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INTRODUCTION (*) 

In this paper a comparison of some methods for solving the eigenproblem of 
a matrix is given. An attempt has been made to establish the "efficiency", 
on the basis of computing time and accuracy, of each method by carrying out 
"experimental" calculations on "representative" problems for which exact re­
sults are known. 

In order to pick out the " best " methods we collect in Chapter I a list 
of matrices which form a representative sample of those which occur in 
practice. 

Any computing problem is "ill conditioned" if values to be computed are very 
sensitive to small changes in the data. It is convenient to have some numbers 
which define the condition of a matrix with respect to the eigenproblem. 
These condition-numbers and some :relationships between them are discussed 
in Chapter II. 

The results of some computational experiments carried out on the above test-
matrices are presented in Chapter III. The methods compared for the eigenpro­
blem of symmetric matrices are the Jacobi, threshold Jacobi, Givens-House-
holder and Rutishauser schemes. The numerical experiments reported in 
Chapter III §1 give a more realistic picture of the accuracy of the above 
methods than that obtained by "a-priori error analysis", and make apparent 
the "efficiency" of the Givens-Householder method for determining the eigen­
values of general symmetric matrices. The Rutishauser method is efficient 
for determining the eigenvalues of symmetric band matrices. 
As far as vectors are concerned the threshold Jacobi method and the Jacobi 
method give almost exactly orthogonal vectors. The Givens-Householder method 
(with inverse iteration) gives accurate eigenvectors, but eigenvectors 
corresponding to multiple or close eigenvalues may be far from orthogonal. 

For non-Hermitian matrices the QR method and the Laguerre method are compared. 
The numerical experiments reported in Chapter III §2 and §3 lead to the follow­
ing conelus ion : 

a) for finding all eigenvalues, the Laguerre method is troublesome because 
of the difficulty in finding "convenient" convergence-parameters; 

(*) Manuscript received on May 30, 1968. 



b) the convergence rate of the QR method is remarkably impressive (for the 
matrices dealt with in these tests the average number of iterations is less 
than 2.3 per eigenvalue!); 

c) the Laguerre method is useful for finding some eigenvalues (especially 
the eigenvalues with largest modulus) and may be faster than the QR 
method for matrices with multiple eigenvalues when a convenient choice 
of the "convergence-parameters" has been made. 

We have considered the iterative method of Wielandt for determining the eigen­
vectors of non-Hermitian matrices. The accuracy of each computed eigenvector 
lying in the linear m-fold subspace spanned by the true eigenvectors which 
correspond to an eigenvalue of multiplicity m has been tested. 

CHAPTER I 

A list of test-matrices for the eigenproblem 

INTRODUCTION 

As test-matrices w usually take matrices which form a representative sample 
of those which occur in practice, are general enough as to put sufficient 
strain on the numerical methods we have to test, and give the solution of 
the eigenproblem in closed form. 
In §1 we give a list of test matrices with known eigenvalues. 
In §2 we give a list of special test matrices. Important classes of special 
test matrices are the unitary matrices, the circulant matrices and the Frobenius 
matrices. 
In §3 the tridiagonal test-matrices are considered. 
When we are interested to generate test-matrices with a prescribed distribution 
of the eigenvalues, it is convenient to resort to matrices generated by 
Kronecker operations and by similarity transformations. 
These test-matrices are considered in §4 and §5. 



§1 A LIST OF TEST MATRICES WITH KNOWN EIGENVALUES 

1.1 Symmetric test­matrices with known eigenvalues 

Test matrix SM4/1 

4 

■2 

­1 

0 

­2 

4 

0 

­1 

­1 0 

0 ­1 

4 ­2 

­2 4 

λ2 = 3 

λ
4 =

 7 

Test matrix SM4/2 

0.67 

0.13 

0.12 

0.11 

0.13 

0.96 

0.14 

0.13 

0.12 

0.14 

0.31 

0.16 

0.11 

0.13 

0.16 

0.15 

Test matrix SM4/3 

([l], page 269) 

5 

■5 

5 

0 

­5 5 

16 ­8 

­8 16 

Test matrix SM4/4 

(C
1
]» Page 302) 

0 

7 

7 

21 

C\. = 

λ
3 = 

0.0479716838 

0.3111488671 

0.6384911230 

1.0923883260 

λ
1
 = λ

2
 = 2

·
6 5 7 2 8 0 7 3 

λ3 = λ^ = 26.34271928 

1 1 1 

2 3 4 

3 6 10 

4 10 20 

λ = 0.03801601 

λ2 = 0.4538345 

λ3 = 2.2034461 

λ„ =26.304703 

Test matrix SM5/1 [6] 

0.81321 

­0.00013 

0.00014 

0.00011 

0.00021 

­0.00013 

0.93125 

0.23567 

0.41235 

0.41632 

0.00014 

0.23567 

0.18765 

0.50632 

0.30697 

0.00011 

0.41235 

0.50632 

0.27605 

0.46322 

0.00021 

0.41632 

0.30697 

0.46322 

0.41931 

λ = 
1 
λ = 
2 

λ = 3 
λ = 
4 
λ = 
5 

-0.29908 

0.01521 

0.41985 

0.81321 

1.67828 



T e s t m a t r i x SM5/2 t>] 

5 

4 

3 

2 

1 

4 3 

6 0 

0 7 

4 6 

3 5 

2 1 

4 3 

6 5 

8 7 

7 9 

λ = 22 .40687532 

λ = 7 .513724155 

λ = 4 .848950120 
O 
λ^ = 1.327045605 
λ̂  = -1.096595181 

The eigenvectors of the test matrix SM5/2 are: 

v̂ ^ Ξ (-0.245877938, -0.302396039, -0.453214523, -0.577177153, -0.556384583) 

ν Ξ (-0.550961956, -0.709440339, 0.340179132, 0.0834109534, 0.265435677) 

ν Ξ (-0.547172795, 0.312569920, -0.618112077, 0.115606593, 0.455493746) 

ν Ξ (0.341013042, -0.116434620, -0.019590671, -0.682043035, 0.636071214) 

vc Ξ (0.469358072, -0.542212195, -0.544452403, 0.425865662, 0.0889885036) ο 

Test matrix SM5/3 
φ.}, page 255) 

1 1 
1 
1 
1 
1 

2 
3 
4 
5 

1 

3 

6 

10 

15 

1 

4 

10 

20 

35 

1 

5 

15 

35 

70 

λ = 0.01083536 
λ = 0.18124190 
λ3 = 1· 
λ = 5.51748791 
λ̂  =92.29043483 

Test matrix SM6/1 L 7 1 
1 

2 

3 

0 

1 

2 

2 

4 

5 

- 1 

0 

3 

3 

5 

6 

- 2 

- 3 

0 

0 

- 1 

- 2 

1 

2 

3 

1 

0 

- 3 

2 

4 

5 

2 

3 

0 

3 

5 

6 

λ = 12.41133643 
λ2 = 12.41133642 
λ = 0.2849864395 
Ο 
λμ = 0.2849864365 
Xc = -1.696322849 ο 
λ„ = -1.696322851 

The eigenvectors of the test matrix SM6/1 are: 



ν Ξ (-0.221789750, -0.472911329, -0.720938140, 0.259414890, 0.357807087, 
0.109956267) 

ν Ξ (0.170061798, 0.178584630, -0.138066492, 0.295915130, 0.565489671, 
0.716086465) 

ν 3 = (0.669545567, -0.395331735, 0.136726362, -0.288372768, 0.463372193, 
-0.280810985) 

ν Ξ (0.013164189, 0.259286123, -0.199515430, -0.728887389, 0.551154856, 
-0.240296694) 

vc Ξ (0.503951797, 0.074032290, -0.529160563, -0.313202308, -0.521389692, ο 
0.300995029) 

ν, Ξ (0.391015688, -0.080878210, -0.418685666, -0.446284472, -0.520371701, 
D 

0.441940292) 

Test matrix SM6/2 
(£l], page 237) 

0 
1 
6 
0 
0 
0 

1 
0 
2 
7 
0 
0 

6 
2 
0 
3 
8 
0 

0 
7 
3 
0 
4 
9 

0 
0 
8 
4 
0 
5 

0 
o 
o 
9 
5 
O 

λι = 
λ2 = 
λ„ =-

λ. = 

16.60600885 
5.94293604 
10.06472040 
12.12830070 
2.10943466 
-2.46535845 

Test matrix SM6/3 M 

253 
121 
66 
11 
11 
0 

121 
96 

-19 
71 
-24 
7 

66 
-19 
137 
-117 
73 
-14 

11 
71 

-117 
152 
-82 
21 

11 
-24 
73 
-82 
57 
-14 

0 
7 

-14 
21 
-14 
7 

λ = λ = 2.533 
χ = χ, = 15.618 3 4 
λ* = λ„ = 332.849 5 ο 



8 

Test matrix SM8/1 M 
611 
196 
-192 
407 
-8 
-52 
-49 
29 

λι = 
λ2 = 
λ3 = 
λ4 = 
λ6 = 
λ7 = 
λ„ = 

196 
899 
113 
-192 
-71 
-43 
-8 
-44 

1020. 
1020. 
1019. 
λ5 = 

-192 
113 -
899 
196 
61 
49 
8 
52 

04901843 

90195436 
1000. 

0.09804864072 
0.0 
-1020. 04901843 

407 
-192 
196 
611 
8 
44 
59 

-23 

-8 
-71 
61 
8 

411 
-599 
208 
208 

-52 
-43 
49 
44 

-599 
411 
208 
208 

-49 
-8 
8 
59 
208 
208 
99 

-911 

29 
-44 
52 
-23 
208 
208 
-911 
99 

The eigenvectors of the test matrix SM8/1 are: 

ν Ξ (2,1,1,2, -0.004901843, -0.004901843, 0.009803686, 0.009803686) 

v2 Ξ (1, -2, -2, 1, 2, -2, 1, -1) 

ν Ξ (2, -1, 1, -2, 10.09901951, -10.09901951, -20.19803903, 20.19803903) 
O 

v4 Ξ (1, -2, -2, 1, -2, 2, -1, 1) 

v5 Ξ (7, 14, -14, -7, -2, -2, -1, -1) 

ν β Ξ (2, -1, 1, -2, -0.099019514, 0.099019514, 0.198039027, -0.198039027) 
ν,, Ξ (1, 2, -2, -1, 14, 14, 7, 7) 

ν Ξ (2, 1, 1, 2, 204.0049018, 204. 0049018, -408.0098037, -408.0098037) 



Test matrix SM8/2 

([1], page 275) 

1 1 

1 2 

1 3 

1 4 

1 5 

1 6 

1 7 

1 8 

1 1 1 1 1 1 

3 4 5 6 7 8 

6 10 15 21 28 36 

10 20 35 56 84 120 

15 35 70 126 210 330 

21 56 126 252 462 792 

28 84 210 H62 924 1716 

8 36 120 330 792 1716 3432 

λ = 2.2008514614 10 

λ = 6.7202144403 10 

λ = 8.3730245858 io" 

λ^ = 5.1189155425 10 

\ c = 1 .9535387754 10C 

5
 ] 

Xc = 1 .1943115534 10 
D 

λ = 1.4880477534 IO' 
» r 

λ„ = 4.5436960082 10
e 

­4 

­3 

­1 

Test matrix SM8/3 

([1], page 239) 

a 

­b 

­c 

d 

­e 

f 

g 

­h 

­b 

a 

d 

­c 

f 

­e 

­h 

g 

­c d 

d ­c 

a ­b 

­b a 

g ­h 

­h g 

­e f 

f ­e 

­e 

f 

g 

­h 

a 

­b 

­c 

d 

f g 

­e ­h 

­h ­e 

g f 

­b ­c 

a d 

d a 

­c ­b 

­h 

g 

f 

­e 

d 

­c 

­b 

a 

a = 11111111 e 

b = 9090909 f 

c = 10891089 g 

d = 8910891 h 

11108889 

9089091 

10888911 

8909109 

8 10 
k­1 

(k=l,2,...,8) 

Test matrix SM8/4 

([l], page 244) 

Η Κ 

Μ 

Κ Η 

Η = 

a b e d 

b a d e 

c d~~ã E" 

d e b a 

K = 

e 

f 
g 
h 

f 

e 

h 
g 

g 
h 

e 
f 

h 

g 
f 
e 



IO 

a = 
b =· 
c = 
d = 

0 
-2 
-3 
4 

Test matrix SM8/5 
([l], Page 238) 

33 
-3 
0 
-4 
0 
8 
0 
-4 

-3 
33 
4 
0 
-8 
0 
4 
0 

e = 
f = 
g = 
h = 

0 
4 
29 
1 

-12 
-2 
-8 
-2 

5 
6 
-7 
8 

-4 
0 
1 
29 
-2 
-12 
-2 
-8 

0 
-8 
-12 
-2 
25 
1 
-4 
-2 

8 
0 
-2 
-12 
1 
25 
-2 
-4 

0 
4 
-8 
-2 
-4 
-2 
21 
1 

-4 
0 
-2 
-8 
-2 
-4 
1 
21 

λ = -21 
λ2 = λ3 = 
λ4 = "5 

-13 
λ 5 = 7 

λ6 = λ ? = 11 
λ8 = 2 3 

6.k ( k = l , 2 , . . . , 8 ) 

Test mat r ix SM9/1 CO 
M = (a..) with a.. = a.. = 0 for i t i,i+l and: 3-D 3-D Di­

li 
0.71507 
0.42721 
0.71226 
0.42823 
0.70177 
0.44052 
0.43474 
0.42862 
0.42784 

ai+l i=ai i+1 0.13952 
0.11389 
0.17385 
0.021681 
0.12899 
0.0035016 
0.0025372 
0.0 

0.83818541 
0.75787017 
0.74734873 
0.43584777 
0.42784000 
0.42773464 
0.39554758 
0.38360934 
0.30227655 

Test matrix SM21/1 

M = (a. .) with 3-D 
η = 10 

CSU 

a. . = n+l-i 
11 a. . = i-n-1 
11 

aii+l = ai+l i 
»ij = »ji = o 

(i = 1,2,. . . ,n+l) 
(i = n+2,n+3,...,2n+l) 
= 1 
for j t i, i+1 



II 

The eigenvalues of M to 7 decimal places are: 

λ, = 10.7461942 
10.7461942 
9.2106786 
9.2106786 
8.0389411 
8.0389411 
7.0039522 
7.0039518 
6.0002340 
6.0002175 

5.0002444 
4.9997825 
4.0043540 
3.9960482 
3.0430993 
2.9610589 
2.1302092 
1.7893214 
0.9475344 
0.2538058 
-1.1254415 

Test matrix SM21/2 

M = ( a . . ) with 
ID 

η = 10 
a . . = n + l - i 

1 1 
a . . . - — a . „ . — ι 

ι l + l l + l ι 

( i = l , 2 , . . . , 2 n + l ) 

a . . = a . . = 0 f o r j f i , i + 1 
ID Di 

The e i g e n v a l u e s o f M t o 7 d e c i m a l p l a c e s a r e : 

λ, = + 

± 
+ 
+ 
+ 
+ 

10.7461942 
9.2106786 
8.0389411 
7.0039520 
6.0002257 
5.0000082 

+ 
+ 
+ 
+ 

4.0000002 
3.0000000 
2.0000000 
1.0000000 
0.0000000 

The eigenvector correct to 8 decimal places of λη = 10.7461942 is: 

(1., .74619418, .30299994, .08590249, .01880748, .00336146, .00050815, 
.00006659, .00000771, .00000080, .00000007, .00000001, .0, .0, .0, .0, 
.0, .0, .0, .0, .0) 
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1.2 A list of real test matrices with known eigenvalues 

Test matrix RM4/1 

([1], page 228) 

-2 

1 

4 

5 

Test matrix RM4/2 

([l], page 302) 

2 

-1 

-2 

-1 

Test matrix RM4/3 

([l], page 303) 

-1 

-1 

0 

o 

Test matrix RM4/4 

([l], page 303 ) 

6 

9 

15 -

23 -

Test matrix RM4/5 

( [l] , page 274 ) 

1 

1 

-2 

-1 

1 

5 

3 

2 

3 

-1 

4 

0 

1 

-3 

■12 

■23 

17119 

-50436 

49554 

-16236 

-3 

1 

5 

5 

-2 

-3 

0 

-1 

0 

-2 

-6 -

10 

0 

1 

3 

3 

2 

0 

-3 

6 

1 

2 

1 

3 

0 

0 

-16 

18 

0 

0 

1 

4 

8289 3159 

-24326 -9216 

23814 8974 

-7776 -2! 316 

729 

-2106 

2034 

-656 

k (k = 1,2,3,4) 

Xk = k (k = 1,2,3,4) 

λ1 = 2, λ2 = 4 

λ
3'

 λ
4 

2 ± 2i 

= 7, λ2 = 4 

λ3 = 1, \ = -5 

λ, = 10 
k 

k-1 
(k=l,2,3,4) 
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Test matrix RM4/6 
([l], page 237) 

9 
1 

-2 
1 

1 
8 
-3 
-2 

-2 
-3 
7 
-1 

1 
-2 
-1 
6 

x , = 3.k k (k = 1 ,2 ,3 ,4 ) 

Test ma t r i x RM4/7 
( [13 , page 270) 

48 
-154 
176 
-64 

Test matrix RM4/8 
([£ page 386) 

-4 
1 

-2 
7 

25 
-82 
96 
-34 

5 
-1 
4 
-5 

11 3 
-37 -10 

44 11 
-14 -1 

- 1 -7 
-4 1 

7 -2 
1 10 

λ = λ = X = 2 
1 2 3 

\ = 3 

λ = % = "Χ = Χ = 3 
1 2 3 4 

Test matrix RM4/9 

0^9612 

0.9205 
1.0961 
0.0677 
0.9395 

-0.8526 
-0.6522 
0.2922 
0.8977 

0.3265 
0.8152 
0.8561 
-0.5330 

0.3054 
0.3284 
-0.1328 
0.6556 

0.8018 Χ,, λ = 0.0064 + 0.3981 i 
o 4 — 

The eigenvectors of the test matrix RM4/9 are: 

ν χ · (-0.1798, 0.3188, 0.9228, -0.1204) 
v2 2 ( 0.1890, 0.3465, 0.0309, 0.9113) 
v., y s (0.3722 + 0.5715 i, 0.5133 + 0.3454 i, -0.1410 + 0.2322 i, 

- 0.2782 + 0.0118 i) 



Test matrix RM4/10 

14 

0 

1.31 

1.06 

2.64 

0.07 

-0.36 

2.86 

-1.84 

1 

0.27 

1.21 

1.49 

-0.24 

= 0.03 

-0.33 

0.41 

-1.34 

-2.01 

3.03 

\ = "I·
97

 ±i 

Test matrix RM5/1 

(Ll], page 227) 

11 

12 

-5 

3 

-2 

-6 

-11 

13 

-4 

6 

5 

7 

3 

7 

-2 

5 

3 

-8 

5 

2 

-6 

-12 

5 

-3 

7 

λ = k 
k

 k 
(k = 1 , 2 , 3 , 4 , 5 ) 

Test mat r ix RM5/2 

([1] , page 247) 

40 

17 

-1 

13 

63 

56 

10 

-6 

30 

-54 

-11 

8 

6 

8 

-3 

-8 

5 

5 

-19 

-3 

-39 

-17 

1 

-13 

64 

Test matr ix RM5/3 

( [ l ] , page 270) 

