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— The equivalent conductivity excesses depend on the difference in 
cationic size. The equivalent conductivity of systems the cations of 
which have the same radius, or the components of which have about 
the same molar volumes, depends linearly on the composition.^ 

— Fluidity presents small positive deviations from linearity in the 
systems with cations of different sizes. 

— The internal ion mobility of the smaller cation varies rapidly with 
composition in the region near by the component with the smaller 
cation. The mobility of the larger cation is rather insensible to the 
change in composition. The mobility of both cations is nearly equal 
at the side of the larger cation. No significant crosses of mobility 
seem to exist. 

— The cation diffusion coefficients, if corrected for the variation of the 
fluidity, vary nearly linearly with composition. The diffusion of 
traces in pure salts is enhanced (hindered) if the diffusing particle 
is larger (smaller) than the proper cation of the melt. 

All these experimental evidences point out that the polarization of 
the common anion in these mixtures is the main factor determining the 
transport behaviour. 
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SUMMARY 

Some results of the experimental research work relative to the deter
mination of transport parameters in molten salts carried out in the 
Electrochemistry Group of the JRC Petten, are described. 

Electrical conductivity, ion mobilities and cation tracer diffusion 
coefficients have been measured in molten nitrate binary mixtures 
(Na-Tl)NOs, (Na-Rb)N03 and (Tl-Rb)N03. In some cases density and 
viscosity measurements were as well carried out. 

The following characteristic points have been found to be valid for the 
nitrate binary mixtures : 
— The equivalent conductivity excesses depend on the difference in 

cationic size. The equivalent conductivity of systems the cations of 
which have the same radius, or the components of which have about 
the same molar volumes, depends linearly on the composition. 

— Fluidity presents small positive deviations from linearity in the 
systems with cations of different sizes. 

— The internal ion mobility of the smaller cation varies rapidly with 
composition in the region near by the component with the smaller 
cation. The mobility of the larger cation is rather insensible to the 
change in composition. The mobility of both cations is nearly equal 
at the side of the larger cation. No significant crosses of mobility 
seem to exist. 

— The cation diffusion coefficients, if corrected for the variation of the 
fluidity, vary nearly linearly with composition. The diffusion of 
traces in pure salts is enhanced (hindered) if the diffusing particle 
is larger (smaller) than the proper cation of the melt. 

All these experimental evidences point out that the polarization of 
the common anion in these mixtures is the main factor determining the 
transport behaviour. 

KEYWORDS 

FUSED SALTS 
SODIUM NITRATES 
THALLIUM NITRATES 
RUBIDIUM NITRATES 
ELECTRIC CONDUCTIVITY 
ELECTROPHORESIS 
DIFFUSION 
DENSITY 
VISCOSITY 
MOBILITY 
POLARIZATION 
ELECTROCHEMISTRY 
EQUILIBRIUM 
IMPURITIES 
TRACE AMOUNTS 



3 -

Electrical Conductivity, Ion Mobilities and Tracer-Diffusion 
Coefficients in Molten Nitrates Binary Mixtures. (*) 

Equilibrium properties of molten binary mixtures with a 
common anion have been successfully correlated to the anion polarization 
effect (O (2) (3). 

To obtain detailed information on the factors affecting 
transport properties,- conductivity, e lectrical and diffusional ion mobility 
must be determined. 

This paper presents some results relative to the nitrate 
binary mixtures. 

EXPERIMENTAL METHODS AND PRELIMINARY RESULTS 

The experimental set up and methods will not be described 
here. Only few information on the method for determining electrical and 
diffusional mobilities is given. 

Thee e quantities have been measured by means of a zone 
radio-tracer electrophoresis and diffusion technique on thin layers of 
ceramic oxides (4) (5) (6). The thin layers , which adhere to sintered 
aluminia or zirconia strips , are of two different types : 
- powder and then the preparation i s performed according the usual 

thin layers chromatographic techniques, or 
- fritted porous material (aluminia, zirconia or magnesia) and then 

the layer i s obtained with a flame spraying technique by exposing 
the sintered strip to a flux of molten ceramic particles. 

