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1. INTRODUCTION 

Heterogeneity effects must be taken into account in the 
interpretation of nearly all experiments performed in the lattices of 
fast assemblies. Several methods have been developed to calculate the 
influence of heterogeneity on reactivity, and they work rather well for 
assemblies with hard spectra. 

In fast assemblies with rather soft spectra as in steam cooled 
fast reactors, the heterogensity effects in the keV- and 100 eV-region 
make an important contribution to the heterogeneity effect. In multi-
group calculations the modifications of resonance self shielding 
compared to the homogeneous case must be taken into account. This is 
done frequently by applying equivalence theorems for effective cross 
sections, which are based on rational approximations for collision 
probabilities in the lattice cell. In most applications for fast reactors, 
Bell's /1/ approximation for tight lattices is used. 

However, this procedure is not useful, if the lattice cell 
contains a material with large resonance cross sections (for example 
? "ζ 0 

U) in more than one region of the cell or if one wants to subdivide 
a cell region with resonance cross sections in order to investigate 
the spatial fine structure of reaction rates. 

In section k of this paper, an approximation is proposed, which 
takes into account space dependent self shielding in a multiregion 
lattice cell. The method is based on a multigroup collision probability 
formalism of reaction rates and neutron emission densities in the cell 
regions (described shortly in section 2 and 3) and is applied in a 
computer program called ZERA. The method is not restricted to small 
heterogeneity effects and can be applied to thermal reactor problems. 

The heterogeneity effect on reactivity is often considerably 
influenced by a modification of leakage parameters due to heterogeneity. 
In the mentioned program such modifications are roughly taken into 
account as described in section 6. 

Several results of ZERA calculations for rod lattices and 
for plane lattices are shown in the last section. Some of them are 
compared with experimental results. 
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2. BASIC EQUATIONS 

We start with the integral form of Boltzmann's equation for 

the critical reactor. Assuming the reactor to consist of N homogeneous 

regions, and the fission and scattering processes to be isotropic, we 

get for the mean flux in region n 

Ν Ρ (u) 

0 (u) = ZZ q (u)V J"? w . (1) 
η Λ "m m Σ. (u)V 

m=1 η η 

Here 21 and V are symbols for total cross section and volume.The 

collision probabilities Ρ have their usual meaning: the probabilities 

for neutrons, which are isotropically emitted in region m with 

spatially constant density to suffer their next collision in region 

n. So eq. (1) involves the assumption, that the space dependence of 

the emission density q (u,if) within a region can be neglected. If 

necessary, a subdivision of regions must be performed. 

q (u) is the average value of q (U,­JT) within region m and 

consists of a fission term (multiplied with an eigenvalue λ ) and a 

downscattering term: 

<x> 

q 
;
m 
(u) = du'0 (u') fxv(u»­*u) Σ. (u')+£ (u'­*u)l (2) 

J m L i,m s,m * 

Σ . is the macroscopic fission cross section in region m, ZI (u'~>u) 
f,m

 l ° s,m 

is the scattering cross section for lethargy transitions from u' to u. 

Combining (1) and (2), one gets 

Ν V Τ Xv(u»­*u)ZL (u')+Z (u'­»u) 
Ln *—t V J

 lm 7 (u
1
) mn 

m= ι η η 
o 

6) 

The reaction rate for any collision type Od (for example capture).in 

region η is given by /■ 

Ν V (u) 

F„ (u) = Z\ (u)0 (u)V = Γ ϊ q Ζ.«}ηκ Ρ (u) (Ό Κ,η OÍ η η η ¿—■< m τη 7" (u) mn 1
 m=1 '­η 
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If the reactor or a part of it consists of a periodic lattice, and 

1 ) 
if the cell concept can be used to calculate the distribution of 

reaction rates within a unit cell, eqs. (3) and (*f) are applicable 

without formal changes. Only the meaning of two symbols has to be 

modified: N becomes the number of regions or zones within the unit 

cell, and the collision probabilities Ρ must now include contributions 

of homological zones in neighbouring cells. 