λ = 
1 

V 
V 
λ = 

1 

2 

6 

-24 

120 

1 

-4 

6 

■4 

1 

-1 1 

2 0 

0 -2 

-2 0 

1 1 

- 1 1 

-2 +4 

0 6 

2 4 

1 1 

+ 4 
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Test ma t r ix RM5/4 C91 
15 
1 
7 
7 
17 

11 
3 
6 
7 
12 

6 
9 
6 
5 
5 

-9 
-3 
-3 
-3 
-10 

-15 
-8 
-11 
-11 
-16 

X. = 

λ. = 

χ 
2 X 
4 
-1 

1.50016 + 3.57064 i 
1.50016 + 3.57064 i 

Test matrix RM6/1 
( W . Page 277) 

λ 
1 

7 
-6 
-1 
-8 
-4 
6 

= 3 
= 4 

3 
4 
-9 
0 
3 
1 

4 
-5 
2 
-1 
-5 
4 

-11 
7 
2 
5 
7 

' -11 

λ , X 
3' 4 
Χ , λ 
5' 6 

-9 -2 
1 12 
9 1 
0 8 
2 10 
-7 -1 

= 1 + 2 i 
= 5 + 6 i 

Test matrix RM6/2 
([1], page 286) 

2 4 0 
-5 +13 -2 
-13 29 -15 

0 0 0 
0 0 0 
5 0 0 

-25 61 -48 18 0 0 
-36 80 -38 -26 32 -6 
-34 24 140 -250 155 -29 

*k = k , k = 1(1)6 

Test matrix RM6/3 
([1], page 372) 

-1 
-3 
-4 
-7 
-1 
1 

-6 
-2 
16 
15 
-5 
-3 

6 
3 
0 
-5 
3 
3 

-14 
-7 
6 
11 
-7 
-7 

21 
14 

-12 
-8 
15 
7 

ίο 1 
3 
4 
7 
1 
8 

\ - \ - i 

V 5 

V = 6 

h =\ --9 



Test matrix RM6/4 [ β ] , \β] 

16 

1 
1/2 
1/3 
1/4 
1/5 
1/6 

1 
1/3 
1/4 
1/5 
1/6 
1/7 

1 
1/4 
1/5 
1/6 
1/7 
1/8 

1 
1/5 
1/6 
1/7 
1/8 
1/9 

1 
1/6 
1/7 
1/8 
1/9 
1/10 

1 
1/7 
1/8 
1/9 
1/10 
1/11 

Roots calculated in [ 9 ̂  
2.132376 
-0.2214068 
-0.3184330 10 
-0.8983233 10 
-0.1706278 10 
-0.1394499 io" 

-1 
-3 
-4 

Roota calculated in Γ83 
2.132376 
-0.2214066 
-0.3184328 10 
-0.8983258 io" 
-0.1706200 10 
-0.1443702 IO" 

-1 

-4 

Test matrix RM7/1 
([l], page 275) 

28 
-1 
11 
-6 
-3 
14 
37 

17 
29 
-1 
-11 
1 
16 
-18 

-16 
7 
12 
12 
-4 
-7 
-9 

11 
-6 
3 
8 
3 
6 

+ 5 

9 
-2 
-8 

-12 
8 
2 
7 

-2 
28 
10 
-5 
4 
4 
26 

-27 
1 

11 
6 
3 

-14 
38 

k 
(k=l(l)7) 

Test matrix RM7/2 
([l], page 372) 

-3 
2 
-4 
0 
3 
-7 
-6 

11 
3 
-1 
8 

-4 
9 
9 

10 
10 
1 
1 
-2 
6 

4 
9 
7 
2 
7 
9 

0 -5 

-13 
-16 
4 
-1 
7 

-12 
3 

-2 
0 
11 
-8 
7 
3 
-2 

6 
-2 
4 
0 
-3 
7 
9 

> 3 = 3 

3 + 4 i 
5 + 6 i 
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Test matrix RM8/1 
([1"3. Page 227) 

16 
72 
79 
73 
21 
73 
43 
73 

17 
31 
37 
-31 
-21 
-31 
-1 
31 

-11 
-53 
-56 
54 

-25 
53 
39 
-53 

-17 
-59 
-55 
59 
-19 
+59 
33 
-59 

-23 
-65 
-71 
65 
-60 
66 
35 
-65 

29 
-13 
-7 
13 
-77 
13 
43 
-13 

-19 
-61 
-67 
61 
-17 
61 
42 
-60 

11 
-31 
-25 
31 

-47 
31 
31 

-31 

(k=l(l)8) 

Test matrix RM8/2 
(tl}, page 388) 

-7 
-1 
3 
17 
9 
-3 
1 

-9 

\ , \ · ι ± 

-9 
5 
-9 
19 
8 
-8 
6 
-7 

2 i 

13 4 
-6 4 
-1 7 
-2 -6 
2 -9 
-4 3 
-6 4 
7 8 

-12 
-1 
-13 
11 
14 
-9 
-1 
-13 

-11 
8 
6 
8 
4 
9 
8 
-3 

V \ = 3 + 4 i 

-13 6 
1 9 
12 -3 
-2 -17 
1 -9 
5 3 
2 7 

-10 16 

λ , λ 
5 » 6 

5 + 6 i \ , \ = 7+8 i 
7' 8 -

Test Matrix RM8/3 
<EJ» Page 

\ - \ 

6 
11 
23 
-17 
3 

-19 
-13 
19 

= 2 J 

326) 

-11 
-2 
-9 
3 
11 
5 
-1 
-5 

: 7 i 

-23 
-9 
29 
-21 
22 
2 

-22 
8 

V 

-17 
-3 
21 
-19 
16 
-4 
-16 
14 

λ r 4 

-3 
11 
22 
-16 
8 

-22 
-12 
18 

5 + 3 

-19 
-5 
-2 
-4 
22 
4 
-8 
2 

i 

-13 
1 
22 
-16 
12 
-8 
-11 
9 

V 

-19 
-5 
8 

-14 
18 
-2 
-9 
13 

λ6 = 6 + 4 i L_, λ = ι + g i 7' 8 — 
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Test matrix 

([l], page 

5 

­1 

3 

­1 

6 

2 

­1 

7 

­5 

RM9/1 

371) 

8 

­2 

3 

9 ­

11 

5 

­3 

1 

­3 

­9 

8 

16 

■13 

6 

­5 

9 

3 

­1 

5 

­1 

2 

0 

7 

­6 

2 

­7 

4 

­12 

5 

3 

­2 

5 

­2 

3 

3 

­7 

­4 

­1 

­10 

14 

­2 

13 

­12 

4 

­5 

0 

­2 

­13 

13 

­6 

5 

­6 

3 

­2 

4 

3 

0 

­10 

­5 

­3 

2 

8 

7 

­4 

1 

­3 

1 

­6 

­2 

1 

­7 

6 

λ = k k=l(l)9 

Test matrix RM9/2 

([ï], page 287) 

14 

­91 

364 

­989 

1886 

2509 

2236 

1210 

300 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

1 

0 

λ 
k 
= 1 

2 

3 

1 + i 

1 + 2 i 

2 + i 
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Test matrix RM12/1 
([1], page 384) 

24 
3 
4 
5 

23 
8 

19 
16 
3 

-2 
7 

18 

3 
13 
-5 
8 

40 
-9 
10 
21 
5 
2 
6 

-11 

-20 
-17 

7 
6 

-18 
1 

13 
-4 
9 
3 

-17 
-3 

10 
6 
2 

-3 
26 
10 
2 

+17 
-7 
-1 
6 
4 

-1 
1 

12 
4 
13 
-4 
1 

16 
4 
12 
1 

-2 

5 
-1 
5 
6 
15 
-3 
0 
11 
6 
5 

-1 
6 

24 
12 
9 

-5 
-3 
0 
-4 
-3 
-5 
9 

12 
12 

-11 
4 
4 
-2 

-17 
4 
2 

-20 
-2 
4 
4 

-15 

16 
12 
-7 
3 

-26 
-10 
-2 

-17 
7 

-4 
12 
4 

40 
18 
-7 
-1 
18 
-1 

-13 
4 

-4 
-3 
18 
22 

-22 
-11 

1 
-13 
-17 

1 
9 

-5 
-8 
0 
-8 
-7 

-29 
-3 
-4 
-5 
23 
-8 
19 
16 
-3 
2 

-7 
-23 

^]r - ±( 3 I 4 *)» ±( 4 I 3 3")» I 5 3-, + 5 

1.3 A list of complex test-matrices with known eigenvalues 

Test matrix CM3/1 
([TJ, page 378) 

-189-790 i 537-505 i 
438-204 i 361+253 i 
-65-144 i 85-115 i 

-1626+2740 i 
-1788-630 i 
-207+581 i 

λ = 1+i λ = 7-8 i Κ = -43+51 i 

Test matrix CM4/1 
([1], page 251) 

12 -(1+i) 2 3(l+i) 
-(1-i) 12 (1-i) -2 

2 (1+i) 8 -(1+i) 
3(l-i) -2 -(1-i) 8 

Xk = 4.k (k = 1,2,3,4) 
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Test matrix CM4/2 
([l], page 287) 

2+11 i 3-5 i 
6+ 4 i -9+4 i 8-2 i 
14- 2 i -30+14 i 22-9 i 
25- 8 i -57+28 i 39-24 i 

-1+3 i 
-2+10 i 

Xk = (1+i), (3+4 i), (4+5 i), (5+6 i) 

Test matrix CM5/1 M 
1+ 2 i 
43+44 i 
5+ 6 i 

47+48 i 
9+10 i 

3 + 4 i 
13 +14 i 
7 + 8 i 
17 +18 i 
11 +12 i 

21+22 i 
15+16 i 
25+26 i 
19+20 i 
29+30 i 

23+24 i 
33+34 i 
27+28 i 
37+38 i 
31+32 i 

41+42 i 
35+36 i 
45+46 i 
39+40 i 
49+50 i 

λ = 127.387 + 132.278 i 
O 
λ = -9.45999 + 7.28019 i 
Xc = 7.07332 o 9.55839 i 

Test matrix CM5/2 M 
-0.845+0.0 i 5.2+0.103 i 

5.2 -0.103 i -6.2+0.0 i 
0.301+0.0454 -3.39+0.407 i 
-9.6 -0.936 i 0.122-0.91 i 

.0734-7.26 i 4.19+3.66 i 

.301-0.0454 i 
-3.39-0.407 i 
0.019+0.0 i 
.935+0.271 i 
-0.0572-2.82 i 

-9.6+0.936 i .0734+7.26 i 
+0.122+0.91 i 4.19 -3.66 i 
0.935-0.271 i -0.0572+2.82 j 
7.21+0.0 i 0.337+0.0603 i 
0.337-0.0603 i -1.23+0.0 i 

λ1 = 15.180165225 
λ2 = 5.6787293543 
λ = -0.83398680019 

λ^ = -5.1498456282 
λ5 = -15.921062150 
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Test matrix CM6/1 

íl· 
3 
3+i 
-l+6i 
4 
l-2i 
1+i 

page 376) 

1+3 i 
6+2 i 
18-9 i 
4-2 i 
6+4 i 
-6-i 

-6+16 i 
-6+ 9 i 
3+i 
3 

-6+9 i 
7i 

8-14 i 
6-10 i 
-3-i 
-3 
6-10 i 
2-4i 

-13-5 i 
-10-5 i 
-17+3 i 
- 8+2 i 
- 8-4 i 

-3 

-2 
-3-i 
1-6 i 
-4 
-1+2 i 
-i 

Xk = 0, 1, i, (2+i), (-1-2Í), (-1-2Í) 

Test matrix CM10/1 [12] 

2+3i 
3+2i 
5-3i 
2+6i 
l+4i 
5-i 
5+2i 
4-3Í 
5+0i 
5+2i 

3+i 
-2-i 
l+2i 
-2+3i 
2+2i 
0+4i 
l+4i 
7+3i 
2+2i 
2+6i 

l+2i 
2+i 
3-i 
3+7i 
l+5i 
6-5i 
l+6i 
l+3i 
l-3i 

-l+4i 
-4+2i 
l+5i 
-8-li 
8+4i 
2-ni 
1+i 
7+4i 

5+5i 
2-3i 
4+7i 
4-4i 
3+i 
-4-2i 
4+i 

l+6i 
7+i 
-l+5i 
l+2i 
l+6i 
-7+Oi 

4-2i 
3+Oi 
l+4i 
l+2i 
3-3i 

-4+6 i 
6+3i 
2+5i 
5-4i 

7-i 
0+i 
6+3i 

3+2i 
2+5i 

10 

= 4.16174868+3.13751356 i 
= 5.43644837-3.97142582 i 
= 2.38988759+7.26807071 i 
=-1.93520144-3.97509382 i 
=-2.44755082+0.437126175 i 
=-5.27950616-2.27596303 i 
= 1.03205812+9.29413278 i 
=-4.96687009-8.08712475 i 
= 8.81130928+1.54938266 i 
=10.7976764 +8.62338151 i 
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Test matrix CM15/1 
([ij, page 278) 

Β = 

C = 

t 
6 
20 
11 
-3 
6 
9 
7 
12 
12 
5 

-1 
4 
10 
8 

, o 

'-7 
-10 
11 
4 
2 
15 
7 
-1 
-1 
1 
7 
1 

-16 
-14 
-5 

A 
-12 
-24 
-2 
-5 
-32 
-20 
-15 
-17 
-17 
-21 
0 
10 
0 
-5 
-1 

-3 
-13 
-34 
-18 
-12 
-27 
-10 
-4 
-15 
-8 
-16 
-15 
2 
4 
4 

= B+i C 
18 
28 
-6 
-15 
12 
-2 
-2 
3 
5 
11 
-12 
-20 
-3 
11 
5 

-2 
9 
27 
5 

-1 
31 
21 
7 
18 
0 
2 
7 
-8 
-9 
-4 

-25 
-28 
14 
33 
12 
13 
5 

-4 
-4 
-1 
13 
19 
3 

-18 
-12 

-10 
-12 
-33 
-9 
4 

-37 
-31 
-17 
-28 
-5 
-2 
-5 
5 
-3 
-3 

20 
21 
-12 
-26 
-2 
-24 
-22 
-8 
-6 
4 
-9 
-17 
-10 
13 
16 

4 
6 
34 
23 
-4 
18 
19 
14 
19 
-2 
8 
6 

-11 
-3 
0 

-28 
-24 
9 
25 
10 
23 
8 
3 
12 
2 
8 
14 
7 

-21 
-21 

-1 
-9 
-24 
-22 
9 
10 
3 
0 
-3 
3 
-7 
4 
8 
6 
8 

40 
36 
-2 
-27 
-20 
-21 
-6 
-4 
-13 
-12 
-10 
-7 
5 
33 
29 

4 
16 
29 
14 
-21 
-14 
2 
4 
-2 
-15 
-1 
1 
-1 
-3 
-4 

-41 
-26 
12 
32 
21 
27 
0 
-2 
19 
13 
15 
17 
5 

-34 
-38 

-5 
-15 
-30 
-21 
16 
26 
11 
9 
14 
10 
-6 
-2 
2 
2 
-1 

19 
15 
-11 
-22 
-10 
-37 
-7 
-2 
-26 
-2 
-5 
-16 
-16 
12 
23 

1 
3 
24 
25 
3 

-23 
-25 
-22 
-10 
9 
10 
-4 
-14 
-6 
3 

-23 
-15 
11 
22 
13 
41 
21 
7 
23 
7 
5 

16 
16 
-16 
-21 

-7 
2 

-35 
-25 
-11 
-12 
3 
8 

-13 
-13 
-10 
-7 
19 
0 

-14 

38 
19 
-19 
-35 
-28 
-30 
-4 
5 

-13 
-15 
-15 
-24 
-12 
31 
25 

18 
14 
44 
21 
13 
31 
9 
-5 
22 
22 
14 
16 
-3 
11 
14 

-36 
-25 
16 
23 
4 
19 
1 
-4 
12 
5 
20 
30 
6 

-29 
-18 

-9 
-19 
-36 
-14 
-16 
-25 
1 
15 

-12 
-17 
-11 
-16 
-2 
-2 
-3 

42 
31 
-6 
-3 
16 
3 
16 
18 
0 
5 

-8 
-18 
7 
35 
18 

22 
37 
51 
27 
29 
21 
-12 
-18 
9 
25 
25 
32 
22 
15 
5 

-52 
-36 
-3 
11 
10 
8 
-8 
-13 
5 

11 
9 
4 

-26 
-54 
-24 

-10 
-11 
-28 
-13 
-19 
-9 
15 
23 
7 

-18 
-16 
-18 
-5 
-3 
-5 

41N 

16 
-8 
-8 
-16 
-17 
1 
1 

-17 
-16 
-8 
-8 
16 
41 
19 

14 > 
21 
17 
9 
17 
-6 
-22 
-22 
-6 
17 
9 
17 
21 
14 
7 , 
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λ
ι 

λ
2 

λ
3 

λ
4 

λ
5 

λ
6 

λ
7 

λ
8 

CM 

= ­5­3Ì 

= ­5+2Ì 

= ­9+Oi 

= ­9+3i 

= ­8+5i 

= ­4+7i 

= 3+i 

= 2+4i 

16/1 

10 

S.3 

^14 

^15 

2+8i 

3+8i 

6+3i 

7+2i 

3-7i 

- 5 - 9 i 

9-8i 

[12] 

( a k i > 
( k ; l = 1 , 2 , . . . , 1 6 ) 

a, . = a , . = 0 fo r 1 i k , k+ l 
k l Ik 

For k = 1 , 2 , . . . , 1 6 

Eingenvalues of A 

kk 
3+2i 

­1­i 

3­4i 

2+3i 

­5+i 

l+2i 

5+2i 

­2+i 

l­2i 

­l­4i 

2+i 

l­5i 

3+i 

2+4i 

­4+3i 

l­5i 

a
k 

( = 

k+1 

: a
k+l k

} 

: 4­i 

2+4Í 

3+i 

3­2i 

2­2i 

2+3i 

l+3i 

­2+2i 

3+3i 

­l+5i 

4+3i 

l­6i 

2+i 

5­i 

­3­4i 

0 

λ, = +2.06853152 
k 

2.40341933 

2.72491267 

2.45640400 

2.27740066 

0.812811959 

­1.38565721 

­2.72480368 

+1.57598142 

+3.28048252 

+1.19252750 

+3.55339888 

­2.45560768 

­4.89673115 

­5.65716067 

5.77408994 

­2.05443045Í 

+2.08105512Í 

­2.37837845Í 

+0.631936861Í 

+1.44826850Í 

+1.33551135Í 

­1.38756051Í 

+0.657064546Í 

­3.83032770Í 

+3.27566163Í 

­5.44399752Í 

+1.26465631Í 

­4.69290496Í 

+3.62210856Í 

+1.63200082Í 

+2.83933591Í 
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§2 SPECIAL TEST­MATRICES 

The following procedure can be used for testing methods for solving the non 

symmetric eigenvalue problem. 

