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case of (a) a discontinuous temperature rise and (h) a ramp rise in temperature. It is 
proved that, because of the short timescale of a pulse, the stresses developed in the fuel 
and cladding are insensitive to the detailed form of the temperature rise and can be calcula
ted accurately by assuming a step function. The stresses in the cladding are shown to be 
greater than those in the fuel, an accidentally large fuel temperature rise of about 180° C 
in a S O R A type reactor being capable of breaking the cladding. Sustained pulsed operation 
with a temperature rise of about 70° C would cause fatigue in the cladding, demonstrating 
that the proposed figure of ~ 1° C for normal operation in S O R A lies well within the 
fatigue limit. The need for a thorough study of the internal dissipative effects in the fuel 
material is demonstrated. 

The second problem considered in this paper is that of the ejection of the liquid 
metal coolant from the core of a pulsed fast reactor during the hypothetical collision of a 
broken fragment of the pulsation device. It is shown that the amplitude of core compression 
caused by this collision is strongly dependent on the transit time of acoustic waves (in the 
coolant) along the compressed length of core. The change in core volume is shown to 
satisfy a third order dilferential equation containing a delayed term, the delay being 
precisely the above transit time. This equation is solved numerically for a variety of 
conditions and the enhancement in the amplitude of core compression due to the ejection 
process is obtained over α wide range. 
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SOME PROBLEMS OF STRESS WAVE PRODUCTION ENCOUNTERED 

IN THE STUDY OF PULSED FAST REACTOR DYNAMICS* 

INTRODUCTION 

(1 2) 
The pulsed fast reactor SORA ' , proposed by the reactor physics 

department at Ispra as a general research tool, has features which 

lead to some highly unusual problems in the safety studies of the system. 

The first such feature of interest in this article is the very rapid 

temperature rise occuring in the fuel at each pulse. Because of the 

rapidity of this rise and the inertia of the medium (fuel), the axial 

thermal expansion of the fuel slugs lags behind the temperature. The 

internal stresses generated by this lag then propagate to all parts of 

the structure, in particular the fuel cladding, and the whole system is 

agitated by axial elastic vibrations. The effect of such a phenomenon 

(3 4) 
on the neutron kinetics of the reactor has already been studied ' 

The objective of the present article is to focus more attention on the 

vibrations, to evaluate the manner in which the fuel slug "jumps" in 

response to its internal stresses and to predict the stresses induced 

by recoil in the cladding and structural materials. In this way, some 

idea will be obtained of the safety margin against cladding fatigue and 

rupture (due to the repetition of stressing with each pulse) and of the 

sort of temperature rise which might break the cladding in a single 

(accidentally large) pulse. All of these questions are considered in 

part 1 of the article. 

The second feature of the SORA reactor of present concern is the 

existence of a heavy moving reflector system. In that part of the 

safety studies which deals with the socalled "worst hypothetical 

(8) 
accident" ,it is assumed that a part of this system breaks away while 

in motion and collides with the reactor in such a region that the 

core is vigorously compressed. In studying the mechanics of this col

lision it is very important to determine the pressure developed in 

the liquid metal coolant as the core volume is reduced. This would be 

easy if the coolant was rigidly contained in the core (so that the 

compressed mass is constant), but this is not the case. The core is 

■•"Manuscript received on September 6, 196?. 



naturally open at the bottom and top for the entry and exit of the 
coolant, while the thrust of the colliding fragment occurs from the 
side. Thus, as soon as the collision begins, the coolant starts to 
flow out of the core through both the entrance and exit of the system 
and the pressure developed then depends not only on the amplitude but 
also on the rapidity of core compression relative to the speed with 
which the coolant can leave the core. Since the rate at which the liquid 
metal can escape depends on the velocity of compression waves, the prob
lem is essentially that of describing the formation and propagation of 
sound waves in the coolant channels. This problem and the accompanying 
one of the mechanics of the colliding fragment are considered in part 2 
of the article. 



1. RESPONSE OF A FUEL SLUG AND CLADDING TO A THERMAL SHOCK (Jack Randies) 

1.1 Mathematical Description 

For purposes of setting up a mathematical model, the configuration of 
fuel slug, cladding and supporting structure are visualised as in figure 
1. The cladding is held at its upper end which is assumed to take the 
whole weight of the fuel element. The fuel slug is a uniform bar with 
its lower end resting in close contact with the closed bottom of the 
cladding but with its lateral boundary separated from the inner wall of 
the cladding by a small gap. The existence of this gap means that the 
fuel slug and cladding can be assumed to have no interaction except 
through their point of contact at the bottom end. Thus, we can formu
late the dynamics of the system entirely in terms of axial particle dis-
placments. In addition, it will be assumed that the contact which exists 
between the fuel and cladding can be broken without loss of energy as 
soon as the stress in the junction ceases to be compressive. Thus, we 
shall have a situation in which the fuel slug jumps free of cladding 
and suddenly eliminates their mutual interaction. Such a sudden break 
in the coupling between the two main components of the system provides 
the basis for a great simplification in the analysis, since it is clear 
that all effects of importance are determined during the short time in
terval leading up to the break. Therefore it becomes possible to obtain 
all required information by considering the dynamics of the system during 
this interval alone. One further feature of the fuel element which simpli
fies the description of the dynamic behaviour is the fact the length L 
of cladding is considerably greater than the length L of the fuel. 

If all axial distances, χ , are measured relative to an origin placed 
at the bottom of the fuel slug when the system is in an unheated, un
stressed state (before the commencement of the shock), then initially the 
fuel and cladding material is distributed uniformly along the x-axis with 
the fuel slug lying in the range 0 < x < L and the cladding in 0 < x < L . 
Subsequent to some time point, t = 0, we suppose this state to be disturbed 
by the appearance of a temperature rise, T(x,t) , in the fuel. The effect 
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of such a rise will be an axial particle displacement, not only in the 
fuel slug but also in the cladding, since the two components have a 
point of contact at χ = 0 . Thus, it is necessary to introduce two dis
placement fields, § (x,t) and jj(x,t) , describing the axial dis-

Ί 
tortion of the fuel slug and that of the cladding respectively. The quan
tity ^(x,t) has the significance that if χ is the initial position 
of a cross sectional element of the fuel slug, the position of the same 
element at time t is χ +ξ . This definition applies also to the dis
placements, if , of the cladding. If we suppose that no heat transfer oc-

Ί 
curs between the fuel and cladding, a reasonable assumption in view of 

(3,5) *tf 
the very short timescale of interest, then it can be shown that £ 
and s satisfy the equations; 

and 

Ç? Bt
2
 dK (1#2) 

where c = V v P
 i s

 the velocity of axial compression waves in the 

fuel slug, E and O being respectively the Young's modulus and den

sity of the fuel material; c
 =4 Λ/$Λ i s t h e ve

l°
c
ity of axial 

compression waves in the cladding, E and a* being respectively the 

Young's modulus and density of the cladding material and Oí is the 

coefficient of linear expansion of the fuel. The stress in the fuel slug 

. (3) 
is given by 

$<*,*>-<£-*
T
) 

and that in the cladding by / (1.3) 

4M> «, f 



Equations (1.1) and (1.2) both have the form of a classical one-dimen
sional wave equation except that (1.1) is slightly modified by a term 
depending on the temperature gradient. 

