will disconnect the water 
and sodium boundar ies . To maintain the react ion the water vapour has to 
diffuse through the hydrogen. The hydrogen bubble will be mixed with some 
sodium hydroxide ( and no sodium oxide, as an excess of water in the diffu
sion zone mus t be assumed) . 

F r o m the theory of diffusion in gases by Hirschfelder , Cur t i s , and Bird 
one can der ive an approximate diffusion coefficient for hydrogen and water 
vapour in the interest ing t empera tu re range as under : 

T ( l +a) 
0 = 0 ' · (1) 

Fick ' s law 
dM „ dc (2) 

can be wri t ten for our case to read 

dM _ c r i t 
dt s - ^ ; ( q = i ) (3) 

Equations (3) and (1) confined to the ideal gas equation 

Ρ . ν = M . R . Τ (4) 

lead to the express ion 

.a 
dM 
dt 

= C' . cr i t 
R . M (5) 
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Under the assumption of an adiabatic compress ib le gas bubble, finally the 

equation 
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will be obtained. 

The ra te of hydrogen formation is influenced a lso by the sodium layer at the 

tube wall which reac t s with the following water after passage of the gas bubble. 

This can be expressed by a second t e r m in equation (6) 

f U c o . f ( M , S ) + C l . Ä (7) 

After the sodium leaves the blowout tube a third t e r m in the fundamental 

equation is nece s sa ry to descr ibe the influence of gas venting with c r i t i ca l 

velocity: 

~ 7 = C . f(M,S) + C. . ~  C , . Ρ (8) 

dt o ' 1 dt 3 gas ' 

The pressure in the gaseous phase can be described by 

p__R.T..S*
K
'.M

K
 ( 

S
K 

again under the assumption of an ideal gas and an adiabatic compress ion . 

Equations (7), (8), and (9) a r e the main equations to desc r ibe the react ion. 

In addition we used equations to desc r ibe the movement of sodium and water 

and the initial conditions. Sodium was assumed to be compress ib le during the 

f i rs t few mi l l i seconds . The p r o g r a m does not allow to s t a r t with M and S 

equal to ze ro . Therefore , the init ial value of S was taken to be the mean 

free path according to the kinetic theory of gases , and the init ial value of M 

/ 2 

was chosen to give a s tar t ing p r e s s u r e in the hydrogen bubble of 1 kp / cm . 

In fig. 9 the theory is compared with the exper iments . They can be matched 

fairly by p roper adjustment of the constants in equation (8). The constants 

can be fixed separa te ly , because of the fact that the diffusion t e r m is impor 
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tant for t imes l e s s than 2 mi l l i seconds; the surface layer t e r m is of main 
importance for t imes longer than 2 m s ; and the vent t e r m has to be i n t ro 
duced after about 150 m s , where the exact value depends on the water p r e s s 
u r e . According to turbulence effects, the constant C has to be 1 to 3 t imes 
l a r g e r than given by diffusion theory, if the difference in density between 
water vapour and an ideal gas is taken into considerat ion. Adjustment of C1 

shows that the sodium layer itself has a thickness of 0. 1 to 0. 2 m m . C_ 
finally is in accordance with an effective atomic weight of 40 for the mixture 
of react ion products and vapour. 

Theory and exper iment show that the maximum p r e s s u r e peak is approxima
tely equal to */~C 

to rj leak a r e a (only, if leakage a r e a < 40 to 50% of react ion tube 
c ross - sec t ion) 

to f(C ) + f(V . ) o' wa te r ' 

Moreover , the measu red p r e s s u r e s a r e near ly equal to the theore t ica l peaks . 
At t imes of more than 50 m s , exper imenta l and theore t ica l p r e s s u r e s show 
approximately the same level as the water p r e s s u r e . 

7. CONCLUSIONS 

There is good agreement between our basic exper iments and the theore t ica l 
model as far as the react ion p r e s s u r e is concerned. The reflected p r e s s u r e 
pulses a r e not included in the theory. F u r t h e r exper iments will be performed 
to check these resu l t s with tube- in- tube s team genera tor mode ls . Expe r i 
ments a r e planned a lso for pool-type s team gene ra to r s . 
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SYMBOLS USED IN THE EQUATIONS 

C = concentration of one component 

C' = factor of the constant values in the equation of Hirschfelder, 

Curtis and Bird 

C = constant to describe vapour diffusion through hydrogen 

C„ = vapour concentration at the critical point 

C. = constant to describe the influence of sodium film reaction at the 

wall 

C, = constant to describe the blow-out of reaction products at critical 

velocity 

D = constant of diffusion 

K = exponent of adiabatic expansion or pressure 

M = mass of gas (Kilomol) 

ρ = gaspres sure in the reaction zone 

q = cross-section of reaction zone 

R = gasconstant in general 

s = length of the gaseous zone 

s * = molvolume of hydrogen at 1 atmosphere and reaction temperature 

χ = distance between the water-hydrogen boundary and rupture disc 

Bl 

t = time 

T = temperature of hydrogen 

T* = temperature of hydrogen at 1 atmosphere 

V = gasvolume 

(X - exponent to figure the variable term of the theory by Hirschfelder, 

Curtis and Bird; approximately 0. 65 
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MODEL TECHNIQUES IN REACTOR ACCIDENT SIMULATION 
"by 

N.S. Thumpston 
AWRE, Foulness 
United Kingdom 

In assessing the mechanical damage to reactor components and 
structures under accident conditions one is concerned with problems of 
structural failure under the action of dynamic loads. This is outside 
the normal experience and practice of design engineers as their ohjeet 
is to design structures which do not fail. 

One approach to obtaining experimental data is the destructive 
testing of specially huilt reactors. However, such tests are limited in 
number and scope and it is not always possible to study the effects of 
varying the design and the operating parameters. 

A second approach, one to which we were led from our experience 
of work on the effect of air blast from weapons, has been to carry out 
studies by means of model scale experiments; the essential feature of a 
model study being that it is either smaller than the prototype structure 
or that it should be a small section only of the full scale structure. 
It is these model experiments which I want to discuss. 

Simulation of Energy Release 
The first step to be taken in an accident assessment is to 

define the energy release, both in magnitude and time. In general, in 
reactors mechanical damage occurs when energy is released more rapidly 
than the heat removal and containment systems can cope with it. In some 
cases knowledge of the power transient is available to us from full scale 
experiments, as in the Borax and Spert experiments, or accidents such as 
the SL.l incident. For other types of reactors, for example fast reac
tors, we have to rely on calculation. 

The second step is how to simulate this energy release in the 
model because how we do this determines the scale of the model approach. 
The problem of such energy simulation was discussed by my colleague, Mr. 
Samuels, at the previous Meeting of Specialists on Heat Transfer in Rapid 
Transients. The choice of a suitable simulation depends in part on an 
assessment of the way in which the damaging forces are produced by 
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several different mechanisms (depressurisation, flow or drag forces, 
liquid or solid impact, shock waves); these mechanisms must be iden
tified and their relative importance assessed. 

have : 
Thus, classifying model studies in terms of the energy source we 

a) Those in which the forcing pressure is generated by sudden 
release of pressurised gas - flow studies. 

b) Those in which the energy arises from changes of reactivity or 
chemical process in which: 

(i) We obtain simulation of the incident by electrical pulse 
heating methods. '•o 

(ii) We obtain simulation of the incident by the detonation of an 
explosive charge. 

Of the two simulations, (i) is more restricted in the scale size 
we can use. It is limited by the capacitance of our condenser banks and 
the care needed to avoid damage to them. We prefer to do this type of 
experiment in one of our indoor ranges so there may be building restric
tions on firing. 

The restriction on the second type of simulation arises not from 
charge size but from considerations of energy density and rate of energy 
release. For fast reactors the energy density is right, at least for the 
initial phases of the incident, and we have used high explosive as a 
simulation. For lower densities or slower energy releases we have been 
limited because we have not had available suitable gasless explosives or 
pyrotechnic mixes. We are working on producing these. 

The Structural Model 
Coming to the actual model which we make, two types are used for 

work in the U.K. 

Strength scaled models in which the geometry of failure of the 
prototype is reproduced. 

Geometrically scale overstrong models in which transient forces 
are reproduced and are measured by means of instruments mounted in the 
model, the response of the instruments not being affected by the defor
mation of the model. 
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For some investigations, the two types of models may be com

bined and structurally scaled components, which are critical to the con

struction, incorporated in a geometrical overstrong model. 

Scaling 

Before discussing examples of the model work that we have done 

at Foulness I would like to briefly describe the scaling laws and instru

mentation. 

The behaviour of the model is related to that of the prototype 

through the principle of dynamic similarity. Two independent relation

ships between the physical variables define the correspondence between 

the model and prototype systems, as the scaling law for any other 

physical parameter may be deduced from these relationships by dimensional 

3 

considerations. The scale relationships usually chosen are Tæ L, M «= L , 

where M, L, Τ represent mass, length and time respectively. In this sys

tem most of the relevant material properties (density, specific heat, 

stress) are invariant, so the prototype materials may be used for con
2 2 

structing the model. In particular, for energy, dimensions ML Τ , we 

have the socalled cube root law for energy comparison, model to proto

type. Other invariant quantities are velocity, pressure, energy density, 

energy flux and temperature. 
* 

Limitations sometimes arise in the application of the scaling 

laws to models, for example, not all material properties are independent 

of the scale factor. Examples are thermal conductivity, viscosity and 

surface tension. Again, the gravitational field cannot be altered, so 

that the selfweight of a model and the flight of missiles do not scale 

correctly. These limitations should be recognised when planning an in

vestigation as their effects can often be minimised or allowed for in the 

interpretation of the results. 

Instrumentation 

The reduced time scale of events in a model experiment makes it 

essential to use instruments having a rapid response. However, many of 

the quantities to be measured (pressure, strain, velocity, density, 

temperature) are of the same magnitude as in the prototype, so there are 

no stringent sensitivity requirements. Transducers must have low thermal 

or mechanical inertia and yet be sufficiently rugged to withstand the 

large forces involved in destructive experiments. 
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In the work at Foulness pressures are usually measured by quartz 
piezo-electric transducers. These were originally developed for air 
blast measurement but have been modified and improved for reactor safety 
applications. They have a response time of a few microseconds and sen
sitivities ranging from 0.1 p.s.i. to 40,000 p.s.i. In a cooled mount 
they have been used to record the impact pressures of liquid metals at 
temperatures up to 500°C. Both foil and wire resistance strain gauges 
are used. Both types are light and are capable of following the movement 
of any structural component to which they may be attached. They are also 
used on load cells for force measurement. The measurement of rapid tem
perature changes presents a problem. Wire resistance thermometers and 
thermocouples have good stability but it is difficult to make them with a 
time constant less than about one milli-second. Thin metal films can be 
deposited on an insulating surface and have a time constant better than 
1 microsecond, but after the first few microseconds they measure the tem
perature of the backing rather than that of the fluid in which they are 
immersed. However, this gap in response time has recently been filled by 
a thermocouple comprising a large number of micro-junctions formed across 
the edge of a mica insulator by friction welding. The device has a res
ponse time of about 10 nS. The recording system used must have a fre
quency response matching that of the transducers and must also be capable 
of recording for a considerable length of time. 

Examples of Model Work 
(a) Model in which Energy Source is Pressurised Gas 
I would like first of all to deal with a model study in which 

the energy source was depressurised gas, an investigation on a scale 
structure based on the Calder Hall geometry, a geometrically scale over-
strong model instrumented with PE gauges for pressure measurements. What 
we were considering was what would happen in a gas cooled reactor if there 
was a sudden loss of coolant due to a complete duct failure. The problem 
was to assess the pressure difference across the core and also the flow of 
gas through the core. A pressure difference across the core could give 
rise to core movement, a cold duct failure could give the possibility of 
stagnation and unsatisfactory cooling of the fuel elements. The model 
which was about one twentieth the size of a reactor circuit consisted of 
a pressure vessel connected to four circuits, each of which contained a 
chamber to represent a heat exchanger unit. A flow of air was used to 
calibrate the equipment and to adjust the flow resistance of the core and 
heat exchangers to the required values. Although this particular model 



- 147 

study started by being related to an existing reactor system, it ultimately 
became a parametric study in which the relative importance of assumptions 
made in a theoretical analysis of the transient were subjected to experi
mental checking. 

The study was not a model study as commonly accepted; we were 
not, for example, attempting to scale the results to full scale conditions. 
The basic assumption that had to be made was that the theory as applied to 
this particular "model experiment" was the same theory that could be 
applied when considering flow in a larger reactor. The validity of this 
assertion could, of course, be checked by repeating experiments on a 
number of scales, but by starting with a model that was big enough we did 
not anticipate any major scale effects to appear. Some simplifications 
that were made in the model study were incorporated to make the theoreti
cal analysis easier, for example rotors were not used in the impellers; 
orifice plates were placed in the discs on the outside of the impeller 
cases. 

Top and bottom duct bursts were investigated, both air and CO^ 
being used in the system for pressures of 60, 100 and 150 p.s.i. The 
pressure gauges had to withstand a high steady pressure and record the 
subsequent fall to atmospheric pressure with a high degree of accuracy. 
This was achieved by performing replicate experiments. 

A second investigation on depressurisation of gas cooled systems 
used a smaller model, about one fiftieth full size. Here we were inter
ested in measuring the internal loading on a bioshield following catas
trophic failure of the reactor vessel. The model pressure vessel was made 
in two halves which could be bolted together with any desired circumferen
tial gap. The gap was sealed from inside by a piston which could be moved 
rapidly to uncover the gap. Pressure measurements taken with PE gauges 
showed both the uniform pressure rise on the shield and the local high 
pressures caused by the jetting of the emergent gas can be observed.* 
Different vessel venting areas and shield leak rates were investigated. 

(b) Models with Energy Insertion by Electrical Pulse Heating 
Methods 

The best example of work that we have done in this field has been 

*Reference: Symposium on Studies to Determine the Safety Margins Avail
able on Magnox Type Gas Cooled Reactors. British Nuclear Energy Society, 
July, 1964. 
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the model investigation of the SL.l reactor incident. This accident, 
which is well documented from U.S. sources, is believed to have given an 
energy release of I30 MWS in an excursion of 4 ms. The approach at 
Foulness was to model this at l/30th scale, a structurally scaled model 
incorporating pressure gauges. On the final model the structural damage 
and mechanical effects produced by the accidental excursion were very 
closely reproduced in the models. During the course of this work it 
became apparent that to produce the correct mechanical effects the most 
important factor was to get the right energy density in that part of the 
core which melted during the excursion. In the full scale structure it 
was seen that some 20 per cent of the fuel elements,,those on the centre 
of the core, were melted in the excursion. To reproduce the correct 
energy density in the centre of the model core the core was made up in 
two zones, which were heated from two independent condenser banks. 
Earlier firings in this model study where we put the energy homogeneously 
into a single zoned core did not give a distortion pattern of the correct 
type, although we did achieve a very close simulation of the power time 
relationship. With a properly made core in two zones we got a correct 
dispersion of the molten metal and rapid steam production. The energy 
deposited in the rest of the core did not affect the damage. 

The SL.l study has enabled us to simplify our approach to ex
cursion simulation. The essential thing to determine from a study of the 
energy distribution in the core is when part of the fuel will melt and to 
model this region by correctly scaling the mass and the surface area. 
The metal used for the model must have similar thermal properties to the 
fuel plates, and the model should be constructed so that the coolant 
water is in contact with the metal surface. The time scale of the pulse 
is not critical but it should not be longer than the scale duration of the 
excursion. 

Before going on to describe typical experiments that we have done 
using explosives for energy simulation, it is worth mentioning that as 
part of the SL.l study we investigated the effect of releasing 30 per cent 
of the energy by the explosion of a detonator in our structural scaled 
model. The distortion near the head of the vessel is comparable with 
what one obtains from the electrical transient but that extensive damage 
to the bottom of the vessel has been caused by reflection of the shock 
wave from the detonator. This underlies the desirability of identifying 
the damaging mechanism, which in the case of the SL.l reactor was the 
impact of the water on the lower surface of the vessel, the water being 
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driven upwards by the expansion of steam. The peak pressure measured at. 
the time of impact was about 10,000 p.s.i. and it was this that distorted 
the vessel flange and the wall immediately below, and the control rod 
guide tubes. 

(c) Models with Energy Insertion by Explosive Charge 
The best examples of our work in this field is the programme of 

work carried out on fast reactor systems. There are two basic types of 
fast reactors. 

(i) Reactor vessel and heat exchangers contained in a con
crete vault as with Dounreay and Fermi reactors. 

(ii) Single tank integral designs like EBR II and the 
current U.K. design where reactor vessel and heat ex
changers are contained in the large tank of sodium. 

We have carried out model experiments on both types. 

For the Dounreay reactor we decided a major hazard following an 
explosive transient was the ejection of the loading plugs which, if they 
rise 30 ft. would hit the overhead gantry and breach containment. 
Initial experiments to study plug ejection was made at 1/65 scale using 
% grm charges of PETN to simulate energy release using two types of models 
- a steel model with overstrong walls and a weak graphite model, with a 
lead sleeve to simulate the breeder. From such greatly simplified struc
tures we were able to assess the proportion of available energy imparted 
to the plugs was low falling between the limits of 0.4 and 3%> the varia
tion being produced by the degree of venting due to the changing strength 
of the model. 

For a more detailed investigation l/10th scale models were used 
enabling us to incorporate the main structural details of the pressure 
vessel, support stands and plugs scaled to the correct static strength. 
In these tests water was used to simulate the sodium coolant. These 
larger scale models confirmed the results at smaller scale. 

In experiments on single tank designs we were initially attracted 
to the idea of providing containment design data by determining the 
sequence of physical events resulting from an explosion in a nearly filled 
coolant tank. In one series of model firings we measured the pressure 
loading on the roof and walls of an overstrong two foot diameter by two 
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foot high steel tank, partially filled with water when a 2 oz. charge was 
detonated inside. A loosely fitted plug was fitted and its ejection 
photographed. The air gap above the coolant was varied in depth. From 
the records the initial and reflected shocks and the rarefaction from the 
surface are all clearly distinguishable. The shock reflection at the 
water surface causes cavitation with layers of water breaking away and 
impacting on the roof. We were able to determine the spray velocity and 
by further experiments in a perspex tank watch the process. 

The present U.K. fast reactor reference design has been under 
continuous development for some years and during this period significant 
changes in the design have been examined by model studies. The objec
tives of this work have been to determine the time sequence of the major 
physical events following an energy transient to measure the pressure 
loadings, strains and deflections on the important reactor components 
and to demonstrate the structural integrity. 

The work on PFR has been done at 1/32, 1/25 and 1/16 scale and 
has included both work on overstrong models and structurally scaled ones. 
The latter are interesting because they have included examples of our 
work on composite reinforced concrete structures where we have used mortar 
to model concrete. Where one goes, as in this case, to a slightly 
different material in the model the relationship between stress and strain 
for both the model material and the prototype must be the same. The sand 
we use on the cement mortars is graded in the same way as the aggregate 
in normal concrete and since what evidence we have suggests a similar 
failure mechanism, mortar to concrete, we can think of these mortars as 
micro-concretes. One point to watch carefully in modelling reinforced 
concrete is that the model scale reinforcing is similar in its physical 
properties to the full scale, by the use of suitably annealed drawn wires. 
As part of our protective structures programme we have made and tested 
models over a variation of scale sizes and are confident that we can 
accurately simulate both reinforced and prestressed concretes throughout 
their entire stress change right up to the point at which they fail. 

We have evolved a number of useful techniques in weaving and 
casting models, including a technique of using collapsible expanded poly-
strene mould cores to model awkward re-entrant surfaces. 

One point in the structural modelling of PFR which we have not 
solved has been the sealing around the core plugs because this has 
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(required a detail unattainable at 1/16 scale. Our current work is on 
# scale model of the roof structure to cover this point, but it will 
give interesting scale comparisons with the 1/16 scale work as an inci
dental. 

It has been usual in our fast reactor studies to use cold water 
to simulate sodium. A direct comparison of the explosive effects in the 
two liquids has been conducted in a series of collaborative firings "bet
ween the CEA Euratom and UKAEA at Cadaracne. 

Conclusion 
What I have given is a survey of the range of model work which 

we have done or are doing, illustrating a whole armoury of model approaches 
and techniques. 

With this experience you might ask, how do we set about tackling 
new jobs, or what advice can be given to someone embarking on model 
studies? This can be summed up as follows:-

(1) Your basic problem is energy simulation - much of our background 
work in reactor safety is aimed at a better understanding of this. It is 
as well to remember right from the outset that any non-nuclear method of 
simulating a reactor transient is approximation. 

(2) Decide what you want out of your model which can be either a vehicle 
for measurements or a direct indicator of structural response. One can 
carry out measurements on the whole system or an essential part of it; 
on the whole structure or on selected components. But remember any degree 
of simplification introduced must be based on a thorough engineering 
appraisal and that in model studies the quality of fabrication and the 
properties of material used must be examined with especial care. 

(3) Check that your instrumentation is adequate, to cope with the shorten 
response times. 
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INTRODUCTION 

For a study on models of the response of a structure to 
dynamic loading by means of explosives, it is necessary to 
know certain characteristic dynamic parameters, namely the 
law for the variation with time of the load acting on the 
structure, and the law for strain versus the time. 

This means that two gauges are needed, one for the pressures, 
the other for the strains. 

P A R T I 
PRESSURE TRANSDUCER 

The transducer characteristics required for this study are: 
1) small bulk and least possible interference with the event; 
2) good time resolution (< 1 μ sec) and sufficiently constant 

signal (200 μ sec); 
3) linearity of signal; 
4) high signal/noise ratio; 
5) strong, simple construction able to withstand high pressures. 

The wide range of standard pressure transducers are not as a 
rule calibrated dynamically and the values indicated for pre
cision and frequency response are usually calculated values. 

From analysis of the catalogue information and from experience 
of the calibration of such transducers, it was concluded that 
they do not possess the characteristics we required and the 
decision was adopted to design and construct a measuring in
strument to meet our requirements. 

There are various methods -of measuring dynamic pressure; after 
a study of the literature 0)(2)(3)(4)(5), the following types 
were short-listed: 
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capacitative 

Baganoff has described a transducer fabricated wholly of nlastic 

material. The condenser consists of two conductorized high

polymer plates, the dielectric material is an insulating high· 

polymer. 

With a voltage of 4 KV applied to the two poles, a pressure 

of 1 atm gives a signal of **10 mV. The transducer is limited 

to pressures ranging no higher than the elastic limit of the 

material. 

inductive 
■ a — " — * · — ■ » — w a i · · — 

The mechanical and electrical assembly is not suitable for 

obtaining a high time resolution» High sensitivity can be* 

achieved only by long travels which cannot be effected in the 

required time, 

magnetostrictive 

The magnetic behaviour of certain materials is influenced by 

anisotropies in the crystal structure which undergo changes 

when a force is applied. 

This effect is particularly noticeable in Ni or NiFe alloys« 

Permeability variations of 17$ have been recorded for a pres

sure of 1000 atm (8). Recent advances in the field of ferrites 

for highfrequency purposes have brought even higher sensi

tivity within reach. 

In a number of experiments, performed by us, pressure waves 

were applied to Ni wires. The system allows of determining the 

amplitude of the impulse and is particularly suitable when a 

transducer of small diameter (wire) is required. 

piezoelectric ) 

( These systems will be discussed 

„+„„.!.„ „Q11r,Q / in detail further on. straingauge \, 

A review of ine characteristics of the types listed above and 

of others whose description we omit for the sake of brevity, 

led to the choice, for highly dynamic highprecision tests, 

of the two lastnamed types, i.e. bar transducers with piezo

electric or straingauge sensitive element. 
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These transducers are of fairly similar geometry. In both 
there is a wave-guide consisting of a bar, the material of 
which is selected by acoustic criteria, which is mounted in 
such away as to cut out vibrations due to the actual wave-
impact or to oscillations of the structure. 

The dynamic calibration of the transducers is effected on 
a shock tube, the characteristics of which are given in the 
Appendix, 

1. THE PIEZOELECTRIC TRANSDUCER 

1.1. Theoretical considerations 

The choice of a ceramic material for the piezoelectric 
apparatus was governed by the determination of the following 
conditions : 
maximum operational temperature 
sensitivity 
maximum operational pressure 

Quartz was selected in our case, on account of its very 
high Curie point (550 C) and the minor effect of temperature 
on the output signal. 

On the other hand, quartz is not very highly sensitive and 
where pressures of less than one atmosphere are to be mea
sured it is necessary, to avoid amplifying the signal, to 
connect the cathode follower directly to the transducer. 

In view of the very short rise time required (< 1 Msec) the 
geometrical dimensions of the quartz must be small. 

The resonance frequency is calculated, in a first approxi
mation, from the relation 

ΓΈ 
where J — represents the velocity of sound which, for 
quartz, is 5)500 m/sec. 
The theoretical rise time for a shock wave striking a quartz 
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of length 1 = 1.5 mm is 0,3 μ sec. 

The mechanical assembly follows the principle of the Hopkinson 
pressure bar« The quartz forms an integral part of a bar in 
which the wave is guided without reflections (p. c = const.). 
The position of the quartz on this bar is conditioned 
- by the rise time required 
- by the mechanical problems involved in mounting the quartz« 

The dispersion of the wave along the bar (described in detail 
for the bar transducer) increases the rise time. This effect 
is reduced as far as possible by cementing the quartz on the 
head of the bar. This type of mounting is preferable as it 
also allows of reducing the injurious bending effects thai-
might occur if the quartz were mounted between two bars. Such 
bending could damage the cement attaching the quartz to the 
bar. As the quartz forms a single unit with the bar, to which 
it is cemented by a thin layer of high-strength adhesive, the 
resonance frequency of the quartz-bar system is very low and 
cannot disturb the measuring. 

Owing to the dispersion phenomena, the wave reflected at the 
bottom end of the bar has a very long rise time and a greater 
diminished amplitude. Because the sensitive component is small, 
the wave on reaching it causes negligible disturbances in the 
signal registered, as the sensitive component receives the 
sum of two signals of opposite sign (dilatation and com
pression waves). 

The amplitude of the disturbance signal decreases directly 
with the thickness of the quartz and inversely with the length 
of travel of the wave in the bar and the .consequent lengthen
ing of the front rise time. 

In order to eliminate the influence of the reflected wave, it 
is necessary to lengthen the bar so that the measurement is 
completed by the time the reflected wave reaches the sensitive 
component, or to damp the reflected wave with special devices 
(see bar transducer). 
At the same time as a wave is propagated longitudinally, 
transversal vibrations are generated through contraction of 
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the bar. If the longitudinal' wave length is comparable to 
the diameter of the bar there is serious transversal reso
nance. 

In calculating the resonance frequency, the dispersion of 
the longitudinal wave and the influence of the Poisson 
ratio for the material must be taken into account. 

The radial oscillations, which are very ample at the reso
nance frequency, affect the longitudinal deformations; 
producing an apparent variation of the E modulus. In conse
quence the phase velocity and the amplitude of the longi
tudinal oscillations are affected. These events can be 
simulated (6) with a damped oscillating electric circuit 
with resonance frequency 

f = 3 
0 2*jLÏ? 

This equation is compared with the equation for the vibra
tion of the bar, and the parameters are determined by analogy, 
giving 

fo = 0.443 ̂  , 

in which the constant takes into account the damping effects 
and the influence of Poisson's modulus. 
For the geometry used here (diameter D = 4 mm, velocity of 
sound c = o 
620 kc/sec. 
sound c = 5,500 m/sec) the calculated frequency is 

As v/ill be described further on, the reducing of the radial 
oscillation effects was a very laborious task based on a 
series of experiments. 

1.2. Mechanical construction 
The problem of the mechanical construction of the trans
ducer can be summarized under two heads: 
- to effect a perfect connection between the sensitive 
component and the Al-Mg alloy bar so as to ensure perfect 
passage of the wave from one material to the other without 
any reflection; 
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- to construct a mechanical assembly capable of withstanding 
pressures up to 1,000 atm and temperatures up to 100 C and 
ensuring a rise time of <1 μ3βο, perfect leaktightness to 
water and a measuring time of -200 μ sec. 

To cement the quartz (thickness 1.5 mm, diameter 4 mm) to 
the Al-Mg bar various organic adhesives were utilized, the 
aim being to achieve as thin a layer as possible. The ratio 
between the reflected wave and the wave impinging on a thin 
layer is calculated (10) from the expression 

2 τ, m - 1 tfd 
m λ ' 

where m is the ratio of the acoustic impedance of the two 
materials p0 . o 

m = ρ . c 
's s 

s = layer 
d = thickness of the layer 
λ = length of the wave in the layer 

To obtain minimum reflection the impedance of the two ma
terials must be chosen as equal as possible and the adhesive 
thickness cut down. 

The bar thus prepared is mounted inside the transducer 
shell; care must be taken to achieve perfect electrical 
insulation between the two (>1000 Mfi). A coating of conductor 
paint connects the transducer shell to the free face of the 
quartz. The other pole is formed by the bar. 

At first we followed the suggestion of various authors and 
filled the annular gap between the transducer shell and the 
bar with a high polymer (Fig. 1). 

The calibration readings obtained in this way on the shock 
tube were not reproducible and it was impossible to make 
any modifications in case of faulty working because the 
transducer could not be disassembled. 

We then tried to devise an assembly that would allow of 
varying the type of clamp holding the bar (see Fig. 2). 
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It v/ill be seen from the results obtained that the grip 

of the clamp which holds the quartz laterally must be 

extremely light, in order to reduce the signal oscil

lations (see photographs 1 and 2). 

Obviously this requirement adds to the insulation diffi

culties and renders the use of the transducer in. conductor 

liquids problematic. 

The adjustable elamp is visible in the drawing of the 

transducer at Fig. 2. The performances achieved with good 

reproducibility are shown in photographs 3 and 4· 

When the transducer is to be used in water the quartz 

head is protected with a light layer of PVC., which has 

proved satisfa 

over 24 hours. 

proved satisfactorily leaktight in water at 100 C for 

1.3· The electrical circuit 

Fig. 3 gives the block diagram of the electronic equip

ment. 

The recording system has an RC time constant of a few 

milliseconds. The cathode follower input impedance is 

40 Ι.1Ω and the amplification factor approximately 0,8.. 

1.4. Discussion of the transducer characteristics 

1.4.1. Sensitivity 

The transducer is particularly suitable for low and inter

mediate pressures of 1  400 atm; above this range the 

quartz often comes unstuck after a few experiments. 

1·4·2« Ï£ïï£orature_limits 

In theory the limit is set by the Curie point of the 

sensitive component. In view of the differential thermal 

expansion of the various materials involved, and the 

chemical stability of the organic component actually used, 

it is considered unadvisable for the present to use the 

transducer at temperature« of over 100 C. The calibrations 
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effected in water at 100°C and 20°C showed no appreciable 

difference in the signal. 

1.4.3. £Ì£EaEì£2L£££2E 

The component is linear, with an error lower than the 

level of the oscillations. 

1.4.4. Accuracy 

On the various records effected for calibration, an oscil

lation frequency of about 600 Kc/sec is found* This cor

responds approximately to the resonance frequency of the 

lateral vibrations calculated above. 

The amplitude of these signals is such as to hold the 

error on the absolute pressure measurement down to + 10$. 

1.4.5. i
(
esp^nse_time 

The measured response time of the transducer varies within 

a range of 0.6 ■* 1 μ sec (photographs 5, β and.7). 

For frequencies higher than 500 Kc/sec,which occur with 

explosives in water, the signal decays to below the zero 

line during the pressure decrease. Experiments are in 

progress to discover the cause of this phenomenon, which 

did not occur, however, when a barquartzbar assembly 

was used. 

The response time of the piezoelectric transducer can be 

improved by reducing the thickness of the sensitive 

component; this may 'be done by vapourdepositing layers 

of barium titanate directly on the bar head. 

2. STRAINGAUGE BAR TRANSDUCER 

With the object of obtaining a transducer capable of 

measuring higher pressures, also more robust and less 

tricky as regards insulation, a bar type was designed 

and made. The sensitive component consists of a straingauge 

cemented to the side of the bar. 
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2.1. Theoretical details 

There is a good deal of literature available on the subject 

of strain in bars. In the first approach an elementary 

theory may be used (11) which does not take the bar trans

versal strains into account; this treatment of the problem 

takes as its only spatial variable the coordinate ζ measured 

along the axis of the bar. The bar component, of radius a 

and length dz, may be written as: 

C dz. 
*f ej. 

ci 

cz 

2 a d2u 2/ da , ν 
ρ π a dz — 5 = 7ra (. α + -τ-^ d z  σ ; (1) 

where 

Ρ = density of material forming the bar, 

u = u(z,t) is the displacement of the ζ coordinate 

crosssection. 

Since 2 
c, du. da -π d VL 

' d Ζ ' σ Ζ . 2 

3ζ 

Substituting in (ï) and cancelling where appropriate, we 

obtain 
2 2 
au τ, du 

Ρ .' ' —
 =

 CJ ?Γ (2) 

at' az 

This is the equation for the propagation of the plane 

waves, with velocity 

If this theory were valid an elastic strain propagated in 

the bar would not be deformed. 

This condition is approached in reality when the wave lengths 

of the sinusoidal components into which the stress may break 

up are long by comparison with the bar radius. 
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Where this condition is not satisfied, the phase velocity of 
the plane sinusoidal waves varies as a function of the wave 
length and of the Poisson ratio. 

Thus the strain is distorted and the waves of highest frequency 
precede the others. Poisson*s ratio intervenes as Miklowitz 
has demonstrated (12). 

Fox, Curtis and Skalak (13)(14)(15) applied the almost-exact 
theory in stating the equation for wave propagation in a bar; 
almost exact, because in establishing the boundary conditions 
for the problem, they assumed that the end of the bar at which 
the step-function pressure load is applied undergoes no radial 
strain, and furthermore that the bar is subjected to no lateral 
constraint. Using this theory the results obtained agree satis
factorily, for distance of several diameters from the end of 
the bar, with the same authors' experimental findings. 

Where a pressure step is applied to the bar, their theory 
leads to the expression 

f- - 1 + j \ (-B) dB (3) 

= (t - ^2) (4c^ / 3 \ A 2 z ) 3 

o 
where 

e is the strain corresponding to the static pressure, 
ζ is the coordinate of the point where the measuring element 

is positioned, 
c is the velocity of sound in the bar 
A.(x) is the Airy function 
t is the time measured from the moment the wave enters 

the bar. 

Formula (3) yields the strain curve shown in Fig. 4. From this 
figure it will at once be seen that if the wave has to 
approximate the original step of the pressure wave, i.e. to 
have a short rise time, the factor (4 ĉ  /3 \? a z) 
appearing on the abscissae must be large. 
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For this reason the material selected must have a low 
Poisson's ratio and a very high sound velocity. It is also 
advisable to have a bar of small diameter and to position 
the sensitive component close to the end of the bar. 

