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SUMMARY
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INTRODUCTION (*)

In this paper a comparison of some methods for solving the eigenproblem of
a matrix is given. An attempt has been made to establish the "efficiency",
on the basis of computing time and accuracy, of each method by carrying out
"experimental" calculations on 'representative" problems for which exact re-

sults are known.

In order to pick out the " best ' methods we collect in Chapter I a list
of matrices which form a representative sample of those which occur in

practice.

Any computing problem is "ill conditioned" if values to be computed are very
sensitive to small changes in the data. It is convenient to have some numbers
which define the condition of a matrix with respect to the eigenproblem.
These condition-numbers and some :relationships between them are discussed

in Chapter II.

The results of some computational experiments carried out on the above test-
matrices are presented in Chapter III. The methods compared for the eigenpro-
blem of symmetric matrices are the Jacobi, threshold Jacobi, Givens-House-
holder and Rutishauser schemes. The numerical experiments reported in
Chapter III §1 give a more realistic picture of the accuracy of the above
methods than that obtained by "a-priori error analysis", and make apparent
the "efficiency" of the Givens-Householder method for determining the eigen-
values of general symmetric matrices. The Rutishauser method is efficient
for determining the eigenvalues of symmetric band matrices.

As far as vectors are concerned the threshold Jacobi method and the Jacobi
method give almost exactly orthogonal vectors. The Givens-Householder method
(with inverse iteration) gives accurate eigenvectors, but eigenvectors

corresponding to multiple or close eigenvalues may be far from orthogonal.

For non-Hermitian matrices the QR method and the Laguerre method are compared.
The numerical experiments reported in Chapter III §2 and §3 lead to the follow-

ing conclusion:

a) for finding all eigenvalues, the Laguerre method is troublesome because

of the difficulty in finding "convenient'" convergence-parameters;

T¥) Manuscript received on May 30, 1968.



b) the convergence rate of the QR method is remarkably impressive (for the
matrices dealt with in these tests the average number of iterations is less

than 2.3 per eigenvalue!);

c) the Laguerre method is useful for finding some eigenvalues (especially
the eigenvalues with largest modulus) and may be faster than the QR
method for matrices with multiple eigenvalues when a convenient choice

of the '"convergence-parameters'" has been made.
We have considered the iterative method of Wielandt for determining the eigen-
vectors of non-Hermitian matrices. The accuracy of each computed eigenvector
lying in the linear m-fold subspace spanned by the true eigenvectors which
correspond to an eigenvalue of multiplicity m has been tested.

CHAPTER I

A list of test-matrices for the eigenproblem

INTRODUCTION

As test-matrices w= usually take matrices which form a representative sample

of those which occur in practice, are general enough as to put sufficient
strain on the numerical methods we have to test, and give the solution of

the eigenproblem in closed form.

In §1 we give a list of test matrices with known eigenvalues.

In §2 we give a list of special test matrices. Important classes of special
test matrices are the unitary matrices, the circulant matrices and the Frobenius
matrices.

In §3 the tridiagonal test-matrices are considered.

When we are interested to generate test-matrices with a prescribed distribution
of the eigenvalues, it is convenient to resort to matrices generated by
Kronecker operations and by similarity transformations.

These test-matrices are considered in §4 and §5.



§1 A LIST OF TEST MATRICES WITH INOWN EIGENVALUES

1.1 Symmetric test-matrices with known eigenvalues

Test matrix SMu/1

Test matrix SMu/2

0.67
0.13
0.12
0.11

Test matrix SMu/3
([1], page 269)

Test matrix SMu/y
([1], page 302)

PR e
F w N e

Test matrix SMS/1

0.81321
-0.00013
0.00014
0.00011

~0.00013
0.93125
0.23567
0.41235

0.00021 0.41632

0.13
0.96
0.14
0.13

-8
16
7 21

10

10 20

Le]

0.12
0.14
0.31
0.16

0.00014
0.23567
0.18765
0.50632

0.30697

> > > >
F W N P

N oW

0.11
0.13
0.16
0.15

0.00011
0.41235
0.50632
0.27605

0.46322

Pl
£ W N P
"

2.65728073
26.34271928

0.03801601
0.4538345
2.2034461
=26. 304703

0.00021
0.41632
0.30697
0.46322

D D D> D> >
o F W N R

0.41931

0.0479716838
0.3111488671
0.6384911230
1.0923883260

-0.29908
0.01521
0.41985
0.81321
1.67828



Test matrix SM5/2 [7]
5 y 3 2 1 Al = 22.40687532
L 6 0 L 3 A2 = 7.513724155
3 0 7 6 5 AS =  4.848950120
2 L 6 8 7 Au = 1.327045605
1 3 5 7 9 AS = -1.096595181

The eigenvectors of the test matrix SM5/2 are:

v, = (-0.245877938, -0.302396039, -0.453214523, -0.577177153, -0.556384583)
v, = (-0.550961956, -0.709440339, 0.340179132, 0.0834109534, 0.265435677)
v, = (-0.547172795, 0.312569920, -0.618112077, 0.115606593, 0.455493746)
v, = (0.341013042, -0.116434620, -0.019590671, -0.682043035, 0.636071214)
vg = (0.469358072, -0.542212195, -0.544452403, 0.425865662, 0.0889885036)

Test matrix SM5/3
([I], page 255)

11 1 1 1 A, = 0.01083536
1 2 3 4 5 A, = 0.18124190
1 3 6 10 15 Ay = 1.
1 4 10 20 35 A, = 5.51748791
1 5 15 35 70 Ay =92.29043483
Test matrix SM6/1 [7]
1 2 3 0 2 A = 12.41133643
2 4 5 -1 0 3 A, = 12.41133642
3 5 6 -2 -3 0 Ay = 0.2849864395
0 -1 -2 1 2 3 A, = 0.2849864365
1 0 -3 2 4 5 Ao = -1.696322849
2 O 3 5 6 Ag = -1.696322851

The eigenvectors of the test matrix SM6/1 are:



v, = (-0.221789750, -0.472911329, -0.720938140, 0.259414890, 0.357807087,
0.109956267)

(0.170061798, 0.178584630, -0.138066492, 0.295915130, 0.565489671,

<
1T

2
0.716086465)
Vi = (0.669545567, -0.395331735, 0.136726362, -0.288372768, 0.463372193,
-0.280810985)
vy = (0.013164189, 0.259286123, -0.199515430, -0.728887389, 0.551154856,
-0.240296694)
ve = (0.503951797, 0.074032290, -0.529160563, -0.313202308, -0.521389692,

0.300995029)

v, = (0.391015688, -0.080878210, -0.418685666, -0.u4u46284472, -0.520371701,
0.441940292)

Test matrix SM6/2
(I;], page 237)

0 1 6 0 0 0 Al = 16.60600885

1 0 2 7 0 0 A2 = 5.94293604

6 2 0 3 8 0] A3 =-10.06472040

0 7 3 0] L 9 Xu =-12.12830070

0 0 8 L 0 5 As = 2.10943466

0 0 0] 9 5 0 AG = -2.46535845

Test matrix SM6/3 ]

253 121 66 11 11 O*

121 96 -19 71 =24 7
66 -19 137 -117 73 -14 Xl = X2 = 2.533
11 71 -117 152 -82 21 A, = Xu = 15.618
11 -24 73 -82 57 -14 As = A_. = 332.849
0 7 =14 21 -1y 7




Test matrix SM8/1 [?}
611 196 -192 407 -8 -52 -49 29
196 899 113 -192 =71 -43 -8 -4y
-192 113 899 196 61 49 8 52
407 -192 196 611 8 4y 59 =23
-8 -71 61 8 411 -599 208 208
-52 -43 49 4y -599 411 208 208 /
-49 -8 8 59 208 208 99 -911
29 -4y 52 -23 208 208 =911 99
Al = 1020.04901843
A2 = 1020.
A3 = 1019.90195436
Au = AS = 1000.
AG = 0.09804864072
A7 = 0.0
A8 =-1020.04901843

The eigenvectors of the test matrix SM8/1 are:

<
1

1
v2 = (1,
v3 = (2,
vy = (1,
v5 = (7,
v6 = (2,
v, = (1,
v, = (2,

1y,

_l’

z (2,1,1,2, -0.004901843, -0.004901843, 0.009803686, 0.009803686)

-2, 1, 2, =2, 1, -1)

1, -2, 10.09901951, -10.09901951, -20.19803903, 20.19803903)

-2, 1, -2, 2, -1, 1)

-1, -7, =2, -2, -1, -1)

1, -2, -0.099019514, 0.099019514, 0.198039027, -0.198039027)

2, -2, -1, 14, 14, 7, 7)

1,

1, 2, 204.0049018, 204. 0OO49018, -408.0098037, -408.0098037)



Test matrix SM8/2
([1] , page 275)

T = T =T = ST =
©® N 0O E W N R

Test matrix SM8/3
([1], page 239)

[o g
] ]

0
!

10
15
21
28

10
20
35
56
84

36 120

d = 8910891

Test matrix SM8/u
([1), page 2uu)

H
M =
K

8

11111111
9090909
= 10891089

15
35
70
126
210
330

10

1 1 1 Al = 2.200851461Y4
6 7 8 A2 = 6.7202144403
21 28 36 A3 = 8.3730245858
56 84 120 Au = 5.1189155425
126 210 330 As = 1.9535387754
252 462 792 AB = 1.1943115534
462 924 1716 A7 = 1.4880477534
792 1716 382 AB = 4.5436960082
d =-e f g -h
~-c f -e -h g
-b g -~h -e £
a -h g f -e
-h a -b -c d
g -b d -c
f =-c a -b
-e d -c -b a
11108889
9089091
10888911
8909109
(k=1,2,...,8)
a bjle d e g
"=23§%l K=|§§2%
d cl|b a| h f




IO

a=2o0 e =5 Al = =21 AS =17
b =2 f=6 A, = k3 = -13 AG = A
c==3 g-=-7 A, = <5 Ag = 23
d =1y h=28
Test matrix SM8/5
([1), page 238)
33 -3 -4 0 -4
-3 33 0 -8 0 0
0 L 29 -12 -2 -8 -2
-4 0 1 29 -2 -12 -2 -8
0 -8 -12 -2 25 1 -4 -2
0o -2 -12 1 25 =2 -y
0 y -8 -2 -4 -2 21 1
-4 0 -2 -8 -2 -4 1 21
A, = 6.k (k=1,2,...,8)
k
Test matrix SM9/1 [2]
M= (aij) with aij = aji =0 for j # i,i+l and:
a.. = 0.71507 A, = 0.83818541
ii k
0.42721 ai+1 i=ai i+1 = 0.13952 0.75787017
0.71226 0.11389 0.74734873
0.42823 0.17385 0.43584777
0.70177 0.021681 0.42784000
0. 44052 0.12899 0.42773464
0.43474 0.0035016 0.39554758
0.42862 0.0025372 0.3836093y
0.42784 0.0 0.30227655
Test matrix SM21/1 =1

M = (a..) with
1)

= 10

n+l-i (i 1,2,...,n+l)

i-n-1 (i

=1

n+2,n+3,...,2n+l)

.. = a, .
1i+l i+l i

ij = aji =0 for j #1i, i+l

[N I B < R |
"



The eigenvalues of M to 7 decimal places are:

I1

kk = 10.7461942 5.0002u44Y
10.7461942 4.9997825
9.2106786 4.0043540
9.2106786 3.9960482
8.0389411 3.0430993
8.0389411 2.9610589
7.0039522 2.1302092
7.0039518 1.7893214
6.0002340 0.9475344
6.0002175 0.2538058
~1.1254415
Test matrix SM21/2
M = (aij) with
n = 10
a;; = n+l-i (i =1,2,...,2n+l)
3 i#1 T %411 "1
aiJ = ajl =0 for J # i, i+l

The eigenvector correct to 8 decimal places of A

<
m

>
1]
I+

+ K

+ i+

I+

of M to 7 decimal

10.7461942
.2106786
.0389411
.0039520
.0002257
.0000082

g OO 3 O w

+ O+ 4+

1+

places are:

4,0000002
3.0000000
2.0000000
1.0000000
0.0000000

1

10.7461942 is:

(1., .74619418, .30299994, .08590249, .01880748, .00336146, .00050815,

.00006659, 00000771, .00000080, .00000007, .00000001, .O,

.0, .0, .0,

.0, .0)

.0,

.0,

.0,



I2

1.2 A list of real test matrices with known eigenvalues

Test matrix RMu4/1
([1], page 228)

-2 1
1 1
4 =2

-1

Test matrix RM4/2
({1), page 302)

N W oo P

Test matrix RM4/3
([1) page 303)

Test matrix RMuL/4
([l], page 303)

6 1
9 -3
15 -12
23 -23

Test matrix RM4/5
([1], page 274)

17119
-50436
L9554
-16236

W PN

w w » O
£ » O O

8289 3159
-24326 -9216
23814 8974
=7776 -2916

A, =k (k= 1,2,3,4)

A, =k (k = 1,2,3,4)

1 2
Ags Ay =2 % 2i
VER X
Ay = 1,4, = -5
729
-2106
2034 A =10

-656

(k=1,2,3,4)



I3

Test matrix RM4/6
( [1] , page 237)

= 3.k (k= 1,2,3,4)

Test matrix RM4/7
([1], page 270)

48 25 11 3
- - -37 - X =X = X =
154 -82 37 -10 1 5 3 2
176 g6 u4 11 A 3

Test matrix RM4/8
([, page 386)

Test matrix RMu4/9

0.9205 -0.8526 0.3265 0.3054
1.0861 -0.6522 0.8152 0.3284
0.0677 0.2922 0.8561 -0.1328
-0.9385 0.8977 -0.5330 0.6556

k, =0.9612 X, =0.8018 X, X =0.0064 + 0.3981 i

The eigenvectors of the test matrix RMu4/g are:

vl‘-‘ (-0.1798, 0.3188, 0.9228, -0.1204)
v, 2 ( 0.1890, 0.3465, 0.0309, 0.9113)
v & (0.3722 + 0.5715 i, 0.5133 + 0.3454 i, -0.1410 + 0.2322 i,

- 0.2782 + 0.0118 i)

3° Yy



Test matrix RMu/10

1.31
1.06
-2.64

Test matrix RM5/1
([1], page 227)

Test matrix RM5/2
([}, page 2u7)

40
17
-1
13
-63

Test matrix RM5/3
([1) , page 270)

I4

0.07 0.27 -0.33
-0.36 1l.21 O.41
2.86 1.49 -1.34
-1.84 -0.24 -2.01

Xl = 0.03
A, = 3.03
AgE R, = -1.97 +d
-6 5 5 -6
-1 7 3 -12
13 3 -8 5
-4 7 5 -3
6 -2 2 7

10 8 5 -17
-6 6 5 1
30 8 -19 -13
=54 =3 -3 64

o & N >

(x

1,2,3,4,5)



Test matrix RM5/4

15

17

Test matrix RM6/1
(Y1), page 277)

X
1

Y

Test matrix RM6/2
([1] , page 286)

Test matrix RM6/3
({1}, page 372)

+13
29
61
80
24

I5

sl
11 6 -9 -15
3 9 -3 -8
6 6 -3 -11
7 5 =3 -11
12 5 -10 ~-16
4 -11 -9
-5 7 1
2 2
-1 5 0
-5 7
y *-11 -7
RS
15’ )B =5 +
0 0 o0
-2 0 o
-15 0 o0
-48 18 0 O
-38 -26 32 -6
140 -250 155 -29
-6 6 -14 21
-2 -7 14
16 O 6 -12
15 -5 11 -8
-5 3 -7 15
-3 3 -7 7

10

w = =N F W

e

>
o

o & >

1.50016
1.50016

Yo
" 1

Ll =

k , k

"
>
o o o >

3.57064 i
3.57064 i

1(1)e
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Test matrix RM6/4  [8), (9]

