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SUMMARY 

This report describes a method of optimizing the operation of a plant 
subject to random disturbances whose effect can be decreased by means of 
suitable non-linearities inserted in the feedback chain. The system in ques­
tion, which is subjected to random stationary perturbations, is optimized 
under operating conditions, in the steady state, by minimizing a functional 
consisting of a linear combination of mean quadratic values and mean 
moduli of a few significant parameters. 

By using analog techniques to solve the dynamic equations of the 
system, in which the perturbations, whose spectral distribution has been 
determined in a preliminary plant analysis, are introduced as perturbing 
signals, the functional is obtained in terms of the parameters of the non-
linearities. A minimum condition can thus be readily pinpointed. 

Particular reference is made to nuclear reactors, in which hypotheses 
and techniques of this type play a particularly important part. Lastly, by 
way of a concrete example, the results for the ISPRA I reactor are given. 
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1) INTRODUCTION 

It frequently happens that dead zones are introduced into 
the feedback chain of a control system in order to compensate the ef­
fect of random perturbations of minor importance. The calibration of 
these dead zones is normally performed experimentally by an operator 
who has to make a compromise between a number of requirements, such 
as accuracy, the load on the control system, power consumption, wear 
and tear of moving parts, etc... 

From this practice whose shortcoming consists in the wide 
margin left to individual judgment, it is possible to devise a stric­
ter method which, while avoiding the drawbacks of a direct mathemati­
cal solution, monetheless represents a sufficiently valid and gene­
ral approach to the problem. 

The method, which is mainly applicable to steady-state 
systems subject to perturbations which are likewise stationary, can 
be used for optimizing the response in working conditions with con­
stant references. In general the optimization of the system will 
consist in the minimization of an overall functional given by the 
equation: 

Q = K l Q l + K 2 Q 2 + KnQn (1) 

where the constants K. relate the values Q. of various functionals. 
ι ι 

By considering, for example, the accuracy requirement al­
ready mentioned above, and understanding as such the greater or lesser 
displacement of the values effectively assumed by certain variables 
S.(t) of the system from the respective values required S. , it 
is possible to define a certain number of terms of the functional Q 
as quadratic means of these displacements: 

T 
lim 1 ƒ f. (.Λ _ e γΛ+ (2) τ. (s (t) - s. Vat Τ-»» 2Τ J k iv ' 10--T 
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The load on the control system can, on the other hand, be 
evaluated and taken into account on the basis of the average number 
of interventions per second: 

τ 
(3) 

-T 
where n(t) is the frequency of intervention and equation (3) re­
lates to material fatigue phenomena rather than to considerations of 
maximum stress. 

Finally, for the power consumption and wear and tear of mo­
ving parts, terms can be used of the type: 

lim 1 Γ + T 
τΓ«~~2τ/ w(t)dt (4) 

J _τ 
where w(t) indicates the power required by the control system, or 
that dissipated by the mechanical parts whose wear and tear is checked. 

Limiting ourselves to these cases, the final result is a 
functional of the type: 

m Τ 
lim ;; 

i=1 

m' 

^ j _ T ( s . ( t ) - S . o ) a t + ^i 
j=m+1 

lim Κ. 
w.(t)dt + 

lim Km»+1 
T-> oo 2T n(t)dt + KnQn (5) 

-T 

in which the various quantities S(t), w(t), n(t) are functions ot 
the time related to the perturbations and, like these latter, of a 
random and stationary type. Further development of the expression (5) 
in the sense indicated by the present article would require the use 
of a mathematical model of the system to be optimized. 



2) THE OPTIMIZATION FUNCTIONAL IN THE CASE OF NUCLEAR REACTORS 

The optimization of the steady state response is particu­
larly important in nuclear reactors, especially power reactors, for 
which the norm consists in steady-state operation, as in the nuclear 
power stations, always used as base-load power plants. 

