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ANISOTROPIC COLLISION PROBABILITIES IN GENERAL CYLINDRICAL GEOMETRY 

Introduction ( * ) 
Ια recent years, the method of first collision probabi­

lities has received considerable attention in the development 
of calculation methods for lattice cell analysis. The success 
of this technique is attributable to the surprising accuracy 
of which it is capable at a relatively low cost in machine-
time. However, the virtues of the classical metho<| of colli­
sion probabilities were somewhat overshadowed by its inabi­
lity to treat in a correct manner physical situations in 
which the assumptions of scattering, source and flux isotropy 
were not strictly valid. The transport approximation, normally 
resorted to in such cases, is difficult to justify from a 
theoretical point of view and, at any rate, cannot have a 
wide range of applicability. 

(a) 
Starting with the work of Takahashiv on cylindrical sys­

tems, this restriction has been lifted by the introduction of (7) anisotropic collision probabilities. Later, Harperw has 
studied the case of linear anisotropy for general two-dimen­
sional systems. In the present work, the work of Harper is 
generalized to any order of anisotropy. The formalism and 
method of derivation are akin to those applied by Takahashi 
to the one-dimensional case. The resulting expressions for 
the zeroth and first order collision probabilities are clo-

( 15) sely related to Benoist's directed probabilities which 
were used in his thesis on the diffusion coefficient. 

In view of the fact that the collision probabilities of 
any order are always functions of the same geometrical argu­
ment, it is not expected that the machine-time will increase 
very rapidly with the order of anisotropy. 

7*5 Manuscript received on March 28, 1968. 



Boundary conditions are not considered in the present report 
The study of Harper does not indicate, however, that their in­
troduction in cell problems would cause any great difficulty. 
It is also noted that, as in all previous work, the cylindri­
cal systems considered are assumed to be axially infinite. 
1. The Integral Transport Equation 

Let Gl^f'^^a-il ) be the angular flux of energy E pro-
duced at point r along Λ by unit emission of neutron of the 

-». -* same energy at point r' along A' . Then the angular flux 
.». -* 

of energy E at point r along Λ will be given by: 

where the function H( £, * , ^ ) represents the emission 
density at point r' alongA for neutrons of energy E. The 
integration is over the whole range of space occupied by 
the source. The quantity G, which relates the field to its 
cause, is, by definition, the Green's function for the neutron 

( Λ \ 

field . Its explicit mathematical expression will be given 
later in the development. 

The emission density may include contributions independent 
from the field intensity-in this case the angular flux - and 
others which are functions of the field intensity. The linear 
nature of the Boltzmann equation for the neutron transport 
problem translates the physical fact that neutron-neutron 
interactions are relatively unimportant and we may write: 

e (..ι"·) 
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The exact form of the factor of proportionality which, in 
general, will depend on the multiplying properties of the 
medium needc-> not be specified at this point. The second term 
on the right-hand side of equ. (2) conveys only the informa­
tion that, in general, a collision between a neutron and a 
nuclide situated at point r' will modify the energy and 
direction - and possibly result in a multiplication or ab­
sorption - of the incident neutron. 

Equation (1) combined with the definition (2) for the 
emission density constitutes the general form of the steady 

(2) state integral equation for neutron transportv and forms 
the basis of all subsequent developments in the present 
work. 
2. Expansion in Spherical Harmonics 

It is found, in practice, that the solution of neutron 
transport problems is simplified considerably when the 
angular dependence of the various quantities entering the 
balance equation is removed, hence the popularity of the 
isotropic approximation which, moreover, has proved to be 
adequate for the treatment of many physical situations. 
This suggests that a suitable method for the study of ani­
sotropic problem might be to expand every angular - dependent 
function in a series of orthogonal polynomials with the aim 
of obtaining a set of equations for the flux components from 
which the angular variable has been eliminated. 

