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SUMMARY

Based on the work of Takahashi for.onc-dimensional systems, a general
formalism is presented for anisotropic collision probabilities in general cylindrical
geometry. The method is based on an expansion in spherical harmonics of
fluxes, sources, cross-sections and collision probabilities. The resulting expressions
for the zeroth and first order collision probabilities are simply related respecti-
vely to the classical isotropic collision probabilitics and the directed probabilities
used by Benoist in his thesis on the diffusion coefficient.
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ANISOTROPIC COLLISION PROBABILITIES IN GENERAL CYLINDRICAL GEOMETRY

Introduction (=)

ITn recent years, the method of first collision probabi-
lities has received considerable attention in the development
of calculation methods for lattice cell analysis. The success
of this technique is attributable to the surprising accuracy
of which it is capable at a relatively low cost in machine-
time. However, the virtues of the classical metho@ of colli-
sion probabilities were somewhat overshadowed by its inabi-
lity to treat in a correct manner physical situations in
which the assumptions of scattering, source and flux isotropy
were not strictly valid. The transport approximation, normally
resorted to in such cases, is difficult to justify from a
theoretical point of view and, at any rate, cannot have a
wide range of applicability.

Starting with the work of Takahashi(8)

tems, this restriction has been lifted by the intr?dgction of
7) .
has

on cylindrical sys-

anisotropic collision probabilities. Later, Harper
studied the case of linear anisotropy for general two-dimen-
sional systems. In the present work, the work of Harper is
generalized to any order of anisotropy. The formalism and
method of derivation are akin to those applied by Takahashi
to the one-dimensional case. The resulting expressions for
the zeroth and first order collision probabilities are clo-
sely related to Benoist's directed probabilities(15)which
were used in his thesis on the diffusion coefficient.

In view of the fact that the collision probabilities of
any order are always functions of the same geometrical argu-
ment, it is not expected that the machine-time will increase
very rapidly with the order of anisotropy.

-

(*) Manuscript received on March 28, 1968.



Boundary conditions are not considered in the present report.
The study of Harper does not indicate, however, that their in-
troduction in cell problems would cause any great difficulty.
Tt is also noted that, as in all previous work, the cylindri-
cal systems considered are assumed to be axially infinite.

1. The Integral Transport Equation

- A pug
Let G( & ¥ >7, 0~ ) be the angular flux of energy E pro-
duced at point T alongf{ by unit emission of neutron of the
same energy at point T along2§ . Then the angular flux

->

of energy E at point r along.& will be given by:
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where the function H{ %, « ,-R' ) represents the emission
density at point s alongﬁf for neutrons of energy E. The
integration is over the whole range of space occupied by

the source. The quantity G, which relates the field to its
cause, ;s, by definition, the Green's function for the neutron
field(1). Its explicit mathematical expression will be given
later in the development.

The emission density may include contributions independent
from the field intensity-in this case the angular flux - and
others which are functions of the field intensity. The linear
nature of the Boltzmann equation for the neutron transport
problem translates the physical fact that neutron-neutron
interactions are relatively unimportant and we may write:
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The exact form of the factor of proportionality which, in
general, will depend on the multiplying properties of the
medium needs not be specified at this point. The second term
on the right-hand side of equ. (2) conveys only the informa-
tion that, in general, a collision between & neutron and a
nuclide situated at point ¢ owill modify the energy and
direction - and possibly result in a multiplication or ab-
sorption - of the incident neutron.

Equation (1) combined with the definition (2) for the
emission density constitutes the general form of the steady
state integral equation for neu%ron transport(2) and forms
the basis of all subsequent developments in the present

work.

2. Expansion in Sphericel Harmonics

It is found, in practice, that the solution of neutron
transport problems is simplified considerably when the
angular dependence of the various quantities entering the
balance equation is removed, hence the popularity of the
isotropic approximation which, moreover, has proved to be
adequate for the treatment of many physical situations.

This suggests that a suitable method for the study of ani-
sotropic problem might be to expand every angular - dependent
function in a series of orthogonal polynomials with the aim

of obtaining a set of equations for the flux components from
which the angular variable has been eliminated.

Other types of orthogonal polynomials - v.g. Tschebyscheff(3)
Jacobi(4) have occasionally been used but by far the most
widespread technique of the kind is the expansion in sphe-



rical harmonics. Essentially, the success of this method

stems from the peculiar properties of the transfer cross
section & (¥, €%, L'~ ) 5). Non-zero contributions to this
function are mostly due to fission and scattering events.
While the term ascribed to fission and inelastic scattering
may usually be considered as isotropic, the kinematics of an
elastic scattering collision is such that the angle of scatte-
ring is uniquely related to the energy change. To take full
advantage of the decomposition in orthogonal polynomials, it
will thus be important to choose a set of polynomials forwhich
one 1is able to express functions of the angle between two
vectors ( o ) in terms of functions of the individual
vectorsff} \' . The convenience of the spherical harmonics ex-
pression technique is closely connected with the fact that
such relationships exist and possess a particularly simple
form in the case of these polynomials.