The boundary conditions to equations (1.1) and (1.2) can be formu
lated from all the known facts about the system. In the first place, we 
know that at the moment of commencement of the temperature rise at t =0, 
the whole system is stationary and undisturbed. Thus, we can write: 

at t = O 

(a) ? = O 

(b) J = O 

(O ^ = O 

(d) ^ = O 

At the junction between the fuel slug and cladding, we know that the two dis
placements must be equal : 

(e) ¥ a ¥ at χ = 0. 

In addition, since the mass of the base part of the cladding (on which 
the slug rests) is negligible in comparison to the mass of the slug, the 
intertial effect of this part can be ignored. Thus, the total force exer
ted on the junction by the fuel slug can be assumed to be equal and op
posite to that exerted by the cladding and we can write: 

(f) A£(f-<*T·;— A,«,® 

where A and A are the cross sectional areas of the fuel slug and 
cladding respectively. In formulating condition (f), use has been made 
of equations (1.3). A further item in our knowledge of the system is 
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that the upper end of the fuel slug is free and the internal stress must 

therefore go to zero at this end: 

(g) —Z. =a <X I at χ = L. 

The condition at the upper end of the cladding is not so easy to write 

down since the response of the supporting structure is rather complicated. 

It is emphasised again here, however, that the dynamical effects of in

terest in this paper are the very rapid phenomena immediately, following 

the onset of the temperature rise and, for these, the behaviour of the 

supporting structure is completely unimportant. During the initial time 

interval 0 < t < L /c required by a disturbance to travel up the length 

of the cladding, we know that, irrespective of the supporting structure, 

we must have 

(h) 1 = o at χ = L, 

1
 1 

It will be seen that this condition, though limited in the duration of 

its validity, will be sufficient to determine thè required information. 

Although equations (1.1), (1.2) and the boundary conditions (a)(h) 

apply for a temperature rise, T(x,t) , with any type of spatial distri

bution and time dependence, we have solved the problem only for cases 

where Τ does not in fact depend on χ . For such cases, where the tem

perature distribution is always uniform, we can write 

Τ = T(t) (1.4) 

and the term, <X /dX , in equation (1.1) then vanishes identically. 

This small simplification in the theory at the outset yields a very large 

saving in the analysis later, since we now have a situation in which both 

displacement fields, 5 and £ , are governed by the classical wave 

equation. In such a case, the functional form ofJ5 and £. satsifying 

equations (1.1) and (1.2) is well known. It is a superposition of forward 

and backward moving waves: 
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&,t)-ftt-x)+.#(**+*) (1.5) 

and 

lfi,t)-<Kc,t-x)+r(cMx) <i .M 
1 

where f and φ are the forward and g and 'ψ' the backward moving 
waves and the velocities of propagation c and c are (as mentioned 
above) associated with the fuel slug and cladding respectively. The ex
plicit form of the functions f , g , φ and ̂ f must be determined from 
the boundary conditions. 

This type of formulation is a very common method of attacking dynami
cal problems in the theory of elasticity and appears in all good text-

( fi ") books on the subject (see, for example, the well known treatise of LOVE ' 
p. 4315. In the present problem we have to satisfy 8 boundary conditions. 
The first four of these, (a), (b), (c) and (d), give respectively: 

f ( -x ) + g(x) 

f ' ( - x ) + g ' (x ) Ί 
O J 

for 0 < x < L 

(-x) + T (x ) = 0 1 

'(-x) + r'(x) = 0 j 

Φ 
for 0 < x < L 1 

where f', g', φ and *ψ are the first derivatives of f, g, φ and ̂ " 
respectively. On integrating the second and fourth of these equations with 
respect to χ and setting the resulting two arbitrary constants equal to 
zero (they could be retained but carry no physical significance and cancel 
identically later in the analysis) we obtain: 
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f ( ζ ) = O f o r -L < ζ < O ( i ) 

g ( z ) = 0 f o r 0 < z < L ( i i ) 

<¿(z ) = 0 f o r -L < ζ < O ( i i i ) 

ψ(.ζ) = O f o r 0 < z < L 1 ( i v ) 

( 1 . 7 ) 

If we now put 

and 

A
 C 

^
s
 . Λ (1.8) 

A £ C, 

which is a measure of the relative rigidity of the cladding, conditions 

(e) and (f) give respectively, for ζ > O 

f(2)+f&) - Φ(χ*)+ra*) (1.9) 

and 

On integration with respect to ζ and application of equations (1.7), 

this equation gives for ζ > 0: 

-ftrJ+jW- *ƒ r(f) ¿z' = -**{- ¿(W + W } (i.io) 
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Finally, from conditions (g) and (h) and equations (1.7) we get 

(1.11) 

and 

ψ(ζ)«  4>&-2Q fev ¿, < ζ < 2 ¿ , 
(1.12) 

the ζ variable being limited to values less than 2L because of the res

triction of condition (h) to times within the wave transit time, L /c , 

along the cladding. 

Equations (1.7), (1.9), (1.10), (1.11) and (1.12) now provide the basis 

for the progressive evaluation of the wave components f, g, φ and ψ 

within a sequence of intervals on the zaxis. Fortunately, as already men

tioned, the dynamical events of interest in this paper all occur rapidly 

and we can restrict ourselves to a consideration of only the first three 

intervals. With such a restriction, the theory can be yet further simpli

fied by using the fact that the length L of the cladding is much longer 

than that of the fuel slug, L. Hence it is valid to assume that the transit 

time K L/c , of waves along the slug is less than the time 

L /c , required by waves to traverse the cladding. Hence we can write 

*\L<Lj (1.13) 

With this condition in mind, we resume the analysis. 