Other types of orthogonal polynomials - v.g. Tschebyscheff 
Jacobi^ have occasionally been used but by far the most 
widespread technique of the kind is the expansion in sphe-



rical harmonies. Essentially, the success of this method 
stems from the peculiar properties of the transfer cross 
section ¿- (?', £'-*£, A"~A' ) ̂  5 . Non-zero contributions to this 
function are mostly due to fission and scattering events. 
While the term ascribed to fission and inelastic scattering 
may usually be considered as isotropic, the kinematics of an 
elastic scattering collision is such that the angle of scatte­
ring is uniquely related to the energy change. To take full 
advantage of the decomposition in orthogonal polynomials, it 
will thus be important to choose a set of polynomials forwhich 
one is able to express functions of the angle between two 

— » -*» vectors ( A" A' ) in terms of functions of the individual 
-».. -* 

vectors A ; (V . The convenience of the spherical harmonics ex­
pression technique is closely connected with the fact that 
such relationships exist and possess a particularly simple 
form in the case of these polynomials. 

A serious drawback of the spherical harmonics method, as 
applied to the integro-differential Boltzmann equation, is 
that for highly anisotropic flux distributions the expres­
sion converges very slowly. However, it has been shown^ 
that for a given order of expansion in spherical harmonics, 
the integral form of the transport equation is inherently 
more accurate. Furthermore, at least for the variant based 
on the use of collision probabilities, the requirements in 
machine-time are considerably more modest than in the case 
of the integrodifferential equation approximated to the 

(l Pi) 
same order of expansion^ '° . 

Various definitions of the spherical harmonics appear f 9) in the literature , in the present work, we will asume 
the following form: 



YTi£i.vCP-Cu»ö)c"** /Λ (Λ 

where the coefficients Η are given by: 

(3) 

I ï''" 

The quantities P~ (cos θ) are the associated Legendre functions 

of the first kind: 

P
W
UG),^Ô £ ­ ? CooB) (5) 

P (cos θ) represents the Legendre polynomial of order η; θ is 

the polar angle and ̂  the azimuthal angle defining the vector A 

Let us then expand the angular flux and source in terms of 

the functions (3): 

SÜ.í.fo.Í ï ^0^)^d) (7) 
Mie in\-·/"· 
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Since the transfer cross section is defined by means of the 
-** ~». single variable A. A , a suitable series representation can 

-*< ~» be given in terms of the Legendre polynomials Ρ(-α<Λ"). Thus 

"»· -». 
i»iC Λ Η>· ' V V / 

The Legendre polynomial Ρ (A-A") may be written in terms 
->, -».. n 

of the variablesA^A by the application of the addition theo­
rem: 

(9) 
P„ ια·.α·% i ^ . ?Z ̂ > ?m C«*o-) , ^ ' ^ 

Combining equs. (8) and (9), we find: 

oO I* 

2(7'.£·^α%Λ·)8Χ ζ. χ^,ϊ^^ιιιΊ^ cíi) (10) 

where ^ M l " ) ­ H* ?* Cu»e") c ( 1 1 ) 

is the complex conjugate of the function Λ^(ά ). 
The substitution of the expansions(6), (7) and (10) into 

(2) yields 



VUÉ^A'wí £ $*
,Ä
\;V£V^(A') 

■Μ *
l
UL v-^*c^§jx^:^] 

The integral in the last equation may be reduced to a simpler 

form by the use of the orthogonality property of the spherical 

harmonic 

\ ^\h^i1)^= cT. * ■ (12) 

Thus, we may write 

*iîû «>V~ -m l o ^ 

This result suggests that a convenient expansion for the func­

tion G* U, ?:-»7;Λ·»5ΐ) would be 

CittV%7,A'->iL)»Z % X G QV'­ÏJ^MU) ̂  U') 

Substituting (13) and (14) into (1), we find, with the help 

of (12): 

■Λ,/ΛτΟ ΛΛ" -/* Λ*ϊ : -f»' I (y) 
c£,-?'*?j\A (.¿^jU (Α) ( 1 5 ) 
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or 

„U7'£ Ζ Ck U;U7)\S^7\£WW.1,
U
,É^)^'

A
'V'£«)\(16) 

The angular dependent integral equation (1) has thus been 

replaced by the infinite set of equations (16) from which 

the angular dependence has been removed. Definitions (7), 

(10) and (14), coupled with the orthogonality property 

(12) lead to the following equation for the parametric 

functions entering equ. (16): 

5
n,
*(¿0­5 «A­Stf.s.£rC*Üí) (17) 

r ^ V ? ) . S Ŝ ω c,̂ r.?,̂ A)r;c^:;iii·) (19) 

Thus, in principle, one could evaluate the source, cross 

section and Green's function components through the use of 

the set (17)—(19) and then proceed to the solution of equ . 