As regards the parameters to be taken into account in the 
functional to be minimized, note should be made of the importance in 
a nuclear plant of the power produced and the operating temperature. 
The reactor power is directly related to the thermal gradients in the 
core components and in particular in the fuel; the operating temperature 
is on the one hand an indication of the usability of the energy produ­
ced, and on the other hand is related to the degree of thermal stress 
on the materials. Both parameters are related to the technological 
operating limits of the plant, and the fluctuations in them with re­
spect to the required values make it necessary to adopt safety coeffi­
cients prejudicial to operating economy. Hence the importance of mi­
nimizing these fluctuations. 

Taking P(t) and T(t) as the power and the temperature 
respectively, and allowing for the mean quadratic value of the varia­
tions with respect to the desired value, as seen in (2), the first 
summation in the second member of (5) is expounded as the sum of the 
following two terms: 

Τ 
lim ƒ f„,^\ „ Ï 2 

K
1«1 =

 K
1 τ " J CP(t)-P0Vat (6) 

-τ 

τ 
K2Q2 « K2 £ ƒ CTOO-Tj-at (7) 

-T 

The next most important considerations, in nuclear reactors, 
are problems relating to the wear of moving mechnanical parts, which 
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when situated in areas subject to heavy irradiation cannot be easily 
or quickly replaced. This applies in particular to certain parts of 
the control rod mechanisms; their wear and tear is generally attribu­
table to forms of coulomb friction: it is then proportional to the po­
wer dissipated on the supports, which can be expressed by the equation: 

Wj(t) = h. | Vj(t) | ( 8 ) 

where v.(t) is the instantaneous velocity of the moving part under 
test. This gives: 

Q a li* J L Γ h. | v.(t) | at 
τ 

(9) 

Thus, ignoring contributions of other kinds, usually of 
little importance in the case of nuclear reactors, and also referring 
to the case of a single control rod, the functional to be minimized 
is given in full by: 

Τ 
Q = ^ 4 τ ί (Ki(P(t) -p/^^ÍTCt) -To)2+K3!v(t)|)dt (10) 

The calculation of this functional requires a knowledge of 
the quantities P(t), T(t) and v(t), which can be obtained by sol­
ving the system of equations relating to the reactor and the control 
system. These equations can be obtained by analysis of the dynamic be­
haviour of the reactor and synthesis of a control system satisfying 
the specifications of transient operation. 

Considering now the problem of steady-state operation, dead 
zones of generic parameters are introduced into the feedback chains. 
The resulting system of equations thus leads to solutions P(t) and 
T(t), depending on the above parameters; in the same way, the velocity 



v(t) of each rod is related to the relative reactivity ΔΚ, by the 
equation: 

αΔκ 
v(t) = dt 

The perturbation term in the described system of equations 
consists of signals which can be represented as reactivity perturba­
tions. In the case of zero power reactors many studies (Refs 1, 2, 
and 3) have shown the possibility of drawing up a general scheme of 
these perturbations while, in power reactors, they are peculiar to 
each reactor (Refs. 4 and 5) and it is thus necessary to make expe­
rimental determinations from case to case. 

An algebraic solution of the above system of equations is 
practically impossible by a direct route, but an analog method is 
feasible. Following this method the simulation of the perturbing 
signals and of the functionals are tackled in turn, while for the 
dynamics of the system reference is had to the relevant literature 
(Refs. 6 and 7). 

The experimental approach followed for the simulation of 
the perturbation signals may be used for any kind of reactor, provi­
ded the perturbation in question is Gaussian and its spectral curve 
is known. An analysis of the neutron noise signal at the output of 
the ionization chamber, with a non-controlled reactor, gives the dia­
gram of the spectral power density Φ..(ω ) (Refs. 4, 8 and 9) and, 
by measurements of the probability density, allows to detect if it 
has a Gaussian nature or not (Ref. 9). 

The power spectral density Ψ (ω ) of the equivalent in­
put noise signal, in reactivity, is obtained on the basis of the equa­
tion (Ref. 4): 



IO 

pp
 !&(*.)! ι

 ( 1 1 ) 

where G(jcj) represents the reactor transfer function, which there­

fore must be known, and I the mean value of the detector output cur­

rent. 