From equation (1.11) we see that, for L < z < 2L, 

ƒ Ζ 

Τ(?ί^)<*Χ (1.14) 
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since, by equation (1.7i), f(z-2L) is zero in this interval. In addition, 
because of equation (1.7iv) and condition (1.13), ψΐλζ)- ° in t n e in~ 
terval 0 < z < L and equations (1.9) and (1.10) reduce to 

and 

ftz; + ̂ ( * *) = -<*ƒ r(f')Jz 
Hence, for 0 < z < L 

0 

Furthermore, from equations (1.12) and (1.7iii) we see that J* (z) = 0 
for L < ζ < 2L , so that, by condition (1.13) we have |/|^]= 0 for 
L < ζ < 2L. Therefore, in the range L <" ζ -<2L, equations (1.9) and 
(1.10) take on, with the help of equation (1.14), the form: 

and 
2 z. 

from which it follows that, in the range L < z< 2Ls 

«*)=^{(i-ÍT&)*'-fr(f)<<*} (1.16) 

The last quantity to be derived in this way is the function g(z) in the 

range 2L < ζ < 3L . By equations (1.11) and (1.15), this is given by 
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It will be very convenient at this stage, before continuing with further 

developments, to summarise the above derived formulae for the wavefunctions, 

We shall be interested only in the displacement field in the fuel slug and 

will therefore omit φ and V . Collecting formulae (1.7i), (1.15) and 

(1.16), we have for the wave component f(z) : 

for ζ ̂  0 

J _2L Γ T&)d-Z' for 0<z<L (1.18) 

fa+frfè)4*--j%$)*'} for L < ζ ̂  2L 

and from equations (1.7ii), (1.14) and (1.17), g(z) is given by: 

Q for ζ ^ L 

¿(I TÍZ¿£)dlZ for L ^ z < 2 L (1.19) 

for 2 L ^ z£ 3L 

It is interesting to note the very simple manner in which the relative 

cladding rigidity, r , appears in these results. 

In order to evaluate the time point, t. , when the fuel slug jumps 

free of the cladding, it is necessary to evaluate the stress at the june
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tion, S (t). According to the first of equations (1.3), this is given 

by 

4«
£
(*

1
*

7
! 
X*o 

Using equation (1.5) and the fact that T is independent of χ , this 

gives: 

Introduction of (1.18) and (1.19) into this formula then yields; 

_ £ £0C Tfe) for 0 < t ̂  

1+r-
 c 

S & W (1.20) 

j££.nt-Ü-£e«T*) íoru*^f 

When S (t)<0, the slug and cladding are pressed together and remain in 
o 

close contact. Inspection of equation (1.20) shows clearly that this 

state of affairs persists for at least a time L/c after the onset of 

the disturbance. For some time in the range L/c < t< 2L/c , however, 

equation (1.20) reaches zero and the time at which this occurs is pre

cisely the moment t = t. when the slug jumps free of the cladding. For 

t > t. , S (t) = 0 and equation (1.20) breaks down. Clearly, t. is 

j o
 n

 j 

the solution of 

zr(t~é-)-T(t)=o 
(1.21) 

It is interesting to note that t. is independent of all parameters ex

cept the wave transit time along the fuel slug. 
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The mean velocity, V , with which the fuel slug jumps can be de
rived quite easily. By definition we have 

*-£ƒ i(*,Vd* 
Substitution from (1.5) leads to: 

^ &.£{('<&-X)+fXct¡+X)} Λ 

which, on evaluation of thé integrals gives: 

v. = £·{ ftøi-ftiy-V+ftW-ltøti ■ α.22) 

Remembering that ct. lies in the range L ̂  ct.^ 2L , the manner of 

J J 

substituting for the wave functions from (1.18) and (1.19) is obvious. 

We obtain, after some manipulation: 

In the next two sections we shall apply these general formulae to ex

plore in some detail the thermoelastic response of a fuel element to tem

perature shocks of a definite mathematical form. 

1.2 Discontinuous Temperature Shock 

The type of thermal shock which is easiest to consider, and which 

brings out the physical processes very clearly, is the case of a dis

continuous temperature rise. For this, the function T(t) will have 

the form 
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{ 
Ο for t< Ο 

Tit) = J (1.24) 

Τ for t a Ο 

With such an input the wave components (1.18) and (1.19) reduce to 

for z ^ Ο 

for 0 ^ zg L (1.25 

■jULjVz-Ki-r^J for L < 2 ^ 2 L 

and 

*W ocr.(*-¿> 

f o r ζ ^ L 

for L ^ z^" 2L (1.26) 

£-.0(72 Ζ— ■ OCC.L for 2L^z^*3L 
1 + r - · 1+r

 ΰ 

while the stress in the junction, (1.20), becomes 

— - — - £ < * *o for 0 ^ t ^ - (1.27) 
"í+f c 

& * > « ; 
for t > -c 

When t = L/c , the slug jumps free of the cladding in the manner dis
cussed in the last section and we have therefore set S = 0 beyond 

o 
this point. If the slug and cladding had been tightly fastened together, 
the stress would have been exactly reversed at the instant t = L/c , 



19 

giving a tension of rEøCT /(1+r) for a duration \Jc< t< 2L/c. 
— — 0 . . 

Setting t = L/c in equation (1.23) we get for the jump velocity: 
ü 

It is interesting to examine how the mechanical energy generated by 

the thermal shock is distributed among the different modes of motion 

in the system. Because of the discontinuous nature of the shock in the 

present case, a potential energy of 

£M - i A£i(«T.f C129) 

is suddenly created in the fuel slug at t = 0 . Since there is no motion 

in the system at this instant, this also represents the total energy avail

able for wave and stress production. We already know that the fuel slug 

eventually responds by jumping free of the cladding and therefore it is 

clear that the energy E becomes divided into three parts : 

(1) A part E representing the kinetic energy of jumping. 

(2) A part E representing the total vibrational energy of the fuel 

slug. 

(3) A part E representing the total (vibrational) energy transferred 

c 

to the cladding. 