3. MULTIGROUP PRESENTATION 

For practical calculations, it is appropriate to use the 

multigroup approximation and to express the balance equations in terms 

of group and zone averaged emission densities q , fluxes 0 , and 

g,n' 'gn' 
reaction rates F . The corresponding steps in treating eqs. (1) to 

g ι ^j η 
(k) are integrations which lead to 

Ν V , Ρ 
/ <ĉ  m / mn \ 

*g,n
 =
 ¿­ V" \

q
m Ë ™ >g |

Au
g 0

 m=1 η *­n *
 & K.n - t £ <<V ̂  >* >*V (5) 

= Σ V_ Λ i^n I 
S'*'

11
 " ηΤΞί m X m ^ mn/S 

and 

Ν V G XXff V^f,n+^k->g,n 

(7) 
In these equations, the brackets indicate that the average over the 
energy group g with a lethargy width Au should be taken: 

The cell concept is applicable, if the dimensions of the reactor or 
the lattice zone in question are large compared to the characteristic 
cell diemension and to the mean free paths of the neutrons. 
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<f(u)> = -~ f f(u) du 
\ 'g Au_ 

Au 

X is the fraction of fission neutrons born into energy group g, so that 

X »V (u) = J V (u^u' ) du' 

AU 

The transfer cross section ΣΓ, is defined as 

k­»g,n 

Hv CU) = 
^k­»g,n 

Au. 

27Sîn(u^u·) du' 

G is the number of energy groups. 

After separation of the emission density in its average 

group value <̂ q (u)/ and an only weakly lethargy dependent function 

W (u) which is normalized to\W(u)> = 1, eqs. (5) to (7) can be read as 
g
 N 

gi
n
 ΓΤ̂ ι V g>mN ran /g 

(8) 

IN 

F *, = Γ V q <w(u)Z (u)Y (u)> 
g,«,n «—.. m ^,ηι\ <̂*,n mn / 

(9) 

Ν V G 

*βιΒ-Σ; ^ E « ι , , (ν ΐ · {«νωΣ ΐ ι , (ΛΣ ι , ί ι , ( . ) ]γ„ω) ι 
°' m=1 η k=1 ° 

(10) 
In these equations the abbreviation 

Y (u) - Ρ (u)/Z (u) 'ran mn -̂*n (11) 

has been introduced, γ (u) is proportional to the flux at lethargy 
u in region n, caused per unit emission rate in region ra. 

27 In the sense of the narrow resonance approximation 
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If the values of the brackets are known, the system of linear 
equations (10) can be solved to obtain λ, the matrix q , group fluxes 
0 , and reaction rates F g.η g>«,n 

The problem is the calculation of the brackets, if the 
cross sections are strongly energy dependent within the energy group. 
They appear in the general form 

A„ „ m „ =<C Cu) Γ, (u)Y (u)> (12) 
g,Q£,m,n > oc,n mn / g 

and have the physical meaning of a reaction rate in group g and 
region η caused per unit emission rate in group g and region m. We 
will call them "reaction coefficients". The bracket in eq. (8) can 
be regarded as a special case of (12), with ΣΙ , (u) = 1 and will be 

», η 
denoted as A H 

In principle, it is possible to calculate the collision 
probabilities and Ρ (u) for a series of lethargy points within each 

mn 
energy group and to evaluate the reaction coefficients by numerical 
integrations. However, if large resonance cross sections must be taken 
into account this procedure is extremely time consuming and causes 
difficult computer storage problems. 