2.2. Experimental procedure 

We started with steel bars of radius a = 3 mm, with a strain-
gauge cemented on at a distance of 50 mm from the end. 

The measuring circuit is shown in Fig. 5· 

The voltage V corresponding to a strain e is given by the 
formula 

P "D J.L · 1Λ 

V = I K e ̂  TS ο R + R s c 

I = 25 · ΊΟ"-* A = current in circuit 
Κ = gauge factor, i.e., 

2 for the wire strain-gauges and 
120 for the semi-conductor gauges, 

e = strain 
R = strain-gauge resistances = 120 + 120 Ω 
R = damping resistance = 1600 Ω . 

To have some idea of the output voltages obtainable with the 
various types of strain-gauge, a. calculation was effected 

p 
with an assumed pressure of 100 kg/cm . 
V.QQ = 0.52 mV with metal foil strain-gauges 
V.QQ = 31.3 mV with semi-conductor gauges. 

As the background noise amounts to ~0.5 millivolts, the 
semi-conductor strain-gauges have to be used for pressures 

p 
of less than 500 kg/cm . 
The calibrating tests were effected on the shock tube 
described in the appendix. 

2.3. Problems encountered 

2.3.1, Bending of bar 



-164-

In the first experiments with the shock tube a very serious 
phenomenon was observed straight away; this was an oscil
lation of great amplitude and fairly low frequency. 
It was thought that this was due to bending of the bar. 

Two strain-gauges were then placed diametrically opposite 
one another, i.e. with their two generatrices at an angle 
of 180°, and the two oscillations were found to be.in 
phase opposition (see photograph 8). 

By connecting the strain-gauges in series so as to obtain 
the sum of the two signals, the effect of this oscillation 
was completely cut out, as may be seen from photograph 9 
which was taken with the same transducer after the strain-
gauges had been connected in series. 

2.3.2. Sealing_Oroblems 
In order to ensure insulation of the sensitive component 
and to prevent the wires from being swept away by the flow 
of gas or liquid in which the transducer has to operate, 
it is necessary to enclose the latter in a special leak-
tight clamp on the region where the pressure is applied. 

The head clamp was observed to have an extraordinary 
effect; in fact, unless it was practically disengaged it 
produced compressive stresses on the lateral wall of the 
bar, with resultant longitudinal waves. Photographs 10 
and 11 show an example of this effect. 

Actually in the two tests only one alteration was made, 
in that the compression of the rubber ring was varied 
experimentally. 

The need to keep the bar free is, of course, in direct 
opposition to the need to- ensure the sealing especially 
at high pressures. 

In the end a satisfactory compromise was adopted, which led 
to the results that will be given further on (photo
graphs 12 to 17). 
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2.3 · 3 « ^sorbing-the_re^rn_wave 
When the pressure wave propagated through the bar reaches 
the end, it is reflected as a dilatation wave, which arrives 
at the strain-gauge and is recorded (see photograph 9). It-
is therefore -impossible to effect pressure measurements for 
a time greater than the travel time of the wave through 
the bar and back. 

With a view to. removing this disadvantage without making 
the bars too long, the expedient was adopted of placing an 
acoustically adapted dispersing section at the far end of 
the bar (16). The adaptation was achieved by terminating 
the bar in a cone and cementing an Araldite semiellipsoid 
directly on to the cone, with its centre coinciding with 
the cone apex. This form satisfies the condition 

p c S + p c S = c o n s t a n t s s zs e e za 

Ρ = d e n s i t y 
c = velocity of sound 
S = cross section area 
s and a are the indices for the steel and the Araldite. 

With this arrangement, the wave travelled on into the 
Araldite, which has only about half the sound velocity of 
steel and a very high damping factor; so that the return 
wave was almost totally destroyed. 

Photograph 18 and Fig,6 show a transducer constructed on 
the above principle and a section drawing of the unit. 

For certain experiments we needed a transducer capable of 
measuring two short pulses widely separated in time. To 
cut out even the weak residual return wave, a transducer 
was built consisting of two bars laid end to end in con
tact but not joined (Fig. 7). The first pulse passes through 
the first bar, is registered, passes through the second 
bar, is reflected at the end as a tensile wave and, on 
reaching the point where the bars meet, does not pass into 
the first one; the latter is therefore free to receive a 
second pulse which can arrive a considerable time later 
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without any risk of being confused with a return wave in the 

transducer. 

2.4. Comparison between the theoretical predictions and the 

experimental results 

For a given bar of a given material, with the sensitive 

component located in a given position, the adimensional 

magnitude 
z
n 4 c

3
 4 

Β = (t  / ) ( 2° 2 )
3 

c
o 3 tf a ζ 

o 

assumes the significance of a measured time from the moment 

when the disturbance propagated with velocity c reaches the 

abscissa point ζ where the gauge is positioned. 

Then by converting the scale for a bar in which: 

a = 3 mm 

cQ = 5,300 m/sec 

\? = O.3 

ζ =30 mm 

Β = (t  30 10^) 5.3 · 1θ3 ( Λ s J = 
5.3 · 10

J
 3.9 «10"

¿ 9·1θ"°30·1θ"-:ί 

- ( t - H ^ ) 5'3 i 1°6 vw = 
= (t - 5.66 · 10~6) 2.O4 · 106 

whence .n-6 
t = ( o" 04. + 5.66) seconds. 

Hence in Fig. 4 -each interval corresponding to increments 
of B = 3,5 corresponds to time increments of 

3 5 t = 2Ó4 = Ί·72 μ seconds. 

A similar conversion was made in the case of a steel bar 
in which 
a = 2 mm 
cn = 53OO m/sec 
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\Î = 0.3 

ζ = 30 mm 

It was found that 

t = (ν, να + 5·66) seconds. 

In the case of a beryllium bar with 

a = 3 mm 

c = 12,800 m/sec 

\> = 0.035 

7, - 30 mm 

we find 

t = (rfø + 2.34)10
 seconds. 

In Figs 8, 9 and 10 the diagram at Fig. 4 is retraced with 

the time sho\vn on the ordinate. The same figures also show 

a registration record. 

All three cases agree very closely as to the rise time; as 

regards the oscillation frequence', however, the beryllium 

record is not in agreement; nevertheless, taken as a whole, 

it may be said that the theory agrees satisfactorily with 

the experimental findings even with regard to the amplitude 

of the oscillations. 

Photographs 12, 13, 14, 15, 16 and 17 give some examples 

of registrations effected during the calibration process. 

3. CONCLUSIONS 

The transducer studied has the following characteristics: 

3.1. Sensitivity 

o 

Pressures as lov; as 10 kg/cm"" can be measured with a satis

factory signal/noise ratio and without recourse to ampli

fying systems. 

By cutting out the highest noise frequencies the figure can 

be brought down to 45 kg/cm . 

Maximum pressures, using standard straingauges, can range 
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from 10,000 to 15,000 kg/cm2. 
Experiments were carried out up to 2,500 kg/cm . 

Higher sensitivities can be achieved by using a material of 
lower elastic modulus for the bar. 

3«2. Temperature and irradiation limits 

The temperature limits are imposed by the strain-gauge; 
standard models are obtainable for high-temperature work 
(4OO - 800 C). In such work a bar is used, without rubber 
rings. The semiconductor strain-gauges can operate up to 
200°C, 
shift. 
200 C, being compensated up to 100 C by the gauge-factor 

Irradiation tests are in progress on strain-gauges with 
ceramic insulation (EUR 2649 e - "In-Pile Application of 
Strain-Gauges" by P.S. Weltevreden). So far results have 
been obtained up to a flux of almost 10 n.v.t. (fast 
neutrons). In addition it is possible to reduce the neutron 
flux by shielding the sensitive component. 

3.3. linearity error 
The element is linear with an error lower than the level of 
the internal oscillations. No difference was found between 
the calculated value of the signal and the value recorded 
during calibration. 

3,4.. Accuracy 

Exact evaluation of the pressure is impeded by the presence 
of oscillations connected with the mechanism of wave trans
mission on the real bar, as all the appended photographs 
show. The error can be estimated at + 10̂ ί. This value can 
be lowered to + 5?» for pressures <400 atm. 

Another source of error is the length of the strain-gauge 
which lengthens the pulse by a time 

t =-i 
co 
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1 = 2 mm length of strain-gauge 
c = velocity of sound in the bar. 

For a steel bar t = 0.32 μ sec, 
for a beryllium bar t = 0.15 μ sec. 

3 . 5. Rise time 
In order to reduce the rise time, the 6 mm diameter steel 
bar, which gave a rise time of 1.8 μ sec (photographs 14 and 
15), was abandoned for a bar of the same material but with 
a diameter of 4 mm, which gives a rise time of 1.2 Msec 
(photographs 12 and 13)· To bring the figure still lower v/e 
used beryllium, which has a very high sound velocity 
(12,800 m/sec as against 5,300 m/sec in steel) and an 
extremely low Poisson's modulus (0.035 as against 0.29 in 
steel). 

In this way we obtained a transducer with a rise time of 
0.3 Msec (photographs 16 and 17), which is comparable with 
the time of travel of the wave through the strain-gauge. 
It must be borne in mind, however, that beryllium is a 
toxic substance and special precautions are necessary. 

The transducer that we constructed is extremely easy to use 
in that it gives highly reproducible readings (as demon
strated in the underwater measurements), is strong, needs 
no special calibrations, can be taken apart and reassembled 
with the utmost ease, and is not subject to moisture on 
account of its lov/ resistance (240 Ω ). 

P A R T II 

DYNAMIC STRAIN MEASUREMENTS 

In order to effect dynamic strain measurements of structures 
the behaviour of strain-gauges has been studied. 

For small elongations as occur in the elastic field (up to 
3,000 μ strain, corresponding for steel to a stress of about 
60 kg/mm2) semi-conductor strain-gauges were utilized, per-
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mitting (especially for very small elongation) a very high 
signal/noise ratio. It has been seen that there are virtually 
no problems: 
The strain-gauges follow a strain-rate of 500 μ strain/ μ soc, 
without showing phenomena of hysteresis1, which, as was thought 
initially, could be developed in the thin cement coat. 

The strain-gauges used are of the type P01-16-120 and 
P01-05-120 of MICRO SISTEM and KGN 3,5 E1 and KGN 3,5 E2 of 
KYOWA with Eastman 910 cement, which has given satisfactory 
results. 

Up to strains of 3$ normal strain-gauges of type BUDD, Fine 
Line Gauges C.9-F1x4-M 25, and FRISCHEN, MFS-F6 120-19/0.9.1 lb, 
have been used. No particular difficulties have been encountered. 
Accurate controls have been effected comparing the residual 
strain measured by the strain-gauges with the permanent strain 
measured with a micrometer and with optical methods. The dif
ferences found fell within the measurement errors. 

On the contrary, at higher strains, in the order of magnitude 
of 5-10$, difficulties occurred. In the cases where strain-
gauges of BUDD, type HE 121 with GA-5 cement, and BALDWIN-
LIMA-HAMILTON, type PA-3, were used, which in statics are 
capable of measuring an elongation up to 15$, it was found 
that in dynamics, when the strain-rate went up to some 
hundreds of μ strain^sec, the strain-gauges broke away from 
the structure before reaching 4$ elongation. However, due 
to a special thermal treatment of the cement, elongation 
values of 7$ were obtained. 

If the strain of a structure is associated - as in the case 
of a sphere or a cylinder referred to in the report 
No. EUR/C-IS/673/66 e - "The response of a vessel to an in
ternal blast loading - Limits of model tests - Influence of 
strain-rate" - with the displacement, in a perpendicular 
direction, of the wall on which the strain-gauge is cemented, 
and if this displacement has a velocity of 100 -s- 200 m/sec, 
accelerated, by 1 + 2.10 m/sec , the strain-gauge will break 
due to the great forces of inertia which act on the welded 
ends. In such cases it is advisable to utilize very fine 
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connection-wiros welded only in one point, so as to reduce 
to a minimum the masses involved. 
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APPENDIX 

S H O C K T U B 

In order to calibrate the transducers it was necessary to con

struct a shock tube, which we used to generate pressure steps 

of exactly known height. To obtain the high pressures needed, 

we used helium for the high and argon for the low pressure. 

These two gases were chosen because they are almost perfect 

and have widely different sound velocities (1020 m/sec and 

321 m/sec at 20 C), so that a ratio can be established be

tween the reflected pressure value and the very high driver 

pressure value. 

Figure No. 11 shows the general design of our tube. Photo

graph 20 shows the rig mounted on tracks. Photograph 21 shows 

the coupling system on the driverdriven sections. 

There are three lateral measuring windows into which probes 

are inserted, to determine the travel time of the wave from 

point to point and thus measure its velocity, from which the 

incident and reflected shock pressures can be calculated via 

the RankineHugoniot equations. 

The velocity is measured by two methods: 

first, by a probe with a lightray which is interrupted by the 

shock wave passing along the tube; the photomultiplier gives 

a 2volt signal with a rise time of 0.5 μ sec. As the measuring 

base is traversed in about 500 μββο, the relative error is 

1 /oo, which is well below the limit for practical require

ments. With this system the wave speed was most carefully 

checked on two adjacent bases, and the differences observed 

være easily comprised within the measuring errors (< 0.5 μ sec). 

The second method consists in the use of piezoceramic trans

ducers (Fig. 12). No particular gear was used to break the 
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diaphragm, which fails automatically when the helium pressure 
is raised. 

A special study was carried out on the diaphragm. To prevent 
fragments from breaking away and damaging the transducers at 
the end of the tube, failure must be primed by cutting grooves 
in the diaphragm. If they are cut too deep, however, the dia
phragm does not open completely, thus setting up distrubances 
which delay the formation of the shock wave and reduce its 
amplitude. 

Measurements of the time of opening of the diaphragm yielded 
values varying from 30 to 70 μ sec with grooves of the right 
dimensions. 

As a result of the prestraining of the diaphragm, the opening 
is perfect (see photograph 22). 

p 
Our tube was designed for a pressure of 3,000 kg/cm and is 

p 
at present operational up to 2,000 kg/cm . Up to now, how-

p 
ever, there has never been more than 1000 kg/cm in the high-
pressure chamber, giving reflected shock pressures of about 
1500 kg/cm2. 
In our experiments the transducer was mounted on the end, its 
axis parallel with the tube axis. In this way the whole pres
sure-sensitive surface of the transducer receives the impact 
of a wave whose rise time is of the order of one nanosecond. 
Wishing to obtain pressure waves of variable rise time, in 
order to study the behaviour of the transducer in such con
ditions, we mounted a vertical shock tube (see photograph 19) 
and filled it with water to various levels. With this arrange
ment the wave, which is propagated in the argon, has to travel 
a certain distance in water before reaching the transducer. 

With pressures of up to 500 kg/cm , the wave front is blunted 
and rise times of up to 10 μββο can be obtained. 

These phenomena are studied in report No. EUR/C-IS/705/66 e -
"Some theoretical considerations and experimental data on 
propagation and reflection of underwater pressure and shock 
waves" by H, Holtbecker and A. Maserati. 
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PHOTOGRAPH 1 
pressure 125 atm. 

upper beam - clamp too loose 
lower beam - clamp too tight 

PHOTOGRAPH 2 
pressure 125 atm. 

correct clamp tightness 

10 μsec/square 

1 V/square 

10 μsec/square 

1 V/square 

10 μ sec/square 

QUARTZ PRESSURE TRANSDUCER : 
INFLUENCE OF HEAD CLAMP ON SIGNAL OSCILLATIONS 
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PHOTOGRAPH 3 
pressure 122 atm. 

PHOTOGRAPH 3a 
pressure 242 atm. 

PHOTOGRAPH 4 
pressure 462 atm. 

PHOTOGRAPH 4a 
pressure 860 atm. 

1 V/square 

10 μsec/square 

2 V/square 

10 μsec/square 

2 V/square 

10 μ sec/square 

5 V/square 

10 μ sec/square 

QUARTZ TRANSDUCER 
RECORDS AT VARIOUS PRESSURES 



ι 
2 V/square 

1 μ sec/square 

Photograph 5 

pressure 250 atm. 

10 ^sec/square 

10 μsec/square 

PHOTOGRAPH 8 

signals from two straingauges 
mounted diametrically opposite each 
other on steel bar of 4 mm diameter 

1 V/square 

—,, 1 μ sec/square 

l 
Photograph β 

pressure 125 atm. 

■■■■■■■■I 
M l 

■■■■■■■■■1 
■■■■■■■■Hil 
I? ÌBH.IHI' 

I—» 

10 μ sec/square Ĵ 

20 μsec/square 

PHOTOGRAPH 9 

signal from the same two straingauges 
when connected in series 

QUARTZ TRANSDUCER 

RECORD SHOWING TRANSDUCER RISE TIME 

BAR TRANSDUCER 

BAR BENDING COMPENSATION 
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ma 
PHOTOGRAPH 10 
Clamp too tight 

PHOTOGRAPH 11 
Clamp loose 

2 μsec/square 

10 μsec/square 

2 μsec/square 

10 μsec/square 

BAR TRANSDUCER 
INFLUENCE OF HEAD CLAMP ON SIGNAL OSCILLATIONS 
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PHOTOGRAPH 12 

pressure 125 atm. 

PHOTOGRAPH 13 

pressure 440 atm. 

10 mV/square 

2 μ sec/square 

10 μsec/square 

50 mV/square 

-— 2 μsec/square 

-— 10 μ sec/square 

4 mm diameter steel bar transducer 

Records showing the transducer rise time 
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Photograph 14 

■SB 

■ 
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Photograph 15 

125 atm. 

2 μsec/square 

10 μSθc/square 

225 atm 

2 μsec/square 

10 μsec/square 

6 mm diameter steel bar transducer 

records showing  transducer rise time 

 damping of the return wave 
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I 

PHOTOGRAPH" 16 

pressure 125 atm. 

■ ■ ■ ■ ■ I 
PHOTOGRAPH 17 

pressure 375 atmc 

5 μsec/square 

1 μsec/square 

-— 5 μsec/square 

— 0,5 μ sec/square 

6 MM DIAMETER BERYLLIUM BAR TRANSDUCER 

RECORDS SHOWING RISE TIMES 
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PHOTOGRAPH 18 BAR-TRANSDUCER 
A Assembly 
Β "Components 
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PHOTOGRAPH 19 
DRIVEN SECTION OF VERTICAL SHOCK TUBE 
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PHOTOGRAPH 20 

HIGH-PRESSURE SHOCK TUBE 
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PHOTOGRAPH' 21 

COMPRESSED AIR CONNECTION 
BETWEEN DRIVER AND DRIVEN SECTIONS 
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prestrained diaphragm 

diaphragm after test effected 
with open driven section 

PHOTOGRAPH 22 
SHOCK TUBE DIAPHRAGM 



-film of conductor paint 

quartz · 

annular gap filled 
with various high 
.polymers 

.bar 

insulating material 

connection 

FIG. 1 QUARTZ TRANSDUCER (first solution) 

Regulating screw 

Clamp holding quartz 

At- Mg Alloy 

QUARTZ TRANSDUCER FINALIZED 
SOLUTION 

FIG. 2 



Quartz transducer mounted in shock tube 
and block diagram of electronic equipment 
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BAR TRANSDUCER 

DIAGRAM OF ELECTRONIC EQUIPMENT 
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Comparison between theoretical and experimental strain values 

versus time for a steel bar of diameter 6 mm 
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Comparison between theoretical and experimental strain values 
versus time for a steel bar of diameter A mm 
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EVALUATION OF THE TENDENCY TO FRACTURE IN MATERIAL 
UNDERGOING IMPULSIVE LOADING USING SMALL SPECIMENS 

by 

H.C. Van Eist 
TNO, Delft 

The Netherlands 

1. Introduct ion 

If the time of load application to a body until its maximum value becomes 
of the order of the time for propagation of mechanical disturbances in this 
body, one has to do with transient impulsive loading.For a small body, even 
at high stress rates, multiple reflextions cause a smearing out of the stress 
configuration, which then more resembles the situation at static or quasi-
static loading; however the mechanical properties, as elastic constants and 
(yield) strength values, aan be quite different. 
Material in contact with detonating explosives or exploding gas- or liquid 
mixtures or impacted at failure of pressurized construction parts, usually 
will be submitted to impulsive loading. 
The generated pulse at this impulsive loading is qua amplitude proportional 
to the acquired velocity of the struck free bounding surface. 
When the striking occurs by fast impact of a projectile the length of this 
impacting projectile will determine the time width of the generated pulse. 
Striking the free end of a pressure bar centrically with a projectile bar 
of the same material and diameter as the pressure bar and with length 1, 
which can e.g. be fired from a gas gun, one obtains a time width of the 
generated block-pulse of 2 — (c = sound velocity in.bar material). 
Detonating a small explosive mounted on an anvil of the same diameter and 
material as the pressure bar and contacting this pressure bar, stress pulses 

2 of ca 5 .usee half value time and peak values over 100 kgf/mm can be generated, 
when for the material of the pressure bar a (hard) material is chosen, with 
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2 
yield strength well above 100 kgf/mm . General aspects of impulsive loading 

of metals are reviewed in [Î], QQ, £
3
3· 

Stress changes in time similar to these latter pulses have been found to 

occur at the tip of a running brittle fracture in steel plate. This was 

observed by application of ultra high speed photographic and electronic 

equipment with which the detailed propagation of the brittle fracture and 

its connected dynamic strain configuration at the apex was recorded in the 

Robertson test (cf. Π
1
*}, QS])· It might be memorized that these recordings 

revealed an intermittent propagation of the brittle fracture in discrete 

steps, with length d, which need a certain time τ for realization. Both d 

and τ decrease with decreasing temperature; their ratio — representative 

for the average fracture velocity only slightly increases with decreasing 

temperature. In a particular case för a low carbon steel, near its arrest 

temperature of ea 20 degrees centigrade, these step lengths d and their step 

times τ amounted to 25 mm and 20 .usee resp.; some 50 degrees centigrade lower 

d and τ were diminished to less than 2 mm and 2 .usee resp. The realization 

of the fracture propagation steps is connected with the depicted fast stress 

time changes (cf. Γ
1
*!, [s^)· 

It might be stressed that in our opinion the Robertson test can be considered 

to be fairly well representative for brittle fracture as occurring in practice, 

for the length and width of the specimen are large as in a real construction; 

the thickness of the plate, which has a pronounced influence on brittleness 

is retained and the specimen is under a static load (of e.g. 60% of the 

yield strength) like in a real construction. 

The arrest temperature as determined in the Robertson test, being the tem

perature at and above which an initiated fracture will be arrested and below 

which it will be propagated, can consequently be regarded as a relevant 

indication for the danger of brittle fracture with respect to the working 
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conditions of stress and temperature. The large size of the specimens in 
the Robertson test makes it however desirable to look for a representative 
test on small specimens, indicating brittleness in a reliable way. In par
ticular when one wishes to study the influence of neutron radiation damage 
on brittleness of steel this becomes of obvious importance. It was anticipated 
that the communication to small specimens of stress changes in time, as 
occurring at the tip of a running brittle fracture in the Robertson test, 
will allow to deduce from their effect on these specimens an indication of 
brittleness. 
In the following is described how small specimens can be submitted to such 
stress time pulses, artificially generated in a pressure bar as mentioned, 
and how an estimate of brittleness (or embrittlenement) of the specimen 
material thus can be found. 

2. Experimental 

A cylindrical specimen with length and diameter of 6 mm, is mounted between 
two similar pressure bars of 6 mm diameter and length 250 mm. Cf. fig. 1. 
The specimen is submitted to a certain stress time performance when the 
free end of a pressure bar is impacted. 
Striking this pressure bar via an anvil of the same material and diameter 
as the pressure bar by detonation of a fast explosive one generates an 

2 elastic pulse of ca 130 kgf/mm and 5 .usee half value time, incident to the 
specimen. This pulse will be partially reflected and partially transmitted 
into the second bar. 
All endfaces are polished and perpendicular to the axis to avoid stray 
reflections. 
The recording of the pulses in the pressure bars proceeds with the aid of 
strain gauges or cylinder condensers to these bars on a C.R.O., triggered 
to a suitable single sweep by the detonation of the explosive. Examples are 
given in fig. 2. 
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The bars are made from a hardened steel (PCN^DemkaHolland) with hardness 
2 

Re = 55 and yield strength« 150 kgf/mm , causing the stress waves to remain 

elastic and allowing to ignore their attenuation in the bars, compared to that 

by the specimen (cf. fig. 3). The temperature of the specimen can be adjusted 

with a surrounding brass container in which a liquid is circulated from a 

thermostat. When the performance of the elastic stress a- in the pressure 

bar is: 

<r= 0 for t >  + i f and t <   ¿ τ and er = er(x,t) for   · | τ£ t < * t ì <S , 
c 2 c 2 C 2 c ¿ 

one can assume for the energy contents Η of this pulse: 

c 2 

with A = cross section of the pressure bar; E = Young's modulus; 

c = \j -p - sound velocity in the pressure bar material with density ρ ; 

f = time width of the pulse. 

The energy absorption by the specimen can now be approximated as HrLrL, 

with HT, H_ and H» the energy contents of the incident, reflected and 

transmitted pulse. 

This can be plotted in a relative way as t¿ = (HTrLrL)/(H FL) versus 

temperature. 

For steel, generally b.c.c. metals, a transition phenomenon can be observed, 

i.e. a fast increase of the energy absorption with temperature in a rather 

small temperature interval ( ÇH 50 degrees centigrade), preceded and followed 

by a small increase of energy absorption with increasing temperature. This 

can be connected with the brittleness of the material, as to the arrest 

temperature of a steel plate with a certain thickness will corresponda 

certain (relative) energy absorption level in the above described stress 

wave attenuation test. 

This will roughly indicate the restriction of tolerable (elastic) energy 

changes in ca 5 .usee just avoiding fracture. 

The embrittlement by deterioration as e.g. aging or irradiation can be follow

ed from the shift in temperature of the relative energy absorption levels, 

in particular that belonging to the arrest temperature, which will rather 

equal the shift in arrest temperature, as could be verified (cf. fig. 4). 

It might be remarked that these brittleness interpretations can be similarly 
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given for notch impact results. 

Besides the energy absorption, also the dynamic stress train diagram of the 

timeendurance to which the specimen is submitted at transmittance of the 

stress pulse, can be deduced from the recordings. 

Denoting the displacement of the first face of the specimen by 5.i(t) and of 

the second face byÇ„(t) one has: 

°I
(t) +

°R
( t ) =

 P
c
?L

(t)
 ändert) = Ρ

 c
\ (t) 

(I, R and Τ refer to incident, reflected and transmitted pulse resp.) 

Consequently the length decrease ^(t) of the specimen is: 

|(t) rg^t) 52(t) = ^ ƒ JtTjit') +€rR(f) -<TT(t')]-dt' 
The stress tr(t) in the specimen, correpsonding ΐοξ(ΐ) will be on average: 
o-(t) ={CPI(t) -«^(t) +<TT(t)|/2. 
The dynamic stress strain diagram i.e.:tr(t) versus£(t), can thus be 
determined. Pending a direct electronic recording this proceeded manually 
with a mechanical integrator from the optically magnified oscillograms of 
the incident, reflected and transmitted waves. 

A more detailed description of the applied experimental technique and the 
evaluation methods is given in Q 6], where also is referred to other litera
ture dealing with versions and aspects of this "split Hopkinson bar experiment". 

3. Results 

"Energy absorption versus temperature" curves for some steels in delivery 
condition and after increasing neutron radiation fluence values, as deduced 
from recordings in the stress wave attenuation tests are given in fig.5,6,7 and 
8. In the figures 5a, 6a, 7a and 8a the temperature.shift ΔT c in the 
temperature Τ = Tc , bounding equal areas between the relative energy 
absorption curve and the lower and upper level of the relative energy 
absorption resp., is indicated. In the figures 5b, 6b, 7b and 8b the 
temperature shift ΔΤ in the temperature T s Τ , referring to the 50% re
lative change in the relative energy absorption level and the temperature 
shift ΔΤ- according to the persistent relative energy absorption at the 
isothermal Robertson test crack arrest temperature (C.A.T. = Τ ) is indicated. 



198 -

Dynamic stress-strain diagrams deduced from such recordings at -50 and +150 
degrees centigrade are given in fig. 9, 10 and 11. 

H. Discussion 

The influence of neutron fluences on the "energy absorption versus tempera
ture" curves, determined in the stress wave attenuation test and the evalua
tion of embrittlement from these are discussed in £7} and {V]. 
The dynamic stress-strain diagrams apparently show sometimes a considerable 
increase in Young's modulus (unfortunately however the data of the stress-
strain diagrams at (quasi) static loading are not/yet available). Moreover, 
an increase of plastic deformation at decrease of the stress occurs, ie. a 
delayed yield is suggested. This effect is stronger with aluminium than with 
steel and becomes more pronounced at higher temperature. 
The jump in the "energy absorption versus temperature" curve at transition 
in the stress wave attenuation test is much smaller than is notch impact 
tests. This is connected in our opinion to the fact that the deformation 
is not proceeded to fracture as in usual technological destructive tests. 
At destructive tests the increase in temperature also implies an increase 
in test time, as the deformation can proceed Longer at higher temperatures 
before it is terminated by fracture. 
With b.c.c. metals the additional effect of the brittle-ductile transition 
enhances this increase with temperature. Be]/ow the transition temperature 
b.c.c. metals choose a deformation mechanism (cleavage and (or) twinning), 
which restricts the allowable deformation to a rather small value; fracture 
thus terminates the deformation process rather soon and therewith the test 
time. Above transition the b.c.c. metals choose a deformation mechanism (glide) 
that allow deformation to extend to a much .narger value. When fracture finally 
terminates this deformation process the test time might have reached duration 
values ten times as large as below transition. Consequently , the energy 
absorption above transition also becomesconsiderably larger than below trans
ition. From a physical point of view the change of the time parameter when 
changing the temperature implies a complication at interpretation. 
The advantage is of course the larger dispersion in results below and above 
transition. The fact that in technological iestructive tests the result is 
obtained after an integration in time, instead of being based on a state 
of equilibrium or a moment photo as in physical experiments, implies a depen
dence on the followed path during this time integration. The sometimes 
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pronounced scale influence and occurring contradiction in results of différent 

tests, which can lead to inversions in the order of merit are well known 

consequences connected with this. 

In the stress wave attenuation test the deformation is not proceeded to 

fracture and the test time is mainly determined by the incident stress 

wave. Yet a temperature effect remains, due to the increased dispersion 

effect and decreased propagation velocity of the plastic stress wave in 

the specimen at increase of temperature, in particularly when passing 

transition. 

At deterioration of the material a shift in the transition region of the 

"energy absorption versus temperature" curves at stress wave attenuation or 

notch impact tests can usually be observed, allowing to estimate the increase 

in transition (arrest) temperature. 

Also a decrease of the energy absorption in the ductile region indicates 

embrittlement. As after aging usually the strength values increase and the 

deformation ratet decreases (at least does not increase) one can expect an 

increase of the energy absorption rate per volume unit σε , if the increase 

of the strength figures predominates the decrease of the deformation rate 

values. A decrease of the test duration timeî' can account for the decrease 

in energy absorption. This decrease will occur, if deformation is determined 

earlier by fracture, i.e. when embrittlement takes place. 
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EXPERIMENTS TO EXAMINE THE EFFECT OF RAPID STRAIN RATES 
ON FULL SCALE AND MODEL SCALE REACTOR MATERIALS 

by 
N.J.M. Rees 

AWRE, Foulness 
United Kingdom 

1. Introduction 
A mechanical system and a scale model of it are said to be 

dynamically similar when scaled forces are exerted at scaled times on 
similar portions of the system and the model. Dynamic similarity will 
be maintained between the model and a full scale explosion if the 
linear dimensions of the explosive charge and the mechanical system 
are divided by a factor S and the model constructed of similar 
materials. Thus if M is the mass of the full scale charge, R is a 
full scale length and t a full scale time, then the corresponding model 
scale values are M/S-5, R/S and t/S. Shock wave pressures on the full 
and model scales will be the same (.1,2). The scaling factors for some 
physical parameters that are often measured in full and model scale 
experiments are listed in Table 1. 

Certain parameters cannot be correctly scaled in a model which has 
been derived from a mechanical system by simple linear scaling. The 
acceleration due to gravity does not change between the model and full 
scales. It is also necessary to use substitutes for some of the full 
scale materials or components. For example the usual coolant used in 
fast reactors is liquid sodium. However in model experiments to 
investigate the mechanical safety of fast reactors to internal 
explosion using chemical explosive charges water is often used to 
represent the sodium, as safety problems are difficult to solve if hot 
liquid sodium is used as coolant in the model. The safe introduction 
of a temperature sensitive explosive charge into hot sodium in the 
model reactor would require a major modification of the structiare 
round the charge, thus impairing the dynamic similarity between the 
model and the full scale system. 

Experiments on single tank reactor systems (3,4) have shown that 
only a few percent of the energy released in an explosion in tlie core 
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is available to damage the major containment structures such as the 
main sodium tank and the vault roof. The energy absorbed from the 
shock wave by the breeder, the core support structure and the 
reflector has an important effect on the strength of the shock reaching 
the outer containment structures. Thus to preserve similarity 
between the model and the full scale structure the parts of the model 
that will be deformed by the explosion should be made of a steel 
having a (stress, strain) curve similar to that of the full scale 
structure at its operating temperature. Suitable dynamic (stress, 
strain) curves for stainless steels at elevated temperatures are not 
currently available and the best match that can be obtained at present 
is to equate the statically measured yield stress, ultimate tensile 
stress and the permanent elongation after failure. Due to the 
substitution of cold water for the hot sodium coolant, the model will 
now be at about 20 C instead of 400 C. If the model reactor were 
made of stainless steel, then it would be much stronger at room 
temperature and have a greater elongation at the maximum stress; this 
is shown in Table 2. The properties, in the temperature range 300 to 
500 C, of a commonly used stainless steel, EN58B, are similar to those 
of the mild steel EN2 at 20 C, and this mild steel was used to make 
the model of PFR design shown in my other paper (5)· 

Thus the problem is to compare the dynamic properties of the 
stainless steel at elevated temperatures, say 250 C and 450 C, at the 
full scale rate of straining with the properties of the mild steel 
being used to make the models when it is strained at the model rate of 
strain. The ratio of the model rate of strain to the full scale rate 
is equal to the scale factor. (Table 1 ). 

2. Experiments with Small Specimens 
A high rate of strain specimen testing device similar to the type 

described by Austin & Steidel (6), based on an original design by 
Shepler (7), was available (Figure 1 ). This was considered suitable 
to compare empirically the tensile properties of the two steels at the 
appropriate rates of strain. In our models most of the main tank, 
diagrid support structure and the breeder are made of sheet steel 
l/16th in thick. This sheet material was used to make the specimens, 
based on British Standard specification 3A, 4-, having a gauge length of 
one inch. Both EN2 and EN58B certified material was made up; it was 
found necessary to reinforce the ends of the specimens to prevent 
slipping and deformation at the clamping bolt hole. Four square metal 
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plates, the same size as the square ends of the specimens, were spot 
welded, one on each side of the gripping ends of the specimen. The 
spot welds were arranged so that the test section was not reached by 
the heated zones near the welds. 

