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reactivity feedback mechanisms will be different for a large than for 
a small temperature rise. The type of accident, on the other hand, 
determines only the form of the reactivity input. 

In this paper, two theories dealing with the two classes of nuclear 
excursion are sketched and two Fortran 4 computer programmes based 
on these theories are explained in detail. The first, DOPPELAS, is 
designed to simulate the « milder » excursions in which the fuel retains 
its solid state. The second, SOREX 1, simulates the « severe » 
excursions which destroy the reactor explosively. Detailed examples 
of the input and output of the programmes are given and the way 
in which to utilize the input for the analysis of the various types 
of accident is indicated. 
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SUMMARY 

Some of the main accident situations considered in the analysis of 
pulsed fast reactor safety are outlined and the accompanying physical 
conditions are discussed. It is suggested that accidents may be divided 
into four broad types while the nuclear excursions triggered by these 
accidents may be put into two classes depending on the magnitude of 
the fuel temperature rise. The class to which an excursion belongs 
determines the physical theory used to describe it, since the dominant 
reactivity feedback mechanisms will be different for a large than for 
a small temperature rise. The type of accident, on the other hand, 
determines only the form of the reactivity input. 

In this paper, two theories dealing with the two classes of nuclear 
excursion are sketched and two Fortran 4 computer programmes based 
on these theories are explained in detail. The first, DOPPELAS, is 
designed to simulate the « milder » excursions in which the fuel retains 
its solid state. The second, SOREX 1, simulates the « severe » 
excursions which destroy the reactor explosively. Detailed examples 
of the input and output of the programmes are given and the way 
in which to utilize the input for the analysis of the various types 
of accident is indicated. 
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ANALYSIS Of ACCIDENTS IN PULSED FAST REACTORS : 
COMPUTER PROGRAMMES DOPPELAS AND SOREX 1 

1. INTRODUCTION (*) 

The computer programmes, DOPPELAS and SOREX 1, described in this article 
have been developed as part of the pulsed fast reactor design project SORA , 
sponsored by Euratom at its research centre at Ispra. Although the Immediate 
need has been to provide methods of analysing accidents in this system alone, 
the work has been made sufficiently general to permit application to other 
systems (provided they are not radically different from SORA). Thus, it is 
hoped that the programmes may be useful to other teams engaged on pulsed 
fast reactor design work. 

In order to systematize the study of pulsed fast reactor safety, it is 
of great help to classify the various accident conditions under four broad 
headings, given here in roughly decreasing order of severity} 

1. Accidents due to the breakage of the pulsation device. 
2. Reactivity accidents with the pulsation device running normally. 
3. Fuel melting caused by coolant failure. 
4. Reactivity accidents during stationary operation. 

The nuclear excursion resulting from any particular accident can vary from 
"very mild" (small increase in fuel temperature) to "very severe" (large 
increase), depending on the detailed circumstances. Since the dominating 
reactivity feedback mechanisms are quite different for an excursion in the 
"mild" range than for one in the "severe" range, the physical theory used 
to describe an excursion will depend on its magnitude. The most obvious 
and logical classification of magnitudes is the following: 

Class A Excursion: one of mild or moderate severity in which the fuel 
remains in the solid state and retains its solid 
state properties. 

Class Β Excursion: one which leads to such a large nuclear energy re­
lease that the pressure generated in the fuel is able 
to destroy the core explosively. 

(*) Manuscript received on February 27, 1968. 



The programme DOPPELAS (in its two slightly differing forms) 1B de­

signed to treat class A excursions and SOREX 1 deals with class Β excur­

sions. The theory and basic equations forming the content of the pro­

(2 3 4) 
grammes has already been published ' ' and it will not be necessary 

to go deeply into this aspect again. Of more concern here will be the 

sort of reactor safety problems at which the programmes are aimed, the 

numerical methods employed to solve the basic equations and the techni­

calities associated with the practical use of the programmes. For the 

present introductory chapter it will be sufficient to state that the 

main variable computed by DOPPELAS and SOREX 1 is the nuclear energy re­

lease during an accident and that the accident type (see above list) is 

important in the theory only in the determination of the time dependent 

reactivity input £(t). 

In accidents of type 1 (which are purely hypothetical and serve only 

to define a pessimistic upper limit to all hazards) the initiating mech­

anism is assumed to be a sudden fracture in one of a number of laminar 

pieces of the pulsation device. The theory by which SOREX 1 computes 

the consequences of this fracture ­ the collision of the fragment with 

the core, the compression of the core into a super prompt critical as­

sembly and the consequent release of a large (class B) fission energy ­

(4) 
has already been given in detail . (For a summary, see section 3.2.1). 

In accidents of type 2 the base reactivity of the system increases, 

so that the reactivity pulses are raised bodily to a higher amplitude 

(without any alteration in shape). This has the effect of generating 

power pulses with an abnormal fuel temperature rise. If this rise is 

large the fuel may be damaged, for example, by phase changes or by the 

(5) 
thermoelastic shock , and if it is very large it may even destroy the 

core explosively. To study type 2 accidents, therefore, DOPPELAS and 

SOREX 1 have been constructed with the option of using a well defined 

pulse form for the input reactivity €¿t) (see sections 2.2.1 and 3.2.2). 

In the case of SOREX 1, this option is obtained by manipulating the input 

for a type 1 accident (see section 3.2.2). 

In accidents of type 3, fuel melting may commence either before or 

after the pulsation device has been stopped. (For the SORA reactor it is 



always after). If it commences before, it has the effect of raising 

the level of the reactivity pulses (as above) and the situation becomes 

similar to a type 2 accident. If melting commences after the stoppage 

of the pulsation device, however, there arises a situation akin to the 

maximum accident in a fast power reactor: the core slumps into a prompt 

critical configuration and a class Β excursion is generated. In order 

to evaluate the energy release for this accident, SOREX 1 is equipped 

with an option which provides a ramp input form for the reactivity ¿L(t). 

As for a type 2 accident, this option is obtained by manipulating the 

input for a type 1 accident (see section 3.2.3). 

In accidents of type 4, which can occur only during the relatively 

few occasions when a pulsed fast reactor is being operated in a steady­

state condition, a reactivity drift takes the reactor to prompt criti­

cality. If the drift rate is very large, the resulting excursion will 

be destructive and the energy release can be calculated by using SOREX 1 

in the same way as in a type 3 accident ­ with the ramp input form for 

€0(t). It is almost certain, however, that reactivity drifts of such 

a magnitude are unattainable and, even in the worst cases, the excursion 

will be terminated by the thermal expansion of the fuel well before mel­

ting occurs. To analyse this situation, DOPPELAS has also been provided 

with a ramp input option for €L(t) (see section 2.2.2). 