In order to cope with similar difficulties for homogeneous 
problems, the Obninsk /2/ group has proposed to use tabulated self-
shielding factors for microscopic cross sections. These are defined as 

V (u) 0l<u)+er > 
*,v«5;.J =, ' . = - — ! — r - T - Λ < 1 3 ) 

V VO 

and will be used in the next section. 
CT" , the background cross section,is the sum of the cross section 
contributions of other nuclides per atom of nuclide V ; it is assumed 
to be constant within the energy group under consideration. 
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k. CALCULATION OF THE REACTION COEFFICIENTS 

Splitting up A into contributions of individual nuclides 
g,«.,m,n 

A , = 2ZA (1*0 

g,<x,m,n ­ g,y,<x,m,n 

leads to 

A =N <w (u)(T „(u)Y (11Λ (15) 

g,v,<X,m,n yn\ o¿,v mn /g ^ 

If û̂ ,j(u) contains large resonances in group g, the main contributions 

to A will be due to reactions near resonance energies. For 

g,v,<x, m,n
 e 

this reason,V (u) must be carefully calculated near the resonamces 
1
 ran 

of nuclide V. If an overlapping of large resonances of different nuclides 

does not occur in the cell regions, the energy dependence of V at 

resonance values of 0"̂  is predominantly determined by the energy 

dependence of <5l(u). 

If the resonance character of the cross sections must be 

taken into account in one region n of the cell only, the dependence 

of V on (f., can be approximated by a rational function (see, for 

'mn V _ τ J
 ' 

example, /1/ and /3/)» 

y m (Cfv(u)) = ̂ τ τ ξ (16) 

'm,η
 v

 c)v(u)+bv 

which is proportional to the fine structure of the spectrum near 

resonances of Cvin a fictitious homogeneous medium, as characterized 

by a background cross section bv per atom of nuclide V . The fictitious 

cross section b^ involves geometrical parameters of the resonance 

region. The formal agreement of eq. (16) with the resonance behaviour 

3) 

of the flux in a homogeneous medium is the substance of the well 

known equivalence theorem /?/ and makes possible the use of self­shielding 

factors or resonance integrals in many heterogeneous cases. 

The formal agreement can be seen by specializing eq. (11) to a one­
region cell, which describes a part of a large homogeneous medium 
with a total cross section ZXu). The collision probability matrix 
reduces to one number Ρηι = 1, and Ύ^ι becomes 

V Λ - VN%> 

N0 is the number of atoms of nuclide V in the medium, (J1, the Vo background cross section due to other nuclides. 
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However, the known equivalence theorems cannot be used in 
more general cases, in which resonance cross sections of the same 

238 nuclide (for example U) are present in more than one region of the 
cell t For this reason, using equivalence theorems, it is not possible 
to subdivide a region with resonance cross sections, which sometimes 
would be valuable for studying the spatial fine structure of resonance 
reactions or to describe more accurately the emission density distribution, 

Furthermore, the derivation of (16) is based on a rational 
approximation for collision probabilities, which is rather inaccurate 
for plane cells. 

Actually, exact functions or good approximations for the 
dependence of the collision probabilities on cross sections and 
geometrical parameters are known for most cases of practical interest, 
but in general they lead to a more complicated function for Y (Cu) 

i. 1 m n v 
than (16). 

The main advantages of the equivalence theorems (the separation 
of reaction coefficients or effective cross sections into nuclide 
contributions and the use of tabulated self-shielding factors or resonance 
integrals) can be saved if it is possible to approximate γ ( 6 λ ) by 
series of rational functions, i.e., if 

Y (eO = έ ^M- 2 - - . (17) 
m V Pi ^v+ bvj 

Introducing (17) into (15), one gets 
A =N Τ " a , . <w(u) = Ä r ) (18) 
v,cx,m,n Vn *~ V,j,m,n \ ffju)^. »/ 

(We have dropped now the group index g.) 
The brackets in the last equation can be calculated from 

self-shielding factors using the relation 

which follows from 

(see eq. (13))· 
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Similarly as in (16), the parameters b . can be interpreted 

as background cross sections, which characterize the dilutions of nuclide 

y in a set of J fictitious media. Eq. (17) describes a superposition 

of the corresponding spectra. 

