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A dynamic model for boiling channels of nuclear reactors is proposed, which 
is suitable for numerical calculations in the time domain. 

The model is one-dimensional, and includes treatment of subcooled boiling 
and liquid superheating. It includes a new form of boiling heat transfer 
correlations and a correction of Bankoff's slip correlation for diabatic conditions. 

In the present formulation the model is limited to constant pressure level 
of the whole system, but an extension to slowly variable pressure is easy in 
principle. 
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Summary 

A dynamic model for boiling channels of nuclear reactors is proposed, which 
is suitable for numerical calculations in the time domain. 

The model is one-dimensional, and includes treatment of subcooled boiling 
and liquid superheating. It includes a new form of boiling heat transfer 
correlations and a correction of Bankoff's slip correlation for diabatic conditions. 

In the present formulation the model is limited to constant pressure level 
of the whole system, but an extension to slowly variable pressure is easy in 
principle. 
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A DYNAMIC MODEL FOR THE COOLING CHANNELS 
OF A BOILING NUCLEAR REACTOR WITH FORCED 
CIRCULATION AND HIGH PRESSURE LEVEL (+) 

1) Scope of the model 

The purpose of this work is to build a physical model for 
the dynamic behaviour of the cooling channels of boiling nu
clear reactors or experimental loops. 

The model will be used for numerical calculations of trans
ients in the time domain, and should possibly be coupled to 
spatial neutron kinetics calculations in one or two dimensions. 

For this purpose we tried to simplify the representation of 
phenomena as much as possible without loosing the significance 
of the results. Therefore we introduce the following fundamen
tal assumptions: 

a) Every_channel_is_treated_in_one_sp_ati^l_dimension^ 

Equations will be established for average quantities over 
the cross section of the channel. This implies, in case of heat
ing elements arranged in bundles, that phenomena are well re
presented by means of an average channel, or alternatively of 
some parallel channels without mixing coupling. 

b) We_admit_that_the lÍ3Hi^_ÍE_iíl£2í!íEí]SaEÍbiêi._£E_wêii_£2_I^ê 
YÊP2yî!i_^i£^_iS_EiêSliîî}ËÉ-.Î2_bë_ËâÎuïË:ÎêÉ_êYë£Z^Êïê^_^ïÉ 
^§_íê2i§2í_í^e_fe^?2Éy^aí!3Í£_w2r^_i:n_í^ê_Eífê£2Z_^2Í£2£E -*-£ 
comparison_with_the heat_transmission_and_internai_ener2y_ 
terms^ 

The assumption of incompressibility brings to neglect all 
the phenomena of sound and shock waves propagation. The model 
is therefore not conceived for treatment of very fast trans
ients in which pressure waves may have an essential importan
ce. Neglecting of hydrodynamic work is generally well justi
fied in practical applications. 

These assumptions allow the simplification essential to 
the model, i.e. decoupling of the momentum equation from the 
energy and mass continuity equations. The momentum equation 
can thereby be integrated in space over the channel giving 
at any time, through the inlet velocity, the boundary condi-
tion for the system of the remaining equations. 
(+'Manuscript received on Kay 21, 1968. 



c ) All the__£hysical constants_of_the_coolant_are_assumed_to_be 

The model will therefore permit the analysis of transients 
in which the inlet temperature of the coolant is not very far 
from saturation and the pressure drop along the channel may be 
considered small in comparison with the pressurization level. 
This is generally pretty well verified in forced circulation 
systems, and may sometimes be admitted also for natural circu
lation systems. 

The time independence assumption prevents the treatment of 
pressure loss accidents. This limitation is not essential and 
could be removed pretty easily. We admit it here for the sake 
of simplifying the model as much as possible. 

We thought it important to include in the model a detailed 
representation of subcooled boiling as it is known that the 
void fraction in the subcooled zone may reach high values in 
practical cases. 

2) Fundamental variables and equations of the model. 

With the assumptions stated, and for simplicity's sake we 
will take as zero temperature the saturation temperature and 
zero enthalpy the saturated liquid enthalpy. 