DOPPELAS and SOREX 1 have been written in Fortran 4 for both the IBM 

7090 and IBM 360/65 machines and are obtainable from the ENEA Computer 

Programme Library, C asei. Post. 15, Ispra (Varese), Italy. The applications 

described in the above four paragraphs are illustrative of the main uses 

to which the programmes have been put in the SORA project. Other uses 

could also be Specified, but the reader will no doubt formulate these 

for himself in the light of his own needs and problems. 



2. CLASS-A EXCURSIONS; THE PROGRAMME DOPPELAS 

2.1 Theoretical Basis 

A physical and mathematical model for the description of Class A ex-
(2 3) curs ions has been developed previously ' and will therefore only be 

summarized here. The central point in the theory is the fact that, during 
a class A excursion, the feedback of reactivity is due almost entirely to 
the Doppler effect and the axial thermal expansion of the fuel slugs (as­
sumed to be continuous straight bars). Other effects, such as the thermal 
expansion of the coolant and structure, are too delayed by heat transfer 
to play a role during the very short times characteristic of pulsed fast 
reactor excursions. 

Hence, it turns out that the feedback processes for a class A excursion 
can be characterized by two reactor constants: the Doppler coefficient of 
reactivity f and the axial fuel expansion coefficient of reactivity 
| . It has been shown that, with certain approximations, the feed­

back reactivities arising from the Doppler effect and the axial thermal 
expansion of the fuel slugs (which occurs, in general, via the excitation 
of elastic waves), are given by 

, t , Q(t) .-IM J 

and 

i^ ' fU *?)«'-'''"' (2.2) 

respectively. In these expressions T is the absolute mean fuel temperature 
at the beginning of the excursion (at which 0 must be evaluated), H 
the specific heat of the fuel, QÍ the coefficient of linear expansion of 
the fuel, c the speed of longitudinal waves propagating axially along the 
fuel slugs (whose half-length is L) and Q(t) the mean fission energy release 



per unit mass of fuel as a function of the time t after the onset of the 

excursion. The function J is given by 

θ for 0^6^*1 

­ θ for 1^0^*3 

J(0) = < θ ­ 4 for 3<"θ^5 (2.3) 

2 - θ 

θ - 4 

6 - θ 

θ - 8 

for 

for 

for 

for 

1<θ<*3 

3<θ<?5 

5 < e < 7 

7 £ θ ^ 9 . . . . e t c 

Denoting the prompt reactivity input generating the excursion by CXt) 

as in the introduction (section 1), the total instantaneous prompt reac­

tivity is given by 

(6) 
The energy release Q is assumed to be governed by the point reactor 

kinetics equation 

T¿
# -ëà+£00S (2.5) 

where T is the prompt neutron lifetime and — 6 and S are respectively 

the prompt reactivity and mean power per unit mass of fuel at the beginning 

of the excursion. Because the excursion is very short in comparison with 

the decay time of the delayed neutron emitters, S can be considered as a 

constant. Assuming the system to be initially in a steady state, the boun­

dary conditions to the problem are 

which imply that € Λ (0) ­ C „ (O) = O and éL(0) » — £ . 
* * Dopp Elas ·> oo 



For purposes of numerical analysis, the integral in (2.2) can be eli­

minated to give 

oo 

'£tas 

A£S?i ltí»-2l<rl) W-Ö—Wj 
«ΜβΟ 

(2 .7) 

where now it is assumed that Q(t) = 0 if t^O. It is of interest to note 

that L/c is the wave transit time along the fuel slug half­length. 

2.2 Reactivity Input 

2.2.1 Pulse_Form_of_Ingut;pOPPELAS_l 

In order to simulate the reactivity input of a pulsed fast reactor under 

L conditions where the pulsation device is opers 

version of DOPPELAS adopts the following formulae 

all conditions where the pulsation device is operating normally, the first 

(3,4) 

!;(*)-·**[* <*-**->{ -A· J (2.8) 

where 

4-ß 

%&>*< € L - * * 
' 2 

- r t +^ν« + /^β 

for f * - t. 

for - t , < t » $ t^ (2.9) 

for f > t. 

**- $(*..+*~+ig) (2.10) 



and 

* ·
β
 IL· 

Here, — £ is again the base reactivity from which the pulse begins 

at t « 0, r i s a half of the total duration of the pulse, r the ramp 

rate of rise (fall) of the pulse during its initial (final) stage, £ 

m 

the maximum prompt reactivity and B a sharpness parameter. The idea of 

using a parabolic approximation at the peak originated with the Russian 
(7) 

IBR reactor but the inclusion of linear sides resulted from studies in 

(8) 
the SORA project . In the above formulation, the duration of each of 

the ramp parts of the pulse is t = t ­t.,i.e. 

ramp " 

r
2 

^ u - * £ te' " ^ ~ ÎB * (2.11) "rtUHft 

The duration of the parabolic part i s t = 2t, , i . e . 
para " 

t ­ ~ 

2.2.2 Çamp/Steg_Form_of_Input;D0PPELAS_2 

In order to simulate an accidental drift or step change in reactivity 

during steady operation when the pulsation device is stationary, the se­

cond version of DOPPELAS uses the expression 

■{ 
r t - £*> 'or o $ t < t ; ^ 

£ for t » t » 
S M ramp 

where r is the ramp rate of increase of the reactivity to the constant 

maximum 6*, and 



χ' m
 g

» · * * * ^ (2.13) 

is the duration of this ramp. The initial reactivity, — £ , will normally 

oo 

represent the delayed critical condition and will therefore be different 

from the — £ for the pulsed condition. 

oo * 

It will be noted that, for the pulse input (2.8), the dominant mechanism 

for terminating an excursion is the die­away of the input £ (t) itself. For 

the ramp/step input (2.12), on the contrary, the shut­down comes entirely 

from the inherent feedback processes ( £ n and Β ). 

* Dopp Elas 

2.3 Numerical Method 

The problem for DOPPELAS is essentially that of simultaneously solving 

equations (2.5) and (2.7), equations (2.1), (2.4) and (2.6) being only sup­

(3) 
plementary. As described in a previous paper * the method adopted is a 

simple application of the standard method of finite difference representation, 

By introducing a uniform chain of time points t = η At, where A t is some 

suitably small Interval, the differential equations (2.5) and (2.7) can be 
mø 

written approximately in terms of the discreet values of Q(t) and € (t) 

isxas 
at these p o i n t s . For ( 2 . 5 ) we have 

„. å(^.)-2*M+a(t*.,) _ cfi., aft.*,) - afa-) 

■h e.. S 

where 

ΕίΟ-Ε.ίΟ+ξ^α.,ΐ + ξ^ίΟ <»·«> 



and for (2.7) 

£!tt* ""* co 

7 n (t ) is evaluated from (2.1) and £.(t ) from (2.8) in DOPPELAS 1 
Dopp η ο η 

and (2.12) in DOPPELAS 2. 