By the law of energy conservation, we have 

ξ. + Eç + ßc β £ut (1.30) 

The jumping energy, E. , is very easy to evaluate. It is 

s-íe"-? 
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o/\¿. being the total mass of the slug. Substituting for V. from (1.28) 

2 

and then for c (= E/o ) , we get 

•(—ï £j -[ . ) ¿ft (1.31) 
3 

The vibrational energy, E , excited in the fuel slug presents a little 

more difficulty but its evaluation can be greatly simplified by noting, 

from the analysis leading to equation (1.28), that at the instant t = L/c 

when jumping occurs, the particle velocity in the slug is everywhere 

equal to V. . This means that at this instant, the whole kinetic energy 

of the slug is contained in E. , the energy of the vibrational motion 

being instantaneously all in the potential form. From this it follows 

that we can equate E to the instantaneous strain energy in the slug 

at t = L/c . By using equations (1.3), (1.5), (1.25) and (1.26) it is 

easy to see that the stress and strain are both uniform at this moment, 

the stress, S , being equal to E OL T /(1+r) . The energy corresponding 

to this uniform stress is ALS /2E , so that we get finally for E : 

f \1 + V/ 
* « · ( 1 · 3 2 ) 

From equations (1.30), (1.31) and 1.32), it follows that the energy trans

ferred to the cladding is given by 

Z-r 

£ e
e
 (7¡~H*

 £&t
 ■

 α
·

3 3 ) 

The last three equations give a very clear summary of the dynamical 

behaviour resulting from the mutual interaction of the fuel slug and 

cladding. In the limit of very weak cladding, r -+ Ο and we see that 

all of the energy goes into longitudinal vibrations in the fuel slug. 

In the limit of very rigid cladding, r * eo and we see that all of 

the energy goes into jumping. The energy transferred to the cladding 

goes through a maximum of E /2 when the fuel slug and cladding are 

of equal rigidity, i.e. when r = 1 .In practice the cladding is usual
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ly a very thin tube of much smaller cross sectional area than the fuel 
slug. Thus, in general the relative rigidity r (see equation (1.8)) 
is small and we tend always to be near to the "weak cladding" limit. 
This fact does not help to reduce the stress, S (t), in the cladding, 
however, since the large ratio of A to A serves as an amplifying 
factor in this case. Such an effect is very easy to understand if we 
write down the force balance condition at the junction (x = 0): 

so that, by equations (1.8) and (1.27), the cladding stress at the junc
tion is given by 

C/c-i rar ¿f 0$t*£ 
Ό 

, / (1.34) 

which is virtually independent of the cladding rigidity when r < < 1 . 
Subsequent to the time point L/c , the cladding will undergo damped os
cillations in which the stress will at no time exceed that given by 
equation (1.34). Thus, for a discontinuous thermal shock, S will be 
the maximum stress which the cladding has to bear. 

It should be emphasised in closing this section that the discontinuous 
thermal shock treated here is a much more severe disturbance than that 
occuring in an actual pulsed reactor. Usually, the temperature rise, 
though rapid, takes a definite time and the resulting thermoelastic 
response is softer than that described above. From the point of view 
of reactor safety analysis, the theory here is therefore pessimistic, 
predicting larger stresses in the fuel elements than actually occur. 
In order to correct for this, the theory is developed in the next sec
tion for a type of thermal shock very close to that expected in a real 
system. Later, in section 1.4, both approximations will be applied to 
the SORA reactor and the errors due to the assumption of a discontinuous 
temperature rise will be seen numerically. 
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1.3 Continuous Temperature Shock 

The temperature rise which occurs in the fuel during an excursion of 

a pulsed fast reactor can be quite well approximated by the function: 

Τ ^ for 0 ̂  t ̂  'T 

TU.) = ¿ (1.35) 

T for t X f 

o "̂  

where Τ is the ultimate temperature rise and T" a time constant de
o 

pending on the nuclear and geometrical properties of the reactor and the 

speed of the pulsation device. It may be helpful here to state that, for 

the typical case of the SORA reactor, Γ is about 50 «sec as compared 

to about 90 Msec for t
1_
e wave transit time, L/c , along the fuel slugs. 

Thus, it is clear thai, the real dynamical behaviour to be considered in 

this section is not greatly different from that resulting from a discon

tinuous shock. 

By substituting equation (1.35) into (1.21) it can easily be shown 

that the time interval between the onset of the shock and jumping of the 

fuel slug is given by 

t = . 
J 

( 
i 
/ ZL 
u C 

fo r 

fo r r>2L 

(1.36) 

Similarly, by introducing (1.35) into equation (1.20) we obtain for the 

fuel stress at the junction with the cladding the following formulae: 

when T*< l~/C 

Sit) = 

* i&io -. t for O < t< T 

£ Λ Γ for r * t* k 

1+r c 

£}.*«
Τ
Λ ?&-&-*}

 f
» í***^ 

(1.37) 

for t ^ t .: 
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when C/c $ TÇ ZL/& 

SXt) -

for 0 < t ^ ~ 

for - ^ t 4 " T c 

i + ? ^ { f ^ " ^ " ^ } for r^t^t, 

¿7 

( 1 . 3 8 ) 

J 

for t > t . ; 
J 

when L £· *·*-/£ 

•ί+r r r for °***α 
So(t) = ^ -£-£«!1 (t-*L·) for - ^ t « 2 ^ c c 

for t 2l — c 

( 1 . 3 9 ) 

It is clear from these expressions that, irrespective of the rate of 
temperature rise, t/j" , the maximum stress, S , on the fuel side 

omax 
of the junction always occurs at t = L/c and that 

5 
■£.£«'. f» r*# 

-ÍTr(a)
£
*

T
'  r>ï 

(1.40) 

Thus, the maximum stress obtained by assuming a discontinuous temperature 

rise (equation (1.27) is correct provided the rise time, T , is less 

than the wave transit time, L/c , along the fuel slug. On the other hand, 

if t ■*■ L/c the stress obtained from the discontinuous model is too 

large and must be reduced by a factor l/T c. 
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The jumping velocity of the slug can be evaluated by substituting 

(1.35) into equation (1.23) and using (1.36). The result is 

% * 

•7-nr 
õíTc fo r 

1+r ®«
T
' f o r 

r$ 2£ 

r > # 

(1.41) 

Thus we see, by comparing this formula with equation (1.28), that the 

magnitude of the jumping effect is always smaller than that predicted 

by the discontinuous temperature model, the reduction factor being 

( 1  Τ c/4L) when V < 2L/c and i/T C when f £. 2L/c . 

1 Λ Application to the SORA Fuel Element 

The formulae derived in sections 1.2 and 1.3 offer a very simple 

means ol assessing the behaviour of actual pulsed reactor fuel elements. 

In this section we shall apply them to the SORA reactor where the fuel 

slug is a 24 cm long UraniumMolibdenurn alloy (10% by weight of Mo) clad 

in a long tube of stainless steel. The relevant parameters have been as

sumed to have the following values. 