Turning a positive definite symmetric matrix H around its horizontal middle 

axis produces a (usually) non symmetric matrix I.H which is similar to a 

symmetric matrix M. Indeed it is: 

¿> 
I = 

0 

0 

0 

1 

0 

0 

1 

0 

0 . . . 0 

0 . . . 1 

0 . . . 0 

0 . . . 0 

1 

0 

0 

0 

τ τ 
If RR is the Choleski decomposition of Η (Η = RR where R is a lower 

Τ Λ Τ ­1 
triangular matrix) the matrix M = R (IH)(R ) ' is similar to the non 

jk Τ* Jk Τ* Τ* 1 Τ
1
 Jk 

symmetric matrix IH. The matrix M = R IRR (R ) = R IR is a symmetric 

matrix with zero elements below the secondary diagonal. The eigenvalues 

of the non symmetric matrix IH are the eigenvalues of the symmetric matrix 

ΤΛ Τ 

M = R IR, where H = RR , which can be determined by standard methods for 

symmetric matrices. 

Example (Rutishauser): 

Η = Pascal matrix of order 5: 

1 1 1 1 1 

1 2 3 4 5 

1 3 6 10 15 

1 4 10 20 35 

1 5 15 35 70 

1 

1 

1 

1 

1 

0 

1 

2 

3 

4 

0 

0 

1 

3 

6 

0 

0 

0 

1 

4 

0 

0 

0 

0 

1 
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A 

IH = 

M = 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

5 

4 

3 

2 

1 

1 

1 

0 

0 

0 

15 

10 

6 

3 

1 

1 

2 

1 

0 

0 

35 

20 

10 

4 

1 

1 

3 

3 

1 

0 

70 

35 

15 

5 

1 

1 1 

4 1 

6 . 1 

4 1 

1 1 

4 

3 

2 

1 

0 

6 4 

3 1 

1 0 

0 0 

0 0 

5 

10 

10 

5 

1 

10 

10 

5 

1 

0 

10 

5 

1 

0 

0 

5 1 

1 0 

o o 

o o 

o o 

The eigenvalues of IH are the eigenvalues of M. The eigenvalues of M 

determined by using standard methods for symmetric matrices. 

are 

2. The test matrices A
i n )

 A
( n ) 

[12] , [13] 

(η) ­ ( η ) ­ ( η )
 Λ

 (η)
 Λ 

The Hessenberg matrices A and A have the same eigenvalues. A =1 A I 
A 

where I has been defined in 1). 
det A 

(n) 
det Ã

( n )
 = 1 

(η) 

η (n­1) 

(n­1)(n­1) 

0 (n­2) 

0 0 

0 0 

(n­2) . 

(n­2) . 

(n­2) . 

0 

0 

.. 3 

.. 3 

.. 3 

.. 2 

.. 0 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

J(n) 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

0 

2 

3 

3 

3 

0 . 

0 . 

3 . 

4 . 

4 . 

.. 0 

.. 0 

.. 0 

.. (n­

.. (n­

0 

0 

0 

1) (n­1) 

■1) η 
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For n = 12 the eigenw ..ues of A (and Ã ) are: 

λ = .0310280606 λ = 1.5539887091 

λη = .0495074292 λ. = 3.5118559486 

λ. = .0812276592 λ = 6.9615330856 

o y 

λ4 = .1436465198 λ = 12.3110774009 

λ̂  = .2847497206 λ, = 20.1989886459 

D 11 

Ac = .6435053190 λ = 32.2288915016 

The largest eigenvalues of A are very well conditioned and the smallest 

very ill­conditioned. 

3. The test matrix T
( n ) [l^~] 

(Algorithm 52): 

The elements of the test matrix T of order η are defined by: 

T
( n )

 = (t..) 
3­D 

t = ­l/c 
nn 

t. = t . = i/c (i = 1,2,...,n­1) 
in m 2 

t.. = (c­i )/c 

t±. = t.± = ­ (i.j)/c (i = 2,3,...,n­l; j=l,2,.. .i­1) 

where: c = n(n­l)(2n­5)/6 

(The n­th row and the n­th column of the inverse matrix (T ) are the 

set: l,2,...,n. The matrix formed by deleting the n­th row and the n­th 

column of (T ) is the identity matrix of order n­1. 

The determinant of T is: det T = t ). All but two of the eigenvalues 

( )
 n n 

of T are unity while the two remaining are given by the expressions 6/(p(n­l)) 
and p/(n.(5­2n)) where 

/3(n­l 

y—» 
v..­l)(4n­3) 

n+1 

For example: 

η eigenvalues differing from unity 

10 .043532383 ­.083532383 

20 .016366903 ­.024938332 
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4. The Hilbert matrix H
(n) 

Elements of the Hilbert matrix H of order n are defined by: 

n
 J 

H
(n)

 = (h..) 

3­D 

where h.. = l/(i+j­l) i=l,...,n; j = l,...,n. 

(The inverse matrix of the Hilbert matrix is given by: 

2 
a
ll =

 n 

­ (­l)
1+j
(n+i­l)!(n+j­l)! 

3. . . i]
 (i+j-l)[(i-l)î(j-l)ï]

2
(n-i)!(n-j)! 

The determinant of the Hilbert matrix is given by: 

I* 

1!2! ... (2n­l)! 

det H
( n )

 =
 ( 1 ! 2 !

 ···
 (
"­

1)!)
 ) 

The eigenvalues and eigenvectors for Hilbert matrices of order 3 through 10 are 

computed in [15Ì. 

(4) 

For example the computed eigenvalues of H are: 

λ = 1.500214280059243 10~° 

λ = 1.691412202214500 IO
­1 

λ, = 6.738273605760748 IO"
3 

­5 
λ = 9.670230402258689 10 

5) The Eberlein's test matrix E^
n) [}6~\ 

E
( n )

 -= (β..) 
s 1] 

with: e.. = ­ £(2i+l)n+is­2i J 

e.. .. = (i+l)(n+s­i) 

e.. = i(n­i+l) 

e.. = 0 li­jl > 1 
13 1 J 1 

s is an arbitrary parameter and (n+1) is the order of the matrix. 

The eigenvalues of E are 

s 

i,j = 0,1,2,. 
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λ. = ­j(s+j+l) j = 0,1,2,...,η 

In [l6] the corresponding components of the left eigenvectors and of the right 

eigenvectors are given. 

When s = ­2.­3,...,­2n, the matrix E is defective with two or more pairs 

of eigenvectors coalescing. In the range ­2n < s < ­2 at last a pair of 

eigenvectors is nearly parallel, and the positive eigenvalues of E are 

S 

ill­conditioned (especially for s<­ (n+1)). 

6. Brennerb test matrix Β „ Γ17 3 

Let Q be the nxn matrix whose entries are all l's. (The matrix Q has rank 1). 

The eigenvalues of 

B
(n
> = «I + ßQ 

α,β 

are: α(n­1 times) and α+βη. 

The eigenvalues of the matrix 

(B^f
1
 = {I­ JL­Q}. 1 

α,β a+ßn a 

are: 1/ct (n­1 times) and 1/(α+βη). 

7. Test matrix R M 

The test matrix R 
(n) 

1 

1 

1 

1 

1 

1 

1 

­ 1 

­2 

­ 3 

­ 4 

­ 5 

­6 

1 

3 

6 

10 

15 

­ 1 

­ 4 

­ 1 0 

­ 2 0 

1 

5 

15 

­ 1 

­ 6 1 

has I­ eigenvalues equal to ­1 and (n­j^j ) eigenvalues equal to +1. 
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( TÍ ^ ( n ^ f ­ \ «ρ 

The symmetric pos i t ive def in i te tes t -matr ix Ρ = R .(R ) with elements 

■»■er) i,j = 1,2,... ,η 

and the matrix (P
( n )

)
_ 1
 = (R

(n)
)
T
R
(n)

 have the same eigenvalues (R
(n)

.R
(n)

 = I), 

8. Test matrix L (p) t«] 

Let η = p­1, where ρ is an odd prime. The elements 1.. of the Lehmer's matrix 

T(P> 
are: 

1. . 
3­D 

where e?)· 
{*) 

is the Legendre­Jacobi quadratic reciprocity symbol, i.e.: 

(?) 
0 if ρ divides i+j 

1 if i+j is congruent to a square, modulo ρ 

­1 otherwise. 

Example: p=5, n=4. 

(5) 

­ 1 ­ 1 1 0 

­ 1 1 0 1 

1 0 1 ­ 1 

0 1 ­ 1 ­ 1 

(P) ,n­2 rn­2 
The eigenvalues of L

 p
 are 1, ­1, + J^ (—— times), ­ Sp (—— times), 

( \ 
The inverse matrix of L ̂  is the matrix 

a
(
p') M* Ψ-Ì'-

V'/J 
(i,j = 1,2,...,n) 
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α ^ Γ
1

^ 

­3 

­1 

1 

­2 

­1 1 

3 2 

2 +3 

1 ­1 

­2 

1 

­1 

­3 

fri ì 9 

The matrix (L
 p
 ) is positive definite with eigenvalues 1 (with multiplicity 

two) and ρ (with multiplicity (n­2)). 

i· <L
<P
V : δ.. 

tf' 

9. Frobenius' test matrices F 
(η) 

The eigenvalues of the nxn matrix 

(i,j = 1,2,...,n) 

,(n) _ 

0 

1 

0 

0 

0 . 

0 . 

1 . 

0 . 

. . 0 

. 0 

. . 0 

. . 1 

P
l 

P
2 

P
3 

P
n 

are the zeros of the polynomial: 

. η .n­1 

λ ­ ρ λ ­ ρ 
1
 η

 r¡-

,η­2 

n­1 Pl =0 

,(η) . 
If F is a non­derogatory matrix (i.e. there is only one Jordan matrix 

associated with each distinct eigenvalue λ of F and therefore only one 

eigenvector associated with each distinct λ, ) the eigenvector ν corresponding 
( "i 

to the eigenvalue λ, of F is given by: 

_ /,η­1 ­,η­2 . . , 
V
k ~ k ' k » ··· »

 A
L·» 1' 

Frobenius' test matrix F 0 Ό with 
n+k-1 

Pk = (-1) 

has the eigenvalues 

n-k 
n-k+1 ) 

1,2,... ,n 

, (n)> _ . (2k-l)ir. λ (F ) = 2(l-cos - — — ) η 1 2n+l 
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Since there exists in literature an extensive list of polynomials with known 

zeros, the Frobenius matrices are a wide class of test­matriees. 

10. Circulant test matrices C 
(n) 

A circulant matrix is one of the form: 

,(n) 

C
l
 C

2
 C

3 '··
 C
n 

C
n
 C

l
 C

2 "n­1 

C
2
 C

3
 C

4 

and is specified therefore by its first row: 

n 
{c. c„ . . . c} 

1 2 n 
(n) 

The e igenva lues of C a r e t h e numbers 

2 n -1 
λ, = c .+c ζ +c_z + . . . +c z. 

k 1 2 k 3 k n k 

where z. = cos ( ) + / - l s i n ( ) (k = 1 , 2 , . . . , n ) . 
κ η η 

The eigenvector of C corresponding to λ, is: 
Κ 

1 , n­1 n­2 ν 
v
k " r uk '

 z
k "··' V

 1}' 

/n 

The Brenner's test matrix is a particular circulant matrix of the form 

C
( n )

 = {α+β β β ... ß) 

,(8) 
Test matrix C (C

1
]'

 p a g e 256
^ 

,(8) _ 
{12 3 4 5 4 3 2} 

λ = λ ­6.82842712 

λ
3 = \ =

 λ
5 = ° 

Xc = λη = ­1.17157288 
b / 

λ8 = 24 

(16) 
Test mat r ix C ( [ l ] , page 240) 

,(16) 
= { 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2} 
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λ
1
 = λ

2
 = λ

3
 = λ

4
 = λ

5
 = λ

6
 : 

λ0 = λ = ­26.27414237 

λ = λ = ­ 3.23982881 

λ = λ = ­ 1.03956613 

λ1(= λ = ­ 1.44646269 
IH lia 

= λ7 = ο 

16 
80 

Remark 

Circulant matrices are related to the numerical solution of elliptic and 

parabolic differential equations with periodic conditions. 

Remark 

The eigenvalues and the eigenvectors of block­circulant matrices of order p.m 

can be found by computing the eigenvalues and the eigenvectors of ρ sub­matrices 

of order m. 

(J. Ponstein: Splitting certain eigenvalue eigenvector problems, 

Numer. Math. 8, 412 (1966)) 

11. Unitary test matrices U 
(n) 

The complex matrices U which satisfy the condition 

U . LT = Ir .U = 1 (* denotes conjugate transpose) 

are called unitary. 

Any eigenvalue of U has absolute value 1. 

(n) 

1 — 
Test matrix U 

2TTk"\ 

Let rk = e
 n X

 (k = 1,2,...,n­1) 

The matrix 

U<
n)
 = A 

1
 Æ 

1 1 ... 1 

n­1 
1 rx ... rx 

ι ­p r.n­1 ι r2 ... r2 

n­1 
1 r ... r 

n­1 n­1 
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is unitary. 

Test matrix U 
(n) 

The nxn real matrix U with elements 

ιτπ 
sin —•Lr 

i] V n+1 n+1 
U
ij

 =
Vn7T 

has Γ-τ-J eigenvalues equal to -1 and (n 

12. Test matrix D
(n)

 (£2(5), page 74) 

The skew-symmetric matrix 

■Ά eigenvalues equal to +1. 

D (n) 

O i l 
- 1 0 1 
-1 -1 0 

-1 -1 -1 

has the following eigenvalues 

,(n) 

1 
1 
1 

Xk(Dw") = -i cotg ((2k-l) ^ ) 

(order of D(n) = n) 

(k=l,2,...n). 

§3 TRIDIAGONAL TEST-MATRICES 

Three orthogonal polynomials with consecutive indices are related by a recursion 
relation of the form: 

Ρ (χ) = (χ-β )Ρ .(χ) - γ Ρ _(χ) η = 2,3... 
η η n-1 η η-2 
Ρ (χ) = 1 ο 
Ρχ(χ) = x­ß1 

The polynomial Ρ (χ) can be expressed as the determinant 

Ρ (χ) = (­l)
n
 det(J

(n)
­xI) 

η 

where : 
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r(n) 

ß1 
Ύ? 
0 

0 

1 0 0 . 

ß 2 1 0 . 

^3 ß 3 Χ « 

0 0 0 

. 0 0 

. 0 0 

. 0 0 

γ Β 
η η 

Thus the eigenvalues of the tridiagonal matrix J are the zeros of the 

orthogonal polynomial Ρ (χ). There are extensive tables of the zeros of the 
η ¡ \ 

orthogonal polynomials £21} so that we can consider J and anypolynomial 

Ρ(J ) as a test matrix. The inverse (J ) " of some tridiagonal matrices 

J are easy to construct ; thus also these matrices have been used for 

testing purposes. 

Test matrix J
(n
„ £22 3 

o, ß 

/ η ) 

α,β 

2+a 

- 1 

0 

0 

0 

- 1 

2 

- 1 

0 

0 

0 

- 1 

2 

0 

0 

0 . 

0 . 

- 1 . 

0 

0 

. . 0 

. . 0 

. . 0 

2 

- 1 

0 

0 

0 

- 1 

2+β 

For la| < 1 and |β| < 1, the eigenvalues of J are: 

α , β 

\
ij
í
n
l· --

 2(i
­
cos

 ν (k = 1,2,...,η) 

where the θ, are the η distinct roots of equation 

sin (η+1)θ + (α+β) sin ηθ + αβ sin(n­l)6 = 0 

in the range 0 < θ < π. 

In particular (k = 1,2,...,η): 

, T ( n K _ , , τ ( η Κ _ 0 / Λ 2kir.. 
X k ( J 0 , l > - X k ( J l , 0 ) - 2 ( 1 - C O S 2ηΤΓ) 

ι ί τ ( η ) ï - ι ( i ^ ï - οΜ „„ο (2k- l )u^ 
X k ( J 0 , - l ) - X k ( J - l , 0 ) - 2 ( 1 C O S 2η+1 } 

XAJ^h = 2 ( l - cos^T) 

k 1,1 η 

\ ( J ( " } , ) = 2(1- c o s - ^ * ) 
k - 1 , - 1 η 
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Κ . ^ Ά = 2(l-cos - ^ ) = 4 s i n 2 ( k i t 
kx 0 ,0 ' n+r 2(n+l) ) 

r(n) iã The 
ki l f 

The e igenvec to r s of J~"~ a r e v . , =V—77 sin(——¡-) ( i , k = l , 2 , . . . , n ) , 
f » υ,u IK » n+x n+j. ¡ ν • ν _ 

determinant of J is equal to n+1. The test matrices (Jn n) and (J ) 

have the form: 

( J
( n )

)
2
 ­

(J
o,o

}
 ­

Í J
( n )

i
3
 ­(J

o,o
)
 ­

5 

­4 

1 

+14 

­14 

+6 

­1 

­4 1 

6 ­4 

­4 6 

1 ­4 

­14 

+20 

­15 

+6 

­1 

1 

­4 

6 

1 

+6 

­15 

+20 

­15 

+6 

1 

­4 

­4 

1 

­1 

+6 

­15 

+20 

­15 

­1 

1 

6 ­ 4 1 

­4
 V
"6 ­4 

1 ­ 4 5 

­1 

+6 ­1 

­15 +6 ­1 

+20 ­15 +6 

+6 ­15
 V
 +20 

­1 +6 ­15 

­1 +6 

­1 

­1 

­15 

+20 

­15 

+6 

+6 

­15 

+20 

-14 

­1 

+6 

­14 

+14 

The eigenvalues of (J ) and (J0j0) are >kO
a
»
d
W, 

respectively, and their eigenvectors are the same eigenvectors as J 
(n) 

0,0' 

Test matrix J 
(n) 

a,b,c 

T(n) 

a,b,c 

a b 0 0 

c a b O 

0 c a b 

0 0 0 0 

0 0 0 0 

. 0 0 

. 0 0 

. 0 0 

. a b 

. c a 

(order of J , = η) 
a,b,c 
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r(n) 
The eigenvalues of J

x
"' are (be > 0) 

a,b,c 

*k
v
"a,b,c " " "V *"~ "

 v
n+l 

λ, (J
(n
¿ ) = a.­2vTbTÍ cos (­g?) 

k a,b.c n+1 

-Λη) Test matrix J
v
' (Rutherford, Todd) 

-p?q> r 

(k=l,2,...,n) 

j(n) 

p>q»r 

p­r 2q r 

2q 

r 

ρ 2q r 

2q ρ 2q r 
\ 

Ν. 

r 2q ρ 2q r 

r 2q p 2q 

r 2q p­r 

(order of J 

p»q5r 

n) 

The eigenvalues of J are: (k = l,2,...,n) 

p,q,r 

^,(J
( n )

 ) = (p­2r) ­ - (q
2
 ­ (q­2r cos k6)

2
) 6 = ¿SL 

k psq,r r ^ n+1 

The result has been obtained by relating J to (J . ) . 

p,q,r a,b,c 

The elements a.. of the inverse matrix of J , . are given by: 

3­D * » 1 »~1 

i(n­i+l) 

n+1 
for i=j 

a..= { a.._ ­i/(n+l) 
3­D

 χ 1 1 
for j > i 

a.. = a. . 

D 3- ID 

and η is the order of J 
(n) 

2,­1,­1' 

for j<i 

r(n) 
The elements a.. of the inverse matrix of J. , , are given by: 

3­D 2,1,­1
 B y 

a.. = min(i,j) ­ y 
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Test matrix K 
(n) 

The inverse matrix of J. . n has the form: 

­*i,u 

K 
(n) 

n 

n-1 

n-2 

2 

1 

n -1 

n -1 

n-2 

2 

1 

n-2 . . 

n-2 . . 

n-2 . . 