Considering the boundary conditions in the form 

u.oíc
2
Sãt

3
 ν , x 

r /·/>%- Λ £ ¿ A t ) - — ö/v* (2.17) 
£tw "ÊU5 J/ft 

it is clear that Q(t) and 6 (t) can be evaluated step­by­step from 

Elas 

(2.14) and (2.16) for as large a value of η as is necessary. 

The speed and accuracy of this calculation depend on the assumed value 

of At. Since the wave transit time L/c appears explicitly in (2.16), it 

is convenient to choose A t so that L/C A t is an exact integer. Apart 

from this, it is only necessary to ensure that At is not so large as make 

the finite difference solution inaccurate or so small as to introduce para­

sitic solutions. Extensive numerical studies have shown that a value lying 

well away from both limits can be selected by taking 

• / 0-03 τ ^ Λ *
6

\ „ -6 

(2.18) 

Thus, DOPPELAS first computes At from (2.18) and then rounds it off 

slightly so that L/C A t is integral. 
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2.4 Programme Data 

The physical data (with units) required before the above analysis can 

be made to calculate a nuclear excursion are given in Table 2.1. Except 

for one parameter (the sharpness B), the quantities shown are used in both 

versions of DOPPELAS. The parameter shown at the bottom of the table, the 

Table 2.1 

DOPPELAS Input Data 

. t 

Prompt neutron generation time, f 

Maximum prompt reactivity, 6 

m 

Axial fuel expansion coefficient of reactivity 

Doppler coefficient of reactivity at T °C, #L 

Specific heat of fuel, H 

Coefficient of linear expansion of fuel, OC 

Speed of waves along fuel slugs, c 

Half­length of fuel slugs, L 

Mean specific power just before excursion, S 

Pulse sharpness, B (redundant in DOPPELAS 2) 

Initial ramp rate, r 

Base reactivity (without negative sign), g 

Initial mean fuel temperature, T (= T.­273) 

o A 

Desired printing interval, ¿ * 

Exp 

sec 

Ak 

Δ k/cm 

Ak/°C 

J/gm C 

s t r a i n / C 

cm/sec 

cm 

W/gm fue l 

A k / s e c 

A k / s e c 

A k 

°C 

Msec 

printing interval ¿t(üsec), is used to instruct the programme when to 
Λ0 

interpolate and print lines of results. The solution: Q(t), £ (t),... 

Bias 

etc, is printed at t = 0, St, 2 «Tt, 3 it right up to the end 

of the excursion, the latter being measured by the levelling­off of Q(t). 

For details of the programme output, see section 2.5. 
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Typical values of the above parameters for a SORA type reactor operating 

in the pulsed mode (i.e. for DOPPELAS 1) are given in Table 2.2. The pulse 

maximum β^ = 0.0018 Ak represents an accident in which the thermoelastic 

stresses fall just short of breaking the cladding of the highest rated fuel 

elements. The print­out interval of 20 usee is enough in this case to re­

veal all details of the excursion without generating excessive output. 

Table 2.2 

Typical Numerical Values for DOPPELAS Input Data 

~ -8 
X = 2x10 sec 

Η = 0 .14 j/gm°C 

S = 1.43 W/gm 

I = 0.038 Δ k 
oo 

€ = 0.0018 Ak 
m 

OC = 1 .4x lÕ
5
s tr . / °C 

Β = 4 .805xl0
5
¿k/sec

2 

Τ = 400 °C 
o 

i 
ff
Exp 

c = 

r = 

= -0.0184k/cm 

5 
= 2.6x10 cm/sec 

= 93 Ak/sec 

V = 2xl¡0€4k/°C 
»Dopp 

L = 12 cm 

St = 20 u. sec 

The manner in which the above data is prepared on cards for input to the 

IBM 360/65 or 7090 is illustrated in Table 2.3. The first row of this table 

indicates the relevant column numbers of the cards and the first four cards 

represent the first case. Columns 1­10 of each card serve to specify storage 

locations. Thus, for example, the c­1­4 shown punched respectively in columns 

1,5 and 10 of the first card means: "Take the four numbers punched in ranges 

11­25, 26­40, 41­55 and 56­70 and store them in c(l), c(2), c(3) and c(4) 

respectively". Similarly, the c­5­8 in columns 1,5 and 10 of the second card 

signifies that the subsequent four numbers in ranges 11­25, 26­40, 41­55 and 

56­70 of this card are to be stored in c(5), c(6), c(7) and c(8) respectively. 

Iû all, 16 parameters are read and stored in this way in registers c(l)­c(]6). Of 
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these, the first 14 represent the physical parameters in exactly the same or­
der and format as in Table 2.2 while the last two registers, c(15) and c(16), 
are functionless and can be left blank. (For clarity and convenience,tbs exact 
correspondence between the programme C(J) registers and the physical para­
meters is given in Table 2.4). The card with CAL punched in columns 1, 2 
and 3 directs the programme to the execution of case 1. 

Table 2.4 

Correspondence between the Programme Storage 
Registers and the Physical Parameters 

c(D = r 
c (5 ) = H 
c (9 ) = S 
c(13) = £ _ 

OO 

c(2) = e 
m c(6) = OL 

c(lO) = Β 
c(14) = Τ o 

c (3 ) = 7„ 
Exp c (7 ) = c 

c ( l l ) = r 

c(4) = V 
wDopp c ( 8 ) = L 

c (12) = St 

The remainder of Table 2.3 illustrates the manner in which a series of 
cases are assembled. After the execution of the first case described above, 
the programme automatically searches for new data. In the example given, 
the programme finds that it has to read only one number and store it in 
c(2). The old value of £ is then overwritten by the new and execution is 

m 
carried out with this new value of £ (= 0.0017 Ak) but with all other 

m 
parameters preserved as in case 1. On completion of the second case, the 
programme then finds two cards, each with one parameter. The first goes into c(2) and the second into c(9). Thus, case 3 is executed with a new 

—8 value of 6 (= O.C041 AK) and a new value of S (= 1.43x10 W/gm). Case m 
4 is a repetition of case 3, but with £ = 0.0042Ak. In case 5 the prompt 

m -8 -8 neutron generation time T* is increased from 2x10 to 4x10 sec and £ 
m 

and S are restored to the values which they had in case 1. The 6'th case 
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repeats case 1, but with all reactivity feedback effects removed ( #_ = , Exp 
j „ = O). The 7*th and last case restores the feedback effects but « Dopp 

increases the print-out interval it from 20 to 40 Msec and investigates 
the effect of a higher base reactivity — £ . All further execution is 
terminated by the card with STP punched in columns 1, 2 and 3 respectively, 

The above examples have been designed to give a complete coverage of 
the input capabilities of DOPPELAS. Both versions of the programme are 
identical except that, in DOPPELAS 2, the register c(10) (= B) is redun­
dant and can be filled with any number whatever without effect. 