Young's modulus (dynes/cm ) 
3 

Density (gm/cm ) 
2 

Cross sectional area (cm ) 

Axial sound velocity (cm/sec) 

Linear coef. of expansion ( C ) 

Length (cm) 

Fuel Slug 

E=1.2xl0
12 

Ρ =17.3 

A=1.54 

c=2.63x10 

(X =1.4xl0~
5 

L=24 

Cladding 

E =2xl0
12 

ft =7.92 

A =0.139 

c =5.03x10 





Using equation (1.8), we get for the relative cladding rigidity 

r = 0.0787 

If we assume a temperature rise time, Τ* , of 50«sec then we shall 
be in the region T* < L/c , since the value of the wave transit time 
along the slug is L/c = 91.3 «sec. Hence, the stress generated in the 
fuel and cladding at the junction between them is the same as that gene
rated by a discontinuous temperature rise. By equation (1.40) (or (1.27)) 
the maximum value of this stress is, on the fuel side 

fi ' 9 S = - 1.23 χ 10 T dynes/cm omax o 

while the maximum stress on the cladding side is, by equation (1.34) 

S = 1.36 χ ΙΟ7 T dynes/cm2. c max o 

The former stress is compressive (negative) while the latter represents 
a tension. 

If we assume, as criteria of safety, that these stresses must 

(a) lie well below the fatigue stresses under normal pulsed operation 
and 

(b) never exceed the unirradiated elastic limit during an accidentally 
large pulse, 

then the limits to be imposed on the fuel temperature rise, Τ , both 
for normal and accidental circumstances are very easy to calculate. 
Assuming that the elastic limit and fatigue stress for the cladding are 

9 2 9 2 
2.5 χ 10 dynes/cm and 1.0 χ 10 dynes/cm respectively, while for the 

9 , 2 9 2 
fuel they are 2.0 χ 10 dynes/cm and 0.8 χ 10 dynes/cm respectively, 
then the above criteria can be put in the form 
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( i ) s < < 10" 
cmax 

( i i ) I S ƒ « 0 . 8 x l 0 £ 

1 omax I 

dynes/cm during normal pulsed operation 

and 

(iii) 

(iv) 
cmax 

fs j< 
1 omaxI 

< 2,5x10 1 

< 2,0x10 J pul 
es/cm during an accidentally large 
se. 

From (i) and (iii) we see that the safety of the cladding requires that 

and 

Τ « 7 4 C during normal pulsed operation 

Τ ^ 184 C during an accidentally large pulse, 

while, from (ii) and (iv), the fuel retains its integrity provided that 

Τ « 650 C 
o 

during normal pulsed operation 

and 
Τ < 1600 C during an accidentally large pulse, 

It is immediately obvious that the cladding is mechanically more vulnerable 
o than the fuel although, with the proposed temperature rise of *"** 1 C, the 

safety margin during normal operation is enormous. In addition, the limit 
of 184 C for an accidentally large excursion is still greater than that 

(4) for modes of damage other than mechanical changes . It is interesting to 
note that the vulnerability of the cladding as compareci to the fuel is due 
entirely to the smallness of the area ratio, A /A . 

The fuel jumping effect can be calculator irom equations (1,28) and 
41). If the temperature rise is regarded as discontinuous, the jumping 
ocity is 0,269 Τ cm/sec. If, however, we allow for the continuity in 

J 0 , I J 

! temperature rise, the jumping velocity is reduced (equation 1.41) by 
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13.7% to 0.232 Τ cm/sec. It follows that the fuel jumping occurs only 
at about 0.2 cm/sec during normal pulsed operation but may rise to 
20 cm/sec for an accidentally large rise of about 100 C. 

It is of interest to estimate the proportions of the total mechani
cal energy going into the three processes: fuel slug jumping, fuel slug 
vibrations and cladding vibrations. For this purpose we use the for
mulae derived in section (1.2) on the basis of the discontinuous tem
perature approximation. From equations (1.31), (1,32) and (1.33), we 
obtain for the ratios between the above three quantities: 

E. : E : E = 0.0053 : 0.8593 : 0.1354 
J f c 

Thus we see that very little of the energy goes into jumping or cladding 
vibrations and for many purposes,outside the present study,the fuel slugs 
could be regarded as free at both ends. 

When times longer than /«L/c are considered, however, it is important 
to remember that the fuel slug will eventually fall baci: onto the junction 
with the cladding and that, consequently, further energy transfer will 
occur. The stresses generated by such further interaction will be less 
than those evaluated above because the oscillations of the fuel slug will 
have been damped slightly by internal dissipative mechanisms. The process 
of falling back onto the cladding will provide strong assistance to these 
mechanisms in their important role of removing the oscillations in the 
fuel slug before the arrival of another pulse and the generation of another 
burst of oscillations. Looked at in this way, the process of falling back 
onto the cladding is seen to be an important safety mechanism helping to 
limit the amplitude of the oscillations imposed by recurrent thermal shocks. 

From these considerations, there arises an important safety problem.If 
the slug for some reason becomes "stuck" and fails to fall back onto the 
cladding after jumping free (during the initial time interval of '-'L/c), 
then the only processes available to damp the vibrations of the slug are 
the internal dissipative mechanisms. If these are not sufficiently strong, 
the amplitude of the vibrations will rise to some large value due to 
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the repetition of thermal shocks and the accidental fall of the slug 
into its seat in the cladding may then cause extensive damage. To 
calculate the extent of this danger necessitates a knowledge of the 
non-adiabatic and frictional effects occuring in the fuel material. 
A theoretical and experimental investigation ofthese effects is at 
present underway. 
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2. THE BEHAVIOUR OF A LIQUID METAL COOLANT DURING THE COLLISION OF A HEAVY 
MOVING BROKEN PART (OF THE PULSATION DEVICE) WITH THE CORE OF A SORA TYPE 
REACTOR (Jack Randies) 

2.1 Mathematical Description 

In a pulsed fast reactor of the SORA type, the worst hypothetical acc
ie) 

ident takes the form of a fracture in the arm of the rotating pulsation 
device, the collision of the broken piece with the core and the insertion 
of a dangerous amount of reactivity as a result of the reduction in core 
volume. Thus, in order to obtain this reactivity input with reasonable 
accuracy, the mechanics of the core compression process have to be quite 
well understood and the core volume reduction /IV(t), obtained explicitly 
as a function of the time, t . This would not be too difficult if the core 
was just a solid structure for which the elastic forces evoked by the impact 
could be written down fairly easily and the equation of motion of the broken 
piece solved directly. The core is not, however, such an elastically simply 
body. The whole volume not occupied by the fuel and structural components 
is filled by a liquid metal coolant which flows vertically upwards along 
the axis of the system. When a fragment of the pulsation arm strikes the 
core, it does so at right angles to this axis from the side. Thus, the 
force of the impact is able to eject liquid metal away from the compressed 
zone towards the inlet and exit of the coolant channels. The effect of such 
ejection is to weaken the elastic force which might otherwise slow down 
and repel the fragment before an appreciable volume change (and reactivity 
input) has occurred. This process is especially important in a SORA type 
reactor where the core volume must be reduced by 3-4% before a significant 
elastic force is evoked from the deformation of materials other than the 
coolant. 