1 1 1 1 1 1
/2 1/ 1/4 1/5 1/6 1/7
/3 1/ 1/5 1/6 1/7 1/8
1/4 /s 1/6 1/7 1/8 1/9
/s 1/6 1/7 1/8 1/9 1/10
1/6  1/7 1/8 1/9 1/10 1/11

Roots calculated in [ g ] Roota calculated in (8]
2.132376 2.132376
-0.2214068 -0.2214066
-0.3184330 10 * -0.3184328 10 *
-0.8983233 10 3 ~0.8983258 10 °
-0.1706278 10 " -0.1706200 10"
-0.1394493 10 ° -0.1443702 10°°

Test matrix RM7/1
([i], page 275)

28 17 -16 11 9 -2 =27
-1 29 7 -6 -2 28 1
-11 -1 12 3 -8 10 11 A okl
-6 -11 12 8 -12 -5 6 k ~
4 16 -7 6 2 N -1y
-37 -18 -9 45 7 26 38
Test matrix RM7/2
([i], page 372)
-3 11 10 4 =13 -2 8
2 3 10 9 -16 0 -2 11 =1
-4 -1 17 Y 11 )2 =
0 8 1 2 -1 -8 13 =3
-4 =2 7 7 7 -3 lh’ As = 3
-7 g 6 9 =12 3 7 ’s’ =5
-6 g 0 -5 3 -2 g

I+ [+



Test matrix RM8/1
([1], page 227)

-16 17
-72 31
-79 37
73 -31
=21 -21
73 =31
43 -1
=73 31

Test matrix RM8/2
([1), page 388)

-7 -9
-1 5
3 -9
17 19
9 8
-3 -8
1 6
-9 =7

Test Matrix RM8/3
([1], page 326)

6 -11
11 =2
23 -9

=17 3
3 11
-19 5
-13 -1
19 -5

-11  -17
-53  -59
-56  -55

54 59
-25  -19
53  +59
39 33
-53 =59

13

-6

-1

-2 -6
2 -9

-4

-6 4
7

S

-23  -17
-9 -3
29 21

-21  -19
22 16

2 -y
-22 . -16
8 14
A0 A, =

~-23
-65

65
-60
66
35

I7

-10 16

11
=31
~25

31

31
31
=31

Lk:k
(k=1(1)8)

748 1



Test matrix

([i], page

Test matrix
( [1] » page

14
-91
364

-989
1886
-2509
2236
-1210
300

RM9/1
371)
8 -9
-2 8
3 16
g -13
11 6
5 -5
-3 9
1 3
-3 -1
k=1(1)9
RM9/2
287)
1
0 1
0 0
0 0
0 0
0 0
0 0
0 o©
0 0

O O O o O O BB

O O O O O

I8

o O O O m»

o O O »

N B P W N

I+ [+ |+



Test matrix RM12/1
({1], page 384)

19

2y 3 -20 10 -1 5 24 -11 16 u0
13 =17 6 1 -1 12 b 12 18

4 =5 7 2 12 5 9 y -7 =7

8 6 -3 4 6 -5 -2 3 -1

-23 40 -18 26 13 15 -3 =17 =-26 18

8 -9 1 10 -4 -3 0 4 -10 -1
-19 10 13 2 1 O -u 2 -2 =13

-16 21 -4 +17 16 11 -3 =20 -17 4

3 5 8 -7 4 6 -5 -2 7 -4

-2 2 3 -1 12 5 9 4 -4 -3
7 6 -17 1 -1 12 4 12 18

18 -11 -3 4 -2 6 12 -15 4 22
Ak =43 +4i), +(4+31i), +5i, +5

1.3 A list of complex test-matrices with known eigenvalues

Test matrix CM3/1
([?], page 378)

-189-790
438-204
-65-1k44

A =

1 1+1

Test matrix CM4/1
([1]), page 251)

12 -(1+41i)
-(1-i) 12

2 (1+1)
3(1-1) -2
A = 4.k

k

i
i

i

(k = 1,2,3,4)

537-505 i -162642740 1
361+253 i -1788-630 1
85-115 1 -207+4581 i
A = 7-8 i ) i
5 7-8 1 3 43451 1
2 3(1+1)
(1-1) -2
8 -(1+i)
-(1-1) 8
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Test matrix CMu/2
([{], page 287)

2+11 i 3-51

6+ 4 i -9+4 i 8-2 1
14- 2 i -30+414 i 22-9 1 -1+3 i
25- 8 1 -57+428 1 39-24 i -2+410 i

Ak = (1+4i), (344 i), (4+5 i), (546 i)

Test matrix CM5/1 [10]

1+ 21 3 +4 1 21422 i 23+24 i 41+42 i
3+44 i 13 +14 i 15+16 i 33434 i 35436 1
5+ 6 1 7+81 25+26 i 27428 1 45+46 i
7+48 i 17 +18 1 19420 i 37+438 i 39+40 i
9+10 i 11 412 i 29+30 i 31432 i 49450 1

>
1
>
n
o
>
"

127.387 + 132.278 i

1 2 3
Au = =-9.,45999 + 7.28019 i
As = 7.07332 - 9.55839 1

Test matrix CM5/2 [11]

-0.845+0.0 1 5.240.103 i .301-0.0454 i -9.64+0.936 1 .0734+7.26 1
5.2 =-0.103 i =-6.2+0.0 1 -3.39-0.407 i +0.122+0.91 i 4,19 -3.66 1
0.301+0.0454 ~-3.39+0.407 1 0.019+40.0 i 0.935-0.271 i -0.0572+2.82 i

-9,6 —0.936 1 0.122-0.91 1 .93540.271 1 7.214+0.0 1 0.33740.0603 1

.0734-7.26 1 4.19+3.66 i -0.0572-2.82 i 0.337-0.0603 1 -1.23+0.0 i

Al = 15.180165225 Aq = -5.1498456282

A2 = 5.6787293543 AS = -15.921062150

A, = -0.83398680019




Test matrix CM

(E], page 376

3 1+3 1
341 6+2 i
-1+6i 18-9 i
L 4-2 i
1-2i 6+4 1

141 -6-1i

A, =0, 1,1,
Test matrix CM

2+3i
3+2i
5-3i
2461
1+4i
5-i

5+2i
431
5+0i
5+21

—

b > S - - A S
W 0 NN o F W N

[
o

6/1
)
-6+16 i 8-14 i -13
-6+ 9 1 6-10 i -10
3+1 -3-i -17
3 -3 - 8
-6+49 i 6-10 i - 8
71 2-43i

(2+4i), (-1-2i), (-1-2i)

10/1 [12]

3+1

-2-i 1+2i
1+2i 2+1

-2+431 3-i
2+21 -3+471
O+4i 1+5i
1441 6-5i
7+31 1+61
2421 1+31
2+61i 1-3i

4.16174868+3.13751356
5.43644837-3.97142582
2.38988759+7.26807071
-1.93520144~3.97509382
=-2.44755082+0.43712617
-5.27950616-2.27596303
1.03205812+9.29413278
-4.96687009-8.08712475
8.81130928+1.54938266
=10.7976764 +8.62338151

H
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-5 1
-5 1
+3 i
+2 1
-4 i
-3

-1+4i

-4+21
1+51

-8-11
8+u4i
2-4i
1+i
T+u4i

i
i
i
i
51
i
i
i

i

5+5i
2-3i
4+71
4-yi
3+i
-4-21i
Y+i

1+61
7+1
-1+51
1+21
1+61
-7+401

y-2i
3+01
1+41i
1+21
3-3i

-4+6i
6+31
2+51
5-41

7-i
O+i
6+31

3+21i
2451




" Test matrix CM15/1

([é} page 278)

(6
20
11

{ -7
-10
11

-12
-24

A

= B+i C
18 =25
28 -28
-6 1y

-15 33
12 12
-2 13
-2 5

3 -4
5 -4
11 -1

-12 13

-20 19
-3 3
11 -18

5 =12

-2 -10
g =12

27 -33
5 -9

-1 4
31 -37
21 -31
7 -17

18 -28
0 -5

-2

7 -5

-8 5
-9 -3
-4 -3

22

18
14
Ly
21
13
31

22
22
14
16

11
14




L - - e
0 ~ OO O FE W N

(@)
=

= -5-3i
= -5+421
= -9+401i
= ~9+43i
s ~8+45i
= =L+71
= 3+i

2441

16/1

For

kk ~

23

L - P - 4

()

(k;l =1,2,...,16)

for 1 # k,k+1

.,16

Y-i
) 2443
3+i
3-2i
2-21i
2+31
1+3i
-2421
3+31
-1+5i
4431
1-61
2+1

ak k+l

% 441 x

5-1i
-3-431

2+81
3+81
6+31
7421
3-7i
-5-9i
9-8i

*

Eingenvalues of A

+2.06853152
2.40341933
2.72491267
2.45640400
2.27740066
0.812811959
-1.38565721
-2.72480368
+1.57598142
+3.28048252
+1.19252750
+3.55339888
-2.45560768
-4,89673115
~-5.65716067
5.77408994

-2,054430451
+2.081055121
-2.378378451
+0.6319368611
+1.448268501
+1.33551135i1
-1.387560511
+0.6570645461
-3.830327701
+3.275661631
-5.443997521
+1.264656311
-4.692904961
+3.622108561
+1.632000821

+2,839335911
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§2 SPECIAL TEST-MATRICES

The following procedure can be used for testing methods for solving the non
symmetric eigenvalue problem.

Turning a positive definite symmetric matrix H around its horizontal middle
axis produces a (usually) non symmetric matrix T.H which is similar to a

symmetric matrix M. Indeed it is:

=y

If RRT is the Choleski decomposition of H (H = RRT where R is a lower
triangular matrix) the matrix M = RT(’I\H)(RT)_l is similar to the non
symmetric matrix 2H. The matrix M = RT’J’.RRT(RT)-l = RT?R is a symmetric
matrix with zero elements below the secondary diagonal. The eigenvalues

of the non symmetric matrix‘?H are the eigenvalues of the symmetric matrix
M= Rm%R, where H = RRT, which can be determined by standard methods for

symmetric matrices.

Example (Rutishauser):

H = Pascal matrix of order 5:
1 1 1 1 1 1 o o O o
1 2 3 4 5 1 1 0 0 0
H = 1 3 6 10 15 R=}1 2 1 0 0
1 4 10 20 35 1 3 3 1 0
1 5 15 35 70 1 4 6 4 1




25°

1 5 15 35 170
1 4 10 20 35
N
IH=| 1 3 6 10 15
1 2 3 4
1 1 1 1 1
1 1 1 1 1 1 4 6 4 1 5 10 10 5 1
o 1 2 3 4 1 3 3 1 O 10 10 5 1 O
M=j0 0 1 3 6 |1 2 1 0 Ooj|=po 5 1 o0 o
0O O O 1 4 1 l1 0 0o O 5 0O o0 O
0 o o o 1 l1 0 O 0 o 1 0 0O 0 O

The eigenvalues of ?H are the eigenvalues of M. The eigenvalues of M are

determined by using standard methods for symmetric matrices.

2. The test matrices A(n) K(n) [12],[13]

(n) =(n)

The Hessenberg matrices A and A

A
where I has been defined in 1).

g (7

have the same eigenvalues. =I A I

det A(™ = get 3™ = 1
n (n-1) (pn-2) ... 3 2 1
(n-1)(n-1) (n-2) ... 3 2 1
0 (n-2) (n-2) ... 3 2 1
A(n) = .
2 1
0 1 1
1 1 0 0 0
1 2 . O
K(n) : 1 3 eee O 0

1 2 3 4 ... (n-1) (n-1)
2 3 4 ... (n-1) n
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For n = 12 the eigenv. ..ues of A(n) (and K(n)) are:

Al = .0310280606 A7 = 1.5539887091

A2 = .0495074292 AB = 3.5118559486

Aa = .0812276592 Ag = 6.9615330856

Au = .1u436465198 A10= 12.3110774009
AS = ,2847497206 A11= 20,1989886459
AG = .6435053190 A12= 32.2288915016

(n)

The largest eigenvalues of A P are very well conditioned and the smallest

very ill-conditioned.

3. The test matrix T(n) {;u]

(Algorithm 52):

The elements of the test matrix T(n) of order n are defined by:

™ ¢, )

1)

tn -1/c-

'tin =t = i/e (i=1,2,...,50n"1)

t.. = (c-i")/c

ii

tij = tji == (i.3)/c ({1 = 2,3,...4n-1; j=1,2,...i-1)
where: ¢ = n(n-1)(2n-5)/6
(The n-th row and the n-th column of the inverse matrix (T(n))“1 are the

set: 1,2,...,n. The matrix formed by deleting the n-th row and the n-th
(n))-l

column of (T is the identity matrix of order n-1.

(n) (n) _ tnn)' All but two of the eigenvalues

The determinant of T
of T(n) are unity while the two remaining are given by the expressions 6/(p(n-1))

and p/(n.(5-2n)) where

is: det T

_ /3(n-1) (4n-3)
p-3+-v n+l

For example:

n eigenvalues differing from unity
10 .043532383 -.083532383

20 .016366903 -.024938332
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4, The Hilbert matrix H(n)

Elements of the Hilbert matrix Hin) of order n are defined by:
(n) _
where hij = 1/(i+3-1) i=1,...,n3 j = 1,...,n.

(The inverse matrix of the Hilbert matrix is given by:

11

(-1) 3 (n4i-1)1 (n45-1)1
333 2
(i+5-1) [E-1) 1 (5-1)1 1% (n-1) 1 (n-§ )1

The determinant of the Hilbert matrix is given by:

(n) o (a2 ... (1:1—1)!)L+
112! ... (2n-1)!

det H

)

The eigenvalues and eigenvectors for Hilbert matrices of order 3 through 10 are

computed in [15].
(4)

For example the computed eigenvalues of H are:
Al = 1.500214280059243 10_O
A, = 1.691412202214500 107"
Ay = 6.738273605760748 10
Au = 9.670230402258689 10—5

5) The Eberlein's test matrix E(n) [}6]

[~

E(n) = (e,.)
s ij
with e.. = - [(2i+l)n+is—212]
ii
e.. = (i+1)(n+s-1)
i+l .
* ) 1,3 = 0,1,2,...,0.
€ q * i(n-i+1)
i3 =0 ll-jl > 1

s is an arbitrary parameter and (n+l) is the order of the matrix.
(n)
a

The eigenvalues of ES

re
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Aj = -j(s+j+1) j = 0,1,2,...,n

In [16] the corresponding components of the left eigenvectors and of the right
eigenvectors are given.

When s = -2.-3,...,-2n, the matrix Eén)
of eigenvectors coalescing. In the range -2n < s € -2 at last a pair of
(n)

ar

S

is defective with two or more pairs

eigenvectors is nearly parallel, and the positive eigenvalues of E e

ill-conditioned (especially for s ¢- (n+l)).

6. Brenners test matrix B‘in; 171
3

Let Q be the nxn matrix whose entries are all 1l's. (The matrix Q has rank 1).

The eigenvalues of

B(n)

«,B = al + BQ

are: a(n-1 times) and a+Bn.

The eigenvalues of the matrix

(n),-1 _ _ B 1
(Ba,B) = {1 SEn Q} .« =

are: 1/o (n-1 times) and 1/(o+8n).

7. Test matrix R'™) 18]

(n)

The test matrix R

1

1 -1

1 -2 1

1 -3 3 -1

1 -4 6 -4 1

l1 -510-10 5 -1

1l -615-2015 -6 1

nl .
has [5] elgenvalues equal to -1 and (n- [%ﬂ) eigenvalues equal to +1.
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The symmetric positive definite test-matrix P(n) = R(n).(R(n))T with elements

i+j-2
P.. = i,j = 1,2,...,4n
1) i-1

(n))—l - (R(n))TR(n) (n)

() g .y,

and the matrix (P have the same eigenvalues (R

8. Test matrix L'P)  [18]

Let n = p-1, where p is an odd prime. The elements 1,. of the Lehmer's matrix

ij
L(p)

are:

l(_l)
1] P

where (igl) is the Legendre-Jacobi quadratic reciprocity symbol, i.e.:

0 if p divides i+j
(%il) = 1 if i+j is congruent to a square, modulo p

-1 otherwise.