(16), including in the expansion for the flux as many terms 
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as required to obtain the desired accuracy. Similar proce­
(10 11 12) 

dures have actually been used by several authors ' ' 

and, for simple, one­dimensional geometries, very reasonable 

machine­times may result. However, for complicated two­dimen­

sional geometries such as reactor cells with the fuel in the 

form of rod clusters, the evaluation of the integral over 

space on the R.H.S. of equ. (16) becomes extremely difficult 

and a scheme based on the use of collision probabilities is 

to be preferred. 

( 1^) 
3. Generalized Collision Probabilities

v 

The medium of propagation may always be considered as made 

up of a number of homogeneous regions sufficiently small that 

the spatial distributions of fluxes and sources need not be 

taken into account in a detailed fashion but, for all practi­

cal purposes, may be supposed to remain flat throughout each 

individual region. We may then define: 

«h ^ J * *
 U
'
K)
 (20) 

s^w.U dî.îT-tf.a (21) 
1
 Λ v^ 

% . C€'*tì. L \ <ú.l ú.í'+i) (22) 
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*'· < 

l«\'.|»ft')-» I M . / » M 

; JL. (A* V A?' G CÉ.7U?) (23) 
v: w «* 

The corresponding balance equations become 

Let us now investigate in more detail the mathematical 
l«',>«\')-»liKj /wi) 

form of the generalized collision probabilities &■ u). 

The Green's function for neutrons which have suffered no col­

lision en route from the emission point 7' to the field point 

ν is specified by: .Ή?':ν) 
sT-7\x V ^ ' 
*ι;··7) * ( 2 5 ) 

where the angular delta functionscK SLA' ) has the following 
properties: 

íaftlítóíA'.^) (26) 

and we have defined 



13 ­

Λ
"Τ?Γ7ν (27) 

Equ. (25) states that the angular flux of energy E produced 

along A in the volume element 

around point * by unit emission of neutrons of the same 

energy at point *r along A is obtained by applying Lambert's 

exponential law and introducing the first flight condition 

through the use of the delta functions. Thus, using equ. (19), 

as well as the properties (26) of the delta function we may 

write : 

Λ Í\) Ui) tí*) 

Further developments will be restricted to the case of a 

system of arbitrary size but effectively infinite in axial 

extent and the properties of which remain constant along this 

axial direction . Geometrical periodicity will not be intro­

duced at this stage. The nature of the geometrical system to 

be considered is such that the dependence on the polar angle 

can be conveniently integrated out and all further considerations 

restricted to some plane of reference, normal to the axial direc­
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tion. Thus the optical path from point < to point v may be 

expressed as: 

­» ·*·, 
where* (r' ; r) is the projection of t (r' ; r) onto the plane 

z=0. If similarly, s is the projection of |r'­ r\ onto the 

reference plane, we obtain: 

The associated Legendre function P(.u*U)is given by: 
^ 

p* U«») , L. *J*fi X W)
r
. Λ . S**"

a
'
v
 · *£— r

Ö
 (3D 

* t Ü v.' U <rV U­|*­­».r ̂ î ,ν 

Since ( e'°"
e
 J ô ^ ^ ' ô d Ô ^ (32) 

J 

it appears immediately that for\v.(w­«^ * V.<«:­*ÏOÎ\ odd, the prO­
Vev', » Ό - » (.(«.ill) 

bability Û · will be equal to zero. We need there­
fore consider and distinguish only two cases according to 
whether (n - m), (n'- m') are both odd or both even. In 
the first case, we obtain, after substitution of (3 Ό 
into (30) and some algebric manipulation 
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lUa-dUL) S fy ά Λ Ctf) > Λ-° *'- i:0 

(33) 

where „. ^-,w-,*'-i*-.*\*i-*> 
t χΛ»*· ζι_ ^.^.«...yj;\iu·-.»·-«:-^ [iw«**«t*,>y ΐ\,ΐΜ,·Μ\»*,*·ί):' 