Let us state the problem in quantitative terms. We shall consider the 
impact of a mass m incident with a velocity 1£ and the consequent 
compression of a length X, of the core from the "side" direction (per
pendicular to the core axis), <£. being less than or equal to the core 
height, and, in order not to complicate the study of the ejection process, 
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we shall ignore all stresses except those generated in the coolant. At 

the commencement of such a collision, the coolant will undergo compres

sion at a rate depending on the incident velocity 4/1 , but the process 

of ejection from the top and bottom of the compressed zone will be de

layed by the time required by compression waves in the coolant to pro

pagate along the compressed length jl . Assuming a typical value of 

5 
3 χ 10 cm/sec for the speed of acoustic waves in liquid metal and 6 cm 

for the compressed length in a typical hypothetical accident, we see 

that we are dealing with delays of the order of 20 li sec. Because of the 

structure of the coolant channels the system behaves like a compressed 

assembly of small tubes containing liquid metal and to obtain the mean 

pressure which is "seen" by the colliding mass m it will be assumed 

that all of the channels are compressed simultaneously. This implies that 

we shall be neglecting the time taken by the shock of the impact to travel 

across the core and that the pressure will therefore be spatially con

stant at any given core cross section. Although somewhat inaccurate, this 

assumption is not restrictive since it in no way affects the phenomenon 

of present interest, i.e. the axial coolant flow. In any case the assump

tion leads to an overestimate of the volume and reactivity changes which, 

from the point of view of reactor safety analysis, is conservative, as 

required. Thus, the problem of evaluating the force acting on the col

liding fragment reduces to that of evaluating the mean pressure, ρ , 

in any one of the coolant channels as if it were a small tube. 

From the point of view of such a tube, the effect of the collision is 

to reduce its lateral dimension and raise the density of the liquid metal 

within it. For instance, if 4T*(t)/"K" is the relative reduction in 

core volume at time t ( V = core volume), then, in the absence of any 

axial flow oí coolant out of the tube, the change in density, Δθ , is 

obviously given by 

áç(t) ΔΥ(έ) 

where Ç0 is the initial density and -fV the initial volume of the 
coolant in the compressed length. The quantity f is the ratio of the 
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coolant volume in the compressed zone to the volume "V of the core. 

In terms of the overall coolant volume fraction in the core, f 

û ° 
the compressed length, X , and core length, L , we have 

(2.2) 

If we now make an allowance for the ejection of coolant from the ends of 

the compressed length by solving the equations of inviscid, laminar flow 

to first order in the applied compression uv/'y f We obtain the fol

lowing expression for the mean density change: 

éìÈl Ä Χ I áV&)~ f F(t') AV(t-è')Jù'l (2 3) 

eo / r i
 J

o 

Here, the time dependent mean density change Æp(t) is obtained by av

eraging the time and space dependent density distribution along the com

pressed length, JL . The function F(t') describes the delay in the ejec

tion of the coolant. 

Although equation (2.3) can be derived rigorously from the linearized 

equations of inviscid laminar flow, there exists a much more powerful and 

physically clear alternative. In this, we take equation (2.3) as a hypoth

esis in which the delay function F(t') is to be determined. It is very 

important to note that, in fact, equation (2.3) is the only general way 

of expressing the process tinder consideration since it is obvious that the 

mean density change at time t must be equal to that which would occur 

in the absence of ejection (1st term) minus a correction depending on the 

entire history of volume changes up to time t . In a linear theory, the 

only way of expressing such a history dependent effect is by means of the 

integral appearing in the second term of (2,3). Thus, without going into 

the detailed hydrodynamics, we can regard equation (2.3) as the obvious 

general solution to first order in the applied disturbance ** " / v „ 
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The problem, then, is to determine F(t') . This can be achieved in 

the following very simple way. Let us imagine a sudden change in core 

volume: 

AW)* 
o if t < ε 

ΔΧ if t > £ 

( 2 . 4 ) 

so tha t 

Δν(υ)=ΔΥΛ £(t-£) 
( 2 , 5 ) 

where ë is an infinitesimal time introduced only to express the fact that 

the disturbance commences just after t = O and o (¡t~"£j is the Dirac 

delta function. Substituting (2.4) and (2.5) into (2.3), we see that the 

response in the mean density, ¿¿0 , to a sudden reduction in the core 

volume is given by 

e. fy 

where the limit £>0 was taken after integration. It follows immediately 

from (2.6) that if we are able to find the response Δ\α. for a sudden vol

ume change, we shall automatically obtain also F(t) . 

The prediction of upXt') is a problem which can be treated entirely 

on a pictorial basis, since the response of the coolant to a sudden com

pression is very easy to visualize. Immediately after compression occurs, 

no coolant has had time to escape and the density is merely raised by an 

amount given by equation (2.1); i.e. 

A$0=Æ for t = 0 (2.7) 
e* tv 
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At the ends of the compressed length, however, there exist sharp dis

continuities of density and pressure and it is clear that, from the 

moment these discontinuities are formed, they will behave like wave 

fronts propagating with the normal velocity c of acoustic waves. The 

situation may best be seen by referring to figure 2. In diagramme (a) 

of this figure is shown the initial distribution of density along the 

compressed length ¡L . Inside this length the density is everywhere equal 

to Ço"^ φο*^' while outside, it has the unperturbed value 00 , Dia

gramme (b) shows the situation existing some time later when the discon

tinuities formed at t = 0 have divided into four wave fronts of ampli

tude ΔΡ0(Ρ//2> . Two of these fronts propagate towards the midpoint, 0 , 

of the compressed zone and the other two propagate outwards. If f is 

the transit time of waves along the compressed length, i.e. 

I 
r «  r (2.8) 

c 
then the situation in diagramme (b) applies only during the time interval 

0 < t < */2 .At t = */2 , the ingoing waves interact at the central point 

O and are transformed into a pair outgoing reflected waves which remain in

side the compressed length only during the interval f/12. ^ ¿"^ Î" . This 

situation is shown in diagramme (c) of figure 2, When t > T , all wave fronts 

have left the compressed zone (diagramme (d)), the density there being re

stored to its undisturbed value 0C , and we can assume, with some accuracy 

in the present context, that these fronts are subsequently dissipated in 

the body of the external coolant circuit. 