The analytic expression of the spectrum of r.m.s. amplitude 

of the output signal of the ionization chamber can be obtained by the 

method of the approximating meromorphic function applied to the loga­

rithmic diagram of the modulus of Φ..(ω ) (Ref. 1θ). 

Then, if equation (11) is applied, the spectral density 

of the r.m.s. value of the equivalent input noise is represented by 

a rational fraction of the type: 

\ 
K(1+JUT0) (1+J0T.,). 

Φ (ω ) = ' ■ / Λ o \ 
PP (>)η(ΐ+οωτ·) (1+JBT·) U 2 ) 

O I 

This expression takes account of the detector background 
noise, which is due to the statistics of the capture process in it, 
and, moreover, is usually suitable for a purely theoretical represen­
tation, for its contribution to Φ..(ω) has a constant spectral den­
sity Φ and its value is related to the direct component I of 
the ionization chamber output current, by the equation (Ref. 4). 

Φ 
rr 
2 

I 0 

_ 2q _ 
I 

0 

K' 
Ρ 

o 
sec 

(13) 

where Ρ is the power of the reactor in W, and q the charge re­
leased in the detector for each capture, so that K' represents a 
function of the position of the detector in the reactor. 
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o 

The experimental data for the ratio * / I at a certain 

power Ρ can be used to find the value of the constant K'. 

This last­mentioned noise is Gaussian (Ref. 11), while the 

perturbation noise of the reactor itself may sometimes behave diffe­

rently. In these cases the method of simulation described is inade­

quate, and it is necessary to record the noise directly on the non­

regulated reactor and to introduce it into the analog computer. 

In steady­state operation the system thus simulated supplies 

the signals P(t), T(t) and v(t) required for determining the par­

tial functionals Q., Q0 and Q„. Integration over a finite time t 

1 Ζ J O 

of the square of the power and temperature variations and the modulus 

of the velocity is a way of determining the required functionals, al­

though affected by a statistical error. 

This error depends on the time t and the spectral shape 

of the perturbation. In order to choose a suitable analysis time t 
■ ' o 

it should be noted that (Ref.12); 

*o
 =

 e . Af <
14
> 

where e represents the fractional error, Δι is a frequency band 

related to the perturbations, and Η is a suitable constant depen­

dent on the system. 

The diagrams in figs. 1 and 2 show the analog circuits used 

for determining the value of functionals. The voltmeter M is read 

at the end of the measuring time t . 

o 

In conclusion, it may be noted that the procedure adopted for 

the optimization does not imply the linearity of the system nor any li­

mitations on the character of the non­linearities introduced, which may 

be of any type provided are parametrizable. This makes it possible to 
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transform the functional Q into an ordinary function, thus allowing 
the approach considered, inasmuch as the terms Q , Q„ and Q are 
obtainable for points as a function of the parameters of the non-linea­
rities introduced, and a minimum condition is thus easily identifiable. 

.2> 
li­

eg 

Fig. 1 : Diagram of the analog circuit used to evaluate the average 
square value of [S.(t)-S. J. M ^ ι io' 

Fig. 2 : Diagram of the analog circuit used to evaluate the average 
value of h. [ v(t) | . 

./, 
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3) APPLICATION TO THE ISPRA-1 REACTOR 

The parameters used in the simulation of the ISPRA I reac­
tor and its control sistem were deduced from data obtained directly 
on the installation (Ref.9), together with some data from the avai­
lable literature (Refs. 13 and 14). 

The system of differential equations used for the simulations 
is as follows: 

- f = f-CAK-^AC 

dt τ r 

ΔΚ = ΔΚά + ΔΙ^ + AKt 

J L . Δ Κ = - 1 Ρ + 1 ΔΚ. 
at t -löoo · ρ 5 t ( is) 

o 

'W - -ft "S, 

dt
 u

-
u 

-,Λ·ιο-^[ f f + Τ f -•50C^-V50-|Ï(^) + 

d
2 

- 13,000 a 

dt \
 r

o (¥)— ΐ(^)3 
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t0 
if- — ~ ti, (Κχ(Ρ(ί) - P j + ̂ (T(t) - Τ J + Ka. |v(t)|) dt 
o * o 

where the reactor is represented by the non-linearized equation of 
the neutron kinetics with a single group of delayed neutrons and ta­
king into account an overall temperature effect ΔΚ, . 