In some cases, it is possible to derive reasonable values for 

b . from physical considerations, in which the special neutron optical 
•J 

parameters of the cell are taken into account. However, it is difficult 

to do this generally. 

For this reason, we do not try to derive the b . from cell 

parameters, but choose them to make the expression (17) flexible in the 

cross section interval of interest (that is approximately the interval 

between tT and the largest resonance cross section ^¡" in the energy 

pv
 to

 v,max
 &J 

group). 

It was found, that the expression (17) yields a good 

approximation for the function in the interval <f < <ΤΊ ¿ <5~ . if the 
** pv

N
 v ̂

v
v,max' 

parameters b . cover about the same interval uniformly on a log^rscale. 

The achievable accuracy grows with the number J of terms in (17) (see below), 

The coefficients av . can be obtained by calculating some 

ν,ο,ω,η 

values of the function Y ( ST,) = Ρ (6\)/2Γ and by fitting the expression 

mn v mn ν *­*n 

(17) to these values. 

The advantage of the described approximation is, that it is 

not restricted to a rational approximation for Ρ (CL.) . One is free 

" mn
 v 

to use exact formulas or the best known approximations for the calculation 

of collision probabilities and is not limited to a certain type of cell 

geometry. The methods for Ρ ­calculations used in the code ¿ERA for to ' mn 

rod lattices and for plane lattices are described in a paper to be 

published in the near future. 

For the investigation of relatively small heterogeneity effects 

as they occur in fast reactors, the accuracy of the described method 

can be improved by a slight modification. The approximation (17) is not 

used for Y (6!.) but for 

mn ν 

Y* (cr.) =γ (σο -γ , , (18) 
1
 mn V 'mn

 v T
mn,hom' 

where Υ , = Ρ , / V (19) 

'mn,hom nyi,hom *—a. 



is the limit of γ for cells with extremely small dimensions, but with 

the same compositions and relative region dimensions as the heterogeneous 

cell. For this limit, the collision probabilities clearly become: 

'Z V 
n n 

m,n/icm 

Σ Ι £ ν 
¿— t ra m 

(20) 

:a= 

At energies near resonances of nuclide v , V , ((ih,) is then 

,, mn,hom
 v 

~jf ' 

\ 
1/ 

N, V /V c
—' Vm m' η 
m=1 

m,n,hom 

V ¿­ i^ v ' Ν 

Ν 

y Ν , ν 
<—.­* y m m 
ι= ι 

(21) 

Vt­V / Ν V 

m = 1 vm m 

Again, the energy dependence of the second term in the denominator of 

(21) at resonance values of <5"\ is neglected. 

The advantage of approximating V* (õ\) instead of Y (<£,) 
1
 mn v> ' mn V 

is obvious: for cell dimensions which are small compared to the mean 

free paths of neutrons a small difference of similar functions is 

approximated; it is this difference which actually represents the 

heterogeneity effect. 

This modification has been applied in a series of test 

calculations, and it was found, that a number of approximately 5 terms 

in (17) is sufficient to get a good approximation for Y (£\,) and to 

obtain (from eq, (l8)) rather accurate reaction coefficients. 

Some typical results are shown in Fig. 1 for a two region 

plate cell which is specified in Table I. 

Table 

U­density 

'22 

238 
U­density 

2 χ 10 

k χ 10 

22 

22 

H­density 

1 χ 10 
22 

thickness 

1 cm 

1 cm 
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The calculations have been performed with cross sections of 

group 19 of the ABN-set / 2 / . In this energy group, the resonance self-

shielding effects, especially for U, are rather strong. (Self-

shielding factors vary between 0.023 and 1.) Two of the calculated 

reaction coefficients, the coefficients for absorption (A ,. _) and 

elastic scattering (A . _) are plotted in Fig. 1a as function of J for 

constant values bv, T'= ¿fOO O" ,. The other values b s, . were placed 

V,J pv> V,j * 

equidistantially on a logarithmic 6^-scale, with the smallest value 
b,,„ = 6" . The same numbers have been used for the (?., -values for which 
V1 pv V 

the fitting values of Y were calculated from (11). 
0
 mn 

For five or more fictive homogeneous mixtures, the results 

for A . ρ do not differ by more than 0.5$, for Α Λ -> the agreement is a,ι,c e , ι, ¿ 

even better. 