2 . . 

1 . . 

. 2 

. 2 

. 2 

. 2 

. 1 

1 

1 

1 

1 

1 

The eigenvalues of K are: 

,(n) 

( k = l , 2 , . . . , n ) 

In [133 a r e g iven t h e va lues of λ (Κ ) fo r η = 12 

te = 0.25398978 

l¿> - 0.26648096 

JUÇ = 0.28918975 

yU^ = 0.32555754 

Λ5 

Λ 

= 0.38196601 

= 0.47045960 

Test matrix Jl 
(n) 

tA 

Λ = 0.61529474 

= 0.87074533 

= 1.3790212 

= 2.6180340 

= 7.1201222 
Λο 

Λ ι 
ι*12 =63.409139 

The tridiagonal Jl^ ­ is related to the Jacobi polynomials. 

, (n) _f 2(K+ot­l)(K+ß­l) «2-ß2
 . 2K(K+*ié) 1 

*/ ­ I ( 2K+o(+p­l) ( 2K+*+/S­2 ) ' (2Κ+Α+,β)(2Κ+ο(+/3­2) » (2Κ+ο(+/β)(2Κ+Λ+^­1) J 

(Κ = 1,2,...,η) 

The eigenvalues of Jl^ β are the zeros of the Jacobi polynomials of order n. 

(£21], page 164 for¿=jo=l; page 167 for <*=j8= 3/2; page 174 for o(=0 |3=1,2,3,4) 
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Text matrix J*
n) 

The e test matrix J is a particular case of the matrix Jl. Q for o*=^=0. 
(n)= („Κ

 λ 'P 

(J
i *

 J1
o,o

}
· 

r(n) 

0 1 

1/3 0 2/3 

2/5 0 3/5 

3/7 0 4/7 

<£r>*'­° 

r(n) 

(order of J1 = n) 

The eigenvalues of J are the zeros of the Legendre polynomials of order η 

([21], page 100) 

Test matrix J:
n) 

r(n) (n) 
The test matrix J is a particular case of the matrix Jl Ä for d-ß= 
..(η) _ T1(n)

 2
 .

 Λ,Γ 
(J
2 =

 J1
­l/2,­l/2

) 

­1/2 

r(n) 1 

2 

2 

0 

1 

1 

0 

1 0. 1 

1 ^ 0 

(order of J. ' = n) 

The eigenvalues of J are the zeros of the Thebychev polynomials of first kind: 

r(n). 1Y \(J\UJ) = cos(K­l/2)Tl (κ = l,2,...,n) 
κ ζ η 

(£2f), page 158) 

Test matrix J; 

r(n) (n) 
The test matrix J is a particular case of the matrix Jl . a for <λ=|8=1/2 
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r(n) 1 

2 

O 

1 

1 

o 

1 

1 

0 1 

1 o 1 

1 

(order of J*
n)
 = n) 

r(n) 
The eigenvalues of J3 are the zeros of the Thebychev polynomials of second kind : 

(K = 1,2,...,n) 

(£24], page 161) 

ν ,,(nk _ kW 
λ (J ) = cos — — 
k 3 n+1 

Test matrix J2¿ 

The test matrix J2^ is related to the gemeralized Laguerre polynomials, 

J2 
(n) 

­(K+*­l);(2K+c(­l); -} 
(K = 1,2,...,n) 

,(n) 
The eigenvalues of J2. are the zeros of the generalized Laguerre polynomials, 

Test matrix J*
n
' 

The test matrix J
 n
 is a particular case of the matrix J2Y

1
 for <*=0. 

1 ­1 

­1 3 ­2 

r(n) 
­2 5 ­3 

ν 
N. 

­(n­2) (2n­3) ­(n­1) 

­(n­1) (2n­l) 

The eigenvalues of J are the zeros of the Laguerre polynomials of order n 

([21], page 254). 



Test matrix J*
n) 

o 

40 

r(n) 

0 

1 

1/2 

0 

2 

1/2 

0 1/2 

v. 

(n­2)
N
0 1/2 

(n­1) 0 

The eigenvalues of J are the zeros of the Hermite polynomials of order n 

(£21], page 218). 

Test matrix J3 
(n) 

The tridiagonal matrix J3 is related to the Lamé polynomials. 

J3 = (a..) i,j = 1,2.....n 

α ij
 J

 ' ' ' 

a.. = 4(i­l) (1+a) 

a
ii+l =

 2 i
<
2 i
"« 

a i + l i = ­(2n­2i+4)(2n+2i­3)a 

a. . = 0 
3­D 

|i­j| > 1 

Test matrix J, £23] 

The test matrix Jc is a particular case of the matrix J3 for n=13 and 
6 α 

a = 0.9. The non zero elements and the eigenvalues of J_ are: 

6 
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a
i+i i 

­540 

­534­6 

­522 

­502.2 

­475.2 

­441 

­399.6 

­351 

­295.2 

­232.2 

­162 

­84.6 

a.. 
11 

0 

7.6 

30.4 

68.4 

121.6 

190 

273.6 

372,4 

486.4 

615.6 

760 

919.6 

1094.4 

a· ·_., 
ι l+l 

2 

12 

30 

56 

90 

132 

182 

240 

306 

380 

462 

552 

λ. 
1 

22.7677122 

110.037603 

189.702991 

261.758027 

326.192938 

382.990354 

432.116798 

473.500040 

506.948122 

531.252512 

545.029856 

565.168267 

592.534780 

§4. TEST­MATRICES GENERATED BY KRONECKER OPERATIONS 

Let A = (a. .) and Β = (b ) denote NxN and MxM matrices, respectively. The 

Kronecker product (tensor product, direct product) of A and B, denoted by 

AßB, can be written as N.MxN.M matrix in block partition form: 

A®B 

a
l l

B a
l2

B
 *··

 a
iN

B 

a
21

B a
22

B
 ··'

 a
2N

B 

a
Nl

B a
N2

B
 ··'

 a
NN

B 

If V and W are eigenvectors of A and B with eigenvalues λ and u, respectively, 

then VgW is an eigenvector of AfiB with eigenvalue A.y. 

The Kronecker sum of A and B, denoted by ΑβΒ, can be written as a (N+M)x(N+M) 

matrix in block partition form: 

ΑφΒ 
A 

0 

The matrix A<8B has the eigenvalues of A and of B. 

Thus the matrix Α.βΑ„© ... © A has the eigenvalues of A. and of A„,..., 
ι z m i ¿ 
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and of A . 
m 

The matrix Α,ΘΑ^φ ... ÖA and the matrix 

i ¿ m 

Α
ι 
0 

0 

0 

A
12 

A
2 

0 

0 

A
13 ' 

A
23 ' 

A
3 ' 

0 

.. A. 
lm 

.. A. 
2m 

"
 A

3m 

.. A 
m 

have the same eigenvalues. 

The N.M eigenvalues of the matrix ΑφΙ^+Ι^φΒ are λ.+u. (i=l,2,, , N ; j = l , 2 , . . . , M ) , 

Test ma t r ix TP J24] 

TP = 

A 2A 

4A 3A 

2irk 

A k ( T P 1 ) = 0 . 5 β 

2ïïk 

W " ^
 =0

­
le 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

i o " 5 0 0 0 0 

1 ,2 ,3 ,4 ,5 

Test ma t r ix TP, [8 ] 

TP, 
A 

4A 

2A 

3A 

Β = 

­2 

­3 

­2 

­1 

2 

3 

0 

0 

2 

2 

4 

0 

A Ξ 

2 

2 

2 

5 

5B 

5B 

­Β 

Β 

Ak(TP2) = 15 +5 i , - 3 + i , 45 + 1 5 i , 60 + 2 0 i , 

3 0 f l 0 i , - 6 + 2 i , -9 + 3 i , - 1 2 + 4 i . 
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Test matrix TP, £83 

τρ3 = 

Β = 

8Α 

­5Α 

4C 

­2C 

4A 

­A 

3C 

­C 

C = 

Β 2B 

4B 3B 

­ 1 1 0 0 0 

­ 1 0 1 0 0 

­1 " 0 1 0 

­ 1 0 0 0 1 

­ 1 0 0 0 0 

a - l±v­3 

λ (TP ) = 3,6,­15,­30,+1.5α, +3α, ±7.5α, ±15α, 

4,8,­20,­40,+ 2α, +10α, +20α 

Test matrix TP. £25} 

ΤΡΗ = 

Β = 

Α 

4Α 

6C 

8C 

­2C 

5C 

2Α 

3Α 

­C C 

0 C 

0 C 

­C ­­C 

A = 

0 

2C 

2C 

C 

C = 

3B 

5B 

­2 

­3 

­2 

­1 

3B 

Β 

2 2 

3 2 

0 4 

0 0 

2 

2 

2 

5 

α = Z+tt , l±2v
/:
î γ = α. 

Àk(TPH) = 120γ, ­40γ, ­24γ, 8γ, 90γ, ­30γ, ­18γ, 6γ, 60γ, ­20γ, 

­12γ, 4γ, 30γ, ­ΙΟγ, ­6γ, 2γ 

§5 TEST­MATRICES GENERATED BY SIMILARITY TRANSFORMATIONS 

We summarize the method of J.M. Ortega £26] for obtaining test matrices 

with a prescribed distribution of the eigenvalues. The matrices generated 

also have known eigenvectors. The eigenvalues of the matrix R are known, 
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then the test matrix 

S = R + uv*R ­ aRuv* ­ a(v*Ru)uv* 

where u and ν are vectors (* denotes conjugate transpose) 

_ 1 

l+v*u 

2 
has the same eigenvalues as R. The test matrix S is generated with 0(n ) 

operations. 

For testing accuracy of routines, the matrix S must be generated exactly. 

Some special choices of u,v,R facilitate the computation of the test 

matrix S. 

Symmetric test matrices 

n
 2 

Let Σ v. = 1 , u = ­ 2 v and R = diag(d„d....d ). 
. , ι 1 2 η 
i=l 

Then 
Τ Τ Τ Τ 

S = D­2w D­2DW + 4(v Dv)vv 

is an nxn symmetric matrix with eigenvalues d..,d.,...d and eigenvectors 

which are the columns of I­2w . 

In particular, if ν = (η η ...η ) then 

Λ { o r n
 1 

S = ­=r η d.δ.. ­ 2n(d.+d.) + ι+! Σ d, 
η2 Ι ι ID i D l k = 1 k J 

(δ., is the Kronecker symbol). 

3­D 

Real and complex t e s t m a t r i c e s 

Let R = d i a g í d d . . . d ) , η = 2m, uT = (1 1 . . . 1 ) and vT = (1 1 . . . 1 - 1 . . . - 1 ) , 

then t h e e lements s . . of t h e t e s t mat r ix S a r e : 
3­D 

f d . 6 . . - ( d . - d . + σ) 

\ ι ID ι ] 

i . . = j 
1 3 / d.O.. + ( d . - d . + σ) 

V. ι 13 1 3 

1 ^ j \< m 

m+1 $ j $ η 
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with 

n 

σ ­ L· d, ­ Σ 

k=l k=m+"l k 

The matrix S is non symmetric with eigenvalues d d ...d and eigenvectors 

which are parallel to the columns of I+uv . 

If d.(l ­i i <£ η) is a real number the matrix S is a real test matrix (with 

ι 

real eigenvalues). If d.(lí i <? η) is a complex number the matrix S is a 

complex test matrix. 

CHAPTER II 

THE CONDITION NUMBERS OF THE ALGEBRAIC EIGENPROBLEM 

INTRODUCTION 

Any computing problem is ill­conditioned if the values to be computed are 

very sensitive to small changes in the data. A matrix may have some eigen­

values which are very sensitive to perturbations in its elements while others 

are insensitive. Similarly some of the eigenvectors may be ill­conditioned 

while others are well­conditioned. Besides an eigenvector may be ill­

conditioned when the corresponding eigenvalue is not. 

It is convenient to have some number which defines the condition of a matrix 

with respect to the eigenproblem and to call such a number the "spectral 

condition number'' 

It is evident that such a single number would have severe limitations. Indeed 

if any one of the eigenvalues were very sensitive, then the "spectral condition 

number" would have to be large, even if some other eigenvalues were very 

insensitive. 

A compromise is provided by introducing numbers which govern the sensitivity 

of the individual eigenvalues and which are called the "condition numbers 

of the matrix" with respect to the eigenvalue problem. 
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Some relationships between these condition numbers are given. Besides these 

numbers are related by inequalities to the "departure from normality", the 

"discriminant" of the eigenvalues and the Gram­determinant of the eigen­

vectors of the original matrix. 

Finally the ill­condition of the eigenvectors of a matrix is discussed. The 

main result is that an eigenvector of a symmetric matrix (which is well 

conditioned with respect to the eigenvalue problem) is poorly conditioned 

if its eigenvalue is close to the remaining eigenvalues. 

When an approximate eigensystem of a matrix has been computed, it is useful 

to have some procedure which will give a­posteriori bounds for its errors. 

In §6 we summarize some results. 

In this report we use the following notations. 

Τ 
The norms of a vector χ (χ = (χ,χ....χ )) are defined by 

1 2 η 

¡x¡p = (|x1|
P
 + |x2J

P
 +...+ | x J

P
)

1 / p
 (ρ = l,2,=o) 

where ¡xl is interpreted as max Ix.l. 
ι ioo r . ' ι ' 

The norm j χ| is the Euclidean lenght of the vector χ. 

The matrix norm subordinate to |x| is denoted by |A| . (A = (a . . ) . . . ) . 

'P 'p ID i,D
s
l 

η 

IA I, = max Σ I a..I 
1
 j i=l

 1 ] 

η 

! AI = max Σ la. 
ι ι oo 

i j=l 

I Ax i 

¡A| = max ι ι ~ = / p(A*A) 
¿
 x¿0

 i x |
2 

where p(B) is the spectral radius of the nxn matrix Β with eigenvalues 

λ.λ_...λ .(ρ(Β) = max |λ. | ) . 
L ¿ Τι . 1 ' „ 

* i * ­ τ 
The matrix A is defined by A = (A) where A denotes the matrix whose elements 

Τ 
are the complex conjugate of those of A and Β denotes the transpose matrix 

of B. There is a second important norm which is compatible with the vector 

norm |x|_. This is the so­called Euclidean or Schur or Frobenius norm and it is 

denoted by ¡A¡ . It is defined by 

n n
 ,2 1/2 

A L = ( Σ Σ a.. Γ) 
E
 ·­·. · 1 3.3 ' 

1=1 3=1
 J 

3­D 
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§1 SPECTRAL CONDITION NUMBER 

We consider the "spectral condition number" of a nxn matrix A with respect 

to its eigenproblem when A has linear elementary divisors. 

In this case there is a non­singular matrix H such that 

H
_1
AH = diagU.) 

having its columns parallel to a complete set of right­eigenvectors of A and 

such that H has its rows parallel to a complete set of left­eigenvectors 

of Α. λ. is the ith eigenvalue of A. Normalized right and left eigenvectors 

corresponding to λ. are given by: 

­1 Τ 
He. (H ) e. 

x i = Turr2 *i = |(H­l)Te.ì2 

where e. is the ith column of the identity matrix I. 

ι
 J 

The number 

defines the "spectral condition number" of A. 

The overall sensitivity of the eigenvalues of A is dependent on the magnitude 

of k(H) since the following theorem holds (£l] , page 87 ; £2]) 

Theorem (Bauer­Fike) 

Let the matrix A be of order η and have η linearly independent eigenvectors 

with eigenvalues λ. ( l í i í η). For any fixed matrix B, define the perturbed 

matrix Α(ε) = Α+εΒ. Then each eigenvalue λ(ε) of Α(ε) satisfies 

min |λ(ε)­λ.I ̂  lel IBI Ι Η
­1
1 |H¡ 

l«i*n
 P P P 

for any p­norm, with ρ = 1,2,°°. 

Thus the eigenvalue problem of the matrix A is "ill­conditioned" if k(H) is 

"large" (with respect to 1). 

When A is an hermitian matrix (A = A ) the "spectral condition number"k(H) = 1; 

thus the eigenvalue problem of hermitian matrix is well­conditioned. 
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More precisely the following theorem holds: 

If A(e) = Α+εΒ, where A and Β and Α(ε) are hermitian matrices having the 

eigenvalues λ., u. and λ.(ε) arranged in non­increasing order, then 

|λ.(ε)-λ.| 6 | ε j |B|2 U|e| ( Σ μ^)
1 7 2

) 

i=l 

An useful bound for the matrix (Λ(ε)­Λ), where Λ(ε) = diag(X.fe)) and Λ = diag(X.), 

when A and Β are hermitian matrices is given by the following theorem (£lj,page 104) 

Theorem (Wielandt­Hoffman) 

If Α(ε) = A+eB, where A, Β and Α(ε) are hermitian matrices having the 

eigenvalues λ., u. and λ.(ε) arranged in non­increasing order, than 

¡Λ(ε) ­ Λ
:
£ ^ |ε|·|Β|Ε (=|ε| ( Σ μ

2
)
1/2

) . 

i=l 

A consequence of the Courant­Fischer characterisation of the eigenvalues of 

Hermitian matrices gives the following theorem: 

If C = A+B where Α,Β and C are nxn hermitian matrices having the eigenvalues 

a., 6. and γ. arranged in non increasing order, then 

and 

α.+ß ^ Υ, < α. + ß. 
ι η *" ι ̂  ι 1 

Σ (γ.­α.)
2
 ̂  Σ β

2
 = |Β|

2 

i i 

§2 THE CONDITION NUMBERS OF THE MATRIX (WITH RESPECT TO THE EIGENVALUE PROBLEM) 

We introduce a condition number which serves as a measure of the effect of 

the perturbation of on each eigenvalue of A. 

The matrix A has linear elementary divisors; thus Η AH = diag(X.), where 

the columns of Η are parallel to a complete set of the right­eigenvectors 

of A and the rows of Η are parallel to a complete set of left­eigenvectors 

of A. 

1 

i = 1,2,...η 

define the "condition numbers of A" with respect to the eigenvalues λ.. 

It is: 
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KH'Ve.L I He, I 

1
 ((Η

 1
)
T
ei)

1
(Hei)

 x 2 x 2 

­1 Τ 
We may take the ith column of Η to be χ. and the ith row of Η to be q.y.. 

With H in this form we have: 

H
_1
(A+eB)H = diag(Xi) + eiq^yTßx. ))?.. 

= diag(X.) + e(q.$..)?._. 

0
 1 3. 13 13=1 

T 
where β.. = y.Bx.. 

ID
 Ji 3 

An application of the Gerschgorin's theorem shows that the eigenvalues 

of (Α+εΒ) lie in circular discs with centres (X.+e ß..q.) and radii 
Σ | e (q. β..)|. If I b..| < 1, since |B| <£ |B| ■£ n, we have 

j^i 1 3.D 13 ¿ h 
|β..|« |yj!2 |Bx.|2« |B|2 |yj|2 |x.|2^n . 

Thus the ith disc is of radius less than η(η­1)[ε q.¡. 

If λ. is a simple eigenvalue of A, for sufficiently small ε he first disc 

is isolated and therefore contains precisely one eigenvalue. 