The impregnation with the salt of these thin layers i s 
achieved by capillary action by connecting the strip to two reservoirs 
containing the melt, via quartz fiber or small ceramic strip bridges. 

The mobility of both cations of the mixture are determined 
simultaneously at each composition by measuring the velocity of 
displacement of several labelled zones when a potential drop i s applied 
to the ends of the strip. 

The ionic mobility of a cation i s proportional to its zone 
mobility u : 

u = K u (K > 1 ) 
w ζ 

where u i s the rate of the displacement of the labelled zone in unit 
apparent electrical field, and the factor Κ accounts for the obstruction 

(*) Manuscript received on November 7, 1967· 



of the particles of the porous support to the ionic migration. 

If this correction factor i s defined as the inverse of the 
obstruction factor defined by Crawford and Edward (?) for paper e lec tro
phoresis , i , est , as the ratio of the calculated conductivity of the melt 
without the non conducting particles, and the measured conductivity of the 
strip : 

R X .p 

Ρ 

where R i s the res istance of the strip per unit length, X = the specific 
conductivity of the melt , d the density, and ρ the salt weight per unit 
length, then the following formula for u can be used : 

w d q
 x

 ' 

where 1 = measured displacement of the labelled zone, q = ionic charge 
passed through the strip. 

According this formula u can be determined without any 
knowledge of the K factor. On the contrary to measure diffusion coefficients 
from the Gaussian activity distribution on the strip,these parameters must 
be determined by means of a measurement of R . The formula used i s : 7

 Ρ 

D
= —h ñr <

3
> 

where S is the slope of the plots log activity ve the squared distance from 
the Gaussian centre and t i s the diffusion t ime. 

In Fig. 1 the assembly used in the diffusion experiments i s 
shown. The strip i s in reverse position in respect of the usual one for 
measuring R with the knifetype electrodes placed in contact with the 
porous layer. 

Fig. 2 presents the diffusion profiles of Tl204 in TINO, 
determined at two different times . According to the diffusion equation, the 
slopes of the straight l ines reported in the lower part of the figure are 
inversely proportional to the respective diffusion t imes . 

To make sure that there are no se lect ive interactions between 
the porous support and the various sa l ts , a s er i e s of determinations of 
the obstructive factor was carried out by measuring the conductivity of 
porous thin layers impregnated with various molten nitrates. 

In Fig. 3 Κ =γ- ( ? = obstruction factor) i s plotted 
ve the section of the electrolyte for a number of aluminia porous fritted 
layers impregnated with various molten nitrates: in all the cases the Κ 
factor is independent from the salt on the support. In Fig. 4. the same 
factor i s plotted ve the fraction of the bed filled with the salt (the porosity 
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of the bed), for a ser ie s of aluminia powder strips. The solid line 
represents the function : 

K =( 1 - 0. 61 0 ) ( 1 - 0 ) j/J" fy (4) 

in which 0 i s the fraction of the bed filled with the non-conducting particles. 

This equation, derived by Boyack and Giddings accounts for the 
obstruction in zone electrophoresis with any simple grain geometry. It 
has been obtained starting from the consideration that the obstruction 
to the migration in systems of this type i s a consequence of two factors : 
the tortuosity of the channels of the support and of the variation of the 
cross section of the electrolyte along the migration patways (i¿ est , it 
involves a tortuosity and a constriction factor). 

To make sure that the ionic mobility values are not influenced 
by select ive interactions between unlike charged ions and the support, an 
internal reference frame i s chosen by referring the cationic mobilit ies to 
the NO" ion (8) (9). 

RESULTS 

Electrical conductivity 

In Fig. 5 the specific and equivalent conductivity isotherms 
of the three systems are reported. The Na-Rb and Na-Tl systems were 
also investigated by De Noojer (10) and Protsenko U*). 

The equivalent conductivities were calculated by using molar 
volume data available in literature for Na-Rb (12) (13); the results of our 
determinations for Na-Tl U^) and a linear extrapolation for Tl -Rb. 

Na-Tl .and Na-Rb isotherms exibit usual negative deviations 
from linearity ' ' whereas that of Tl-Rb is linear with composition. 