It is quite self evident from the above description that the mean den

sity in the compressed zone will fall linearly with time according to the 

equation: 

for Ο ξ t£T 

for t > T 
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Substituting for ΔÇ0(0) from equation (2.7) and comparing the result 

with (2.6), we get immediately the required formula for F(t): 

for 0£ tgT 

(2 .9) 

for t > T 

Thus, the expression (2.3) for the response of the mean density to a 

quite general volume contraction, Δνφ/ , is seen to be remarkably 

simple. 

In order to study the slowing down of the colliding fragment and eval

uate the resulting core volume change AV(.t) explicitly (on the assump

tion of no stresses other than those in the coolant), it remains only to 

write down the relationship between the mean pressure, ρ , "seen" by 

the fragment and the mean density change, Aö(t) . Since the theory as 

developed so far is restricted to a linear approximation, it suffices for 

this purpose to assume a normal elastic law: 

Z »
3
" *  ^ (2.10) 

v* 

(7) 

According to the data of Bridgman for sodium, such a law holds quite 
4 

well for all pressures up to about 4 χ 10 atmospheres, fC being equal 
1 Q 

to about 7 χ 10 dynes/cm 

Let us now write down the equation of motion of the fragment (mass m, 

initial velocity 1£ ) by assuming that the force of the collision is 

applied over a known area A (one dimension of which is the compressed 

length). If V is the instantaneous velocity of the fragment, then: 

fttVa ~Ap 

and, by geometrical considerations: 

¿γ = Av 
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Combining these equations with (2.3) and (2.10) and writing 

V\CJ — y (2.11) 

for the relative volume change, the equation of motion becomes 

e
t 

y(t)--u>
2
{ y(*)-j F(t')i(t-t')dt'} (212) 

where 

■ / 

* Λ * 
ω ' h*fV (2.13) 

is the natural frequency of core compression-decompression in the absence 

of coolant ejection and the boundary conditions are: 

tf0)*0
 (2,14) 

which says that the core is initially undeformed and 

ν(°)--γ? (2.15) 

which says that the initial velocity of the fragment is IT 

The equation of motion (2.12) can be transformed from an integro-dif-

ferential equation into a purely differential equation of third order. 

By applying the method of partial integration and using equations (2.9) 

and (2.14), the time integral becomes 

ƒ' ψ y('-W 
If the whole equation is then differentiated once with respect to t and 
further use made of partial integration and equations (2.9) and (2,14), 
it is easy to show that 
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r 
2·, 

ëy(p) if t*v 

y(t) + ω$)=<{ (2,16) 

if t > f 

It will be somewhat more convenient for the numerical solution of this 

equation as well as informative from the physical viewpoint to introduce 

the dimensionless variable 

(2.17) =5 U)t 

and to regard y as a function of this variable rather than the time, 

This procedure modifies equation (2.16) so that it reads: 

^~n—
h
 ~J s (2"

i 8
> 

¿ χ
5
 d* ] 

w r
w J y

 if x > w r 

The boundary conditions to this equation follow immediately from (2.12), 

(2.14), (2.15) and (2.17): 

dV , AVj \ at je ,_ o (2,19) 
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From equation (2.18), we see that if the coolant ejection time f 
is much greater than the natural period 4/ui of core compression-decom
pression in the absence of ejection, i.e. if 

then, for times up to the order of magnitude of Ί/(Λ) : 

AVQ 

CAÍV 
y = A ^ sm cut 

and the collision process is insensitive to the ejection of coolant. On 

the other hand, if 

£ΟΪ*«1 

then coolant expulsion occurs with such relative promptness that the col
liding fragment retains 
Q\^/Ui) , during which: 
liding fragment retains its initial velocity 1Ç for times of at least 

v ir v 

These limiting cases are physically obvious and the only information 
which we have obtained from the theory are the conditions ( W T » 1 or 
U>f«. 1 ) under which they apply. It is now clear, however, that the 
region of greatest interest for the study of the collision process is the 
region ¿ϋΐ"«** i . This is true not only from the purely "academic" view
point, but also for firm practical reasons: the circumstances surrounding 
a hypothetical fracture of the SORA pulsation arm and its collision with 
the core lead to values of Hit" in the range 0.1 ̂ C U»f <í 2.0. In order 
to assess the behaviour of the core volume in this range, it is necessary 
to obtain the full solution to equation (2,18). 

This solution has been obtained numerically with the aid of a computer 
programme (see appendix) written for the purpose. Since (2.18) is linear, 
the solution is essentially unaffected by the initial derivative and the 
numerical analysis uses the simple boundary conditions 
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dx 

■n*
0 

ax 

at X = O (2.20) 

instead of (2.19) 

Figures 3,4 and 5 show some typical results. Although the solution is 

not interesting for the SORA accident studies beyond the point where 

2 2 
d y/dx changes sign (i.e. where the fragment "bounces" off the core) 

it has nevertheless been plotted over many cycles. Curves are given for CoT 

= 0j6,1.0,2,2.5,4.5,5 and 10 and we see that in all cases, y(*B) is a 

damped oscillatory function converging to some limit y(0©). 

The limit y(°°) can actually be evaluated analytically in a very 

simple manner by Laplace transforming equation (2.18) and applying 

boundary conditions (2.20). This procedure gives the general solution: 

VM~I7IJ Ϊ>3+-Ρ-^0-*- ) ( 2 · 2 1 ) 

where Π is the usual path running parallel to the imaginary axis and 
lying to the right of all poles. Since y(x) is bounded, the asymptotic 
value reached as x->ce is given by the residue of the pole at ρ = 0. 
Taking ρ-» O in the integrand of (2.21), expanding e in a power 
series and neglecting all powers of ρ above the second, we get 

/ , gAg ,. Ç e*Zlì 
Woe) =. ;— Lim \ — 

i . e . 

2. 
y<°°> - ~~Z (2.22) 
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The numerical results all conform to this expression. 

On examination of the first maximum in each of the solutions y(*) in 
figures 3,4 and 5, it will be noted that the effect of coolant ejection 
during the collision is to enhance the amplitude of the change in core 
volume by some factor F(««>T) which depends only on *>T. The function 
F(toT) has been calculated and is plotted in figure 6. 

Figures 3,4 and 5 also indicate that, as UiX decreases, the tendency 
of the solution to oscillate weakens. It was found that for wf^l.75 
the oscillations vanish altogether and y(3C) goes directly to its limit 
y(°°). Thus, for W T ^ l . 7 5 , the enhancement factor is given by (2.22): 

z 
F(¿or) == (2.23) 

This behaviour in the solution corresponds to a collision in which the 
fragment strikes and compresses the core but does not "bounce", the core 
being left with a permanent deformation. Such a situation is purely aca
demic since, in practice, forces other than that due to coolant com
pression come into play and ensure that the "bouncing" phenomenon occurs. 
Nevertheless, it is always possible to use the function F(£OZT) as a 
measure of the effect of coolant ejection in a complete model of the 

(8) 
collision process and this has been done elsewhere . 