The straining system was originally activated by exploding a 
charge of black powder in the explosion chamber. However black powder 
is dangerous to handle and the pressure developed in the chamber depends 
on the confinement i.e., the properties of the specimen being tested, 
and was considered an unsatisfactory explosive material for these tests. 
This was replaced by an electric detonator equivalent to l.lg of PETN. 
To attenuate the direct shock from the explosion the chamber was lined 
with a thin layer of polythene and the remaining free space packed with 
expanded mica granules. The velocity of the piston was reduced when 
testing the stainless steel specimens by using a smaller detonator and 
increasing its mass. 

In our l/16th scale model PFR experiments (5) the time required to 
rupture the breeder and reflector structure was in the range 0.5 to 
1 ms. In the tensile test apparatus the time required to break the 
specimen was measured and adjusted to give times of just under 1 ms. 
Under these conditions most specimens break near the middle of the 
gauge length. 

A small furnace was designed to fit round the stainless steel 
specimens and heat them uniformly. The temperature was maintained 
with a thermocouple throughout the experiment. 

A number of parameters were measured in each experiment: two 
recessed pressure gauges (type MQ20) measured the loading pressure in 
the explosion chamber; accelerometers measured the acceleration of 
both the piston and the base; a capacitance displacement transducer 
measured piston movement and strain gauge load cells measured the 
forces acting on each end of the specimen. The device was supported 
on a massive steel and concrete base so that the piston moved vertically 
upwards. The transducer signals were recorded on a DC to 250 kc/s 
response tape recording system for analysis on playback into an 
analogue computer. 

If Mp is the mass of the piston, M_ the mass of the frame, x, the 
vertical displacement of the piston end of the specimen and Xp the 
displacement of the frame end of the specimen, both measured from an 
arbitrary fixed zero, then Mp 5t, + F/] (t) + Mpg = Ap P(t) (2,1) 

and Mp x2 - F2(t) + Mpg = -Ag P(t) (2,2) 
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where P(t) is the mean measured pressure in the explosion chamber, Ap 
is the piston area and AB is the base.area on which this pressure acts; 
F^(t) and Fp(t) are the forces measured at top and bottom ends of the 
specimen. In our experiments since the specimen is short and the 
piston velocity low, the number of reflexions of stress pulses in the 
piston will be large and the mean force F(t) can be used in equations 
(2,1) and (2,2). Since (x^ - Xp) is also measured directly it should 
be possible to derive two versions of the specimen (load, deflexion) 
curve from the measured data, one from the direct measurements and the 
other by solution of the above equations (2,1) and (2,2) using an 
analogue computer. 

The experiments with this equipment have just begun; satisfactory 
measurements are being obtained, though no analysis of the data has yet 
been carried out. 

A series of static tests on EN2 and EN58B in this specimen size 
are also being carried out for comparison with the dynamic results. 
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PARAMETERS ON FULL SCALE AND ON A MODEL SCALE OF 

Physical Quantity 

Charge Mass and 
other Masses 

Shock Wave Pressures 
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of Shock Pressure 
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TABLE 2 

PUBLISHED PROPERTIES OF STAINLESS STEEL TYPE EN58B 

AND MILD STEEL EN2 

Steel 

Stainless 

Steel 

EN58B 

Mild 
Steel 
EN2 

Temperature 

°C 

20 
100 
20p 
300 
400 
500 

20 

0.5% Proof Stress, 
tsi 

16.7 
137 
13.0 
12.2 
12.4 
11.2 

I3.2 

Maximum Stress, 
tsi 

42.6 
34.O 

3O.7 
3O.O 
3O.2 
27.9 

20.1 

Elongation, 

534 
48.8 
40.7 
38.4 
40.7 
38.3 

36 
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EFFECT OF STRAJJT RATE ON FRACTURE STRENGTH OF 
CONVENTIONAL STRUCTURAL STEELS 

W.S. Peliini 
Office of Naval Research 

US Naval Research Laboratory 
Washington, D.O., United States 

The most desirable attribute for a structure that is 
expected to withstand fast loading (in the sense of the application 
òf forces exceeding usual design limits) is the ability to withstand 
plastic deformation coupled with an inherent resistance to the 
initiation and propagation of fracture. In broad terms, the specific 
level of elastic or plastic strain that may result' in the development 
of fracture is a crucial factor in determining the response of the 
structure to fast loading. This factor must be analyzed in terms of 
the inherent response of structural material to conditions that induce 
the·initiation of fracture. Accordingly, the starting point for any 
analysis of structural response to a spectrum of loading conditions is 
the fracture toughness of the metal. 

As a first approximation in analyses of structural strength, 
one of two assumptions must be made: (l) that the material is free 
of crack-like defects or that (2) it contains such defects. It is 
well known that steels which can propagate brittle fractures will 
deform extensively in the absence of crack defects, at either low or 
high rates of loading. Explosion bulge tests have provided extensive 
proof of this fact. Realistic analyses of the effects of dynamic 
loading must include the assumption that defects may be present, if 
limiting conditions are to be considered. Otherwise, the analyses 
vail be optimistic to a degree that may be seriously misleading. 

Extensive studies of the ductility of conventional mild 
steels in the presence of notches or cracks have demonstrated that 
dynamic loading.may decrease resistance to fracture initiation to 
low levels, under certain conditions. In fact, these studies have 
concentrated on the question of the specific conditions that either 
provide or preclude marked decreases in notch ductility due to 
dynamic loading. For steels having transition temperature features 
the most important factor is the temperature of loading relative to 
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the transition temperature range. 

As a starting point of such analyses it is most instructive 
to consider the effect of temperature on the fracture propagation of the 
steel. This provides an assessment of the size of the plastic zones at 
crack tips (fracture toughness) under the most rapid (limiting) con
ditions of loading rate. The plastic zone size is the factor which 
determines the energy absorbed in the fracture process for initiation 
or for propagation. Rapid loading cannot reduce the size of the plastic 
zone in initiation for the base material to below that which is develop
ed under conditions of dynamic propagation of the fracture. Dynamic 
fracture propagation studies have shown that a critical temperature 
exists above which a rapid increase in plastic zone size (fracture 
toughness) is developed. 

Above this critical temperature, plane strain stress con
ditions at crack tips are relaxed through the thickness and plane stress 
fracture (shear lips) become manifest at the fracture surfaces. With 
increasing temperature the nature of the fracture reverts entirely to 
plane stress (45° shear) and the effects of dynamic loading on fracture 
initiation are eliminated. Below the critical temperature, fractures 
are of plane strain type (90° flat fractures) and the plastic zone 
size is relatively small. In the temperature region of plane strain 
fracture, rate of loading has a major influence in reducing the size of 
the plastic zone at the point of instability (fracture initiation). This 
has the effect of reducing the level of applied nominal stress required 
to initiate fracture for a specific size of flaw. 

The described critical temperature may be deduced as the NDT 
(Nil Ductility Temperature); the temperature of first development of 
surface shear lips; or the temperature of first rise of the Robertson 
Crack Arrest Temperature curve (CAT). All of these definitions are 
exactly equivalent and relate to a narrow range of temperatures, which 
from an engineering point of view may be considered a specific tempera
ture. The concept of NDT + 60°F may thus be reconciled with the 
fracture mechanics definition of a temperature corresponding to the 
development of large plastic zones at crack tips and therefore high 
fracture toughness. The effects of dynamic loading are minimized in 
the presence of large size plastic zones at crack borders. 
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Conversely, temperatures below the NDT temperature relate to 
small plastic zones and to high sensitivity to dynamic loading. 
Dramatic illustrations of this effect have been made in studies con
ducted in USA and in various European laboratories. Typical examples 
are represented by bend tests of fatigue-cracked bars at temperatures 
slightly below the NDT temperature. By slow loading, the bars show 
relatively large crack opening displacements and plastic loading is 
required for frac-bure initiation. By impact loading the crack opening 
displacements are reduced to very small values and the general level of 
fracture load may decrease to below the yield point. The level of 
dynamic deformation load required to initiate fracture· increases 
rapidly with increase in temperature above the NDT. 

The NDT temperature represents a critical point above which 
the effects of dynamic loading are rapidly suppressed due to a change 
in the basic mode of microfracture of the steel. This represents a 
change of the fracture from pure cleavage to mixed fracture, partly 
cleavage and partly ductile ruptures of the individual grains. 

Formal methods of fracture mechanics based on determining 
fracture strength of flawed structures on a basis of laboratory tests 
conducted at slow rates are not directly applicable to the case of 
dynamic loading of structures. It is essential that such tests include 
rapidly applied loading, and specific conditions of metallurgical 
damage at the crack tips which are pertinent to the condition in the 
structure. The virtue of ensuring the use of metal of fracture tough
ness level that prevents the use of fracture mechanics is that variables 
of "low stress fracture" are eliminated in large degree. 

It is not recognized generally that dynamic loading effects 
in fracture initiation (for tangible steels) may result from three 
separate sources which are equivalent insofar as the fracture process 
is concerned: 

(1) Dynamic application of the full load. 
(2) Super-imposition of small transient dynamic loads which 

are added to the static loads. 
(3) Local cracking of small embrittled regions which result 

in dynamic propagation of the fracture to the base 
material which is loaded statically. 
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All three conditions effectively subject the plastic zone at crack 
tips to dynamic conditions and fracture toughness then is controlled by 
the "dynamic case." For example, it becomes possible to initiate 
fractures at levels of nominal stress considerably below those which 
would not cause fracture in a slowly loaded proof test. The virtue of 
ensuring that transition temperature steels are used at temperatures 
above the NDT derives from the elimination of "low stress fracture" 
induced by any of the three processes described above. 

Obviously, there is a relationship of flaw-size and stress to 
be considered in addition to purely dynamic effects. The larger the 
flaw and the higher the stress, the higher the requirement for fracture 
toughness, i.e., the higher the temperature above the NDT point that is 
required. The FDT + 60°F criterion for pre.ssure vessels normally 
provides protection against fracture initiation for loading conditions 
that do not result in gross plastic overload o.f regions containing 
flaws of less than 2 to 3 times the wall thickness. If gross (high 
level) plastic loading is considered as a design requirement, covering 
cases of extreme overload, it is necessary to ensure that the material 
is utilized in its fully ductile state. Such a requirement forces 
consideration of metal of properties such that fractures are restricted 
to ductile 45° shear tearing of high energy absorption characteristics. 

These factors emphasize that structural safety must be 
analysed in terms of both the level of assumed loading and of the 
characteristic fracture toughness of the steel. 
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I. INTRODUCTION 
The construction of nuclear power plants presents a num

ber of problems to the design engineer. Among these is the 
need for adequate safeguards against a violent malfunction of 
the reactor system. It is necessary to provide for the abso
lute containment of gaseous products and radioactive debris 
which may result from such an incident, in order to prevent 
any hazard to nearby populated areas. For this reason, the 
reactor system and primary heat-exchange equipment of a mega
watt-range nuclear power plant are commonly enclosed in a leak-
tight containment shell, the integrity of which must be main
tained under the effects of the maximum credible explosive
like energy release which can be associated with the given 
system. Theoretical and experimental studies have been con
ducted to determine the effectiveness of crushable materials 
as shields or attenuators in the event of a violent release 
of energy at the reactor core. The specific objective of 
this work was to develop systematic techniques for observation 
and analysis of the transmission of disturbances in one-dimen
sional layered systems of generalized mechanical properties. 
Analytical techniques are based on the use of quite general 
piecewise linear stress-volume relations for the uniaxial 
strain condition, and on stepwise approximations to arbitrary 
time-varying surface loadings. 

Graphical methods for the solution of problems of one-
dimensional impact in rate-independent elastic-plastic materi-

13E 
als have been advanced by DeJuhasz , by von Karman, Bohnen-

2 3 
blust and Hyers , and by White and Griffis . In the present 
work, these methods have been extended to the case of elastic-
crushable-compactible material behavior, and the procedures 
have been adapted for machine calculation. V/ith very general 
material behavior exhibiting strong property changes and the 
phenomenon of irreversible straining, quite complicated stress 
and velocity fields develop in the position-time space of in
dependent variables, thus necessitating the use of high-speed 
computing equipment for the numerical solution of these pro-

Superscript numerals designate references listed at end 
of paper. 
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blems. In this paper we present the methods by which various 
wave interactions are analyzed. The computational scheme de
veloped for this work is described. 

A considerable experimental effort paralleled the analy
tical work reported here. A conventional strong shock tube was 
modified for the performance of gas shock impingement experi
ments on crushable solid specimens. The purpose of the experi
ments was to obtain the relevant dynamic stress-volume rela
tions of the materials, and to provide over-all verification 
of the analysis of wave transmission and attenuation in such 
materials. 
II. EXPERIMENTS TO DETERMINE EQUATIONS OF STATE 

An experiment was devised for determining the equation 
of state of a porous solid under shock loading. A shock-tube 
facility was designed and constructed to induce and measure 
stresses and displacements in a porous solid during shock im
pingement. One porous solid, balsa wood, was extensively tes
ted; redwood, sugar pine, styrofoam, foamglass, and Celotex 
were studied to a limited extent. 

The equation of state of a porous solid is usually rep
resented in the stress-volume plane. Direct measurement of 
stress and volume during blast loading is not usually attempt
ed; rather, measurement of the wavefront velocity and particle 
velocity is sought. Direct measurement would require the de
velopment of new instrumentation and instrumentation techni
ques, and the accuracy of resultant data would be influenced 
only by the measurement error. The indirect approach permits 
the use of standard instrumentation and controlled accuracy, 
and the accuracy of the resulting data is influenced by the 
measurement error amplified by the data reduction process. 
Both approaches were evaluated considering the available blast 
load amplitudes and the complications introduced by the mul
tiple reflections of the plastic wave and dispersive wave 
train behind the elastic precursor. 

The determination of the shock compression (Hugoniot) 
equation of state required more than twelve channels of os
cilloscope data display and approximately nine piezoelec-
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tric pressure sensors. Determination of the isentropic un
loading paths of media in the stress-volume plane, from se
veral Hugoniot states, required different arrangements of 
the test specimen in the holder. The shock compression and 
isentropic unloading data can be used to predict the attenu
ation of a blast wave propagating through a crushable materi
al. The test arrangement can be used for the determination 
of the equation of state of various porous solids and the 
calculation of stress wave motion in a layered material com
posed of porous solids. 

A. Apparatus 
The shock tube was selected as a blast generator de

vice because it can impart impact loads of controlled ampli
tude and duration, and utilizes instrumentation which can 
record data in both the impinging gases and in the impacted 
solid. A shock tube of circular cross section, having a 
2-in. inside diameter and a 1-in. wall thickness, was used 
in this work. This tube was constructed with lengths of 
cold-rolled steel, cold-pierced, with a corrosion-resistant 
interior finish of hard chrome plating 0.002 in. thick 
(Figs. 1 and 2). 

To establish large and easily observed constant-state 
regions in the test specimen, the applied load should be an 
impulse of long time duration and constant pressure ampli
tude. The lengths of the shock tube driver section, driven 
section, and test specimen, and the magnitudes of the initial 
pressures, were selected in such a manner as to establish a 
range of desired wave motion patterns in the test specimen. 
The lengths of the shock tube driver and driven sections 
were each selected to be 12 ft to produce at least 4 msec 
of constant-pressure duration. Various helium driver pres
sures were used in combination with normal atmospheric dri
ven chamber pressure in air. Helium driver gas and air dri
ven gas in the shock tube permitted the use of reasonable 
driver pressures to attain up to 2400 psi blast impingement 
pressures. 
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Accurate control of the applied load is readily achie
ved. Elementary shock tube theory shows that large varia
tions in the driven gas pressure result in rather small va
riations in incident shock wave strength. 

B. Instrumentation 
A specimen holder was designed to accommodate up to 

42 in. of test specimen. Access ports were incorporated in 
the holder walls for side-mounted piezoelectric crystals, 
end-mounted crystals, and internally-mounted wave arrival 
sensors. Crystal sensor stations at 6-in. intervals permit
ted various combinations of specimen lengths and sensor loca
tions to best distribute the data points for determining a 
wavefront network (Fig. 3). 

To determine strain-rate and friction effects, an addi
tional array of seven crystal sensors was placed at 1-in. 
intervals from the upstream end of the holder. To determine 
unloading wave data, the axis of the holder was turned 180 
degrees so that the additional array of seven sensors then 
occupied the position nearest the end plate. 

Although typical loadings were between 20 and 2000 psi 
for 5 msec, compaction of the specimen against the rigid 
downstream end surface produced loadings as high as 150,000 
psi for a fe\v microseconds. 

Wave motion in the impingement gas adjacent to the up
stream end surface of the test specimen, in the test speci
men, and at the downstream end surface of the test specimen 
was measured to obtain the complete equation of state of the 
material in shock compression. 

The measurements in the gas were obtained by the use 
of quartz crystal sensors at two stations upstream of, and 
close to, the test specimen. The first sensor measured the 
flat-topped waveform of the reflected wave. The primary re
sult of these data was the amplitude of the applied pressure. 
Additional quantitative results were obtained from these da
ta concerning subsequent waves which were sufficiently strong 
to be transmitted from the solid back into the gas. 
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Measurements in the solid were obtained using nine 
quartz crystal sensors at axial positions on the lateral 
surface of the test specimen. The sensor mounted in the 
stationary test specimen holder and the moving lateral sur
face of the crushing test specimen were coupled with vacuum 
grease. This mechanical arrangement resulted in a pressure-
time history near the loaded end which first showed the ra
dial component of the elastic stress precursor, then the ra
dial component of stress in the shock state, and finally the 
still higher amplitude gas pressure when the test specimen 
end surface moved beyond the gage station. 

A typical data record for a sensor close to the down
stream end surface shows the arrival time of the elastic pre
cursor, the plastic wave, and the subsequent plastic wave re
verberations between the upstream and downstream end surfaces, 
The elastic and plastic wavefronts are readily detected as 
before, but the free surface never arrives at the downstream 
stations. Rather, the passage of the plastic wavefront is 
followed by reverberations of the plastic wavefront between 
the constant applied-pressure upstream surface and the zero-
particle-velocity downstream surface. 

C. Results 
The primary result of this study is the development of 

a blast wave generating facility, instrumentation, and experi
mental technique to determine the dynamic equation of state 
of porous solids under shock compression and unloading. A 
second important result is the development of an analytical 
procedure for using data obtained from the shock-tube blast 
facility to construct the equation of state of any porous 
solid. 

1. Shock Compression 
The slope of the Hugoniot in the elastic range was ob

tainable from the experimentally determined velocities of the 
elastic wave. These elastic wave speeds were derived from 
time-of-arrival measurements of the elastic precursor. How
ever, the elastic limit was not known. It was assumed that 
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this point was equal to the static crushing pressure, and 
this assumed value was used to calculate the plastic wave 
velocities associated with the higher pressures. The cal
culated plastic wave velocities were in agreement with the 
experimentally determined plastic wave speeds obtained from 
time-of-arrival measurements. This verified that the assu
med values were correct. 

The upper portion of the strain-hardening regime and 
the compaction regime were obtained in the dynamic tests. 
The static and dynamic stress-volume relations were found 
to be nearly coincident within the limits of reproducibility 
of the material behavior. 

2. Unloading from Shock Compressed States 
In the strain-hardening region, static tests showed 

hysteresis loops for the unloading and reloading paths in 
the stress-volume plane. These loops became narrower with 
increased pressure of the shock-compressed state. At each 
Hugoniot state in the strain-hardening region close to the 
elastic region, the dynamic tests showed that the dynamic 
unloading path was tangent to the static unloading path. At 
each Hugoniot state in the strain-hardening region close to 
the compaction region, the dynamic unloading path was less 
steep than the tangent to the static unloading path. The 
dynamic unloading path was tangent to the Hugoniot curve in 
the compaction region. For impact loads at extremely high 
pressures, the slope of the unloading isentrope is less than 
the slope of the Hugoniot in the upper portion of the com
paction region. 

3· Typical Results for Celotex 
A typical pressure-time record obtained from a piezo

electric transducer mounted in the tube wall in contact with 
the lateral surface of a Celotex specimen is shown in Fig. 4. 
The record is displayed at different sensitivities and sweep 
speeds on the two channels of a dual-beam oscilloscope. Ar
rival times of waves and of the gas-solid interface are i-
dentifiable on the record, and are used together with data 
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from other stations to construct a wavefront network in po
sition-time space (Fig. 5 ) . Correspondingly lettered points 
identify the events observed on the pressure record. 

Repeated shock impingement of the same test specimen 
in succeeding dynamic experiments similarly yielded wave-
front networks for compressed initial states (Figs. 6 and 7 ) . 
In each case, the direct observations of impinging gas pres
sure and axial stress at the fixed end of the specimen pro
vided additional data for consistency checks on the stresses 
deduced from the observed wave and interface velocities. 

Typical dynamic results are shown in stress-velocity 
coordinates in Fig. 8. The data points lie somewhat above 
the curve computed from the results of a static compression 
test, which is shown as the solid line. 

Hugoniot and unloading curves in stress-specific vo
lume coordinates are calculated from the wave and particle 
velocity data by application of jump conditions for mass 
and momentum conservation across^ the observed waves. The 
data for Celotex resulting from experiments on two specimens 
at different pressure levels, together with repeated dynamic 
recompressions of the same specimens, are shown in Fig. 9. 
For comparison, a portion of a static compression curve for 
the same material is shown as the dashed line. 

III. ANALYSIS OF WAVE PROPAGATION IN CRUSHABLE SOLIDS 

The solution of a one-dimensional impact problem can 
be accomplished by a single method regardless of whether the 
material behaves as an elastic, plastic, or compactibie sub
stance. By assuming that all types of impacts generate con
stant-state regions within the impacted material, we are 
able to connect the properties in each region by a set of 
algebraic equations. The extent of each region can be rep
resented in the wave diagram or physical plane, while the 
properties of each region can be presented in the stress-
volume and stress-particle velocity diagrams of the depen
dent-variable (state) planes. 
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A. Equations 

When a force is suddenly applied to a deformable body, 

it does not immediately assume the state of stress and mo

tion predicted by elementary rigidbody mechanics. Actually, 

when the force is applied, discontinuities of stress and 

strain propagate through the body from the point of impact. 

When these disturbances reach the boundaries of the body, 

they are partially transmitted to the surroundings and par

tially reflected back into the body. This process of mul

tiple reverberation and interaction continues until the me

chanical state predicted by elementary mechanics is approach

ed in a gradual and, in general, discontinuous fashion. In 

small bodies subjected to longduration loads, the process 

is completed so rapidly that analysis of the transient phase 

of the motion is usually of little interest. In bodies with 

dimensions such that the time of traverse of a wave across a 

typical dimension of the body is of the order of the charac

teristic time of loading or larger, however, the transient 

nature of the process cannot be ignored. 

The assumption of stress or strain wavefronts propaga

ting through a body and interacting with boundaries and with 

other waves requires the use of suitable jump conditions in 

the calculations which connect properties on either side of 

each discontinuity through the requirements of mass and mo

mentum conservation: 

P0(W10U0) = PICWJQU.,) continuity 
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where 

W 1 0 = wavefront velocity in laboratoryfixed (Eulerian) 
coordinates 

U = particle velocity 

σ = longitudinal normal stress component 

These equations can be rearranged in a form such that 

the stressvolume relation in uniaxial strain obtained from 

dynamic tests can be used to calculate the particle veloci
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ties and shock velocities induced by impact: 
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The positive sign applies to waves which propagate in the 

positive direction relative to the material particles; the 

negative sign applies for the negative direction relative to 

material particles. 

B. Representation of Solutions to Impact Problems 

The physical plane shows the time and spatial distri

bution of the constantstate regions within an impacted solid. 

The state planes show the value of each mechanical property 

associated with each constant state region. The stress par

ticlevelocity state plane specifies the value of two dynami

cal properties of each state. In some cases constantstate 

regions may have the same dynamic properties but different 

specific volume values so that it is also necessary to in

clude the stress/specificvolume state plane to specify the 

specific volume value or values associated with each dynami

cal state. 

1. Wave Diagram 

Onedimensional unsteady motion of a continuous medium 

is conveniently represented in the positiontime space as in

dependent variables, referred to as a wave diagram. Either 

the current position x, relative to laboratoryfixed coordi

nates, or the initial particle position ζ may be regarded as 

the independent position coordinate. (The former is the Eu

lerian representation and the latter the Lagrangian represen

tation of the motion.) Regions of constant stress and parti

cle velocity, which develop after impact in a column of mate

rial at various times t and positions χ or ξ , may be depic

ted in such wave diagrams. Discontinuity lines which sepa

rate these constantstate regions have inverse slopes given 

by the appropriate wave speeds in the frame of reference used. 
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2. State Planes 
It is evident that the wave propagation characteris

tics of any particular material depend directly on the form 
of the stress-density relations in loading and unloading. 
Materials impacted at stresses below their dynamic yield 
point, in their crushing or strain-hardening region, or in 
their compacting region, will develop acoustic waves, disper
sive compression waves, and plastic or shock waves, respec
tively. After a material has been compressed to a particu
lar state, unloading can take place either through a single 
discontinuity or through a series of unloading wavelets, de
pending upon the equation of state of the material in unload
ing. Finally, different equations of state govern unloadings, 
depending upon the maximum stress experienced by a particle 
in its past history. 

The stress-velocity plane is a convenient state plane, 
because boundary conditions are usually specified in terms 
of these parameters. Changes in the state properties in 
the interior of an impacted material as a result of the in
teraction of wavefronts can be obtained from constructions 
in the o-U plane with reference to the o-v plane, by use of 
the finite-difference relations 

Δσ + m Au = 0 (3) 

which hold respectively on the characteristic lines 

Δξ = + mv At (4) 
•Ι /ρ 

where m = (- Δσ/ Αν) ' and ν = 1/ρ = specific volume. In 
the calculation method, the stress/specific-volume relations 
are approximated by straight-line segments. 

C Illustrative Wave Interaction 
The calculation procedure for determining the stress 

in the constant-state region formed by the interaction of 
two waves is as followst 
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estimate the stress level of the newly formed con
stant state region, 

refer to the stressstrain relation to obtain the 
number of wavelets transmitted to the left and to 
the right, relative to particles, 

calculate the particle velocity associated with each 
state 

check the original estimate of the stress level of 
the newly formed region by comparing the extent of 
matching between the sum of particle velocity jumps 
in the clockwise direction and those in the counter
clockwise direction. 

If there is a mismatch of the particle velocity when summing 

in the two different directions, starting from the initial 

state and ending in the newly formed state, the assumed stress 

level must be revised, the number of wavelets considered in 

the interaction revised, and again the particle velocity match 

must be checked for the newly formed region. 

Figure 10 can be used as an illustration. Assume that 

the properties in states 5, 6 and 7 are already known, and it 

is required to determine the result of interaction of the two 

rightrunning waves 76 and 65. As an initial trial, say 

that there is only one rightrunning and one leftrunning 

wave generated, i.e. 85 and 87. 

Jump Conditions 

W
8'5 =

 + T
o JS}'  %

 U
8· ■

 +
 J(o8.  o 5 ) ( v 5  v ) 

■  O Æ 1
 ϋ8 - - J 

(5) 

W8T - - vo 4¿pr^ u8 =  J (08  e 7 ) (v 7  τβ ) 

Contact Surface Assumptions 

<£. = σ8 and Ug, = Ug (6) 

Equations of State 

Og = Og (O*, Vg) Og, = Og, (θ*, Vg , ) (?) 

where σ* is the peak compressive stress to which the material 

has previously been subjected. The positive sign is used with 

each radical associated with the rightrunning wave. 
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The solution is accomplished by making an initial esti
mate of 0 0 on the basis of an acoustic approximation. The 

o 

resulting values of U ß and UQ, are then compared. A new es

timate of Og is made which is higher or lower than the ini

tial estimate according to whether the stressstrain diagram 

is concave upward or downward in the range of stress under 

consideration. Thereafter, improved values of oQ are deter

mined so as to bring the values of particle velocity in states 

8 and 8* into coincidence in a converging iterative fashion. 

To test the physical admissibility of the solution, it 

is first necessary to check if the chord connecting the states 

( Or, V() and ( oQ, vQt ) (indicated by dotted line) lies on or 

above the v relation in that interval, so that the assump

tion of a single rightrunning wave is not contradicted. A 

similar condition must hold for the leftrunning wave. 

In loading up from region 0 to 6 a fan exists from 0 to 

5 but the next vertex (not labeled) above 5 is omitted from 

the fan, so that only a single wave exists from 5 to 6. The 

fan exists from 0 to 5 because each increase in stress level 

is associated with a decreased slope on the σν curve and 

therefore has a decreased wave speed. However, above region 

5 the fan ceases in favor of a single jump to point 6, i.e., 

the unlabeled vertex produces no wave. The need for this be

comes evident if one attempts to impose a fan from 5 to 6. 

The intermediate wave between 5 and 6 has no effect since it 

has both lower stress and slower velocity than the single 

wave from 5 to 6. This is a result of the σν curve being 

concaveup between 5 and 6. A single wave rather than a fan 

will occur for any rise in stress above region 5 which has 

the chord above the curve. For points inFigure 10 which are 

located to the right of the point where W„g reaches Wgt, the 

rise of stress above that of region 5 will be to a level of 

region 8*. The single wave causing a jump from 5 to 8' occurs 

instead of a twowave fan involving the intermediate vertex. 

Again this is clear by first supposing that the fan occurs 

and then showing that this supposition leads to a contradic

tion. Since the higherstresslevel wave mores faster than 
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the lower-stress-level wave, the fan collapses into a single 
wave. 

The stress-volume relations for any given material in 
uniaxial strain may be quite complicated. In a crushable-
compactibie solid, for example, the current mechanical state 
of the material is in general a function of its prior defor
mation history. If temperature changes induced in compres
sions from the initial state are negligible, it is reasonable 
to assume that a unique stress-volume relation governs com
pressions from the initial state. However, when a portion 
of the material is subjected to a given peak compressive 
stress σ* in the crushing range and is subsequently unloaded, 
the stress-volume relations governing the unloading and pos
sible later recompressions will depend on the value σ*, the 
peak compressive stress to which the material has been sub
jected. This hysteresis phenomenon has a pronounced effect 
on the results when unloading waves overtake crushing waves or 
shocks. 

In the present illustration, unloading takes place from 
state 6 to state 7 at zero stress as the unloading wave pro
gresses into the material. When the unloading wave overtakes 
the shock, the latter is weakened (state 8')» but the adjacent 
material formerly compressed to state 6 and unloaded, is re-
compressed to state 8. Dynamical equilibrium considerations 
require that there be simultaneous equality of stress and par
ticle velocity across the interface between 8 and 8', but a 
possible discontinuity of strain. Such a discontinuity, once 
formed, travels with the local particle velocity, and is re
ferred to as a residual strain or density discontinui by. 
These discontinuities are exactly analogous to entropy dis
continuities which develop in one-dimensional, particle-
isentropic unsteady flow of gases when strong shocks are pre
sent. Such entropy discontinuities are referred to as con
tact surfaces in unsteady gas dynamics. 
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On the lagrangian wave diagram, the wave velocities de
termine the slopes of the wave lines. However, residual strain 
discontinuities, which travel at the local particle velocity, 
appear as vertical lines on such a diagram. The Lagrangian 
wave diagram is a convenient plot because it represents the 
motion of waves relative to material particles. The calcula
tion of wave speed in Lagrangian coordinates is somewhat sim
pler than in laboratory-fixed coordinates since they do not 
involve the local particle velocities. Further simplifica
tion occurs in the representation of residual strain discon
tinuities, which appear as vertical lines. Each region be
tween two such discontinuities is associated with a particular 
peak stresso* experienced in prior motion. Each such value 
σ* , in turn, defines the unloading curve in the σ-ν plane 
which is associated with a particular zone between strain dis
continuities. 

In a more general case, it would be possible to generate 
multiple right-running and left-running wavelets after the 
interaction of two single waves. The only variation intro
duced into the solution technique is the determination of 
intermediate values of σ for each wavelet until the interior 
points of chords connecting the individual states on the σ-ν 
plane lie on or above the σ-ν relations. 

D. Programmed Solutions of the Impact Problem 
Impingement of a blast wave on a layered specimen, in 

which each layer is composed of a material with a complicated 
equation of state, can induce a multiple wave system which is 
further complicated in internal reflections and external boun
dary reflections. For certain combinations of stress levels 
and waveforms, the stress wavefronts can become still more 
numerous, because residual strain discontinuities generated 
by stress wave interactions provide additional interfaces for 
subsequent interaction and perform the same type of calcula
tion. 

The solution of each wave interaction problem appears 
complex in its final form; however, the construction of the 
network is readily obtained by considering the individual in-
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teractions. A general procedure can be followed which takes 
into account all possible complexities of any type of inter
action, and it is this general procedure which is programmed 
for machine computation. 

1. Boundary Conditions 
In impact problems, boundary conditions are usually 

specified at the impingement surface and at the opposite end 
surface. The usual specifications are stress or particle 
velocity as functions of time at the impingement surface, 
and stress or displacement as functions of time at the oppo
site end surface. 

The boundary conditions at the end surface opposite to 
the loaded end may be specified by either a stress-time or 
displacement-time relation. For instance, an unsupported 
surface would be considered as a free surface with a stress-
free condition at all times. A partially constrained end 
surface may be described by the resistance which it offers 
to displacement or to changes in' particle velocity. A fixed 
boundary which can support compressive but not tensile 
stresses may be described by the condition of zero displace
ment and positive stress, or possible negative displacement 
and zero stress. 

In general, compressive waves are reflected from a 
fixed boundary as compressive waves, and tensile waves are 
reflected as tensile waves. Consider an unloading wave mov
ing into an initially compressed region and striking a fixed 
boundary. If the unloading wave is sufficiently strong, ten
sile stresses may tend to develop in the material adjacent 
to the boundary. If the tension can be supported by the 
bond between the material and the backup surface, the particle 
velocity at the boundary remains zero, and the negative stress 
state is propagated into the material as a reflected tension 
wave. On the other hand, if tensile stress cannot be suppor
ted by the material, separation of the material takes place 
forming a free surface, and the material moves away from the 
rigid backup surface. This process is known as spallation. 
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2. Description of Flow Diagram 
The flow diagram of the computer program of an impact 

problem is primarily composed of two types of procedures: 
(1) decision-making procedures which resolve the number of 
waves of each characteristic family generated after each inter
action, and (2) iterative procedures which are used to match 
stress and particle velocity after summing property jumps, 
from clockwise and counter-clockwise directions, around each 
interaction point in the physical (t-&) plane. The flow dia
gram for the computations is shown in Fig. 11. 