Fig. 1b shows the dependence of the reaction coefficients on 

the highest dilution parameter b y T (which is also the highest scanning 
u. 

point f or V (θ*. )). All the results shown in Fig. 1b were obtained with 
mn

 v ° 
10 fictitious dilutions, so that a good approximation of Y (Ö^) in the 

interval <5" < ·€Γν (>6'VT can be assumed. Perhaps it is surprising that already 

for S". T = kOO G"* rather good results are achieved. However, this may 
V,J pv ° 

be explained by the fact that in large resonances most of the reactions 

occur in the flancs. 

LEAKAGE CORRECTIONS 

In order to find a realistic equilibrium spectrum which takes 

2 

into account the finite size of the lattice, DB -corrections are applied 

in the cell code ZERA: all reaction rates within an .energy group are 

reduced by a factor 

IT) 23ô  
For U, Ctj = ¿4-00 <5" ~ ¿fOOO b i s much s m a l l e r t h a n t he maximum Y

 <J pv 
cross section in group 19 (^^+0.000 b). 
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„ removal r a t e 
*B = T J Ñ <22) 

removal rate + DB Ύ~*0 V 
fri η η 

The application of this factor for all cell regions implies the assumption, 
that the spatial distribution of reaction rates is not influenced by the 
global diffusion of neutrons. 

The group diffusion coefficients S are calculated from 
Benoist's /4/ formula: 

Ν Ν Ν 
3 D 2 Z Ø = 2 Z Ø V ΣΙ Ρ /F*. (23) 

ÍT1 n nTl n n mTl nX^- t r .m 

This formula can be applied, if the Buckling components in the fundamental 

directions are equal, i.e., if 

B
2
 = B

2
 = B

2
 = B

2
/3 (24) 

χ y ζ 

or, for a cylindrical reactor, if 

B
2
 = 2B

2
 = | B

2
 (24a) 

r ζ 3 

If (24) or (24a) do not hold,the anisotropy of diffusion,which 

is due to streaming effects,must be taken into account. We have not done 

this, because it demands the complicated calculation of modified collision 

probabilities (see /4/). 

However, we think that (23) at least leads to a reasonable 

estimate of heterogeneity effects on leakage. 

6. DERIVATION AND APPLICATION OF HETEROGENEITY­CORRECTED 

CROSS SECTIONS 

As already mentioned, the solution of eq. (10) leads to the 

eigenvalue X and to group­ and region­dependent fluxes and reaction rates, 

1/X is the multiplication factor kTO for the infinite lattice, if no 
2 

buckling corrections are applied. If ,DB ­corrections are performed as 

described in the preceding section, 1/χ becomes the (static) effective 

multiplication factor k for an unreflected finite lattice with a 

geometrical buckling B . (For a homogeneous one­region cell, λ agrees 

with the result of zero­dimensional calculations using the same cross 

section set and the same buckling.) 
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However, differences in k „„­values of homogeneous and 

heterogeneous cells do not contain enough information for calculating 

heterogeneity effects on reactivity for reactors with different lattices 

in different zones. 

For this reason, the code ZERA was extended to calculate 

"heterogeneity­corrected" cross sections Z^in order to use them in 

multigroup diffusion codes. 

The are derived from 

N N 

Σ:* . 7"" ø v = 7 " F (25) 
^oc t—* *η η ¿—> c¿,n ­" 

η=1 η=1 

The transport cross sections are calculated from 

Tl =— (26) 
tr
 3D 

where 5 is given by eq. (23). 

It should be mentioned, that these cross sections are nearly independent 

of the buckling used. 