2.5 Programme Output 

The output of the two versions of DOPPELAS, 1 and 2, is illustrated 
in Figures 2.1 and 2.2 respectively. These figures are copied directly 
from the output delivered by the IBM 360/65 printer, the input data being 
precisely that given in Table 2.2, i.e. the first case of Table 2.3. 

The first line in the output of any case defines the version of the 
programme being used (pulse or ramp/step input) and the case number. Then 
follows four lines, each containing four numbers, which gives a complete 
listing (in the same format as in Tables 2.2 and 2.4) of the data being 
used in the case. In DOPPELAS 1, there then follows a line of four numbers 

M. 
giving respectively t (ea. (2.11)), t (eq. (2.10)), L/c (the wave 

ramp 
transit along the slug half-length) and At (the finite difference inter­
val, eq. (2.18)). In DOPPELAS 2, the line contains only three numbers: t* (eq. (2.13)), L/c and At, since t is meaningless in this case, ramp 
All of these times are stated in usee, 

After the above preliminaries, the output gives the solution computed 
according to the method in section 2.3. There are eight columns of numbers, 
The l*st column gives the time in Msec at intervals of dt (= 20Msec in 
the examples). The 2*nd, 3»rd, 4»th, 5»th, 6*th, 7'th and 8*th columns 
give respectively £_, , £ Λ , £ , + £ , € , the average β * Elas' Dopp' Elas Dopp' o' 
fuel temperature rise (in C), the average energy release per gram of 



DOPPELAS-PULSE REACTIVITY INPUT CASE 
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FIGURE 2.1 



DOPPELAS-RAMP/STEP REACTIVITY INPUT CASE 
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■0.361400-01 
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0.163730­03 
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0.16733D Ol 

0 .177520 Ol 
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FIGURE 2 . 2 
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fuel Q (in Joules/gm) and the average power per gram of fuel Q (in Watts 
(gm). All reactivities are in units of Ak measured relative to prompt 
criticality. 

The calculation is stopped by a convergence criterion placed on the 
specific energy Q and this usually operates at the end of an excursion 
shortly after the total reactivity has fallen below prompt critical. If 

(3) the solution is of interest beyond this point, as has been the case 
already, it is only necessary to remove the appropriate card from the 
programme deck. Users will find this a simple problem. 

DOPPELAS is written in Fortran 4 language. 
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3. CLASS­Β EXCURSIONS; THE PROGRAMME SOREX 1 

3.1 Theoretical Basis 

A complex physical­mathematical model for the analysis of destructive 

excursions in a pulsed fast reactor has recently been published in full 

(4) 
detail and need not be greatly elaborated here. We shall simply sketch 

the essential ideas and equations. Although the theory is developed ex­

plicitly for type 1 accidents, it is easily adapted for the study of types 

2­4, as will be seen in section 3.2. 

(9) 
The essential ingredient used in the theory is Nicholson's ' version 

(lo) 
of the Bethe­Tait model. In this, the only available shut­down mechanism 

is the process of destruction caused by the generation of very large pres­

sures in the core. Shut­down reactivity arises from the fact that core 

material is accelerated along pressure gradients into regions of lower 

importance. To describe this, and all other effects, the core is approx­

imated by an equivalent sphere of radius R (=(3 "V /4TTJ , "J/" being the 
C G c 

core volume). Denoting the pressure by p ( r , t ) and the r eac t iv i ty worth 

per uni t volume of core material by D(r) , the basic equation governing 

*** (9 4) 

the shut-down r e a c t i v i t y 6 in t h i s model i s ' 

Re 

( 3 . 1 ) 
7F" Pc J 9r ¿r 

where 0¿ is the mean density of the core, r the radius variable and t 

the time. 

The integral in (3.1) is evaluated by introducing three approximations. 

For the pressure, it is assumed that the dependence on the specific energy 

Q(r,t) (energy release per unit mass of fuel) falls into two linear re­

­ \ 4,11) . it, it 

gions . A low pressure regime : 

{ 
If «<■ <52 

¿ft ¿ « - « Í ) tf Q>«? 
2 

(3.2) 

(next page) 
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and a "high pressure regime": 
(3.2) 

I»- i α (β-Ο if Q > Q* 

where O, is the effective density of the fuel (after expansion to fill 
Λ) ΊΤ *) ♦ 4r 

all voids) and l , Q , T and Q are constants. Q depends on these 

3 * *° „; 
constants. Note: with fø in gm/cm and Q, Q and Q_ in ergs/gm, /

 a n d 

ΛΡ 2 

fl *** 1­10 are dimensionless and ρ is in dynes/cm 

For the specific energy Q(r,t) and reactivity worth density D(r) are 

assumed parabolic spatial distribution functions whose shape is unaffected 
(9) 

by the excursion : 

Q(r, t) = Q.(t)(l- %. ρ ) (3.3) 

and 

DO)« ίο-ζΙΊξ <3·4> 

where Q (t) is the energy per unit mass of fuel at the core centre and q, 
g and g are determined by matching these formulae with the results of 
neutron transport theory. 

Using (3.2), (3.3) and (3.4) in equation (3.1) it follows that 

jpr s y \ c * L i \ftc / ζ R5 j ( 3 5 ) 

(4) where S and S are functions of Q (t) and 

Í'%Í (3e> 
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In addition to the shut­down reactivity € , the theory also includes 

the Doppler effect. The feedback reactivity coming from this effect is 

represented by the same formula as in DOPPELAS, i.e. 

Λ 

where Q is the average specific energy release: 

ff­ (l-*rl)Q0(t) <
3
'
8
> 

(4) 
Η is the average specific heat of the fuel over the range of interest , 

Τ the absolute mean fuel temperature before the excursion and f 

the Doppler coefficient of reactivity at temperature T . 