As input, one must describe the physical problem by spe
cifying the material equation of state, the length of material, 
and the boundary conditions at the left-hand and right-hand 
surfaces. At the left boundary only right-running waves are 
generated; at the right boundary only left-running waves de
velop. In the interior, after an interaction, one wave of 
each family is introduced as an initial estimate. 

To determine if more than one wave of each family is 
generated, it is necessary to assume first that only one wave 
of each family exists. This permits an estimate of stress, 
specific volume and particle velocity in the newly formed 
states between the resultant opposite-facing waves. To check 
the assumption of single waves, it is then necessary to test 
whether the chord connecting the σ-ν state point of each newly 
formed region and the initial state point always lies on or a-
bove the O-v curves. When the chord intersects a segment of 
the σ-ν relations, it is hypothesized that an additional in
termediate wavelet is generated, of amplitude such that the 
chords representing property jumps should lie on or above the 
σ-ν curves. After tentative values for properties in states 
between the waves have been established, the resultant wave 
system is again tested for physical admissibility. This pro
cess is continued until all the wavelets are drawn in for both 
left- and right-running characteristic families. With the 
correct number of waves, it is then possible to calculate fi
nal values of the properties in the newly formed states be
tween the right- and left-running wavelets. After the appro-



- 238 

priate degree of accuracy is attained in establishing the pro
perties of the newly formed region and any other intermediate 
states, the data are read out of the computer. 

The output consists of the normal stress, specific vo
lume, particle velocity, wave speeds, and the maximum stress 
experienced by the material at any time in its past history. 
This data output refers to a particular zone of the material 
at time t. 

The computer is advanced to the next interaction point 
in time, and the wave lines and strain discontinuities are 
extended to their nev/ positions. The occurrence of any in
teractions or change of conditions at either boundary is de
termined by the appearance or disappearance of any of the 
constant-state regions. The cycle then begins again; the 
number of wavelets of each family is determined and the state 
properties are calculated. The process continues until the 
zone between the resulting waves is completely solved for its 
properties and extent. To carry the solution to long times, 
weak stress or weak density discontinuities are dropped by 
means of systematic test routines. If this were not done, 
calculations would be made for an ever-increasing number of 
interactions while advancing the solution in time very slowly. 

3. Summary of Code Characteristics 
The IITRI code is best characterized as an application 

of the field method of characteristics (in contrast to lat
tice-point calculations) for one-dimensional compressible 
flow problems. The numerical analysis is such that small 
regions of uniform state separated by discontinuity lines 
make up the variable fields in distance-time space. Thus 
shock conditions can be applied where appropriate as readily 
as can isentropic (nondissipative) relations, without the 
introduction of an artificial viscosity to suppress shocks 
where they naturally occur. 

The program has been prepared in FORTRAN language for 
use on IBM 7094 equipment. This computer code permits cal
culation of the pressure, velocity, and position profile in 
each of the layers of a composite shield for a given loading 
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at one surface. Machine capacity has been divided in such a 
fashion that 40 layers of material can be handled, in which 
each layer is characterized by a set of stress-volume rela
tions involving as many as 27 straight-line segments for un
loading from different ranges of peak stress. The pressure-
time pulse applied at one surface can be approximated by as 
many as 75 constant-pressure intervals. The solution can be 
advanced in time until as many as 1022 constant-state regions 
have developed. 

This machine code is unusual in that it is a purely al
gebraic code based on piecewise linearization of pressure 
pulses and equations of state, rather than on numerical in
tegration of the field differential equations. As a conse
quence, running time is much shorter than that of analogous 
finite-difference codes. Finally, provisions have been made 
for inserting criteria for internal spallation by specifying 
limiting tensile stresses, and continuing the calculations of 
wave motion in the separated material after spallation occurs. 

4. Computational Results for Layered Shields 
The stress-time history at a rigid backup surface rep

resents the load transmitted by a crushable protective shield 
to a relatively stiff structure assumed to be in contact with 
it. Computations have been carried out to obtain these trans
mitted loads for a series of layered shields subjected to a 
constant pressure pulse of 10,000 psi amplitude and 0.1 msec 
duration. 

The results are shown in Figs. 12 and 13 for combina
tions of redwood and Celotex of the same total thickness 
(8-in.). The result for a somewhat thicker (10-in.) solid 
redwood shield is also shown. It is seen that the load amp
litude is reduced by as much as a factor of 10. In fact, if 
the shield loading of 10,000 psi were produced by gas shock 
impingement, the same shock would produce a still higher ref
lected pressure at the rigid wall in the absence of the 
shield. 
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It may be noted that the transmitted impulse is virtually 
the same as that applied to the left-hand surface of the 
shield (1 psi-sec). This is because the shield material is 
brought nearly to rest at the time the transmitted load ter
minates. Actually, a small net leftward velocity on the a-
verage is calculated for the shield material at this time, 
representing a weak spallation condition. Therefore the 
transmitted impulse exceeds slightly that applied to the 
left-hand surface of the shield. These considerations of 
momentum conservation serve as an over-all check on the re
sults of the computations. 
IV. CONCLUSION 

Systematic experimental and analytical methods have 
been developed for evaluation of the performance of blast 
attenuators or layered crushable material. The data are 
useful in optimizing the design of shields to contain the 
effects of the maximum credible explosive-like energy release 
which can be associated with a,reactor system. 
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Figure 2 Shock Tube Test Section 
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Matanca s, β 

Figure 3 Response of Crushable Material to Pressure 
Pulse Loading 
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THE RESPONSE OF A VESSEL TO AN INTERNAL BLAST LOADING 

Limits of Model Tes t s 
Influence of Stra in - Rate 

by 

H. Holtbecker, Α. Mase ra t i , M. Montagnani, G. Verzele t t i 
Eura tom CCR, I spra , Italy 

1. LIMITS OF MODEL TESTS USING EXPLOSIVES 

The problem of the deformation and rupture strength of a ve s se l as a r e 
fi 2) 

sult of in ternal blast has a l ready been studied very thoroughly ' , and 
the feasibility has been examined of car ry ing out t e s t s on a reduced-sca le 
model , using detonating or deflagrating explosives . 

Apart from the influence of gravity forces (which a r e slight with sl ightly-
reduced scale models) and the s t r a i n - r a t e effect, the validity of the follow
ing relat ion (W.E. Baker) was confirmed: 

If a spher ica l charge of d iamete r D produces at a dis tance R from its centre 
a blast wave of intensity Ρ and duration T, a s imi la r charge of d iamete r KD 
will produce, at dis tance KR, a s imi la r blast wave of intensity Ρ and d u r a 
tion KT. It should be noted, however, that this c r i t e r ion is valid only in the 
ideal case , where the source of ene rgy - r e l ea se is concentrated vir tual ly in 
a point source . In real i ty , however, as Sper t ' s des t ruct ive exper iment a p 
pea r s to demons t ra te c lear ly , the r e l ea se source is diffused through al l the 
melted aluminium pa r t i c l e s , which a r e sca t te red in the core in an unknown 
pa t te rn . F u r t h e r m o r e , the actual explosive employed to simulate the a c c i 
dent has i ts own cha rac te r i s t i c pre s sure-damping curve varying with the 
rad ius . Fo r example, a detonating explosive gives a decay curve c h a r a c t e r 
ized, where the wave is spher ica l , by 4 dist inct zones (fig. 1), in which the 
p r e s s u r e drop follows quite different exponential curves according to its d i s 
tance from the cen t re . 

With a detonating explosive a specific impulse can therefore be produced at 
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a specific distance from the cen t re . Hence the detonating explosive can be 
used with sat isfactory approximation to a sce r t a in the response of a ve s se l 
to an impulse originating in the cen t re . However, it can hardly be used to 
simulate eccent r ic blast or study i ts simultaneous effect on different s t ruc t 
u re s located at var ious dis tances from the centre (e .g . the wall and al l the 
internal components of the ves se l simultaneously). 

With deflagrating explosives, a decay curve c loser to that generated by an 
(3) excursion can be obtained in principle , but this st i l l does not solve the 

problem because, to s imulate the power excurs ion effects completely, not 
only must the same amount of heat be generated in the same t ime, but this 
heat must also be converted, at equal d is tances from the cen t re , into the 
same quantity of mechanical energy with the same p r e s s u r e level . (Hence 
the mechanical impulse generat ion and heat exchange p a r a m e t e r s of the 
simulating source must be in ins tant - for - ins tant scale with those of the 
source it s imula tes) . Thus we st i l l have the obstacle r e fe r red to ea r l i e r , 
that the most des t ruct ive effects a r e caused by sca t te red par t i c les whose 
mechanism of energy conversion ve r sus t ime and space is unknown. 

Although these res t r i c t ions place difficulties in the way of complete s imu
lation of blast loading in a vesse l , with e i ther detonating explosives or p r o -
pel lants , never the less , when the law for the motion of a s t ruc ture acted 
upon by a given impulse P(t) has been found by calculation, explosives can 
be used, e. g. to s imulate such blast- loading for the purpose of studying 
the s t r a i n - r a t e effects, or car ry ing out t e s t s on rea l geometr ies with equal 
s t r a i n - r a t e s . 

This is the par t i cu la r subject of the work repor ted h e r e . 

2. INFLUENCE OF STRAIN-RATE 

In a tensi le tes t with low s t r a i n - r a t e , e las t ic behaviour of the ma te r i a l is 
observable over a cer ta in par t of the d iagram. After this zone the plastic 
deformation zone is reached and continues until rupture . Predominant in 
the f irs t par t is the elast ic deformation of the c rys ta l la t t ice, which re turns 
to a lmost exactly its original position if the load is removed. Beyond the 
elast ic limit slip is observed, in which the c rys ta l planes slide over one an-
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other . Displacement of this type is i r r e v e r s i b l e . 

(4 5 6) Certain authors ' ' have ca r r i ed out exper iments on longitudinal 
t e s t -p i eces , investigating how the elast ic l imit , determined at low s t r a in -
ra te , r i s e s sharply with higher s t r a i n - r a t e s (figs. 2 and 3). Microscopic 
examination effected by J. D. Campbell and J. Duby in the region of the dy
namic proport ional l imit showed the absence of any significant slip bands 
and only some microscopic slip was observable . 

D.S . Clark and D.S . Wood noticed that on carbon steel t e s t -p ieces a c e r 
tain t ime is needed for slip to init iate. Within this period slip cannot in i 
tiate and the tes t -p iece behaves e las t ical ly . 

It has been attempted in var ious fundamental studies on high velo
city damping, re la t ivis t ic motion of dis locat ions, and dislocation locking, 
to give a theore t ica l explanation of the events which occur during rapid de 
formation of a meta l . J . D. Eshelby calcula tes , in the case of a screw d i s 
location, that the following law of relat ivi ty applied to a dislocation is valid 
when the speed of dislocation approaches the velocity of sound: 

E 
E= — ° 

(1-4)1/2 
c 

where E = energy absorbed by the dynamic dislocation 
ν = velocity of dislocation 
c = velocity of sound 
E = res t energy of a dislocation 

As well as this re la t ivis t ic effect, there a r e considerable r e s i s t ances oppo
sing the slip induced by a shearing s t r e s s , which G. Z. Leibfried, J . D. Eshel
by, J . Lothe and P . Mason identify in the mechanisms of phonon scat ter ing, 
t he rmo-e la s t i c damping, harmonic radiation and phonon viscosi ty . When 
the s t r a i n - r a t e r i s e s , the deformation and rupture mechanism tends, owing 
to all the r e s i s t ances against dislocation, to shift from slip to e last ic s t ra in 
and rupture by cleavage, in which only the surface energy is involved 
(fig. 4). A s imi la r effect is produced by a t empera tu re drop. 
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As the s t r a i n - r a t e is increased , there is a gjradual change from slip s t ra in 
to simple elast ic deformation of the atom planes and rupture by cleavage, 
with consequent reduction in the ul t imate elongation with the increased 
s t r a i n - r a t e . 

This behaviour always occurs beyond a c r i t i ca l velocity, known as the t r a n 
sition velocity, in which the velocity of deformation at the free end of the 
tes t -p iece is equal to the velocity of t r ansmis s ion of the plast ic wave. 

Below this c r i t ica l velocity cer ta in authors ' have also observed an 
inc rease in the ul t imate elongation of cer ta in ma te r i a l s (fig. 5). The appa
rent contradiction is caused by the fact that during dynamic loading the ef
fect of res t r i c t ion of a rea does not always allow - as in static t e s t s - the 
reduction of the s t r e s s acting on the non- res t r i c t ed par t of the t e s t -p i ece . 
Therefore , uniform elongation may inc rease during dynamic t e s t s . F u r t h e r 
m o r e , we note that, because in dynamic t e s t s the ul t imate tensi le strength 
i nc rease s , it is possible that the total number of dislocations involved in the 
s t ra in mechanism may also inc rease masking, in cer ta in conditions, the ef
fect of locking of a single dislocation. 

Although definite quantitative data on the dynamic behaviour of meta ls a r e 
very often lacking and somet imes a r e a lso contradictory, on the basis of all 
the foregoing factors two charac te r i s t i c c r i t i ca l zones were distinguished 
(fig. 4) for the dynamic t e s t s on model : 

Zone a: 
The inc rease in the s t r a i n - r a t e extends the field of the m a t e r i a l ' s elast ic 
behaviour ve r sus the s t r a i n - r a t e . If the s t ra in keeps within the dynamic 
e las t ic field and the deformation is therefore not sufficient to rupture or to 
deform the ma te r i a l plast ical ly, ra is ing the s t r a i n - r a t e will increase the 
strength of the s t ruc tu re . 

Zone b: 

If, on the other hand, the dynamic s t ra in is generated by a sufficiently great 
impulse, the ma te r i a l may also attain the plast ic deformation zone and come 
to f rac ture . The energy absorbed till f racture may dec rease or increase de 
pending on the ma te r i a l cha rac t e r i s t i c s for a given t empera tu re and s t r a in -
ra te . It is difficult, therefore , to es tabl ish an a p r io r i c r i te r ion . 
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In o rder to evaluate the energy absorbed t i l l f racture it is neces sa ry to know 

the t rue s t r e s s  t rue s t ra in d iagram and both the volumes of the ma te r i a l 

involved by fracture and by uniform s t ra in . 

Some of these concepts were verified experimental ly by the authors with 

tes ts on simple, cylindrical and spher ica l geomet r ies , which rep resen t , on 

a reduced sca le , idealized ves se l geomet r i e s . 

It must be observed that in reducedsca le models there is another factor 

which may affect the f racture behaviour of the ma te r i a l , and that is the r e 

duction in scale of the th ickness . 

In fact , the reduction of the "p las t ic zone" , which governs the duct i le

bri t t le rupture mechanism, va r i e s in the function of the thickness of the m a 

t e r i a l . This is because the l a t e ra l contractions a r e eas i e r in thin plates 

than in thick ones. 

In a reduced scale model, therefore , the behaviour of the ma te r i a l due to 

reduced thickness is more ductile than in the case of the original th ickness , 

and this can somet imes disguise the effect of the s t r a i n  r a t e , which is in 

the opposite direct ion. 

3. BEHAVIOUR OF A CYLINDRICAL SHELL SUBJECTED TO AN INTER

NAL BLAST 

3. 1 Descript ion of the set up 

The s t ruc ture chosen had to be an idealized one, which could easi ly be con

structed in different s izes and m a t e r i a l s , and whose deformation could e a s i 

ly be calculated. F u r t h e r m o r e we needed a s t ruc ture which would s imulate 

par t of a reac tor vesse l . 

A cyl indrical shell was decided upon, with wall thickness and in ternal d ia 

me te r chosen to cover a ra ther wide range of th i ckness /d iamete r r a t ios . 

The shell can be loaded by means of a detonating line charge which can 
(1 7 18Ì 

throw out a wave of an approximately cyl indrical shape 

Since the chosen shell d iameter is of the o rde r of 200 mm, a very smal l 

Λ 
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amount of explosive is required for the shell to reach the elast ic l imit . In 
o rde r to obtain the complete detonation of an explosive of very smal l d ia
m e t e r it is neces sa ry to confine it, and line charge of the p r imacord type 
was therefore used, with frequent use of a special line charge with a lead 
sheath (made by Montecatini). 

Because severa l types of r eac to r vesse l s a r e filled with water and in addi
tion water is capable of t ransmit t ing a p r e s s u r e pulse of much g rea t e r in
tensi ty than gas , it was decided that water would be a convenient medium 
to t r ansmi t the p r e s s u r e wave from the charge to the shell . 

The containment of the water in the shell presented a problem, but a very 
simple sys tem was devised to seal the water in, and yet leave the cyl indr i 
cal shell completely free to deform. The se t -up is i l lus t ra ted in fig. 6. 

The shell is simply supported on a horizontal plate of thick steel , and g rease 
is smeared al l around the shell to seal it. 

A line charge is placed in position on the axis of the shell , and, when deto
nated at the upper end, which is outside the plate , an a lmost cylindrical 
wave s t a r t s to propagate radial ly. 

To prevent rarefact ion of the wave towards the free water surface in the 
upper section of the shell , another thick s teel plate encloses the water con
tained in the shell . To avoid friction between the shell and the plate, a l/lO 
mm clearance is left between the upper section of the shell and the plate by 
means of s p a c e r s . 

This set -up is suitable for shel ls of not too large a d iameter (not exceeding 
400 mm) and for explosive charges not heavier than 30-40 gr . With d i ame
t e r s or charges l a rge r than these it is no longer possible to confine the wa
t e r by use of the upper plate , but it is possible to prevent the rarefact ion 
wave by rais ing the water level above the t e s t -p iece . 

In the se t -up descr ibed the line charge is centred by means of a rubber 
tube, whose internal d iamete r matches the external d iameter of the charge, 
and whose external d iameter matches the cent ra l hole in the steel p la te . 
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This rubber is used in o rde r to avoid extensive damage to the p la tes , which 

would resul t from contact with the explosive. 

This type of tes t on a cyl indrical shell c r e a t e s a loading condition not ice

ably different from that found in a longitudinal t e s t p i ece . In the longitudi

nal t e s t p iece loaded by a longitudinal impulse a s t ra in is c rea ted which is 

conditioned by the t r ansmis s ion of a longitudinal wave. This las t is a p l a s 

tic wave, if the impulse has been strong enough. If the displacement ve loc i 

ty of the ext remity subjected to the impact is g r e a t e r than the velocity of 

the plast ic wave, there can be a considerable effect on the necking. 

However, in the cyl indrical shell t e s t p i eces the re is no wave propagation 

along the ring per iphery . The wave, which is t ransmi t ted radial ly i s r e 

flected severa l t imes on the free surfaces of the shel l . This induces a né 

gligeable s t r e s s value compared with the tangential s t r e s s , which s t ra ins 

the shell . 

In this type of t e s t p iece it is therefore possible to study the s t ra in pheno

mena without being affected by the propagation of s t ra in waves . Moreover , 

the ring tes t p iece comes close to the original loading conditions of a v e s 

se l , in which, due to a centred and symmet r i ca l wave, the re is in fact no 

propagation of a s t ra in wave along the per iphery of the v e s s e l . 

Three main problems will be d iscussed h e r e : 

 Calculation of the s t ruc tu re deformation a s a function of t ime . 

 Inc rease of the yield s t r e s s of a m a t e r i a l with the s t r a i n  r a t e . 

 Behaviour of the ma te r i a l at f rac ture at high s t r a i n  r a t e . 

3. 2 Calculation of the s t ruc ture deformation as a function of t ime 

The main in te res t has been in thin cyl indrical she l l s , and it was therefore 

easy to wr i te the equation of motion of the shell wall . 

If we take 

2 d α = angle at the centre of the shell made by an element on the wall of 

height equal to unity (see fig. 7), 

O = tangential s t r e s s , 

ρ (t) = applied p r e s s u r e , function of t ime t 
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r = medium radius of the undeformed shel l . o 
u = displacement of each element of the shell from the r e s t posit ion at r , 
s = thickness of the wall , 
E = modulus of e last ic i ty of the ma te r i a l , 
ρ = density, 

the equation of the motion of the element i s , after suitable a r r angement : 

,2 
d u> τ-, u / « P s —γ = ρ - Es - γ (1) 
dt r 

o 

in the case where the m a t e r i a l follows the Hook law 

σ = E -B. 
t r 

o 
It follows immediately that the period T for the free oscil lat ions i s : 

ω / J E 
< ρ 

In t e s t s in which the dynamic e las t ic l imit of the m a t e r i a l is not exceeded, it 
is possible to check formula (2) within the exper imenta l e r r o r . 

The s t ra in of the shell may be recorded by means of a normal s t ra in gauge 
cemented on the outer pa r t of the shel l . A record of deformation within the 
elast ic l imit is shown in fig. 8. The durat ion of the p r e s s u r e is of the o rder 
of 15 to 25 μ sec and a typical profile of the p r e s s u r e as a function of t ime 
is shown in fig. 9. This r ecord was obtained by means of a s teel bar p r e s s u r e 
transdui 
fig. 10. 

(19) t r ansducer x ' the head of which fits into a hole in the shell as shown in 

It is evident from this that the p r e s s u r e applied to the shell ceases before 
the maximum elongation of the wall is reached, and from this instant the 
shell undergoes free oscil lat ion. 

The osci l lograph of fig. 8 r e l a t e s to a shell of C 60 s teel with r =192 mm, 
and, in consequence, to a calculated period of 118 μ sec . 
The period of 122 μ sec given by the osci l lograph a g r e e s very well , within 
exper imental e r r o r s , with that calculated. 
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Equation (1) was given to a group of mathemat ic ians of the I spra Computing 

Centre for numer ica l integrat ion, and in fig. 11 and 12 respect ively a r e 

shown the deformations as a function of t ime calculated on the bas is of (1) 

and recorded during a shot that produced a shock wave on the wall a s shown 

in fig. 13. This p r e s s u r e wave was used in equation (1) and the result ing 

wall motion is the one shown. The agreement between the calculated and ex 

per imenta l ly recorded deformation is sa t is factory . 

In the calculation the m a t e r i a l was supposed to follow the Hook law, and the 

calculation was a check on the accuracy of the method. 

The next problem was to extend the calculation to the plast ic field, and the 

yield s t r e s s of the m a t e r i a l at such a s t r a i n  r a t e had to be known. This was 

easi ly achieved (as i s descr ibed in more detai l in the following paragraphs) 

by gradually increas ing the explosive charge to d iscover at which point the 

shell becomes permanent ly deformed. Once this point is known the ca lcula

tion method may give indication of the form of the curve a - O ( ε ) in the 

plast ic field. In fact it is possible to induce increasing peak deformations 

with known increased impulses . The peak deformations will be the sum of 

a plast ic deformation, that will r emain res idual , and the e las t ic deforma

tion. 

A typical record is shown in fig. 14. With a s e r i e s of ¿ests it is possible to 

collect sufficient information to calculate approximately the unknown func

tion σ = Ο ( ε ) in equation (1) in the plas t ic field. 

If, on the other hand, the Ο = Ο ( ε ) is known for a given m a t e r i a l and a given 

s t r a i n  r a t e , it is possible to predic t the deformation which the s t ruc ture 

will undergo. 

3. 3 Increase of proport ional l imit with s t r a i n  r a t e 

We have t r ied to de te rmine the inc rease of the proport ional l imit a t high 

s t r a i n  r a t e in severa l m a t e r i a l s , in pa r t i cu la r in an austenit ic s ta in less 

s teel , a low carbon s teel (St. 37 DIN), and a C 60 UNI s teel (see Appendix I). 

The t e s t  p i e c e s used a r e cyl indr ical shel ls mounted in the se t up descr ibed 

in the preceding paragraph . 
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The method of determining the proport ional l imit i s , as mentioned before, 
to subject the shell , by gradually increased charges , to increasing impul 
ses and therefore increasing s t r a in s , up to the point at which permanent 
deformation is observed. The deformation measu remen t s a r e made by 
s t ra in -gauges , which give excellent r esu l t s even at a very high s t r a i n - r a t e 
(of the o rde r of 100 μ s t r a i n / μ sec) , for deformations of value somewhat 

(19) above the proport ional l imit of a s teel ' . The l imit is then calculated on 
the bas is of the measured s t ra in , supposing the modulus of e last ic i ty of the 
m a t e r i a l to be constant and equal to the stat ic one, a lso at the s t r a i n - r a t e 
concerned. 

The osci l lographs of an exper imenta l sequence, which was made to d e t e r 
mine the elast ic l imit of St. 37, a r e i l lus t ra ted in figs. 15 to 18. 
The resu l t was that the m a t e r i a l did not show a res idual plast ic s t ra in up 
to a s t ra in of the o rder of 2, 300 μ s t ra in , whereas at 2, 500 μ s t ra in a p e r 
manent deformation was apparent . 

The cyl indrical shell used in this exper iment was made by cutting s t r ips 
from a meta l sheet of St. 37, with a thickness of 5 mm, and curving them 
into a cyl indrical shape. After the ex t remi t ies had been welded together the 
s t r ips were machined on a lathe to form a cyl indrical shell of the outer dia
m e t e r of 250 mm, the thickness of 2 m m and the height of 30 m m . 

Tes t -p ieces were made of the same sheet of s teel and subjected to a un i 
axial tensi le test which showed the mechanical p roper t i e s given in Appen
dix I and the s t r e s s - s t r a i n curve shown in fig. 19. 

F r o m the deformations obtained in the shell subjected to an in ternal blast , 
and on the basis of the " s t a t i c" modulus of elast ic i ty , the proport ional l imit 
(at 0. 02% res idual strain) of this s tee l is found to be 48. 5 k g / m m for a 
maximum s t r a i n - r a t e of the o rde r of 100 μ s t r a i n / μ sec . The s t ra in m e a 
surements a r e considered to be affected by an e r r o r such as to induce an 
e r r o r of + 10% in the value of propor t ional l imit . 

Next some tes t s were ca r r i ed out on a shell of austenit ic s ta inless s teel 
obtained from a tube. The shell had an outer d iamete r of 158 mm, a thick
ness of 3 m m and a height of 30 m m . 
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In addition some tes t s were ca r r i ed out on a shell of the carbon s tee l C 60 

UNI obtained from a rod. The shell had an outer d iamete r of 194 mm, a 

thickness of 3 m m and a height of 30 m m . After machining the m a t e r i a l of 

the shell was annealed (750 C for 15 minutes , followed by cooling in a i r at 

room tempera tu re ) . 

In both of these cases t e s t p ieces of the same radius and thickness as the 

shell were a lso made . The resu l t s of the static and dynamic t e s t s a r e sum

mar ized in the following table 1. 

T A B L E 1 

MATERIAL 

St. 37 

austenit ic 
18/8 s ta in
less s teel 

C 60 UNI 

E J * 2 
mm 

static 

20,900 

19,600 

21,000 

σ ο . 0 1  ^ 
m m 

stat ic 

21. 6 

15.5 

34.5 

°ο.ι^2 
m m 

stat ic 

21.9 

24.5 

34.8 

<">n n k ß , ι inn Ustrain 
2 μ sec 

m m 
dynamic 

48 .5 

30.4 

61.4 

3. 4 Behaviour at f racture at a high s t r a i n  r a t e 

The study of the behaviour of the ma te r i a l s at f rac ture at high s t r a i n  r a t e 

was also ca r r i ed out, for the cyl indrical shell , with the se t up descr ibed 

in paragraph 3. 1. 

The charges used, which in this case had to be of considerable weight, 

were ei ther cyl inders of TNT with a 15 m m d iamete r , or cyl inders of p l a s 

tic explosive ("plasti t" made by Dynamit Nobel, which has a density of 

1. 65 g r / c m and a detonation velocity of about 7, 000 m / s e c ) wi th d iamete r s 

from 19 to 24 m m . The height of the cyl inders of explosive is natural ly 

equal to that of the shell . 

Since the s t ra in gauges a r e not capable of following the s t ra in as far as r up 

(19) ture at the s t r a i n  r a t e s in question , the elongations were m e a s u r e d by 

p incontac tors (see Appendix ΠΙ). The cyl indrical shell f rac tures at many 
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points as it is shown in fig. 21a. After the tes t we reassembled the p ieces , 

and measu red the res idual deformation, determining the following p a r a 

m e t e r s : 

a) Uniform s t ra in far from the f rac ture a r e a which was calculated from d e 

formation at measu remen t bases situated on the external per iphery of 

the shel l . These bases a r e delimited by m a r k s drawn following a gene ra 

t r i x line at a dis tance of 2030 m m from one another . 

b) Reduction in the th ickness , measu red with a prec is ion of ¿ 0. 01 m m . 

c) T r u e  s t r a i n calculated from the measu remen t s of the reduction in height 

and thickness of the shell at the f rac ture , and on the basis of the formula 

(1 + e t ) (1 + ε h ) (1 + e r) = 1 (3) 

where : 

ε = the tangential s t ra in which coincides with the t r u e  s t r a i n at the 

f racture 

ε h = reduction in height in percent ' 

e r = reduction in thickness in percent 

Formula (3) which expres ses the volume constancy of the ma te r i a l and is 

valid at al l points of the shel l , i s used a lso to check the measu remen t s set 

out in paragraph a). 

The s t r a i n  r a t e s in question vary between 1, 300 and 1, 500 μ s t r a i n / μ sec . 

F i g s . 20 and 21 give examples of s t ra in measu remen t s given respect ively 

by a s t ra ingauge (which in this tes t gave the exceptional measu remen t of 

a s t ra in of up to 14. 2%) and p in con tac to r s . 

The shells used were s imi la r to those descr ibed in paragraph 3. 3, with the 

sole difference that the s ta in less s teel shell was also manufactured from 

meta l sheet, and had an outer d iamete r of 202 mm and a thickness of 1 m m . 

The comparison between the resu l t s obtained in dynamics and those obtained 

on t e s t p ieces of the same m a t e r i a l in stat ic is given in table 2. 

The t empera tu re of the exper iments var ied between 20 C and 25 C. 
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On one she l l of C 60 UNI s t e e l an exper iment w a s m a d e by putting hot water 

into the she l l . The temperature of the she l l in that exper iment was 42 C. 

T A B L E 2 

MATERIAL 

St. 37 

s t a i n l e s s 

s t e e l 1 8 / 8 

C 60 

C 60 

s t r a i n 

rate 

μ s tra in 

μ s e c 

stat ic 

1 ,500 

stat ic 

1 ,400 

stat ic 

1 ,400 

stat ic 

1, 400 

uniform 

stra in 

% 

25 

4 2 . 7 

4 9 . 5 

4 3 . 3 

1 7 . 5 

22 

32 

reduction 

of 

th i ckness 

% 

5 8 . 5 

3 2 . 5 

4 3 . 5 

31 

68 

13 

1 7 . 9 

true 

s tra in 

% 

163 

103 

233 

81 

91 

30 

42 

) t emperature 

during 

exper iment 

°C 

24 

24 

24 

i 
42 

4 . BEHAVIOUR OF A SPHERICAL SHELL SUBJECTED TO AN INTERNAL 

BLAST 

4. 1 Calculat ion of the s tructure deformat ion a s a function of t ime 
» » — » * — — ■ » — — 'Win ■ a  ^ a a ^ a . a .  t ^ . ^ a . f a » » » . . » »  — . . a .  T » M > — ι ,i m m ' ia»a — »■ ■ ■■ ■■ ■ «■» m ■!«■■»■ m ■ ^^^*~m*m^^^^m*m—mmmm~m-mmm*im 

The behaviour of a spher ica l she l l subjected to an internal p r e s s u r e rapid

ly var iab le in t ime but constant f rom one p lace to another in the s p h e r e can 

be d e s c r i b e d by the equation: 

u + a>>A Hfc· + *»>· Ρ4? 
ar 3r 3

1
2 

w 

where 

t = t ime 

λ and μ = constants of L a m é 

ρ = densi ty of the m a t e r i a l of which the wal l i s built 

r = init ial spatial coordinate of a layer 

u = u(r, t) = d i sp lacement f rom the r e s t pos i t ion of the l ayer of c o o r 

dinate r. 

The radial s t r e s s a
 an<

^ tangential s t r e s s af a r e defined in function of the 
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u and of t h e τ— of the fol lowing e x p r e s s i o n s : 
d r 

σ Γ = ( λ + 2 μ ) | ä + 2 λ ^ (5) 

σ =λ ψ λ-Ζ (λ +μ)Η (6) 
t 3 r ν ^ ' r 

Given r . t he i n t e r n a l r a d i u s and r t he e x t e r n a l r a d i u s of the s p h e r e , the 
ι e 

b o u n d a r y cond i t i ons a r e : 

1) u , g— » "ar» σ and Ο a r e = 0 for t < 0 

2) σ = 0 for r = r for e v e r y t 
' r e ' 

3) Ο =  p(t) for t £ 0 for r = r . 

The so lu t ion of equa t ion (4) wi th the b o u n d a r y cond i t i ons w a s done by a g r o u p 

of m a t h e m a t i c i a n s of the I s p r a compu t ing c e n t r e and p r o g r a m m e d on the 

IBM 7090 c o m p u t e r . 

We h a v e thus ob ta ined , for a g iven ρ = ρ (t), the m a g n i t u d e s 

O = O ( r , t ) , Ο = σ ( r , t) u = u ( r , t ) , 
r r t t 

and ε = > ' i · , wh ich i s a l s o d i r e c t l y m e a s u r a b l e t h r o u g h the s t r a i n 

g a u g e s . 

m E q u a t i o n (4) i s only va l id w h e r e σ and σ a r e r e l a t e d to the u and ~ * of 

r e l a t i o n s (5) and (6); tha t i s , a s long a s the m a t e r i a l r e m a i n s in the e l a s t i c 

f ie ld . 

When the m a t e r i a l e n t e r s the p l a s t i c field the l ink b e t w e e n the σ and the u 

3u 
and Õ— i s no l o n g e r l i n e a r , the c o n s t a n t s λ and μ of the m a t e r i a l v a r y , and 

the v a l u e s to be i n t r o d u c e d in to the equa t ion a r e no l o n g e r known. 

Af t e r e a c h e x p e r i m e n t one can c o m p a r e the m e a s u r e d t a n g e n t i a l s t r a i n v a 

l u e s 8 wi th the v a l u e s c a l c u l a t e d f r o m m e a s u r e m e n t of the p r e s s u r e which 

h a s a c t e d upon the i n t e r n a l s u r f a c e s of the s p h e r e . 
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4.' 2 Exper imenta l s«tup 

Two m a t e r i a l s , of s tandardizat ion DIN, have been taken into considerat ion: 

St. 37 and s ta inless s teel 4300 (see Appendix I). 

The spheres a r e obtained by arcwelding forged hemisphe re s . After the 

welding an annealing t rea tment is c a r r i e d out as descr ibed in 3. 3. 

The external d i ame te r s of the sphere were 400 and 250 m m for each of the 

m a t e r i a l s . The th icknesses were of a nominal 3 m m and 2 m m respec t ive 

ly for the spheres of 400 m m and 250 m m d iamete r . 