We will assume further that the channel have constant cross 
section A and heated perimeter p. Indicating by φ the heat flux 
through the heated perimeter, the power density (averaged over 
cross section) reaching the coolant is given by 

Q = £ φ + Q , . 
ν Α Ύ vdir 

where Odirect ^ s the power density directly added to the cool
ant by neutron moderation and radiation absorption. 

We will indicate by f the source of vapour volume (averaged 
over the cross section) i.e. the vapour volume generated per 
unit volume over %he whole cross section of the channel. 
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Leaving aside for the instant the momentum equation, which 

will be decoupled from the others because of our assumptions, 

we shall refer all the balance equation to the unit cross sec

tion. 

Our fundamental variables will be: 

ν = total surface velocity or flow rate. It is the total volu

metric flov divided by the area of the channel cross sec

tion. 

qv = vapour surface velocity or vapour flow rate. It is the va

pour volumetric flow divided by the cross section area 

α m void fraction. 

Ratio of the vapour volume to the total volume at a given 

axial location. 

H ■ enthalpy of the liquid. 

In terms of the more commonly employed variables vv a avera

ge velocity of vapour and v^ = average velocity of liquid, our 

variables are given by 

w =a w + ( 1
α
)νχ 

qv =«v v 

The present choice of the variables have the advantage of 

giving the simplest expression to the conservation equations 

and permits an unambiguous formulation excluding any approxima

tion. For a thorough discussion of the matter we refer the rea

der to the work of Zuber (Ref.1). 

Let us further indicate by q^ = wqv the surface velocity of 

the liquid, by ρ the liquid density, by γ the ratio between vapour 

and liquid densities and by λ the latent heat of vaporization; 

the ζ coordinate axis will be oriented in the direction of the 

flow. 

In the assumption of incompressibility, the total volume con

tinuity equation is written 

ο ζ 

as (ΐ-γ)Τ is the volume variation due to vaporization. 



The vapour volume continuity equation reads 

(2) £ = * - — 
dZ

 d ζ 

Finally the last equation which may be derived from first prin

ciples is the energy conservation equation: indicating by E the 

total energy contained in the unit volume and by L the energy flow 

through unit section, it may be written 

òE Q aii 
dt ο ζ 

with the assumptions already mentioned we may substitute 

Ε = ρΗ( "|α) + ργλα 

L = ρ Hq1 + pY λ qv 

dividing by ρ and replacing q, = wqv and τρ and r— from equa

tions (1) and (2), we will finally get: 

(3) (10) | |  £Y(*H)f(wqv) |S 

3) Nature of the empirical correlations of the model 

The equations (ï) (2) (3) are the fundamental equations of 

the model directly deductible from first principles in the assump

tions stated. 

We have 3 equations for the 4 unknown variables α, w, qv, H, 

and therefore the dynamic system is not fully determined, although 

we consider Ψ and Q as known quantities. The total momentum equa

tion cannot be used to complete the set of equations as it will in

troduce the pressure as a new variable. In our assumptions the mo

mentum equation will be decoupled from the others and may be sepa

rately integrated in space to give inlet acceleration of coolant. 

What is really needed to determine completely the system is the 

motion equation of the single vapour (or liquid) phase which will 

give us a connection between the two velocities w and qv. But as 

nothing is known about the momentum exchange between the phases, 
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the only way out is to assume an empirical correlation which 
will tie together the two velocities with the void fraction α 
as a parameter. Such a correlation is commonly called slip correla
tion as it determines the Slippage between the two phases. In 
the literature many forms of this correlation may be found; it 
is however a priori clear that no correlation may have general 
validity, as its form should depend on the type of flow regime 
in the system. 

A satisfactory solution of the problem will be got only 
when the character of every type of flow regime will be speci
fied together with the transition conditions from one to the 
other type. 

This is not even foreseen presently, and all what can be 
done is to specify a recipe which will have a limited range of 
validity and should be selected in relation with the practical 
problems that have to be treated. 

Another empirical correlation is needed to specify the sour
ce Y of vapour volume. If it could be assumed that everywhere 
the liquid and vapour are at equilibrium, the problem will be 
solved easily, but actually it is necessary to take into ac
count the lack of equilibrium at least in the subcooled zone, 
in which it is known that the void fraction may reach signifi
cant values. 