Example: p=5, n=i,

-1 -1 1 0
(5) _ -1 1 0 1
1 0 1 -1
0 1 -1 -1
(p)

are 1, -1, + /p (P-:2 times), - /p (2:2 times).

The eigenvalues of L 5 7

The inverse matrix of L(p) is the matrix

@wP)y"1 dLf (i) (i) |3 (i, = 1,25...,n)
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Example:

(L(S))-l :_% -1 3 2 1

The matrix (L(p))2 is positive definite with eigenvalues 1 (with multiplicity

two) and p (with multiplicity (n-2)).

(p)y2 | -1 - tid (i, = 1,25.4.,0)
(L) {[p 6ij 1 (p)] i

(n)

9. Frobenius'test matrices F

The eigenvalues of the nxn matrix

0
) _ 1 0 ... 0 p,
STPTTOOTRe
0O 0 ... P,
are the zeros of the polynomial:
n n-1 n-2 -
A P A P-1 A oo P, = 0
If F(n) is a non-derogatory matrix (i.e. there is only one Jordan matrix
associated with each distinct eigenvalue Ak of F(n) and therefore only one
eigenvector associated with each distinct Ak) the eigenvector Vi corresponding
to the eigenvalue Ak of F(n) is given by:
n-1 n-2
vie T O AT, e A, D)
Frobenius' test matrix Fin) [}9] with
n-k n+k-1
pk = (-1) k=1,2,...,n
n-k+l
has the eigenvalues
(n), _ (2k-1)7
An(Fl ) = 2(1-cos Y] )
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Since there exists in literature an extensive list of polynomials with known

zeros, the Frobenius matrices are a wide class of test-matrices.

10. Circulant test matrices C(n)

A circulant matrix is one of the form:

cl 02 c3 . cn

C(n) = c c c . C
R S SN
c2 03 cq . cl

and is specified therefore by its first row:

c, = {cl C,oven %;
The eigenvalues of C(n) are the numbers
= 2 n-1
Ak = cl+c2zk+cszk+ .o +cnzk

where z, = cos (2%5) + V-1 sin (2%5) (k =1,2,..., n).

The eigenvector of C(n) corresponding to A, is:

k

n-1 n-2

NP SETEY 1).

v, = 1 z
= E) 3

The Brenner's test matrix is a particular circulant matrix of the form

(n)

c = {atB B B ... B}

(8)

Test matrix C ([}], page 256)

(8)

C = {123454 32}

|1}
b

-6.82842712

1
3:Au:A5:O
6
8

"
b
1"

-1.17157288

D > > D

(16)

Test matrix C ([1], page 2u40)

c(16) - {12345678987654u43 2}
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Al = A2 = Aa = Au = As = AG = A7 =0
AB = Ag = =-26.27414237

AlO: All: - 3.23982881

A12= A13= - 1.03956613

Alu= A15= - 1.44646269

A= 80

16~
Remark

Circulant matrices are related to the numerical solution of elliptic and

parabolic differential equations with periodic conditioms.

Remark

The eigenvalues and the eigenvectors of block-circulant matrices of order p.m
can be found by computing the eigenvalues and the eigenvectors of p sub-matrices
of order m.

(J. Ponstein: Splitting certain eigenvalue eigenvector problems,

Numer. Math. 8, 412 (1966))
(n)

11. Unitary test matrices U

The complex matrices U which satisfy the condition
U .Ux = U’.U =1 (* denotes conjugate transpose)

are called unitary.

Any eigenvalue of U has absolute value 1.

(n)

Test matrix Ul——
2nk™.

Let r. e not (k = 1,2,...4n~1)

The matrix




33

is unitary.

Test matrix Ugn)

(n)
2

- 2 . ijm
Uiy © dn+l Sih T4l

has [%] eigenvalues equal to -1 and (n -[%P eigenvalues equal to +1.

The nxn real matrix U with elements

(n)

12. Test matrix D ([2Q), page 7u)

The skew-symmetric matrix

0 1 1
-1 0 .. 1
(n) _ ’ (n) _
D ol (order of D = n)
-1 -1-1 0
has the following eigenvalues:
(n)y _ _. ™ =
Ak(D ) = -i cotg ((2k-1) 3;) (k=1,2,...n).

§3 TRIDIAGONAL TEST-MATRICES

Three orthogonal polynomials with consecutive indices are related by a recursion

relation of the form:

P (x) = (x-B )P (x) -y P _.(x) n=23...
P (x) =1

o
P, (x) = x-8,

The polynomial Pn(x) can be expressed as the determinant

(n)

P (x) = (-1)" det(3'™-xI)

where:
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Bl 1 0 0 ... ©
(n) Y, 82 1 0 ... O
J =
0 Y 831 .. O
0 0O 0 O Y, B,

n)

Thus the eigenvalues of the tridiagonal matrix J( are the zeros of the

orthogonal polynomial Pn(x). There are extensive tables of the zeros of the

(n)

orthogonal polynomials [ 217 so that we can consider J and anypolynomial

P(J(n) (n)
J(n)

. . -1 .1 .
) as a test matrix. The inverse (J “) = of some tridiagonal matrices
are easy to construct; thus also these matrices have been used for

testing purposes.

Test matrix J(n) [22]
9

240 -1 0 6 ... O 0
J(n) i -1 2 -1 0O ... O 0
a,B 0 -1 2 -1 ... 0 0O
0 0 0 0 2 -1
0 0 0 0 -1 248
For |a] < 1 and |B| < 1, the eigenvalues of J(n; re:
b}
gy _
A9, g) 2(1-cos 6, ) (k = 1,2,...,n)

where the Bk are the n distinect roots of equation

sin (n+1)6 + (a+B) sin n® + aB sin(n-1)6 = O

in the range 0 < 6 < 7.

In particular (k = 1,2,...,n):

(n) - (n), _ 2kw
>‘k 0, l) A (Jl O) = 2(1l-cos m)

(n) - (n) - (2k-1)7
Ak(JO l) = A (J -1, O) 2(1-cos ——2;;]'_—-)

A (W i“i) = 2(1-cos —15

g - (k=1 )
Ak( -1, _1) = 2(1- cos ——==)
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(n), _ L) (R 2
lk(J0 0) = 2(1-cos —) 4 sin (2(n+l))
The eigenvectors of J(n) are v, =V 2 s:.n(kmr) (i,k=1,2,...,n). The
(m) 20 ik ot (n) (n)
determinant of J is equal to n+l. The test matrices (J. .) and (J
0,0 0,0 0,0
have the form:
5 -4 1
-4 6 -4 1
1 -4 6 -4 1
(n),2 _
(JO,O) = 1 -4 6 -4 1
1 -4 6\ -4 1
1 -4 6 -4
1 -4 5
14 -14  +6 -1
-4 420 -15 +6 -1
+6 -15 +20 -15 +6 -1
-1 +6 ~-15 420 -15 46 -1
-1 46 -15 +20 -15 +6 -1
(n),3 _ ~ .
(JO,O) = RN
-1 +6 -15 +20 -15 +6 -1
-1 +6 -15 +20 -15 +6
-1 +6 -15 +20 -14
-1 +6 =14 +14
. (n),2 (n) 3 (n) (n)
The eigenvalues of (JO,O) (J )k 0, O) and )k 0, O )
respectively, and their elgenvectors are the same eigenvectors as J0 0
. E)
Test matrix J(n)
a,b,c
a b o0
a
(n) - (n) _
Jg Db © c a (order of Ja,b,c = n)
a b
c a
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(n)

a,b,c are (bc > 0)

The eigenvalues of J

Xk(J;n; c) = a-2\/ b.c cos (;%%3 (k=1,2,...,n)

(n)
r

Test matrix J (Rutherford, Todd)

p-r 2q r
2q P 29 r
r 29 p 29 r
- A Y -
J(n) e N (order of J(n) . n)
P-d r 2¢ 'p2 r P»q,
r 29 p 2q
r 2q p-r
. =(n) ) -
The eigenvalues of J are: (k = 1,2,...,n)
P,q,r
AGa™ s ) -1 @® - (@ x8)2 - O,
k( p,q,r) (p-2r) - (q (q cos k€)7) ] =it
The result has been obtained by relating j(n) to (J(n) )2.
pP-q,Tr a,b,c
The elements a,. of the inverse matrix of J(n) are given by:
ij 2,-1,-1
i(n-i+1) .
Tl for 1i=j
=4 a.. ,-1/(n+l) for j>i
%137 “i3-1 ?
aji = aij for j¢i
and n is the order of J(n) .
2,-1,-1
The elements a.,. of the inverse matrix of J(n) are given by:
ij 2,151

PR |
aij = min(i,3j) 5
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Test matrix K(n)
The inverse matrix of JS;)O has the form:
]
n n-l1 n-2... 2 1
n-ln-1 n-2... 2 1
K(n) - |p20-2 n-2... 21
2 2 2 ... 21
1 1 1 ... 11
. (n) )
The eigenvalues of K are:
s sX KNz (2-200s Zdary™t (k=1,2,5. .+ »n)

In [13] are given the values of lk(K(n)) for n = 12

/ﬁ-= 0.25398978 /% = 0.61529474
M5 = 0.26648096 /% = 0.87074533
M = 0.28918975 M = 1.3790212
My = 0.32555754 ‘/10 = 2.6180340
s = 0.38196601 M = 7.1201222
/% = 0.47045960 M2 =63.409139
. (n)
Test matrix Jl
%8
The tridiagonal J%ijg is related to the Jacobi polynomials.
)
IECV I QP10 e e DYy D I G- , 2K(Kiekid)
d)P 7| (2K+a4p-1) (2K+d4$-2) *  (2K+oi+B) (2K+d4f-2) * (2K+o+8) (2Kt +f-1)

(K =1,2,...,n)

The eigenvalues of Jﬁ&% are the zeros of the Jacobi polynomials of order n.
i
(f2l], page 164 foro\=,3=1; page 167 for d:ﬂ: 3/2; page 174 for d=0 P=1,2,3,4)



(n)

Text matrix Jl

(n)

The test matrix J n

1
(n) _ (n)
(J, = JlO,O)'
0
1/3
(n) _
J1 =

The eigenvalues of Jl
([21], page 100)

Test matrix Jgn)

(n)

is a particular case of the matrix Jlo\ﬂ
)

.38

(n) for o=p=0.

(order of Jgn) = n)

are the zeros of the Legendre polynomials of order n

The test matrix J;n) is a particular case of the matrix Jl(n) for d:ﬁ: -1/2
2 - -1/2,-1/2
0
0
(n) _1 (n) _
J2 =3 1 0 (order of g, = n)

The eigenvalues of Jéngre the zeros of the Thebychev polynomials of first kind:

(n), _
)tk(J2 ) =

([?%J, page 158)

Test matrix Jén)

The test matrix J(n)

cos(K—l/Q)qjﬂ (K = 1,2,..

3 is a particular case of the matrix Jld B
/

. sT)

() for d=ﬁ=1/2.
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0
1
(n) _1
N 1 o 1 (order of J;“) = n)
1 o 1
1" ~o0
The eigenvalues of Jgn) are the zeros of the Thebychev polynomials of second kind:
(n), _ kw
/\k(J3 ) = cos ey (K =1,2,...,n)

([24], page 161)

Test matrix J25"

(n)

The test matrix J2d

is related to the gemeralized Laguerre polynomials.

J2((*n) = {-(K-!-Ol—l) 3 (2K+a-1); -K }

(K = 1,2,...,!‘1)

The eigenvalues of J2(n) are the zeros of the generalized Laguerre polynomials.
ol

(n)

Test matrix J‘+

The test matrix Jin) is a particular case of the matrix J2;?) for 4:=0.
1 -1
-1 3 -2
=2 5 -3
J(n) = N

73 ~
-(n-2) (2n-3) -(n-1)

-(n-1) (2n-1)

The eigenvalues of Jin) are the zeros of the Laguerre polynomials of order n
([21], page 254).
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Test matrix Jén)
0 1/2
1 0 1/2
g - 2 0 1/2
S N
\\
(n—2)\0 1/2
(n-1) O
(n)

The eigenvalues of J
([21], page 218).

5

(n)

o

Test matrix J3

(n)

The tridiagonal matrix J3a

J3
a

11}
~
[\ ]
~

i,j = 1,2,...,n

= 4(i-1)%(14a)
2i(2i-1)
= -(2n-2i+4)(2n+2i-3)a

ii

ii+l

i+li

oo
'

ij

Test matrix J6 [23]

The test matrix J_. is a particular case of the matrix J3

6

a = 0.9. The non zero elements and the eigenvalues of J

are the zeros of the Hermite polynomials of order n

is related to the Lameé polynomials.

li-3] > 1

(n)
a
are:

for n=13 and

6
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a a,. a A

i+l i ii iisl i
o 2 22.7677122
-540 7.6 12 . 110.037603
-534.6 30. 4 30 189.702991
-522 68.4 56 261.758027
~502.2 121.6 90 326.192938
-475.2 190 132 382.990354
-4y] 273.6 182 432.116798
-399.6 372.,4 240 473.500040
~-351 486.4 306 506.9u48122
-295.2 615.6 380 531.252512
-232.2 760 462 545.029856
-162 919.6 552 565.168267
-84.6 109u4. 4 592.534780

§u. TEST-MATRICES GENERATED BY KRONECKER OPERATIONS

Let A = (aij) and B = (bkl) denote NxN and MxM matrices, respectively. The
Kronecker product (tensor product, direct product) of A and B, denoted by

ABB, can be written as N.MxN.M matrix in block partition form:

11° 212 1N
B
21 22 2N
MB: ..................
aNlB aN2B . aNNB

If V and W are eigenvectors of A and B with eigenvalues A and u, respectively,

then V@W is an eigenvector of A@B with eigenvalue A.u.

The Kronecker sum of A and B, denoted by A®B, can be written as a (N+M)x(N+M)

matrix in block partition form:

BN
A®B = |5 3

The matrix A@®B has the eigenvalues of A and of B.

Thus the matrix A10A20 cee ® Am has the eigenvalues of A, and of A2,. ey

1
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and of Am.
The matrix A10A29 e OAm and the matrix

Al A12 A13 Alm
2 23 2m
3 3m

0 0 0 A
m

have the same eigenvalues.

The N.M eigenvalues of the matrix A@MHN@B are Ai+uj

Test matrix TPl [24]

A 2A 0100
TP, = 0 01 0
A 3A Azl 0 0 o0 1
0 0 0O
107°0 0 o0
27k
5 1
Ak(TPl) = 0.5 e
2%5 i k = 1,2,3,4,5
Ak+5(rpl) =0.1 e
Test matrix TP, 8]
™, = A 2A p=| 5B -B
4A  3A 5B B
-2 2 2 2
-3 3 2 2
B2l 2 0 u 2
-1 0 0 5

A (TP,)) =15 +54, -3 + i, 45 + 15i, 60 + 20i,
304101, -6+2i, -9 + 3i,-12 + W4i.

o » O O O

(i=1,2,...,N3;j=1,2,...

»M).
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Test matrix TP, 18]
8A LA B 2B
TP3 = A =
-5A -A 4B 3B
4C 3C -1 0O 0 O
B =
oo 10100
c=]-1 -~ 9 1 O
-1 0O 0 1
-1 0 0 O
a = 1#v-3

A\ (TP,) = 3,6,-15,-30,+1.5a, +3a, +7.5a, *15a,
4,8,-20,-40,+ 2a, +10x, +20a

Test matrix TPu [25]

A 2A 3B 3B

TPl+ = A =
yA 3A 5B B
6C ~-C C (0] -2 2 2 2
8C 0O C 2C -3 3 2 2

Bl o0 ¢ 2 €2 0 v 2

5 -C -C C -1 0 0 5

a = 3+/-1 ) B = 1+2/-1 s Y = a,B

Ak(TPu) = 120y, -40y, =24y, 8y, 90y, -30y, -18y, 6y, 60y, =20y,
-12y, 4y, 30y, =10y, -6y, 2y

§5 TEST-MATRICES GENERATED BY SIMILARITY TRANSFORMATIONS
We summarize the method of J.M. Ortega [26] for obtaining test matrices

with a prescribed distribution of the eigenvalues. The matrices generated

also have known eigenvectors. The eigenvalues of the matrix R are known,
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then the test matrix
S =R + uv*R - aRuv’ - a(v’!Ru)uv’t

where u and v are vectors (»® denotes conjugate transpose)

1

®
1+v u

a =

has the same eigenvalues as R. The test matrix S is generated with 0(n2)
operations.