(34) 
U*».)í Ux­νΛ! i'. U·«'*» ­^ Î 

Similarly, in the second case, we have: 

fc · *~ Μ
 ά*'ί **** le<< w ô

' * * 2 ¿χ*~ 
t s/· J ν) ·/ J v . . «· ,Λ t-.û 

(.35 ) 

where 

. Oft ™* 2* ν 1 f ι · 11 1 » 

X**
Ä

' ¡ L ^ - i m - * ^ } ! V*^"'*
,
"

ÌL,t
'
J
V \-¿.».«H*r>.+\\, ^ . U ' ^ ' v u ' ì y , 

( 3 6 ) 

Now, define the volume element A*' in V¿ as equal to <UAH where ά.* 
is an elemental increase in length along i>A ' and ¿^ is 

the elemental thickness of the volume element. Introduce, 

further, the Bickley functions Ki ( it ) given by: 

~ ■*­

K^Ui­JV"^ *̂ Α"θΑΰ (37) 
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Noting that 

- i
 m

 (38) 

we can perform the integration over J* in Vj and dx in Vi ■ 

(.(*', τη.
-
)-τ(.0>,,ν.Λ · . , * '- U-Λ»-') jí»-»··'··) Λ+ltVl 

where ( 4 1 ) 

The symbols d·,,J.1#0it denote respectively the projections onto 

the reference plane of the optical paths along <ƒ>* in ^„ ,V; and 
the intervening mediunr . The integrations over <f>* and M must 
include all neutrons paths crossing both bodies i and j. 

The self-collision probability of a convex body takes a 
slightly different form: 

u-.̂ ui,*,.̂  * f Λϊ-W , - ^ M ^ f ĉ'„l> 

The odd-odd collision-probability is completely analogous. If 
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the body is not convex, further terms of the form (39), (40) 

must be added to take into account neutrons which leave and re­

enter the body. 

Since the probabilities Û·.; are equal to zero 

f or ICm­mvi + l/ft'­cO} odd, the odd modes of the flux will form a 

set independent from that of the even modes. This is a result 

of the initial assumption concerning the axial extent supposed 

infinite, of the geometrical system. A look at equ. (16) shows 

that the first even mode (0, 0) is related to the total flux 

while the first odd mode (1, 0) is connected with the axial cur­

rent, which cannot enter the solution of the problem set here. 

It will thus be sufficient to consider the set of balance 

equations (24) corresponding to ("»·*/·* ), (/*'*V ) both even, 

the collision probabilities being given by equ. (40). 

4. Formulation in terms of real quantities 

The formulation given in the previous section presents the 

inconvenience of involving complex quantities which may intro­

duce unneccessary complications in the numerical calculations. 

Although the objection is of minor importance, it is easily 

circumvented. 

We note first that the total flux and the components of 

the current in the plane of reference are given by: 

<H?,*)* J Α*. ^ ? Λ Λ ' ) « $1° (43) 
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This suggests that we rewr i te the expansions (6) and (7) in 
the form 

-, f I ^K νύ Zi t*«* , ν ' ν ("Λ ,< w * \\ (46) 

where 
· ' * ■ i C . l r t » 

X ^ t W P ^ » ) (48) 

^ - * ^ * Ρ ; ί « Λ ) « · 1 ^ ) (49) 

ï* --*Á*Cf Ρ)? U^WU^) (50) 

. U.) ^ ^ _ ( 5 1 ) 

ΙΑ 
C 

W ) <t> **.·>) ψ ( 5 ? ) 

α H t 

C J .
ΛΛ,,Λ . *.«*.-«* 

L Φ - ^ r (53) 
Χ π ^ 

-Λ,C 

S
U l ü )

, 1 _ ( 5 4 ) 
Η * 

·Λ,>» «η c . v·,-"··' 
... V.mmi) ^) ¥ Ι.· Λ Ο 

( 5 5 ) 

Χ Η 
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5 *¿. > _ ± 1 J L _ . (56) 
Χ * 

All of these quantities are real as can easily be verified by 

direct substitution of the expressions (6), (7) noting that: 

p­~ , Γ ι̂ ΐ ρ- ( 57 ) 

tÇ, u»«a) *«; (58) 

Inserting the definitions (51)­(56) into the balance equation 

(24) we find: 

(59) 

where the collision probabilities are given by 

Wol"* Krau] ,0 ν."Λ*)-»ν*.ο) 