We shall therefore consider the source term ψ formed by the 
two addends ¥s, source at the heating surface, and Ψ b which is 
the bulk source term and may be negative if recondensation take 
place. 

If we want to force thermal equilibrium in the bulk boiling 
zone (H = 0) we will take Ψ = r-̂ — eliminating thus the energy 

Γγλ. 
equation (3). 

The simplest choice for ^b i*1 the subcooled zone will be 
?b = 0» assuming that the bubbles formed at the surface have no 
time to collapse significantly in the bulk of the coolant. 

A more general form for Ψ^ will correlate it to the enthalpy 
(or temperature) difference from saturation Η and the void frac-
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tion α ( α is of course related to the boundary surface between 
phases). The Ψ3 term will be correlated to the heat flux which 
is due to the boiling transfer mechanism. 

Further correlations are needed to evaluate the heat flux φ. 
In stationary problems the heat flux is a datum, and correlations 
are only needed to evaluate the heating surface temperature in 
terms of the heat flux and bulk coolant temperature. This is of 
course no more true for dynamics where heat flux is an unknown 
variable. As in practical cases the heat flux may vary in time 
much more abruptly, due to change of surface resistance,than the 
surface temperature, which has a time constant related to its 
heat capacity, it will be convenient to take surface temperature 
as the independent variable for the correlations, as well as for 
expressing the transition conditions from convective to boiling 
heat transfer regime. 

4) Correlations of the model 

We give here the correlations adopted in our model that are 
discussed in detail in the appendixes. 
a) Slip correlation (see appendix A) 

ze 
^v = Κ w - "Τ ψ

3 

Κ is Bankoff (Ref.2) constant and depends on the pressure. 
For the water it can b taken following Jones (Ref.3) 

K = 0.71 + 0.29 
Pcr 

2ρ is a new parameter, which has the dimensions of a length 
and should be fixed experimentally. Its order of magnitude is the 
same as the hydraulic diameter of the channel and it represents 
physically a relaxation length for the establishment of void 
asymptotic profile for bubbles of vapour generated at the heat
ing surface. 



b) Heat transmission to coolant (see appendix B) 

φ= h(Ts-T) Τ3
2
Ν<Θ (Ts-T) 

ø K = . h ' T " for Τ
 2
>θ(τ -T) 

b s s s ' 

φα =(h(Tc-T)-h'Tc
n
) (1 - %| _ ̂

c
) i o 

| ( 1 + ί ^ > β£ = l.4^(|r)l/n-1 Tc 

h is theconvective heat transfer coefficient which for turbulent 
flow is given by the well known formula 

γ- = Nusselt = constant χ Reynolds " χ Prandtl 

Many expressions are given in the literature for h'. The inver
sion of the given formulae is generally needed for deriving h' 
from the values given in the references (see for instance Ref.4.5) 
while the exponent η has a value between 3 and 4. 

The parameter θ which has the dimensions of a temperature and 
physically is interpreted as the temperature difference between 
heating surface and saturation at the inception of nucleation 
in saturated liquid. The value of θ may be fixed by experience 
or derived from theory (Ref. 6) as = — 4 ^ - h 

Κ Psat 
8 Τ 

As explained in Appendix B, we prefer the expression 

c) Vapour source correlations (see appendix c) 

s τ Α ργλ ι+·ε 
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R0 α Τ Τ<0 

According to Bowring (Ref. 7 ) ε is a positive constant which 
depends only on the pressure. 

Values of the parameters R0 and R1 are not available at present 
even as a guess.According to Bowring, in practical application RQ 
can be taken as 0 (no recondensation in subcooled zone) . A first 
guess for R-j could be infinite, i.e. equilibrium in the bulk boiling 
zone with no superheating of liquid. In this case equation (3) 
should be replaced by 

H = 0 

Ψ =. 0 ρ"γΧ 

d) Finally, as first approximation the relation between Τ and Η 
may be simply taken as Η = CpT with a Zp kept constant at satu
ration value as long as the inlet subcooling is not too large. 