For testing accuracy of routines, the matrix S must be generated exactly.
Some special choices of u,v,R facilitate the computation of the test

matrix S.

Symmetric test matrices

n
Let I vi
i=1

1, u=-2vand R = d1ag(d1d2...dn).

Then
D-2vaD—2vaT + u(vTDv)va

wn
]]

is an nxn symmetric matrix with eigenvalues dl’d

which are the columns of I—2va.
-1/2n-l/2...n—1/2) then’

2,...dn and eigenvectors

In particular, if VT = (n

1 {2 (n
S = = {n d.6.. - 2n(d,+d.) +4] I d J J
2 " %% e R e

(Gij is the Kronecker symbol).

Real and complex test matrices

T

Let R = diag(dld2... = (11...1) and vT =(11...1-=1...-1),

then the elements sij of the test matrix S are:

dn),_n = 2m, u

. - .— 3 < )
diéij (dl d] + o) 1¥jm

ij di‘sij + (di-dj + a) mtl€ <€ n



45

with
n
- ¢ d, - z

k=1 Ko k=mil dk

The matrix S is non symmetric with eigenvalues dl d2...dn and eigenvectors

T
which are parallel to the columns of I+uv .
If di(l < i € n) is a real number the matrix S is a real test matrix (with
real eigenvalues). If di(l-$ i ¥ n) is a complex number the matrix S is a
complex test matrix.
CHAPTER I1I
THE CONDITION NUMBERS OF THE ALGEBRAIC EIGENPROBLEM

INTRODUCTION

Any computing problem is ill-conditioned if the values to be computed are

very sensitive to small changes in the data. A matrix may have some eigen-
values which are very sensitive to perturbations in its elements while others
are insensitive. Similarly some of the eigenvectors may be ill-conditioned
while others are well-conditioned. Besides an eigenvector may be ill-
conditioned when the corresponding eigenvalue is not.

It is convenient to have some number which defines the condition of a matrix
with respect to the eigenproblem and to call such a number the '"spectral

condition number"

It is evident that such a single number would have severe limitations. Indeed
if any one of the eigenvalues were very sensitive, then the '"spectral condition
number'" would have to be large, even if some other eigenvalues were very
insensitive.

A compromise is provided by introducing numbers which govern the sensitivity

of the individual eigenvalues and which are called the "condition numbers

of the matrix" with respect to the eigenvalue problem.




46

Some relationships between these condition numbers are given. Besides these
numbers are related by inequalities to the '"departure from normality'", the
"discriminant" of the eigenvalues and the Gram-determinant of the eigen-
vectors of the original matrix.

Finally the ill-conditton of the eigenvectors of a matrix is discussed. The
main result is that an eigenvector of a symmetric matrix (which is well
conditioned with respect to the eigenvalue problem) is poorly conditioned
if its eigenvalue is close to the remaining eigenvalues.

When an approximate eigensystem of a matrix has been computed, it is useful
to have some procedure which will give a-posteriori bounds for its errors.
In §6 we summarize some results.

In this report we use the following notations.

The norms of a vector x (xT = (xlx

+ |x2]p

2...xn)) are defined by
1 ' l
|x;p = (]xllp +...t !xnlp) /p (p =1,2,»)

where lem is interpreted as max Ixi

The norm ixl2 is the Euclideanllenght of the vector x.
n

The matrix norm subordinate to ]xin is denoted by lA]n' (A = (aij)i j'l)'
“ I 3 )=

| ;|
|Al, =max ¢ Ja,.|
Loy 4 13

n
|A|m = max 1L Ia..}
i 3= B
I Ll T

(A], = max = v 0(A™A)
2 x#0 1%l

where o(B) is the spectral radius of the nxn matrix B with eigenvalues
AApeeed (p(B) = max [, [).

. b . * - T -
The matrix A® is defined by A = (A) where A denotes the matrix whose elements

are the complex conjugate of those of A and BT denotes the transpose matrix
of B. There is a second important norm which is compatible with the vector
norm lx|2. This is the so-called Euclidean or Schur or Frobenius norm and it is
denoted by iAiE. It is defined by
n n

Al_=(z I Ja
S

|2 1/2

)
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§1 SPECTRAL CONDITION NUMBER

We consider the "spectral condition number" of a nxn matrix A with respect
to its eigenproblem when A has linear elementary divisors.

In this case there is a non-singular matrix H such that

H lAH = diag(},)

having its columns parallel to a complete set of right-eigenvectors of A and
such that H—l has its rows parallel to a complete set of left-eigenvectors
of A. Ai is the ith eigenvalue of A. Normalized right and left eigenvectors
corresponding to Ai are given by:

He (H'l)Te.
1

- i , -
*i 7 The, T, Vi T TEDTe T,

where e; is the ith column of the identity matrix I.

The number

- 1 "ll H H

defines the ''spectral condition number' of A.

The overall sensitivity of the eigenvalues of A is dependent on the magnitude
of k(H) since the following theorem holds ([1], page 87 ; [2))

Theorem (Bauer-Fike)

Let the matrix A be of order n and have n linearly independent eigenvectors
with eigenvalues Ai (1 £1¥ n). For any fixed matrix B, define the perturbed

matrix A(e) = A+eB. Then each eigenvalue A(e) of A(e) satisfies

. -1 ‘
min |ACe)-A,| K le| |B]_|H ~|_|H]
1<i¢n * P PP

for any p-norm, with p = 1,2,

Thus the eigenvalue problem of the matrix A is "ill-conditioned" if k(H) is
"large" (with respect to 1).
When A is an hermitian matrix (A = A*) the "spectral condition number"k(H) = 1;

thus the eigenvalue problem of hermitian matrix is well-conditioned.
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More precisely the following theorem holds:
If A(e) = A+eB, where A and B and A(e) are hermitian matrices having the

eigenvalues Ai’ My and Ai(e) arranged in non-increasing order, then

n
(slel €z ui2)l/2)

Ag(e-rl & lel 13|
i=1l

2
An useful bound for the matrix (A(e)-A), where A(e) = diag(kfc)) and A = diag(ki),
when A and B are hermitian matrices is given by the following theorem ([1],page 104)

Theorem (Wielandt-Hoffman)
If A(e) = A+eB, where A, B and A(e) are hermitian matrices having the

eigenvalues Ai, My and Ai(e) arranged in non-increasing order, than

Bl (zlef (1 uH/?

1 1

) .

"nt~ 9

;A(E)"A'Eé € i
i
A consequence of the Courant-Fischer characterisation of the eigenvalues of
Hermitian matrices gives the following theorem:

If C = A+B where A,B and C are nxn hermitian matrices having the eigenvalues

ass Bi and Y; arranged in non increasing order, then

ai+8 £ v, g0, t8B
and
2 2 _ 2
I (vjme;)” & E By = Blg
1 1

§2 THE CONDITION NUMBERS OF THE MATRIX (WITH RESPECT TO THE EIGENVALUE PROBLEM)

We introduce a condition number which serves as a measure of the effect of
the perturbation of on each eigenvalue of A.

The matrix A has linear elementary divisors; thus H_lAH = diag@ki), where
the columns of H are parallel to a complete set of the right-eigenvectors

of A and the rows of H—l are parallel to a complete set of left-eigenvectors

of A.

y.X

i7i

define the "condition numbers of A" with respect to the eigenvalues Ai.

It is:
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-1.T
e |, Heyl, e | lhe |
eila i'2

q, = = = |(H
o l)Tei)T(Hei)

We may take the ith column of H to be X, and the ith row of'Hnl to be qiyz.

With H in this form we have:

H L(a+eB)H

. T n
dlag(xi) + e(qi(yinj))ij=1

. n
dlag(xi) + e(quij)ij=1

where B.. = yTBx..
1] 1]
An application of the Gerschgorin's theorem shows that the eigenvalues

of (A+eB) lie in circular discs with centres (Ai+e Biiqi) and radii
+ £

z le (qi Bij)l. If Ibijl < 1, since |B|2\ IBIE(n, we have

J#i

H

T
1€ Ivil, IBxl, € 181, 1]

|x.],<$n.

]B 2 j'2

ij
Thus the ith disc is of radius less than n(n-1)|e qil.

If Al is a simple eigenvalue of A, for sufficiently small ¢ he first disc
is isolated and therefore contains precisely one eigenvalue.

If kl is a multiple eigenvalue of A with multiplicity m, there are m discs
with centres A1+e q;8: 5 (i=1,2,...,m) whose corresponding radii are all

of order e. For sufficiently small e, this group of m discs will be isolated
from the other discs and in their union there are m eigenvalues of A+eB.

When |qi| is "large" (with respect to 1), the eigenvalue problem for finding

Ai of the matrix A is ill-conditioned.

When A is an hermitian matrix, we have ]qi| =21fori=1,2,...,0.

§3 PROPERTIES OF CONDITION NUMBERS

Some relationships between the numbers k(H) and q; are ([}], page 88):
1< Iqil £ k(H)

1< k(H) £
3

{1 o e

1 IQjI

It is ([1], page 56):
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omax(H)
K(H) = o . (H)
min

where omin(H) and ¢ x(H) are the least and the greatest of the '"singular

values" oi(H) = ki(H H) and Ai(HxH) are the eigenvalues of the matrix H*H.
The inequality of Kantorovich ([b], page 81) gives the result
-1.T T -1
STV PR e SOV Y el PR Lo
i -1.T_ T - T
((H ™) e;)" . (He;) Iei . eil
T.-1 2 2
]eiH |2 . |Heil2 < omax(H) + cmin(H)
T -~
leil2 ’ iei|2 2°max(H) : omin(H)

Thus:
1 -1
|qil~S 5 k() + (k(H))

The condition numbers k(H) and |qi| are related by inequalities to the
"departure from normality" of A, the "discriminant" of the eigenvalues of
A and the Gram-determinant of the eigenvectors of A. (4], [5]. If all

eigenvalues of A are simple then

nHn t~3

EHRS n\-_% (k(H) + (k(n)‘l)]

j=1

If Ai is a simple eigenvalue of A, then
= 3 - - -1
Iqil ladj(xix A)IE . nilxi xk[

where II. denotes the product over all k#i in 1 ¢ k ¢ n and adj C denotes

the matrix {Ekj} whose element E&j is the cofactor of the element in the

ith row and jth column of the matrix C. (adjC = (det C).C-l).

The "departure from normality" of A is defined by:

> = i -

A bound for D is given in [6].

2 ¢ /na—n ® ®
D” 5 |A"A-AA |E

|2 1/2

I3

I
1
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Clearly D = O when A is a normal matrix.

If Ai is a single eigenvalue of A then

Dé‘ n-1
o <2
(n-—l)Gi

where Gi = min ]Ai-kk| over all k#i in 1<« k X n.

An immediate inequality is:

2
D

oo [ 2]

1 26?

If all eigenvalues of A are simple, then the discriminant A = I (Ai-l.)2

of the characteristic polynomial det(AI-A) is different from i#

zero. We have the following theorem:

If A # O then:

n{n-1)

M

<

2 2 1 2
(|A]Z - = |trace A[°)
2 /A 1 E n

n-~

k(H) +(k(H)) "L _1__{

When A has linear elementary divisors an understimate of k(H) is:

[A*A-An" |~ 2
y 1 E

|a%]g
If all the eigenvalues of A are simple then:
1
(1 ]?—‘2?( k(H)+(k (H)) <[ 1 ]1’2
\det (%) 2 det (H"H)

If A is a real matrix

—%I 1+v1—D1
kiqr‘ <& (K(H)) & ———=
Dl 1-v1-D
1
) _%3- ,  1+/1°D,
(—}“ < (K(H)® { —=
Dz 1—/1'-D2
( L -1 ( \!;-
1 JQn k(H)+(k(H)) n 1 12n { n]
5] < 3 53t 3
tnln2 2 2 lDlan 2

where
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_n". det(HTH)

1 [trace(HTH )]n

T n-1
n". Cdet(H H) )

- [trace(HTH) n
2 [det(HTH).trace((HTH)_l)]n det(HTH)

D

The matrices A and RARx, where R is an unitary matrix, have the same condition

numbers:
k(H) = k(RH)
q; = qi (i =1,2,...,n)
where q. = yTx and q! = (Ry )T(Rx )
i i7i i i i

Hence the sensitivities of the eigenvalues are invariant under unitary
transformations. However, in general, it is possible that the problem of

finding Ai’ an eigenvalue of A, is ill-conditioned, although the problem

of finding the same Ai as an eigenvalue of B = P_lAP is well-conditioned.

This fact is illustrated by the following example([?], page 146). Let be

given
A1
A2
A = As Ai#xj (i,j=1,2,...n)
\‘An
with the modal matrix
1 1
0 .
X = 0 0
0O 0 O §
Then
1 -1/8 -1/¢6 -1/8
0 1/68 0 0
_l—
X" =to o 1/6 0
0 0 0 1/68
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The "condition number" of A with respect to Al is

4

= {n-1)
Iqll - 1+ 2

s

which is a large number for small §. Therefore, for small §, the eigenvalue
problem for finding Al is ill-conditioned.

But the eigenvalue problem for finding the eigenvalue Ai of the matrix
B = P AP is well conditioned if P = X.

Indeed the right eigenvector and the left eigenvector corresponding to A

of

1

1 A -A2 Al-AS . Al-kn
. A2 0 0
B=P AP = 0 A oo
3
0 0 0 .o A
n

are, respectively, (1,0,0,...,0) and (1,1,1,...,1). Thus the "condition

number''of B with respect to A, is qi = /n which does not depend by 6.

1

§4 THE CONDITION NUMBERS OF PARTICULAR MATRICES

a) The eigenvalues corresponding to non-linear elementary divisors must be
regarded, in general, as ill-conditioned. The following example, due to

G.E. Forsythe, serves to illustrate this case. The nxn Forsythe matrix

A(e) = .

has characteristic polynomial (x-1)" + € = 0. If € = 0, all eigenvalues are
unity while if € # O the eigenvalues differ from unity by !ell/n. Thus if
n = 10 and € = 10-10, then |e|1/n = 10-'1 and a change of one element of the

matrix has produced a change in the eigenvalues 10g times as large.

b) Even if the eigenvalues are distinct and well separated, they may be ill-
conditioned. ([1], page 90) €onsider the 20x20 matrix A defined by
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The eigenvalues of A are A k (k = 1,2,...,20) and the right eigenvector

Xy of A corresponding to Ak k has the components:

20-k (20-k)(19-k) . _(20-K)! .
1 (-20) 5 > 3 see ,——m,o; ...3 0
(-20) (-20)

- 1 - -
the left eigenvector Yy of A has components [b;o;...;o; iki%%L;...; Sﬁil)l%}Jll;
(k-1) . 1] 20 20
20 °? :

We have
19
0
lq | = —— = 2 (k=1,2,...,20)

vk (20-K)1 (k-1)1

which is a large number for all values of k.

)

¢) The matrices of class A(n considered in chapter 1 §2, 2) have eigenvalues

of widely varying condition.

(n)

The largest eigenvalues of the matrix A are well-conditioned and the
smallest very ill-conditioned.
The following consideration makes evident that same of the eigenvalues

(n)

of A must be very sensitive to small changes in same matrix elements.

It will readily be verified that the detA(n) = 1 for all n. If the (1,n)

element of A(n) is changed to (lt+e) the determinant becomes l+e(n-1)!.