If λ is a multiple eigenvalue of A with multiplicity m, there are m discs 

with centres X +e q.ß.. (i=l,2,...,m) whose corresponding radii are all 

of order e. For sufficiently small e, this group of m discs will be isolated 

from the other discs and in their union there are m eigenvalues of A+eB. 

When |q.| is "large" (with respect to 1), the eigenvalue problem for finding 

X. of the matrix A is ill­conditioned. 

1 

When A is an hermitian matrix, we have |q.| = 1 for i = 1,2,...,η. 

§3 PROPERTIES OF CONDITION NUMBERS 

Some relationships between the numbers k(H) and q. are (£l], page 88): 

1 « |q. I v< k(H) 

1 

η 

lv< k(H) v< Σ |q.. | 
j=-

I t i s ( [ 1 ] , page 56) : 

D=l : 
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σ (Η) 

παη 

where σ . (Η) and σ (Η) are the least and the greatest of the "singular 
min max 

values" σ.(Η) = /λ.(Η
χ
Η) and λ.(Η H) are the eigenvalues of the matrix H*H. 

The inequality of Kantorovich ( £3], page 81) gives the result 

||He.||2 . I K H ' V e . l ^ l e V
1
 |2 . |He 

k i ' 
i'2 

Τ 
le. . e.I 
' 1 ι

1 

σ
2
 (Η) + σ

2
. (Η) 

max min 

2σ (Η) . σ . (Η) 

max m m 

Thus: 

|qil s< I (k(H) + (k(H))"
1
) 

The condition numbers k(H) and |q.| are related by inequalities to the 

"departure from normality" of A, the "discriminant" of the eigenvalues of 

A and the Gram­determinant of the eigenvectors of A. £4], £5]. If all 

eigenvalues of A are simple then 

Σ |q.| ̂
n
i | <WH) + (k(H)

-1
)l 

If X. is a simple eigenvalue of A, then 
1 

|q.| = ¡adj(X.I­A)L . Π. |λ.­λ. |
_1 

ι τ
ι' ι 'E ï ' i k ' 

where Π. denotes the product over all ki<i in 1 ̂  k ̂  η and adj C denotes 

the matrix {c\ . } whose element c.. is the cofactor of the element in the 
3­D 3.3 _x 

ith row and jth column of the matrix C. (adjC = (det C).C ). 

The "departure from normality" of A is defined by: 

D.jiAi*. ¿ Ι \ Ι 2 | 1 / 2 

A bound for D is given in £6]. 

D
2
.< Æ " |A*A_AA*| 

12 
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Clearly D = 0 when A is a normal matrix. 

If X. is a single eigenvalue of A then 

L (η­Ι)δ^ 

n­1 

where δ. = min λ.­X. over all k̂ i in K< k < n. 
ι ' ι k' 

An immediate inequality is: 

,2i 

| qi I < exp 
D 

26: 

If all eigenvalues of A are simple, then the discriminant Δ = Π (λ.­λ.) 

of the characteristic polynomial det(XI­A) is different from 

zero. We have the following theorem: 

i« 
3­ D 

If Δ f 0 then 

k(H) +(k(H))"
1
 . 1 Γ 2 

~ * Æl-
1 ( |A|_ Itrace A

1
"' 

1
 'Ε η ' Ì 

n(n­l) 

When A has linear elementary divisors an understimate of k(H) is; 

r|A*A­AA*j Λ2 
(k(H))> 1 +

 J 
MA Α­AA | Λί 

If all the eigenvalues of A are simple then: 
1 

Í L_ 
I det(H H) 

Λ­1 2­2n k(H)+(k(H))' | 

Met(H*H) 

1/2 

I f A i s a r e a l mat r ix 

1 
1+/1-D, 

-L n ­
1

^ ( K ( H ) )
2
¿ — — è 

■
D
li 1 ­ / Γ ^ 

^D2 

n-1 ¿ (UH)) 4 
( 1 + ^ D 7 

1-/1-D, 

l D i D : 

- I 
2n . k(H)+(k(H)) . η 1 2n f 1 Ì" 

­ n i i ¿ η *-f 

where 
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n" . det(HTH) 

[ t r a c e ( Η Τ Η θ η 

nn.Cdet(HTH)3 
n-1 

ftrace(HTH) ] " 
£det(HTH).trace((HTH)-1)3n ' [ det(HTH) ] 

The matrices A and RAR , where R is an unitary matrix, have the same condition 
numbers : 

k(H) = k(RH) 

q. = q: ^l ^1 (i = 1,2,. .. ,n) 

Τ - Τ 
where q. = y.χ. and q'. = (Ry.) (Rx.) 

Hence the sensitivities of the eigenvalues are invariant under unitary 
transformations. However, in general, it is possible that the problem of 
finding X., an eigenvalue of A, is ill-conditioned, although the problem 

1 -1 
of finding the same X. as an eigenvalue of B = Ρ AP is well-conditioned. 
This fact is illustrated by the following example(£73, page 146). Let be 
given 

with the modal matrix 

X^Xj (i,j=l,2,...n) 

X = 

1 1 1 
0 6 0 
0 0 6 

0 0 0 

. 1 

. 0 

. 0 

Then 

-1 

1 

0 

0 

-1 /6 
1/δ 

0 

-1 /6 . 
0 

1/6 . 

. . -1 /6 

. . 0 

. . 0 

1/6 
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The "condition number" of A with respect to λ., is 

K\ -/^ψ 
which is a large number for small 6. Therefore, for small 6, the eigenvalue 

problem for finding X is ill­conditioned. 

But the eigenvalue problem for finding the eigenvalue X. of the matrix 

Β = P
_1
AP is well conditioned if Ρ = X. 

Indeed the right eigenvector and the left eigenvector corresponding to X 

of 

B=P
 1
AP Ξ 

λ
1
 λ

1
_λ
2
 λ

Γ
λ
3 

0 0 

0 0 

0 

λ, 

λ ­λ 
1 η 

0 

0 

η 

are, respectively, (1,0,0,...,0) and (1,1,1,... ,1). Thus the "condition 

number'Of Β with respect to X is q' = Æ which does not depend by 6. 

§4 THE CONDITION NUMBERS OF PARTICULAR MATRICES 

a) The eigenvalues corresponding to non­linear elementary divisors must be 

regarded, in general, as ill­conditioned. The following example, due to 

G.E. Forsythe, serves to illustrate this case. The nxn Forsythe matrix 

Α(ε) = 

1 1 

1 1 

1 1 

,n has characteristic polynomial (X­l) +_ ε = 0. If ε = 0, all eigenvalues are 

unity while if ε i 0 the eigenvalues differ from unity by j ε¡ . Thus if 

­1 
η = 10 and e s 10~

10
, then |e|

1/n 
10 * and a change of one element of the 

9 
matrix has produced a change in the eigenvalues 10 times as large. 

b) Even if the eigenvalues are distinct and well separated, they may be ill 

conditioned. (£l]> page 90) Consider the 20x20 matrix A defined by 
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A = 

20 20 

19 20 

18 20, 
• · • • · 

•2 20 

1 

The eigenvalues of A are X, = k (k = 1,2,, ,20) and the right eigenvector 
x, of A corresponding to X, = k has the components: 

[l.£ -k (20-k)(19-k) 
20) (-20)' 

(20-k)! 
; (-20)2°-k 

; 0; . »·] 
the left eigenvector y, of A has components J0;0;, 
<-»; q. 

;0; (k-D! 
20 k-1 

(k-l)(k-2) 
202 

20 
We have 

20 19 

'Vk' (20-k)!(k-1)Î 
(k=l,2,...,20) 

which is a large number for all values of k. 
c) The matrices of class A considered in chapter 1 §2, 2) have eigenvalues 

of widely varying condition. 
(n) are well-conditioned and the The largest eigenvalues of the matrix A 

smallest very ill-conditioned. 
The following consideration makes evident that same of the eigenvalues 
of A (n) 

element of A 
-7 

must be very sensitive to small changes in same matrix elements. 
ily 
(n) 

It will readily be verified that the detA = 1 for all n. If the (l,n) 
is changed to (1+e) the determinant becomes l+_e(n-l)!. 

-7 If e = 10 and n=18, the determinant is changed from 1 to (1-17Ü0 ), 
7 that is, approximately -3.55 10 . Now the determinant of a matrix is equal 

to the product of its eigenvalues. Therefore at least one eigenvalue of 
the perturbed matrix must be very different from that of the original. It 
can be shown that for n=12 the smaller eigenvalues of the perturbed matrix 
are changed beyond recognition while the larger ones are scarcely affected 
by the perturbation. With increasing values of n the smallest eigenvalues 
become progressively worse conditioned. 
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§5 ILL-CONDITIONING OF THE EIGENVECTOR OF A MATRIX 

The eigenvalues of a matrix can be insensitive to small changes in the 
matrix; the same cannot true of the eigenvectors. In fact, the eigenvalues 
of a (real) symmetric matrix are well-conditioned while the eigenvectors 
need not even be continuous functions of the matrix elements. The following 
example is due to J.W. Givens. Let: 

A = 

2 2 l+ε cos — -e sin — ε ε 

. 2 . 2 •ε sin — l-ε cos — ε ε 

then A has eigenvalues 1+e and eigenvectors (sin —, cos — ) , (sin —, -cos —) 
so that as ε-*0, the eigenvectors do not tend to a limit. Thus arbitrarily 
small changes in the coefficients of A can change the eigenvectors completely. 
The sensitivity of an eigenvector of a (real) symmetric matrix is connected 
with the separation of its eigenvalue from the remaining eigenvalues. Indeed 
the following theorem holds ([βJ, page 101). 
Theorem (J. Ortegc) 

Let A and A+E be symmetric with eigenvalues X ^ X ·&....S X and 
μ N< μ N< .. . . <S μ and corresponding normalized eigenvectors u u ... u 
and v, v_ ... ν . Then if 1 2 η 

|xk-xi| ̂  α > |E|2 i*k 

we have 

where 
|E|2 

Thus if an eigenvalue is well separated, the above theorem shows that the 
—8 corresponding eigenvector is well conditioned. For example, let |E| >£n 10 

ι ι -3 -5 
and min |X, -X.| = 10 = a. Then γ = η 10 is a bound on the eigenvector 
error. 
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If X, is a multiple eigenvalue, then the above theorem can be strengthened 

to show that the eigenspace of X, is well conditioned provided again that 

X, is well separated from its neighbors. 

Now we study the perturbations in the eigenvectors of a matrix A which has 

distinct eigenvalues. We have therefore 

H
­1
A Η = diag(X.) 

and the columns of H forr.i a complete set of eigenvectors χ. χ ...x of A. 

We denote the "corresponding eigenvectors of Α+εΒ by χ..(ε) χ (ε)...χ (ε), 

and the eigenvectors of Η (Α+εΒ)Η by ζ (ε) ζ (ε)...ζ (ε) so that χ.(ε)=Η ζ.(ε) 

We now consider a particular vector z.(e). It is clear that the jth component 

of z.(0) is unity, and all the rest zero, since x.(0) = Η z.(0) and x.(0) 

is the jth column of H. W,e assume that for sufficiently small ε the ith 

component of z.(e) is the largest, and we normalize so that this component 

is unity. Then the equation 

λ.(ε) ζ.(ε) = H
_1
(A+eB)H ζ.(ε) = 

D D D 

= (diag(X.) + e(q. β..)?, .,)ζ.(ε), 
ι ^i 13 13=1 D 

where β. , has been def ined i n §3 , g ives for t h e kth component of ζ . ( ε ) , 

with k ^ j , t h e r e s u l t 

X . ( e ) z k j ( e ) = X k z k j ( E ) + Eqk J M ß k h z h j U ) ) 

Thus: 

| x . ( e ) ­ x k | . | z k j ( e ) ! . < e | q k ! ( ^ | ß k h l j 

F i n a l l y : 
Τ 

|zkj<e)k< 
n=l 

| x j ( e ) ­ x k | 

where 

¡q k1
 , Τ 

i
y
k

x
k i 
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§8 A POSTERIORI ERROR BOUNDS FOR THE EIGENVALUES AND THE EIGENVECTORS 

When an approximate eigensystem of a matrix has been computed, it is useful 

to have some procedure which will give bounds for its errors. Here we summarize 

some results contained in (£7], page 140) and £9]. 

Hermitian matrices . Let X and χ be an approximate eigenvalue and the 

corresponding eigenvector with |xL = 1 of the hermitian matrix A and let 

η Ξ Αχ­λχ. Then there is an eigenvalue X. of A so that 

Ix.j.-xl >£ | n | 2 = ε 

If we compute the Rayleigh quotient 

μ = — — = χ Ax and if | λ . —μ ¡ >, α, j ̂ i, 

x x 
then 

2 
\ I ( ε 

1 

2 

α 

­1 

so that if α is large compared to e then μ is a better approximation than X 

to X.. In this case the computation of μ may be considered a correction 

procedure. Besides, if u. is a normalized eigenvector of X., then 

2 / 2 
1 1 y ε / , ε 
|x­u ! < ­ £ / ! +­2 

α α 

Non­hermitian matrices . For non­hermitian matrices it is not possible to 

obtain a­posteriori estimates for the error without being given some 

information about all of the eigenvectors of the matrix. An useful estimate 

for the eigenvalues of a general matrix is given by the following theorems. 

Theorem (Franklin) 

Let A be a matrix of order n, and have a set of n linearly independent 

eigenvectors {u.}, and eigenvalues {X.}. Let X and x, be an approximate 

eigenvalue and the corresponding eigenvector with |x| = 1 of the matrix 

A. If for some ε > 0 , 

|Αχ­λχ12 >£ ε|Ax I 
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then: 

min |1 - f - l * ε |u| · |u_1| 
λ.#) λ. . 2 2 

where U is the modal matrix which contains in the ith column the vector u.. 
The following theorem is a generalization of that given for hermitian matrices. 
Theorem 

Let A be a matrix of order n, and have a set of η linearly independent eigen­
vectors {u.} and eigenvalues {X.}. Let X and χ be an approximate eigenvalue 
and the corresponding eigenvector with |x| = 1 of the matrix A. If for some 
ε > 0, 

| Αχ-λχ | 2 x< e|x|2 

then: 

min |λ.-λ| N<e|U_1|2.|u|2 
i 

where U is the modal matrix which contains in the ith column the vector u.. 
ι 

CHAPTER III 

NUMERICAL EXPERIMENTS 

INTRODUCTION 

In this report we need the following quantities. 
X. is the "true" ith eigenvalue of the given test matrix A. 
λ. is the ith computed eigenvalue of A. 
X is the computed modal matrix. 

The ith column of X contains the computed normalized eigenvector x. 
corresponding to λ. of A. 

max |AX.-X.X. | is the "maximum radius of indeterminacy" of the eigenvalues 
• 1 1 1 XJ 
1 

of A. 

Let χ be a normalized eigenvector corresponding to the "true" eigenvalue X of A. 
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Let χ be a computed normalized eigenvector corresponding to the computed 

eigenvalue λ of A. Then |x­x¡ is the "absolute error" of the vector x. 

§1 SYMMETRIC MATRICES 

1.1 Methods tested 

For the solution of the eigenproblem of a real symmetric matrix the 

following methods are taken into account: 

1) The Jacobi method, 

2) The threshold Jacobi method, 

3) The Givens­Householder method, 

4) The Rutishauser method. 

Four routines are selected from a scientific library which represent these 

different methods. 

1) The Jacobi method: Routine HDIAG (Share program, SDA 705). This is the 

original version of the Jacobi method in which plane rotations are used 

to annihilate all off­diagonal elements of the matrix using the maximum 

off diagonal element as a pivot at each stage. The eigenvectors are 

obtained by computing the product of the plane rotations. (£Π, page 266), 

2
 El· 

2) The threshold Jacobi method : Routine EIGEN (System/360 Scientific Subroutine 

Package). This is a variation of the Jacobi method, in which plane rotations 

are used to annihilate, in a regular sequence, only those off­diagonal 

elements of the matrix which are greater than some preset value (threshold). 

When all elements are less than this preset value in absolute value, the 

threshold is lowered and the process continues until some final "tolerance" 

τ is satisfied. (£3]> chapter 7). 

3) The Givens­Householder method: Routine BIGM (Share program SDA 3202). 

With this method the eigenproblem is solved in three steps. 

a) A symmetric tridiagonal matrix similar to the original matrix is 

obtained by an orthogonal transformation which does not depend on 
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plane rotations (Householder's reduction). 
b) The eigenvalues of the original matrix are computed by the use of Sturm's 

sequence derived from the tridiagonal matrix (Givens' procedure). 
c) The Wielandt inverse power method is used to calculate the eigen­

vectors of the tridiagonal matrix. Then the orthogonal transformations 
are applied in reverse order to obtain the eigenvectors of the original 
matrix ( [l] , page 290), ([4], chapter 4). 

4) The Rutishauser method : routine LRCH 5 . This routine computes only 
the eigenvalues of a band-symmetric matrix with the LR transformation 
method. The method bases essentially on the fact, that by starting with 
the given matrix A = A , the decomposition of A into the product L R 
and the reconbination of L and R by forming their product A = R .L 

S S S T I S S 

generate an infinite sequence of similar matrices Α , A ,... which under 
certain conditions converge to a diagonal matrix. 

1.2 Description of the tests 

A preliminary test of the above methods 1), 2), 3) is made with some test-
matrices collected in chapter 1 §1 and §2. 
In Tables 1 and 2 we give the results of this test. The eigenvalues and the 
eigenvectors are calculated in "single precision" on IBM 360/65 (floating 
point arithmetic). The input test matrices are given or constructed in "double 
precision". 

In almost all these test matrices we have observed: 
a) the "maximum radius of indeterminacy" is related to the eigenvalue of 

greatest modulus; 
b) the "maximum relative error" is related to the eigenvalue of smallest 

modulus. 

(*) 
If we apply plane rotations we have the Givens' reduction. Since 
Householder's reduction is about twice as fast as Givens' reduction and 
equally accurate, we consider only the Householder method. 
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In fig. 1 the behaviour of the "computation time" on IBM 360/65 vs. "order" 
of test matrix is given. In Table 2 (last column) the "computation time" 
for the Givens-Householder method (BIGM routine) is subdivided into "time 
for the reduction of the original matrix to tridiagonal form", "time for 
the eigenvalue calculation" and "time for the eigenvector calculation". 

In order to check the performance of Jacobi method and the threshold Jacobi 
method with respect to the Givens-Householder method when applied to 
perturbated diagonal matrices, the following M matrices of order n are 
tested: 

1) Mor, Ξ (m..) with m.. = 2 1 
20 13 11 

mi;j = IO"6 (i * j) 

2) M__ = (m..) with m.. = i 75 13 11 

m£j = IO"6 (i i j) 

The calculations are performed in "single precision" by the Jacobi method 
(HDIAG routine) and the threshold Jacobi method (EIGEN routine) and the 
Givens-Householder method (BIGM routine) on the IBM 360/65. The three methods 
calculate the eigenvalues with full machine accuracy. 

For the matrix M_n, the routine HDIAG calculates 15 eigenvectors with "absolute 
-7 -5 

error" less than 10 and 5 eigenvectors with "absolute error" less than 10 
The computation time is 1.5 sec (The total number of plane rotations in 190). 

The routine EIGEN calculates 13 eigenvectors with "absolute error" less than 
-7 10 and 7 eigen 

time is 1.5 sec. 