5) Momentum equation 

Let us write the motion equation for the fluid in the form 

A dG = _A dp_ _ A- _ £ 
d t Λ·?. ^ a 

where ρ is The average density of the fluid, g is the gravity ac
celeration in the direction opposite to the flow and f the friction 
force. 

G is here the momentum of fluid per unit cross section and is 
expressed in terms of our variables as 

G = Pq p + pYqv = p(w-(l-Y)qy) 

Passing from Lagrange to Euler representation we have 
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dG ÒG a 

dt " dt
 + dz G 

with LQ we indicate the momentum flow per unit cross section. 

Integrating the motion equation over the whole channel (and dividing 

by the cross section A) 

p.  ρ .  Δ ρ „  Δ ρ = ƒ -rr d z + Lp . - LR. r m rout r£ rQ , J Ί dt bout ^ m 3 channel 

where Δ p£ is the pressure loss due to friction, Apg is the gravity 
head pgL and Δρ3 = LQ t - Ĝ-;̂  is the so called acceleration pres
sure loss. We shall rewrite the equation in the form 

d 

channel 
_ , Gdz = Δρ - Δ ρ - Δ ρ £ - Δρ3 

•-- In :s τη vt Û Ί ^ 

The actual pressure drop Δρ over the whole channel will be im
posed by the external conditions of the loop. The gravity head is 
easily calculated at each instant of time. The friction pressure 
drop must be evaluated as function of local flow rate. It is normal
ly expressed by 

Δρ£ = ; R£K£p φ dz 
channel 

Kf is here the friction factor for the liquid alone, while Rf is the so 
called two phase friction factor and may be evaluated by the well 
known Lokhart and Martinelli correlation (Ref. 8 ) or any other of 
the many existing correlations (see Ref. 4,5). 

The acceleration pressure drop is impossible to evaluate exactly, 
because the flow of momentum at a give section depends on the velo
city profiles in the section itself. 

For pure liquid we have: 
o G2 

L G = e pw¿ = ε _ 

<vz > 
with ε = — a weighing factor not far from 1 for turbulent 

<v
z> 
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flow, because the profile is markedly flat. 

For two phase flow, 

L
G -

 P
 ( «1 T&J + V ^ 

with ε and εν weighing factors for liquid and vapour that, assum

ing no local slip, may be expressed as: 

< ανζ2χα> <(ι_α)νζ2><ια > 
ε = η— ε  = 

ν <v^>d
 1 ζ>
 χ

 <( ια)ν >
2 

ν
 ' ζ 

If the flow is highly turbulent for both phases (or for the mix

ture), so that the velocity profile is nearly flat, the weighing 

factors are not far from 1. 

We have, now 

G = p(w(lY)qv) 

and therefore 

¿u P <U- (1.T) i§v, 
à ζ à ζ ° Ζ 

and, replacing — from equation (i) 
ο Ζ 

4 | = P(1-T) ( , . % 

or, by equation (2) 

òG „/„ \ à a 

η =
ρ(1_γ)

 TE 

integrating over ζ 

G = G
inlet

 +
Ρ(

1
~
γ
) (̂ 0

Zl?dz
  qv(

z
) ) 

or G = G
inlet

 + Ρ(ΐ"γ)^ο l r d z 

replacing G in the left hand side of momentum equation 
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Λ f A ¿
 L Z L 

#r .
 J
 Gdz = L 4r G. Ί + ρ ( 1- Y * ■ ƒ dz ƒ Ψ dz - ƒ q dz) 

dt Channel dt inlet pv « t o o b Hv ; 

Λ Λ d2 L ζ 
or ■£■ /Gdz = L -£ Q + ρ (ιγ) 5 / dz J adz 

dt
 J
 dt inlet

 r v
 ' 3t2 o o 

Assuming that the coolant enters in the channel as a pure 

liquid, we get the final form of the momentum equation: 

(4) pL
 V i n l e t

 = Δρ  A P g  Δρ£  Apa  Apd 

where L is the total length of the channel and Δρ^ is a dynamic 

term containing the second derivative of the void fraction 

2 L ζ 
àpã = P(1Y) 25 (£ dz So adz') 

Ô t 

It is worth of noting that for slowly varying phenomena (if 

the void fraction is linear in time) the apparent inertia of 

the channel will be equal to that of a purely liquid channel, 

whatever the void fraction. 

