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SUMMARY 

This report describes the theory and the use of a program for bulk 
shield design, written in Fortran IV for IBM 7090 or 360. 

The removal diffusion model has been applied ; particular attention 
has been paid to the treatment of the removal sources in the diffusion 
equations. 

Neutron fluxes for 26 energy groups and gamma fluxes for 7 groups 
are calculated in plane, cylindrical and spherical geometry. 

Experimentally determined removal c.s. are used for the more 
important shielding materials. 

Gamma sources include the radiation emitted either by fission or 
neutron capture or inelastic neutron scattering. Three forms of region 
dependent build-up-factors may be used to determine the gamma 
fluxes : build-up-factors for 6 materials have been calculated with the 
BIGGI 3 gamma transport program. 

Other quantities calculated by SABINE may be any neutron response 
function, gamma dose and energy deposition. 
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S A B I N E 
A ONE DIMENSIONAL BULK SHIELDING PROGRAM1*' 

INTRODUCTION 

This report describes the physical foundations, the mathe­
matical methods, the structure and the use of the program 
Sabine. 
The code is the result of an effort of formulating and 
applying the Removai-Diffusion model in a way as accurate 
as possible, of solving a wide class of shielding problems, 
taking into account several possible geometries of the 
source and of the shielding regions, and of providing the 
maximum amount of information concerning neutron and gamma 
penetration, heat deposition, or reaction rates. 
The Removal-Diffusion model is a way of solving neutron 
penetration problems suggested about ten years ago [ï]: it 
has been applied with more or less refiniments in several 
programs for shielding calculations [2, 3> 43. On the ba­
sis of the experience made up to now on these programs, 
the authors think that this method of solution is satisfac­
tory and efficient, at least when applied to massive hydro-
geneous shields, and that the recourse to more sophisticated 
methods, does not give generally an increase in accuracy 
such as to compensate for the greater cost. 
An experimental program of removal c. s. measurements, develo­
ped in connection with the Padova University C53, has provi­
ded the basic data; on the other hand special care was ta­
ken for applying the Removal-Diffusion method in a way as 
coherent and general as possible. 

SABINE is a Fortran IV program for IBM 7090 or 360. It 
calculates the following quantities as functions of the 
distance from the core boundary: 
a) Neutron fluxes for up to 35 groups 
b). Total neutron dose rate 
c) An integral over energy of the total neutron flux times 

Manuscript received on August 7, I967. 
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an a r b i t r a r y response funct ion, e .g. r e a c t i o n r a t e , 
a c t i v a t i o n , e t c . 

d) Gamma f luxes for up to 7 energy groups, sepa ra t ing the 
con t r ibu t ions of the d i f f e r en t source reg ions . 

e) Gamma hea t ing and dose r a t e . 

The gamma flux i s obtained as the product of the u n c o l l i -
ded f lux times a region dependent b u i l d - u p - f a c t o r , which 
i s i n t e rpo l a t ed from a proper t ab l e of va lues . Tables of 
bu i ld -up - fac to r s for severa l m a t e r i a l s and gamma groups 
have been ca lcu la ted by the BIGGI 3 [6} gamma t r a n s p o r t 
code. 

The development of the program SABINE has been the objec t 
of a co l l abora t ion between the Shielding Group of EURATOM-
Isp ra , the A.E.G. Kernenergieanlagen i n Frankfurt/Main, the 
A.I.V. BÜRO i n Darmstadt, and the "Arbeitsgruppe für 
bautechnischen Strahlenschutz der T.H.Hannover". 
The program i s ava i l ab le through the E.N.E.A. Computer P r o ­
gram Library. 
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DEFINITION OF THE PROBLEM. 
1.1 Sources of Radiation 
The program SABINE determines the energy dependent neutron 
and gamma fluxes through a shield assembly composed of 1 
to 20 homogeneous regions, which surround a source (core) 
composed of two regions. 
The neutron source is a fission density distribution inside 
the 2 core regions; the gamma source is the sum of 3 terms: 
a) gamma radiation emitted by fission and fission products 

at equilibrium, 
b) neutron capture gamma rays, 
c) radiation from inelastic neutron scattering. 
In the core regions the gamma source may take into account 
all the 3 terms; in the shield, only items b and c are 
considered. 