-7 -5 
10 and 7 eigenvectors with "absolute error" less than 10 . The computation 

-7 
The routine BIGM calculates 11 eigenvectors with "absolute error" less than 10 -5 and 9 eigenvectors with "absolute error" less than 10 . The computation time 



TABLE 1 

n:order 
of the 
test 

matrix 

4 
4 
4 
4 
5 
5 
5 
6 
6 
6 
8 
8 
9 
11 
12 
21 

Euclidean 
norm 
of the 

test matrix 

9.1651 
1.3039 
37.4433 
26.4008 
1.9349 
24.1868 
92.4608 
17.7200 
23.8747 

471.2520 
2482.26 
4546.15 

8.4853 
23.8328 
63.8905 
28.4605 

fi n , - , 2Ί 

\\ Σ λ.-λ.Γ 
î>i

 χ χ
 > 

HDIAG 

5.30(­6) 

4.95(­6) 

1.09(­6) 

3.47(­7) 

3.73(­6) 

4.44(­6) 

1.0Κ­5) 

7.20(­6) 

8.24(­6) 

3.32(­6) 

6.14(­6) 

3.32(­6) 

2.55(­6) 

2.13(­5) 

2.15(­5) 

1.36(­5) 

/Ι" 
' li=l 

EIGEN 

5.12(­7) 

6.83(­6) 

1.16(­6) 

6.38(­6) 

4.62Í­6) 

7.06(­6) 

3.47(­6) 

2.44(­6) 

9.59(­6) 

5.30(­6) 

3.85(­6) 

1.39(­5) 

1.72(­6) 

7.46Í­6) 

9.55(­6) 

8.58(­6) 

, 2 ^
1 / 2 

BIGM 

1.62(­6) 

4.02(­6) 

3.22(­6) 

1.2Κ­6) 

2.06(­6) 

1.63(­6) 

1.02Í­6) 

3.52(­6) 

6.95(­7) 

5.60(­6) 

3.77(­6) 

1.05(­6) 

3.25(­6) 

4.77(­6) 

2.98(­6) 

4.2Κ­7) 

max {Ι Αχ.­λ. 
1
 1 1 

1 

HDIAG 

3.8Κ­6) 

4.00(­6) 

3.89(­5) 

9.15(­5) 

5.89(­6) 

7.78(­5) 

9.35(­4) 

9­09(­5) 

1.35(­4) 

7.95(­4) 

8.03(­3) 

1.59(­2) 

2.44Í­5) 

2.85(­4) 

1.38(­3) 

1.18(­4) 

EIGEN 

3.06(­6) 

9.2Κ­6) 

3.79(­5) 

1.69(­4) 

8.55(­6) 

1.68(­4) 

3.25(­4) 

3.16(­5) 

2.20(­4) 

1.67(­3) 

4.75(­3) 

6.33(­2) 

1.32(­5) 

8.19(­5) 

6.02(­4) 

6.93(­5) 

*Λ> 

BIGM 

2.99(­5) 

6.27(­6) 

1.35(­4) 

6.76(­5) 

8.58(­6) 

6.50(­5) 

1.52(­4) 

6.34(­5) 

8.44(­5) 

2.93Í­3) 

6.4Κ­3) 

8.79(­3) 

2.18(­5) 

3.64(­5) 

5.24(­5) 

7.1Κ­6) 

_1_ 

HDIAG 

7.15(­6) 

5.94(­6) 

1.79(­6) 

4.75(­6) 

4.6Κ­6) 

7.60(­6) 

8.65(­6) 

7.07Í­6) 

8.90(­6) 

7.42(­6) 

5.82(­6) 

1.24(­5) 

7.16(­6) 

1.84(­5) 

1.83(­5) 

1.56(­5) 

|ι­χ
τ
χ 

EIGEN 

8.43(­8) 

1.35(­6) 

5.43(­8) 

1.26(­6) 

1.23(­6) 

2.4Κ­6) 

2.69(­6) 

2.20(­6) 

4.47(­7) 

1.7Κ­6) 

2.92(­6) 

1.23(­6) 

1.30(­6) 

1.08(­5) 

1.25(­5) 

1.12(­5) 

'J 
BIGM 

3.60(­6) 

1.55(­6) 

2.98(­6) 

3.47(­6) 

2.55(­6) 

5.89(­6) 

4.32(­6) 

5.75(­5) 

4.35(­6) 



TABLE 2 

Test matrix 

SM8/3 

order = 8 

SM8/4 

order = 8 

SM8/5 

order = 8 

c
(8) 

order = 8 

c(16) 

order = 16 

,(49) 

True eigenvalues 

X, = 8.10
k-1 

k 

(k = 1,2,...,8) 

λ = 23,11,11,7 

-5,-13-13-13-21 

λ, = 6.k 
k 

(k = 1,2,...,8) 

λ = 24, -6.82842712 (2 times) 

-1.17157288 (2 times) 

0. (3 times) 

λ = 80, 0 (7 times) 

-26.27414237 (2 times) 

- 3.23982881 (2 times) 

- 1.44646269 (2 times) 

- 1.03956613 (2 times) 

λ, = -1, ( §■ times) 

= +1, (η- — ) times 

Routine 

BIGM 

EIGEN 

HDIAG 

BIGM 

EIGEN 

HDIAG 

BIGM 

EIGEN 

HDIAG 

BIGM 

EIGEN 

HDIAG 

BIGM 

LIGEN 

HDIAG 

BIGM 

EIGEN 

HDIAG 

Number of eigenvalues with c 

exact figures 

c = 0 1 2 3 4 5 6 7 8 

2 1 1 1 1 2 

2 1 1 1 3 

1 1 1 1 2 2 

6 1 1 

4 4 

3 5 

4 4 

7 1 

3 5 

2 3 2 1 

5 3 

3 3 2 

2 4 6 3 1 

1 0 5 1 

2 5 7 2 

31 £ 2 

38 U. 

49 

Computation time 

in seconds per IBM 360/65 

(single precision) 

.02 + .08 + .06 = .16 

.18 

.30 (iter, η = 91) 

.02 + .06 = .14 

.20 

.24 (iter, η = 69) 

.02 + .08 + .04 = .14 

.18 

.12 (iter, η = 36) 

.02 + .10 + .06 = .18 

.18 

.26 (iter, η = 76) 

.12 + .30 + .30 = .72 

1.26 

2.55 (iter, η = 388) 

2.55 + .38 + 5.04 = 7.97 

43.81 

133.39 (iter, η = 7018) 

■ 
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is 1.26 sec. 

For the matrix Μ , the routines HDIAG and EIGEN calculate all the eigenvectors 
with "absolute error" less than 10 . The computation time of HDIAG is 82.3 sec 
(The total number of plane rotations is 2775). The computation time of EIGEN 
is 78.5 sec. 

The routine BIGM calculates 25 eigenvectors with "absolute error" less than 
-5 10 , and 45 eigenvector 

time of BIGM is 30.5 sec 

-5 -3 
10 , and 45 eigenvectors with "absolute error" less than 10 . The computation 

Three test matrices are constructed by using a tensor product of lower order 
matrices whose eigenvalues are known. The order of these matrices is n = 24, 
n = 48 and n = 96. If the calculation of the eigenproblem of these test 
matrices is performed in "double precision" on IBM 360/65, the routines BIGM 
and EIGEN give all the eigenvalues with at least 8 exact figures. The compu­
tation time of BIGM is 3.4 sec. (n = 24), 16.2 sec. ( n = 48) and 86.7 sec. 
(n = 96), respectively. The computation time of EIGEN is 7.6 sec. (n = 24), 
62,2 sec. (n = 48) and 456.2 sec. (n = 96) respectively. 

The eigenvalues and the eigenvectors of the above three test matrices are 
calculated also in "single precision" on IBM 360/65 with the routines HDIAG, 
EIGEN and BIGM. The results are summarised in Table 3. 

In the following tables we give the number of the eigenvectors, corresponding 
to single eigenvalues, whose "absolute error" is less than 10 

Seven test matrices are constructed by using the technique of J.M. Ortega 
described in chapter 1, §5, in which the eigenvalues are chosen single, 
multiple, close with some typical distribution and also are given by random 
numbers. We summarize in Table 4 the results obtained by solving the 
eigenproblem of the above test matrices, with the routines HDIAG, EIGEN and 
BIGM in "single precision" (s.p.) and in "double precision" (d.p.) on 
IBM 360/65, and with the routines HDIAG and BIGM in "single precision" on 
IBM 7090. 

The "tolerance" τ of the threshold Jacobi method is defined as 
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η) Σ 2 a2.y 
lui χιί 

1/2 

J : where {a..} is the input matrix of order n. 
n 13 

—fi The results of Table 4 are obtained by taking η = 10 for "single precision" 
-12 calculations and n = 10 for "double precision" calculations. 

No improvement in the accuracy of the results was obtained by taking η = 10 
-12 instead of η = 10 

A comparison between the Givens-Householder method and the Rutishauser method 
is made on band symmetric matrices (whose bandwidth is small compared to the 
order of the matrix). The calculations are performed in"single precision" and 
in "double precision" on IBM 360/65. The "tolerance" in the routine LRCH is 

— fi ε = 10 ("singi 
calculations). 

-6 -14 
ε = 10 ("single precision" calculations) and ε = 10 ("double precision" 

In Table 5 we give: 
a) the number of eigenvalues with c (c = 0,1,2,...,7) exact figures obtained 

by the routines BIGM and LRCH when the calculations are performed in 
"single precision"; 

b) the machine time (in seconds) for computing the eigenvalues in "single 
precision" (s.p.) and in "double precision" (d.p.). 

The eigenvalues are computed in decreasing order, beginning with the highest 
eigenvalue. When the calculations are performed in "double precision", the 
routines BIGM and LRCH show high accuracy. The maximum error in any eigen­
value isa few units in the last place of the larger eigenvalues. 

The "computing time" of LRCH varies considerably with the order in which the 
eigenvalues of the test matrix are calculated. For example, the machine time 
for computing in increasing order the eigenvalues of (Jnn ) in "double 
precision" is .38, 1.22, 2.49, 4.11, 6.33 seconds, for n = 10, 20, 30, 40, 50. 
respectively. 

1.3 Discussion of the test results 

The results of the above test matrices may be summarized in the following 
way. 



TABLE 3 

T e s t m a t r i x 

1 : 
Orde r o f t h e m a t r i x = 24 
Range o f t h e e i g e n v a l u e s 
£ - 3 1 7 , +3171 
Number o f s i m p l e 
e i g e n v e c t o r s = 24 

2 : 
O r d e r o f t h e m a t r i x = 48 
Range o f t h e e i g e n v a l u e s 
£ - 6 3 4 , +6341 
Number o f s i m p l e 
e i g e n v e c t o r s = 48 

3 : 
O r d e r o f t h e m a t r i x = 96 
Range of t h e e i g e n v a l u e s 
C-3170 , +31703 
Number of s i m p l e 
e i g e n v e c t o r s = 9 6 

R o u t i n e 

HDIAG 

EIGEN 

BIGM 

HDIAG 

EIGEN 

BIGM 

HDIAG 

EIGEN 

BIGM 

Number o f e i g e n v a l u e s 
w i t h c e x a c t f i g u r e s 
c = 1 2 3 4 5 6 7 

14 10 

16 8 

12 10 

18 30 

43 

18 28 2 

32 64 

40 54 2 

2 70 24 

Number o f e i g e n v e c t o r s 
w i t h " a b s . e r r " -5 1 0 " d 

d = 1 2 3 4 5 6 7 

2 16 6 

3 14 7 

5 12 7 

6 28 14 

26 22 

4 30 14 

12 i« 36 

18 56 22 

12 m 30 

C o m p u t a t i o n 
t i m e ( i n s e c . ) 

9 . 4 

5 .2 

1 .8 
Í . 3 + . 7 + . 8 ) 

7 6 . 1 

4 1 . 5 

9 . 7 
( 2 . 4 + 2 . 5 + 4 . 8 ) 

6 0 4 . 3 

387 .6 

5 8 . 1 
( 1 7 . 7 + 9 . 1 + 3 1 . 3 ) 



TABLE 4 

T e s t m a t r i x 

1: 
Orde r o f m a t r i x = 10 
Range o f e i g e n v a l u e s 
C-O.OOOl, + 0 . 0 5 J 
Number o f s i m p l e 
e i g e n v e c t o r s = 10 

2 : 
O r d e r o f m a t r i x = 30 
Range o f e i g e n v a l u e s 
C - 3 . 5 5 0 0 0 1 , 4 . 2 ] 
Number o f s i m p l e 
e i g e n v e c t o r s = 17 

3 : 
Orde r o f m a t r i x = 40 
Range o f e i g e n v a l u e s 
£ - 0 . 0 0 0 1 , + 6 . 0 0 0 0 0 1 ] 
Number o f s i m p l e 
e i g e n v e c t o r s = 18 

R o u t i n e 

HDIAG (IBM-7090) 
BIGM (IBM-7090) 
HDIAG ( s . p . ) 
EIGEN ( s . p . ) 
BIGM ( s . p . ) 

EIGEN ( d . p . ) 
BIGM ( d . p . ) 

HDIAG (IBM-7090) 
BIGM (IBM-7090) 
HDIAG ( s . p . ) 
EIGEN ( s . p . ) 
BIGM ( s . p . ) 

EIGEN ( d . p . ) 
BIGM ( d . p . ) 

HDIAG (IBM-7090) 
BIGM (IBM-7090) 
HDIAG ( s . p . ) 
EIGEN ( s . p . ) 
BIGM ( s . p . ) 

EIGEN ( d . p . ) 
BIGM ( d . p . ) 

Number o f e i g e n v a l u e s 
w i t h c e x a c t f i g u r e s 
c = 0 1 2 3 4 5 6 7 8 + 

4 6 
3 7 

4 6 
3 7 
1 9 

5 5 
10 

2 3315 
3 918 

7 Β 4 
222 6 

22 8 

723 
3D 

1 22512 
3 3 25 9 

14 22 4 
1419 7 
727 6 

337 
40 

Number o f 
w i t h " a b s 
d = 0 1 2 

2 
2 

2 

2 
2 

4 

1 

1 

e i g e n v e c t o r s , 
e r r . " v< 10 

3 4 5 6 

3 3 
1 2 3 
2 4 2 
3 3 1 1 
3 3 

1 4 1 1 
2 

3 6 
5 4 

1 3 5 
2 7 

3 2 

4 4 
1 6 

2 5 1 
1 7 

3 4 

7 8 + 

1 
6 

1 8 8 
1 7 9 

117 
38 

Computa t ion 
t i m e ( i n s e c . ) 

1 5 . 0 
0 . 7 
0 . 6 
0 . 3 
0 . 3 

( . 0 5 + . 1 5 + . 1 0 ) 
0 . 5 
0 . 6 

4 5 . 0 
1 0 . 0 
1 9 . 0 

7 . 4 
2 . 8 

( . 6 + . 8 + 1 . 4 ) 
1 1 . 0 

4 . 8 
( . 8 + 2 . 4 + 1 . 6 ) 

9 0 . 0 
1 6 . 6 
4 5 . 2 
1 6 . 8 

5 .6 
( 1 . 4 + 1 . 2 + 3 . 0 ) 

2 6 . 3 
9 . 1 

( 1 . 6 + 4 . 1 + 3 . 4 ) 

O b s e r v a t i o n s 

Two e i g e n ­
v a l u e s a r e e q u a l 
i n t h e f i r s t s i x 
f i g u r e s 

E i g h t e i g e n ­
v a l u e s a r e e q u a l 
i n t h e f i r s t s i x 
f i g u r e s 

Ten e i g e n ­
v a l u e s d i f f e r i n 
t h e 7 t h f i g u r e 



TABLE 4 (cont inued) 

T e s t m a t r i x 

4 : 
Orde r o f m a t r i x = 60 
Range o f e i g e n v a l u e s 

- 4 3 . 7 , +24 .0 
Number o f s i m p l e 
e i g e n v e c t o r s = 56 

5: 
O r d e r o f m a t r i x = 7 2 
Range o f e i g e n v a l u e s 

0 . 0 3 4 2 1 2 , 0 . 9 5 5 4 4 
Number o f s i m p l e 
e i g e n v e c t o r s = 24 

6: 
O r d e r o f m a t r i x = 8 6 
Range o f e i g e n v a l u e s 

0 . 0 0 9 4 3 , 4 9 4 . 3 3 3 4 8 
Number o f s i m p l e 
e i g e n v e c t o r s = 50 

7 : 
Orde r o f m a t r i x = 94 
Range o f e i g e n v a l u e s 

0 . 0 3 4 2 1 , 477 .27470 
Number o f s i m p l e 
e i g e n v e c t o r s = 58 

R o u t i n e 

HDIAG (IBM 7090) 
BIGM (IBM 7090) 
HDIAG ( s . p . ) 
EIGEN ( s . p . ) 
BIGM ( s . p . ) 

EIGEN ( d . p . ) 
BIGM ( d . p . ) 

HDIAG (IBM 7090) 
BIGM (IBM 7090) 
EIGEN ( d . p . ) 
BIGM ( d . p . ) 

HDIAG (IBM 7090) 
BIGM (IBM 7090) 
EIGEN ( d . p . ) 
BIGM ( d . p . ) 

HDIAG (IBM 7090) 
BIGM (IBM 7090) 
EIGEN ( d . p . ) 
BIGM ( d . p . ) 

Number o f e i g e n v a l u e s 
w i t h c e x a c t f i g u r e s 
c = 0 1 2 3 4 5 6 7 8 + 

2 9 344 2 
7 4 530 14 
517 37 1 

4013 7 
8 47 5 

258 
60 

84118 5 
14 37 2L 

72 
72 

30 34 26 36 
3142128 33 7 

3-85 
86 

2L 22 31 23 
8 27 35 24 

292 
94 

Number o f e i g e n v e c t o r s , 
w i t h " a b s . e r r . " 10 
d = 0 1 2 3 4 5 6 7 8 + 

1 3 4 3117 32 
1 2 53235 33 

1 4 7 623 7 
1 2 23029 4 
3 5 8 30 814 

848 
551 

2 614 2 
412 8 

2% 
24 

41533 9 3 
7 2111. 5 

446 
50 

9 3125 33 
732 815 36 

652 
58 

Computa t ion t i m e 
( i n s e c o n d s ) 

2 8 0 . 0 
4 9 . 0 

1 5 8 . 0 
6 3 . 7 
1 6 . 7 

( 4 . 5 + 3 . 6 + 8 . 6 ) 

9 5 . 2 
2 6 . 7 

( 5 . 2 + 1 1 . 6 + 9 . 9 ) 

3 5 0 . 0 
7 6 . 0 

1 9 1 . 8 
3 7 . 1 

( 8 . 9 + 1 1 . 8 + 1 6 . 4 ) 

7 3 0 . 0 
1 1 8 . 0 
2 9 7 . 9 

5 9 . 9 
( 1 4 . 9 + 1 8 . 5 + 2 6 . 5 ) 

9 6 0 . 0 
1 5 1 . 0 
4 4 4 . 3 

8 1 . 3 
( 1 9 . 3 + 2 8 . 1 + 3 3 . 9 ) 

O b s e r v a t i o n s 

E i g h t e i g e n ­
v a l u e s d i f f e r 
i n t h e 7 t h 
f i g u r e 

S i x e i g e n ­
v a l u e s d i f f e r 
i n t h e 7 t h 
figure 
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certain conditions converge to an upper triangular matrix. The "shifts" K 
5 

are chosen so that Κ ­*X ar rapidly as possible, and all A remain real 

also when λ is a complex eigenvalue of A. 