6) Scheme for numerical calculations 

The model described will be employed for numerical calculations. 

A FORTRAN code is now being developed for this purpose. 

The differential equations (ï) (2) (3) are reduced to finite 

form by the backwards difference method in space and time. 

Starting from known values of inlet velocity and enthalpy at 

the time t, a new value of enthalpy is evaluated for the. next point 

along the Ζ axis by energy equation (3) coupled with convective 

heat transmission equations in the heating element (the heating 

power is given as function of time) and so on mesh after mesh until 

a text will show that subcooled boiling occurs. Then an iterative 

procedure is employed for the next points. 
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A guess is taken for the heat flux φ , from which, by means of 

heat equations in the element the surface temperateure Ts is deriv

ed. From Ts we get φ b = h'T^ and then the vapour source terms Ψ3, 

^b>
Y
(correlations C). From the continuity equation (1) the flow rate 

w is found, and from equation (2), in which qv is replaced by slip 

correlation A1, α is calculated. Then qv, then Η from energy equa

tion (3) and the liquid temperature T. From the values of Ts and T, 

a new value for the heat flux φ is derived and the process is iterat

ed to convergence on φ . No explicit calculation of bulk boiling boun

dary is needed, as the equations are the same across the boundary. 

Only if equilibrium is assumed in the bulk boiling region, a test 

on the enthalpy is necessary, so that if Η is greater than 0 the 

enthalpy is set to zero and equation (3) is employé'! to get the 

value of the vapour source Ψ. The rest of the procedure is unchang

ed . 

When the calculation is completed for all the channel, the Apg, 

Apf, Δρ., and Δ p¿ are evaluated. The momentum equation (4) is then 

employed, with externally given Δρ, to get a new value for vj_niet 

for the next time step(Ap constant parallel channel behaviour ana

lysis). Alternatively the inlet flow may be assumed constant and 

the static pressure drop Δ ρ derived (flat pump characteristics). 

It should be noted that the use of momentum equation illustrated 

corresponds to an explicit calculation of the coolant flow; a more 

safe method should employ a complete recicling of the whole calcu

lation until the momentum equation is satisfied. This would however 

multiply the calculation time, and it is not felt to be necessary 

for many practical cases. 
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APPENDIX A 

Slip correlation 

Among the different types of correlation available, we have 
chosen the correlation introduced by Bankoff (Ref. 2 ) and we 
have modified it to take into account the effect of void produc
tion which may be of some importance in many cases, especially 
for dynamics. 

Benkoff's model has been proposed by the author for bubble flow; 
it is therefore somewhat dared to extend its validity to very high 
fraction conditions in which this regime is no more possible. 

This is what have done Jones (Ref. 3 ), by modifying Bankoff's 
correlation to make it tend to the limit 1 when the void fraction 
goes to 1. 

We think that this procedure is not very well founded on physical 
grounds, as the limit 1 has no real meaning; actually, in many prac
tical cases, at high void fractions corresponds an anular flow, and 
therefore the velocity ratio increases without limits when the li
quid annulus thickness decreases. 

Still it may be objected that Bankoff's original formula gives 
a divergent value for slip ratio s when α = K (K:> 0.71). This 
objection has no value for two reasons. The first, already mention
ed, is that Bankoff's model is however out of the range of validity 
for a void fraction as high as K. The second reason is that, if we 
want to extend, for practical computing reasons, the model beyond 
its validity range, there is nothing physically absurd in assuming 
that the slip ratio should diverge for a certain value of α and 
become negative beyond it. This may be simply interpreted, in case 
anular flow, assuming that the liquid on the walls become stopped, 
and afterwards falls back counterflow to the vapour. For vertical 
channels with upwards flow this may well happen, and has actually 
been observed in dynamic cases. 

The sole justification of Jones' correction should therefore be 
a better agreement with experimental data, but as there are no great 
differences between the two in the range of actual validity of the 
formulae, we prefer in this work to maintain Bankoff formulation, 
which has a simpler expression. In terms of our fundamental varia-
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bles Bankoff's correlation is written. 