40 

APPENDIX 

(Re inde r Jaa r sma) 

S o l u t i o n of Equa t ion ( 2 . 1 8 ) f o r Any Value of uiX 

(a ) Times w i t h i n t h e wave t r a n s i t t i m e : X ^ COTT 

For X^UiV , t h e d e l a y te rm i n e q u a t i o n ( 2 . 1 8 ) i s no t o p e r a t i v e and 

t h e s o l u t i o n can be d e r i v e d i n a s imp le a n a l y t i c a l form by w r i t i n g 

VX 

<y(x) = \<oe (AD 

Substitution of this formula into (2.18) gives the following cubic equation 

for the parameter r: 

r*+-r — —O (A2) 

of which the roots r , r and r are given by 

{·■=.€* 
Λ 

Ζ
 2 ( (A3) 

=-£-¿fe r
3 - 2 

where 

Γ/ Α ι \ή/ζ J _ Ϋ* U-d + -i-Yt- J— ΛΛίτ 
a=l(2Zrf*Z7j +2U>T] -]((2«>τ)2 Xl) 2u>T \ (A4) 

and 

fc-O+ÇO Zax^ (A5) 
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The general solution of equation (2.18) for X K o>T is given by 

i.e. using (A3) 

y=.J~e π « ( κ "
s
^

x
 +" ̂

s u t
kV (A6) 

where the constants J, K and L (which are related to K , K and K ) are 

to be determined from the three boundary conditions (2.20). We obtain 

J   Κ 

Ι« 

(A7) 

(b) Times greater than the_wave transit time: Χ ^ Μ Γ 

In this region, the solution is most conveniently obtained by a direct 

numerical method. Hence the RungaKutta method in the form very conveniently 

(9) 
formulated by Zurmühl has been used. The flow chart (see below) of the 

computer programme designed to carry out the necessary arithmetic embodies 

the essential steps of Zurmühl*s formulation. The function y is evaluated, 

step by step, at a sequence of points χ = χ + m ^ x , Δ* being the step 

interval and m = 0, 1, 2, 3 .... In order that the finite difference re

presentation shall give a good approximation to the differential equation 

(2.18), A x must be made sufficiently small. The value of the delay terms 

y(x — (A)V) at the points χ = χ is calculated from equation (A6) as long 

m m 
as (χ — £ O T ) ^ Í O T , but when (χ — ωΤ')>U>T, y(x — UJV) i s taken from 
the previously stored numerical solution. In order to evaluate Y 1 , the 

n+"2 

value of y in the middle of a step interval (as required in the Runga

Kutta method), the following cubic interpolation formula is used: 
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y Ã = ¿-(-Y A + VY +1Υ -Y ) 

The values of y'( Ui f ) and y"(U»T) are calculated from equation (A6). 

c 

The error in the RungaKutta method used here is of the order of (^x) 

and the results have been calculated with ^ x = 0.025. By applying the 

numerical procedure to the region X<6L/T" and comparing the result with 

the known analytical solution (A6) in the same region, this value of Δ χ 

has been found to give very good accuracy. Another check is provided by 
2 

the known asymptotic behaviour y"*""». as x* oc . 

The computer flow chart on the next page explains all steps in the 

numerical procedure for evaluating y(x). It is necessary only to explain 

the notationί 

yn,(x) - -y*(x) + - I y(x) - y(x —tuDI is denoted by f(x,y,y*), 
ωΤ L J 

h = Δχ, the step length, 

v' = y'h, 
„ „ h2 

ν = y aï * 
h
3
 h

3 

K
j

 =
 y'" 3~Γ=

 f ( x
'

y
'

y , )
 f · 

Intermediate results are denoted by y , y', ν', ν . 
J J

c
s
 c' c c 

(9) 

For further explanation, the reader is referred to the book of Zurmühl 
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χ 

y 

ν' 

11 

V 

( StartJ 

= ων 

= y(«"T) 

= y'(«T) h 

= y (
wr
)j 

y¿ 

Start conditions 

y
c 

χ 
c 

ν' 
c 

κ 

y
c 

X 

c 
ν' 
c 

κ 

= 

= 

= 

= 

= 

= 

κ
ι

y + 

= fCx.j 

¿ν. + 

' < 

1 , 
4 

χ + f h 

ν« + ν" + å 

ri 
h 

κ
ιι 

y + 

χ + 

= f (χ 

c 

ν' + \ 

:'
y
c 

r" Η

h 

ν' + 2ν" + 3 

Ve' 
η~ 

Κ
ΙΙ] 

= f(xc,y 

Ν h
3 

y
6 

sr" + 

κ
ι 

.y¿) 

κ
ιι 

κ
ιι 

c>K 

Κ 

h
3 

6 

' 6 

Next step 

K = 20 C 9 K I + 1 2 K I I - K I l i ) 

3K' = K + 2K 

3K" = J - (Kj + 4Κ Ι Σ + Κ Ι Σ Ι ) 

χ = χ + h 

y = y + V' + ν " + Κ 

v«= ν ' + 2v" + 3Κ' 
Il II j O T r l l 

V = V + 3K 

STORE 

x and y 



Figure 1 

CONFIGURATION OF FUEL SLUG , CLADDING AND 

SUPPORTING STRUCTURE IN THE SORA CORE 

Supporting 
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Figure 2 

PROPAGATION OF COMPRESSION WAVES IN THE 

COOLANT DUE TO A HYPOTHETICAL SUDDEN CHANGE 

IN CORE VOLUME 
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FIGURE 3 - SOLUTIONS FOR U Ï = 2.0 AND 10.0 

FIGURE 4 - SOLUTIONS FOR U T = 2.5 AND 4 . 5 
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ωχ= 0.6 

FIGURE 5 - SOLUTIONS FOR ÜX= 0.6 ,1.0 AND 5.0 

t 
F((Jt). 12 

10-

8 -

6 -

Note When no ejection occu rs , ωχ = <x> and F(ux) = 1 

0.2 0Λ 0.6 0.8 1.0 U ΙΑ 
—ι— 
1.6 1.8 2.0 

ωτ 

FIG. 6 ENHANCEMENT OF VOLUME CHANGE DUE TO COOLANT EJECTION 
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