The Laguerre method: routine EIG5 (Share program SDA 3098). The method 

consists of two parts. Firstly the given matrix is reduced to Hessemberg 

form A by elementary similarity transformations. The second stage is the 

iterative search for the eigenvalues of A with the Laguerre method. Let 

P(z) = det(A­zI) be the polynomial in ζ with roots equal to the eigenvalues 

λ., λ , ... X of the matrix A. Given an approximation to one of the roots, 

the Laguerre, method uses P(z), P'(z) and P"(z) to obtain better approximation. 

The polynomials P(z),P'(z) and P"(z) are evaluated with the Hyman method £8j 

The numerical criterion used by the routine EIG5 for a given number to be an 

acceptable approximation to a zero of a polynomial is defined in the following 

way. Let ζ be the current iterate, Δζ the computed increment and L the 

modulus of the largest eigenvalue yet found. 

¡P(z)| < ηχ |z| |P'(z)| 

i i ι ι "3 

|Δζ I < r\ max { | ζ | , 10 L} (cubic convergence) 

ι 1 1 - 2 

|Δ | < η max {|z |, 10 L} (linear convergence) 

(|zj = |Re(z)| + |lm(z) ¡ . 

2.2 Description of the tests 

A preliminary test of these routines is made with some matrices with known 

eigenvalues collected in chapter I §1) and §2. In Table 6 we give the 

computed eigenvalues of the Eberlein's matrix when the calculations are 

performed on IBM 7090 and on IBM 360/65 ("double precision" arithmetic). 

The eigenvalues of several real matrices constructed by Kronecker operations and 

by Ortega's similarity transformations are calculated with the above methods. 

The eigenvalues of these matrices are chosen real and conjugate complex, 

single and multiple with small and large distances from each other. Some 

eigenvalue satisfy typical distributions, others are given by random numbers. 



Eberlein's test matrices 
TABLE 6 

True eigenvalues 

(N=6 
s=-6.5) 

(N=10 
s=-14) 

-3. 
0. 
2.5 
4.5 
6. 
7 
7.5 

0. 
12. 
22. 
30.,30. 

36.,36. 

40.,40. 

42.,42. 

Eigenvalues 
on IBM 7090 

-3. 
.0005 
2.496 
4.514 
5.972 
7.032 
7.485 

-0.0001 
11^998 
22.35 
25.541 
30.297+5.659i 
37.828+7.491i 

43.957+5.399i 

46.702 

calculated by QREI 
on IBM 360/65 (d.p.) 

-3. 
0. 
2.5 
4.5 
6.0 
7.0 
7.5 

-0.0 
12.0 
22.0 
29.999998+0.002309 i 

35.999982+0.008972 i 

39.999969+0.015006 i 

42.000051+0.008174 i 

Eigenvalues calculated bv EIG5 
on IBM 7090 

-3. 
0.00007 
2.499 
4.501 
5.994 
6.987 
7.5 

0. 
12. 
21.840+0.004 i 
26.753+0.729 i 
30.962+4.237 i 
34.136+6.674 i 
37.846+6.397 i 
41.728+5.817 i 
44.226+3.758 i 
45.474+0.012 i 
45.740+0.214 i 

on IBM 360/65 (d.p.) 

-3.0 
0. 
2.5 
4.5 
6.0 
7.0 
7.5 

0.0 
12.0 
22.0 
30.000457 
35.999987+0.007808i 
35.999989-0.007415Í 
39.992283 
40.001723 
40.008315 
41.999046 
42.002293 
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The results of these experiments are summarized in the Tables 7 to 10. 

The appropriate choice of the "starting value" for the search for the eigen­

values is of the utmost importance in the success of the Laguerre method. 

For example, if we start the search for the eigenvalues from the origin, we 

are unable to find all the eigenvalues of some test­matrices. All these 

eigenvalues are determined if the starting value has modulus greater than 

the eigenvalue of greatest modulus. 

In Table 7 we give the results obtained by changing the "starting value" ζ 

of the routine EIG5 on a 30­order well conditioned matrix with real eigen­

values . 

The first column contains the "true" eigenvalues, the second column the 

eigenvalues obtained by the routine QREI on IBM 360/65 ("single precision" 

arithmetic) and the other columns the eigenvalues obtained by the routine 

EIG5 on IBM 360/65 ("double precision" arithmetic) with the "starting 

value" produced by the routine and described in [β], §12) and with the 

"starting value" equal to (ΙΟΟΟ.,Ο.). 

The routine QREI solves exactly this eigenproblem when the calculations are 

performed on IBM 360/65 in "double precision". 

However, if no good initial guess at the eigenvalue of greatest modulus can be 

made, we recommend the usage of the "starting value" produced by the routine 

EIG5. 

In Table 8 we give the results obtained by changing the convergence parameters 

on a 30­order well­conditioned matrix with real eigenvalues. The first column 

contains the "true" eigenvalues, the second column the eigenvalues obtained by 

the routine QREI and the other columns the eigenvalues obtained by the routine 

EIG5 with different values of η . 

— 7 —6 

The calculations are performed on IBM 7090 with η = 10 and r\ - 10 . 

In Table 9 we give for each test matrix of order n: 

(*i 

1) the number of eigenvalues with c (c=0,l,...) correct figures , obtained 

by the routine QREI and EIG5, respectively, on IBM 7090; 

2) the computing time on IBM 7090 (in seconds) for determining the eigenvalues. 

(*) 

Useful measures of the "accuracy" of the computed eigenvalues λ. with 

respect to the "true" eigenvalues λ. of a matrix of order n are the 

"spectral variation" of Λ Ξ diag {λ.} with respect to À = diagÙ } and 

the "eigenvalue variation" of Λ with respect to Λ £9]. 



TABLE 7 

(The columns headed I indicate the number of iterations required) 

λ. 

1 

439.15247 

418.07643 

383.93657 

370.55685 

325.89538 

325.89538 

308.14268 

277.31125 

277.31125 

173.40178 

173.40178 

157.12406 

157.12406 

104.35584 

104.35584 

87.68912 

24.21237 

24.21237 

0.958204 

0.852725 

0.846036 

0.762287 

0.647369 

0.433477 

0.373408 

0.307700 

0.271217 

0.219962 

0.187560 

0.179734 

U^ (s.p.) 

439.10474 

418.02002 

383.89209 

370.51953 

325.86548 

325.86279 

308.10181 

277.28101 

277.27856 

173.39308 

173.39282 

157.11682 

157.11331 

104.35118 

104.35001 

87.68767 

24.21165 

24.21121 

0.961676 

0.852761 

0.835038 

0.761726 

0.655146 

0.442499 

0.351100 

0.315524 

0.281016 

0.221796 

0.190150 

0.177824 

v. (d.p.) 

ζ given by EIG5 

439.15247 

418.07643 

(1988.95300) 

370.55685 

325.89538 

325.89538 

(­1784.14900) 

(1663.21620) 

(1663.21680) 

(28.99149+2036.85180Ì) 

(­844.88169+1627.55150Ì) 

104.35584 

104.35584 

87.68951 

24.21237 

24.21237 

.958204 

.8521725 

.846036 

.762227 

.647369 

.433477 

.373408 

.307700 

.271217 

.219962 

.187560 

.179734 

­ . ■ ι 

I 

11 

3 

1 

5 

6 

1 

1 

1 

1 

1 

1 

1 

1 

12 

1 

6 

1 

6 

2 

2 

5 

4 

4 

3 

3 

2 

3 

3 

2 

15 

v. (d.p.) 

ζ
 Χ
= (IO

3
, 0) 

o 

439.15247 

418.07643 

383.93657 

370.55685 

325.89539 

325.89537 

308.14268 

277.31125 

277.31125 

173.40317 

173.40086 

157.12406 

157.12406 

104.35585 

104.35583 

87.68951 

24.21237 

24.21237 

0.958204 

0.852755 

0.846036 

0.762227 

0.647369 

0.433477 

0.373408 

0.307700 

0.211217 

0.219962 

0.187560 

0.179734 

I 

6 

3 

4 

3 

6 

1 

5 

6 

1 

6 

1 

6 

1 

6 

1 

2 

6 

1 

4 

4 

2 

3 

3 

3 

3 

3 

2 

2 

2 

4 



TABLE 8 
(The columns headed I indicate the number of iterations required) 

λ. 
1 

-3.550001 
-3.55 
-3.55 
-3.000001 
-3. 
-2.500001 
-2.5 
-2. 
-2. 
-2. 
-2. 
-2. 
0. 
0. 
0.00001 
.5 
.500001 
.500001 
.8 

1.1 
1.5 
2. 
2.5 
2.5 
2.500001 
3. 
3.5 
4. 
4.1 
4.2 

yi 
-3.5500001 
-3.5499943 
-3.5499848 
-2.9999958 
-2.9999673 
-2.4999983 
-2.4999807 
-1.9999998 
-1.9999998 
-1.9999998 
-1.9999998 
-1.9999808 
-0.0000047464 
0. 
.000013266 
.49998821 
.49999973 
.50000187 
.79999141 

1.0999934 
1.4999942 
1.9999946 
2.4999880 
2.4999934 
2.4999997 
2.9999927 
3.4999933 
3.9999846 
4.0999845 
4.1999842 

1.55001 

ν.(ε=10 ) 

-3.5504094 
-3.5497987 
-3.5496697 
-2.9999958 
-2.9999024 
-2.4999949 
-2.4999181 
-2.0001050 
-2.0000000 
-1.9999535 
-1.9998766 
-1.99996-.20710 i 
-1.99996+.31110"5i 
°· -4. .49994-.24310 i 
.49997+.22310"4i 
.49998862 
.50000191 
.79996708 
.249998+.337910 i 

1.4998724 
1.9999733 
2.4999772 
2.4999893 
2.4999999 
2.9998665 
3.5000008 
3.9999298 
4.0999711 
4.1999017 

1.4497436 

I 

8 
9 
1 
6 
1 
6 
1 
10 

1 
6 
1 
4 

1 
2 
6 

6 
2 
5 
12 
1 
6 

3 
3 
2 
3 
10 

116 

vi(e=10-4'5) 

-3.5500143 
-3.5499942 
-3.5497984 
-2.9999957 
-2.9999022 
-2.4999948 
-2.4999174 
-2.0000060 
-2.0000000 
-1.9999923 
-1.9999918 
-1.9998953 
-0.0193479 
0. 
.00020926 
.49987642 
.49999718 
.50000191 
.79996768 

2.49998+.337910 i 
1.4998733 
1.9999725 
2.4999772 
2.4999893 
2.4999999 
2.9998671 
3.5000001 
3.9999308 
4.0999701 
4.1999023 

2.9306612 

I 

10 
1 
5 
6 
1 
6 
1 
12 

4 
1 
6 
16 

15 
1 
9 

6 
2 
5 
12 
1 
6 

4 
3 
3 
3 
7 

146 

vi(e=10"5·5) 

-3.5500062 
-3.5499976 
-3.5497995 
-2.9999971 
-2.9999061 
-2.4999957 
-2.4999176 
-2.0000003 
-2.0000000 
-1.9999992 
-1.9999923 
-1.9998776 
-0.000014764 
0. 
.00020952 
.49987444 
.49999716 
.50000191 
.79996716 

1.0999565 
1.4998740 
1.9999725 
2.4998935 
2.4999999 
2.5000011 
2.9998671 
3.5000001 
3.9999308 
4.0999701 
4.1999023 

1.5499131 

I 

12 
1 
6 
6 
2 
9 
1 
1 

14 
9 
1 
16 

17 
5 
10 

4 
4 
4 
4 
1 

8 
4 
4 
3 
3 
7 

156 



TABLE 9 (Routine QREI) 

to 
φ 

ω 
•Η 
ΜΗ 

■μ 
υ 
Φ 
f4 
f4 

o υ 
ΜΗ 

Ο 

2 

/ 

8 

7 

6 

5 

4 

3 

2 

1 

k 

1 

8 

1 

I 

10 

1.2 

2 

4 

1 

3 

1 

10 

1.2 

2 

5 

6 

3 

4 

ι 

20 

4. 

6 

13 

2 

3 

I 

24 

7. 

3 

14 

7 

L_ 

24 

9. 

4 

4 

6 

6 

9 

1 

I 

30 

15.0 

6 

6 

7 

8 

11 

2 

I 

40 

20. 

8 

17 

14 

1 

I 

40 

18. 

7 

17 

24 

1 

48 

24. 

4 

19 

21 

4 

I 

48 

22. 

16 

12 

30 

6 

I 

54 

45. 

1 

3 

7 

15 

24 

4 

6 

1 

60 

45. 

1 

1 

8 

26 

13 

11 

1 

60 

55. 

4 

13 

10 

7 

8 

18 

| 

60 

60. 

2 

21 

27 

7 

15 

J 

72 

100 

2 

6 

10 

22 

18 

20 

1 

78 

. 95 

9 

13 

24 

9 

12 

14 

3 

2 

.1 

86 

24 

24 

28 

30 

I 

96 

12 

71 

13 

ι .. 

96 

. 120. 210. 

72 

20 

4 

I 

96 

150. 

<*. 
w 

ore 

175. 

-0 

order of the matrix 

Computing 

time 



w 
Q) 

rl 
ω 
•Η 
ΜΗ 
■μ 
υ 
α) 
fn 
f4 Ο 

υ 
ΜΗ 

Ο 

fi 

Φ 

2 

/ 

8 

7 

6 

5 

4 

3 

2 

1 

ι 

9 

1 

10 

1.5 

3 

5 

2 

10 

2. 

2 

8 

3 

2 

1 

4 

20 

10. 

4 

14 

4 

2 

24 

7. 

15 

9 

24 

8. 

3 

4 

6 

9 

6 

2 

30 

30. 

2 

1 

13 

11 

15 

5 

40 

50. 

5 

19 

15 

1 

40 

45. 

TABLE 

5 

22 

21 

48 

60. 

9 

4 

16 

24 

4 

48 

55. 

(Rout 

2 

15 

4 

24 

7 

54 

120. 

ine 

5 

2 

9 

20 

17 

7 

60 

120. 

EIG5) 

1 

9 

14 

3 

14 

1 

1 

17 

60 

330. 

5 

12 

12 

5 

8 

5 

5 

8 

60 

350. 

5 

24 

32 

1 

10 

72 

320. 

2 

5 

13 

9 

1 

10 

26 

12 

78 

660. 

2 

21 

20 

15 

16 

4 

8 

86 

450. 

24 

20 

30 

22 

96 

360. 

80 

16 

96 

360. 

72 

18 

6 

96 

310. 

«̂  
... j 

order 

of mäti 

Computing 

t ime 
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For example in Table 9 the "point" 9 with abscissa 30 and ordinate 4 indicates 

that a test matrix of order 30 has 9 eigenvalues with 4 correct figures. 

In all these experiments we have observed that for well­conditioned matrices 

the average number of iterations of the QR method is less than 2.3 per eigen­

value. For the Eberlein's ill­conditioned matrix this number is 3.0. 

For well­conditioned matrices the average number of iterations of the Laguerre 

method is 4.5 per eigenvalue. The agreement of the sum of the eigenvalues 

computed by the routine EIG5 with the trace of the original matrix constitutes 

a quite good check on their accuracy. 

In Table 10 we give the trace of the original matrix and the sum of the eigen­

values of the test matrices of Table 9 computed by the routine EIG5 on IBM 7090, 

When the matrices A have a "large" P­condition number (P = |λ (Α)|/|λ . (A)Ι, 
e
 ■ max ' ' min ' 

the QR method and the Laguerre method are unable to give all the eigenvalues. 

Sometimes the Laguerre method gives all the eigenvalues by replacing the 

"convergence test" |Δζ| < η max{|z|, 10 L} with |Δζ| < r\ |z|. 

2.3 Discussion of the test results 

The results of the above tests may be summarized in the following way. 

a) For finding all eigenvalues, the Laguerre method is trouble­some because 

of the difficulty in finding "convenient" convergence parameters. 

b) The convergence rate of the QR method is remarkably impressive. This 

method is very "efficient" with respect to accuracy, and computing time 

for determining the eigenvalues of real matrices. 

c) The Laguerre method is useful for finding some eigenvalues (especially 

those with largest modulus) and may be faster than the QR method for 

well­conditioned matrices with multiple eingenvalues when a convenient 

choice of the "convergence parameters" has been made. 

§3. COMPLEX MATRICES 

3.1 Methods tested 

For the solution of the eigenproblem of a complex matrix t Ì following 
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TABLE 10 

Order of 
matrix 

10 
10 
20 
24 
24 
30 
40 
40 
48 
48 
54 
60 
60 
60 
72 
78 
86 
96 
96 
96 

Trace of 
matrix 

.12001110 
38.000002 

4118. 
4280. 
10.630371 
1.5499329 
39.549808 

63280.0070 
1872.0000 
144. 
26.619996 

-194.88535 
7758.5782 
7767.3952 
34.284957 

7776.2060 
11441.941 

0. 
0. 
0. 

Sum of 
computed eigenvalues 

.12001117 
38.000119 

4117.9619 
4280.0005 
10.630367 
1.5499131 
39.548140 

63279.945 
1872.0000 
143.99995 
26.667338 

-194.87905 
7758.5804 
7850.5532 
34.698833 

7734.9364 
11442.034 

-0.00582886 
-0.00170898 
0.01058006 

Average number 
of iterations 
per eigenvalue 

3.1 
3.8 
6.4 
2.7 
2.9 
5.2 
5.3 
5.8 
2.4 
2.5 
4.5 
3.4 
8.5 
7.6 
4.8 
7.1 
4.6 
3.2 
2.3 
2.7 
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methods are taken into account: 

1) The QR method, 

2) The Laguerre method. 

Two routines are selected from a scientific library which represent these 

different methods. 

The QR­method: Routine AMAT. (Share program SDA 3441) The method consists of 

two parts. Firstly the given matrix is reduced to Hessemberg from A by elemen­

tary similarity transformations. The second stage bases essentially on the 

fact that, by starting with the matrix A = A , the decomposition of A into 

the product Q R (Q unitary matrix and R upper triangular matrix) and the 
S S S S ζ .. χ 

recombination of Q and R by forming their product A = (a.. ) = R Q 
S S S "Γ­L lj S S 

generate an infinite sequence of similar matrices Α.. , A„ , ... which under 

certain conditions converge to an upper­triangular matrix. (£l], p.515). 

This process makes the element a , of the upper Hessemberg matrix A 

converge to zero and therefore a converges to an eigenvalue of A. 

i _ι_ι *\ τι n 

Whe convergence (i.e. a negligible) is met, the Hessemberg matrix A 
ΓΙ n™*x STI 

is deflated and the process proceeds with its leading principal submatrix of 

order one less. If a 1 __ becomes negligible the eigenvalues of the lower 

right hand matrix of order two are calculated and the process proceeds with 

the leading principal submatrix of order two less. 