They also can be applied in perturbation codes, if one is 

interested in the space dependence of heterogeneity effects. In this case 

the reactor which is being perturbed is calculated with cross sections 

corresponding to homogeneous cells. 

In fast reactors with rod lattices, the heterogeneity effect 

on the diffusion coefficients and the anisotropy of diffusion are usually 

rather small. Both become more important for reactors with plate lattices, 

because of the large free paths of neutrons, which impinge under a small 

angle to the plate surface into plates with small cross sections. The 

fraction of neutrons, which have large paths in a cell region with small 

cross sections is for geometrical reasons appreciably larger than in an 

equivalent rod lattice cell with the same volume fractions of the cell 

regions. 

If the cell thickness of a plate lattice is small compared to 

the mean free path of neutrons perpendicular to the plate surfaces, it 

can be expected, that the diffusion coefficient D„ corresponding to a 

flux gradient perpendicular to the plates is hardly influenced by 

heterogeneity. 
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Eq. (23) gives the mean of the diffusion coefficients for the 
three fundamental directions : 

D = (Dx + Dy+ Dz)/3 (27) 

Since in the homogeneous case i t i s 

D, = D = D = D (28) 
hom χ y ζ ; yeLOJ 

the difference between D and D, is 
hom 

D-D, = 4 I (S - Κ ) + (Β -D. ) + (D -D, )l . (29) hom 3 L x hom y hom ζ hom J y 

If the thickness of a plate cell is small enough to neglect D -D, , 
° D ζ hom 

and if we consider a cylindrical reactor, eq. (29) reduces to: 
D-D, = I (D -D, ) (30) 

hom 3 r hom ^ 
or 

V D h o m = I (S-Dhom) <*>"> 

V Dhom = ° ' <*>b> 

'7I APPLICATIONS 

The heterogeneity experiments performed in SNEAK, Assembly 
3A-1, were analyzed using the methods described above. The radial 
dependence of reactivity changes due to bunching, together with calculated 
curves, is plotted in Fig. 2b. A short description of the experiments 
is presented in /5/. Fig. 2a contains the structure of the normal and 
bunched cells. 

The calculated curves (solid lines in Fig. 2b) were gained 
with a perturbation code by using heterogeneity corrected group cross 
sections as described in section 6. The heterogeneity corrections for the 
diffusion coefficients were calculated from (30a) and (30b). The agreement 
between experiment and calculation is satisfactory near the core center. 
Only a qualitative agreement is achieved near the core boundary. 
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The dashed lines in Fig. 2b do not contain any heterogeneity 
corrections for the diffusion coefficients. They can not explain the 
change in sign of the bunching effect in the boundary region of the core. 

Figures 3 and 4 give some insight into the energy distribution 
of the heterogeneity effects in a central core zone, in which the 
spectrum can be assumed to be the equilibrium spectrum corresponding to 
an energy independent buckling. The curves shown are based on ZERA 
calculations, in which the buckling has been iterated to give k „„ = 1. 
Fig. 3 shows the relative difference between the heterogeneous and 
homogeneous spectrum,calculated asAØ /0 (hom) =(0 (het) -

g,n g g,n 
"0 (hom))/0 (hom). The spectra are normalized to the same number of fission 
g g 
neutrons per unit time and volume. The solid lines correspond to the 
uranium plates, the circles to the steel CH„ plates. The values of the 
two remaining other plates in the cell generally lie between the uranium 
and the steel CH_ points. The flux concentration in the uranium plates 
in the MeV-region is the reason for the main contribution to the bunching 
effect on reactivity (compare Fig. 4). The spatial flux distribution 
in this energy region seems to be rather well calculated, as can be 
concluded from a comparison of Rh-activation distributions with calculated 
values (see /5/)· Enlarged diffusion and deminished CH?-downscattering 
upon bunching in the MeV-region lead to a lower flux in all cell regions 
in the 100 keV region. This is the reason for the negative reactivity 
contributions in Fig. 4. Below 10 keV, the emission density peaks 
in the polyethylene^ and the flux depression in the uranium lead to a 
remarkable softening of the spectrum (in all plates) in the low energy 
region, which causes reactivity gains. 