A serious drawback of the spherical harmonics method, as
applied to the integro-differential Boltzmann equation, is
that for highly anisotropic flux distributions the expres-
sion converges very slowly. However, it has been shown(6)
that for a given order of expansion in spherical harmonics,
the integral form of the transport equation is inherently
more accurate., Furthermore, at least for the variant based
on the use of collision probabilities, the requirements in
machine-time are considerably more modest than in the case
of the integrodifferential equation approximated to the
same order of expansion(7’8).

Various defini?é§ns of the spherical harmonics appear

in the literature ; in the present work, we will asume

the following form:
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where the coefficients Hrg are given by:
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The quantities PI:: (cos ©) are the associated Legendre functions

of the first kind:

P (0n0) « A O ‘,&_‘_____. P (wnb) (5)
Aty "

Pn(cos ©) represents the Legendre polynomial of order n; © is
the polar angle and ¢ the azimuthal angle defining the vector A\ .
Let us then expand the angular flux and source in terms of

the functions (3):

R Y ) (6)
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Since the transfer cross section is defined by means of the
“*,. 7,
single variablefl.fv , a suitable series representation can

be given in terms of the Legendre polynomials PHXLJV'). Thus:
A, = |
-2, -\‘7',\3‘-")’.‘&“45\:): i ').Mt\) Z k‘“ ,.—.i) P tﬂi SL ) (8)
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The Legendre polynomlal P (R ) may be written in terms
of the varlablesh U by tne application of the addition theo-

rem:
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Combining equs. (8) and (9), we find:
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is the complex conjugate of the function X" ("),
The substitution of the expansions(6), (7) and (10) into

(2) yields
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The integral in the last equation may be reduced to a simpler
form by the use of the orthogonality property of the spherical

harmonic

‘(M. \S\,)\( U\a)d.SL a’mm&ﬂm (12)

(uf)

Thus, we may write

A
- -4 T \ N », . = » M, », "o
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This result suggests that a convenient expansion for the func-

tion G (£, 27 A=)  would be

(), Yy (m, W)

) ~m m
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Substituting (13) and (14) into (1), we find, with the help

of (12):
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The angular dependent integral equation (1) has thus been
replaced by the infinite set of equations (16) from which
the angular dependence has been removed. Definitions (7),
(10) and (14), coupled with the orthogonality property

(12) lead to the following equation for the parametric
functions entering equ. (16):

S (5e) -] 4R S @ E RN R (17)
(un)
- -y Py ed ""
3 (¢ g'ai)tg a\?xg AN AT Eag XTI X () (18)
~ ’ WE)  (ud)
N\..“\"_'k o) . 2, o a . . Co
('; ) (E,?'»?)-JS aig &N G, T e U L) U\)'{:_LS\.) (19)

k) ()

Thus, in principle, one could evaluate the source, cross
section and Green's function components through the use of
the set (17)-(19) and then proceed to the solution of equ .

(16), including in the expansion for the flux as many terms
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as required to obtain the desired accuracy. Similar proce-
dures have actually been used by several authors(1o’ 1, 12)
and, for simple, one-dimensional geometries, very reasonable
machine-times may result. However, for complicated two-dimen-
sional geometries such as reactor cells with the fuel in the
form of rod clusters, the evaluation of the integral over
space on the R.H.S. of equ. (16) becomes extremely difficult
and a scheme based on the use of collision probabilities is

to be preferred.

(13)

3. Generalized Collision Probabilities

The medium of propagation may always be considered as made
up of a number of homogeneous regions sufficiently small that
the spatial distributions of fluxes and sources need not be
taken into account in a detailed fashion but, for all practi-
cal purposes, may be supposed to remain flat throughout each
individual region. We may then define:

$imEy el | dr ™)

} i &y (20)
. > T, .
S'\' LY.)‘Q_’ S dfb (,V.L) (21)
v )
L, 0. 2§ v I, W) (22)

V'\ \V‘\)
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The corresponding balance equations become

® () () w2 "
@"{ (€)=Z Z Z A (8) s.'“w),jz..neug){' tf‘)df‘} (24)
v WZD mz-m’ ' s 5 Mot

Let us now investigate in more detail the matheﬁgﬁiﬁﬁim
form of the generalized collision probabilities B‘i ).
The Green's function for neutrons which have suffered no col-
lision en route from the emission point ¥ to the field point