Denoting, once again, the prompt reactivity input due to the accident 

conditions by £ (t), the total prompt reactivity is given by 

**£.(*) + $,.„(*) +2V*> (3.9) 

(6) 
In conjunction with this reactivity, it is again assumed that the point 

neutron kinetics model is applicable: 

TQ0 * 6áe+£.0S, (3.10) 

where — £ is the prompt reactivity Just before the excursion ( € (t^ = 

— £ ) and S is the initial specific power at the core centre, i.e. 
oo o 

S O 
L » τ— (3.11) 

S being the mean initial power per unit mass of fuel. The boundary condi­

tions to (3.10) are Q (t,) ■ O and Q (t. ) = S , where t. is the time point 

o b o b o D 

when the reactivity begins to rise above — £ (see section 3.2). 

oo 
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If the input reactivity €0(t) is given, it will now be noted that 

equations (3.5),(3.7),(3.9) and (3.10) form a closed set with a unique 

solution, Q (t). During the course of an excursion, Q (t) at first rises 
o o 

slowly at a rate depending on S but accelerates very sharply when β#> o. 
# 

After arrival at the threshold Q of the low pressure regime, the shut­
~
 z 

down reactivity β becomes dominant very quickly and Q (t) converges to 

o 
its final limit Q (fio). If M. is the total mass of fuel in the core, it 

o f 
follows from (3.3) that the total energy release is given by 

^t
t t , a

 0" H )
 M

f Q*
(t) (3i2> 

the final value, Q . (°°), being very insensitive to the value of S. 

In order to calculate the mechanical energy which may become available 

for the creation of blasts and projectiles within the containment of the 

reactor, an approximation similar to equation (3.2) is made. For a unit 

mass of fuel with internal energy Q it is assumed that the available work, 
. (4,11) 

W , is given by ' 
B 

C if Q< w* 

tø a ^ k(a­W 2*) if W * < Q $ W * (3.13) 
"S 

χ(£-iy^ ) i f Q > w 

♦ n # 

where fc, W , 2 , W and W are constants. It follows that the total avail­

able work corresponding to the specific energy Q (t) at the centre of the 

core is 

I» c c 

(3.14) 
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where r. and r_ are functions of Q (t) 
1 Δ O 

(4) 
. The final available work W(60) 

is given by putting Q = Q (00) in (3.14). 

o o 

3.2 Reactivity Input 

3.2.1 Reactfvit y^Ingut_due_to_Rotor_Breakage 

In the absence of a grossly abnormal accident of the type to be out­

lined in this section, the reactivity input is given by equations (2.8) and 

(2.9), which, for convenience, are repeated here (with t measured relative 

to the peak): 

e#(t)« max[£„0(Ο ,' -£00] (3.15) 

where 

É
P.tt>~ 

for t ̂  ­t 

for ­t V t f t (3.16) 
o o 

for t > t 

€ , B and r being respectively the normal maximum prompt criticality, the 
m 

sharpness and the ramp rate of rise (fall) of the pulse. (For the defini­

tion of the other parameters, see section 2.2.1). 

The effect of a rotor breakage accident (type 1) is, mathematically, to 

replace the above single reactivity pulse by a superposition of three sepa­

(4) 
rate pulses m This occurs because the different trajectories followed by 

the broken and unbroken parts of the moving reflector lead to a time delay 

between their passage near the core, so splitting equation (3.15) into two 

components, while the compression and decompression of the core accompany­

ing the collision of the broken fragment injects a third reactivity com­

ponent . 
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In the theory, the amplitudes of and time differences between these 
three pulse components depend on: the angle θ of the pulsation device 
at the instant of fracture relative to its position when the nomral re­
activity is a maximum, the radius R of the outer tip of the pulsation 
device, the speed V of the outer tip of the pulsation device, the effec­
tive mass m of the fragment, the "reduced compressibility" % of 

(4) the coolant, the "rigidity" 0 of the fuel assembly, the "looseness" 
/ (4) QL of the core, the volume fraction f of the coolant, the volume o ' 

of the core, the total area A of the moving reflector presented to the 
core and the normal gap h separating the moving reflector from the core. 

The above kinematic and dynamical parameters are not the only quanti­
ties to determine the reactivity input £ (t) from the three pulse com-

o 
ponente. There is also the number of laminar pieces η built into the pul­
sation device (only one of which is assumed to break), the volume coef-

(4) /(4) 
ficient of reactivity *W and "wobble" coefficient of reactivity £ 

All of these parameters provide the context for a description of the 
processes following a pulsation device breakage accident. In mathematical (4) terms, this description boils down to the following set of equations : 

(3.17) 

where a and b are the relative reactivity worths of the unbroken and η η 
broken parts of the pulsation device respectively (i.e. in the simplest 
approximation b = l/n, a = 1-b ); y(t) is the fractional decrease in η η η 

core volume satisfying 

jj * ~ &0(Ί) - %(*) (3.18) 

A V 
with y= O for t <" t0 and y = - f_'—sin θ for t = t„, 

2 Ή \ζ z 
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4? χ' 
fr

c
C
^%^¿T£

 V
 <3.19) 

being proportional to the force due to the compression of the coolant, 

for yg«'Al 

Ö L C * » N < £Λβ /ΛΛ_Λ'/ΛΛ\ , (3.20) 
for y>oc/n 

proportional to that due to the compression of the fuel slugs and t is 

/ 2 

the instant of impact: c (t) = e (t cos θ) and 

po po 

O if t ̂  t 

£ (t) =* ¿ £'V4mê (t-tj) if t g ^ t < t 2 (3.21) e'k i f t * t. 

The times t., t„ and t are given by 

2 3 g * 

t a_fi ie(e­ta^l) 
c
2 Vti*.e V v

 2 ' 

and, for completeness, the breakage occurs at 

The instant t, regarded as the starting point of an excursion, is given 
D 

when (3.17) begins to rise above — £ 

oo 

Although (3.17), supplemented by all the other equations above, has 

been formulated with a particular view to the simulation of type 1 acci­

dents in SOREX 1, other types of accident can be simulated very easily. 
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3.2.2 Çgactivit2_Pulse_Ingut 

A pure pulse form of reactivity input (for the study of type 2 and 

possibly type 3 accidents) can be obtained in SOREX 1 by making θ very 

small (e.g. θ » 0.1 ) and setting € = 0. It is easy to see physically, 

that, provided the gap h is non­zero, such a small angle fracture is un­

able to lead to a collision and that the terms in £ (t) and y(t) must 

gap 

therefore be absent from (3.17). Mathematically, it is even more obvious 
o ' 

since, with θ = 0.1 , € » O and h > O, the delay t in the collision 
Δ 

pulse is very large (i.e. the reactivity input due to collision is ex­

cluded until much too late) while € 9 0. On the other hand, t„ = O 

¿ - gap 3 

and £ (t) = C (t). From this, it folows immediately that (3.17) re­
po po 

duces to (3.15) as required. 