In the third equation of (15), ΔΚ, and ΔΚ, represent 
respectively the reactivity introduced by the perturbations and the 
reactivity due to the feedback chain, i.e., the control rod. Lastly, 
Ρ is the value of the power set up, i.e. the reference of the con­
trol chain, and Τ is the equilibrium temperature of the reactor at 
the power Ρ . r o 

Fig.3 shows the block diagram of the system under conside­
ration. The perturbation signal is broken down into two parts, namely, 
the noise of the reactor itself and the background noise of the ioni­
zation chamber. The former is obtained by the methods already descri­
bed and on the basis of the available data (Ref.9). It is of the fol­
lowing type: 

% Κ 
*pp(«) = — (16) 

(1+jcoTi ) (1+jwTa) 

where the double pole with real time-constant Ta in effect replaces 
for the sake of simplicity two complex and conjugate poles; since 
these latter have however a damping coefficient very close to unity, 
the approximation may be considered valid. 

The time constants τχ and T2 have values of about 3.2 and 
0.23 sec respectively. 

The value in reactivity of K, deduced from (11) with the 
data already in our possession (Ref.9), is about 18 pcm. 



Detector 
Noise 

^ ^ ( A K - e - A K t M C 

- & 

M 
UI 

Fig. 3 : Block diagram of the control system of the Ispra - 1 reac­
tor. 
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On the other hand, in relation to the white background noise of the 

ionization chamber, the value of K in (13) may be assumed to be 

­2 J­ 2 
about 2.3 " 10 Wsec

2
, as the value of Φ /I at 5MW is about 

rr o 

IO"
10
 sec (Ref.9). 

The regulation diagram in fig.3 shows the separate action 

of a proportional effect reaction chain and of another of derivative 

type. In view of their different influence on the noise, it is logical 

to introduce separate dead zones into the two circuits. 

The results of the evaluations of the partial functional 

Q , Q and Q , carried out by the analog techniques already de­

scribed, are given in the diagram? in figs. 4­9 . Figs. 4­6 show the 

trends of Q , Q and Q as functions of the dead zone of the 

proportional chain (or error dead zone), while the dead zone in the 

derivative channel (period dead zone) has been assumed as a parame­

ter. In addition, in order to visualize more clearly the behaviour 

of the two­dimensional functions, the same quantities are shown in 

figs. 7­9 as functions of the period dead zone, the error dead zone 

being taken in its turn as a parameter. 

The minimization is effected by combining the three partial 

functionals with the appropriate constants K. according to what is 

shown by the last equation in system (15). These constants, the 

choice of which is related to considerations on the relative impor­

tance of the various partial functionals, define the functional Q 

apart from a multiplicative constant ¿f . A suitable criterion for 

the determination of this constant derives from the physical conside­

ration that there is a total functional independent of the constants 

K./áf for equal partial functionals. It follows that the choice of 
ι 

K. is bound up with the condition: 
ι 

- (K. + K + + K ) = cost. 

Y L· I η 

In the case of the reactor under consideration Κ is prac­

tically zero, since such reactor was intended for irradiation experi­
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ig. 4 : Curve for the average square of the power variations of Ispra 

1 as a function of the error dead zone. 

ΕΔΖ = error dead zone ­ ΡΔΖ = period dead zone. 
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Fig. 5 : Curve for the average square value of the temperature varia­

tions of Ispra ­ 1 as a function of the error dead zone. 
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Fig. 6 : Curve for the average modulus of the velocity of the control 
rod of Ispra-1 as a function of the error dead zone. 