The calculated exces se s of apparent activation energy for the 
equivalent conductivity for the binary systems Na-alkaly nitrates, Tl-alkali 
nitrates and Rb-alkali nitrates are always positive; the larger the difference 
between the cationic radii the larger is this effect \ 1 4 ) . For the Tl-Rb 
system the activation energy is additive. 

Internal mobilities 

Fig. 6 presents the cationic internal mobilities of the three 
sys tems . The following observations can be drawn : 
- On the side of the smaller cation the mobility of this latter var ies 

rapidly with the composition. 
-The mobility-of the larger cation i s l e s s influenced by the changes in 

composition. 
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 No significant c r o s s e s of mobility exist. 

 For the (TlRb) system, the cations of which have the same s ize 
(or the components of which have nearly equal molar volumes) the 
mobilities are equal and vary linearly with composition. 

This behaviour, except for the c r o s s e s of mobility i s s imilar 
to that of (LiK)Cl (

9
) , investigation by Laity, of (LiK)S04 of Kvist (

l 6
) 

and, if internal quantities are considered, to that of (LiK)N03 of Lantelme 
and Chemla (1?) (18). 

Fig. 7 presents the fluidity isotherms of the three sys t ems . 

Data relative to NaTl are Fr iz ' s unpublished results Data 
relative to NaRb are of Murgulescu and Zuca (19). 

The few data relative to RbTl are of ours preliminary resul ts . 

Now, if the polarization of the common anion, as suggested 
by Laity, i s the main factor determining the transport behaviour of 
mixtures, two conditions must be verified. 

 First : the negative e x c e s s e s of equivalent conductivity of binary mixtures 
must be related to the polarization energy term; according Lumsden '■*) : 

r
I

2 A 7 
(5) 

or better 

h??* ' v
2
/
3
 7 

—
 v

i
 v

n _/ 

(6) 

where VT and V. are the molar volumes of the two salts . 

The plots of the exces ses of equivalent conductivity vs this 
polarization term is linear : the first point i s fairly wel l verif ied. 

 Second : the trend of mobilities in a binary system passing from a 
pure component to the mixture must be related to the probability of 
formation of polarized anion with composition. 

If these solutions are considered as regular ones , i , est , if 
the ions are randomly distributed (20) t w e c a n define the function : 

pNax = ^Najjlfajj ,,, 
p=

 ~νΓ ~~^
 (7) 

where X*ja = molar fraction of NaNO,, as the ratio between the chance 
of finding an ion triplet NaN0, Me f Me=Tl or Rb) at composition X j j » 
and the chance of finding it at the e qui molecular mixture. 



The decrease of the sodium mobility, or of the ratio between 
the mobility and fluidity, in the range 0. δ ^ Χ ^ < 1, may be related to 
the increase of this function by means of a relation of this type : 

U x = U l - <U1 - U 0 . 5>P W 
where U. i s the ratio between the mobility and fluidity in pure sodium 
nitrate and U_ _ the same quantity in the equimolecular mixture. In Fig. 8 
this quantity i s plotted ve the composition (for Na-Tl and Na-Rb); the 
c r o s s e s represent the calculated points. 

Effect of traces of foreign cat ions on the mobility of the proper ion of 
the melt 

This point of view i s also supported by the results of a s er i e s 
of conductivity determinations in NaNO? containing small quantities of 
other univalent nitrates. 

The determination of the electrical conductivity in systems of 
this type represents a simple tool to investigate the effect of a foreign 
cation on the mobility of the proper cation of the melt : infact the slope of 
the curve conductivity vs concentration of the added impurity, at concentration 
zero of the added impurity, represents the tendency to lowering or to increasing 
of the internal mobility of the proper cation of the melt , caused by the adding 
of the foreign ion. 

In Fig. 9 the decrease of the conductivity of NaNO, v s the concen
tration of the added salts i s reported. In the right part of the figure the slopes 
of the straight-line s are plotted vs the polarization parameter. 

In Fig. 10 the above plots are compared with an analogous one 
relative to the system Li_S0 .-alkali SO .; data on sulphates are of Kvist. The 
slope of the sulphates i s l arger of that of nitrates (as the polarizability of the 
anions). 