If € = lO—7 and n=18, the determinant is changed from 1 to (1-17110—7),
that is, approximately -3.55 107. Now the determinant of a matrix is equal
to the product of its eigenvalues. Therefore at least one eigenvalue of
the perturbed matrix must be very different from that of the origimal. It
can be shown that for n=12 the smaller eigenvalues of the perturbed matrix
are changed beyond recognition while the larger ones are scarcely affected
by the perturbation. With increasing values of n the smallest eigenvalues

become progressively worse conditioned.
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§5 ILL-CONDITIONING OF THE EIGENVECTOR OF A MATRIX

The eigenvalues of a matrix can be insensitive to small changes in the
matrix; the same cannot true of the eigenvectors. In fact, the eigenvalues
of a (real) symmetric matrix are well-conditioned while the eigenvectors
need not even be continuous functions of the matrix elements. The following

example is due to J.W. Givens. Let:
2 .2
l+e cos — -€ sin —
€ €
. 2 2
-¢ sin — 1-e cos —
€ €

then A has eigenvalues l+e and eigenvectors (sin %, cos %0, (sin %3 -cos %)

so that as €»0, the eigenvectors do not tend to a limit. Thus arbitrarily
small changes in the coefficients of A can change the eigenvectors completely.
The sensitivity of an eigenvector of a (real) symmetric matrix is connected
with the separation of its eigenvalue from the remaining eigenvalues. Indeed
the following theorem holds ([B], page 101).

Theorem (J. Ortegc}

Let A& and A+E be symmetric with eigenvalues )‘l £ A, ....€£)_ and

2 n

pl.g u2\S ""‘S“n and corresponding normalized eigenvectors Up Uy eee u
and Vi Vo ees Voo Then if

]Ak-xi 2a > |}:|2 i#k
we have

- € v /14y

[uk vk|2 < v Y1ty

where

E],

Y= a-|E|2

Thus if an eigenvalue is well separated, the above theorem shows that the

corresponding eigenvector is well conditioned. For example, let [E|2~S n 10_8

and min ]Ak-kil = 10-3 = a. Then ¥y = n 10“5 is a bound on the eigenvector
erro%fk
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If Ak is a multiple eigenvalue, then the above theorem can be strengthened

to show that the eigenspace of A, is well conditioned provided again that

k
A, is well separated from its neighbors.

k
Now we study tl.e perturbations in the eigenvectors of a matrix A which has

distinct eigenvalues. We have therefore

Hla H = diag(A;)

and the columns of H forw a complete set of eigenvectors Xy KgeeoX of A.
We denote the "correspondlng eigenvectors of A+eB by Xy (g) X, (e). ..xn(e),
and the eigenvectors of H_ (A+eB)H by z, (e) 2 (e) .zn(e) so that xi(e)=H zi(e).
We now consider a particular vector zj(e). It is clear that the jth component
of zj(O) is unity, and all the rest zero, since xj(O) = H z.(0) and x.(0)

is the jth column of H. W.e assume that for sufficiently small € the ith
component of zj(e) is the largest, and we normalize so that this component

is unity. Then the equation

A (e) z.(e) = H L(A+eB)H z.(e) =
3 3 j

(dlag(x ) + e(q 813)13 l)z (e),

where Bij has been defined in §3, gives for the kth component of zj(e),

with k#j, the result

n
Ai(e)zkj(e) = zkj(e) + eqy hil( Kh hj(e))
Thus:
(o
ixj(e)—xk zkj(e)l\f e]qk} Lnil [Bkh|J
Finally:
R
ela = ly, Bx_|
n=1
]zkj(€)|s
]Aj(e)-xkl
where
- 1
lqkl -

vy % |



57

§6 A POSTERIORI ERROR BOUNDS FOR THE EIGENVALUES AND THE EIGENVECTORS

When an approximate eigensystem of a matrix has been computed, it is useful
to have some procedure which will give bounds for its errors. Here we summarize
some results contained in ({77, page 140) and [Q].

Hermitian matrices . Let A and x be an approximate eigenvalue and the

corresponding <igenvector with Ix[2 = 1 of the hermitian matrix A and let

n £ Ax-Ax. Then there is an eigenvalue Ai of A so that

A Al nl, = e

If we compute the Rayleigh quotient

®
T X ix = xxAx and if |A.-ul > a, j #i,
then X x ’
2 .21
il $E 1= 5
a

so that if a is large compared to & then p is a better apr._oximation than A
to Ai. In this case the computation of p may be considered a correction
procedure. Besides, if u, is a normalized eigenveetor of Ai’ then

E2 / E2
Ix-ui|2\<——— 1+

2 2
a a

Non-hermitian matrices . For non-hermitian matrices it is not possible to

obtain a-posteriori estimates for the error without being given some
information about all of the eigenvectors of the matrix. An useful estimate

for the eigenvalues of a general matrix is given by the following theorems.

Theorem (Franklin)

Let A be a matrix of order n, and have a set of n linearly independent
eigenvectors {ui}, and eigenvalues {Ai}. Let A and x, be an approximate
eigenvalue and the corresponding eigenvector with |x[Q = 1 of the matrix

A. If for some € > 0 ,

|Ax-Ax[2\< &:[Axl2
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then:

min [1- 2] & ¢ [ul - |uT]

AL

2
A.#0
i ]

2

where U is the model matrix which contains in the ith column the vector Us .
The following theorem is a generalization of that given for hermitian matrices.

Theorem

Let A be a matrix of order n, and have a set of n linearly independent eigen-
vectors {ui} and eigenvalues {Ai}. Let X and x be an approximate eigenvalue
and the corresponding eigenvector with lxl2 = 1 of the matrix A. If for some

e > 0,

IAx-Ax|2 XY e|x|2

then:

min lxi—xl <<e[U-1[ .

2" 1V
i

2

where U is the modal matrix which contains in the ith column the vector ui.

CHAPTER III
NUMERICAL EXPERIMENTS
INTRODUCTION

In this report we need the following quantities.
Xi is the "true" ith eigenvalue of the given test matrix A.
Ai is the ith computed eigenvalue of A.
X is the computed modal matrix.
The ith column of X contains the computed normalized eigenvector Xs

corresponding to Ai of A.

is the "maximum radius of indeterminacy'" of the eigenvalues

max IAxi—AixilE

i
of A.

Let % be a normalized eigenvector corresponding to the "true" eigenvalue X of A.
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Let x be a computed normalized eigenvector corresponding to the computed

eigenvalue A of A. Then |x-%| is the "absolute error" of the vector x.
§1 SYMMETRIC MATRICES

1.1 Methods tested

For the solution of the eigenproblem of a real symmetric matrix the

following methods are taken into account:

1) The Jacobi method,
2) The threshold Jacobi method,
3) The Givens-Householder method,

4) The Rutishauser method.

Four routines are selected from a scientific library which represent these

different methods.

1) The Jacobi method: Routine HDIAG (Share program, SDA 705). This is the

original version of the Jacobi method in which plane rotations are used
to annihilate all off-diagonal elements of the matrix using the maximum
off diagonal element as a pivot at each stage. The eigenvectors are

obtained by computing the product of the plane rotations. ([I), page 266),

2]

2) The threshold Jacobi method : Routine EIGEN (System/360 Scientific Subroutine

Package). This is a variation of the Jacobi method, in which plane rotations

are used to annihilate, in a regular sequence, only those off-diagonal

elements of the matrix which are greater than some preset value (threshold).

When all elements are less than this preset value in absolute value, the

threshold is lowered and the process continues until some final "tolerance"

T is satisfied. ([ﬁ], chapter 7).

3) The Givens-Householder method: Routine BIGM (Share program SDA 3202).

With this method the eigenproblem is solved in three steps.
a) A symmetric tridiagonal matrix similar to the original matrix is

obtained by an orthogonal transformation which does not depend on
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plane rotations(*) (Householder's reduction).

b) The eigenvalues of the original matrix are computed by the use of Sturm's
sequence derived from the tridiagonal matrix (Givens' procedure).

c) The Wielandt inverse power method is used to calculate the eigen-
vectors of the tridiagonal matrix. Then the orthogonal transformations
are applied in reverse order to obtain the eigenvectors of the original

matrix ([1], page 290), (([4}, chapter u).

4) The Rutishauser method : routine LRCH 5 . This routine computes only

the eigenvalues of a band-symmetric matrix with the LR transformation
method. The method bases essentially on the fact, that by starting with
the given matrix A = Ao’ the decomposition of AS into the product LsRs

and the reconbination of L and R_ by forming their product A =R .L
s s s+l s s

generate an infinite sequence of similar matrices A A2,... which under

13
certain conditions converge to a diagonal matrix.

1.2 Description of the tests

A preliminary test of the above methods 1), 2), 3) is made with some test-
matrices collected in chapter 1 §1 and §2.

In Tables 1 and 2 we give the results of this test. The eigenvalues and the
eigenvectors are calculated in "single precision" on IBM 360/65 (floating
point arithmetic). The input test matrices are given or constructed in "double

precision'".

In almost all these test matrices we have observed:

a) the '"maximum radius of indeterminacy" is related to the eigenvalue of
greatest modulus;

b) the "maximum relative error' is related to the eigenvalue of smallest

modulus.

()

If we apply plane rotations we have the Givens' reduction. Since
Householder's reduction is about twice as fast as Givens' reduction and

equally accurate, we consider only the Householder method.
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In fig. 1 the behaviour of the '"computation time" on IBM 360/65 vs. "order"
of test matrix is given. In Table 2 (last column) the '"computation time"
for the Givens-Householder method (BIGM routine) is subdivided into '"time
for the reduction of the original matrix to tridiagonal form", 'time for

the eigenvalue calculation" and "time for the eigenvector calculation'.

In order to check the performance of Jacobi method and the threshold Jacobi

method with respect to the Givens-Householder method when applied to

perturbated diagonal matrices, the following Mn matrices of order n are

tested:

3 : i

1) M20 = (mij) with m., = 2
m,. = 100 G# 3
ij ~ tE 3

2) M75 = (mij) with m, =i
mij = 10 (i# 3)

The calculations are performed in "single precision" by the Jacobi method
(HDIAG routine) and the threshold Jacobi method (EIGEN routine) and the
Givens-Householder method (BIGM routine) on the IBM 360/65. The three methods

calculate the eigenvalues with full machine accuracy.

For the matrix M2O’ the routine HDIAG calculates 15 eigenvectors with "absolute
error" less than 10 -7 and 5 eigenvectors with "absolute error" less than 10 5.

The computation time is 1.5 sec (The total number of plane rotations in 190).

The routine EIGEN calculates 13 eigenvectors with "absolute error' less than
10-7 and 7 eigenvectors with "absolute error' less than 10—5. The computation

time is 1.5 sec.

. . . -7
The routine BIGM calculates 11 eigenvectors with "absolute error' less than 10

and 9 eigenvectors with "absolute error" less than 10-5. The computation time



TABLE 1

n:order| Euclidean n (n \1/2
of the norm i 2 i 2
test | of the {{.f |Ai-xi]AL/{.§ 121 J}' max {[Ax; =A%, |p) L {|I-XTXI ]
. . i=1 i= i Jo E
matrix test matrix n
HDIAG EIGEN BIGM HDIAG EIGEN BIGM HDIAG EIGEN BIGM
u 9.1651 5.30(-6) | 5.12(-7) [1.62(-6) | 3.81(-6) | 3.06(-6) | 2.99(-5) | 7.15(-6) | 8.43(-8) | 3.60(-6)
y 1.3039 4.95(-6) | 6.83(-6) |u4.02(-6) | 4.00(-6) | 9.21(-6) | 6.27(-6) | 5.94(-6) | 1.35(-6) | 1.55(-6)
y 37.4433 1.09(~-6) | 1.16(-6) | 3.22(-6) 1 3.89(-5) | 3.79(-5) | 1.35(~u4) } 1.79(~6) | 5.43(-8) -—-
y 26.4008 3.47(-7) | 6.38(-6) |1.21(-6) | 9.15(-5) | 1.69(-4) | 6.76(-5) } 4.75(-6) | 1.26(-6) | 2.98(-6)
5 1.9349 3.73(-6) | 4.62(-6) | 2.06(-6) | 5.89(~6) | 8.55(-6) | 8.58(~6) | 4.61(-6) | 1.23(-6) | 3.47(-6)
5 24,1868 4.u44(-6) 17.06(-6) | 1.63(-6) | 7.78(-5) | 1.68(-4) | 6.50(-5) | 7.60(-6) | 2.41(~6) | 2.55(-6)
5 92.4608 1.01(-5) | 3.47(-6) | 1.02(-6) | 9.35(-u4) | 3.25(-u4) | 1.52(-u4) | 8.65(-6) | 2.69(-6) | 5.89(-6)
6 17.7200 7.20(-6) | 2.44(-6) | 3.52(-6) | 9-09(-5) | 3.16(-5) | 6.3u4(-5) | 7.07(-6) | 2.20(-6) -—-
6 23.8747 8.24(-6) 19.59(-6) | 6.95(-7) | 1.35(-4) | 2.20(-4) | 8.u4(-5) | 8.90(-6) | 4.u47(-7) | 4.32(-6)
6 471.2520 3.32(-6) | 5.30(-6) | 5.60(-6) | 7.95(-4) | 1.67(-3) | 2.93(-3) | 7.42(-6) | 1.71(-6) ---
8 2482. 26 6.14(-6) | 3.85(-6) [3.77(-6) | 8.03(-3) | 4.75(-3) | 6.41(~-3) | 5.82(~6) | 2.92(-6) ---
8 4546.15 3.32(-6) | 1.39(-5) [1.05(-6) } 1.59(~-2) | 6.33(-2) | 8.79(~3) | 1.2u(-5) | 1.23(-6) | 5.75(-5)
g 8.4853 2.55(-6) | 1.72(~-6) | 3.25(~6) | 2.44(~-5) | 1.32(-5) | 2.18(~5) | 7.16(-6) | 1.30(-6) -—
11 23.8328 2.13(-5) | 7.46(-6) | 4.77(-6) | 2.85(-u4) | 8.19(-5) | 3.64(-5) | 1.84(~5) | 1.08(-5) -—
12 63.8905 2.15(-5) | 9.55(-6) | 2.98(-6) | 1.38(-3) | 6.02(~4) | 5.24(-5) | 1.83(~5) | 1.25(-5) | 4.35(~6)
21 28.4605 1.36(-5) {8.58(-6) | 4.21(-7) | 1.18(-4) | 6.93(~5) | 7.11(-6) | 1.56(-5) | 1.12(-5) ---




TABLE 2

Test matrix True eigenvalues Routine |Number of eigenvalues with c| Computation time
exact figures in seconds per IBM 360/65
c=0123458678 (single precision)
SM8/3 BIGM 211112 .02 + .08 + .06 = .16
k-1
Ak = 8.10
order = 8 EIGEN 2 1113 .18
(k = 1,2,...,8)
HDIAG 111122 .30 (iter. n = 91)
SM8/4 Ak = 23,11,11,7 BIGM 611 .02 + .06 = .14
order = 8 -5,-13-13-13-21 [EIGEN 4y .20
HDIAG 35 .24 (iter. n = 69)
SM8/5 BIGM 4y .02 + .08 + .04 = .14
Ak = 6.k EIGEN 71 .18
order = 8 (k = 1,2,...,8) HDIAG 35 w12 (iter. n = 36)
C(8) Ak = 24, -6.82842712 (2 times)YBIGM 2321 .02 + .10 + .06 = .18
-1.17157288 (2 times) EIGEN 53 .18
order = 8 0. (3 times) HDIAG 332 .26 (iter. n = 76)
c(16) A, = 80, 0 (7 times) BIGM 24631 12 + .30 + .30 = .72
-26.27414237 (2 times)
order = 16 - 3.23982881 (2 *times) EIGEN 051 1.26
- 1.44646269 (2 times) . -
- 1.03956613 (2 +imes) [HDTAG 2572 2.55 (iter. n = 388)
u(#9) A = -1, (B times)  |BIGH 3B 2 2.55 + .38 + 5.04 = 7,97
1 EIGEN B1 43.81
= 41, (n- > ) times [HDIAG 1] 133.33 (iter. n = 7018)
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is 1.26 sec.