It can be seen from Fig. 4, that the heterogeneity effects 
are a result of partially compensating positive and negative effects. 
The compensating character and the complicated energy distribution tend 
to make the total reactivity effect rather sensitive to changes in the 
cross sections used. This is an explanation for the appreciable difference 
between the results gained with the ABN- and the SNEAK-set (see Fig. 2a). 

It should be noted, that the mean hydrogen concentration 
20 3 (7·37 x 10 atoms/cm ) is much lower than in a high pressure steam 

cooled reactor, which will be simulated in SNEAK-3A-2. The contributions 
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from the energy region below 10 keV to the total reactivity effect will 
be considerably larger in SNEAK-3A-2. 

Heterogeneity effects in the low energy region are of major 
importance for the reactivity behaviour during flooding of a steam 
cooled fast reactor. Fig. 5 gives an impression of the magnitude of the 
effects for the reference reactor D1, which is described in /6/. In this 
figure, the results of cell calculations for the effective multiplication 
factor k „„ for both the homogeneous and the heterogeneous case are plotted 
vs. steam density. The curve for the homogenized core was gained by 
reducing all cell dimensions by a factor 10 . The buckling was chosen 
to give k ff Ci1 at the normal steam density (0.07 g/cm ). The results 
show that the calculations for the homogenized core lead to errors of 
several percent in k „„ at high steam densities. 

eii 
An application of the described method to a cell of a hexagonal 

light-water moderated lattice of a thermal reactor is shown in Fig. 6, 238 which shows the calculated distribution of U-captures within a 
natural uranium rod in the energy region from 3 e^ to 10 keV. The rod 
diameter is O.983 cm, the rod center-to-center spacing 1.44 cm. The 
measured curve and the results of Monte Carlo calculations are taken from 
/7/· The calculated capture densities and the measured curve are 
normalized to 1 in the center of the rod. The ZERA-calculations have been 
performed with ABN cross section. In order to find the space dependence 
of the reaction rates within the rod, the rod was subdivided into 12 
concentrical regions. 

This application is a rather sensitive test for the reaction 
coefficients, which acount for the spatial dependence of resonance self 
shielding. The agreement with the experimental curve and with the results 
of Monte Carlo calculations is surprisingly good. This holds also for the 
total number of neutrons absorbed in the energy region under consideration 
in ^ U per neutron entering at 10 keV: ZERA gives a number of 0.3140, 
while the Monte Carlo result is O.3075. 
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8. SUMMARY AND CONCLUSIONS 

The described method to deal with resonance self shielding 
in multi-region lattice cells in principle reduces the calculation of 
resonance reactions to the calculation of collision probabilities for 
some values of the resonance cross sections. It is applicable to a wide 
range of cell problems, because it is not restricted to the use of 
rational approximations for the collision probabilities. 

The method is used in a FORTRAN-program ZERA which calculates 
group and region dependent reaction rates, k „„-values for unreflected 
lattices, and heterogeneity corrected cross sections, which can be 
used to calculate heterogeneity effects in different regions of a reactor. 

The ZERA results are in good or satisfactory agreement with 
the bunching effects on reactivity, which were measured in SNEAK-3A-1. 
The results show the importance of the leakage component of heterogeneity 
effects in the outer regions of a reactor. The heterogeneity corrections 
to the diffusion coefficients allow an estimate of this component. 
The agreement between predicted and experimental results in a core 
boundary region in SNEAK-3A-1 is not yet satisfactory. Further 
investigations are planned in this direction. 

In fast reactors containing hydrogen, the energy dependence 
of heterogeneity effects on reaction rates is rather complicated and 
has a surprisingly strong dependence on the cross sections used. For 
this reason, the investigation of heterogeneity effects also can be 
helpful for testing cross section sets. 
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