Diffusion 

In Fig. 11 the cation tracer diffusion coefficients relative to the 
sys tems (Na-TljNO, (6) (Na-Rb)N03 and some preliminary results on (Tl-Rb)NO, 
are presented. 

There are small positive deviations from linearity (as in the case 
of the fluidity); a similar trend has been also observed in (Li-K)NOj by 
Lantelme and Chomla U 8 ) and in (Li-Na)C03 by Spedding and Mills (21). 

In the case of the Na-Tl the apparent activation energies for 
diffusion of both cations are equal one to another at all compositions. 
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A similar behaviour has been observed by Francini and Martini, 
(22) (23) by means of Polarographie measuremente, relatively to a large 
number of cations and anions in nitrate eutectics. 

Fig. 12 presents the plots of -r for the three sys tems . This 
function is nearly constant with composition in the case of Tl-Rb and 
it decreases l inearly in the Na-Tl and Na-Rb. This behaviour indicates 
that the larger the s ize of the proper cation of the melt , the larger i s the 
hinder to the diffusion of both cations. 

If we consider the diffusion of the traces in pure nitrates and if 
we attempt to apply the Stokes (Sutherland)- Einstein relationship in the 
c lass ical form : 

D . S . £L (9) 
- r Me' 

we can see from the Fig. 13 that this relationship accounts fairly wel l for 
the diffusion of traces of the proper ion of the sal ts , if an a value of about 
4. 6 ]f i s chosen. 

The diffusion coefficients of foreign ions smal ler (larger) than 
the proper ions are below (above), the straight line in Fig. 13 (a value of 
about 7 ΊΓίοτ Na in TINO, and Li in KNO3; a values of about 3. 5 I f for Tl 
in NaNOj and Κ in LÌNO3J. Na in TINO3 i s more actracted by the nitrate as 
in pure NaN03 , Tl in NaN03 l e s s actracted by the nitrate as in TINO3. 

Fig. 14 presents the ratio between the a value for the diffusion 
of the foreign ion and the a value for the proper ion of the melt for a 
ser ie s of diffusions of traces in molten NaN03 and CsN0 3 v s the polarization 
parameter; diffusion data in CsN03 have been taken from a Ketelaar's '24) 
recent reference. 

When the radius of the diffusing ion i s larger than that of the 
proper ion of the melt this ratio decreases ; and v iceversa when the radius 
of diffusing part ic les i s smaller. 

From Raman spectroscopy evidences, in pure molten univalent 
nitrates, Janz (25) pointed out that the metal ion-nitrate interaction, may 
cause "the time of residence of thet cation near the anion to be long compared 
with the time of the molecular vibration". It can be expected that in mixtures 
this effect for a given cation would be enhanced or hindered according the 
polarization direction. The stand of a cation near the anion wil l cause a sort 
of "cooperative act" (21) during the diffusion, which may be related or explain 
the approximate constance of the diffusion activation energy for all the ions 
in the same melt , irrespect ive of the different a values. 

Finally one can observe that the transport behaviour of the 
(Na-T1)N03 system i s rather similar to that of the alkali-nitrate binary 
systems. It s eems that the variation of the London dispersion forces between 
the cations in mixture, which have some influence on the equilibrium propert ies 
of this system '26) a r e n o t v e r v significant as regards the irrevers ib le p r o c e s s e s . 
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FIG. 1; Assembly for tracer-diffusion experiments 
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FIG. 2: Diffusion profiles of Tl-204 in TINO3 determined at two 
different times. In the lower part: plets of log activity 
vs the squared distance from the Gaussian centre 
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FIG. 6; Internal mobi l i ty isotherms 
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FIGj^r Fluidity isotherms 
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D ve 
lMe' 

(eq.9). Circular full points: 
size of the diffusing ion - size of the proper ion of the 
melt - Square open points: size of the d.i.> size of the 
p.i. of the melt - Triangular open points: size of the d.i.< 
size of the p.i. of the melt. 
For detailed references relative diffusion and viscosity 
data see (6). 
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