For the matrix M7O’ the routines HDIAG and EIGEN calculate all the eigenvectors
with "absolute error" less than 10-6. The computation time of HDIAG is 82.3 sec
(The total number of plane rotations is 2775). The computation time of EIGEN

is 78.5 sec.

The routine BIGM calculates 25 eigenvectors with 'absolute error" less than
10-5, and 45 eigenvectors with "absolute error'" less than 10-3. The computation

time of BIGM is 30.5 sec.

Three test matrices are constructed by using a tensor product of lower order
matrices whose eigenvalues are known. The order of these matrices is n = 24,
n = 48 and n = 96. If the calculation of the eigenproblem of these test
matrices is performed in "double precision" on IBM 360/65, the routines BIGM
and EIGEN give all the eigenvalues with at least 8 exact figures. The compu-
tation time of BIGM is 3.4 sec. (n = 24), 16.2 sec. ( n = 48) and 86.7 sec.
(n = 96), respectively. The computation time of EIGEN is 7.6 sec. (n = 24),
62,2 sec. (n = 48) and 456.2 sec. (n = 96) respectively.

The eigenvalues and the eigenvectors of the above three test matrices are
calculated also in ''single precision" on IBM 360/65 with the routines HDIAG,

EIGEN and BIGM. The results are summarised in Table 3.

In the following tables we give the number of the eigenvectors, corresponding

to single eigenvalues, whose "absolute error'" is less than 10-d.

Seven test matrices are constructed by using the technique of J.M. Ortega
described in chapter 1, §5, in which the eigenvalues are chosen single,
multiple, close with some typical distribution and also are given by random
numbers. We summarize in Table 4 the results obtained by solving the
eigenproblem of the above test matrices, with the routines HDIAG, EIGEN and
BIGM in "single precision" (s.p.) and in "double precision" (d.p.) on

IBM 360/65, and with the routines HDIAG and BIGM in '"single precision" on
IBM 7090.

The "tolerance' T of the threshold Jacobi method is defined as
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nd &t 2 ai.
i€] J

T = 0 where {aij} is the input matrix of order n.

The results of Table 4 are obtained by taking n = 10_6 for "single precision"

calculations and n = 10 12 for "double precision" calculations.

No improvement in the accuracy of the results was obtained by taking n = 10_15

instead of n = 10—12.

A comparison between the Givens-Householder method and the Rutishauser method
is made on band symmetric matrices (whose bandwidth is small compared to the
order of the matrix). The calculations are performed in''single precision' and
in "double precision'" on IBM 360/65. The ''tolerance'" in the routine LRCH is

€ = 10-6(”single precision" calculations) and ¢ = 10-14 ("double precision"

calculations).

In Table 5 we give:

a) the number of eigenvalues with ¢ (¢ = 0,1,2,...,7) exact figures obtained
by the routines BIGM and LRCH when the calculations are performed in
"single precision';

b) the machine time (in seconds) for computing the eigenvalues in "single

precision" (s.p.) and in "double precision" (d.p.).

The eigenvalues are computed in decreasing order, beginning with the highest
eigenvalue. When the calculations are performed in "double precision', the
routines BIGM and LRCH show high accuracy. The maximum error in any eigen-

value isa few units in the last place of the larger eigenvalues.

The "computing time" of LRCH varies considerably with the order in which the
eigenvalues of the test matrix are calculated. For example, the machine time
(n)\3 .,

00 )" in "double

precision" is .38, 1.22, 2.49, 4.11, 6.33 seconds, for n = 10, 20, 30, 40, 50,

for computing in increasing order the eigenvalues of (J

respectively.

1.3 Discussion of the test results

The results of the above test matrices may be summarized in the following

way.



TABLE 3

Test matrix Routine | Number of eigenvalues Number of eigenvectors Computation
with ¢ exact figures with "abs. err" & 1074 time (in sec.)
c=1 2 3 4 5 6 7{d=1 2 3 4 5 6 7

1:

Order of the matrix = 24 HDIAG 10 2 16 6 9.4

Range of the eigenvalues

[-317, +317] EIGEN 16 8 3w 7 5.2

Number of simple

eigenvectors = 24 BIGM 12 10 5 » 7 1.8
(.3+.7+.8)

2:

Order of the matrix = 48 HDIAG 18 30 6 28 14 76.1

Range of the eigenvalues

C-63u4, +634] EIGEN u8 % 2 41.5

Number of simple

eigenvectors = 48 BIGM B8 B 2 4 30 H 9.7
(2.4+2.5+4.8)

3:

Order of the matrix = 96 HDIAG R 4 12 8 36 604, 3

Range of the eigenvalues

C-3170, +31707] EIGEN 0 B 2 18 56 22 387.6

Number of simple

eigenvectors = 96 BIGM 2 D 24 12 5% 30 58.1
(17.7+9.1+31.3)




TABLE 4

Test matrix Routine Number of eigenvalues Number of eigenvectors 4 Computation Observations
with ¢ exact figures with "abs. err." < 10 time (in sec.)
c=012345678+|d=0123456728+

1:
Order of matrix = 10 | HDIAG (IBM-7090) 4 6 2 33 15.0 Two eigen-
Range of eigenvalues | BIGM (IBM-7090) 37 2 123 0.7 values are equal
£-0.0001, +0.05] HDIAG (s.p.) 4 6 242 0.6 in the first six
Number of simple EIGEN (s.p.) 37 3311 0.3 figures
eigenvectors = 10 BIGM (s.p.) 19 2 33 0.3
(.05+.15+.10)
EIGEN (d.p.) 55 214111 0.5
BIGM (d.p.) 10 2 2 6 0.6
2:
Order of matrix = 30 | HDIAG (IBM-7090) 2115 36 45.0 Eight eigen-
Range of eigenvalues | BIGM (IBM-7090) 3 918 54 10.0 values are equal
[-3.550001, 4.2] HDIAG (s.p.) 7B 4 135 19.0 in the first six
Number of simple EIGEN (s.p.) 22 6 27 7.4 figures
eigenvectors = 17 BIGM (s.p.) 2 8 4 32 2.8
(.6+.8+1.4)
EIGEN (d.p.) 72 188 11.0
BIGM (d.p.) D 179 4.8
(.8+42.4+1.6)
3:
Order of matrix = 40 | HDIAG (IBM-7090) 123512 4y 90.0 Ten eigen-
Range of eigenvalues | BIGM (IBM-7090) 33% 9 11 &6 16.6 values differ in
[-0.0001, +6.000001] | HDIAG (s.p.) w2y 251 45.2 the 7th figure
Number of simple EIGEN (s.p.) m19 7 17 16.8
eigenvectors = 18 BIGM (s.p.) 721 6 13y 5.6
(1.4+41.2+3.0)
EIGEN (d.p.) 33 117 26.3
BIGM (d.p.) 40 18 9.1

(1.644.1+3.4)




TABLE 4

(continued)

Test matrix Routine Number of eigenvalues Number of eigenvectorgd Computation time| Observations
with ¢ exact figures with "abs. err."” 10 (in seconds)
c=012345678+(d=0123456728*+

b
Order of matrix = 60 | HDIAG (IBM 7090) 2 9 344 2 13411712 280.0 Eight eigen-
Range of eigenvalues | BIGM (IBM 7090) 74 5301 125158 49.0 values differ
-43.7, +24.0 HDIAG (s.p.) 573 1 1476287 158.0 in the 7th
Number of simple EIGEN (s.p.) 4013 7 1221029 4 63.7 figure
eigenvectors = 56 BIGM (s.p.) 847 5 35810814 16.7
(4.5+3.6+8.6)
EIGEN (d.p.)
BIGM (d.p.) 238 8us 95.2
€0 581 26.7
(5.2+411.6+9.9)
5:
Order of matrix = 72| HDIAG (IBM 7090) 8y 18 5 2 614 2 350.0
Range of eigenvalues| BIGM (IBM 7090) n3a 412 8 76.0
0.034212, 0.95544 EIGEN (d.p.) 72 Y. ] 191.8
Number of simple BIGM (d.p.) 72 p.Tt 37.1
eigenvectors = 24 (8.9+11.8+16.4)
6:
Order of matrix = 86 | HDIAG (IBM 7090) X261 41513 9 3 730.0 Six eigen-
Range of eigenvalues | BIGM (IBM 7090) 3212813 7 7411 5 118.0 values differ
0.00943, 494,33348 EIGEN (d.p.) 1g5 4 46 297.9 in the 7th
Number of simple BIGM (d.p.) 8 50 59.9 figure
eigenvectors = 50 (14.9+18.5+26.5)
7:
Order of matrix = 94 | HDIAG (IBM 7090) 223D 912513 960.0
Range of eigenvalues | BIGM (IBM 7090) 82135 712 81516 151.0
0.03421, 477.27470 EIGEN (d.p.) 2% 652 Luh.3
Number of simple BIGM (d.p.) el 58 81.3

eigenvectors = 58

(19.3+28.1+33.9)
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certain conditions converge to an upper triangular matrix. The "shifts" Ks
are chosen so that KS+An as rapidly as possible, and all AS remain real

also when An is a complex eigenvalue of A.

The Laguerre method: routine EIG5 (Share program SDA 3098). The method

consists of two parts. Firstly the given matrix is reduced to Hessemberg
form A by elementary similarity transformations. The second stage is the
iterative search for the eigenvalues of A with the Laguerre method. Let
P(z) = det(A-zI) be the polynomial in z with roots equal to the eigenvalues
Al, AQ, ces An of the matrix A. Given an approximation to one of the roots,
the Laguerre, method uses P(z), P'(z) and P"(z) to obtain better approximation.
The polynomials P(z),P'(z) and P"(z) are evaluated with the Hyman method [3]
The numerical criterion used by the routine EIG5 for a given number to be an
acceptable approximation to a zero of a polynomial is defined in the following
way. Let z be the current iterate, Az the computed increment and L the

modulus of the largest eigenvalue yet found.

P(z)| < ny [z] [P'(2)]

1

Az | < n, max {|z |, 10731} (cubic convergence)

A

A | < n, max {|z |, 107%L}  (linear convergence)

3

(|z] |Re(z) | + |Im(z)].

2.2 Description of the tests

A preliminary test of these routines is made with some matrices with known
eigenvalues collected in chapter I §1) and §2. In Table 6 we give the
computed eigenvalues of the Eberlein's matrix when the calculations are

performed on IBM 7090 and on IBM 360/65 ("double precision" arithmetic).

The eigenvalues of several real matrices constructed by Kronecker operations and
by Ortega's similarity transformations are calculated with the above methods.
The eigenvalues of these matrices are chosen real and conjugate complex,

single and multiple with small and large distances from each other. Some

eigenvalue satisfy typical distributions, others are given by random numbers.




Eberlein's test matrices

TABLE 6

True eigenvalues

Eigenvalues calculated by QREI

Eigenvalues calculated by EIGS

on IBM 7090 on IBM 360/65 (d.p.) |on IBM 7090 on IBM 360/65 (d.p.)
(N=6
s=-6.5) =-3. -3. -3. -3. -3.0
0. .0005 0. 0.00007 0.
2.5 2.496 2.5 2.499 2.5
4.5 4.514 4.5 4.501 4.5
6. 5.972 6.0 5.994 6.0
7 7.032 7.0 6.987 7.0
7.5 7.485 7.5 7.5 7.5
(N=10
s==-1Y4) 0. -0.0001 -0.0 0. 0.0
12. 11.998 12.0 12. 12.0
22. 22.35 22,0 21.84040.004 i 22.0
30.,30. | 25.541 29.999998+40.002309 1 [26.753+0.729 i 30.000457
30.297+45.6591 - 30.962+4.237 1 35.999987+0.0078081
36.,36. 37.828+7.4911 35.99998219.008972 i |34.13646.674 1 35.999989-0.007415i
37.846+4+6.397 1 39.992283
40.,40. 43.957+45.399i 39.99996919.015006 i |41.728+5.817 i 40.001723
44,22643.758 i  40.0083158
42.,42, |46.702 42.00005119.008174 i Ju45.47440.012 i 41.999046
45,74040.214 1 42.002293

€L



74

The results of these experiments are summarized in the Tables 7 to 10.

The appropriate choice of the "starting value" for the search for the eigen-
values is of the utmost importance in the success of the Laguerre method.

For example, if we start the search for the eigenvalues from the origin, we
are unable to find all the eigenvalues of some test-matrices. All these
eigenvalues are determined if the starting value has modulus greater than

the eigenvalue of greatest modulus.

In Table 7 we give the results obtained by changing the "starting value' z,
of the routine EIG5 on a 30-order well conditioned matrix with real eigen-
values.

The first column contains the "true'" eigenvalues, the second column the
eigenvalues obtained by the routine QREI on IBM 360/65 ("single precision"
arithmetic) and the other columns the eigenvalues obtained by the routine
EIG5 on IBM 360/65 ("double precision" arithmetic) with the "starting

value" produced by the routine and described in [8], §12) and with the
"'starting value' equal to (1000.,0.).

The routine QREI solves exactly this eigenproblem when the calculations are
performed on IBM 360/65 in "double precision".

However, if no good initial guess at the eigenvalue of greatest modulus can be
made, we recommend the usage of the "starting value" produced by the routine
EIGS.

In Table 8 we give the results obtained by changing the convergence parameters
on a 30-order well-conditioned matrix with real eigenvalues. The first column
contains the "true" eigenvalues, the second column the eigenvalues obtained by
the routine QREI and the other columns the eigenvalues obtained by the routine

EIG5 with different values of n2.

The calculations are performed on IBM 7090 with Ny = 10_7 and n, = 10—6.
In Table 9 we give for each test matrix of order n:
1) the number of eigenvalues with ¢ (¢=0,1,...) correct figures (*), obtained

by the routine QREI and EIG5, respectively, on IBM 7090;

2) the computing time on IBM 7090 (in seconds) for determining the eigenvalues.
Useful measures of the "accuracy" of the computed eigenvalues A with
respect to the "true" eigenvalues A of a matrix of order n are the
"spectral variation" of A = diag {Ai} with respect to A = diag{) } and

the "eigenvalue variation" of A with respect to A {9].