In effect, since the manufacturing p r o c e s s s t a r t s from a plate of constant 

th ickness , var ia t ions of +_ 10% of the nominal value have been measu red , 

with th icknesses decreas ing from the equator to the pole of the hemisphere . 

Four mer id ian l ines and five para l l e l s a r e t raced on each hemisphere . At 

the in tersect ion of each mer id ian with the var ious para l l e l s the thickness 

may be measured with an accuracy of + 0. 01 m m . 

After welding the d i ame te r s of the sphere were measu red at the var ious 

t raced points and values have been found ranging within ¿ 1 % of the nominal 

value. On the external surface of the a r e a near the pole, where the thickness 

remains constant over a la rge zone, s t ra ingauges have been cemented. 

The internal blast loading is generated by a charge of "plas t i t" . This is d e 

tonated by means of an exploding wi re , on to which a condensor of 1 μ Γ , 

charged to 14 KV, is d ischarged. We p repared the explosive charge ourse lves 

by press ing the explosive into a spher ica l die divided into two halves equip

ped with the exploding wi re . It has been p r e s s e d in o rde r to obtain a suffi

ciently homogeneous densi ty. By this p rocedure it is possible to obtain a 

spher ica l detonation, and consequently, the production of a spher ica l w a v e . 

(19) 

Bar s t ra ingauge p r e s s u r e t r ansduce r s x ' c a r r i ed out s imultaneous m e a 

surements in different d i rec t ions , and recorded differences included in the 

accuracy of the t r a n s d u c e r s . In each experiment two p r e s s u r e measu remen t s 

and two s t ra in measu remen t s were made . The charge was gradually increased 

in o rde r to a sce r t a in the point at which the m a t e r i a l showed signs of plast ic 

deformation. 
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The sphere was supported by the p r e s s u r e t r ansduce r s , as is shown in 
fig. 22. The explosive was introduced through a hole made on the sphere , 
and this hole has been reinforced a s is a lso shown in fig. 22. By pulling 
a wire through the polar axis of the sphere , it was possible to centre the 
charge with an e r r o r of + 1 m m . 

4. 3 Comparison between the exper imenta l r esu l t s and the theore t ica l c a l 
culations 

In each experiment two p r e s s u r e signals and two s t ra in signals were r e c o r · 
ded on two double beam osci l loscopes . F i g s . 23, 24, 25 and 26 give two 
examples of the record ings . By taking the p r e s s u r e values recorded by the 
two t r ansduce r s we find the average ρ = p(t) which, when introduced into 
the boundary conditions of equation (4), gives the profi le of the ε ., which 
is a lso obtained by s t ra in-gauge record ings . 

The compar ison between the ε given by the two methods pe rmi t s an evalua
tion of the validity of the mathemat ica l method, and a check on the values of 
O and σ , which the calculation methods give, not only for the points on 
the external surfaces but a lso for al l the points of the sphere . 

This is par t icu la r ly important when the sphere is no longer thin as it is in 
our c a s e . Examination of the data obtained from the calculation shows that 
the tangential s t r e s s σ inc reases by approximately 3% going from the ex
t e rna l surface to the in ternal surface of the sphere of 400 m m d iamete r and 
thickness of 3 m m . 

In fig. 24a the d iag rams of the theore t ica l and exper imental s t ra in t ime 
curves (reproduced from fig. 26) a r e compared. The agreement between 
the exper imenta l and theore t ica l r esu l t s is good (within a range of + 10%) 
as far as concerns the values obtained for peak s t ra ins and the t ime in which 
this peak is at tained. In some c a s e s , however, there is d i sagreement b e 
tween the theore t ica l and exper imenta l profi les of the s t ra in curve . This 
d i sagreement , however, can be at t r ibuted to var ia t ion in the thickness from 
point to point. 

4. 4 Increase of the proport ional l imit with the s t r a i n - r a t e 

The e las t ic limit of the m a t e r i a l is measured in s tat ic on t e s t -p i ece s , as r e -
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ported in Appendix I. F o r a c lose r compar ison of the values of the e las t ic 
l imit of the m a t e r i a l in the t rue s ta te of s t r e s s which exis ts in the sphere , 
we have ca r r i ed out stat ic t e s t s on both the m a t e r i a l s of the s p h e r e s . 

The resu l t s a r e repor ted in fig. 1-1 which shows an e las t ic l imit of 23 Hh 
1 k g / m m for the St. 37, although it was not possible to find the exact point 
at which the p las t ic phenomenon began in the austenit ic DIN 4300 s ta in less 
s tee l . The l imit of proport ional i ty can be placed at about 7 + 2 k g / m m ; the 
proport ional l imit a t 0. 05% is 15 k g / m m + 10%. 

In dynamics , by the same method as a l ready descr ibed for the cyl inders , we 
2 

measu red an elast ic l imit of 57 + 10% k g / m m for the St. 37 s teel , and of 
2 

about 45 k g / m m for the austenit ic s teel , with a mean s t r a i n - r a t e of 
40 μ s t r a i n / μ sec . The maximum s t ra in was attained in 50 Hh 5 μ sec . This 
shows for St. 37 s teel an i nc rease in the e las t ic l imit of 140% compared to 
the stat ic c a s e . The value found for the DIN 4300 s ta inless s teel being based 
on only one experiment demands further check. 

4. 5 Study of the rupture 

Charges as descr ibed in the pa ragraphs concerning the elast ic field were used 
with water as the t r ansmis s ion medium in o rde r to obtain a high s t r a i n - r a t e 
with a smal l charge . 

Since the s t ra in-gauges a r e unable to follow s t ra ins above ~ 7 % in dynamics , 
these higher s t ra ins were measu red during the deformation by: 

- the pin contactors , and 
- the capacity method 

which a r e descr ibed in Appendix III, 
In this way we measured the values of the s t r a i n - r a t e , which was one of the 
p a r a m e t e r s which were var ied during our t e s t s . After the exper iment we r e 
assembled the p ieces and measu red the res idual deformation by checking the 
following p a r a m e t e r s : 

1) The uniform tangential s t ra in e far from f rac tu re , ε was determined 
by the formula: 

( l + e t l ) ( l + e t 2 ) ( l + e r ) = l 
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supposing constance of volume. 

S ^. and ε -, a r e the tangential s t r a ins in two orthogonal direct ions and 
a r e equal to ε because of the symmet ry of the s t r e s s e s . 

ε being the reduction of th ickness , is known by thickness measu remen t s 
per formed at individual points before welding of the sphere and after the 
tes t . 

2) The reduction of thickness measu red to an accuracy of + 0. 01 m m . 

3) The t rue s t ra in calculated from the reduction of the a r ea in the f rac ture 
zone, supposing that the s t r a in along the f rac ture is equal to the uniform 
s t ra in . 

4) The aspect of the f rac ture , which is normal ly of shear type with a f racture 
angle varying in both m a t e r i a l s from 47 to 54 . The f rac ture angle has 
shown a cer ta in tendency to inc rease with increasing s t ra in r a t e . 

Exper iments have been c a r r i e d out which increased the s t r a i n - r a t e s by d e 
tonating 60, 80, 100, 320 and 500 gr of explosive in wa te r . The s t r a i n - r a t e s 
thus obtained var ied from 200 to 2, 600 μ s t r a i n / μ sec . F i g s . 28 and 29 give 
examples of the recording of the s t ra in as a function of t ime . 

F r o m an examination of the fractured p ieces of the sphere it can be seen 
that with low s t r a i n - r a t e s the re a r e only a few broken p ieces , whereas we 
noticed that the number of p ieces increased a s the t e s t s became m o r e rapid. 
This inc rease leads us to p r e s u m e that the f rac ture must have occured in 
seve ra l p laces independently and simultaneously. In some of these la ter 
t e s t s on the St. 37 s teel we noticed that about 5% of the total length of the 
f rac ture -was of a z ig-zag type charac te r i zed by the passage from shear to 
cleavage with a direct ion change of 90 and a f racture angle of 90 . Details 
of a f rac ture of this type a r e given in fig. 32. It has been observed that a u s 
tenit ic s teel shows this tendency to a much less degree . 

Even where the appearance of the f racture is shear , we have reason to think 
that at a high s t r a i n - r a t e it will propagate at a very high velocity of the o rder 
of 1. 5 k g / s e c . This figure was recorded accidentally during an exper iment . 

The following table 3 gives the mean values of p a r a m e t e r s measu red in va 
rious exper iments . 



269 

T A B L E 3 

MATERIAL 

St. 37 
St. 37 
St. 37 
St. 37 
St. 37 
St. 37 
DIN 4300 
DIN 4300 
DIN 4300 
DIN 4300 

d ia 
m e t e r 
m m 

400 

250 

400 

250 

400 

250 

400 

250 

400 

250 

Explosive 
charge 

medium 
g r 

stat ic 
s tat ic 
80 water 
60 water 

500 water 
500 a i r 

s tat ic 
stat ic 

320 water 
80 water 

average 
s t r a i n -

ra te 
μ s t r a in 
μ sec 

300 

800 

900 

2500 

750 

1250 

e u 

% 

14 

16 

12 

17 

24 

30 

22 

20.5 

19 
22 

e r 

% 

40 

49 
44 

40 

41 

42 

40 

43 

37 

33 

e t 

% 

46 

69 
60 

42 

37 

33 

37 

45 .5 
34 

23 

Test t empera tu re about 18 C 

β = tangential uniform s t ra in far from the f rac ture 
s — s 

e _ o / s is the thickness at the f racture 
r s ( 

o \ s is the average init ial thickness at the same point 
ε = t rue s t ra in at the f rac ture 

) 

5. DISCUSSION AND CONCLUSION 

On the bas is of the p re l iminary r e su l t s set out in the p resen t r epor t it is 
possible to make the following r e m a r k s : , 

- Exper imenta l and calculating methods devised for the study of the response 
of a v e s s e l to an impulsive loading, allow a sufficiently p r e c i s e study of 
such phenomena, and, par t icu la r ly , have made possible the study of the 
effects of s t r a i n - r a t e in v e s s e l s with thin walls in the e las t ic field and at 
rup ture . 

- We have been able to verify the considerable inc rease in dynamics of the 
e las t ic l imit of two types of carbon s teel and two types of austeni t ic s teel 
in state of mono- and biaxial s t r e s s . The dynamic e las t ic l imit of biaxial 
s t r e s s for St. 37 exceeds by about 19% that of monoaxial s t r e s s . 
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We have noticed rupture phenomena which were not ent i re ly fo r e see 
able on the bas i s of existing l i t e r a tu re , and which prove that modifica
tion of the s t r a i n - r a t e can bring about considerable changes in the deform
ation and rupture mechanism. This can d is tor t the resu l t s of an exper iment 
on a r educed-sca le model . The z ig-zag shear cleavage f rac ture as shown 
in fig. 32 p resen t s a pecul iar cha rac t e r i s t i c . This can perhaps be accoun
ted for by the s t ra in wave which p recedes the shear f rac ture and profound
ly a l t e r s the state of 'St ress at the point where the cleavage f rac ture s t a r t s . 

The inc rease of the s t ra in ra te has brought about an equally considerable 
inc rease of the uniform s t ra in and the d e c r e a s e of the t rue s t ra in , both in 
the t e s t s on cyl indrical and spher ica l she l l s . In the exper iments on cylin
dr ica l shel ls uniform s t ra in d e c r e a s e was proved in the case of s ta inless 
s tee l . This finding r equ i re s further t e s t s for be t ter checking. 

Tes ts were ca r r i ed out for the UNI C 60 s teel a lso at higher t e m p e r a t u r e , 
which caused a sharp s t ra in i nc rea se , both uniform and t r ue . 

The behaviour of the m a t e r i a l at rupture in the var ious exper iments can be 
explained by the s t ra in-hardening effect. This , in the biaxial exper iments , 
is sufficient to c rea te a dec rea se in plast ic i ty of the m a t e r i a l in the r e s 
t r ic ted a r e a , whereas in the monoaxial exper iments , where the m a t e r i a l 
is f ree r to flow, this effect takes place to a sma l l e r extent. The inc rease 
of both uniform and t rue s t ra in with inc rease of t empera tu re shown by 
UNI C 60 s teel leads us to p r e s u m e that the m a t e r i a l is in the neighbour
hood of the t rans i t ion t empera tu re for the deformation velocity employed. 

It has not yet been possible to de te rmine the influence of a l l p a r a m e t e r s 
observed upon the energy neces sa ry for rup ture . It follows that, whereas 
zone a) in fig. 4 has been fully verif ied, we have only a few elements for 
defining zone b). Therefore , it is neces sa ry to be ve ry careful in evalua
ting rupture t e s t s on the reduced-sca le model . 

It must be noted in addition that the manner in which the s t ruc tu re is d e 
formed can be of great importance to the rupture mechanism, since this is 
re lated to the exact s tate of s t r e s s of the s t ruc ture at the f rac ture point. 
The condition of loading for the symmet r i ca l internal dynamic p r e s s u r e 
of a s t ruc ture is real ly a very special condition which it is difficult to s i 
mulate completely in a t e s t -p i ece of a different shape and state of s t r e s s . 
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The methods employed in the present study are suitable for a test on a 
prototype, in which the test-piece is built of the same material, with the 
same thickness, and the same weldings, but using (see fig. 33) a ring of 
reduced height compared to the original. In such a t est , however, the same 
strain-rates as in the original structure should be reproduced. 

The test can be carried out in an open experimental area with the use of 
simple equipment. Such a test will obviously not be a substitute for expe
riments on the test-piece (20, 21, 22, 23), whose importance is due to 
their extreme simplicity, but it will provide complementary information, 
which comes close to that provided by a full-sized experiment at very much 
reduced cost. 

Naturally, for such a test to be valid, the impulse of the structure which 
is to be simulated should be known. This calls for a deeper knowledge than 
that at present available on the effects of a release of energy on the value 
of the mechanical impulse. 

The research work begun shows that further investigation of the following 
points would be of considerable interest: 

- Tests on a prototype (see preceding comment) with special regard to the 
influence of strain-rate on transition temperature. 

- Investigation into the shear-c leavage type of fracture which propagates i t 
self at great speed, and on the state of s tress at the running fracture tip. 

- The influence of defects or s tress concentration caused e. g. by- nozzles 
upon the origin and propagation of a fracture induced and pushed dynami
cally. 
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Fig. 6 
Cross-section showing th« set-up for toot· on 

cylindrical «hell 
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ESSES* 
Fig. 8 

Typical record of a strain induoed 
in a cylindrical shell "by an in
ternal "blast loading 

T660 ^ a t r a i n 
square 

— 200 μsec/square 

— 50 Msec/square 

Fig. 9 
Typical record of the shock wave 
impinging on the cylindrical shell 

= 160 Wem square 

10 μsec/square 
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F i g . 10 

SET-UP FOR TESTING- CYLINDRICAL SHELLS 
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830 e gtsaía 
J square 

*~ 50 μ sec/square 

Fig. 11 

Strain versus time calculated from 
numerical integration of equation (ï) 
on the basis of the incident pressure 
wave obtained in the experiment of 
Figs. 12 and 13. 

630 l2Í2Sáfi 
W J
 square 

— 50 μsec/square 

 · — 20 sec/square 

Fig. 12 

Record of strain versus time. 
The drop of the amplitude after the 
first half oycle is due to water 
mass displacement during elastic 
springoback. 
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— 10 μsec/square 

1 1 5 kfí/cm 
1 ^ square 

Fig. 13 

Pressure record of shock wave reflected 
from the cylindrical shell in the same 
experiment as in Fig. 12. 

1660 g a i a t o 
square 

100 μ sec/square 

Fig . 14 

Strain reoord of an experiment in the 

plastic field 
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Fig. 15 

Fig. 16 

Explosive charge: a twist of three 

lead sheathed line charges, each con

taining 1 gr/m of PETN. 

3320 

• 200 

1660 

• 50 

μ strain 
square 

μsec/square 

«strain 
square 

μ sec/square 

3*20
 <iStraln 

JJ
 square 

·— 200 «sec/square 

Λ 660 asisäto 

square 

50 μθec/square 

SERIES OF TESTS FOR DETERMINING THE ELASTIC LIMIT 

OF DIN St. 37 STEEL 
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1660 «strain 
square 

200 μsec/square 

— 50 μsec/square 

Fig. 17 
Explosive charge: a twist of four 
lead sheathed line charges, each 
containing 1 gr/m of PETN. 

Fig. 18 
Explosive charge: one lead-sheathed 
line charge containing 5 gr/m of 
PETN 

-I660 strain square 

200 μsec/square 

50 μsec/square 

SERIES OF TESTS POR DETERMINING THE ELASTIC LIMIT 
OP DIN St. 37 STEEL (continued) 
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f « 3.22$ per square 

100 μsec/square 

100 μsec/square 

Fig. 20 

s=3»5 mm/step 

100 μsec/square 

100 μsec/square 

Fig. 21 

Strain records obtained simultaneously by strain-
gauges and pin contactors during explosion test 
which resulted in the.rupture of the cylindrical 
shell. 
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F i g . 21a 

CYLINDRICAL SHELLS OF STAINLESS STEEL (LEPT) 

AND UNI C 60 STEEL (RIGHT) APTER PRACTÜRE 

DUE TO INTERNAL BLAST LOADING 
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Pig. 22 

MOUNTING OF THE SPHERE WITH THE PRESSURE TRANSDUCERS 
AND STRAIN-GAUGE FOR TESTS IN THE ELASTIC FIELD 
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Fig. 23 
pressure record 

ι 
20 μsec/square 

160 atm/square 

2000 tignato 
square 

t 
20 μsec/square 

2000 «gJHJig square 

50 μsec/square 

Fig. 24 
strain record 

PRESSURE AND STRAIN RECORDS FOR A STAINLESS STEEL SPHERE, 
DIAMETER 4OO MM, IN THE ELASTIC FIELD USING A PLASTIT 

CHARGE OP 25 GR. 
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heoreticQl curve 

Experimental curve 
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Comparison between the measured and 
calculated deformations of a sphere ti 400 ST. 37 

FIG. 24 a 
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65 atm/square 

20 «sec/square 

Pig. 25 
Pressure record 

t 1000 μ strain square 

50 μsec/square 

1000 fstrain 
square 

50 μsec/square 

Pig. 26 
Strain record 

PRESSURE AND STRAIN RECORDS POR A STAINLESS STEEL SPHERE 
DIAMETER 400 MM, IN THE ELASTIC PIELD USING A PLASTIT 

CHARGE OF 20 GR. 
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Fig. 27 

MOUNTING OP THE SPHERE WITH MULTIPLE PIN CONTACTORS 
AND A CAPACITY GAUGE POR DISPLACEMENT MEASUREMENTS 
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2.1 mm radial 
displacement/step 

100 μseo/square 

Fig. 28 

pin contact signals versus time 
60 gr plastit in water 

3.5 mm radial 
displacement/step 

200 μseo/square 

Fig. 29 

pin contact signals versus time 
100 gr plastit in water 

RECORD OF RADIAL DISPLAÖEMENT VERSUS TIME 

OF DIN St. 37, 400 mm DIAMETER SPHERE 
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Pig. 30 
Stainless steel, 250 mm diameter sphere after 

explosion with 80 gr plastit in air 
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Fig. 31 
St. 37 DIAMETER 400 mm SPHERE AFTER EXPLOSION 

WITH 500 gr PLASTIT IN WATER 
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Β 

Fig. 32 

DIN St.37, diameter 400 mm sphere (as in Fig. 31) 
details of shearcleavage fracture 

(A: 1.3 x) (B: 1.9 x) 
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Metal sheet cylinder 

Water 

Explosive charge 

Test-piece 

avoiding rarefaction 
wave — > . 

f ig _ 33 PROTOTYPE TEST SET-UP 
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APPENDIX I 

MECHANICAL CHARACTERISTICS 

Mater ia l as 
cited in 
repor t 

Norm 

E k g / m m 

°0. 01 kg/mm2 

σ / 2 
0. 1 k g / m m 

0 0. 2 k g / m m 

O k g / m m 

true s t ra in 

% 

uniform 
s t ra in % 

St. 37 

DIN 17100 

St. 372 

20,900 

21.6 

21.9 

21.7 

31.8 

163 

25 

UNI C 60 

2954 

UNI C 60 

21,000 

34.5 

34.8 

35.2 

60.5 

91 

17.5 

austeni t ic 
18/8 s ta in
l e s s s teel 

AISI 304 

19,600 

15.5 

24 .5 

25.8 

59 .8 

233 

49 .5 

DIN 4300 
s ta in less 
s tee l 

DIN 4300 χ 12 

CrNi 188 

a* M M 

aal M M 

36.7 

61 .6 

62 

CHEMICAL COMPOSITION 

C 

Mn 

C r 

Ni 

Si 

P 

S 

0 . 8 

 

 

 

 

«Í0.175 

£ 0.063 

0 . 6 

*£ 0. 8 

— 

 

< 0 . 35 

« 0 . 0 3 5 

< 0.035 

0.06 

< 2 

18 + 20 

8 + 12 

< ι · 

< 0.04 

< 0.03 

0.06 

1.6 

18 

9 . 2 

0.45 

0.03 

0.017 



—· S.S.DIN 4300 

30. kg/mm
¿ 

î 
25· 

20■ 

1000 2000 

Statio stressstrain diagram 

determined on spheres. 

4000 6000 8000 

ST. 37 

Appendix 11 

Ι
ι 0000 

>^ μ strain 



- 299 

APPENDIX II 

APPARATUS FOR IGNITING THE EXPLOSIVE (E. Jorzik) 

A circui t d iagram of the apparatus for exploding a wire of 0. 05 m m d i a m e 
t e r has been represen ted in fig. I I - 1 . The apparatus consis ts of two main 
p a r t s : the condenser with a high voltage supply, and the t r igger ing m e c h a 
n ism with a spark-gap . 

F o r a high voltage condenser a Bosch 0.5 μ Γ and 25 KV impulse condenser 
was chosen. The high voltage was obtained by a leakage t r a n s f o r m e r with 
a secondary voltage of 7 KV and a rect i f ier tube. In this way the condenser 
is charged to 14 KV. 

The spark-gap is di rect ly connected to the condenser t e rmina l . The t r i gge r 
impulse is fed concentrical ly to an e lec t rode . A smal l condenser is switch
ed on by a hydrogen thyra t ron, and d ischarges onto the p r i m a r y windings of 
a t r ans fo rmer which gives an impulse to the ignition e lec t rode . The control 
grid of the thyra t ron rece ives a steep positive impulse from a switch-
t r ans i s t o r . 

In o rder to keep down the total inductance which consis ts of inductances of 
the condenser , a connection cable and the explosive wire , two para l l e l con
nected coaxial cables were used. The smal les t d ischarge t ime of the con
denser obtained was about 3 μ sec . 

The ignition delay is about 0. 5 μ sec , and is constant. The noise level r e su l t 
ing from the cu r ren t -d i scha rge becomes negligible 10 μββο after the ignition, 
allowing measu remen t s to be made with an osci l loscope. 
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APPENDIX ΠΙ 

1. PIN CONTACTOR METHOD 

In o rde r to be able to m e a s u r e the l a rge deformations of a sphere or a cy
l inder (since the s t ra in-gauges a r e incapable of following a deformation 
g rea t e r than 7%) it was decided to calculate the mean s t ra in by measur ing 
the global deformation of the s t ruc tu re through ten contacts . The dis tance 
between these contacts and the walls is regulated by a sc rew with a pitch 
of 0. 7 m m . By placing the contact so that it touches the wall, whose d i s 
placement it is des i red to m e a s u r e , the ze ro position of the individual con
tact is es tabl ished. In this way the height of the points can be set at known 
dis tances from each other and from the wall , with an accuracy of + 0. 1 m m . 
The measur ing device is shown in the following d iagram. 

sphere or cyl inder wall 

pin contactors 

Ro | Re 
- ν - ΐ - Α Λ Α Α - ' ν ν Λ 

4- c; <6 

The potential of point 10 d e c r e a s e s by l / l O of the initial value when it touches 
the f i rs t point, by 2 / l 0 when it touches the second, and by n/ lO when it touch
es the nth. F o r this relat ion to be valid it is nece s sa ry that R >> 10 R . By 

c o J 

placing the nth point at a dis tance η t imes g rea t e r than the f i rs t , we can make 
an osci l lograph which we can in te rp re t a s the curve of the displacement of 
the wall . The photographs 21, 28 and 29 give examples of the r e su l t s obtained 
by this method. 

2. CAPACITIVE METHOD (E. Jorz ik , Y. Lachapelle) 

The capacitive var ia t ions a r e m e a s u r e d between a spher ica l fixed bowl of 
16 cm d iamete r and the wall of the sphere (fig. HI-1). The relat ive motion be· 



- 3 0 2 -

tween the plate and the sphere causes a var ia t ion in dis tance between the 
two poles which is initially of about 7 cm. The capacity var ia t ions a r e 
t rans formed l inear ly into frequency var ia t ions by means of an osc i l l a tor 
which is attached to a Southern F . M. amplif ier model containing a d i s c r i 
minator c i rcui t . 

In this way a signal is obtained on the osci l lograph, d i rec t ly propor t ional 
to the capacity va r ia t ions . Given that the capacity of the condenser is not 
a l inear function of the dis tance of the two poles , it is n e c e s s a r y to ca l i 
brate before every exper iment . The m e a s u r e m e n t sys tem adopted (F . M. ) 
p e r m i t s a static cal ibrat ion. F ig . III-2 shows the determinat ion of the d i s 
placement curve v e r s u s t ime obtained from the curve signal voltage v e r s u s 
t ime and from the cal ibrat ion curve . The maximum recordab le frequency 
of the sys tem is of about 50 K c / s e c . 
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Appendix III-1 - Capacitive displacement measuring- system. 
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EXPLOSIQN TESTS OF ARC WELDED STEEL TUBES 

by 
X JtJfc 

H. Kihara and K. Iida 
University of Tokyo 

Tokyo, Japan 

1. Introduction 
" 1 2) 

The present paper summarizes two experimental studies ' published in 
Japanese in 1956 and 1958. 

Under dynamic load the brittle fracture of welded steel structure can 
occur at a temperature higher than the critical temperature under static 
load, and, as it is widely known, the higher the loading rate is, the brittler 
the fracture mode tends to be. The fracture mode is also affected by material 
properties, welding procedures such as manual welding, submerged arc welding 
and so on, and treatments after welding such as stress annealing, peening and 
low temperature stress relieving. 

The object of the investigation summarized in the present paper was to 
examine the contributions of the above mentioned factors to brittle fracture 
characteristics of welded tubes under explosion impact load. 

In preliminary tests a mine of TNT was put directly on a welded steel 
plate and was detonated, but, contrary to the authors' expectation, a layer 
of steel of almost the same area of the bottom of the explosive came off 
from the other surface of the plate than the surface on which the explosive 
was placed. 

Accordingly, the method that a mine of TNT set at the· center of the 
tube specimen filled with liquid medium was adopted for the tests, and that 3) was the same procedure Folkhard employed. By this method welded tubes 
without any particular artificial notch were able to be successfully fractured 
in a brittle manner. 

2. Experimental Technique 
2-1. Materials and Specimens 

% ' — — — - ___ ~~ "~~ 
Professor, Dr.-Eng., Department of Naval Architecture, University of Tokyo. 
Assoc. Professor, Dr.-Eng., Department of Nuclear Engineering, University 
of Tokyo. 
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18 kinds of tube specimens, whose designations and numbers are listed 
in Table 1, were used in the explosion impact test to investigate the effect 
of material, welding method, stress annealing, low-temperature stress reliev
ing and peening on the fracture behaviour of tube specimen. Materials of the 
specimens were a common structural mild steel (designated as MS steel) and 

2 2 
three kinds of high tensile steels with 50 kg/mm or 60 kg/mm tensile strength 
(designated as 50 HT steel, 60 HT steel and 2H steel respectively). Chemical 
analysis, mechanical properties and V notch Charpy impact values of the steels 
used are given in Table 2 and Table 3 respectively. 

Figs. 1 and 2 show the details of the tube specimen with dimensions of 
20 mm in thickness, 400 mm in inner diameter and 800 mm in length. Details 
of joint preparation and welding sequence for the specimens with high strength 
steels are illustrated in Fig.l, and for the mild steel specimen in Fig. 2. 
All joints of the specimen were but welded in flat position with back chipping 
after the welding of backing side. 

For the mild steel specimen longitudinal joints were welded first by 
manual welding, and then the circumferential joint was welded. X ray inspection, 
of which results are given in Table 4, were carried out over the whole length 
of welded joints. 8 of mild steel specimens (designated as AW specimen) were 
tested in as-welded condition, and 6 of mild steel specimens (designated as 
SR specimen) were tested after the stress annealing at 650 C for 1 hour. 

High tensile steel specimens were fabricated as follows ; two plates 
cylindrically cold-bent were made into a unit tube by welding longitudinal 
joints and after X ray inspection of the joints and stress annealing at 650 C 
for 1.5 hours two unit tubes were assembled by welding a circumferential joint, 
and then finally the circumferential joint was inspected by X ray radiography. 

Specimens with the designation of L in Table 1 were stress relieved by 
the Linde method with the following condition: 

breadth of burner ; 150 mm 
location of the center of burner ; 150 mm from the center of 

circumferential joint 
maximum temperature on outer 
surface 
maximum temperature on inner 
surface 
Circumferential joint of the specimen with Ρ designation was peened at 

surface : 230 C 

surface ; 190°C 
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a temperature below 100 C. Peening conditions were as follows: 

weight of pneumatic hammer 

weight of chisel 

cycling rate 

diameter and stroke of piston 

hammering area 

1.8 kg 

mo gr 

3,500 cycle/min 

18 mm and 50 mm r e s p e c t i v e l y 
2 

5 χ 6.5 mm 

22. Explosion Test 

The significant merit of the explosion test is that a huge amount of 

energy produced by explosion is given to the specimen. For the purpose of 

fully making use of the energy by explosion, liquid medium was filled up in 

the tube specimen, and then the explosive charged at the center of the specimen 

was detonated by an electric snap cap (Fig. 3). 

To test a specimen at various temperature hot water, cold water, ammonium 

nitrate solution with ice or alcohol with dry ice were used properly as a 

liquid medium. In case of tests in low temperature a specimen was covered 

with paper in order to prevent temperature rise before detonation. 

Weight of explosive, TNT, for one shot was limited up to 500 gr, but 

special attention was paid for the purpose of making the distribution of pressure 

waves similar regardless of weight of TNT: shape of charged explosive was 

always formed a similar columnar shape, of which height to diameter ratio 

was 2,5 and besides specific weight of charged explosive was fixed to 0.95. 

The tests began with a shot of a small amount of TNT, and weight of TNT 

for succeeding shots was determined as the case may be according to the degree 

of deformation of the specimen so that the specimen might be fractured in 

several shots. 

By detonation of explosive the shock wave reaches the inner surface of 

a steel tube specimen first, and then the pressure waves reach. According 
ï*) 

to Snay the peak pressure of the front of the shock wave P„ at the standoff 

R from the center of detonation is given in the form for 1 < R/a < 5 

PM = 6.8 χ 10*\a / R )
1
*

9 5
 (kg/mm

2
), 

M O 

where a is the radius of spherical explosive charge. 

In the case of the present investigation, R, the distance from the detonation 

center to the inner surface of the specimen, was 200 mm, and the maximum weight 



308 

of the explosive charge used in the test was 500 gr in the form of a cylinder 
with the specific weight of 0.95. Assuming that the shape of explosive is a 
sphere, R/a becomes approximately 4. Therefore, it was estimated that the 
peak pressure of the shock wave decreased to about 7% of that in the case that 
R/a =1, and that the mechanical energy of the shock wave decreased to about 
60% of the initial value. 

2-3. Strain Measurement 
Specimens were fractured in one or several shots. Circumferential strains 

after each shot including the last shot to fracture were determined by the 
following two methods; the one was a method that a strain was determined on 

-H the basis of change of diameter by using large slide calipers (accuracy: 1x10 
mm/mm), and the other is a method that local strains were directly measured 
by using a small comparator (accuracy: 2x10 mm/mm, gauge length: 10 mm), and 
the other the specimens were axisymmetrically deformed the circumferential 
strain ε„ is given in terms of d and d in the form, θ & no 

ε. = (.d - d )/dn . θ n o o 

The method on the basis of diametral change is easy to apply and has enough 
accuracy, but, as strains after failure cannot be obtained by the method, 
the method with a comparator was used jointly. 

Diametral changes of gauge lengths for comparator were measured by setting 
sixteen gauge points each long two circumferential lines 25 mm off the 
circumferential weld joint, and twenty points each along four generating lines 
25 mm and 1/8 of the circumferential girth length off the longitudinal weld 
joints. Mean values of the strains measured at the symmetrical points were 
used for the analysis. 

3. Results and Discussion 
3-1. Dynamic Pressure and Dynamic Strain 

For the purpose of measuring hydraulic dynamic pressure applied on the 
inner surface of a specimen and'dynamic strain change in the specimen, a piezo-
transducer and a sweep triggering contact switch were set in water filled 
in the tube specimen, and wire strain gauges were mounted on the specimen 
as shown in Fig. 4. The strain gauges used were bakelite base type wire 
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strain gauges of 1,000 ohm in resistance and 10 mm in gauge length. A DC-
amplifier was used in the measurement of dynamic pressure response, and for 
the measurement of short time response of dynamic strain a DC-amplifier was 
coupled between a wire strain gauge and a cathode ray oscillograph. Long time 
response of the dynamic strain was measured by AC-amplifier and a magnetic 
oscillograph. 

As the capacity of the piezo-electric transducer was not so large, a 
mine of 10 gr of TNT was charged at the center position of the specimen. In 
this case the specific weight and the shape of the mine were the same as 
used in the other speciments. 

Results of pressure measurement are shown in Fig. 5-1. In the figure it 
is seen that the shock wave reached 60 yS after the beginning of the sweep 
of beam spot in cathode ray oscillograph, and its duration was about 31 yS. 
As the time lag of the triggering contact was about 25 yS, it was considered 
that the shock wave propagated 15 cm in 85 yS, and therefore the propagation 
speed of the wave was estimated to be 1,770 m/sec. The maximum pressure of the 

2 wave was read 2.81 kg/mm referring to the calibration pulse. 
A strain-time relation recorded by means of a cathode ray oscillograph 

is illustrated in Fig. 5-2, which shows that stress began to increase 160 yS 
after the beginning of the beam sweep, and reached to the maximum value in 
time of 100 yS. Fig. 5-3 shows a record of long time response of the dynamic 
strain on the outer surface of the specimen. Maximum value of the dynamic 

2 strain was read 25 kg/mm referring to the calibration pulse. 

3-2. Relation between Surface Strain and Charge Weight 
As an example, longitudinal distributions of circumferential surface 

strain measured after each shot of explosive of 150 to 200 gr are shown in 
Fig. 6. The distribution curve shows its maximum at the middle which is the 
nearest point to the charged explosive. The inclination that the strain at 
a point in lower half of the specimen is higher than that at the symmetrical 
point in upper half is observed in-the figure, and this inclination is considered 
to be caused by the effect of reflection of shock wave and pressure waves 
at the bottom plate and besides the effect of longer duration of the pressure 
waves on the lower half of the specimen than on the upper half. 