Hv r 

With Κ a constant depending on pressure - Bankoff gives for 
water Κ = 0.71 + 0.0001 ρ - with pressure in psia: we can here ac
cept Jones' correction to bring but the right limit at critical 
pressure Κ = 0.71 + 0.29 p/pc (On physical grounds it should perhaps 
be prefered a dependence on the ratio = ̂ v/p which is more direct
ly linked to the void profiles). 

We remember now that Bankoff formula is derived assuming that the 
void and velocity profiles depend only on the hydrodynamics charac
teristics of the channel (and that no local slip occurs this error 
should be small for forced circulation channels). A through discus
sion of the matter is given in the paper by Zuber and Findley,(Ref. 9 ) 

Bankoff correlation is therefore strictly applicable to adiabatic 
conduits of sufficient length in which no phase changes occur and 
velocity and void profiles are asymptotic with zero void at the channel 
surface and maximum in the central zone of the conduit. If we want 
to extend it to the dynamic case for diabatic channels with change 
of phase, it may be noted that the void profile shall depend in this 
case also on the vapour source distribution. 

We may fraction the vapour source into the bulk term ^b an<^ t^e 
surface term Ys; if we suppose that \ is everywhere proportional 
to the void fraction a; it will not alter the void profile, while 
this will happen with Ψ s, which is localized at the surface of the 
channel. 

As a first approximation, to take into account this effect, we 
shall suppose that the voids profile in a given section of the chan
nel may be considered intermediate between Bankoff's profile and the 
surface source profile, which, if we consider that the fluid near 
the walls is still, gives zero velocity for the vapour: we shall 
then have 

qv = £ ν (1-e) 

where e is the relativ· weight of the surface distribution of bubbles 
to the total void profile. 
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V 
For ε we take the expression ε = where τ is the time cons-

r α 
tant which measures the relaxation time of the bubbles, i.e. the 
time after which the bubbles born at the surface reach the asympto
tic distribution. 

A tentative expression for τ is τ = —~ where ze is a kind of 
relaxation length related to the distance after which the bubbles 
born at the surface reach the asymptotic profile. As it is reaso
nable to suppose that the transverse migration velocity of the bub
bles is proportional to the axial velocity of the fluid, the value 
of ze should be significantly independent of w. 

It may be estimated as order of magnitude observing visually the 
distance after which the bubble generated at a fixed point in the 
surface take the asymptotic profile. 

The modified Bankoff formula will finally read 
Ψ 

lv " Κ "v ' a"w ' Κ a /., ze S\ a ie ψ 

It will be noted that the deduction of the formula given implies 
that τ 3 should be constant along the ζ axis. Practically it may be 
accepted for the general case, provided ^s vary little over a dis
tance of the order of ze. 

It should however be remembered that ε will reach at most the 
maximum value 1, and this will happen when all voids are concentrat
ed at the walls. This is exactly what happens at the far end of sub
cooled boiling zone: with this care we may hope that our final for
mula 

α Z P rt, 

% = τ w - -f ¥s qv > o 

% = o 
will represent also the subcooled boiling zone with a careful choice 
of ze. 

The ze parameter should be determined by experience, by fitting 
the axial void profiles in static condition. It is however expected 
that it should be of the same order of magnitude as the hydraulic 
diameter of the channel, for if this should not be true, the com-
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píete mixing hypothesis that supports one dimensional model shall 
also be wrong. 

It is stressed that the model proposed does not claim to have 
general validity and is a priori limited to forced circulation sys
tems, or however fast circulating turbulent systems with inlet speed 
of the order of 1 m/s or more. 
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APPENDIX Β 

Heat transmission at the heating surface. 

The heat transmission in the purely convective region is well 

represented, for turbulent flow, by the well known correlation 

for heat transmission coefficient h: 

ψ- = A Reynolds0,8
 Prandtl

0,4 

where D is the hydraulic diameter of the channel and Κ the liquid 

inlet conductivity. A is given as 0.023 for water (seep .ex.Ref. 4 ). 