1.2 Geometry 
The geometry of the core is defined by an index IGRC which 
may take four values, corresponding to the following possi­
bilities: 

Table 1 

IGRC Geometry of the core 
0 Infinite plane slab 
1 Finite or infinite cylinder radiating in radial 

direction 
2 Sphere 
3 Fini te cylinder radiat ing along i t s axial 

direction (Disk geometry) 
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In the different cases, the two core regions may be respec­
tively: 2 plane slabs, a cylinder surrounded by a coaxial 
cylindrical annulus of equal or unequal height, a sphere 
surrounded by a spherical shell, two coaxial oylinders with 
equal or unequal radii (Fig.1). This last case is for 
instance that of the axial shield of a cylindrical reactor. 
A particular feature of the SABINE program is that the 
geometry of the shield can be approximated in different 
ways for the different calculations to be performed. This 
fact has mainly two reasons: with the aim of saving ma­
chine time, the real geometry can be approximated with a 
simpler one for a particular type of calculation for whioh 
this implies tolerable errors; furthermore, if our inte­
rest is focused over a given quantity or region of the 
assembly, we can choose the geometrical representation 
which is more convenient for that. 
In what follows we will oall "primary gamma" the radiation 
originated from sources inside the core, and "secondary 
gamma" the radiation produced by the gamma sources inside 
the shield; besides we note that in the frame of our mo­
del, the primary gamma flux and the removal neutron flux 
obey to equations which are formally equal. 
The shield geometry for the different possible oaloula-
tions is defined by the following indexes: 
IGRS: for the Removal neutrons and primary gamma fluxes 
IGDS: for the solution of the Diffusion equation 
IGSS: for the calculation of the Secondary gamma fluxes. 

These indexes may take the values: 
0 : the shield regions are plane slabs 
1 : the shield regions are cylindrical annuii 
2 : the shield regions are spherioal shells 

Furthermore the case IGSS=3 is possible: in this case the 
shield regions are assumed to be cylinders, radiating along 



^ J i J i 

I G R C « O IGRCs 1 

IGRC ζ 2 IGRCr 3 

r i g . 1 Possible core geometries; neutron and gamma fluxes are 
calculated along the horizontal axis. 
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their axis, similarly to the case IGRC=3 (Pig. 1 ) ; this 
situation will be called briefly "disk" geometry. Most 
of the running time needed by SABINE is spent in calcula­
ting the removal neutron fluxes and the gamma fluxes, and 
these calculations are more time consuming for spherical 
and mainly for cylindrical geometry: when possible the 
indexes IGRS=0 and IGSS=0 or 3 should be preferred. 
Table 2 summarizes the possible combinations of the geome­
trical indexes; the index IGDS is not dependent upon the 
others, and may be quite arbitrary. It happens frequently 
that one has to solve problems for which a "disk" geometry 
is preferable for the removal flux calculation and a sphe­
rical geometry for the solution of the diffusion equation. 

Table 2 

Combination n° 
1 

χ 2 
x 3 
4 
5 
6 

χ 7 
χ 8 
9 
10 
11 
12 
13 

IGRC 
0 

2 
2 
2 
2 
2 
3 
3 

IGRS 
0 
0 
0 
1 
1 
1 
0 
0 
2 
2 
2 
0 
0 

IGSS 
0 
0 
3 
0 
1 
3 
0 
3 
2 
0 
3 
0 
3 
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In the cases indicated with x, the outer surface of the 
core and the inner surface of the shield are not coincident, 
but only tangent in one point or one linet the space between 
them is assumed to be filled with the material of the first 
shielding region, but no gamma sources are considered there. 