Y is specified by:

y ,,’GK;";;') =, 2y YLy £l
AT Gy B8 E). e &(4s) 3\n, v-¥ \d,
‘ ‘ ‘ AL Ty
ITEXA
T Ny (25)
s e gL dLat)divivid

where the angular delta functionsJ( Q.5 ) has the following
properties:

& (R.Dv'\;o :

S%\R'w\ﬂ.ﬁ')u’i‘;%u‘i) (26)

and we have defined
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Equ. (25) states that the angular flux of energy E produced
bed .
along N in the volume element

o - >
A7 L\l ag?v et

around point': by unit emission of neutrons of the same
energy at point v along.g' is obtained by applying lambert's
exponential law and introducing the first flight condition
through the use of the delta functions. Thus, using equ. (19),
as well as the properties (26) of the delta function we may
write:

()= (o, ) - s . TN

. \ . > me, 7, ' D
g ©- L S MER ) 4] e XRrE v ) (28)
A () AT

Further developrments will be restricted to the case of a
gystem of arbitrary size but effectively infinite in axial
extent and the properties of which remain constant along this
axial direction . Geometrical periodicity will not be intro-
duced at this stage. The nature of the geometrical system to
be considered is such that the dependence on the polar angle
can be conveniently integrated out and all further considerations
restricted to some plane of reference, normal to the axial direc-
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tion. Thus the optical path from point:' to point v may be

expressed as:

= (77
T \f‘}Y‘): oo \v o,

Amd*

-

where « (7'} ;) is the projection of*t(;'; ;ﬁ onto the plane
z=0. If similarly, s is the projection of |\®'~ F| onto the
reference plane, we obtain:

lm‘.m' ) _,[_,,1"“\ w o - . AW o) ¢‘ v - ﬂ—&?) \
A B VO T S S N T J a0 8 e PR (ndt) P (w0 8) 30
\ Vi, @ wmBt W gt 4

1]
The associated lLegendre function Pfuw)is given by:

W ) (y-pt-2v)
P“ (ca®)=z om0 4 \~\)', - (24-2v). cff_w_.-g (31)
' 2 otes 15 ' (-e)! H—p-lv\!
. \.‘. S c z\wn
Since \S [ o ;M\Om Odg:o (32)

it appears immediately that for\km-m\r\mkmﬁ\ odd, the pro-
bability Q»:mequm)will be equal to zero. We need there-
fore consider and distinguish only two cases according to
whether (n -= m), (n'- m') are both 0dd or both even. In
the first case, we obtain, after substitution of (31)

into (30) and some algebric manipulation
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c = “A‘\Hh\'. _\-‘\ &mvm\dkﬂ\} km‘»m‘rﬁ&'w\.‘
L '.!.M.w ‘_fi{M'M'L&-\)X"\.;J(M‘-m'—ﬂ.&'--\xs [i\mvmrln'l\)‘?[‘1{,.‘,“‘,1&'..\]:‘
\ (34)
. (Kake),
(,‘llu}! \_’)..K'v\\! L‘ (Kex'pr -l‘t
Similarly, in the second case, we have:
(n, ) olmwi) - a((f 4!‘) (M w) & \M,”) s valk
Aw'- ) —_— . A
A, = aa ] a¥f age @\gae‘ ST A A
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‘ (35)
where
!j'LM'm\vﬂ\"clﬂ"i‘-)-*‘f'lL) . , . \
c - W \-\,\ -1 Wnaemeak), La'emivax)
L- .
l (m-m - Ll)l " (SRS )&‘ \ \_mrm\r,\.;«.)-k ‘_ (mem' v \\\
(36)

(kew)!
E I U AR TS A

Now, define the volume element 4 in V. as equal to&*&ﬁwhereém
is an elemental increase in length along y“' and dg is

the elemental thickness of the volume element. Introduce,
further, the Bickley functions Kin(w ) given by:

|-vl

\(LM(X\ 2 S A‘/.V\m"o Clo ( 37 )
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Noting that

[LX 2]

K3}
Ko S ki LD)at
*

we can perform the integration ov¢r34 in Vj and dx in Vi:

(', ) () (n\ -yt (m et} K
Wl w' -in) " -
“ mm)p* f 8 Z 1 I &, Wt ooy o) (39 )
U odd - oder) Z Zs ‘LP) K'=b L=¢
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Au‘ = 2 g d?".;'_ jd’ Z Z Z C:L \(,Lﬁ (M-?,. ) (40)
: z 2 'V. v Keo W=E L0 : L'svn\n»,mq-ﬂ-k) v ]
(Lot -3atn) Z‘_ 4 ) )
g
where (11)
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The symbols d;.d,,d~1 denote respectively the projections onto

the reference plane of the optical paths along 4f in\A,Vi and
the intervening medium(14). The integrations over ¢“ and Y must
include all neutrons paths crossing both bodies i and .