The convergence­test is: 

ι (s+1) ι ι (s+1) ι /x. ι ι . -v 
a : \ < ε, a (for a / 0) 1
 η n­1

1
 * 1 ' η η ' 'nn' 

or 

Ö < *2 <
Æ

 l*L> 
and 

(|z| = |Re(z)| + |lm(z)|) 

The Laguerre Method: Routine EIG4. (Share program SDA 3099) The method consists 

of two parts. Firstly the given matrix is reduced to Hessemberg form A by 

elementary similarity transformations. The second stage is the iterative search 



82 

for the eigenvalues of A with the Laguerre method. Let P(z) = det(A­zI) be 

the complex polynomial in ζ with roots equal to the eigenvalues λ.. , λ ... λ 

of the matrix A. Given an approximation to one of the roots, say λ , the 

Laguerre method uses P(z), P'(z) and P"(z), to obtain a better approximation. 

The polynomials P(z), P'(z) and P"(z) are evaluated with the Hyman method [8j. 

The numerical criterion used by the routine for a given number to be an 

acceptable approximation to a zero of a polynomial is defined in the following 

way. 

Let ζ be the current iterate, Δζ the computed increment and L the modulus 

of the largest eigenvalue yet found. 

|ρ(ζ)| < η χ |z| |P'(z)| 

ΙΔζ j < ru max (|z|, 10 L) (cubic convergence) 

ΙΔζ| < η max (|z|, 10 L) (linear convergence) 

(¡z| = |Re(z)| + |lm(z)| 

3.2 Description of the tests 

Study 1: (see Table 11) 

A preliminary test of the above methods is made with some test­matrices, 

collected in chapter I §1). In Table 31 we give the results of this test. The 

eigenvalues are calculated in "single precision (s.p.)" and in "double 

precision (d.p.)" on IBM 360/65. (The eigenvalues of the test matrix CM 15/1 

are calculated also on IBM 7090.) 

The "convergence­parameters" are: 

­7 ­10 
(s.p.) ε = 10 ', ε = 10 

n1 = IO
­7
, n2 = IO"

3
, n3 = IO

­5 

(d.p.) ε± = 1θ"
15
,ε2 = IO"

15 

η.,_ = 1θ"
10
,π2 = IO

­5
, n3 = IO

­7 
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When the calculations are performed in "double precision" the eigenvalues 
of the matrices CM 3/1, CM 4/1, CM 4/2, CM 4/1, CM 5/2, CM 15/1 are calculated 
with at least 12 exact figures. Two eigenvalues of CM 6/1 are calculated 
with 6 exact figures, the other eigenvalues have at least 12 exact figures. 
The routines AMAT and EIG4 calculate in double precision the "true eigenvalues" 
of CM 10/1. 

Some test matrices are constructed by using the technique of J.M. Ortega 
described in chapter I, §5, in which the eigenvalues are chosen conjugate 
complex and complex, single and multiple with small and large distances from 
each other. 

In Table 12 to 14 we give for each test matrix: 

1) the number of eigenvalues with c (c = 0,1,...) correct figures, obtained 
with the routines AMAT and EIG4, respectively, (single precision) and: 

2) the computing time on IBM 360/65 (in seconds) for determining the eigen­
values in "single precision" (s.p.) and in "double precision" (d.p.). 
(For example in Table 12 the "point" 11 with abscissa 16 and ordinate 3 
indicates that a "test matrix" of order 16 has 11 eigenvalues with 3 
correct figures.) 

a) Complex matrices with generally distinct complex eigenvalues 

Study 2: (see Table 12) 
The real part and the imaginary part of the eigenvalues of these matrices 
are uniformly distributed in the intervals (-1,1), (-100,100), (-1000,1000) 
and (-1,1000), or are integer numbers. 
The eigenvalues of these test matrices are determined with the routines 
AMAT and EIG4 in "single precision" (s.p.) and in "double precision" 
(d.p.) on IBM 360/65. 

When the calculations are performed in "double precision" the routines 
AMAT and EIG4 determine "generally" the eigenvalues with at least 10 

A matrix has generally distinct eigenvalues when only few (less than 10%) 
eigenvalues of the matrix are multiple. The other eigenvalues are well 
separated. 
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TABLE 11 

Test Matrix CM 3/1 

True eigenvalues Eigenvalues calculated 
by AMAT (s.p.) 

Eigenvalues calculated 
by EIG4 (s.p.) 

( 1, D 
( 7,-8) 
(-43,51) 

( .9999, 1.0015) 
( 7.0011, -8.0009) 
(-43,0011, 50.9993) 

Computation time (s.p.) .02 sec 
on IBM 360/65 (d.p.) .04 sec 

( 1.0019, 1.0036) 
( 7.0000, -8.0007) 
(-43.0035, 50.9969) 

.16 sec 

.08 sec 

Test Matrix CM 4/1 

True eigenvalues Eigenvalues calculated 
by AMAT (s.p.) 

Eigenvalues calculated 
by EIG4 (s.p.) 

( 4,0) 
( 8,0) 
(12,0) 
(16,0) 

( 3.9999971, 0) 
( 7.9999990, 0) 
(12. , 0) 
(15.999989 , 0) 

Computation time (s.p.) 
on IBM 360/65 (d.p.) 

.04 sec 

.04 sec 

(4. , 0) 
( 8.0000029, 0) 
(12. , 0) 
(16. , 0) 

.16 sec 

.08 sec 

Test Matrix CM 4/2 

True eigenvalues 

(1,1) 
(3,4) 
(4,5) 
(5,6) 

Eigenvalues calculated 
by AMAT (s.p.) 

( .9999, 1.0000) 
(3.0005, 3.9998) 
(3.9994, 4.9999) 
(5.0000, 6.0001) 

Computation time (s.p. ) .08 sec 
on IBM 360/65 (d.p.) .12 sec 

Eigenvalues calculated 
by EIG4 (s.p.) 

(1.0000, .9999) 
(3.0001,3.9995) 
(3.9994,4.9999) 
(5.0000,6.0001) 

.22 sec 

.14 sec 
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TABLE 11 (continued) 

Test Matrix CM 5/1 

True eigenvalues 

(0,0) 
(0,0) 
(127.387,132.278) 

Eigenvalues calculated 
by AMAT (s.p.) 

( .00003, .00004) 
( -.00001, -.00002) 
(127.3866 ,132.278 ) 

( -9.45999,7.28019) ( -9.46005, 7.28017) 
( 7.07332,-9.55839) ( 7.07326, -9.55823) 

Computation Time (s.p.) .04 sec 
on IBM 360/65 (d.p.) .14 sec 

Eigenvalues calculated 
by EIG4 (s.p.) 

( .00005, .00006) 
( .00007, .00006) 
(127.3867 ,132.2782 ) 
( -9.46003, 7.28024) 
( 7.07332, -9.55843) 

.24 sec 

.16 sec 

Test Matrix CM 5/2 

True eigenvalues 

( -5.1498456282,0) 
(-15.921062150,0) 

Eigenvalues calculated 
by AMAT (s.p.) 

( 15.180165225,0) 
( 5.6787293543,0) 
( -0.83398680019,0) ( 

( 15.179976,6.9 10~7) 
-7. ( 5.678727,5.8 10 ) 

.8339851,5.2 10~6 ) 
( -5.149843,1.2 10 ) 
(-15.921054,-1.3 10~6) 

Computation time (s.p.) 
on IBM 360/65 

.12 sec 

.16 sec 

Eigenvalues calculated 
by EIG4 (s.p.) 

( 15.180162, 1.3 10~6) 
( 5.678731,-1.0 10~6) 
( -.833982,-2.6 10~6) 
( -5.149846,-3.3 10~6) 
(-15.921056,-1.7 10~6) 

.16 sec 

.22 sec 

Test matrix CM 6/1 

True eigenvalues 

(0,0) 
(1,0) 
(0,1) 
(2,1) 
(-1.-2) 
(-1,-2) 

Eigenvalues computed 
by AMAT (s.p.) 

( .0021, -.0015) 
( 1.0000, .0008) 
( -.0013, 1.0006) 
( 1.9998, 1.0001) 
(-1.0312,-1.9693) 
(- .9699,-2.0308) 

Computation time (s.p.) 
on IBM 360/65 (d.p.) 

20 sec 
26 sec 

Eigenvalues computed 
by EIG4 (s.p.) 

( -.00007, -.00009) 
( 1.0000 , -.00009) 
( -.00007, 1.0004 ) 
( 2.0000 , 1.0001 ) 
(-1.0242 ,-1.9921 ) 
( -.9797 ,-1.9960 ) 

.64 sec 

.52 sec 
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TABLE 11 (continued) 

Test Matrix CM 10/1 

True eigenvalues 

( 4.16174868, 3.13751356) 
( 5.43644837,-3.97142582) 
( 2.38988759, 7.26807071) 
(-1.93520144,-3.97509382) 
(-2.44755082, 0.43712617) 
(-5.27950616,-2.27596303) 
( 1.03205812, 9.29413278) 
(-4.96687009,-8.08712475) 
( 8.81130928, 1.54938266) 
(10.7976764 , 8.62338151) 

Computation time (s.p.) 
on IBM 360/65 (d.p.) 

Eigenvalues computed 
by AMAT (s.p.) 

( 1.161742. 3.137547) 
( 5.436461,-3.971467) 
( 2.389897, 7.268000) 
(-1.935202,-3.975090) 
(-2.447538, 0.437127) 
(-5.279502,-2.275943) 
( 1.032139, 9.294246) 
(-4.966941,-8.087037) 
( 8.811319, 1.549407) 
(10.797742, 8.623438) 

.60 sec 
1.00 sec 

Eigenvalues computed 
by EIG4 (s.p.) 

( 4.161748, 3.137513) 
( 5.436452,-3.971433) 
( 2.389887, 7.268074) 
(-1.935202,-3.975095) 
(-2.447554, 0.437128) 
(-5.279517,-2.275968) 
( 1.032053, 9.294141) 
(-4.966870,-8.087138) 
( 8.811318, 1.549384) 
(10.797698, 8.623397) 

.86 sec 
1.20 sec 



TABLE 11 (continued) 

Test Matrix CM 15/1 

True eigenvalues Eigenvalues calculated by AMAT 
on IBM 7090 on IBM 360/65 (s.p.) 

Eigenvalues calculated by EIG4 
on IBM 7090 on IBM 360/65 (s.p.) 

(-5,+2) 
(-9, 0) 
(-9,+3) 
(-8,+5) 
(-5,-3) 
(-4,+7) 
(+2,+4) 
(+3,+l) 
(+2,+8) 
(+3,+8) 
(+6,+3) 
(+7,+2) 
(+3,-7) 
(-5,-9) 
(+9,-8) 

Computation time 
on IBM 7090 
on IBM 360/65 (s 

(d 

(-4.99996,+1.99973) 
(-9.00008,+0.00040) 
(-8.99970,+2.99976) 
(-8.00020,+5.00028) 
(-5.00018,-3.00008) 
(-3.99959,+6.99991) 
(+1.99992,+4.00013) 
(+3.00029,+1.00048) 
(+2.00008,+7.99952) 
(+2.99990,+8.00009) 
(+5.99952,+2.99921) 
(+6.99994,+2.00051) 
(+2.99998,-6.99999) 
(-4.99998,-8.99996) 
(+8.99998,-7.99998) 

8.1 sec 
• p. ) 
• p. ) 

(-5.00414,+2.00604) 
(-8.99142, 0.011035) 
(-8.98056,+2.98651) 
(-8.01275,+*.*9653) 
(-5.00546,-2.99760) 
(-3.99714,+6.99055) 
(+2.01528,+3.99678) 
(+3.00521,+1.02415) 
(+1.98758,+7.98532) 
(+3.00207,+8.00775) 
(+5.98345,+2.96992) 
(+6.99618,+2.02126) 
(+3.00003,-6.99901) 
(-4.99850,-9.00014) 
(+9.00023,-7.99982) 

1.9 sec 
2.7 sec 

(-5.00004, 1.99985) 
(-8.99975,-0.00019) 
(-9.00047,+2.99983) 
(-7.99952,+5.00013) 
(-4.99982,-2.99987) 
(-4.00015,+6.99979) 
(+1.99958,+3.99995) 
(+3.00085,+1.00004) 
(+2.00006,+8.00002) 
(+2.99996,+7.99997) 
(+5.99918,+2.99987) 
(+7.00037,+2.00038) 
(+2.99998,-7.00001) 
(-5.00002,-8.99999) 
(+9.00000,-8.00000) 

11.6 sec 

(-4.99879, 1.98125) 
(-8.98847, 0.01272) 
(-9.00899,+2.97734) 
(-8.00281,+5.02026) 
(-5.00923,-2.98682) 
(-3.98898,+6.99547) 
(+1.99738,+4.01302) 
(+2.97291,+1.01870) 
(+2.00414,+7.98699) 
(+2.99533,+8.00194) 
(+6.03148,+3.00327) 
(+6.98248,+1.98051) 
(+3.00203,-7.00200) 
(-4.99947,-9.00151) 
(+9.00032,-7.99986) 

2.6 sec 
3.4 sec 

00 
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exact figures. The "convergence-parameters" are the same as in Study 1. 
In all these experiments there is good agreement of the trace of the 
original test matrix with the sum of the eigenvalues computed (in "single 
precision") by the routine EIG4. 

b) Complex matrices with generally distinct complex eigenvalues of equal 
modulus 

Study 3: (see Table 13) 
The real part and the imaginary part of the eigenvalues of the test matrices 
considered satisfy some typical distributions (i.e. linear distributions, 
geometric distributions). 
The eigenvalues of these matrices are determined with the routines AMAT 
and EIG4 in "single precision" (s.p.) and "double precision" (d.p.) on 
IBM 360/65. 
When the calculations are performed in "double precision", the routines 
AMAT and EIG4 determine "generally" the eigenvalues with at least 10 
exact figures when the order of the matrices is less than 25 and with at 
least 7 exact figures in the other tests. The "convergence parameters" 
are the same as in Study 1. 
When the order of the matrices is less than 25, there is good agreement 
of the trace of the original matrix with the sum of the eigenvalues 
computed (in "single precision") by the routine EIG4. 

The test matrices labelled with * in Table 13 have spectral radii of order 
4 2 

10 . The other matrices have spectral radii less than 5 10 . 

c) Complex matrices with multiple and close complex eigenvalues 

Study 4: (see Table 14) 
The real part and the imaginary part of the eigenvalues of the test-matrices 
generated with the Ortega's algorithm satisfy some typical distributions. 
The test-matrices labelled with * in Table 14 have the form: 

T(n) + . (T(n)}-l 

where the real matrix Τ is defined by algorithm No. 52 (Collected Algo­
rithms from C.A.CM.). These test-matrices have the eigenvalue (1 + /-I) 
with multiplicity n-2. 
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TABLE 14 (Routine EIG4) 
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The eigenvalues of the above matrices are determinated with the routines 
AMAT and EIG4 in "single precision" (s.p.) and in "double precision" (d.p.) 
on IBM 360/65. 

The "convergence parameters" for "single precision" calculations are the same 
as in Study 1. The "convergence parameters" for "double precision" calculations 
are 

e, = ε2 = IO"15 

τ)1 = io-7, n2 = io - 3, n3 = io"5 

-10 -5 If in this study we consider the "convergence parameters" η = 10 , η = 10 . 
-7 1 2 

η =10 (see Study 1) for "double precision" calculations, we are unable 
to find all the eigenvalues. 

When the calculations are performed in "double precision", the routine AMAT 
determines "generally" the eigenvalues with at least 10 exact figures and 
the routine EIG4 determines the eigenvalues with at least 7 exact figures. 
If the routine EIG4 were able to calculate all the eigenvalues in "single 
precision", then the agreement of the sum of the eigenvalues computed with 
the trace of the original matrix would be good. 

3.3 Discussion of the Test Results 

Some pathological examples exist for which convergence will not occur in AMAT 
(i.e. the Forsythe matrix (chap. II §4). For some test matrices (i.e. the 
Eberlein's test-matrix) the "number of iterations per eigenvalue" tiust be 
"large" in order to obtain the convergence. 
The test calculations summarized in Table 11 to 14 give the information that 
the routine AMAT is very "efficient" with respect to accuracy and computing 
time for determining the eigenvalues of a complex matrix. 
The results contained in Table 14 show the routine AMAT to be slower than 
the routine EIG4 for test matrices with multiple eigenvalues, when a "con­
venient" choice of the "convergence parameters" for EIG4 has been made. 
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§4 DETERMINATION OF THE EIGENVECTORS OF NON-HERMITIAN MATRICES 

The eigenvectors of real and complex matrices are determined by the iterative 
method of Wielandt. The routine VCTR (Share program SDA 3053) determines the 
eigenvector of a real matrix A corresponding to a real eigenvalue λ. The 
matrix (Α-λΙ) is triangularly decomposed into the product of triangular lower 
and upper matrices by elementary stabilized matrices of the type M!. (£l3, 
page 236). Then the eigenvectors are determined by the inverse power method. 
The routine AMAT (Share program SDA 3441) determines the eigenvectors of a 
complex matrix A corresponding to a complex eigenvalue. The routine AMAT 
reduces the given matrix to Hessemberg form Η by elementary similarity 
transformations. The matrix (Η-λΙ) is triangularly decomposed into the 
product of triangular lower and upper matrices by elementary stabilized 
matrices of the type N!. (Clls PaSe 200) and the eigenvectors of Η are 
determined by the inverse power algorithm. Then the elementary similarity 
transformations are applied in reverse order to obtain the eigenvectors of 
the original matrix A. The method of Wielandt calculates the normalized 
eigenvectors of well conditioned real and complex matrices, corresponding 
to single eigenvalues, with high accuracy. For real matrices ranging in 
order from 19 to 50, the "absolute error" of each eigenvector is less than 
10 when the calculations are performed on IBM 7090. For complex matrices 
ranging in order from 5 to 30, the "absolute error" of each eigenvector is 
less than 10 when the calculations are performed in "double precision" 
on IBM 360/65. In the case of a computed eigenvector corresponding to a 
m-fold eigenvalue X, we have to test how accurately this eigenvector is 
lying in the linear space spanned by the "true" eigenvectors corresponding 
to X. We study the accuracy of the Wielandt method on real matrices with 
real eigenvalues. 

Let χ χ ... χ be the eigenvectors corresponding to the m-fold eigenvalue 
X. Let χ be the computed eigenvector corresponding to the "true" eigenvalue 
X. Let χ be the approximation of χ in the sense of least-squares. The vector 

m 
ie is given by the expression χ = Σ c, χ, where the coefficients c, are 

=1 
determined by the system 

m Τ Τ 
Σ c (x.x ) = χ.χ (j = 1,2,..,m) 
k=l k 3 k D 
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The quantity |x-x| is the "absolute error" of the vector x. 
The test-matrices A of order n are generated by similarity transformations: 
A = ΒΛΒ , where Β is the Brenner's matrix Β = ctI+3Q (a and β real non-zero 
numners; I is the nxn identity matrix and Q is the nxn matrix whose entries 
are all l's), and Λ is a diagonal matrix which contains m-fold eigenvalue 
X. The other elements on the diagonal of Λ are pseudo random numbers generated 
in the interval £θ,ΐ] with uniform distribution. 
For these matrices the "absolute error" of the eigenvectors computed with 
the routine VCTR on IBM 7090 is less than 10~4, for 10 >< n >.< 50 and 2 *■ m < 5. 

In fig. 2 we give the behaviour of the "computation time" taken by the 

routines VCTR for determining all the eigenvectors of real matrices of order 

n(n ̂  50) on IBM 7090 and by the routine AMAT for determining all the eigen­

vectors of complex matrices of order n (n ̂  30) on IBM 360/65 ("double 

precision" arithmetic). 
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