1.3 The'Shield Regions 
The shield is oomposed of 1 to 20 regions numerated from 
3 ont regions 1 and 2 are the core regions. Any region may 
contain a number of elements (or isotopes or compounds descri­
bed in the library) smaller or equal to 10. Among the shiel­
ding regions there can be air gaps: inside the gaps the 
diffusion equation is not solved (see section 2.8) and no 
source of secondary gamma radiation is considered there. 
The first and last region of the shield must not be a gap; 
two air gaps must not be side by side. 
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2. CALCULATION OF THE NEUTRON FLUX. 
2.1 Neutron Energy Group Structure 
In what follows reference is made for sake of simplicity 
to the group structure of the neutron data library prepa­
red for SABINE, that is presently in use; however the ar­
guments can be easily generalized for a different choice 
of the energy groups. 
The energy limits as well as other details concerning the 
neutron groups are given in Table 3. 
The energy range between 0.5 and 18 Mev has been divided 
into 19 removal groups, having roughly constant energy 
width;'the calculation of the total neutron flux is per­
formed in a 26 groups scheme, that covers the energy range 
between 0 and about 15 Mev, with lethargy intervals of 0.5 
- 1.,The number of these groups and their energy range have 
been chosen mainly on the basis of the following conside­
rations: 
1) The slowing down length of each group must be smaller 

than the relaxation length of the penetrating component, 
described by the removal flux. 

2) The energy width of the groups should be narrow enough, 
in order that the dependence of the group averaged c.s. 
upon the weighting spectrum be not important. 

3) The lethargy mesh should be more fine in the fast region 
than elsewhere because: a) this is the most important 
part of the spectrum to be determined; b) it is general­
ly the most penetrating component; c) the presence of 
the inelastic scattering implies a detailed treatment 
of the transfer matrix. 

4) The running time for the calculation of the neutron 
diffusion and slowing down in SABINE, using the maximum 
number of groups ,35, allowed by the program, is about 
the same as the time needed for the removal fluxes cal-
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TABLE 3 

Energy Structure of the Neutron Groups in the Present Library 

i 

0 

1 

2 

3 
4 
5 

6 

7 

δ 
9 
10 

11 

12 

13 

14 

15 
16 

17 
id 

19 
2Ö 

21 

22 

23 

24 

25 
26 

E
H 

18. NeV 

14.918 

6.065 

3.66 

2.23 

1.35 
821.keV 

49b. 

302. 

11*3. 
86.5 
31.8 

11.7 

4.31 
1.58 

583. eV 

214. 

78.9 
29.0 

10.7 

5.04 
3.06 

1.85 
1.12 
.682 

.414 

.200 

Ju 

.9 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.75 
1.00 
1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

.75 

.5 

.5 

.5 

.5 

.5 

.728 
­

f 
■ y 
s f 
¥ 

À M 
/M 

/ / * / / i 
V Γ 
Λ! I 

ΙΑ Χ prr 7 
/ i 
¥ 

W-
i 

E 

à 

η 

* 

η 

2 
3 
4 

5 
6 

7 

8 
9 
10 

11 

12 

13 
14 
15 
16 

17 

■ W 
19 

Β,, (MeV) 

18. 
16.5 

14.918 

14. 

13. 
12. 

11. 

10. 

9. 
8. 

7. 

6.065 
5.2 

4.4 
3.68 
3.00 

2.33 

1.55 

*i 

3.359,-6 

1.348,-5 

2.062,-5 

5.080,-5 
1.160,-4 
2.630,-4 

5.89 ,-4 

1.310,-3 

2.86 ,-3 

6.15 ,-3 
1.18 ,-2 

2.10 ,-2 

3.48 ,-2 
5.22 ,-2 

7.69 ,-2 

1.337,-1 
2.310,-1 

1.802,-1 

.821 ι 1.147,-11 

index of the diffusion group 

„ upper energy of the groups 

u lethargy width 

removal groups' index 

fraotion of fission neutrons 
th 

emitted into the i group 
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culation, in plane geometry, and smaller for cylindrical 
and spherical geometry, and hence reducing the number of 
groups does not mean, in general, an important saving. 
The upper limit of the highest energy group has been cho­
sen higher than necessary: it could be reduced, but not 
too much if one is interested in the knowledge of the 
fast spectrum. 