(The columns headed I indicate the number of iterations required)

TABLE 7

A, u, (s.p.) v, (d.p.) v, (d.p.)
. 1 05P z_ giveh by EIGS 12 (108,
o] (o]
439.15247 | 439.10474 439.15247 11| 439.15247 6
418.07643 | 418.02002 418.07643 3| u18.07643 3
383.93657 | 383.89209 (1988.95300) 1| 383.93657 Y
370.55685 | 370.51953 370.55685 5| 370.55685 3
325.89538 | 325.865u8 325.89538 6| 325.89539 6
325.89538 | 325.86279 325.89538 1| 325.89537 1
308.14268 | 308.10181 (-1784.14900) 1| 308.14268 5
277.31125 | 277.28101 (1663.21620) 1| 277.31125 6
277.31125 | 277.27856 (1663.21680) 1| 277.31125 1
173.40178 | 173.39308 111 173.40317 6
173.40178 | 173.39282 | (28-99149+2036.851801) | 1| 193" 0ge 1
157.12406 | 157.11682 ] 1] 157.12106 6
157.12406 | 157.11331 [|¢7844-88169+1627.551501) | | 150" %006 1
104.35584 | 104.35118 104. 35584 12| 104.35585 6
104.35584 | 104.35001 104. 3558 1| 104.35583 1
87.68912 | 87.68767 87.68951 6| 87.68951 2
24.21237 | 24.21165 2421237 1| 2u.21237 6
24.21237 | 24.21121 24.21237 6| ou.21237 1
0.958204| 0.961676 .958204 2| 0.958204 4
0.852725| 0.852761 .8521725 2|  0.852755 Y
0.846036| 0.835038 . 846036 5|  0.846036 2
0.762287| 0.761726 .762227 yl  0.762227 3
0.647369| 0.655146 . 647369 4] 0.647369 3
0.433477|  0.442499 433477 3| 0.433477 3
0.373408| 0.351100 .373408 3| 0.373408 3
0.307700 | 0.315524 . 307700 2|  0.307700 3
0.271217| 0.281016 .271217 3| 0.211217 2
0.219962| 0.221796 .219962 3| 0.219962 2
0.187560 | 0.190150 .187560 2|  0.187560 2
0.179734 | 0.177821 .179734 15| 0.179734 Y




(The columns headed I indicate the number of iterations required)

-3. -4.5 -5.

xi My vi(e-lO vi(e-lo I vi(e—lO I
-3.550001 | -3.5500001 -3.5504094 8 | -3.5500143 10 | -3.5500062 12
-3.55 -3.5499943 -3.5497987 9 1 -3.5499942 1 |-3.5499976 1
-3.55 -3.5499848 ~-3.5496697 11]-3.5497984 5 }1-3.5497995 6
-3.000001 | -2.9999958 -2.9999958 6 | -2.9999957 6 |-2.9999971 6
-3. -2.9999673 -2.9999024 11{-2.9999022 1 |-2.9999061 2
-2.500001 | -2.4999983 -2.4999949 6 | -2.4999948 6 |-2.4999957 9
-2.5 -2.4999807 -2.4999181 11-2.4999174 1 |-2.4999176 1
-2. -1.9999998 -2.0001050 0 | -2.0000060 12 |-2.0000003 1
-2. -1.9999998 -2.0000000 -2.0000000 -2.0000000
-2. -1.9999998 -1.9999535 1|-1.9999923 4 1-1.9999992 14
-2. -1.9999998 -1.9998766 - 6| -1.9999918 1 {-1.9999923 9
-2. -1.9999808 ~1.99996-. 20710 1 |-1.9998953 6 |-1.9998776 1

0. -0.0000047464 | -1.99996+.31110 i 4 1-0.0193479 16 |-0.000014764 16
0. 0. 0. _ 0. 0.
0.00001 .000013266 49994~ ,24310 .00020926 15 .00020952 17

.5 .49998821 .49997+.223lo_ui 2 . 49987642 1 . 49987444 5

. 500001 . 49999973 . 49998862 6 .49999718 9 . 49999716 10

. 500001 . 50000187 . 50000191 . 50000191 . 50000191

.8 .79999141 . 79996708 ~ 6 .79996768 _ 6 .79996716 4

1.1 1.0999934 . 249998+. 337910 2 2.49998+.337910 2 1.0999565 y
1.5 1.4999942 1.4998724 5 1.4998733 5 1.4998740 y
2. 1.9999946 1.9999733 2 1.9999725 12 1.9999725 y
2.5 2.4999880 2.4999772 1 2.4999772 1 2.4998935 1
2.5 2.4999934 2.4999893 6 2.4999893 6 2.4999999

2.500001 2.4999997 2.4999999 2.4999999 2.5000011 8
3. 2.9999927 2.9998665 3 2.9998671 L 2.9998671 L
3.5 3.4999933 3.5000008 3 3.5000001 3 3.5000001 y
y, 3.9999846 3.9999298 2 3.9999308 3 3.9999308 3
4.1 4,0999845 4,0999711 3 4.0999701 3 4.0999701 3
4,2 4,1999842 4.1999017 4.1999023 7 4,1999023 7
1.55001 1.4497436 2.9306612 46 1.5499131 156

9L




TABLE 9 (Routine QREI)

8 1 2 2 6 4 6 8 Y 1 12
7 8 4 5 13 ¥ 6 17 7 19 16 3 1 4 2 9 o4 71 72
2 8 1 1 6 2 3 6 7 14 17 21 12 7 1 13 2 6 13 24 13 20
a 5 3 3 3 14 6 8 1 24 4 30 15 8 10 21 10 24 28 4
& Y M 7 9 11 6 24 26 7 27 22 9 30
8 3 12 y 13 8 7 18 12
“
2 2 6 11 18 15 20 1y
Q
Uy 1 3
(o]
c 2
O
g N S N S | ! P L L \ ) N 1 ) 1 L 1 >
= 10 10 20 24 24 30 40 4O 48 48 54 60 60 60 72 78 86 96 96 96  order of the matrix
1.2 1.2 4. 7. 9. 15.0 20. 18. 24. 22. 45. 45. 55. 60. 100. 95. 120. 210. 150. 175.
Computing

time

LL
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24
32

10

21
20
15
16

24
20
30
22

72
18

>

40

72

86

96

g order
of matrix

3

) 8

a7

5 6

& s

£

o

0 m

U

o 3

o

g 2

= 1
Computing

time

50.

(Routine EIGS)

L 2
16 15 5 1
24 y 2 9
y 24 9 14
7 20 3
17 14
7 1
1
17
L8 54 60 60
55. 120. 120. 330.

320. 660. 450.

360.

310.
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For example in Table 9 the "point" 9 with abscissa 30 and ordinate 4 indicates

that a test matrix of order 30 has 9 eigenvalues with 4 correct figures.

In all these experiments we have observed that for well-conditioned matrices
the average number of iterations of the QR method is less than 2.3 per eigen-
value. For the Eberlein's ill-conditioned matrix this number is 3.0.

For well-conditioned matrices the average number of iterations of the Laguerre
method is 4.5 per eigenvalue. The agreement of the sum of the eigenvalues
computed by the routine EIG5 with the trace of the original matrix constitutes

a quite good check on their accuracy.

In Table 10 we give the trace of the original matrix and the sum of the eigen-

values of the test matrices of Table 9 computed by the routine EIGS on IBM 7090.

When the matrices A have a "large'" P-condition number (P = Ikmax(A)I/IXmin(A)l,
the QR method and the Laguerre method are unable to give all the eigenvalues.
Sometimes the Laguerre method gives all the eigenvalues by replacing the

"convergence test" |Az| < n.max{|z|, 10_3L} with |az| < n, lz].

i)

2.3 Discussion of the test results

The results of the above tests may be summarized in the following way.

a) For finding all eigenvalues, the Laguerre method is trouble-some because
of the difficulty in finding "convenient" convergence parameters.

b) The convergence rate of the QR method is remarkably impressive. This
method is very "efficient" with respect to accuracy, and computing time
for determining the eigenvalues of real matrices.

c) The Laguerre method is useful for finding some eigenvalues (especially
those with largest modulus) and may be faster than the QR method for
well-conditioned matrices with multiple eingenvalues when a convenient

choice of the "convergence parameters" has been made.

§3. COMPLEX MATRICES

3.1 Methods tested

For the solution of the eigenproblem of a complex matrix t : following
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TABLE 10
Order of{ Trace of Sum of Average number
matrix matrix |computed eigenvalues| of iterations
per eigenvalue
10 .12001110 .12001117 3.1
10 38.000002 38.000119 3.8
20 4118. 4117.9619 6.4
2y 4280. 4280.0005 2.7
24 10.630371 10.630367 2.9
30 1.5499329 1.5499131 5.2
40 39.549808 39.548140 5.3
L 10] #3280.0070 63279.945 5.8
48 1872.0000 1872.0000 2.4
L8 14y, 143.99995 2.5
54 26.619996 26.667338 4.5
60 -194.88535 -194.87905 3.4
60 7758.5782 7758.5804 8.5
60 7767.3952 7850.5532 7.6
72 34.284957 34.698833 4.8
78 7776.2060 7734.9364 7.1
86 1iyu1,941 11442.034 4.6
96 0. -0.00582886 3.2
96 0. ~0.00170898 2.3
96 0. 0.01058006 2.7
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methods are taken into account:

1) The QR method,
2) The Laguerre method.

Two routines are selected from a scientific library which represent these

different methods.

The QR-method: Routine AMAT. (Share program SDA 3441) The method consists of

two parts. Firstly the given matrix is reduced to Hessemberg from A by elemen-
tary similarity transformations. The second stage bases essentially on the
fact that, by starting with the matrix A = Ao’ the decomposition of A into

the product QsR (Q unitary matrix and R upper triangular matrix) and the
(s+l)

s+l = (a ) = st

A2, coe whlch under

recombination of QS and RS by forming thelr product A
generate an infinite sequence of similar matrices Al’
certain conditions converge to an upper-triangular matrix. ([l], p.515).

(s+1)

This process makes the element a n-1

of the upper Hessemberg matrix A

L(s+D) s+l

converge to zero and therefore converges to an eigenvalue of A.

% n
Whe convergence (i.e. aiS;E; negligible) is met, the Hessemberg matrix AS+l
is deflated and the process proceeds with its leading principal submatrix of
(s+1)

order one less. If a becomes negligible the eigenvalues of the lower

n-1 n-2
right hand matrix of order two are calculated and the process proceeds with

the leading principal submatrix of order two less.

The convergence-test is:

1 1
B IPERECY (for [a, | #0)
or
(s+l) J=
@t < e (m al)
and

Iailez_2|< e, (/n lAl» )

(|z] = |Re(z)] + |Im(2)])

The Laguerre Method: Routine EIG4. (Share program SDA 3099) The method consists

of two parts. Firstly the given matrix is reduced to Hessemberg form A by

elementary similarity transformations. The second stage is the iterative search
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for the eigenvalues of A with the Laguerre method. Let P(z) = det(A-zI) be
the complex polynomial in z with roots equal to the eigenvalues Al, 12 .o An
of the matrix A. Given an approximation to one of the roots, say An’ the
Laguerre method uses P(z), P'(z) and P"(z), to obtain a better approximation.

The polynomials P(z), P'(z) and P"(z) are evaluated with the Hyman method [8].

The numerical criterion used by the routine for a given number to be an
acceptable approximation to a zero of a polynomial is defined in the following
way.

Let z be the current iterate, Az the computed increment and L the modulus

of the largest eigenvalue yet found.
P@] <0y lzl [P

|az| < n, max (|z], 1073 L) (cubic convergence)

2

-2

A

laz| < n, max (|z|, 10 “ L) (linear convergence)

3

(|z] |Re(z)| + |Im(z) |

3.2 Description of the tests

Study 1: (see Table 11)

A preliminary test of the above methods is made with some test-matrices,
collected in chapter I §1). In Tablell wegive the results of this test. The
eigenvalues are calculated in "single precision (s.p.)" and in "double
precision (d.p.)" on IBM 360/65. (The eigenvalues of the test matrix CM 15/1
are calculated also on IBM 7090.)

The "convergence-parameters' are:

(s.p.) € 10—7, €, = 10710

n, = 1077, n, = 1073, n, = 1070
(d.p.) e, = 10'15,e2 = 1071°

n, =100, =107, n, = 1077
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When the calculations are performed in "double precision'" the eigenvalues
of the matrices CM 3/1, CM 4/1, CM 4/2, CM 4/1, CM 5/2, CM 15/1 are calculated

with at least 12 exact figures. Two eigenvalues of CM 6/1 are calculated

with 6 exact figures, the other eigenvalues have at least 12 exact figures.

The routines AMAT and EIGY4 calculate in double precision the '"true eigenvalues"
of CM 10/1.

Some test matrices are constructed by using the technique of J.M. Ortega

described in chapter I, §5, in which the eigenvalues are chosen conjugate

complex and complex, single and multiple with small and large distances from

each other.

In Table 12 to 14 we give for each test matrix:

1)

2)

a)

the number of eigenvalues with ¢ (¢ = 0,1,...) correct figures, obtained
with the routines AMAT and EIGY4, respectively, (single precision) and:
the computing time on IBM 360/65 (in seconds) for determining the eigen-
values in '"'single precision" (s.p.) and in "double precision'" (d.p.).
(For example in Table 12 the '"point'" 11 with abscissa 16 and ordinate 3
indicates that a "test matrix" of order 16 has 11 eigenvalues with 3

correct figures)

Complex matrices with generallxrx) distinct complex eigenvalues

Study 2: (see Table 12)

The real part and the imaginary part of the eigenvalues of these matrices
are uniformly distributed in the intervals (-1,1), (-100,100), (-1000,1000)
and (-1,1000), or are integer numbers.

The eigenvalues of these test matrices are determined with the routines
AMAT and EIG4 in "single precision'" (s.p.) and in "double precision"

(d.p.) on IBM 360/65.

When the calculations are performed in "double precision'" the routines
AMAT and EIGY4 determine "generally' the eigenvalues with at least 10

A matrix has generally distinct eigenvalues when only few (less than 10%)

eigenvalues of the matrix are multiple. The other eigenvalues are well

separated.



Test Matrix CM 3/1

True eigenvalues

( 1, 1)
( 7,-8)
(-43,51)

Computation time (s.p.)
(d.p.)

on IBM 360/65

Test Matrix CM 4/1

True eigenvalues

( 4,0)
( 8,0)
(12,0)
(16,0)

Computation time

on IBM 360/65

Test Matrix CM u4/2

True eigenvalues

(1,1)
(3,4)
(4,5)
(5,6)

Computation time

on IBM 360/65

(s.p.)
(d.p.)
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TABLE 11

Eigenvalues calculated
by AMAT (s.p.)

( .9999, 1.0015)
( 7.0011, -8.0009)
(-43,0011, 50.9993)

.02 sec

.04 sec

Eigenvalues calculated
by AMAT (s.p.)

( 3.9999971, 0)
( 7.99999390, 0)
(12. s 0)
(15.999989 , 0)

(s.p.) .04 sec
.p.) .04 sec

Eigenvalues calculated
by AMAT (s.p.)

( .9999, 1.0000)
(3.0005, 3.9998)
(3.9994, 4.9999)
(5.0000, 6.0001)

.08 sec

.12 sec

Eigenvalues calculated
by EIG4 (s.p.)

( 1.0019, 1.0036)
( 7.0000, -8.0007)
(-43.0035, 50.9969)

.16 sec

.08 sec

Eigenvalues calculated
by EIG4 (s.p.)

( u. , 0)
( 8.0000029, 0)
(12. » 0)
(16. s 0)
.16 sec
.08 sec

Eigenvalues calculated
by EIGY4 (s.p.)
(1.0000, .9999)
(3.0001,3.9995)
(3.9994,4.9999)
(5.0000,6.0001)

.22 sec

.14 sec



Test Matrix CM 5/1

True eigenvalues

(0,0)

(0,0)
(127.387,132.278)

( -9.45999,7.28019)
( 7.07332,-9.55839)

Computation Time (s.

on IBM 360/65 (d

Test Matrix CM 5/2

True eigenvalues
( 15.180165225,0)
( 5.6787293543,0)
( -0.83398680019,0)
( -5.1498456282,0)
(-15.921062150,0)

Computation time (s.

on IBM 360/65

Test matrix CM 6/1

True eigenvalues

(0,0)
(1,0)
(0,1)
(2,1)
(-1.-2)
(-1,-2)

Computation time
on IBM 360/65

.p.)

(s.p.)
(d.p.)
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TABLE 11

Eigenvalues calculated
by AMAT (s.p.)

(  .00003, .00004)
( -.00001, -.00002)
(127.3866 ,132.278 )
( -9.46005, 7.28017)
( 7.07326, -9.55823)

p.) .04 sec

.14 sec

Eigenvalues calculated
by AMAT (s.p.)

7
7

)

)
6

( 15.179976,6.9 10
( 5.678727,5.8 10
( -.8339851,5.2 10 °)
( -5.149843,1.2 10" °
(-

15.921054,~1.3 10

)

®

p.) .12 sec

.16 sec

Eigenvalues computed
by AMAT (s.p.)

( .0021, -.0015)

( 1.0000, .0008)

( -.0013, 1.0006)

( 1.9998, 1.0001)
(-1.0312,-1.9693)

(- .9699,-2,0308)

.20 sec

.26 sec

(continued)

Eigenvalues calculated
by EIG4 (s.p.)

( .00005, .00006)
( .00007, .00006)
(127.3867 ,132.2782 )
( -9.46003, 7.28024)
( 7.07332, -9.55843)

.24 sec

.16 sec

Eigenvalues calculated
by EIG4 (s.p.)