In the nucleate boiling zone we shall assume a formula of the type 

(Ref. 4 ) 

øb = h'Ts
n
 with 3¿n<4 

To evaluate the coefficient h' different formulae have been proposed, 

but in any case they include some experimentally determined coeffi

cients depending on type of coolant, geometry, and heating surface. 

The nucleate boiling region is sometimes subdivided in two re

gions: one in which the nucleation centers are still not very fre

quent, so that part of the heat is still transmitted by the turbu

lent convective mechanism, and the second in which all of the heat 

is practically transmitted by nucleate boiling mechanism (fully 

developed nucleate boiling) . 

The transition between the two regions is continuous. (It has 

been stated (Foster and Grief) that the transition point is found 

for a heat flux equal to 1.4 times the heat flux φ0 of f ig" .31). 

The general situation for the heat transmission is illustrated 

in fig. B1, in which the heat flux is represented as function of 

the heating surface temperature Ts, and where the fluid temperature 

Τ is taken as a parameter. 

(We are not interested here to what happens beyond the DNB point 

or boiling crisis point); 
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With reference to the figure 1B, we assume for simplicity and 

continuity that for wall temperatures greater than Tc (threshold 

temperature for nucleate boiling) the heat flux ψ will be equal to 

the nucleate boiling flux #b plus a convective term φα which de

creases linearly to zero when the temperature Ts increases over 

Tc to a value corresponding to 1.4 ^b· This formulation brings the 

advantage of representing in a simple way and without discontinui

ty the relationship between heat flux and wall temperature Τ of 

the coolant. From the figure we see actually that 

(B1) φα = (h(TcT)  h'Tc
n
) (1 ̂

S
 I lC) * 0 
f C 

Φ= h'Ts
n
 + Φο 

For determining Tc we will use the model proposed by Bergles 

and Rosen how (ref. 6). 

Let us suppose that nucleate boiling starts when the tempera

ture in the liquid layer next to the heating wall reaches a value 

permitting the existence of a bubble of finite radius in thermal 

equilibrium with the surrounding liquid. The temperature of the 

vapour bubble will be saturation temperature corresponding to the 

bubble pressure; namely, if the bubble is spherical: 

Po 3Tqat 

Tv = Tsat(pO) +  5—; and taking according 

to our convection T . = 0 

sat 

T 2<r
àT
sat 

v r òp 

The temperature of the superheated liquid at a point correspond

ing to the'center of the bubble; if the bubble is in contact with 

the wall will be: 

T, = T  £ φ if φ is the convective heat flux 
J. S ix 

<p = p(T  T). Equating Τ and Τ we obtain a second order 

equation in r: 
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I (Ts  T)r
2
  T sr + 2<r — = 0 

OP 

The threshold condition for nucleate boiling will therefore be 

given by putting to zero the discriminant 

T c2 = 8ο; h(TcT) = 6(TCT) 

Κ -J-P-
dT . 

sat 

with
 ö

 = h 

K ÌP_ 

ar . 
sat 

The given expression for θ is a consequence of the assumption 

somewhat oversimplified in the model about the spherical shape of 

the bubble at threshold and about heat transmission in the liquid 

layer next to the wall. 

We will keep therefore only its form 

Τ
 2
 = θ (Τ τ) 

c
 v

 c ' 

with θ function of pressure h which will be found experimentally. 

In practical the form 

e/ h = l!^_ 

äT
sat 

may be used as guess in absence of better information. 

Another way to evaluate θ perhaps to be preferred is the following: 

when T = 0 the criterium for boiling transmission becomes 

Τ
2
= θ τ or T = θ 

s s s 

But in this case we may say that nucleate boiling will begin when 

boiling heat transfer becomes more efficient than convection. Referr
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ing to the fig.lB, we can say that this will happen when 

d Φ-L d Φ 
convective Qr ώ,τ^-1 ^ h dT dT 

s s 

we can than write 

e = (-£-) iA-i 
vnh' y 

It is worth noting that assuming, as somebody does for sim
plicity, that nucleate boiling transmission begins in the junction 
point of the Φ . . and Φ, curves leads not only to a sharp 
r convective b ^ r 

discontinuity in the slope of φ (Ts) that may be harmful for a 
good convergence of numerical calculations, but also to a systema
tic underextimation of the heat flux in the partial nucleate boil
ing region. 