2. 2 The Source Distribution for Removal Neutrons 
The program considers as neutron sources the fission neu­
trons generated inside region 1 and 2. For both of these 
regions the program computes the number of neutrons S (Q) 
emitted with energy corresponding to the removal group n, 
per unit volume and time at the point Q, as 

Sn($) = SoXn-vF(Q) 
Sb = fission density at the outer edge of the region 

(fissions/cm .sec) Y th An = fraction of fission neutrons released in the n 
group according to the Cranberg fission spectrum. 

V = average number of neutrons per fission = 2.46 
P(Q)= function describing the space dependence of the fis­

sion density in the region considered. 
Por the different possible geometries of the source regions 
(cfr. section 1.2 and Pig. 1), P(Q) may have the different 
forms considered in the following. 

2.2.1 Plane Geometry, IGRC=0 
In this case the function depends upon one variable z* ; 
P(Q)=P(z'). The z'-axis has the origin on the outer face of 
the region and is oriented towards the inner of the region: 
we have for instance (see Pig.1) 
in region 1 zi = t. -Ζ (la) 
and in region 2 z£ = t.+t2-Z (lb) 
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F(z*) must be normalized in such a way to have the value 
1 on the outer boundary of the region: F(0)=1. 
The function P(z') may be specified in two ways: 
a) pointwise, that is providing (M+1) values Pm at 

equidistant points: 
Fm= F ( z ' m

) ' z m = (m"1 >H~ > m = 1.2,...,M+1 
where t is the thickness of the region. 
Necessarily 

P1= 1 and M ̂  50 
In this case the program computes the J coefficients 
of the polynomial of degree (J-1) which best fits, 
in the least squares sense, the given space distri­
bution. 

F(*')*^»izfè"4 (2) 
A value for J<10 must be precised by the user. 

b) the J coefficients of the polynomial can be given 
as input data: also in this case J^ 10 and a.= 1 
(P(0)= &1 =1). 

2.2.2 Cylindrical Geometry, IGRC=1 
We assume in this case 

P(Q)= h(r»).g(z) 
In region 1 and 2 we have respectively (see Pig.1) 

r· = t rr 
r2 = ti+'fc2~r ^ 

The geometry and the function P(Q) are supposed to be 
symmetrical around the z-axis and the plane z=0: g(z)= 
=g(-z), so that g(z) needs to be specified only for posi­
tive z. The function g(z) i s given the form (2), and can 
be determined either directly through the coefficients 
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a.(a.=l) or providing a table of values g_=g(z ) wi th 

zm= (m­l)lj2M, m =1, 2 , . . . ,Μ+1, M 50, g 1 = 1, 

The function h ( r ' ) may take one of the forms: 

h ( r ' ) = e­*1" ( 4 a ) 

h ( r ' ) = ¿ b d r · ^ " 1 , b.=1 , J < 10 ( 4 b ) 
j¿i Ί 

If the form (4a) i s chosen, the value of k has to be given; 
i f the form (4b) i s chosen, the user has to provide the 
coe f f i c i en t s b ., or a s e t of va lues h. =h(r_·)·, fo r M+1 
equ id i s t an t r a d i a l po in t s , with r!=0 (outer su r f ace ) , 
ΓΜ+1 o n * n e i n n e r surface, and h..=1: i n t h i s case the 
coe f f i c i en t s b . are ca lcula ted by the program. 

J 

2. 2. 3 Spher ica l Geometry, IGRC=2 

In t h i s case the souroe d i s t r i b u t i o n i s again a funct ion 
h ( r ' ) ; r ' has the form (3) and h ( r ' ) has the same form, 
desc r ip t ion and l i m i t a t i o n s as the corresponding funct ion 
in c y l i n d r i c a l geometry. 

2.2.4 Disk Geometry, IGRC=3 

As explained in sec t ion 1.2, t h i s expression means t h a t 
the source regions cons i s t of two cy l inders which are 
shielded in the d i r ec t i on of t h e i r a x i s ; i n t h i s oase the 
d i s t r i b u t i o n function i s 

P(Q)= h ( r ) g ( z ' ) 

r is the distance of the point Q from the ζ axis, and z' is 
the distance between Q and the right boundary of the region 
as in (1)„ 
The possibilities and restrictions for h and g are the sa­
me as described in section 2.2.2. 
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2.3 Removal Flux Calculation 

The removal flux is calculated (see for instance ref. 1) 

as the flux of neutrons which have not suffered "removal" 

collisions. 