The self-collision probability of a convex body takes a

slightly different form:

L] :ﬁ“ (M-m\) Lm- “.)Kt('

v

o ) > U, ) Wl T é_l‘é
fant

- , . - = < . nm.t,n'sz)

b 2 = S(M-g z;«la{&‘)g ad'e jaﬁ’c Z 1 L C»,_w\

) i \E .‘ ‘L —i v '3 o K =3 W K-c
(- iven) . $*)
o)™ .
. K I oWl (o) K W) e Ki \ (o)
- .4.\/ L‘) 5 cl¢ “ &V"L\( Wi mrmmrzl) K&‘.a'm von' v k) P +2d)
4”)

The odd-odd collision-probability is completely analogous. If
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the body is not convex, further terms of the form (39), (40)
must be added to take into account neutrons which leave and re-
enter the body. L
W, ) ()

Since the probabilities A‘i are equal to zero
for [(m-m) v (m-mw)]  o0dd, the odd modes of the flux will form a
set independent from that of the even modes. This is a result
of the initial assumption concerning the axial extent supposed
infinite, of the geometrical system. A look at equ. (16) shows
that the first even mode (0, 0) is related to the total flux
while the first odd mode (1, 0) is conmnected with the axial cur-
rent, which cannot enter the solution of the problem set here.
It will thus be sufficient to consider the set of balance
equations (24) corresponding to (me+m ), (m'em' ) both even,
the collision probabilities being given by equ. (40).

4, FPormulation in terms of real gquantities

The formulation given in the previous section presents the
inconvenience of involving complex quantities which may intro-
duce unneccessary complications in the numerical calculations.
Although the objection is of minor importance, it is easily
circumvented.

We note first that the total flux and the components of

the current in the plane of reference are given by:

YEX TP IR E AT ST 4 (e3)
) WS
1*‘?"”'9;)“3{'1’“'f'“)P“"’W=m\?'-?' | (44)

NGLE | AR p e B pabpind - ﬁ?].qo"‘»cp""l (45)

()
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This suggests that we rewrite the expansions (6) and (7) in

the form
L@ R e B (am - (* o\
4‘\7"""‘)‘5__914’ oY v Lle G T, v ")a?,ﬁ)*fmﬂ (46)

() ¢ Dol W) %
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¢ A Sl g (53)
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H
\;\‘\lh\\ ‘.A““‘v .\"“ T . .
SR BRALE. (55)
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T S e (56)
1.\'\":\

All of these quantities are real as can easily be verified by
direct substitution of the expressions (6), (7) noting that:

\ an,
P L™ L) P (57)
(mrm\.‘
AR Y L, (58)
(m-m\)‘.

Inserting the definitions (51)-(56) into the balance equation
(24) we find:

‘ o (n\m\ \tlm\
\' K \ 2\“){\5" (o)«

oY
Lo -
2, U0 W) dt\\%

where the collision probabilities are given by
,_l \':‘n\" t:\u‘
'.'s =

el_——2%

Uwu)aim,0)
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(60)
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Of course, as above, only the modes corresponding to (m.m ),

( m«m )both even need be retained for the present problem,
The collision probabilities are related, as will appear from
a look at the above equations, through the reciprocity equa-

tion
»
* km‘m‘ ¥
g L i PR SARES
Y Hlf,.) 4 (69)

Lae) o
where " +H

{k

y L W (Reae)
There are thus altogether only six independent types of pro-

babilities.

e * Ld4,‘. 1‘
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6. The Zeroth and First Order Approximations

For n = 0, 1 it will be sufficient to evaluate the mutually

independent probabilities, derived from the set of equs. (60)-
(68),

N s\ Ay L5 Ly,
)v) *52‘24) S # S&‘%\ 3 }Q"\ (70)
PRV
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A‘,‘ 2. ii SLL&FW)¢ j&ij*(d‘ b (71)
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The balance equations for the isotropic case reduce to

b o) (56) G
é.k ‘u") . it)v\ (i')ib; ) .
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whereas, for linear anisotropy, we have the set
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In equs. (76)-(79)
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For reactor eigenvalue problems

L:J) kl\\\ \?«‘

S e3 =5 o (83)
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t :0\ "‘.:’:}
The quantitybﬁ is related to the usual first-flight colli-

sion probability through the equation

(:3‘)"(«:’&‘ .
1,9
(16)

Similarly, Benoist's radial collision probability”P%', is

given by:
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