Solid points in Fig. 6 represent the strain measured on the generating 
line located at 25 mm from the center line of a longitudinal weld joint, and 
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open points the strain measured on the generating line positioned at the 
middle of two longitudinal joints. Both measured values look to coincide well. 

Circumferential distributions of plastic circumferential strain were 
almost uniform, and values of local strain measured by means of a comparator 
and strain values determined from change of diameter coincided well, and 
therefore deformations were regarded to be axisymmetric. Then the mean values 
of circumferentially distributing strains, defined as ε„, were adopted as 
the basis of analysis. 

Relations between εα and weight of TNT in each shot AW are shown in 
Fig. 7-1 for the AW specimen and in Fig. 7-2 for the SR specimen. Now, as a 
method of explosion test an explosive impact test in which the critical weight 
of explosive to fracture specimen in a single explosion is determined would 
be developed, but for the reason that the critical weight of explosive naturally 
changes according to the type of structure and dimensions of the specimen, the 
critical weight is very hard to be found by tests of small number of specimens. 
Accordingly, in the present test specimens were fractured as a rule in 
several numbers of explosion. For example, specimen AW-1, a mild steel specimen 
in as-welded condition, was fractured by explosion of 200 gr of TNT after 
shots of 50, 70, 100, 150 gr of TNT. It is seen in Figs. 7-1 and 7-2 that 
the specimens fractured in general at room temperature irrespective of weight 
of consumed explosives when the circumferential strain reached to a critical 
value (approximately 6% for AW specimens and about 11% for SR specimens). AW-6 
specimen was fractured in two shots of 400 gr and 150 gr of explosive. 

In Fig. 7-1 m-m line was obtained by connecting the points for the first 
shot. The critical weight of explosive to cause fracture in a single shot 
will be obtained as the point of intersection of 6% level line of ε. and 
the m-m line. In the same way the critical weight of explosive to cause a single 
shot fracture of the SR specimen, mild steel specimen in stress annealed 
condition, is obtained as the intersecting point of the n-η line and the 
level of 11% of εΩ. Specimen AW-4, SR-5, SR-2 were tested at -3°C, and specimen 

o 
AW-7 at -10 C. It was found that at a low temperature deformation at 
fracture were smaller as shown in Figs. 7 and 16. 

Incremental hoop strain from the (n-l)th shot to n-th shot Δε. are 
plotted against weight of explosive in a shot AW in Fig.8 for specimens AW 
and SR. As it is clear in the figure, the incremental strains by the first 
shots were larger than the incremental strains by the following shots, and 
the incremental strains in SR specimens are also larger than that in AW 
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specimens. The former difference is considered to be caused by the effect 
of strain hardening and the latter by the effect of heat treatment. 

The relations between ε. and sum of weight of explosive are illustrated 
o 

in Figs.9-1 and 9-2, in which it is observed that the strain by the first 
shot is on the line of 0-F. 

The relations between the ratio of incremental circumferential strain 
to weight of explosives in a shot Δε /AW, which represents the capacity for 
deformation and test temperature are illustrated in Fig.10. Δεθ/ΔW for the 
first shot is constant in the range of tested temperature,and the ratio 
reduces for the second shot or after. Δε„/AW reduces further for the final 

6 
shot to failure because the weight of explosives apt to be excessive. The 
relation between Δε./AW for the first shot and test temperature is shown in 

θ 
Fig. 11, which indicates the order of deformability. 

The relation between the circumferential strain at fracture ε- and test 
temperature for manual welded specimen are shown in Fig. 12. The figure 
illustrates a dominant factor of material on the fracture strain at the same 
test temperature. Fig. 13 represents the relations between ε_ and test 
temperature for all kinds of 50 HT specimens. Test results of peened specimens 
5MP is evidently lower than the other, but there is not much difference among 
the fracture strains of the rest specimens. The same relations for 60 HT spe
cimens and 2H specimens are shown in Figs. 14 and 15 respectively. 

By summarizing the test results on fracture strain it can be concluded that, 
as to the circumferential strain at fracture, the difference in the results 
of various steels and the deteriorative effect of peening are obvious, but that 
the difference among the methods of stress relief treatment and welding method 
is not clear. 
3-2. Mode of Fracture 

Developed sketches of fractured specimens are arranged in Figs. 16-(a), 
(b) and (c), where crack paths, crack initiation points, directions of crack 
propagation (with arrow) are shown. 
In the case of mild steel specimens, for both AW and SR specimens, cracks 
generally initiated in the circumferential welded joints and propagation along 
generating lines. Fracture surfaces at and near the initiation point exibited 
brittle and crystalline appearances, and lateral contraction was hardly seen 
there. Modes of fracture propagation were mainly divided into two; the one 
was a mode in which a brittle crack propagated through to an end, and the other 
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was a mode in which a brittle crack was arrested with the increasing shear 
lips after propagation of some distance. Approaching to the arresting point 
the brittle fracture changed to shear fracture with gray and fibrous appearance. 
Shear percentage of fracture surface is stated in figures along the crack path 
in a sketch for AW and SR specimens. 

Starting points of cracks Indicated with X marks were generally the den
drite structure in the final pass of the circumferential joints with a few 
exceptions. It may be because the circumferential joint was subjected to the 
highest pressure due to the nearest standoff fron the charged explosive. In 
the case of specimens AW-8 and X-l, a crack initiated from an arc strike 65 mm 
to 150 mm off the circumferential joint. In almost all the cases small cracks 
initiated at an arc strike on inner surface of the specimen, if any. In the 
case of AW-4 specimen a crack initiated at a defect with looked like a hot 
cracking, and propagated with the crack bifurcation. The one crack propagated 
to meet a crack initiated at the circumferential joint, and the other pro
pagated on the inside surface of the specimen and traversed the circumferential 
joint. Thus, it is noteworthy, a crack initiated in a region on which the load 
was lower than at the central portion of the specimen. 

Cracks developed by prior shots did not always act as origins of final 
failure. For example, SR-4 specimen fractured by three shots, and a transverse 
crack, which developed on the surface of the circumferential joint by the 
second shot, did not propagate but simply opened a little wider by the third 
shot. 

Almost always the brittle cracks propagated along the generating lines 
and no crack initiated at the intersecting point of the circumferential and 
longitudinal joints. Any crack did not propagate in the longitudinal joint, 
but in some cases cracks propagated in the heat affected zone or embrittled 
zone. 

AW-7 specimen which was tested at -10 C was broken into more than four 
pieces, and the crack path of the specimen changed its direction 90 and 
traversed a longitudinal joints. That mode of fracture was quite different 
from the mode of fracture which appeared in the tests at room temperature. 

Results of X ray radiography for specimens AW and SR are tabulated in 
Table 4, in which star marks represent the origin of brittle fracture. In 
general a clear relation between quality of weld joint classified by X ray 
inspection and the origin of crack initiation could not be found in the table. 

In Figs. 16(a), (b) and (c) crack initiation points of high tensile 
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steel specimens are indicated with marks, φ , Ο and® when cracks initiated 
from the external surfaces, the inner surfaces and central regions of the 
plate thickness, respectively. When a crack started from an arc strike, a 
blow hole or a slag inclusion, a mark Α, Β or S is put close to the initiation 
point, respectively. 

Except the 5MP specimens the initiation points were mostly at the inner 
surfaces of the specimens, and main cracks propagated along the generator 
lines from the initiation point. In general one of the cracks which started 
from a point in heat affected zone propagated in heat affected zone to an 
end of specimen, and the other crack propagated over the circumferential 
joint to another end of specimen or bifurcated near the end. However, in the 
case of 2H steel specimens, a crack which traversed the circumferential 
weld joint propagated into the base metal 100 mm to 200 mm and then stopped. 
This feature of 2H steel would show a remarkable crack arresting character
istic which is closely connected with the shear lip. 

The initiation points are roughly classified into three groups; the heat 
affected zone, the deposited of the circumferential joint and the base metal. 
When a crack initiated in the base metal, the origin was mostly an arc strike, 
and when a crack initiated in the deposited metal a blow hole was generally 
the origin. The initiation points were not always clearly correlated to the 
results of the X ray inspection. Even in the same welded joints, in some 
case cracks initiated in a region where many blow holes aggregated, but 
in other case cracks initiated independent of the region of blow hole 
aggregation. 

Explosion test results for high tensile specimens are summarized in 
Table 5. On an average the specimen of 5MA has 0.86 point of crack initiation 
in the heat affected zone of the longitudinal weld joints per a specimen, but, 
on the other hand, the average number of crack initiation points in the 
circumferential joints is about a half of the number of points in the 
longitudinal joint, except the case of No.7 specimen of which a crack initiated 
at an arc strike. However, in the specimen series of-5MR, of which the 
circumferential joints were annealed, average number of crack initiation 
points in the deposited metal is larger than in the heat affected zone. Besides 
the fracture strain at fracture of 5MR specimens was equal to or a little 
lower than that of 5MA specimens. 

Fracture strain of annealed mild steel specimen, SR specimens, was much 
larger than that of the as-welded mild steel specimen, AW specimens, but as 



314 

for the high tensile steels the treatment of stress annealing did not bring 
out significant increment of fracture strain. The reason why there was not 
much difference in fracture strain in the cases of the high tensile steels may 
be that the circumferential joints welded with low hydrogen type electrode 
would be embrittled by annealing. 5ML specimens had almost the same number 
of crack initiation points in the heat affected zone and in the deposited 
metal. Fracture strain of 5MP specimens was very low, and all the crack initiated 
at the outer surface of the circumferential joints, and it is evident that the 
peening on the final pass of the weld acted as a deteriorating effect on the 
brittle fracture of the tube specimen due to explosive impact loading. 

In 5MAX specimens main cracks initiated in the heat affected zone of 
the longitudinal welded joint due to the possible effect of metallurgical notch 
caused from the hardening of the heat affected zone, as it is the case with 
5MA specimens. In the case of HT60 specimen most cracks initiated at the 
heat affected zones of the longitudinal joints except cases of 6MR specimens. 
6MR specimens which were manually welded and annealed showed the same tendency 
that 5MR specimens did. Most main cracks of 2H steel specimens started from 
the heat affected zones, and several cracks tended to initiate in the heat 
affected zone of the same welded joint. This tendency was seen in the cases 
of 5MAX and 6MA specimens, but not so remarkable as that of 2H steel specimens. 

3-3. Shear Lips 
When the test temperature was not low, the brittle cracks were accompa

nied with shear lips. The strain at fracture would represent the resistance 
to deformation, and the shear lips the resistance to brittle crack propagation. 
In order to express the shear lip quantitatively, fracture paths were classified 
into three groups according to material properties in which crack propagated; 
the mother metal, the heat affected zone and the deposited metal. 

Taking the mean width of shear lips which distributed on the top and 
bottom side of the fracture surface and in the range of 300 mm from the 
center of the circumferential joint, the relations between the mean width 
of shear lips and test temperature were obtained as shown in Figs. 17 to 21. 

Figs. 17 to 19 show the relations for base metal, and it may be concluded 
that various factors in welding procedures could hardly influenced on the re
lation in the case of the same base metal. Relations between test temperature 
and the mean width of shear lips observed in weld metal and heat affected zone 
are plotted in Fig. 20, in which difference due to the base metal is hardly 
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seeii. Fig. 21 illustrates the mean curves obtained in Figs. 17 to 21. The 
order of width of shear lips at the same temperature represents the brittle 
crack arresting properties as mentioned above. 

4. Conclusions 
Series of explosion tests were carried oat on the arc welded tube specimens 

made of mild steel and three kinds of high tensile steels with the various 
conditions of welding procedure and after welding treatment. The explosive 
of TNT was charged in the center of a specimen filled up with liquid and 
detonated. Specimens were fractured in brittle manner exhibiting the effect 
of factors in the specimen series. As the results of the test following con
clusions were obtained. 
(1) Specimens were fractured in general when the circumferential strain 

reached to a certain value of strain irrespective of weight of explosive 
in successive explosion. 

(2) Comparing the as-welded specimens with respect to the effect of the quality 
of steel on the circumferential strain at fracture, it can be concluded 

2 that 50 kg/mm high tensile steel (50HT) is the best, and then comes quenched 
2 and tempered steel (2H), 60 kg/mm high tensile steel (60HT) and mild steel 

(MS). And concerning the width of shear lips, quenched and tempered steel 
2 2 

comes first and then 50 kg/mm high tensile steel, 60 kg/mm high tensile 
steel. In other words 50 kg/mm high tensile steel is superior for the brittle 
crack initiation properties, and the quenched and tempered steel for the 
brittle crack arresting properties. 

(3) So far as the circumferential strain at fraction the effect of stress 
annealing was hardly observed for high strength steel specimens, while 
the effect was shown remarkably for mild steel specimens. 

(4) Difference of the fracture strain was hardly observed as for the effect 
of low temperature stress treatment, and for the difference caused by 
manual or submerged arc welding. 

(5) In all the specimens peened on every layer of the outer side of the 
circumferential joint, the crack initiated at the outer surface of the 
circumferential joint, and the strain at fracture was the lowest. 

(6) With the exception of peened specimens cracks were usually initiated 
from the inner surface of the tube specimen, especially from the heat 
affected zone of longitudinal joints, or blow holes in circumferential 
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joint for high tensile steel specimens, while in the mild steel specimens 
welded by submerged arc welding cracks initiated from the dendrite struc
ture in the final pass of the circumferential joint. 

(7) In almost all the cases cracks initiated at an arc strike. Arc strike may 
act as a starting point of brittle fracture by impact loading. 
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EFFETS MECANIQUES DE LA RUPTURE D'TM TUBE DE 
FORCE A GAZ SOUS PRESSION DANS UN REACTEUR DU TYPE EIA 

par 
R. Roche 

C.E.N. Sac lay 
France 

1 - LBS STRUCTURES DES REACTEURS DU TYPE EL4 -
L'architecture générale et la conception 

mécanique des réacteurs de la filière eau lourde gaz à tubes de 
force du type EL4 ont fait l'objet d'un certain nombre de publi
cations (ï), (2), (3), (4), (5) ; il suffit donc d'en rappeler 
les traits et caractéristiques essentiels. 

d'une cuve cyl 
éléments combu 
d'axe parallel 
fond à 1' 
permet de 
pression, 

autre 
ref r 
les 

cette pression 
disposés en ré 
multiplicateur 
diamètre 

1 et 2. 

qui p 

Le réacteur est constitué essentiel 
indriaue de révolution contenant le modéra 
stibles sont contenus dans des tubes recti 
e à celui de la cuve et qui traversent la 
. Ces tubes sont parcourus par un courant 
oidir les éléments combustibles, ce gaz et 
tubes doivent résister mécaniquement aux e 
d'où leur nom de TUBES DE FORCE·. Les tube 
seau régulier qui correspond au réseau mêm 
. La cuve elle-même est munie d'exutoires 
ermettent éventuellement 1·évacuatuion de 

lement 
teur. Les 
lignes 
cuve d'un 
de gaz qui 
ant sous 
ffets de 
s sont 
e du milieu 
de gros 
l'eau lourde, 

Ces dispositions sont visibles sur les planches 

Plus précisément, notons que le canal dans sa 
partie centrale comprend les éléments combustibles qui sont des 
grappes de crayons, le tube de guidage entouré d'un isolant ther
mique et le tube de force lui-même (6). Ce canal est raccordé au 
circuit caloporteur par deux tubulures de gran,de longueur et d'un 
diamètre médiocre. 

Tubului 
Tukt. «¿e Foret. 

Tsolanb tJitrnutjue 
Tub* c/e «ju/Jaje. 

£lem.*n,ts combustibles 
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Pour EL4, les caractéristiques essentielles 
sont les suivantes t 

 diamètre cuve : 4,8 m 

 longueur cuve : 4,6 m 

 épaisseur virole : 20 mm 

 exutoires : 2 0 600 mm 

 nombre de tubes de force t 216 

 matière des tubes de force : Zircalloy 2 recuit 

 dimensions : 107 x 113 mm 

 pression du gaz : 60 bars 

En comparaison, on peut indiquer les carac
téristiques d'une centrale de 600 MWβ de la filière eau lourdegaz. 

 diamètre ouve t 7,8 m 

 longueur ouve : 6,4 m 

 épaisseur virole t 30 mm 

 exutoire : 1 0 1200 

 nombre de tubes de force t 480 

 matière des tubes de force : Zircalloy 2 

 diaensioae t 14© x 148 

 pression du gaz : 75 bars 

2  SURETE ET RUPTURE D'UN TUBE D_E_F0RCE 

On trouvera un examen d'ensemble des pro
blèmes de sûreté concernant la filière dans un certain nombre de 
documents (7), (β). Un point très important concerne la rupture 
éventuelle du tube de force. Il est en fait difficile d'apprécier 
la probabilité des diverses causes possibles d'une rupture éven
tuelle ; en tout état de cause, cette probabilité parait extrême
ment faible. C'est ce que montrent les différents essais concernant 
la défaillance de l'isolation thermique (point chaud), les défauts 
éventuels, etc· .·· 

Il a paru cependant nécessaire d'étudier en 
détail les conséquences d'une telle rupture et d'essayer de pren
dre pour EL4 un ensemble de précautions telles que cette rupture 
n'entraîne pas une mise hors service du réacteur. Ce point de vue 
se justifie spéoialement par le caractère prototype du réacteur 
dont le fonctionnement doit permettre de mieux connaître et 
comprendre le comportement du tube de force et de son équipement· 

Les conséquences de cette rupture éventuelle 
sont de plusieurs ordres (effets mécaniques de choo, de pression, 
effets de réactivité, effets thermiques, etc. . . . ) ; mais les 
effets mécaniques occupent une place de première importance dans 
oet ensemble, oar ils paraissent faire courir les risques les plus 
importants et les plus immédiats à la cuve du réacteur et à son 
environnement. 

On peut diviser, assez arbitrairement d'ail
leurs, les oonséquences mécaniques de la rupture d'un tube de 
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force en deux catégories : 
- Les conséquences locales qui concernent plus particulièrement 

les effets de la rupture sur les tubes voisins : déroulement et 
fragmentation du tube de force, projection des éléments combus
tibles, etc. ···, et comportement des tubes les plus proches. 

Les études correspondantes, encore inachevées, 
ont été menées sur une maquette à l'échelle 1 avec diverses 
mesures et clichés cinématographiques· On a utilisé pour repré
senter les tubes de force de matériaux plus fragiles (Zircalloy 2 
écroui en particulier) que celui prévu pour EL4 qui, rappelons-le, 
est du Zircalloy 2 recuit ; le but de cette substitution est de 
tenir compte dans une certaine mesure des effets de l'irradiation 
sur les tubes· Ces derniers effets, qui ne sont encore qu'impar
faitement connus, compliquent notablement l'interprétation des 
résultats obtenus· 

- Les conséquences globales qui conoernent 1*évolution de la 
pression dans la cuve d'eau lourde à la suite de l'irruption 
du gaz caloporteur libéré par la rupture du tube.. On étudie 
également la tenue de la cuve à cette évolution de pre.ision. 

Les études correspondantes ont été menées 
sur deux types de montages t un montage à grande échelle (1/2) 
destiné à apprécier directement les phénomènes en limitant au 
maximum les corrections éventuelles d'échelle (déformations, 
fragilité, dégradations d'énergie) ; un montage à échelle réduite 
(l/lO) destiné à une étude systématique des différents paramètres 
(dimensions du tube, pression, température, etc· ·.·). 

3 - EFFETS LOCAUX DE LA RUPTURE t TENUE DES TUBES VOISINS -
Le faux canal à échelle 1, malgré ses simpli

fications, reproduit avec une certaine fidélité le canal du réac
teur EL4. -^' 

La cuve est figurée par un bac empli d'eau 
qui assure également la réplique de la géométrie des fonds et de 
l'amorce des prolongements de canaux. Sur ces prolongements, sont 
piqués des tubulures figurant les tubulures d'alimentation du canal 
en gaz caloporteur· 

Un de ces prolongements est coulissant dans le 
fond et permet, grâce à un système de vérin, de placer dans un état 
de traction, convenable le tube de force situé entre les deux pro
longements et fixé par ses extrémités à chacun d'eux· 

L'ensemble de l'installation (après exécution 
d'un essai) est représenté sur la planche 3· 

Les canaux voisins sont figurés par des tubes 
sous pression placés autour du tube essayé. 

La représentation de l'intérieur du canal 
proprement dit a exigé le recours à un certain nombre de transpo
sitions dues : 



«g. 3 
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- à la non-oiroulation du gaz, 
- à l'exéoution des essais à la température ambiante. 

Il a fallu en particulier remplacer le tube 
de guidage par un tube d'un matériau dont les propriétés à la 
température ambiante soient comparables à celles du tube réel à 
sa température de service. De même, l'effet de poussée aérodyna
mique sur les éléments combustibles a été simulé par un poussoir 
à ressort· 

L'ensemble est installé dans la grande fosse 
d'essais dangereux de SACLAT, et bénéficie ainsi de 1*équipement 
de mesures y afférent, le dispositif lui-même portant les diffé
rents capteurs (pressions, forces) ainsi que certains dispositifs 
tels que des cibles de tôle de laiton destinées à apprécier les 
dégâts causés par les projectiles libérés par la rupture· 

La rupture elle-même est due à une entaille 
préalable créant une sous-épaisseur sur une portion de génératrice, 
c'est donc la pression qui, en croissant, provoque la rupture, à 
une valeur assez voisine de la pression de service. Du fait de 
l'incertitude sur l'instant même de la rupture, les mesures sont 
auto-déclenchées par le phénomène lui-même ; en particulier, pour 
la oinématographie rapide du phénomène, il a fallu utiliser un 
système original de oaméra à tambour tournant et d'éclairage à 
éclairs déclenchés par la rupture d*ane sonde placée sur les lèvres 
de la rupture (9). 

Résultats des essais - Conséquences -

Ce genre d'essai est assez complexe et ne 
permet pas une exploration systématique des paramètres principaux ; 
le nombre d'essais exécutés restant assez faible (une dizaine). 
Par contre, il permet une assez bonne appréciation des risques et 
de mettre en évidence les principaux éléments du problème. 

Les facteurs les plus importants gui apparais
sent concernent t 

- la longueur de l'entaille 
- le matériau du tube 
- la robustesse de la jonction du tube sur les prolongements 
- la présence du tube de guidage et de l'isolation thermique 

Pour les deux premiers points, nous devons 
signaler tout d'abord que nous n'avons pas obtenu de fragmentation 
du tube explosant· D'autres essais portant sur des matériaux très 
fragiles devront donc être envisagés, mais il semble que pour EL4 
du moins, où le tube est utilisé a l'état recuit, le risque de 
fragmentation reste assez faible (les essais ont porté sur des 
tubes écrouis dont l'allongement à rupture était plus faible que 
celui que l'on escompte pour les tubes réels à la fin de leur vie)· 

Le fait important est l'existence d'une lon
gueur minimale d'entaille en deçà de laquelle le tube ne se déroule 
pas et ne fait que bailler, ce qui n'entraîne que des dégâts limi
tés· Cette longueur, est pour le tube équipé, de l'ordre d'une 
vingtaine de centimètres ; elle dépend, bien entendu, du matériau et 
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de son état d'écrouissage. 

La robustesse des jonctions du tube sur les 
fonds de cuve (prolongements de canaux) est un facteur essentiel 
lorsqu'on a affaire à une rupture longue (longueur supérieure à la 
longueur critique définie ci-dessus). Des jonctions affaiblies (sai
gnée locale réduisant l'épaisseur à 60 # de sa valeur) conduisent 
à la rupture du tube aux jonctions et, par suite, à la séparation 
du tube en trois tronçons avec une aggravation sensible des dégâts. 
On a cependant établi que les jonctions non affaiblies (épaisseur 
entière) permettent d'éviter une telle rupture par flexion sous 
la réaction du jet. 

La présence du tube de guidage et de son iso
lation thermique ont également une importance extrême \ cet ensemble 
reste assez ductile et tend à provoquer un net retard a la rupture 
complète. Du fait de leur présence, la rupture longue a lieu en 
deux temps. 

Un premier temps d'une durée de l'ordre de 
20 millisecondes où il n'y a pas de rupture du tube de guidage et 
où le tube de force baille sans se dérouler. Cette première phase 
de la rupture mise en évidence par la forme de la variation de 
pression a été étudiée par cinématographie ultra-rapide auto-
déolenchée ; la planche 4 reproduit les images obtenues où l'on 
voit une oscillation des lèvres de la fissure à une fréquence voi
sine de 600 Hz avec une amplitude de 30 à 40 mm suivie, au bout de 
15 millisecondes, de la rupture proprement dite qui laisse à nu les 
éléments combustibles oui ne tarderont pas à être éjectés après le 
déroulement du tube de force. 

pntssion. 

>f* 
Ruptt £c/«£em«» 

Les dégâts obtenus sont, dans le cas de la 
rupture courte, limités au bâillement des lèvres de la fissure 
et à l'éjection de fragmente de la chemise en graphite. Ces frag
ments de l'ordre du cm? sont susceptibles de percer des tôles de 
laiton d'épaisseur 2/10 mm, ce qui permet d'apprécier leur énergie 
oui est très insuffisante pour occasionner des dégâts aux tubes 
de force voisins. 

La rupture longue correspond à des dommages 
beaucoup plus importants ; le tube se déroule sur la longueur de 
l'entaille et se sépare des deux tronçons restant accrochés aux 
prolongements (voir planche 5). Par l'ouverture ainsi créée, les 
éléments combustibles sont éjectés vers les tubes de force voisins 
et disloqués dans la cuve. Ce sont eux qui constituent en quelque 
sorte les projectiles redoutables , leur vitesse n'a pu être éva-



fig. 4 
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luée que très grossièrement (15 à 20 m/s) mais a .-jusqu'ici été 
insuffisante pour détériorer les tubes voisins. La planche 6 repré
sente les éléments éjectés et met en évidence la grande déformation 
qu'ils subissent au moment de leur sortie (la grappe de gauche a 
été pliée en forme de U) ce qui entraîne certainement un certain 
freinage. 

4 - EFFETS D'ENSEMBLE DE LA RUPTURE ; TENUE DE LA CUVE -
L'étude de la résistance de la duve et de ses 

différents accessoires a également fait l'objet d'essais à grande 
échelle (1¡2) aux ont montré le bon comportement général de l'ins
tallation. Ces essais très importants, menés à GRENOBLE, ne se sont 
pas prêtés à une analyse extensive du rôle des différents paramè
tres qui a été faite sur des maquettes à échelle réduite dont les 
essais ont été exécutés à SACLAY. 

Ces essais ont fait l'objet d'un rapport 
très complet (10) auquel on voudra bien se reporter pour un 
examen complet, L'ampleur prévue pour la présente communication 
ne permettant guère aue d'en fournir un résumé complété de la 
mention de quelques essais complémentaires. 

-Le matériel d'essai se compose essentielle
ment de maquettes à l'échelle 1/10 dont certaines sont transpa
rentes pour permettre l'étude par cinématographie ultra-rapide. 
Le tube de force explosant est figuré par un tube en matière 
plastique qui permet une rupture rapide et une fragmentation to
tale. 

L'instrumentation consistait en enregistrement, 
de pression, de contraintes et de force, enregistrement effectué 
essentiellement sous forme d*oscillogrammes auto-déclenchés. 

Le phénomène a, de plus, fait l'objet d'une 
étude complète par cinématographie ultra-rapide, dont les résultats 
recoupant ceux des enregistrements ont permis de les interpréter 
de façon sûre. 

Description du phénomène_-
Cette étude systématique a permis de distinguer 

deux phases essentielles dans le phénomène : 
- la première phase constituée par une série de pics de pression 
allant en s'amortissant et où il n'y a pas d'eau éjectée de la 
cuve ; 

- la seconde phase où la pression s'établit à un paliei faiblement 
décroissant et où l'eau est régulièrement éjectée de la cuve *. 

Ces deux phases sont évidemment liées par une 
zone de transition, mais elles sont cependant nettement différen
ciées dans les films ultra-rapides, on pourra également apercevoir 
la différence sur la planche 7 représentant un enregistrement des 
pressions : 
- du gaz dans l'a tubulure d'alimentation (en haut) 
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Evolution type de la pression au cours des premières millisecondes qui suivent 

l'éclatement (pas de réseau de tubes, source en position basse Ζ = 0,08). 
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- de l'eau dans la cuve (au-dessous) 
Cette dernière pression peut être schématisée 

ainsi : 

* Nous laisserons de côté une troisième phase, peu intéressante 
oui s'établit lorsque l'eau lourde a été expulsée et que le 
gaz s'évacue par l'exutoire. 

Etude de la pression maximale -
La seconde phase est d'une analyse facile : 

tous les résixltats obtenus montrent qu'elle correspond au régime 
établi d'arrivée du gaz par le tube et d'é.iection de l'eau lourde 
par les exutoires ; le régime des pressions obtenu correspond 
nettement à cet état de régime gouverné essentiellement par les 
dimensions respectives des orifices en présence (tubulures d'arri
vée de gaz et exutoires d'évacuation d'eau lourde). 

La première phase 
supérieures à celles de la seconde (10 
oui apparaissent sous forme de pics as 
doive considérer qu'ils s'appliquent s 
c'est d'ailleurs ce que l'on constate 
tes sur la cuve, ces contraintes corre 
en phase avec le pic de pression, exte 
superposer des vibrations de flexion, 
la pression maximale atteinte au cours 
plus haute importance puisque c'est à 
pondent les contraintes d'extension su 
la cuve. 

correspond à d 
à 15 bars con 
sez longs pour 
tatiquement su 
en analysant 1 
spondent à une 
nsion à laauel 
C'est dire que 
du premier pi 
cette pression 
sceptibles de 

es pressions tre 2 à 3) 
que l'on 
r la cuve ; 
es contrain-
extension 
le il faut 
.1'étude de 
c est de la 
que corres-

détériorer 

Il faut donc sélectionner d'abord les para
mètres ayant une influence sur la valeur de cette pression, puis 
expliciter la corrélation entre la pression et lesdits paramètres 



338 

La planche 8 représente l'influence : 
- de la section des exutoires (évacuation de l'eau) ; 
- de la hauteur d'eau dans les exutoires ; 
- de la section d'arrivée de gaz. 
On constate aisément que ces paramètres ont l'influence la plus 
réduite (sauf pour la hauteur d'eau, lorsque la cuve n'est pas 
pleine). Il s'agit des paramètres concernant la liaison de la 
cuve avec l'extérieur, ce qui laisse supposer que ce sont les 
paramètres intérieurs à la cuve qui sont particulièrement signi
ficatifs, et c'est ce que l'on constate effectivement, les para
mètres importants étant : 
- la pression du gaz dans le tube avant rupture po 
- le volume du tube v0 
- la "flexibilité" de l'ensemble avec cuve-eau F telle que 

l'accroissement de volume sous une pression p soit FP 
On peut donc représenter la valeur de la 

pression maximale de p _^c par une relation 

P pic = fonction de (p0, v0, F) 
qui, pour des raisons d'homogénéité, doit s'écrire : 

= fonction de ·—--
Po Fpo 

La planche 9 montre le résultat obtenu en 
portant les résultats expérimentaux obtenus sur le diagramme 
correspondant ; on les voit se regrouper convenablement pour 
justifier cette analyse et même fournir ainsi un moyen de déter
miner la pression de pic à partir des trois paramètres v0, p0, F. 

Un correctif doit être apporté pour le choix 
de la valeur de v0 lorsque la partie rompue du tube est très 
courte ; l'influence du gaz situé dans les parties voisines amène 
pour ce cas à définir une longueur équivalente. Les résultats 
correspondants sont portés sur la planche 10 qui montre que pour 
une longueur inférieure à celle de la cuve, cette correction 
devient négligeable puisque les résultats deviennent les mêmes 
que l'on alimente le tube par une ou deux extrémités. 

Modèle_-_Interprétation -
Il est intéressant de tenter de constituer 

un modèle conduisant à préciser la forme de la relation précé
dente ; un modèle simple peut en effet s'obtenir en considérant 
l'oscillation de la masse d'eau entre la bulle de gaz et la 
virole élastique. L'étude de cinématographie justifie ce point 
de vue ainsi qu'on peut le voir sur la planche 11 représentant 
l'évolution simultanée de la pression et du diamètre de la bulle. 
On obtient ainsi la relation suivante : 
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la courbe correspondant à 0 = 1·4 (rapport des ohaleurs spéci
fiques de l'Azote) est portée sur la planche 9 ; on peut voir 
que les points expérimentaux relatifs à l'Azote se groupent entre 
75 et 85 Í° de la valeur obtenue, ce qui fait penser à un certain 
amortissement qui correspond sensiblement à celui constaté d*un 
pic à l'autre (la valeur de cet amortissement ne paraît pas 
dépendre sensiblement des dimensions de la maquette). 

Ce modèle, qui s'adapte bien à la réalité, 
imOlique que les échanges de fluides entre la cuve et les 
systèmes extérieurs n'interviennent pas dans les mécanismes qui 
gouvernent le phénomène. L'étude par cinématographie ultrarapide 
confirme la réalité physiaue de ce point de vue : 

 Pendant les premiers Oies de pression, le niveau d'eau dans 
les exutoires reste immobile t il n'y a pas sortie d'eau. Ceci 
■oeut être attribué à l'inertie de la masse d'eau visàvis des 
mouvements rapides concernés. 

 L'évolution de la bulle de gaz montre qu'il y a deux "bouffées", 
la première correspondant à la première phase, la seconde étant 
due à l'arrivée continue du gaz qui entame la seconde phase. 

On peut tenter de comprendre cette césure en considérant que le 

début de la première phase correspond à l'émission d'une onde 

de dépression dans les canalisations de gaz, ce qui n'entraîne 

qu'un faible débit de gaz (le tiers à peu près du régime 

permanent), alors que la deuxième phase correspond au régime 

établi de»l'arrivée de gaz qui entraîne un débit appréciable. 

Il existe alors un "trou" entre la première bulle provoquée 

par le gaz du tube et l'arrivée d'un débit important à la suite 

des réflexions diverses de l'onde de dépression. 

Par suite de cette hypothèse, on doit intro
duire comme paramètre supplémentaire, le rapport des chaleurs 
spécifiques du gaz employé. Ce point a été examiné par emploi de 
gaz tels que l'Argon et le gaz carbonique ; si, pour le premier, 
on vérifie convenablement la formule, il n'en est pas de même 
pour le second qui, utilisé à la température ambiante, est loin 
de se comporter comme un gaz parfait (liquéfaction et solidifica
tion partielle momentanées). 



Ces essais à température ambiante ont été 
complétés par des essais avec du gaz chaud ; on a pu constater 
alors que l'amortissement était légèrement plus important qu'avec 
le gaz froid (voir planche 9) ; cet effet a été attribué aux 
éohanges thermiques entr»1- eau et gas sur le front de la bulle. 