For each of the 19 groups the contribution to the removal 

flux in a point P, due to a differential volume element 

dV around the source point Q (for isotropic source) is 

apr(p) u s(q)K(ptQ) dV (5) 

47Γ pi$
¿ 

where 

S(Q) = source strength in Q for the group considered 

(neutron/cm
­3
 sec) 

K(P,Q)=: exp[­| £.
r
(s)ds] 

•¿ = region dependent macroscopic removal c.s. 

The removal flux in Ρ is the result of the integration of 

eq.(5) over the source volume: this is a numerical inte­

gration which is performed as reported in Part 3· The point 

Ρ may move along the r or ζ axis shown in Fig. 1 for the 

possible geometries. 

After the removal fluxes and the removal collision densities, 

have been calculated for each of the 19 groups of Table 3, 

namely 

F*(P) and F5 Σ1Τ
 (Ρ), η ­ 1,2',... 19 

these are added to get removal fluxes and collision densi­

ties corresponding to the broad groups i. 

For instance for the group i=2 one has 

R. flUX Φ;(Ρ)=£ α
Γ
η>) 

R. collision dens. C[ (P) ~ ¿ ~ 2 f\ ( Ρ )
Σ
η (

P
) 

Note that at the interface between two regions the program 

calculates two values of the collision density, because this 

function is discontinuous there. 
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2.4 The Source Terms of the Diffusion Equations. 
The coupling of the removal neutrons into the diffusion 
equations, through the source terms, has to be considered 
carefully when applying the R. D. (Removal Diffusion) mo­
del, especially if one wishes to get from this simple 
description of the physical reality a good estimate of 
the neutron spectrum. 
On one side we have a R. flux describing the fast neutron 
penetration- which strictly refers to the empirical idea 
of R. c. s. , and on the other the set of multigroup eqs. 
that describe the neutron diffusion and slowing down, 
within the frame of the D. approximation. The slowing down 
of neutrons should be accounted for through a proper 
transfer matrix: the same matrix will be used either for 
the R or for the D neutrons, despite of the fact that their 
spectra are in general different; however they should not 
be so much different as to produce important deviations 
in the average of the c. s. over the energy interval of the 
same group. As shown in table 3 the lethargy width of the 
fast groups is about 0.5. 
The calculation of the total transfer matrix will be consi­
dered later: it will require some particular remarks, when 
applied to the R. flux. The following notation is used: 
0? (z) removal flux of group i at the point ζ 
cf (z) removal collision density for the group i at ζ 
£^ macroscopio absorption o. s. of the i group 
XL . macroscopic total transfer c.s. from the i to 

« th 
the j energy group. 

The following balance of the neutrons removed from the 
i group, per unit volume and time at ζ holds: 
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0? (ζ) ΣΙ? are absorbed 

0* (ζ) ZI* enter as diffusion neutrons into the i 

group (the meaning of the χ is explained 

below) 

0\ (z)^±j go into the j
t h
 group U > i ) 

0f (z)£lf=cf(z)are removed from the group i. 

It is clear that the sum the first three terms, which 

gives the total number of neutrons removed from group i 

(per unit volume and time at z) must be equal to cf (z), 

otherwise the neutron balance is not saved. 

This remark may seem to be obvious, but if we think that 

on one side the absorption and transfer c. s. are calcula­

ted from the basic c.s. under given assumptions for the 

elastic and inelastic scattering, and on the other side 

the R.o;s. is obtained largely, on an empirical basis, with 

arguments quite indipendent from those which determine, 

the calculation of the other c. s., then we realise that 

generally the neutron balance is not automaticly respected, 

but must be explicitly imposed. The sum Σ*. + ZL. . + ZL. .¡ ...+··· 

is the'total, and not the removal c.s. This discrepancy is 

originated from ,the fact that the calculation of the transfer 

c.s., takes into account as usual, the elastic and inelastic 

scattering, and impliedly accounts also for those colli­

sions (which do not produce important energy loss or angu­

lar deflections) entering the term ZL.., which do not re­

move actually the neutron from the virgin beam. 
• 

In order to be coherent with the assumptions of the model, 

a new set of diagonal terms ¿­. . of the transfer matrix 

will be calculated, imposing that the balance of the re­

moved neutrons be saved, namely: 

or 

s= —'C· 
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The other (non­diagonal) terms of the transfer matrix ac­

counting for collisions that imply important energy losses, 

will be calculated in the usual way (section 2.5.2). 