1
 IA:.

 1 

^V)
 i_U

 cV)
 3

 *" *
40
 *·« 

(60) 



20 -

* i-r 
5 Z-V- U°

 J 

Γ» Λ\. * 

i * Ì W » ' ) « * ' 
1 > 

à 
.. H«; \ ¿\, . vC-Λ Ò ■ 

iv*-«*) ν*
1
 ***' f fi Ό 

Τ 7 V ; tAw' J J * v(--o vc'--o ί-ο «■ Wvwt»at)
 v

 '7 

^ * Tía ί ^ '^ l> H vi 

( 6 4 ) 

» i -■. tö f ¿ψ α4
4
) «^ *V>h ï * Ιο ¿L * Wv*w)

 C ,
W 

( 6 5 ) 
U>-w>)í,l<rt-im')«.VK.' 

< f W ..«Λ J υ ' WM / O I--*
 l

 * ^
 r 
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b 
'i 

(66) 

\Λ
4
Μ') V.Mff*J 

•JAASL
 ι

 » 
^U-/i».|^U'-/m')*.^· 

"* 

Λ
-
·
0
 tC*û juo ΙΜπ**/»**»*1 · 

(67) 

& 

(^■*U^ . ,Λ't Ιι*'.·*'»^'.·'! U'.(*')^W*.­^ w V>M,­**'W (.<*,■*> « r f W , ­ » < » 4 v » 

n L j
1
* 

*v - ^ 
Î.U-J»IT,0*-«»'»K**' 
X ■* . 

* (­Λ Ò. 

•c: · ./ * 

1
 *

}
 (68) ­

Of course, as above, only the modes corresponding to (*♦<»* ) t 

( M' ♦ **' )both even need be retained for the present problem. 

The collision probabilities are related, as will appear from 

a look at the above equations, through the reciprocity equa­

tion 

V 

Λ. 
tV v - J * \ Γ '"»'-»'i η 

v. *.>·) v^»n) μ 

Η 

1
 (> W*· ·) 

(69) 

where 

i-no) e 

There are thus altogether only six independent types of pro­

babilities. 
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6. The Zeroth and First Order Approximations 

For n ­ O, 1 it will be sufficient to evaluate the mutually 

independent probabilities, derived from the set of equs. (60)­

(68), 

' ι » uf) 

^y "
£
'-4rv Î**<"?&"■*>*V (70 

û - _ ± ~ « 4 W 1 *Η *■< ιν.ι) (72) 

û.. , _J ( c^ '^Y Uu " V W (73) 

-i 
-i,T.Í Z;V^ «, 

VW; 

l i l ^ V ) Cf J 

The balance equat ions for the i s o t r o p i c case reduce to 

(75) 

U o - U ì r . ν-· O Í VM 1 , x 

Ui-.Ìù, α) S; U) , \ z^u'.Li)^ u w (76) 
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w h e r e a s , f o r l i n e a r a n i s o t r o p y , we have t h e s e t 
C ) Ι ν .Μ^ί 'Λ \ i.;cv f , M 

ψ. U i - . l J i Y · U') 5. v ú ) T j *Zo .C£VÊ)^ ' f , C£)A£ ' 

* . , 

<.Μ->ΛΟο) 
tú) 

» &,; 
<-*)*Ό j c'í.i 

Λ » ) ., r £ , (...) ι 

Ce) b ¿ U - M . Z Λΐτ'-rÉty (¿'»¿í-·' 

f.j (¿)--i.| ¿̂ ^ vi">] S- «)*\^.t£'*£-)^ uni t ' 

A 

) 

»-ut 
'J 

üoj$. " U).f ¿ .í£W)ò>:''u-,dú·] 

i. 

(77) 

(78) 

( 7 9 ) 

I n e q u s . ( 7 6 ) - ( 7 9 ) 

M J> Lí) τ (J) CÚ) 
( 8 0 ) 

. UAt. ψ ι , , ,(Ε^^ιέ) ( 8 1 ) 

ι ï.) 4> ' l £ t * j Ci) ( 8 2 ) 
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For reactor eigenvalue problems 

CU%) i.V) ς Ο 
(83) 

lu+v^xæiuiz^'i^^'i) (84) 

l ^ f ' - É N ^ , <>£'+£) ( 8 5 ) 

The quantity &t· is related to the usual first-flight colli­
sion probability through the equation 

*-i ' - ^ r ^ (86) 

(16) Similarly, Benoist'sv 'radial collision probability t\' is 
given by: 

V. [^ * N J (87) 



- 25 -

References 

1. CHURCH J. P. "Solving the transport equations in heteroge­
neous media using first-flight Green's functions for homoge­
neous media", Nuclear Science and Engineering 21, 49-61 
(1965). 