5 - CONCLUSION -
kes études et essais effectués ont montré 

que pour la qualité de tube utilisée à BL4 et pour l'équipement 
interne prévu, il n'y avait pas de risque que la rupture d'un 
tube de force entraîne des ruptures de tubes voisins. Pour des 
tubes de force de qualité différente, admettant des contraintes 
plus élevées, cette conclusion serait à réexaminer. 

D'autre part, on a pu déterminer la valeur 
de la pression maximale régnant dans la cuve et, ainsi, dimension
ner convenablement celle-ci de façon qu'elle puisse survivre à 
l'accident. 

Les travaux exposés ci-dessus sont évidemment 
une oeuvre collective ; néanmoins, l'auteur se plaît à évoauer 
l'importance de la participation de MM. VRILLON et GARNIER du 
D.E.P. ainsi que l'aide efficaoe apportée par M. MEUNIER à ces 
études de sûreté. 

* * 
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FULL· SCALE EXPERIMENT ON THE CONSEQUENCES OF A PRESSURE 
TUBE RUPTURE IN ESSOR REACTOR VESSEL 

by 
H. Holtbecker, M. Montagnani 

and 
G. Ve rze le t t i 

Eura tom C CR, I spra , Italy 

1. INTRODUCTION 

The ESSOR reac to r system is composed of a number of independent units of 
s imi la r geometry , known as channels . 

One object of the core safety study is to ensure that the individual units r e 
main independent even in the event of an accident caused, for instance, by 
failure of the p r e s s u r e tube, or by fai lure of both the p r e s s u r e tube and the 
calandria tube. 

The events associa ted with this problem a r e : 

- The p r e s s u r e waves which a r e propagated in the modera to r and which o r i 
ginate in the contact between the coolant liquid and the heavy water at the 
moment of fai lure, and the waves set up by the formation of organic and 
water vapours and their recondensat ion through heat exchange between the 
two components . 

- The dynamic loading in the v e s s e l and the other channels , result ing from 
these p r e s s u r e waves or from the rma l s t r e s s e s , caused by local heating 
of the a r e a s s t ruck by the jet of not organic liquid. 

As will be seen, not al l of the p rob lems quoted can be solved by a d i rec t 
quantitative calculation, for some of them entail exper imenta l study. 

The exper iments ca r r i ed out respected , in the essen t ia l par t , the r ea l geo
me t ry and the rea l coolant fluid, and light instead of heavy water was used , 
The reason for respecting the scale was, as will be seen further on, the i m 
possibi l i ty of effecting a complete, absolute analogy, since the phenomena 
we were dealing with depend on p a r a m e t e r s whose re la t ive importance was 
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unknown. 

The analogy should be effected on the bas is of four fundamental magni tudes: 

1 = length where 1 , = 1 * = λ , 1 and s imi la r ly 

t = t ime t * = τ . t 

K = forces K* = χ. K 

T = t empera tu re Τ * = δ . Τ 

The l imit conditions sought mus t satisfy the Navier  Stoke or F o u r i e r 

differential equations for the model and the original , and re la te to the d e s 

cription of 

 the fields of velocity 

 the fields of t empera tu re 

 the fields of p r e s s u r e . 

This satisfaction is obtained by equating the p a r a m e t e r s in the abovenamed 

equations which can be expressed in Re, Gr, F roude , Cauchy, e t c . , num

b e r s . 

To s ta r t with, we define the rat io of the iner t ia forces expressed by New

ton 's law: 

m * b * ρ* λ , . , , ρ . , λ ,Λ χ 

χ = : = ■*·— · —r , which where *— = 1 becomes χ = —r (1) 
mb ρ τ 2 ρ τ 2 

No potential flow can be assumed for the liquid in our case ; the friction 

forces mus t therefore be taken into account in determining the fields of both 

velocity and t e m p e r a t u r e . 

The rat io for the forces , as defined above, must r emain constant. 

Then: 
* * * 

TÌ . dw . F dn 

dn* ' η  d w . F ; 

it is assumed that the type of liquid or m a t e r i a l will not be changed and then 

Ζ 4 

τ %Z 

which cor responds to Reynold's model law. 
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At this point the ra t ios λ , t and χ a r e fully de termined and can be ca lcu

lated. In the problem to be dealt with, other forces such as those due to 

gravity, or e las t ic s t r e s s e s , should be reproduced in the same ra t io as 

those a l ready t r ea ted . 

Two further re la t ions a r e obtained from 

* v * % T L
4 -χ 

x = Υ..·Λ = λ
3 with (4) ■* = λ*♦ τ = VT (3) 

γ . ν T ¿ 

which cor responds to F roude ' s law; 

x = ^ ^ ~ ^ = λ 2 wi th(4) λ
2 =  ^  τ = λ (4) 

τ 

which is Cauchy's law. 

It is then c lea r that (2), (3) and (4) a r e only satisfied if λ = 1. 

Moreover , t he re a r e a grea t many phenomena requir ing study  including 

the formation of vapours and the i r recondensation v e r s u s place and t ime , 

which a r e of pa r t i cu la r value to this work  which it has so far not been 

possible to deal with by model laws, and the study of dynamic events on m o 

del, where the t ime scale v a r i e s , involves significant var ia t ions of the cha

r a c t e r i s t i c s of the m a t e r i a l (elastic l imit v e r s u s s t r a i n  r a t e , br i t t le beha

viour of the m a t e r i a l at high s t r a i n  r a t e s ) . 

Apar t from these theore t ica l considera t ions , the decision to c a r r y out the 

exper iments on the rea l scale was a lso influenced by planning requ i rements ; 

for the t ime available was only 18 months , from the s t a r t of designing the 

tes t rig to the completion of th ree exper iments which were to provide data 

that could be rel iably in terpre ted to de te rmine the safety of the r eac to r , 

a l ready at an advanced stage of design. 

2. RIG CHARACTERISTICS 
' ■ ■ '■■■■ I I II aaaa—ap—aaaaaaaaj^.—aaa—j 

The failure of an ORGEL channel was simulated by reproducing the maximum 

p r e s s u r e and t empera tu re (30 a t m . , 420 C) and injecting into the ves se l , 

through the c rack in the channel, the organic throughput calculated from the 

ESSOR multiple c i rcui t geometry (see fig. 1). 

As the flowsheet shows (fig. 2) the organic liquid from the pump del ivery 
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3 
en te r s tank S_ (3 m capacity), p a s s e s into tjie t es t channels and en te r s 

ù 3 
tank S_ which s imulates the expansion tank (2 m capacity) . Tank S_ allows 
of simulating the 170 l / s e c del ivery of the two pumps, by means of a gas 
blanket which reproduces the i r head. The calculated organic del ivery in 

(2) case of failure is shown in fig. 3. 

Design data for the c i rcui t a r e : 

p r e s s u r e : 50 at 
t e m p e r a t u r e : 450 C 

The water c i rcui t is connected to the ves se l and to four feeding e lements 
located in the exper imenta l a r e a . Both ves se l and water c i rcui t a r e con-
structed for an o v e r p r e s s u r e of 12 k g / c m and a t empera tu re of 190 C, 

The vesse l compr i ses two a r e a s - the tes t a r e a amounting to a qua r t e r of 
the vesse l c ross - sec t ion , where the r e a l m a t e r i a l and geometry of the 
channels for the r eac to r a r e respected , and the second a r ea where plain 
99. 5 Al tubes simulate the relevant channels . 

The feeding e lements , as a lso the control and safety rods , a r e guided in 
special gates on the false bottom of the ve s se l . The ves se l is anchored to 
4 solid cant i levers which r e s t on a p r e s t r e s s e d concrete s t ruc ture capable 
of supporting a static horizontal load of 18 m e t r i c tons . The installation 
has two nitrogen c i rcu i t s . One, of high capacity, keeps the p r e s s u r e in 
tank S constant even while the organic liquid is pouring into the vesse l ; the 
other is connected only to a set of cyl inders and allows of independent p ress 
urizing of the vesse l and tanks S_ and S_, by means of p re s sure - reduc ing 
valves operated from a bunker which houses all the remote controls and 
measur ing gear , 

3. DISCUSSION OF THE RESULTS 

3. 1 Effects of the p r e s s u r e wave produced by a burs t channel 

The p r e s s u r e tube fails along a purposely weakened genera t r ix , and as a 
resul t p r e s s u r e r i s e s in the annular heat- insulat ing gap and the inside of 
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the c a l a n d r i a tube c o m e s in c o n t a c t wi th t h e hot o r g a n i c l iqu id . 

The c a l a n d r i a t u b e , wh ich i s w e a k e n e d in t h e s a m e way a s the p r e s s u r e 

tube , n o r m a l l y fa i l s s o m e i n s t a n t s a f t e r t he f a i l u r e of the p r e s s u r e tube . 

F i g , 4 shows the v a r i a t i o n s of p r e s s u r e on the u p p e r p a r t of t h e p r e s s u r e 

t u b e d u r i n g the f i r s t s e c o n d a f t e r t h e b u r s t . The m o m e n t a t wh ich t h e c a 

l a n d r i a tube fa i l s i s c l e a r l y v i s i b l e , co inc id ing wi th the m a x i m u m s t a t i c 

p r e s s u r e in the a n n u l a r gap . At the m o m e n t and p l a c e w h e r e coo lan t and 

m o d e r a t o r c o m e in to c o n t a c t , a d i l a t a t i o n wave i s p r o p a g a t e d t o w a r d s the 

i n s i d e of the tube in the o r g a n i c p a r t , whi le a p r e s s u r e w a v e , g e n e r a t e d by 

the e l a s t i c e n e r g y of the o r g a n i c l iqu id , i s p r o p a g a t e d t h r o u g h the w a t e r . 

E v e n a s s u m i n g , p e s s i m i s t i c a l l y , t h a t the c r a c k t r a v e l s wi th the s p e e d of 

sound, the wave f ront in t h e w a t e r wi l l f o r m an ang le wi th the tube a x i s 

tha t can be c a l c u l a t e d f r o m the e x p r e s s i o n : 

s p e e d of sound in H  O , cnr. / 
_ ; Z_ 1500 m / s e c n , . . . 0 . o 

tg α = Ζ—7 Τ~·—Τ,— = ,Λοη 7 = ° · 2 1 4 î α = 1 2 · 1 
6 s p e e d of sound in A l 7000 m / s e c 

T h u s the p r e s s u r e to wh ich the ad j acen t t u b e s o r the v e s s e l wa l l w i l l be 

s u b j e c t e d wi l l not a m o u n t to the s a m e v a l u e s i m u l t a n e o u s l y o v e r a whole 

g e n e r a t r i x . 

F u r t h e r m o r e , s i n c e the p r e s s u r e s in p l ay a r e f a i r l y low, t hey canno t bui ld 

up a s h o c k f ront but wi l l p r o p a g a t e a s e r i e s of sound w a v e s . Shock w a v e s 

f o r m only when t h e r e a r e a p p r e c i a b l e v a r i a t i o n s in the d e n s i t y of the w a t e r , 

wi th the r e s u l t a n t m a j o r d i s p e r s i v e e f f ec t s . 

The w a v e m o t i o n i s d e s c r i b e d by the l aw of a c o u s t i c d i s t u r b a n c e s wh ich in 

i t s i n t e g r a t e d f o r m a l l o w s of c a l c u l a t i n g the p r e s s u r e p e a k d e c a y wi th d i s 

t a n c e . F i g . 5 shows two t h e o r e t i c a l c u r v e s c o r r e s p o n d i n g to a d e c a y in 

ι and J_ 
f*

1
 x 

A n u m b e r of e x p e r i m e n t a l po in t s a r e shown, ob ta ined f r o m the d i a g r a m 

w h i c h r e c o r d s the p r e s s u r e s m e a s u r e d a t two po in t s on the v e s s e l s h e l L 

The gauge p r e s s u r e s a r e l o w e r t han the c a l c u l a t e d v a l u e s , b e c a u s e no a l low
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ance was made in the calculat ions for the p r e s s u r e decay caused by defor

mation of the channel or for the diffraction due to the obstacles encountered 

by the p r e s s u r e wave before it reaches the wall of the ves se l . 

In o rde r to calculate the maximum s t ra in energy provided by the impact of 

a wave on the channel, the total energy contained in the wave must be ca l 

culated. The maximum energy available has been calculated he re on the 

basis of cer ta in pess imis t i c assumpt ions : 

 failure over the whole length of the channel; 

 no allowance for energy losses due to dissipat ion in the liquid or plast ic 

deformation of the tube, 

(3) 
The in ternal energy of the liquid is given by the express ion . 

2 
V P1 

E. = c . Τ. ν . β . p . . t , + -—- + C 
1 ρ 1 o M 1 2K 

Pass ing adiabatically from condition (p. Τ. ) to (p_T_) the energy re leased 

pe r unit of weight i s : 

Τ T v 

VE2 = T l ' c p ^ - ΤΓ> ■ V ß · Τ1(Ρΐ-Ρ2· ΤΓ> +2K ( lVP2 ) 
r 1 1 

τ 
2 The rat io ■=■"■ is obtained by integrating the entropy equation 
1 

c T  _ o / χ 
ds = =? dT  β v dp = 0, giving τ  = e ß c ^ p 2 " p l ; 

ι ο ι . ρ 

2 

The modulus of compress ion is obtained from the express ion c . p = K, 

where C = 1000 m / s e c + 5% is the speed of sound in the organic liquid m e a 

sured at 200 C. 

The calculation shows that the t empera tu re drop values for expansions of 

30 a tm. in this p roces s a r e very smal l (< 1 C) and that the maximum ene r 

gy re leased i s that of the e las t ic expansion of the liquid, which is obtained 

by the exp re s s ion : 
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~ o / 2 2v 
Ε.= 2κ(Ρ! P2) 

The energy thus calculated is compared with the strain energy of the guide 

tube for a feeding element assumed to have builtin or pinned extremities 

and to be subjected to a force concentrated in its middle area 

 » / , 

. . , , , , „ M is the differential equation,of 
MyM dx where y" =  r̂jr 

the bending line 
EI 

* ι 

therefore 

ι f Í¿ 
- - 2 ) EI 

M 
the channel bending stress is 

and from O K 7¡¡: obtained as a function of the 
burst pressure 

Fig. 6 gives the values of σ and of the released energy as functions of ρ . 

It is clear that the values for the stress thus calculated would be negligible 

and, indeed, not even measurable. To these forces, however, must be 

added those due to organic and water' evaporation and to the dynamic effect 

of the jet. 

As the passage of the first sonic wave, caused by the decompression of the 

organic liquid, is related to the velocity of sound in water, it is a very 

shortlived event by comparison with the subsequent phenomena that occur 

in the vessel, such as the generation'of pres surewave s through vaporiza

tion of the organic liquid and through organic/water heat exchange. 

Moreover, the channel's own vibrations set up by the first wave will al

ready be damped down by the time the subsequent events occur. Hence the 

effects of the first liquid decompression wave can.be dealt with separately 

from those provoked by the subsequent loading phenomena. 

The highspeed photographs show a sizeable formation of organic vapour 

immediately where the jet emerges when the initial organic temperatures 

are higher than boiling temperatures at atmospheric pressure; with low 
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t e m p e r a t u r e s (250 C), however, only s team forms , at some distance from 
the jet outlet (see a lso figs. 7 and 7a). These events , which f i rs t affect the 
adjacent channels about 0. 01 sec after the burs t , explain the increased load 
on the channel, which va r i e s with the organic t empera tu re or with the p r e s s 
u r e in the tank (depending on the amount of water and organic liquid evapora
ted) where the channel burs t p r e s s u r e is kept constant . 

The hydrodynamic force of the jet can be calculated by multiplying the jet 
dynamic p r e s s u r e by the axial c ros s -sect ion s t ruck by the jet . 

Ρ 2 Κ = -τ~ w . F . cw 

The res i s t iv i ty value can be a s s e s s e d at 0. 5. In the table below, load values 
thus calculated a r e compared with those recorded during exper iments 4 and 6 
on an 18/8 s ta inless s teel channel of the feeding zone. 

length of c rack 
c ro s s - s ec t i on of passage 
throughput in f irs t second 
velocity of organic liquid 
calculated dynamic load 
max. s t r e s s value calculated from 

s t ra in measu remen t 
static load calculated from s t ra in 

measuremen t 

Exper iment 4 
320 mm 

29 c m 2 

70 d m 3 

8. 9 m / s e c 
113 kg 

9. 5 k g / m m 

Exper iment 6 
407 mm 
140 c m 2 

75 d m 3 

5. 4 m / s e c 
52 kg 

15 k g / m m 2 

175 kg 280 kg 

This comparison shows that the hydrodynamic load only par t ly accounts for 
the load measured on the channels, thus demonstra t ing that the vaporizat ion 
of the organic liquid and the heat exchange provide the r e s t of the impulse 
required to produce the s t ra in measu red on the channels . 

3. 2 P r e s s u r e t rans ien ts due to vaporizat ion and fast condensation of mode· 
r a to r 

The t empera tu re difference between the organic liquid and the water at the 
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moment of contact is about 320 C. The heat t r ansmi t ted to the water will 
depend on the evolution of the heat exchange value and the exchange surface 
v e r s u s t ime . The p r e s s u r e , t empera tu re and s t ra in r eco rds indicate a cha 
r ac t e r i s t i c per iodic profile {figs. 8 and 11). 

After the channel bur s t s the f i rs t p r e s s u r e wave is r eg i s t e red , followed 0. 2 
seconds la ter by p r e s s u r e peaks of considerable amplitude which a r e r e 
peated roughly every 0. 2 seconds. 

The nature of these peaks was investigated with a view to determining the i r 
maximum amplitude and impulse . The maximum amplitude r eg i s t e red by 
standard slow t r a n s d u c e r s positioned on the ves se l shell and the special fast 
p iezo-e lec t r i c t r ansduce r s mounted in the water in no case exceeded 15 a tm. 
The p r e s s u r e r i s e t imes a r e of the o rde r of 0. 5 mi l l i - seconds . 

Exper iments effected with water at 100 C and a tmospher ic p r e s s u r e and r e 
peated by injections in water at 70 and 50 C demonst ra ted that the peaks 
a r e caused by rapid condensation of vapour bubbles which periodical ly break 
away from the generat ion a rea and encounter regions of water at subcooled 
t empera tu r e . 

The three r eco rds a r e compared in fig. 9. F ig . 10 shows how the peak f r e 
quency va r i e s with the varying water t empe ra tu r e . 

The m e a s u r e m e n t s effected with s t ra in-gauges on the channels show that the 
major loads a r e due to the waves caused by the collapsing of s team bubbles 
(fig. 11). These loads caused the collapse of the Al channels (thickness 2 mm, 
d iameter 110 mm) simulating the feeding element guide- tubes, and crashed 
some of the safety rods (Al 2 mm thick, d iamete r 75 mm) against the wall of 
the vesse l (see fig. 12). 

It was therefore necessa ry to a sce r t a in the mechanical s trength of each type 
of channel against the maximum wave measured during the t e s t s . This ca lcu
lation was of fundamental value as r egards the safety rod guide-tubes and the 
ORGEL channels , i. e. for the purpose of preventing a chain fa i lure . 
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The collapse of the safety rod guide-tubes in the f i rs t 2 / l 0 sec , the period 
when the g rea te s t peaks a r e recorded , might have prevented the inser t ion 
of the rods and ser ious ly jeopardized the safety of the r eac to r . Consequent
ly, in the final design a Z r - 2 safety rod guide-tube has been chosen avoiding 
the p rob lem. 

The maximum s t ra ins were r eg i s t e red on the 18/8 s ta in less s teel tube 
^fig. 11), simulating a feeding zone element . 

By means of a s tat ic calculation, we found via the measu red bending s t ra in 
a load value of 350 kgf, which is assumed to be concentrated in the cent ra l 
a r e a of the tube. We assumed that this load value could a lso act on a chan
nel or a control rod and we calculated the s t r e s s e s for each component. 

F o r the channel the field of the bending moments was determined and in r e s 
pect of each tube length, of var ious geometry and ma te r i a l , the ra t io was 
calculated between the moment acting in that section and the relat ive moment 
of iner t ia . These M/ l ra t ios a r e considered as so many separa te forces acting 
in the var ious tube lengths, and in this way the e las t ic s t ra in line can be plot
ted graphical ly (fig. 13). 

The load acts f i rs t on the calandr ia tube, and when a deflection of 3 m m has 
developed on that tube the load d is t r ibutes itself over the p r e s s u r e tube as 
well. 

The following values were found: 

O max SAP = 5 k g / m m , σ rupture = 8 k g / m m at 420 C 
σ max Zircaloy = 1 2 k g / m m , σ rupture = 20 k g / m m at 380 C 

Using the same calculating sys tem for the safety rod, we found: 

O max Zircaloy = 1 7 k g / m m 

It should be noted, of cour se , that this simplified calculating sys tem is real ly 
only applicable where the effective bending line vir tual ly conforms to a static 
loading pa t te rn . On the o the r hand, where the re a r e dynamic loads impinging 
on the tube at different points and ins tants , conditions a r i s e that a r e hard to 
in te rpre t from the tube deformation. In fact, a l ternat ions of tensi le and com-
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pre s s ive s t r e s s e s have been observed, indicating a d i so rde r ly buffeting 
of the tube. 

The in terpre ta t ion of this complex field of loading will be brought somewhat 

n e a r e r by r e s e a r c h into the following events : 

- determinat ion of the mechanical energy re leased on collapse of a bubble, 

- t r a n s v e r s a l buckling s trength of a tube subjected to the l a t e ra l impact of 
a p r e s s u r e wave, 

- propagation of a longitudinal bending wave along a tube, 
- propagation of a wave in water in complex geomet r ies (reflection and r e 

fraction phenomena). 

3. 3 Static loading of ve s se l 

The development of the static p r e s s u r e and t empe ra tu r e in the ves se l gas 
blanket is shown in fig. 14. Injection of the organic liquid at or above the 
water level is pa r t i cu la r ly avoided, by means of a tube which encases each 
channel and by which any organic liquid escaping in the upper pa r t of the 
channel would be ducted down to the wa te r . 

It is possible to work back to the measu red p r e s s u r e s via a calculation 
based on: 

- the inc rease of the liquid volume in the vesse l , through the rma l expansion 
of the water and the injection of organic liquid; 

- the r i s e in the blanket-gas t empera tu re ; 
- the pa r t i a l p r e s s u r e of the saturated vapour in the gas blanket. 

F r o m this calculation it e m e r g e s that prac t ica l ly all the heat lost by the o r 
ganic liquid is used to heat the ent i re volume of water in the ve s se l , in a 
uniform manner . 

In the case of experiment 2 (fig. 14), the total water evaporation was only 
0.4 kg, in 11 seconds of injection. 

3. 4 Tempera tu re r i se in channels affected by organic jet 

The jet en te r s at a cer ta in velocity into the water , which fract ionates it; 
this reduces the velocity and at the same t ime inc rea se s the c r o s s - s e c t i o n . 
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When the organic liquid reaches a t empera tu re of over 357 C, it can no 

longer continue in the liquid state at a tmospher ic p r e s s u r e and pa r t i a l eva

porat ion will occur (fig. 15). 

According to the theory, the reduction of velocity of the turbulent jet in wa

t e r and the inc rease in the jet c r o s s  s e c t i o n can be descr ibed by the follow

(4). mg equations : 

b = c. . χ and w 
1 max 

1
 ïi 

- ° · χ ^ 7 · 

where I is the jet impulse . 

Highspeed cinematography revealed a different jet behaviour from that p r e 

dicted by the theory. It will be seen from fig. 16 that the path of the jet in 

the relevant field can be descr ibed by the equation 

ΙΛ  C o t » 
χ = χ (1  e ) , 

o ' 

from which is obtained the velocity 

w(t) = w . e = Co (x  x), 
v ' o v o ' 

i. e. the velocity d e c r e a s e s l inear ly with d is tance . 

It should be r emarked that the jet can only be visually observed during the 

init ial phase , before it has attained the condition of permanent flow and when 

the escaping or escaped organic liquid is a l ready par t ia l ly evaporating. The 

exper iments showed that in spite of the j e t ' s reduced velocity, evaporation, 

and immixture in water , the t empe ra tu r e s reached at the stagnation point 

on the tubes at dis tances of 100 mm may be as high as the jet t e m p e r a t u r e s . 

This finding is confirmed by a calculation of the t empera tu re decay with d i s 

tance, in which the theore t ica l laws for the behaviour of the jet a r e assumed 

to be valid. 

We obtain Τ = Τ t + (Τ  Τ ) . e C / 2 ^ R o " R f * 
water org wa te r ' 

with 
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c = --έ-Ο 

'ρ C.R .V » η · c 
l o o Η 

With tg γ = C. = 0. 4 ; α = 6 K a l / m sec °C ; R = 2 5 mm; and 
χ = 100 m m , we obtain 

Τ = T t + (Τ - T t ) . 0.982 
water org wa te r ' 

A smal l rig was employed for exper iments on the heating of tubes affected 
by a jet at d is tances including some g rea t e r than the minimal d is tances en
countered in the ESSOR network, with the object of obtaining more genera l 
information. 

Examination of the exper imenta l data obtained during reduced-sca le in jec
tions reveals that up to d is tances of 180 mm the maximum t empera tu re at 
the stagnation point r emains m o r e or l ess constant, while for d is tances 
of 275 m m and 360 m m the values a r e noticeably lower. F r o m fig. 17 it is 
possible to de termine a je t -des t ruc t ion distance after which the re is a sub
stant ial change in the surface heating mechanism. F o r whereas at short 
d is tances the cen t ra l region of the jet is not yet mixed with the water , at 
long dis tances there is a mixture of organic liquid and water , both of them 
in vapour and liquid phase . 

F u r t h e r m o r e , the heating may be g rea t e r with low injection t e m p e r a t u r e s 
than with high. The explanation of this phenomenon is that at injection t e m 
p e r a t u r e s higher than the boiling t empe ra tu r e s the jet is destroyed through 
evaporation of the organic liquid. 

We endeavoured to give a more complete p ic ture of the c i rcumferent ia l 
and axial t empera tu re dis tr ibut ion on the different channels , by posi t ion
ing thermocouples on var ious sections direct ly affected by the organic je t . 

A cha rac te r i s t i c record of the t empera tu re measu remen t s at var ious points 
distr ibuted over the c i rcumference of a tube s t ruck by the jet is given on 
fig. 18. F r o m these d iagrams the surface distr ibution of the t empera tu re 
over the channel can be read instant by instant, A number of cha rac te r i s t i c 
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profi les for channels s t ruck d i rec t ly or only touched in passing by the jet 
a r e shown in figs. 19, 20, 21 . This i r r e g u l a r t empera tu re dis tr ibut ion may 
set up s t r e s s e s of t he rma l origin in the tube. 

A look at the dis tr ibut ion on fig. 19 where the t empera tu re difference be 
tween two points on the c i rcumference is g rea tes t , shows that the curves 
can be ass imi la ted to cosinusoidal cu rves . 

Thus: Τ(φ ) - Ti = (To - Ti) cos φ for 0 «S φ «S 90C 

F o r the field 90 < φ < 270 it may be accepted that the t empera tu re r e 
mains at the init ial value Ti( Φ = 0 for the stagnation point). Assuming a ba
lanced sys tem of in ternal s t r e s s e s and a tube anchored so as to form a s t a 
t ical ly determined sys tem, it was possible to calculate for this pa r t i cu la r 
case the distr ibution of the t h e r m a l s t r e s s e s which a r e g rea tes t at points of 
low t e m p e r a t u r e . 

The study will have to be supplemented by a more p rec i s e investigation of 
the effects produced by the continual varying of the c i rcumferent ia l and 
axial t empera tu re distr ibution over the tube during injection. 

SYMBOLS 

b 

c 
Ρ 

E 
F 

I 

M 

Ρ 
R 

Τ 

t 

ν 

V 

w 

χ 

= 

— 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

acce lera t ion 
specific heat 
modulus of elast ici ty 
surface, c r o s s - s e c t i o n 
moment of iner t ia 
momentum 
p r e s s u r e 
jets d iameter 
t empera tu re 
t ime 
specific volume 
volume 
velocity 
dis tance 

β = t he rma l expansion factor 
γ = specific weight, je ts 

opening angle 
e = s t ra in 
ρ = density 
σ = s t ress 
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250 C jet of organic liquid into water 
form and velocity of jet as shown by high-speed cinematography 
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FIG.9 Pressure and temperature records for 400° C organic liquid jnjected into 
water at 100°. 70° and 50°C. 
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Fig. 12 
SAFETY ROD (Al 2 mm thick, diameter 75 mm) 
crashed against the wall of the vessel 

Experiment 4 
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PRESSURE AND TEMPERATURE RISE IN THE NITROGENFILLED UPPER 

PART OF THE VESSEL AS A FUNCTION OF TIME AFTER EXPLOSION 
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THE CALCULATION OF THE RESPONSE OF MODEL AND FULL SCALE REACTOR 
STRUCTURES TO DYNAMIC LOADINGS 

by 
N.J.M. Rees, UKAEA, Foulness 

1. Introduction 
Model testing of reactor systems to establish their mechanical safety 

to internal explosion has been carried out in the UK for some years (1). 
One early, though fairly typical, example for an investigation of explosion 
containment on single tank fast reactors has been recently published (2). In 
these experiments a charge of chemical explosive was used to simulate the ra
pid energy.release in the core of a fast reactor under maximum accident condi
tions. The model reactor tank was an overstrong cylindrical vessel of 2·+ in. 

3 diameter, 24 in. deep closed by a loose fitting core access plug of 7 — in. 
diameter in the centre of the roof. Water was used to simulate the hot sodium 
coolant. The roof, plug and walls of the reactor model were instrumented 
with pressure gauges to measure the transient pressure loading on these over-
strong containment structures. The measured pressure loadings on the walls 
of the main tank clearly showed the direct shock wave from the explosion, the 
shock reflected from the base of the tank and the reflected rarefaction from 
the water surface. The pressure loading on the roof was due to the impact of 
the water thrown upwards when the direct shock wave was reflected at the free 
coolant surface. 

The pressures that are measured acting on the major containment structures 
i.e. the roof, core access plug and the main tank, are used to interpret the 
sequence of the main physical events that result from the explosion in the 
core. In addition the effect of these pressure loadings on both the model and 
full scale structures can be calculated in suitable cases. In model experiments 
important forces such as the roof hold-down force can be measured and compared 
with the hold-down force calculated from the pressure loading to ensure that 
they are consistent, one with the other. 

We are currently examining the effect of an explosion in the core of 
the Prototype Fast Reactor using models having linear dimensions l/16th of the 
full scale reactor (1,3). A cross-section and plan of this PFR model are shown 
in Figures 1, 1A and 2, together with an explanation of the instrumentation 
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used to measure the forces acting on the core plug and roof of the model 
reactor structure. The size of the explosion simulated is conservatively larger 
than current calculations of the energy released by the collapse of the core 
under gravity (*»·). Our experiments have shown that the main sodium tank is 
unlikely to be ruptured by the explosion. The roof, however, will deflect 
under the impact pressure loading and it is possible that some of the 
numerous penetration seals might rupture. Thus the response of the model roof 
to the impact pressure loading is an important feature of this experiment. 
We hope to demonstrate the integrity of the roof penetration seals under 
the explosion loading conditions. 

2. Deflexion of an Edge fixed roof panel under dynamic pressure loading 
Consider a panel (Figure 3) with cartesian coordinates (x,y,Z) with 

the Ζ axis normal to the undisturbed position of the panel surface. Take the 
origin at the centre of the cross-section where the maximum deflexion is to 
occur. Thus in our case of a circular vault roof the origin would be at the 
centre of the roof. The positive direction of Ζ is taken upwards in the same 
direction as the force on the roof produced by the pressure loading. The 
panel is supported by uniformly distributed edge supports attached to a ring 
frame. The ring frame and the roof edge supports are capable of uniform 
motions Z„ in the Ζ direction only (Figure 4, Table I). 

The displacement of the mid-section of the panel with reference to a 
fixed origin is thus 

Ζ + ZF = Ζ f(x,y) + ZF (2.1) 

Z„ represents the translation of the whole roof panel, its edge supports 
and the ring frame, while Ζ is the deflexion of a point (x,y) with 
reference to the translated position of the undisturbed roof section. (Figure 4). 
f(0,0) = 1 and Ζ is the deflexion of the point of maximum displacement pro
duced by a uniform loading per unit area γ F(Z) applied very slowly to the 
panel. A is the total area of the panel exposed to the pressure loading. It 
is assumed later on that f(x,y) is the same function when the panel is 
stressed by non-uniform dynamic pressure loading. 

Let f = f J J f (x,y) dx dy (2.2) 
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Α Ξ
2
  1 

and f = ̂  
f (x,y) dx dy (2.3) 

-Jl 
where integration is taken over the whole of the roof panel, f and f are 

"form" factors and are assumed to be constant for all values of Ζ of interest 

under both static and dynamic deflexions. 

The kinetic energy Τ of the panel at a time t in the first swing is 

2 
dx dy 

Í2 '2  ·* ·2 L 
f Ζ + 2f ZZF + Z F f 

(2.4) Τ = 1/2 

= 1/2 K i f Z" + 2f ZZT 

Here integration is taken over the whole roof panel of total mass M which 

is assumed to be uniformly distribuì 

rate of change of kinetic energy is 

is assumed to be uniformly distributed. Z_ is not a function of χ and y. The 

S-«[
!2 i ZZ + f ZJZ + f ZZ„ + ζ Mr} (2.5) 

The rate -rr at which work is done against gravity and the elasticplastic 

forces resisting the bending of the roof and resisting the translation of 

the roof is 

£-á{JJj[iK«> Η (*♦**)>**} 
Z + zj JF^Z) + Mg L = f Ζ (2.6) 

where F.(Z) is the force required to produce a dynamic central displace

ment Ζ of the roof. If the bending of the roof panel is subject to simple 

velocity dependent damping, then the rate of working against these forces 

dK . . , 
j— i s given by: 

dK 

dt 
=
 d f [ í í í

k ¿ 2 d X d y d t
} 

 2 '2 
= kAf Ζ ( 2 . 7 ) 

Here k i s the damping factor per unit area of roof. 
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dP 
The rate at which work is done by the dynamic loading pressure rr is 

dP . _d_f 
dt " dt |, J) 

• Ì 

z + zF 
P(x,y,t)dx dy dt V 

= A f Ζ + zF P(t) (2.8) 

where P(t) is the mean pressure acting on the panel at time t. 