The sum of the terms enclosed in parenthesis in (6) will 

be indicated with 2I°
U
 because it accounts for all those 

collisions which produce the loss of a neutron from the 

. th 

ι energy group. 

It is now possible to write the source terms of the dif­

fusion equations, considering all possible neutron transfer 

as indicated in Table 3; the assumption is made that in the 

"zero" group (above ~ 15 Mev) there are only removal neu­

trons, and these may be scattered only into the first group. 

The source term of the first diffusion equation will hence 

be: 

»,<.>­o0*<.>­£ # . )< ( .>< , (7) 
The solution of this equation will be 0Λζ), that is the 

diffusion flux of the first group and 0Λ(ζ)=0Λζ)+0Λζ) 

will be the total flux of the group. 

Similarly for the following groups one has (omitting the 

space dependence): 

s2= 0Λ Σ ^ +øl Σ*22 

33=^3+^3+0^ 

'36m
 *1 ̂ 1, Ó*2 ^2, 6+' · · · +&> ̂ , 6

+
*6 ̂ 6 6 

From the 7 group on, that is below about 0.5 Mev, the 

R. flux is neglected: 

i*7 V0lS,i
+
^2^2,i

+
---

+
0i-l£i-1,i 
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2.5 Group Cross-Sections Library 
2.5.1 Data for the Removal Flux Calculation 
These are of two kinds: the fission neutrons spectrum and 
the energy dependent removal c.s. 
The fraction of fission neutrons emitted in the n removal 
group has heen calculated on the basis of the Cranberg fis­
sion spectrum, and are written in Table 3. 
The energy dependent removal c. s. come from different sour­
ces of information: if available, measured values have been 
chosen, as for HpO, Pb, C, Pe and. Al, which have been measu­
red at the 5,5 Mev accelerator of Padova [53, where other 
measurements for different materials are foreseen in the 
next future. These data will be included in the library as 
soon as they will become" available. For the other elements 
or isotopes the compilations of Greenborg C73 and Avery C23 
have been used. 

2.5.2 Data for the Diffusion Calculation 
The following microscopic group c.s. are needed for the 
diffusion calculation: 
(τ0 absorption c.s. for the "zero" group to be put into 

eq. (7) 
"J-In 4"ΤΊ 

6. . t o t a l t r a n s f e r c . s . from the i to the J group. 
<>?u t h i s c . s . accounts for a l l the c o l l i s i o n s t h a t remo-

ve the neutron from the i group e i t h e r by slowing 
down or by absorpt ion; i t i s 6*°u = β. ° - 6. . . 

Χ Χ Χ ψ X 

i>. t r anspor t c. s. of the i group. 

The above q u a n t i t i e s have been ca lcula ted for the "elements" 
l i s t e d i n Table 4, using the General Atomic bas ic c . s . l i ­
b rary , through the GGC Π [β] program tha t i s the combination 
of GAM [9] and GATHER [id] . GAM c a l c u l a t e s the f a s t spectrum 
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in the B-3 approximation, and GATHER the thermal spectrum 
in the B-1 approximation, for an homogeneous medium. Group 
(either micro or macro-scopic) c.s. are then averaged over 
the calculated (or optionally provided as input) fast and 
thermal spectra. 
The elastic scattering kernels are correct to sixth order 
for anisotropic scattering in the C-M system; inelastic 
scattering is assumed to be isotropic in the L-system. The 
energy degradation by inelastic scattering is calculated 
considering the excitation energies when these are known, 
or using the evaporation model when they are not known. 
Further details are to be found in {9,103. As pointed ομΐ 
in section 2.1 the energy width of the groups is narrow 
enough, so that the group averaged c. s. do not strongly 
depend on the spectrum; for the c. s. of many elements this 
has been checked, but nevertheless exceptions to this rule 
are possible. The weighting spectrum used hitherto is the 
slowing-down spectrum due to a fission source in water. 
Other data can be added to the library for the same or 
different elements using an arbitrary weighting spectrum. 
The program SABLIB has been prepared to read the data pun­
ched by GGC, to rearrange them, to read some other libra­
ry data (e.g. the removal c.s.) and to write them on the 
Library Tape for SABINE. 
Data for the 37 "elements" listed in Table 4 are now availa­
ble for the energy group structure of Table 3. Data for 
other elements or different energy arrangements or weighting 
spectra can be provided on request. 
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Table 4 