3.2.3 React ivi t jr_Ramg_ Input 

A ramp form of reactivity input (for the study of accident types 3 and 
o 

4) can be achieved by first performing the above adjustments (Θ = 0.1 , 

£ = O, h > O) to give an input of the form (3.15) and then by raising £m 

to a high value, e.g. fi = 1. The effect of the latter adjustment is to 

ensure that the ramp part of (3.16) extends well into the super­critical 

region and that the parabolic part can never be attained before destruction 

occurs. 

3.3 Numerical Method 

The problem for SOREX 1 is essentially that of simultaneously solving 

the differential equations (3.5), (3.10) and (3.18), all other equations 

being regarded as supplementary to these three. As for the class A excur­

sions treated by DOPPELAS, this is accomplished by expanding the equations 

over a sequence of time points t . There is one feature of class B excur­
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sions, however, which makes this procedure more critical, namely, the 

much larger fission powers generated. The quantities Q and Q* vary so 

o o 

rapidly when the excursion is at its peak that, in order to maintain good 

accuracy, it is necessary to decrease the spacing of the points t in 
n 

this region. 

Thus, defining 

Δ*κ
 s

 t«+, - ^ (3.22) 

we take 

At 
C i0~' sec 

\ *I*¿K £-/<T*$ O-OOST/^ 

if €(**)4ο 

OOSt/eCtj] S«c if £ ( Î H ) > 0 

(3.23) 

until the smallest value is reached and then keep At fixed at that 
η 

value until the end of the excursion (disassembly). In (3.23), £(t ) 
η 

is given by (3.9) with t = t . 

η 

With the above time sequence, the finite difference representation of 

the kinetics equation (3.10) assumed in SOREX 1 is 

«.fW­^ftJ *A> *
 Q

'
(t
«-

y 

At A**­. 

f (*** + **­.) 

(3.24) 
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Since Q (t ) = O and Q (t,) = S t, (where t. is the zeroth time point), 
O b ο 1 O 1 D 

this equation leads to a step-by-step evaluation of the whole excursion 
provided £ (t ) is known, n 

To evaluate £(t ), however, requires finite difference representations n 
also of equations (3.5) and (3.18). Equation (3.5) is approximated by 

Δ£η_, At*-. H-2. 

4 (*«-,+"*-»> *"·' C 3 · 2 " - F „ - , 

where F is given by 

*.! -κ' F - fM-^^W) +^ "V^J R e ' - Re' 

(4) And S, and S are known in terms of Q (t ) . From (3.2) it is obvious ln^ 2n ο η -j 
that €*(t ) = 0 for all t satisfying Q (t X Q_ and this condition makes η η ο η is 
possible, with (3.25), a complete evaluation of β for all t . 

The finite difference representation of equation (3.18) is based on the 
second order Taylor expansion: 

Writing y(t ) = y , y(t ) = y and y(t ) = y , this becomes η 'η η "η ' η 'η' 

(3.26) 
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and defining 

f (y) = Gt(y) + G$ (y ) (3.27) 

it follows immediately from (3.18) that 

¿L, »­/<*«­,) <
3
·
Μ
> 

while the first derivative y can be evaluated by multiplying (3.18) by 

and integrating over the interval (y _, y , ) : 
η—2 η—1 

¿< C - X\ ) - - ƒ ""' /ív'J'y' 
«-a 

If the integrand in this formula is now expanded to first order in (y'-y , ), 
n—1 

i.e. 
f(v') -/<*·.,) +<y - y^·) ƒ í y«.,) 

then we get 

(3.29) 

Equations (3.26), (3.28) and (3.29) are now sufficient to evaluate y step 
by step if we introduce the starting conditions that y - O for t ̂  t and 
y = A V sin θ/η V" for t = t_. The + sign in (3.29) is used during the o c ζ 
compression part of the collision and the - sign during decompression. 
SOREX 1 performs the change-over automatically when y reaches its maximum. 
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The calculation is stopped either when the condition 

is satisfied or when the input reactivity £(t) returns to — £ (which 
ù oo 

is symptomatic of a non-destructive excursion). 

3.4 Programme Data 

The physical data, along with the Fortran registers used to store 
them in the programme and the units required, are all listed in Table 
3.1. The order in which the parameters appear is not strictly logical 
but has resulted from the natural evolution of the theory during its 
development. The quantity At(Msec) stored in register A(8) informs 
the programme at which time point t to interpolate and print the solu­
tion Q (t) and all other quantities of interest. Typical values of the 
above parameters for a serious pulsation device breakage accident are 
shown in Table 3.2. This data represents approximately the maximum ac­
cident of a SORA type reactor. 

The manner in which the above data is prepared on cards for input 
to the IBM 360/65 or 7090 is illustrated in Table 3.3. The logic is 
identical to that for DOPPELAS and can be appreciated most readily by 
a detailed comparison of Tables 3.2 and 3.3. The second card, for ex­
ample, begins with A, 5, 8 punched respectively in columns 1, 5 and 10. 
This has the effect of allocating the four numbers on this card in 
columns 11-25, 26-40, 41-55 and 56-70 to registers A(5), A(6), A(7) 
and A(8) respectively. Similarly, the B, 17, 20 (punched in columns 1, 
4 and 5, 9 and 10) on the 7th card directs the four numbers punched in 
columns 11-25, 26-40, 41-55 and 56-70 to registers B(17), B(18), B(19) 
and B(20) respectively. In this way, all 36 numbers on the 9 cards are 
read by the programme to make a complete case and execution is triggered 
by the card with CAL punched in columns 1, 2 and 3. 
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Table 3.1 

SOREX 1 Input Data 

Physical Parameter 
Fortran 

Register 

A(l) 

A(2) 

A(3) 

A(4) 

A(5) 

A(6) 

A(7) 

A(8) 

B(l) 

B(2) 

BC3) 

B(4) 

B(5) 

B(6) 

B(7) 

B(8) 

B(9) 

B(10) 

B(ll) 

B(12) 

B(13) 

B(14) 

B(15) 

B(16) 

B(17) 

B(18) 

B(19) 

B(20) 

B(21) 

B(22) 

B(23) 

B(24) 

B(25) 

B(26) 

B(27) 

B(28) 

Unit 

sec 

4k 

liters 

Ak/eec 

W/gm fuel 

-

-

U. sec 

-

gm/cm 

ergs/gm 

Kgm 

Kgm 

degrees 

2 

cm 
dynes/cm 

cm 

/Ik/cm 

Ak 

Ak/sec 

m/sec 

cm 

Ak 

ergs/gm 

-

Ak/cm 

dynes 

-

dk/°C 

°K 

ergs/gm C 

-

ergs/gm 

ergs/gm 

-

-

Prompt neutron generation time, Τ 

Volume coefficient of reactivity, *Y) 

Core volume, 1/1 

Normal pulse ramp rise (fall) rate, r 

Initial (source) power, S 

Low pressure regime parameter, T» 

Number of laminar parts in pulsation device, η 

Printing interval, Δ t 

High pressure regime parameter, 7. 