( 15.180162, 1.3 1078
( 5.678731,-1.0 1078
( -.833982,-2.6 1078
( -5.149846,-3.3 10 °
(-15.921056,-1.7 10 °

.16 sec

.22 sec

Eigenvalues computed
by EIG4 (s.p.)

( -.00007,
( 1.0000 ,
( -.00007, 1.0004 )
( 2.0000 , 1.0001 )
(-1.0242 ,-1.9921 )
( -.9797 ,-1.9960 )

-.00009)
-.00009)

.64 sec

.52 sec



Test Matrix CM 10/1

True eigenvalues

( 4.16174868, 3.13751356)
( 5.43644837,-3.97142582)
( 2.38988759, 7.26807071)
(-1.93520144,-3.97509382)
(-2.44755082, 0.43712617)
(-5.27950616,-2.27596303)
( 1.03205812, 9.29413278)
(-4.96687009,-8.08712475)
( 8.81130928, 1.54938266)
(10.7976764 , 8.62338151)

Computation time (s.p.)

on IBM 360/65 (d.p.)
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TABLE 11 (continued)

Eigenvalues computed
by AMAT (s.p.)

(1.
( 5.
( 2.
(-1.
(-2.
(-5.
(1.
(-4.
( 8.
(10.

161742, 3.137547)
436461,-3.971467)
389897, 7.268000)
935202 ,-3.975090)
447538, 0.437127)
279502,-2.275943)
032139, 9.294246)
966941,-8.087037)
811319, 1.549407)
797742, 8.623u38)

.60 sec
1.00 sec

Eigenvalues computed
by EIG4 (s.p.)

( 4.161748, 3.137513)
( 5.436452,-3.971433)
( 2.389887, 7.268074)
(-1.935202,-3.975095)
(-2.447554, 0.437128)
(-5.279517 ,-2.275968)
( 1.032053, 9.294141)
(-4.966870,-8.087138)
( 8.811318, 1.549384)
(10.797698, 8.623397)

.86 sec
1.20 sec



TABLE 11 (continued)

Test Matrix CM 15/1

True eigenvalues Eigenvalues calculated by AMAT Eigenvalues calculated by EIGH

on IBM 7090 on IBM 360/65 (s.p.) on IBM 7090 on IBM 360/65 (s.p.)
(-5,+2) (-4.99996,+1.99973) (-5.00414,+2.00604) (-5.00004, 1.99985) (-4.99879, 1.98125)
(-9, 0) (-9.00008,+0.00040) (-8.99142, 0.011035) (-8.99975,-0.00019) (-8.98847, 0.01272)
(-9,+3) (-8.99970,42.99976) (-8.98056,+2.98651) (-9.00047,42.99983) (-9.00899,+2.97734)
(-8,+5) (~8.00020,+5.00028) (-8.01275,+4.99653) (-7.99952,+5.00013) (-8.00281,+5.02026)
(-5,-3) (-5.00018,-3.00008) (-5.00546,~2.99760) (-4.99982,-2.99987) (-5.00923,-2.98682)
(-4,47) (-3.99959,46.99991) (-3.99714,+6.99055) (-4.00015,46.99979) (-3.98898,+6.99547)
(+2,+4) (+1.99992,+4.00013) (+2.01528,+3.99678) (+1.99958,+3.99995) (+1.99738,+4.01302)
(+3,+1) (+3.00029,+1.00048) (+3.00521,+1.02415) (+3.00085,+1.00004) (+2.97291,+1.01870)
(+2,48) (+2.00008,+7.99952) (+1.98758,+47.98532) (4+2.00006,+8.00002) (+2.00414,+7.98699)
(+3,48) (+2.99990,48.00009) (+3.00207,+8.00775) (+2.99996,+7.99997) (+2.99533,+8.00194)
(+6,+3) (+5.99952,+2.99921) (+5.98345,+2.96992) (+5.99918,+2.99987) (+6.03148,+3.00327)
(+7,42) (+6.99994,+2.00051) (+6.99618,+2.02126) (+7.00037,42.00038) (+6.982u48,+1.98051)
(+3,-7) (42.99998,-6.99999) (+3.00003,-6.99901) (42.99998,-7.00001) (+3.00203,-7.00200)
(-5,-9) (-4.99998,-8.99996) (-4.99850,-9.00014) (-5.00002,-8.99999) (-4.99947,-9.00151)
(+9,-8) (+8.99998,-7.99998) (+9.00023,-7.99982) (+9.00000,-8.00000) (+9.00032,-7.99986)

Computation time

on IBM 7090

8.1

on IBM 360/65 (s.p.)

(d.p.)

secC

1.9 sec

2.7 sec

11.6 sec

2.6 sec

3.4 sec

L8



TABLE 12 (Routine AMAT)

o A Every point of the abscissa characterizes one test-matrix

0

5

o

Uy 7 1

§ 6l 2 1 1

3 5 3 3 6 2 1 1

o

0 Y 1 1 m L 12 19 8 1 3

o

o 3 1 1 11 8 18 4 19 27 28 26 22

£4

é 2 2 1 2 3 7 12 15

Z 1 1

a

Compu- 6 6 10 10 10 12 16 20 20 24 28 30 36 38 40 order of the matrix
ting time
(s.p.) .1 .1 L U .6 .91.7 3.1 3.3 5.4 8.8 9.7 17.0 20.8 23.9
(d.p.) .2 .2 .6 .6 .7 .9 2.3 3.7 4.2 7.6 10.6 14.0




L.
r.

TABLE 12 -(Routine EIGY4)

Every point of the abscissa characterizes one test-matrix

>

0
g
80 7 2
;C:
6] 4 3 1
13
0 5 6 2 7 6 2
g 4 10 4 3 3 4 1 16 7 1 1 2
Y 3 1 11 16 16 6 21 26 27 24 24
& 2 2 2 3 3 9 13 14
g 1 1
= 0
Compu- 6 6 10 10 10 12 16 20 20 24 28 30 36 38 40 order of the matrix
ting time
(s.p.) 3 .4 .9 1.0 .8 1.0 2.9 5.2 5.6 9.4 13.1 16.1 27.5 32.2 37.5
(d.p.) .3 .4 1.3 1.3 1.1 1.4 3.9 6.8 7.1 11.6 1lu4.4 23.0

68



b)

c)
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exalt figures. The "convergence-parameters' are the same as in Study 1.
In all these experiments there is good agreement of the trace of the
original test matrix with the sum of the eigenvalues computed (in "single

precision') by the routine EIGH.

Complex matrices with generally distinct complex eigenvalues of equal

modulus

Study 3: (see Table 13)

The real part and the imaginary part of the eigenvalues of the test matrices
considered satisfy some typical distributions (i.e. linear distributions,
geometric distributions).

The eigenvalues of these matrices are determined with the routines AMAT
and EIG4 in "single precision" (s.p.) and '""double precision' (d.p.) on
IBM 360/65.

When the calculations are performed in "double precision', the routines
AMAT and EIGY4 determine "generally" the eigenvalues with at least 10
exact figures when the order of the matrices is less than 25 and with at
least 7 exact figures in the other tests. The 'convergence parameters"
are the same as in Study 1.

When the order of the matrices is less than 25, there is good agreement
of the trace of the original matrix with the sum of the eigenvalues

computed (in "single precision') by the routine EIGHY.

The test matrices labelled with » in Table 13 have spectral radii of order

104. The other matrices have spectral radii less than 5 102.

Complex matrices with multiple and close complex eigenvalues

Study u4: (see Table 14)
The real part and the imaginary part of the eigenvalues of the test-matrices
generated with the Ortega's algorithm satisfy some typical distributions.

The test-matrices labelled with % in Table 14 have the form:
™ 4 g (p(™)yt

(n)

where the real matrix T is defined by algorithm No. 52 (Collected Algo-
rithms from C.A.C.M.). These test-matrices have the eigenvalue (1 + vV-1)

with multiplicity n-2.



Number of correct figures

Compu-
ting time

(s.p.)

o P N W F 0 OO 2

TABLE 13 (Routine AMAT)

Every point of the abscissa characterizes one test-matrix

1
1 2
9 1 1 8 y 2 8
1 6 2 19 12 22 1 2
7 L 4 17 5 2 2
7 7 7 14 11
6 14 9 10
1 3 3
10 12 16 20* 20 24 24 26 3o* 30 36 order of the matrix g

.5 .7 1.9 2.4 3.6 3.5 5.5 6.8 8.3 9.0 12.8

(d.p.)

.5 .8 2.1 2.9 4,1 4.1 6.3 7.9 9.1 10.7

I6



Number of correct figures

Computing
time

(s.p.)

>~

O B N W F 0 o =

TABLE 13 (Routine EIGH)

Every point of the abscissa characterizes one test-matrix

1 2
1 3 3
1 14 18 13 5 1
5 5 2 12 10 & 2 10
3 1 11 6 9 2
4 10 8 7
6 5 8 17
20" 20 24 24 26 30% 30 36 order of the matrix g

7.8 5.0 8.8 9.5 10.3 21.0 35.3 31.0

(d.p.)

8.4 6.4 5.0 11.4 12.5 29.1 29.9

26



TABLE 14 (Routine AMAT)
@ Every point on the abscissa characterizes one test-matrix
g A
o
i 71 1 3 1 2 4 5 3 17 9
§ 6 13 3 3 2 1 23 mn 5 1 6 19 8 29
g 5| 2 15 4 4 8 6 6 10 9 12 6 6 2
: y 2 2 4 5 & 7 6 2 3 7 3 13 1 6 2
: 3 5 1 4 2 2 1 3 1 2
é’ 2 ¥ 7 3 4 2 3 9 6 3
= 1 5 5 8 2 3 2
0 2 1
Compu- 10* 15 20 20 20 24 2y 24 25 30 30 30 30 30 30% 35% u4o® order of matrix
ting time
(s.p.) 1.1 2.0 2.3 1.7 2.2 3.3 3.7 3.5 3.4 6.2 6.5 4.9 3.9 3.8 4.2 5.6 7.8
(d.p.) .1 .4 .8 2.4% 2.6 4.2 3.9 4.8 1.5 7.0 7.9 8.2 7.7 7.1 7.7

>

£6



TABLE 14

(Routine EIGH)

Every point of the abscissa characteristizes one test-matrix

0
5 i
20 7 1 3 1 1 m 1 8 6 6 7 5
L]
- 6 2 1 1 Y 1
(&)
s 5/ 1 2 1 1 2 2 11 1 2 3 5
19
S T 5 11 I 6 6 2 2 2 13 5 8 8 5 18 16 19
%\ 3l u 6 6 5 5 8 9 6 10 1 8 7 2 1 10
5 2 5 5 5 5 7 Y 5 5 1 2 8
o
2 1 1 1 5 6 17 5 8 2 1
0 1 mn 2 8 1 3 1
" = % * ™ " .
Compu- 100 157 200 20 20 24 24 24 25 30 30 30 30 30 30T 35 40 order of the matrix
ting time
(s.p.) 1.4 3.2 9.7 5.8 6.2 9.8 7.5 11.9 24.8 19.9 23.1 4.8 11.4 11.8 9.7 5.3 24.7
(d.p.) 2 .3 5 2.7 2.0 2.4 2.9 2.5 8 3.5 7.9 2.5 5.2 3.5 1.2

¥6
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The eigenvalues of the above matrices are determinated with the routines
AMAT and EIGY4 in "single precision" (s.p.) and in "double precision' (d.p.)
on IBM 360/65.

The '"convergence parameters' for ''single precision" calculations are the same

as in Study 1. The "convergence parameters" for '"double precision" calculations

are
- - ~-15
€, T €, 7 10
- o~ _ 1~3 _ 1~-5
nl = 10 , n2 =10 -, n3 = 10
. . . " " _ .~—10 _ 1A™5
If in this study we consider the '"convergence parameters'" n, = 10 s N, = 10

1 2
n =10 7 (see Study 1) for "double precision" calculations, we are unable

to find all the eigenvalues.

When the calculations are performed in 'double precision', the routine AMAT
determines '"generally'" the eigenvalues with at least 10 exact figures and
the routine EIGYH determines the eigenvalues with at least 7 exact figures.
If the routine EIGY4 were able to calculate all the eigenvalues in "single
precision", then the agreement of the sum of the eigenvalues computed with

the trace of the original matrix would be good.

3.3 Discussion of the Test Results

Some pathological examples exist for which convergence will not occur in AMAT
(i.e. the Forsythe matrix (chap. II §4). For some test matrices (i.e. the
Eberlein's test-matrix) the '"number of iterations per eigenvalue" must be
"large'" in order to obtain the convergence.

The test calculations summarized in Table 11 to 14 give the information that
the routine AMAT is very "efficient" with respect to accuracy and computing
time for determining the eigenvalues of a complex matrix.

The results contained in Table 14 show the routine AMAT to be slower than

the routine EIGY4 for test matrices with multiple eigenvalues, when a ''con-

venient” choice of the "convergence parameters'" for EIGY4 has been made.
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§4 DETERMINATION OF THE EIGENVECTORS OF NON-HERMITIAN MATRICES

The eigenvectors of real and complex matrices are determined by the iterative
method of Wielandt. The routine VCTR (Share program SDA 3053) determines the
eigenvector of a real matrix A corresponding to a real eigenvalue A. The
matrix (A-AI) is triangularly decomposed into the product of triangular lower
and upper matrices by elementary stabilized matrices of the type Mij (f11,
page 236). Then the eigenvectors are determined by the inverse power method.
The routine AMAT (Share program SDA 344l) determines the eigenvectors of a
complex matrix A corresponding to a complex eigenvalue. The routine AMAT
reduces the given matrix to Hessemberg form H by elementary similarity
transformations. The matrix (H-AI) is triangularly decomposed into the
product of triangular lower and upper matrices by elementary stabilized
matrices of the type Nij (C17], page 200) and the eigenvectors of H are
determined by the inverse power algorithm. Then the elementary similarity
transformations are applied in reverse order to obtain the eigenvectors of
the original matrix A. The method of Wielandt calculates the normalized
eigenvectors of well conditioned real and complex matrices, corresponding

to single eigenvalues, with high accuracy. For real matrices ranging in
order from 19 to 50, the "absolute error'" of each eigenvector is less than
10-6 when the calculations are performed on IBM 7090. For complex matrices
ranging in order from 5 to 30, the "absolute error'" of each eigenvector is
less than lO_ll when the calculations are performed in "double precision"

on IBM 360/65. Ir the case of a computed eigenvector corresponding to a
m-fold eigenvalue A, we have to test how accurately this eigenvector is
lying in the linear space spanned by the ''true' eigenvectors corresponding
to A. We study the accuracy of the Wielandt method on real matrices with
real eigenvalues.

Let Xy Ky eee X be the eigenvectors corresponding to the m-fold eigenvalue
A. Let x be the computed eigenvector corresponding to the '"true'" eigenvalue

X. Let % be the approximation of x in the sense of least-squares. The vector

m
% is given by the expression X = I %y where the coefficients ¢, are
k=1
determined by the system
m
T _.T .
T ck(xjxk) = xjx (j = 1,2,..,m)

k=1
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The quantity [x—:’tl°° is the "absolute error'" of the vector x.

The test-matrices A of order n are generated by similarity transformations:
A= BAB—l, where B is the Bremer's matrix B = aI+BQ (o and B real non-zero
numners; I is the nxn identity matrix and Q is the nxn matrix whose entries

are all 1's), and A is a diagonal matrix which contains m-fold eigenvalue

A. The other elements on the diagonal of A are pseudo random numbers generated

in the interval [0,1] with uniform distribution.

For these matrices the "absolute error' of the eigenvectors computed with
the routine VCTR on IBM 7090 is less than 10_4, for 10 w n « 50 and 2« m < 5,
In fig. 2 we give the behaviour of the "computation time" taken by the
routines VCTR for determining all the eigenvectors of real matrices of order
n(n < 50) on IBM 7030 and by the routine AMAT for determining all the eigen-
vectors of complex matrices of order n (n € 30) on IBM 360/65 (''double

precision' arithmetic).
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