The rate of working due to the dynamic pressure loading is equal to the 

sum of the other rates of working, 

iff2 ZF 

U f Ζ ¡ 
Ζ + '

ι +
» K } 4 * »Ι [

ρ
χ

β>+
*}♦*?* 

= A 1 +— I Pit) 
fZ 

(2 .9 ) 

Putting λ = 1 + — then (2.9) becomes 

fZ 

•if + f (λ1) 
) 

Ζ + λ Ζ 

= Αλ P(t) 

F V + AJF^Z) + Mg j 
f
2 

(Ζ) + Mg \. + kA ~ Ζ 

(2.10) 

2 
The "form" factors f and f can be evaluated from the measured shapes of 

a scale model roof under a "static" loading test to determine the function 

F(Z). From equation (2.2) putting an equal to the maximum radius of the 

roof. 

i 
1_ 
AZ 

dx dy 

2TT fa 

Zrd9 dr in polar coordinates 

2π 

AZ 
r Ζ dr (2.11) 

where Ζ = Zf(r) is the displacement of the roof midsection at a distance 

r from the centre. 

Similarly f
2
 = ̂ L· f z Z

2
 dr 

AZ 'o 
(2.12) 

2 
It should be noted that both f and f could be slowly varying functions of 
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the peak roof deflection, that is, of the total static load F(Z) acting on 

the roof. 

Some simplification of equation (2.10) can be achieved by restricting 

otion of edge fixai 

equation (2.10) becomes 

the motion of edge fixation of the panel. If |Z | « |fZ| the λ -*■ 1, and 

M
{ f ^

 +
 "

F
j
 +Fl f2 

(Z) + Mg + kA ̂  Ζ = A P(t) (2.13) 

If Ζ « Ζ and Ζ « fZ then equation (2.10) becomes 

f
2

C  1 
fJMZ + kAZV+ F^Z) + Mg = AP(t) (2.14) 

This is the simplest form that the equation of motion of the panel can take 

and is expressed solely in terms of the central deflexion Z. 

3. The Response of a Model Structural Roof to an Impact Pressure Loading 

It is important to remember that the acceleration due to gravity is the 

same for both the model and the full scale structure (1.3). Thus the forces 

between various parts of the model that depend partly on their weight will 

not be correctly scaled. A simplified mathematical model of the l/16th 

scale model reactor structure is shown in Figure 4 and the various terms 

used are explained in Table I. 

The main forces acting on this structure as a result of the explosion 

in the core occur in a definite sequence in time after the explosion. The 

first force F acts downwards through the diagrid structure and its support 

and acts on the ring frame to which the latter is attached. When the shock 

wave from the explosion reaches the main tank a second downward force F„, 

acts on the ring frame. The ring frame is supported by a number of columns 

connected to a thick base plate, which is firmly bolted to the reinforced 

concrete floor of the laboratory. About 0.5 m.sec after these initial down

ward forces the pressure on the core plug and roof begins to rise, and a mean 

pressure loading P(t) can be calculated from the individual pressure records. 

The equation of motion of the roof, with moveable edge fixations, is 

given by equation (2.10). However for these initial calculations the 
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simpler form (2 .13) 

f2 

f Í?2 - -Ί f: 
■ í  Z + Z F V + k A ^  Z + M g + F1(Z) = A P ( t ) (3 .1 ) 

obtained by assuming |Z„| << |fZ| is used. Since the roof holddown is 

attached to the ring frame as are the diagrid support and the reactor main 

tank, all these move together as one lumped mass M through a displacement 

ZF given by 

MF ZF + KpZp + Mpg = FX(Z)  FD  FT  S^ZpZ^ (3.2) 

The model base holddown to the laboratory floor is assumed to be rigid so 

that the mass of the base is added to the "dynamic" lumped mass M. of the 

laboratory floor for the purposes of this calculation. By "dynamic" lumped 

mass MT is meant that fraction of the total floor mass that can be assumed 

to move with the peak (central) acceleration ZT. With this approximation the 
il 

equation of motion of the floor becomes 

<W*L
 + h Κ +

 »Λ«
 = S

F ̂ F  V 
 S
L
Z
L
 (3

'
3) 

All displacements Ζ , Ζ and Ζ and forces are taken as positive in an upwards 
L £ 

direction. 

In order to solve equations (3.1), (3.2) and (3.3) for the roof holddown 

force and the central roof deflexion Z, the constants and the forcing functions 

of the equations must be known. The masses and spring rates are found by cal

 2 

culation but the "form" factors f and f and the static total load, deflexion 

curve for the roof F(Z) are found from a separate experiment. Here a l/16th 

scale structural model of the roof is subjected to a static load which was 

slowly increased in small steps until the roof failed. The profile of the 
 2 

roof was measured during the test and the form factors f and f calculated. 

4. The Response of a Full Scale Structural Roof to an Impact Pressure Loading 

The reactor vault is a very strong structure of mass Mv resting on a 

hard rock foundation (Figure 5). Thus in compression from the full scale 

forces rl(t') and F*(t') (where t' is now full scale time) it acts as an 

infinite mass; in tension when the roof is deflected upwards, it acts as a 
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mass M plus the mass of the main tank and coolant M and the mass of the 

diagrid support structure, breeder and reflector MQ. Let 1/S be the scale 

factor between the full and model scales, then the equation of motion of 

the roof is 

M'

7-2 

Z' + Ζ Ì f
2
· 

Λ + kA' ~ Ζ' + M'g + Fj 
(Ζ·) = Ρ·(ΐ') (4.1) 

The dashed variables refer to the full scale quantities. The effect 
of doing work against gravity g, when the roof is displaced is more important 
on the full scale. Note that (3) 

M' = S M F|(Z') = F^Z'/S) 

and P'(t') = P(t'/S) 

The equation of motion of the vault is 

Mv + MD + MT 
r ì 

< V
+
(

F ,
D
 + F

*TJ
 + 

Mv + MD + MT 

+ P V A V =-F1'(2') (4.2) 

Here xv is the full scale displacement of the vault, (positive upwards), 

Py is the pressure in the vault. A is the total base area of the vault, and 
ν 2 

A' is the full scale area of the vault roof (A
1
 = S A). Note that the equations 

are different to the model equations (3.1), (3.2) and (3.3) and that the 

solution for Z' is such that Z' ^ SZ. 

5. Solutions 

The cases outlines above are the most complex encountered to date and 

a number of solutions have been obtained using the equations in simplified 

form. The simplest case that has been calculated is.that of a completely rigid 

model roof, while the response of a full scale roof attached to an infinite 

mass has been calculated. The model and full scale systems outlined above 

are also being computed at the present time. The work is carried out on a 

small PACE analogue computer. 
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TABLE I : DEFINITION OF VARIABLES 
x,y,Z cartesian co-ordinates of roof panel Ζ axis normal to undisturbed 

position of panel surface, (in) 
Ζ central displacement of roof with respect to the edge fixations, (in) 
Z_ displacement of roof panel edge fixationswith repsect to fixed 

origin, (in) 
2 A area of reactor roof on which loading pressure acts, (in ) 

2 -1 M mass of roof (ton sec in ) 
- -2 
f,f "Form" factors see equations (2.2) and (2.3) 
Τ Kinetic energy of roof at time t. (ton in) 
k velocity damping per unit area of roof. (0.25 critical) 
P(x,y,t) pressure acting at a time t and position (x,y) on roof (tsi) 
P(t) mean pressure acting at time t on roof, (tsi) 
x = i + % 

fZ 
F(Z) Static total load on roof required to produce a maximum central 

deflexion Z. (ton) 
F (Z) Dynamic total load on roof required to produce a maximum central 

deflexion Z. (ton) 2 -1 M Mass of edge fixations framework, diagrid and main tank, (ton sec in ) 
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k velocity damping of edge fixation framework. (0.25 critical) 
-1 S Spring rate of frame (ton in ) 

F downward loading exerted on edge fixations by diagrid support, 
expressed a function of time, (ton) 

F downward loading exerted on edge fixations by main tank 
expressed as a function of time, (ton) 

2 -1 M_ mass of reactor model base, (ton sec in ) 
2 - 1 M "Dynamic" lumped mass of laboratory floor, (ton sec in ) 

ST central force required to produce unit central deflexion of 
laboratory floor, (ton in ) 

K. velocity damping of laboratory floor. (0.125 critical) 
Ζ Peak central deflexion of laboratory floor. The model is fixed 

to centre of laboratory floor, (in) 
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ITEM 

I 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

TITLE 

ROOF 
CORE PLUG 
DYNAMIC TE5T FRAME 
COOLANT TRAT (NOTE BRACNG FRAMES) 
NEUTRONSHELD 
CONTROL ROD ASSEMBLY 
CHARGE 
CORE AND BREEDER ASSEMBLY 
DIAGRID SUPPORT 
DIAGRID 
MAIN TANK 
DIAGRID SUPPORT STRUCTURE 
HEAT EXCHANGER 
RE-ENTRANT PART OF CORE JACKET 
LINEAR TRANSDUCER 
CORE JACKET 
SODIUM PUMP 
ROOF HOLD-DOWN YOKE 
HOLD-DOWN BAR 
STRAIN GAUGE BLOCKS-CORE PLUG 
CORE PLUG RESTRAINT RING 
DIAGRID SUPPORT FRUSTRUM 

THERMAL SHIELD 
THERMAL NSULATION LAYER 

SYMBOLS 

ψ DENOTES STRAIN GAUGE POSITIONS FIGURE Κα) 
- © DENOTES PIEZO ELECTRIC TRANSDUCERS 

MACl TANK STRAIN 
ULKES 

/ . J L . ΓΊ \MAW TANKSTRA* 
II 1 ^ j j GAUGES 

Ü H jgjB nam» β aan»! ' 
>€ΛΤ EmwcEB imam e ancaJT 

soam n m («unas « Mem») 
PUJCCED HOLES («q a t a m á ã n 

HOTE 

CENTRE Cf STRAW GAUGE R I T T E * Β ZO
BEL» UP OF W K W K 

FIGLWE 2 . PIMI VIEW OF fø th SCALE PCR. MMIFI 
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ROOF OF REACTOR 

EXPLOSION LOADING FORCE 

ROOF OF REACTOR 

EXPLOSION LOADING FORCE 

FIGURE 3 . ROOF CO-ORDINATES. 

ROOF PLUG ROOF HOLD-DOWN 

RING FRAME 

FRAME 
COLUMN 

CORE 

MAIN TANK 

BASE 

DISPLACEMEN 

FORCES 

DIAGRID SUPPORT 

FIGURE 4. SIMPLIFIED MODEL ARRANGEMENT USED FOR CALCULATIONS OF MODEL BEHAVIOUR 
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ι ι 
F ( 2 ) 

Μ s MASS PER UNIT AREA OF FULL SCALE ROC 

M D - MASS OF CORE SUPPORT ASSEMBLY 

M y = MASS. OF REACTOR VAULT. 

M T = MASS OF REACTOR TANK AND SODIUM 

FICURE 5. ARRANGEMENT USED TO INTERPRET MODEL RESULTS FOR FULL SCALE REACTOR. 
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SIMULATION D'ACCIDENTS EZPLOSIES SUB EES PILES RAPIDES 

pax 

M. Falgayrettes et J.P. Millot 

CE.N. Cadarache 
Prance 

I  INTRODUCTION 

Bien que l'heure des centrales nucléaires utilisant comme sour

ce d'énergie un réacteur rapide à sodium ne soit pas encore venue, un 

grand nombre de pays dans le monde développent des études en vue de réa

liser un prototype. 

Dans le domaine de la sûreté, la conception de ces réacteurs 

doit tenir compte de la nécessité de maintenir le sodium dans une cuve 

étanche, quel que soit le comportement du coeur au cours d'un accident. 

La rupture de l'étanchéité peut entraîner en effet des conséquences gra

ves : vaporisation de combustible par manque de refroidissement du coeur, 

et feu de sodium actif dans l'enceinte. Le maintien de l'étanchéité de 

l'enceinte du réacteur doit permettre de limiter les conséquences radio

logiques d'accidents graves. 

L'étude des accidents pouvant conduire à des explosions β été 

commencée dans différents pays ; cependant, étant donné la complexité de 

ce problème, il est peu probable qu'elle soit terminée à temps pour la 

construction des divers prototypes en projet. Afin de donner aux proje

teurs des éléments de travail sur les ondes de pression engendrées en cas 

d'explosion, et sur la tenue des divers composants du réacteur, nous 

avons, en Prance, développé une technique de simulation d'explosion. 

Cette technique consiste à placer dans une maquette à échelle réduite, 

représentant le réacteur, un explosif au centre du coeur. L'évolution, 

en fonction du temps, du dégagement d'énergie dans celuici est voisine 

de celle supposée d'un réacteur rapide lors d'un accident de réactivité. 

Cette technique a été appliquée pour déterminer le comportement du réac

teur RAPSODIE. Sur cette maquette, le comportement de la cuve du réac

teur, de la cuve d'étanchéité et des bouchons supérieurs du réacteur ont 

été examinés ; la propagation des ondes de pression, les contraintes 

engendrées et les déformations des composants ont été mesurées. Afin 

de préciser l'influence de l'échelle, deux séries d'essais ont été effec

tuées : 
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a) G.A.A.A. (Groupement Atomique Alsacienne Atlantique) a effectué, sou 
contrat, des essais sur une maquette à l'échelle 3/10 ; le sodium 
était remplacé par de l'eau ; 

b) lors des essais suivants, réalisés sur une maquette à l'échelle 1/10, 
on a étudié les différences de comportement lorsque le sodium est rem
placé par de l'eau ; ces essais ont été effectués à CADARACHE, par 
l'association EURATOM-CE.A. sur les neutrons rapides, en collabora
tion avec des spécialistes de l'TJ.K.A.E.A. de Foulness. 

II - DESCRIPTION SOMMAIRE DU REACTEUR RAPSODIE 
RAPSODIE est un réacteur rapide refroidi au sodium dont la 

puissance nominale est de 20 MW. L'élément combustible est constitué 
d'aiguilles contenant un mélange U 0 2 - Pu 0 2 gainé d'acier inoxydable 
et placées dans un boîtier de forme hexagonale. A l'origine, ces élé
ments étaient constitués d'alliage U - Pu - Mo, et les expériences de 
simulation ont été effectuées pour ce type d'éléments. Aux deux extré
mités du boîtier, des aiguilles d'uranium naturel sous forme d'oxyde 
constituent les couvertures inférieure et supérieure du coeur.· Le coeur 
est entouré d'assemblages de forme extérieure identique à celle des élé
ments combustibles ; ces assemblages contiennent de l'uranium naturel 
sous forme d'oxyde ; ils constituent la couverture latérale du coeur. 

Le coeur est refroidi par un courant de sodium de sens ascen
dant. Une cuve extérieure à double paroi, suspendue, protégée du rayon
nement par une série d'écrans de protection interposés entre elle et le 
coeur, contient l'ensemble. La cuve d'étanchéité est protégée par un 
isolant thermique et est plaquée sur le béton de protection. 

Le chargement et le déchargement s'effectuent par une hotte ei 
par un système de deux bouchons tournants excentrés. Les échangeurs soni 
placés dans une fosse à l'extérieur d la protection biologique. 

La pile est placée dans une enceinte métallique étanche prévu« 
pour résister à\ une surpression de 2,4 bars. 

Les annexes montrent : 
- un plan de l'ensemble du coeur (annexe 1) 
- un éclaté de la cuve (annexe 2) 
- une coupe de l'ensemble du réacteur (annexe 3) 



395

III  PRESENTATION DES EXPERIENCES DE SIMULATION 

Le choix des expériences a été effectué à partir des idées 

suivantes : 

(1) il est nécessaire d'effectuer des essais à échelles diffé

rentes pour étudier leur influence sur la simulation ; 

(2) une simulation à grande échelle permet une représentation 

assez fidèle de l'ensemble de la pile, mais elle présente 

des risques au point de vue de la sécurité, étant donné la 

grande quantité de sodium nécessaire o 

Deux séries d'essais ont été choisies : 

(1) la première, à l'échelle 3A0, constituait une représenta

tion fidèle de l'ensemble de la pile ; le sodium était 

remplacé par de 1'eau ; 

(2) la seconde, à l'échelle 1/10, a permis d'étudier, à l'aide 

d'une représentation plus symbolique de l'installation, 

l'influence du remplacement de l'eau par le sodium. 

L'étude des accidents explosifs sur RAPSODIE a montré que, 

dans les conditions les plus pessimistes, les dégagements d'énergie 

étaient les suivants : 

(1) Combustible métallique U■  Pu  Mo 
o o 

Energie 1,6 10 calories ou 6,6 10 joules 

durée du phénomène : 80 microsecondes 

(2) Combustible oxyde U 0 2  Pu 0 2 
Q O 

Energie 1,2 10 calories ou 4,8 10 joules 

durée du phénomène : 80 microsecondes. 

L'explosif a été choisi en tenant compte de ces énergies et 

du temps de dégagement. Quelques essais ont été effectués avec divers 

explosifs et ont démontré que, pour des temps de dégagement d'énergie 

aussi rapides, la quantité de gaz dégagée avait peu d'importance. Néan

moins, l'hexogène a été retenu car il était le seul explosif à fournir 

une énergie donnée dans un temps donné sous le volume disponible. En 

outre, parmi les explosifs envisagés, son dégagement en gaz était le 

plus faible. 

I. Première série d'essais à échelle 3/10 

Une coupe de la maquette est donnée en annexe 4. 

Dans ces essais, la part de l'instrumentation a été assez fai

ble o Le but de ces essais était surtout de déterminer le comportement 
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des divers composants de la pile en tenant compte de différentes condi
tions initiales : 

- influence de la présence de la couverture latérale 
- influence de la hauteur d'eau simulant le sodium 
- influence de la présence ou de l'absence de gaz entre le 
bouchon et 1'eau 

- influence de la fixation du bouchon supérieur 
- influence de la quantité d'explosifs - domaine de variation 
de 196 à 1.764 g d'hexogène. 

Les résultats de ces essais ont été obtenus par l'examen des 
effets mécaniques sur les composants de la maquette. L'effort sur le 
bouchon mobile supérieur a été déduit de la hauteur d'envol de celui-ci 
pendant 1'expérience. 
2. Seconde série d'essais à l'échelle 1/10 

Une représentation du dispositif expérimental est en annexe 5· 
La protection du réacteur est symbolisée par une cuve d'acier 

très solide dans laquelle est placée une cuve de paroi mince contenant 
une maquette du coeur. L'enceinte est fermée à sa partie supérieure par 
un couvercle boulonné. La charge est introduite au centre du coeur par 
un verrin quelques minutes avant l'essai. Elle est placée sous le dispo
sitif et verrouillée par un système mécanique à quart de tour. La charge 
est placée dans un doigt de gant qui l'isole du réfrigérant. L'ensemble 
est placé dans une enceinte de sécurité. 

Des mesures de contrainte sont effectuées grâce à des ¿jauges 
placées sur les boulons du couvercle supérieur. Elles donnent une idée 
de l'effort sur le couvercle. Quatre capteurs de pression sont placés 
dans le couvercle supérieur. 

Au cours de ces essais, l'influence de certaines conditions 
initiales a été testée : 

- influence du remplacement du sodium par de l'eau 
- influence de la température initiale 

. de l'eau - domain e de variation de 20° C à 90° C 
o du sodium - domaine de variation de 150° C à 550° C 

- influence de la quantité d'explosif„ 
Ces essais ont été effectués pour 15 g, 30 g et 60 g d'hexo

gène correspondant à des énergies dissipées de 2 . 10 , 4 . 10 et 4 8 o 10 calories» 



IV - PRESENTATION DES RESULTATS OBTENUS 
1. Maquette à l'échelle 3/10 

Les résultats obtenus dans les 8 essais effectués sur la ma
quette à l'échelle 3/10 sont contenus dans le tableau donné en annexe 6. 

Les effets sur le bouchon mobile sont indiqués dans le tableau 
donné en annexe 7 o 

Les effets sur*le bouchon fixe sont indiqués dans le tableau 
donné en annexe 8. 

On peut émettre les remarques suivantes sur cette série 
d'essais : 

(a) les effets observés ne dépendent pas seulement de l'énergie 
de l'explosion, mais des modifications de la géométrie pro
voquées par 1'explosiono Les effets sur les bouchons mobi
les, par exemple, augmentent peu parce que la cuve s'est 
ouverte très vite et qu'une grande partie de l'énergie a 
été absorbée par l'écrasement des caissons ; 

(b) le rendement de l'explosion (fraction de l'énergie utilisée 
pour mouvoir les bouchons) décroît quand l'énergie augmente 
et tend vers 10 % environ ; 

(c) la couche de béton en vermicolite placée entre le graphite 
et la virole de béton armé intervient très peu et la ten
sion du béton armé reste faible ; 

(d) le fait de maintenir en place le bouchon mobile accroît les 
effets sur la cuve et sur le bouchon fixe. 

2o Essais sur maquette à l'échelle 1/10 
Les résultats obtenus lors des essais sont rassemblés dans le 

tableau donné en annexe 9· Au cours de ces essais, la pression a été me
surée par des capteurs mis au point par l'U.K.AoE.A. La forme générale de 
l'impulsion de pression est schématisée par la courbe ci-dessous : 

1<m& 2m« 3fw¿ 
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Cette courbe peut être décomposée en deux parties : 

(a) le pic de pression P,*(t) provenant probablement de l'im

pact du liquide sur le couvercle, et représenté par le 

pic auquel on a déduit la partie en pointillé ; 

(b) des oscillations de pression Po(t) provenant des oscilla

tions de la bulle de vapeur créée par l'explosion de la 

cuve et des oscillations du volume de gaz produit par le 

corps détonnant. Ces oscillations représentent le reste 

de la fonction. 

A partir de ces enregistrements, on peut en déduire : 

(a) P valeur du pic moyen de pression sur le couvercle  la 

valeur donnée dans le tableau correspond à une moyenne sur 

un certain nombre d'essais et sur les différents capteurs 

placés dans le couvercle supérieur ; 

(b) I, impulsion sur le couvercle, correspond à 

[t 

I = J P,. (t) dt due à l'impact du liquide sur le 

couvercle ; 

(c) Ai = 16,4 Q '^ formule empirique donnant I 

(d) "Π : pression d'impact. 

Cette pression a été calculée par la relation P = pcv 

p = densité du liquide 

c = vitesse acoustique dans le liquide 

v = vitesse d'impact du liquide 

v est déterminé par le temps τ mis par le liquide pour 

parcourir l'espacement entre sa surface et le couvercle. 

Cette pression peut être comparée à la valeur de P obtenue 

expérimentalement« A l'aide du tableau donné en annexe 9« on constate 

que la pression calculée est légèrement supérieure à la pression mesu

rée. 

Des mesures de contraintes ont été effectuées sur les boulons 

de fixation du couvercle supérieur et sur le couvercle luimême · Les 

enregistrements montrent qu'une première force est appliquée sur le cou

vercle avant l'impact du liquide sur celuici. Elle est due à des ef

forts transmis par les structures de la maquette. L'effort lié au pic 

de pression est donné dans l'annexe 9 et comparé (rubrique : force 
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mesurée par le C.E.A.) à la force déterminée à partir des mesures de 
pression (rubrique : force maximum par l'U.E.A.E.A.) ; on constate que 
les efforts déterminés à partir de la réponse des jauges de contraintes 
sont plus faibles que les efforts déterminés à partir de la réponse des 
capteurs de pression. 

La comparaison des résultats obtenus démontre que les pressions 
obtenues dans les expériences effectuées avec de l'eau sont plus faibles 
que celles obtenues dans les expériences avec le sodium ; le facteur 
est : 

- 1,7 pour les charges de 15 g 
-1,5 pour les charges de 60 g 

V - CONCLUSIONS 

L'utilisation de ces expériences, en vue de la définition des 
composants, doit être faite avec beaucoup de prudence. La liaison entre 
les effets mécaniques engendrés par l'explosion d'un réacteur - et l'ex
plosion d'un corps détonnant dégageant la même énergie dans le même 
temps - est très difficile et, de toute manière, fort peu connue. On peut 
néanmoins supposer qu'une étude sur maquette, effectuée avec explosif, 
donne des résultats pessimistes qui peuvent être interprétés de manière 
rassurante pour la sûreté d'une pile. Cette étude permettrait de définir 
des normes pour les projeteurs sous réserve que celles-ci ne conduisent 
pas à des réalisations économiquement catastrophiques. 

Ainsi, dans le cas du réacteur RAPSODIE, l'extrapolation des 
résultats de ces expériences permet de prévoir qu'en cas d'explosion du 

o 
coeur, avec dégagement de 1,6 10 calories, les efforts sur les bouchons 
seraient les suivants (on estime que cette explosion correspond à une 
explosion d'hexogene libérant une énergie quatre fois plus, faible) : 

Bouchons mobiles 
Impulsion totale 
Durée de l'impulsion 
Force totale moyenne 
Pression moyenne 
Bouchons fixes 
Impulsion 
Durée de l'impulsion 
Force totale moyenne 
Pression moyenne 

7 . IO5 N. S. 
15 ms 
4,4 . 10b kg 
85 kg/cm2 

1,2 . IO5 N. 
30 ms 

r-4 . 10p kg 
5,6 kg/cm 
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On peut, par ailleurs., en déduire que la cuve du coeur est 
déchirée ; mais la cuve d'étanchéité est préservée car elle est appuyée 
sur le béton de protection» 

Le calcul de ces efforts sur les bouchons permet de définir des 
systèmes mécaniques suffisamment solides pour éviter l'envol de ceux-ci. 

La définition, par les projeteurs, des composants du réacteur 
permettra de limiter les conséquences d'une explosion ; ainsi : 

- la conception des mécanismes de contrôle permettrait d'éviter 
leur envol ; 

- la définition de la position des tuyauteries permettrait 
d'éviter la propagation à l'extérieur du bloc pile d'ondes 
de choc qui, transmises par les tuyauteries, pourraient pro
voquer la rupture de celles-ci. 
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Annexe 1 : RAPSODIE - UN PLAN DE L'ENSEMBLE DU COEUR 
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Annexe 2 : RAPSODIE - UN ECLATE DE LA CUVE 

1 
2 
3 5 6 
7 8 
9 
10 

injection de secours noyage 
trop-plein 
casse siphon 
argon 
départ D R G 
retour D R G 
verá armoire de purification 
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Annexe 3 : RAPSODIE - UNE COUPE DE L'ENSEMBLE DU REACTEUR 
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E X P E R I E N C E S S U R L A M A Q U E T T E D E R A P S O D I E 

R é s u l t a t s généraux d é f i n i t i f s 

L ' E C H E L L E 3 / 1 0  Annexe 6 — 

Numéro de 

l'expérience 

1 

2 

3 

4 

5 

6 

7 

8 

9 

* 10 

* 11 

Date 

8 juin 1961 

29 juin 1961 

3 oct. 1961 

13 nov. 1961 

15 fév. 1962 

22 mars 1962 

16 nov. 1962 

27 fév. 1963 

20 juin 1963 

12 juil.1963 

21 août 1963 

Energie 

libérée 

maquette 

(10
6
 cal) 

0,25 

0,25 

1 

0,25 

1 

2,25 

4 

2,25 

1 

2,25 

Quantité 

d'explosif 

(Hexogène) 

(g) 

196 

196 

784 

196 

784 

1 764 

3 136 

1 764 

Perchlorate 

784 

1 764 

Durée de 

l'explosion 

maquette 

(us) 
'Γ 

30
 +
 1 

23
 +
 1 

23
 +
 2 

23
 +
 2 

23
 +
 2 

193 j* s 

23
 +
 1 

23
 +
 1 

Conditions particulières 

de l'expéri, enee 

Assemblages hexagonaux sans 

uraniun  bouchon 5 862 Κ,ι 

Normales  bouchon 7 789 K,J 

Normales  bouchon 7 789 K,j 

Pas de couverture d'argon, (l'e lu 

arrive à 10 cm audessus du bas 

du bouchon  bouchon 7 789 tg 

Normales  bouchon 7 760 K,j 

Dispositif de guidage en place 

Normales  comme n° 5 

Normales  comme :n° 5 

Bouchon maintenu par deux 

IPN de 400 mm 

Normales 

Bouchon 6 662 Κχ 
bouchon de contrôle simulé 

absence de caissons 

Bouchon 6 662 K|} 

bouchon de contrôle simulé 

absence de caissons 

Hauteur de 

soulèvement 

du bouchon 

(cm) 

(D 

11 

(2) 

20,7 

30 

38 

64,6 

13,6 

28,2 

31,2 

Principales constatations sur les dommages 

Cuve ouverte au niveau du coeur 

Pas de rupture mais déformation de la cuve 

Cuve rompue en plusieurs points, sommier descendu de 21 mm 

Cuve ouverte en plusieurs points, somnier descendu de 2 mm 

Cuve rompue en plusieurs points,notamment sous le bouchon fixe,sommier 

descendu de 16 mm  quelques caissons déformés près des sorties sodium 

Cuve séparée en 4 parties, sommier descendu de 83 mm, caissons 

défoncés et crevés, cuve de sécurité déformée localement au niveau 

des sorties étanches. Quelques briques de graphite sont cassées. 

Cuve séparée en plusieurs parties, sommier descendu de 391 mm, 

caissons écrasés, cuve de sécurité ayant subi un allongement de 

2 io au niveau de l'entrée du sodium, graphite endommagé, quelques 
briques de vermiculite détruites. 

Cuve séparée en plusieurs parties, sommier descendu de 77 mm, 

cuve de sécurité légèrement déformée, graphite intact. 

Cuve séparée au niveau sommier 

Cuve rompue en plusieurs points 

Dégâts très importants dans la partie basse de la cuve 

(1) Quelques centimètres, valeur exacte non mesurée 

(2) Valeur un peu supérieure à 27 cm mais non connue exactement 

* Participation de l'U. K. A. E. A. aux expériences n° 10 et n° 11 
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EFFETS SUR LES BOUCHONS MOBILES  Annexe 7 

toutes les grandeurs sont données à l'échelle de la pile 

n° de 

l'expé

rience 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Energie V 
g 

LO joules 

0,39 

1,55 

0,39 

1,55 

3,5 

6,2 

3,5 

1,55 

lente 

1,55 

sans 
caisson 

3,5 
sans 
caisson 

Hauteur 

H 

m 

1,9 

non mesu

rée avec 

précision 

3,6 

5,2 

6,65 

11,2 

2,35 

4,9 

5,4 

Energie E 

10 joules 

1,3 

2,4 

3,5 

4,5 

7,6 

■ 

1,6 

3,3 

3,7 

Impulsion 

10
D
 N . » 

4,23 

5,8 

7 

7,9 

10 

3,6 

4,7 

6,8 

7,2 

Durée 

impulsion 

ms (1) 

16 

16 a 33 

20 à 33 

30 

16 

de 
18 à 27 
25 ms 

F
orce F 

10
6
 Kg 

4,4 

2,5 à 5 

3 à 5 

1,3 

2,95 

2,7 

Pression 

P 

Eg/ea
2 

85 

48 k % 

58 à % 

25 

57 

52 

i/s 

N,s/cm 

8 

11 

13,5 

15 

19 

7 

9 

13 

R 

0/0 

3,3 

6,3 

2,3 

1,3 

1,2 

1,03 

2,13 

1,06 

(l) On a indiqué le cas échéant deux chiffres qui correspondent aux évaluations extremes déduites 

des mesures. Les forces et pressions ont été alors calculées à partir de ces chiffres. 

Natations 

V = énergie de l'explosif 

E = énergie,correspondant au soulèvement des bouchons 

H = hauteur atteinte par les bouchons supposés solidaires 

I = impulsion sur les bouchons 

F = force totale moyenne pendant l'impulsion 

F = pression moyenne 

i/S = impulsion moyenne par unité de surface 

R = rendement mécanique de l'explosion 100 E 

V 
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EFFETS SOR LE BOUCHON FIXE  Annexe 8 

( Ν· de 

( l'ex

( périence 

( 3 

( 4 

( 5 

( 6 

( 7 

( 8 

( 9 

( 10 

( 11 

(1) Toutes 

(2) On a in 

Energie V 
a 

10 joules 

1,55 

0,39 

1,55 

3,5 

6,2 

3,5 

1,55 

1,55 

3,5 

Les grandeurs 

iiqué le cas < 

Impulsion 

5
 X 

10^ N.s 

0,33 

pas de 

0,5 

1,75 

6,3 

4,25 

0,4 

0,65 

3,6 

sont donné« 

Échéant deu: 

Durée 

Impulsion 

ms(l) 

mesures vali 

27 

37 à 50 

47 à 50 

50 

21 

15 

41 

ÍS à l'échel 

c chiffres qi 

Force F 

10
5
 Kg 

bles 

1,85 

3,5 » 4,7 

12,6 k 13,5 

8,5 

1,9 

4,1 

8,8 

Le de la pile 

ni correspondei 

Pression 

Kg/cm 

2,6 

5 k 6,7 

18 k 19,4 

12 

2,7 

6 

12,4 

it aux évalw 

i/s ) 

N. s/cm v 

0,5 j 

0,7 j 

2,5 j 

9 ! 

6,1 J 

0,6 j 

0,95 ! 

5,2 j 

itions extrême 

déduites des mesures. Les forcas et pressions ont été alors calculées k partir de ces chiffres 

Notations 

¥ = énergie de l'explosif 

Ι = impulsion sur le bouchon fixe 

F = force totale moyenne sur le bouchon fixe pendant l'impulsion 

P = pression moyenne 

I/S = impulsion moyenne par unité de surface 



( Réfrigérant 

( eau 

( sodium 

... 
Q 

15 g 

30 g 

60 g 

15 g 

30 g 

60 g 

To 

20° 

20° 
< 

90° 

20° 

150° 

400° 

150° 

250° 

400° 

550« 

150° 

400° 

P pic moyen 
de pression 

290 Kg/cm2 

480 

480 

920 

545 

460 

830 

770 

890 

non mesuré 

1 230 

1 340 

I impulsion 

33 Kg.ms/cm 

48 

78 

54 I 

47 f 

52 

52 ? 

49 

60 I 

88 ί 

Λ 

41 

51 

61 

41 

51 

61 

Π B Pression d'impact 
calculée 

335 Kg/cm t= 2,30 ms 

630 t = 1,22 ms 

940 X= 0,81 ms 

630 t « 1,83 ms 

1 150 t = 1,00 ms 

1 500 î = 0,81 ms 

F force maximum mesurée ) 
CFA UKAEA ) 

41 . 10
3
 Kg 

50 . 10
3 

49 

55 

72 

74 

56 

70 

98 

85 

70 

46 . 10
3
 Kg ) 

79 . 10
3
 Kg ) 

74 ) 

75 ) 

76 ) 

91 ) 

86 ) 

84 ) 

97 ) 

132 ) 

114 ) 

I 

La précision de ces mesures est d'environ 15 # k 20 %. 

LEGENDES 

Q quantité d'explosif en g 

T température initiale du réfrigérant en ° C 

P pie de pression moyenne sur le couvercle en Kg/cm 

I impulsion de pression sur le couvercle en Kg.ms/cm' 

Λ formule empirique proposée pour détermniner I 

Π pression d'impact en Kg/cm 

X temps de transit mis par le réfrigérant pour parcourir 5 cm 

F force mesurée sur le couvercle en Kg en ms 
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