2. AMYOT L. "Reactor cell parameters in multigroup collision 
probability theory", EUR-3075.e (1966). 

3. ASPELUND 0. " On ε n e w method for solving the Boltzman equa­
tion in neutron transport theory", Proc. of the 2nd General 
Conference, Ρ/573, Vol. J_6, 530-534 (1964). 

4. POMRANING G.C., CLARK Μ., "Orthogonal polynomial angular 
expansion of the Boltzmann equation", Nuclear Science and 
Engineering, V7> 8-17 (1963). 

5. FERZIGER J.H., ZWEIFEL P.F. "The theory of neutron slowing 
down in nuclear reactors"Pergamon Press, London (1966). 

6. DALTON J.H.."Integral and Numerical treatments of the 
neutron transport problem", Proc. of the Brookhaven Conf. 
on Neutron Thermalisation, BNL-719, Vol. II, pp. 464-484 
(1962). 

7. HARPER R.G. "The collision probability code-MINOS" Journal of 
Nuclear Energy, 21_, 767-785 (1967). 

8. TAKAHASHI M. "The generalized first-flight collision proba­
bility in the cylindricalized lattice system", Nuclear Science 
and Engineering 24, 60-71 (1966). 

9. GOERTZEL G., TRALLI N. "Some mathematical methods of physics" 
Mc Grew-Hill, London (1960). 

10. CORNGOLD N. "Resonance escape probabilities in circular cylin­
drical cell systems", J. Nuclear Energy, 4_, 293 (1967). 

11. TAKAHASHI H. "Resonance escape probabilities in circular 
cylindrical cell systems", J. Nuclear Energy, Part A, 2_ 
26 (1960). 



26 -

12. CARLVIK I.,"Integral transport theory in one dimensional 
geometries", Nukleonik, _1_0, 3, 104-119 (1967). 

13· FUKAI Y. et al., "An advancement on the integral trans­
port theory for the heterogeneous system", Proc. of the 
Third Conference A/Conf. 28/P/84 5 (1964). 

14. CARLVIK.I., "A method for calculating collision probabi­
lities in general cylindrical geometry and applications 
to flux distributions and Dancoff factors", Proc. of the 
Third Geneva Conference, A/Conf. 28/P/681 (1964). 

15. BENOIST P.,"Théorie du coefficient de diffusion des neu­
trons dans un réseau comportant des cavitées" Thèse 
Présentée à la Faculté des Sciences de l'Université de 
Paris (1964)' 



iMiiliil^èliillï! NOTICE TO THE READER 

All Euratom reports are announced, as and when they are issued, in the monthly 
periodical EURATOM INFORMATION, edited by the Centre for Information 
and Documentation (CID). For subscription (1 year : US$ 15, £ 6.5) or free 
specimen copies please write to : 

Handelsblatt GmbH 
"Euratom Information 
Postfach 1102 
D-4 Düsseldorf (G 

f:: 
des Communautés européennes 

2, Place de Metz 
Luxembourg W 

F«tf 

itühni 

'MM ! To disseminate knowledge is to disseminate prosperity — I mean 

I general prosperity and not individual riches — and with prosperity 

"»ili 
\M 



i'rip iiii. 1« ΝΕΗΕϋ' lüSSli' i β Ι Ι ΐ ί 
BELGIQUE — BELGIË LUXEMBOURG 

MONITEUR BELGE O 
les PMI 

C< mmwm 
MÈÉmâa 

ii'L 
40-42, rue de Louvain - Bruxelles 
BELGISCH STAATSBLAD 
Leuvenseweg 40-42, - Brussel 

LUXEMBOURG 
OFFICE CENTRAL DE VENTE 
DES PUBLICATIONS DES 
COMMUNAUTES EUROPEENNES 

rue Goethe - Luxembourg 

IIP 

ι 