Finally, for simplicity's sake, we will replace in formula 
B1 the denominator of the decreasing factor Tf T¿ , by the satura
tion temperature value öfθ, which can be determined once for all 

for a given channel condition. It can be easily shown that 

ef = u4^(\,)'
/n

-' 
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APPENDIX C 

Vapour source correlations 

We divide the volumetric source of vapour at a given level Ψ into 
two parts 

Ψ a Y s + ? b 

Ψ represents the source at the heating surface and ?b the source in 
the bulk of the coolant; 
Ys will be of course proportional to the heat transferred by the 

boiling mechanism. Should all this heat go into bubbles, we should 
have 

. £ Φι° 
S Α γ ρ \ 

Actually in the boiling not all of the heat is transferred by 
the bubbles, but a relevant part of it is transferred by the supple
mentary turbulent agitation of liquid value to bubble motion. In 
effect each bubble detaching causes a volume of superheated liquid 
in the layer next to the heating surface to be injected into the 
bulk of the liquid and be replaced by new liquid. In spite of some 
attempts, no sound theory exists about the fraction of heat trans
ferred by this mechanism, as generally no information is available 
on the volume ratio between vapour and liquid transferred from the 
source to the bulk; some measurements of bubble volume against heat 
flux exist for water at athmospheric pressure. The matter is examin
ed by Bowring (Ref. 7 ), whose conclusions are that the ratio ε 
between the heat transferred by liquid agitation and vapour transfer 
is a function of the sole pressure, and is not sensitive to the bulk 
fluid subcooling. An attempt to introduce the dependence on tempe
ratures is done by Solberg and Bakstad (Ref. 10 ). Unfortunately 
the volume relation between liquid and vapour deplaced is merely 
assumed in their treatment, as well as the relevant temperature for 
the superheated liquid of the source layer. As no experimental vali
dation of their formulation is available, we will here keep the Bowring 
formulation which is simpler. Defining τ =-—-- we have thus 

φ 
s A Tfl 
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The bulk source term * D will depend on the amount of non equili
brium of the system. That means that the quantity of coolant evaporat
ed or condensed will depend on the subcooling or overheating of the 
liquid, assuming as we do that the vapour is always at saturation 
temperature. Moreover, as the evaporation or condensation process 
is mass exchange process between physically separated phases, it is 
reasonable that the rate of exchange should depend on compact surface 
between phases. For small void contents, this is in turn proportional 
to the void fraction α ; we will then write: 

f = R α Τ T<0 
b c 

R α T T>0 
e 

where the coefficients Re and Re for recondensation and evaporation 
respectively are not necessarly equal since the two process are physi
cally different. 

It should be mentioned that for high void contents the surface 
between phases is no more proportional to α, as the bubbles begin 
to coalesce together. To take into account this phenomenon Solberg 
and Bakstad (Ref. 10 ) assume a dependence on α(ΐ-α), but this is, 
by their own admission, quite arbitrary. In practice, at high void 
contents the flow regime will become' annular, and the exchange surface 
will again be increasing with α. We keep therefore the simpler linear 
form, as all our model will however break down for too high void 
content. Furthermore we do not include a term independent from a, 
as done by Solberg and Bakstad, as this is obviously absent at low 
void content in the subcooled region (no condensation can occur 
if no vapour is present) which is the most important for the practical 
application, and the determination from experience of a further inde-
pendendant parameter in the superheated region is unpractical. 

No information is available at present to give values for the Re 
and Re coefficients. From a practical point of view, Bowring (Ref; 7 ) 
showed that recpndensation is negligible in most cases in the sub
cooled region, and therefore, lacking further information we will 
put Re =»0; on the other hand, in the bulk boiling region, also if 
some superheating occurs, we may think that this will not be very 
relevant, at least for not too fast transients. So when better infor
mation is missing we may take Se=»oi.e. thermal equilibrium in the 
bulk boiling region. 
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