Effective fuel density, ft. 
■ff. 

High pressure regime parameter, Q 

Total mass of fuel, M 

Effective mass of fragment, m 

Pulsation device breakage angle, θ 

Area of moving reflector towards core, A 

' o 

Corrected coolant compressibility, "JÇ 

Gap between moving reflector and core, h 

Wobble coefficient of reactivity, β 

Normal pulse maximum, 6 

Normal pulse shaprness, Β 

Speed, outer tip of moving reflector, V 
­, , , I I tt t i t l I I _ 

Radius , , R 
' o 

Base reactivity (without - sign), 6 M 

Low pressure regime parameter, Q 
Å 

Power shape factor, q 

Reactivity worth shape factor, q* (eq. 3.6) 

Fuel assembly rigidity, £ 

looseness, 0£ 

Doppler coefficient of reactivity, 

Dopp 

Initial mean fuel temperature, T 

Mean fuel specific heat, Η 

Available work parameter, k 

II 

It 

w: 

Coolant volume f r a c t i o n , f 



Table 3.2 

Typical Values for the SOREX 1 Input Data 

A( l - » 4 ) : 

A( 5 - » 8 ) : 

B( 1—»4): 

B( 5—>8): 

B( 9 - A 2 ) : 

B(13-»16): 

Β(17-»20): 

B(21-»24): 

B(25-»28): 

Τ = 2x10 sec 

S = 1.43xl0~
8
 W/gm 

1λ = 2.3 

m = 2.9 Kgm 

h = 0 . 4 5 cm 

V = 283 m/sec 

q = 0.59 

Y_ ■ 2xl0~
6
 AkV°C 

"Dons 

w j = 9.3xl0
9
ergs/gm 

*»2 = 0.37 Ak 

y 2 = 36 

fi = 14 gm/cm 

θ = 10.5° 

€
, =

 0.01 ¿k/cm 

R = 90 cm 
o 

q* = 6 .8x l0~
4
 Ak/cm 

TÄ = 473 °K 
Λ 

W* = 15.3xl0
9
ergs/gm 

Υ = 5.9 l i t e r s 
'c 

η = 4 

* 9 
Q = 7.3x10 ergs/gm 

A = 264 cm
2 

o 

6 = 0.00092 Ak 

£ = 0.038 Ak 
oo 

14 
Ç = 8x10 dynes 

5 « o 
H = 5.7x10 ergs/cm C 

1 = 1 

r = 93 ¿ k / s e c 

t s 20 {¿sec 

Mf = 70 Kgm 

Χ = 4x10 dynes/cm 

Β = 4.805x1ο
5
 Δ k / s e c

2 

Ά 9 Q = 9.3x10 ergs/gm 

OC* = 0.03 

k « O.676 

f ■ 0.139 
o 

w 



1 ff 10 

A 1 k Ζ- 0 ί 
A ç y i - k-z i 
Β f ίκ 2-2 
8 S % 2·1 
Β 1 iZ ο · ί 
β 13 1fr 2 * 3 - 0 
î 17 20 O­S 
Β 21 2«­ 2-0 i 
B 25 2% ? · 3 É 

CA(­

ãi (» <· ι ι · ο 
CAÍ­
ß fr io iO Ό 
CAL 
β ¿ c o -i 
b io a o ' o 
CAL 
AU, ík 10 Ό 
Β 11 11 1 · 0 
CKL 
\ tl· S 20' 0 
CAL 
ST? 

r 

t5 

'? 
» 

TS 

i 
t 

fr 

1 

à 

1t 

?í 

♦1 

Ο­

Ι ­

0 

Ifr 
1 

) . 

) . 

r
3 

1 

0 

W 

* : 

• ί 
! § ■ · 

5 
ί 

(7 
fr· 
• ί 
5 · 

Oí 

3 

ί7 
) 
J 

) . 0 

% 
) 

3 

ν 

i 

ε-

£ 
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The second case illustrated in Table 3.3 is made up by a single card. 
The B-6-6 punched in columns 1, 5 and 10 has the effect of overwriting 
the contents of B(6) with the number punched in columns 11-25 while the 
numbers stored in all the other registers are preserved. The second case 
is thus the same as case 1 but with the breakage angle set to θ = 11 

o o 
instead of 10.5 . Similarly the third case has θ = 10 . 

The fourth case sets θ = 0.1 , 6 = 0 and € - 0.004 ά k. As was 
explained in section 3.2.2, the values θ = 0.1 and 6 * 0 lead to a 
pure pulse reactivity input, the collision calculation being completely 
avoided. The value £ = 0.004 Δ k represents an abnormally large pulse 

m 
and therefore this case evaluates the destructive energy release following 
a severe type 2 (or 3) accident. 

The fifth case retains the "pure pulse" parameters of case 4 but sets 
the ramp rate r « 10 /Ik/sec and raises € to 6 = 1.0. As was ex-

m m 
plained in section 3.2.2, the latter large value has the effect of making 
the reactivity peak unattainable, the system being destroyed while the in­
put is still following the ramp. Thus, case 5 evaluates the destructive 
energy release due to a type 3 or 4 accident for which the ramp input is 
10 ilk/sec. 

The sixth and last case repeats the latter calculation, but with r = 20 g 
Δ k/sec and a greatly increased (factor 10 ) source power of S = 1.43 W/gm. 
The card with STP in columns 1, 2 and 3 terminates execution. 

The illustrative cases given above are thought to provide an adequate 
coverage of the SOREX 1 input capabilities. Although none of the cases 
shown involves changing more than three quantities, the number of allowed 
changes is unlimited. The approximation b = l/n used in (3.1) can be modi­
fied if desired merely by changing a single card in the programme deck. 

3.5 Programme Output 

The output of SOREX 1 for the data given in Table 3.2 (i.e. case 1 of 
Table 3.3) is shown in Figure 3.1. Figure 3.2 shows the output for case 2. 
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These figures are a copy of the output received directly from the IBM 
360/65 printer but give only a small part of the solution (up to t « 80 
usee) because they are Intended only for illustration. 