Materials included in the Library and corresponding 
identification numbers. 

Material 
Hydrogen 
Deuterium 
Lithium 
Beryllium 
Boron 
Carbon 
Oxigen 
Sodium 
Magnesium 
Aluminum 
Silicon 
Phosphorus 
Sulfur 
Water 
Potassium 
Calcium 
Titanium 
Vanadium 
Chromium 
Manganese 

Id. no. 
1 
2 
3 
4 
5 
6 
8 
11 
12 
13 
14 
15 
16 
18 
19 
20 
22 
23 
24 
25 

Material 
Iron 
Cobalt 
Nickel 
Copper 
Zinc 
Zirconium 
Molybdenum 
Cadmium 
Indium 
Tin 
Barium 
Dysprosium 
Tungsten 
Gold 
Lead 
Uranium 235 
Uranium 238 

Id. no. 
26 
27 
28 
29 
30 
40 
42 
48 
49 
50 
56 
66 
74 
79 
82 
235 
238 
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2. 6 Solution of the Diffusion Equation 

Once the removal flux has been calculated, the program 

computes the source terms of the multigroup diffusion 

equations as explained in section 2.4. Then for each neu­

tron group i, we have to solve an equation of the fol­

lowing kind 

D [jZf"(r)+ f j*'(r)î­£0(r)+S(r)«O (8) 

D is the diffusion coefficient calculated as 1/3Σ1 

£= ZL
out
+DB ,B is the buckling to account roughly for a 

possible transversal leakage 

¿
:r
and ZL° are evaluated for any group and region from 

the microscopic c. s. of the elements which are present 

in the region: the microscopic c.s. are considered in 

section 2.5.2 

Ρ is a geometry index (the same as IGDS in seotion 1.2) 

P sa 0 means plane geometry 

Ρ « 1 means cylindrical geometry 

Ρ = 2 means spherical geometry 

One has to find the solution of eq. (8) satisfying the 

following boundary conditions: 

Β.ΟΤ)0,+Β..0+&2 = 0 at the inner boundary (8a) 

boDØ'+b.jØ+bp = 0 at the outer boundary (8b) 

Continuity of flux and current through the internal 

boundaries is assumed. 

Appendix A shows how the second order linear differential 

equation (8) can be replaced by the following equivalent 

system of three first order differential equations 
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Ψ . f - ψ - Ζ (9a) 
v
' =

V
(­D­­T­)

+ s
 (9b) 

DØ'+UØ+V = 0 (9c) 

This system has several advantages: the function U(r) can 

be easily solved from eq. (9a) and inserted into (9b), 

which is a linear first order differential equation sol­

vable through standard formulas; the functions U and V 

can then be put into (9c) which is similarly solved for 

0(r); the continuity conditions for flux and current are 

easily satisfied by imposing continuity to the functions 

U(r), V(r) and 0(r), as it is shown by eq. (9o); the 

boundary oonditions expressed in general form by eqs. 

(8a) and (8b), are easily converted into boundary condi­

tions for the functions U,V and 0f because (8a) and (8b) 

are formally similar to (9c). 

Actually the outer boundary condition is satisfied if 

we put: 

U(R )= bVboi at the outer boundary (io) 

V(Re)= bg/boJ Re of the shield 

With this starting values for the functions U(r) and V(r), 

the eqs. (9a and b), can be integrated (Appendix B) pro­

ceeding from outside to inside: once the values U(Ri) and 

V(Rj) at the inner boundary of the shield are known the 

quantity: 

a„­a0 V(R.) 