Fig. 7 : Curve for the average square value of the power variations 
of Ispra-1 as a function of the period dead zone. 
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Fig.8 ΡΔΖ [ή 

Fig. 8 : Curve for the average square value of the temperature va­
riations in Ispra-1 as a function of the period dead zone. 
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Fig. 9 : Curve for the average modulus of the velocity of the con­
trol rod of Ispra-1 as a function of the period dead zone 
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ments at low temperature (about 70°C in the moderator). Therefore the 
temperature related phenomena are not relevant. The values given to 
K and K„ are respectively 0.4 and 1. Taking into account the 1 -̂  
scale factors, this amplies that the same relative weight is attributed 
to both a stationary r.m.s. error of 0.5% and a control rod mean 
speed of about 1 p.cm./sec (= 2,5 mm/sec). 
At the speed mentioned above, the wear and tear phenomena on the road 
supports require the supports to be replaced after about five years 
of work. 
It is not essential for the moment to choose y. 

The curves in fig.10 were calculated by introducing the 
values of these constants. They show the total functional Q as a 
function of the period dead zone with the error dead zone equal to 
0,0.25, 0.5, 1, 2, and 3%. The graphic analysis also conducted 
with the help of the reciprocal curves in fig.11 leads to the de­
termination of the minimum of the functional Q for the values of 
1% and l,57o of the error dead zone and the period dead zone respec­
tively. 

It should be noted that while the choice of the error dead 
zone is univocal, the period dead zone includes a relative minimum 
so that the choice of the value 1.570 is based on a compromise bet­
ween minimum conditions and safety conditions, the latter leading to 
the exclusion of excessively large dead zones. 

This result having been obtained, it is usefull, in order to 
verify the permanence of the minimum conditions in time, to determine 
the behaviour of the functional Q in relation to variations in the 
amount of the perturbations, their spectral curve being assumed to be 
unchanged. The partial functionals Q , Q„ and Q are therefore 
found by using the analog technique described, fixing the two dead 
zones, however, at the values just found but varying the amplitude 
of the reactor's inherent noise. 
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0,5 1 1,5 

Fig.10 

2,
6 

ΡΔΖ (V.) 

Fig.10 : Curve for the functional 0.4· (P(t) ­ Ρ )
2
 + | v(t)| as a 

function of the period dead zone. 

3 80 

à-

Fig. 11 : Curve for the functional 0.4· ( P(t) ­ Ρ ) + |v(t)|as 

a function of the error dead zone. 
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Fig.12 shows the points thus obtained, as a function of the 
ratio between the amplitude of noise introduced and that of the nominal 
noise. Similarly fig.13 shows the curve for the total functional Q, 
evaluated by using the values of the constants K. already given; the 
existence of a minimum near the nominal noise value ensures permanent 
satisfactory working conditions. 

For the sake of illustration, finally, the diagrams in fig.14 
are given, which show, for three different values of the error dead 
zone, the shape of the power-error signal, the position and velocity 
signal of the control rod, the control signal of the rod drive mecha­
nism, the period, the part of the drive mechanism control signal due 
to the period channel alone, the perturbation signal corresponding to 
the reactor noise, and, lastly, the temperature fluctuations T(t)-T . 
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Fig. 12 : Curve for the average square values of the power and tempe­

rature variations, and of the average modulus of the veloci­

ty of the control rod of Ispra­1 as a function of the r.m.s. 

amplitude of the perturbation signal. 
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Fig. 13 : Curve for the functional 0.4* ( P(t) ­ P̂ ) + | v(t)| as a 

function of the r.m.s. amplitude of the perturbation signal, 
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Fig. 14 : Curve for some variables of the control system of Ispra­1 

in steady­state conditions at 5 MW with nominal period 

dead zone (1.5%) and error dead zone equal to 0.5, 1.5 

and 37o. 

P(t) ­ Ρ = power error signal; Δκ = signal of con­

trol rod position; sAK, = velocity of control rod; 

V = control signal of the rod drive mechanism; ρ — pe­

riod signal; V = part of the control signal of the 

rod drive mechanism due to the period channel; ΔΚ, = per­

turbation due to the reactor noise; Δκ T(t) ­ TQ, 

variation of the temperature reaction. 
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