The first lines of the output give the name' of the programme and a 
brief outline of its subject matter followed by the date and time. The 
latter information is acquired from the clock in the computer by means 
of a subroutine DATTIM. This subroutine is not built into the 7090 version 
of SOREX 1 and can easily be removed from the 360/65 version if necessary. 
It is, however, very useful for daily reference purposes and for preserving 
a record of the exact machine time used. It will be noted, for example, 
from Figures 3.1 and 3.2 that the execution time for case 1 was 11.4 sec. 

Below the heading is printed a table of all the data used in the case 
in exactly the same format as in Table 3.2. Below this are printed three 
lines. The first, consisting of only a single number, gives the value 
(in cm) of the sphericalized core radius R . The second, consisting of 
three numbers, gives (from left to right) the values of (a) the time (in 
U sec) at which the broken fragment arrives at the normal gap distance 
from the core, (b) the time (in usee) at which a normal reactivity pulse 
would begin and (c) the time (in usee) at which the fragment strikes the 
core. All of these times are measured relative to the instant t - t. when 

D £ (t) (equation (3.17)) begins to rise above — £ . The third line o oo 
again consists of three numbers which give (from left to right) the values 
of (a) the velocity component (in m/sec) of the fragment towards the core, 
(b) the velocity component (in m/sec) of the fragment tangiential to the 
core and (c) the fractional change in core volume which would occur during 
the collision if only the coolant (not the fuel slugs) were subjected to 
compression. 

After all of the above preliminaries, the output then states the 
solution of the problem. This is given in the form of eight columns of 
numbers. The 1st column gives the time (in usee) measured from the in­
stant when £ (t) begins to rise above — € , the 2'nd column gives 

o oo 
the input of reactivity (in prompt Ak) due to the compression of the 

(4) core by the broken fragment (compression pulse ), the 3'rd column gives 
£ (t) (in prompt 4 k), the 4'th column gives the total reactivity input o 



SOREX 1 

NUCLEAR EXCURSION CAUSED BY A ROTOR BREAKAGE ACCIDENT IN A PULSED FAST REACTOR 

CORE DESTRUCTION BASED ON A MODIFIED BETHE-TAIT MODEL 

DATE 6 8 / 0 2 / 0 8 TIME 17H,05M,C4. 8SEC 

0.200COD-07 
0 . 1 4 3 0 0 0 - 0 7 

2 . 3 0 0 0 0 
2.90 

0 . 4 5 0 0 0 0 
283.0000 
0.59000 

0.20000D-05 
0.93000D 10 

0.370 
36.000 

1 4 . 0 0 0 0 0 
1 0 . 5 0 

0 . 0 1 0 0 0 0 
90.0000 

0.680000-03 
473.00 

O. 15300D 11 

5. 900 
4.000 

0.73PP0D 10 
264.00 

0.000920 
0.0380 

0.80000D 15 
0.57000D 06 
O.IPOOOD 01 

93.000 
20.000 

70.00000 
0.4000D 10 

0.48050D 06 
0.93000D 10 

0.03000 
0.67600 

0 . 1 3 9 0 0 D 00 

FIGURE 3 .1 

3 

1 1 . 2 1 0 
176.298 

5 1 . 5 7 3 
0.0 

278.261 
263.553 

0.106571D-01 

T(MICSEC) 
0.0 
20.0 
40.0 
60.0 
80.0 

DELK(V) 
0.0 
0.0 
0.0 
0.0 
0.0 

EPSO(T) 
-0.380C0D-01 
-0.36117D-01 
-0.34265D-01 
-0.32413D-Ü1 
-0.30561D-01 

EPSTOT 
-0.38000D-01 
-0.36117D-01 
-0.34265D-01 
-0.32413D-01 
-0.30561D-01 

P(ATM) 
0.0 
0.0 
0.0 
0.0 
0.0 

JOULES/GM 
Q(T) 

0.0 
0.45355D-12 
0.93101D-12 
0.14349D-11 
0.19684D-11 

MEGAJOULES 
TOTAL Q 

0.0 
0.20510D-13 
0.42100D-13 
0.64887D-13 
0.890100-13 

AD IAB.WORK 
0.0 
0.0 
0.0 
0.0 
0.0 



SOREX 1 

NUCLEAR EXCURSION CAUSED BY A ROTOR BREAKAGE ACCIDENT IN A PULSED FAST REACTOR 

CORE DESTRUCTION BASED ON A MODIFIED BETHE-TAIT MODEL 

DATE 6 8 / 0 2 / 0 8 TIME 17H t05M,16.2SEC 

0.20000D-07 
0.143000-07 

2.30000 
2.90 

0.450000 
283.0000 
0.59000 

0.20000D-05 
O.93Ó00D 10 

0.370 
36.000 

14.00000 
11.00 

0.010000 
90.0000 

0.68000D-03 
473.00 

0.15300D 11 

5.900 
4.000 

0.73000D 10 
264.00 

0.000920 
0.0 380 

0.80000D 15 
0.57000D 06 
0.10000D 01 

93.000 
20.000 

70.00000 
0.4000D 10 

0.480500 06 
0.93000D 10 

0.03000 
0.67600 

0.139000 00 

FIGURE 3 . 8 

S 

11.210 
162.544 
53.999 

0.0 
277.800 

245.879 
0.111585D-01 

T(MICSEC) 
0.0 
20.0 
40.0 
60.0 
80.0 

DELK(V) 
0.0 
0.0 
0.0 
0.0 
0.0 

EPSOCT) 
-0.38000D-01 
-0.36123D-01 
-0.34271D-01 
-0.32420D-01 
-0.30569D-01 

EPSTOT 
-0.380000-01 
-0.36123D-01 
-0.34271D-01 
-0.324200-01 
-0.30569D-01 

PIATM» 
0.0 
0.0 
0.0 
0.0 
0.0 

JOULES/GM 
QITI 

0.0 
0.45349D-12 
0.93087D-12 
0.14347D-11 
0.19680D-11 

MEGAJOULES 
TOTAL Q 
0.0 
0.205070-13 
0.420940-13 
0.64876D-13 
0.889940-13 

ADIAB.WORK 
0.0 
0.0 
0.0 
0.0 
0.0 
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(equation (3.9) in prompt Ak), the 5*th column gives the pressure gene­
rated by the excursion at the core centre (in atmospheres), the 6'th 
column gives Q (t) (in Joules/gm fuel), the 7'th column gives Ç> .(t) o tot 
(equation (3.12) in Mega-Joules) and the 8'th column gives W(t) (equa­
tion (3.14) in Mega-Joules). 

The time t is selected at intervals of A t (Msec) until the Instant 
when core disassembly begins. After that the solution is always printed 
at intervals of 1 ¿Asee to ensure adequate detail in every case. 

SOREX 1 is written in Fortran 4 language. 
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