«h) " «fwvi
 (11) 

is taken as inner boundary value for the function 0(r) 

(see below), then eq. (9c) is integrated proceeding from 

inside to outside, as shown in Appendix B. 

Eq. (11) is the result of writing (9c) at the inner boundary, 

and solving the system of this equation together with eq. 

(8a), to obtain the boundary values of flux and current. 
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2.7 Boundary Conditions 

It is useful to make a few more remarks about this subjeot. 

The user has to provide a proper set of coefficients a0, 

a., up and b.., b« to represent the particular boundary 

conditions of his problems. 

2.7.1 Outer Boundary 

The coefficient b0 is not allowed to be zero (that would 

produce non limited values of U and V in eq. 10), so that 

it has been fixed once for ever b0=1 ; only b.. and bp need 

to be specified to the program. As a consequenoe of that, 

it is not allowed to specify the outer value of the flux 

(which is assumed to be a result and not a datum of the 

problem). The usual condition at the outer boundary is of 

zero incoming current, that is 

J_ - -f
+
 Ψ - ° 

and this corresponds to the choice b^,5, bp=0, (b0=l). 

Similarly a linear extrapolation distance d= ·?£
 i s 

expressed by b..=D/ä, bp=0, being D the diffusion coef­

ficient of the external region. 

2.7.2 Inner Boundary 

Hera are a few examples of inner boundary conditions. 

If one needs to define a boundary value of the flux 

a0= 0 

0(Ri)= 0O, then the set a..= ­1 

a2= 0O 

into eq. (8a) realizes the required condition. 

Similarly one can impose: 
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^ ' ( R j ^ ) ^ with a 0 =1, a 1 = 0 , a2=0 

or ­XØ'iR^JsJo with a 0 =1, a ^ O , a2=J0 

All the above boundary condi t ions are appl ied to the 

d i f f u s i o n f lux, t h a t i s to the so lu t ion of the 

diffusion eq. ; and hence i n those neutron groups (1 to 6 

for the scheme of Table 3) where a D. f lux and a R. f lux 

cohabi t , the t o t a l f lux w i l l s a t i s f y d i f f e r en t boundary 

condi t ions . The only exception to t h i s ru l e i s the case 

a0=0, which corresponds to a given boundary value of the 

f lux : i n t h i s case the program t r e a t s , i t as a t o t a l f lux ; 

the boundary value for the D. f lux i s given i n such a ca ­

se e i t h e r by the di f ference t o t a l f lux minus the computed 

value of the R. f lux a t the boundary, or i t i s se t equal 

zero if Übe difference were nega t ive . 

2.8 Air Gaps 

SABINE can take account of the effect of air gaps inside 

the shield through proper conditions conneotig the va­

lues of flux and current on the two sides of the gap. Let 

r1, Γρ be the position coordinates and J1, J ρ the values 

of the net current at each side of the gap: J(r)= ­D0'(r) . 

Two different treatments of the gap are allowed. 

2. 8.1 P1 approximation 

If the thickness of the gap is small compared to its 

transversal dimensions, and hence the transversal leakage 

is negligible, then the P1 approximation Cu] states the 

following equations for the flux and current through the 

gap: 

'i ■ (ÜJ 
J. 

(12a) 

01 0o 
­J1= ­§­ ­ J2 fp(q) q= r/r2 (12b) 
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where fp(q) i s a function depending on the geometry: 

for plane geom. (P=1) f0(q)= 1 

for cyl indrical geom. (P=2) f1(q)= | [ a r o ° i n q · +f l -q 2J 

for spherical geom. (P=3) f2(q)= 1 - O - q 2 ) 3 ' 2 

Note that in the f i r s t case flux and current are continuous 
through the gap. 

,2^8.2 A Different (Optional) Treatment 
If the a i r gap i s thick, re la t ions different from (12) may 
be required in order, for instance, to take into account 
the transversal leakage in plane or cyl indr ica l geometry. 
SABINE can take account of discontinuity conditions for 
flux and current through that region, in the form 

02 = * # ! '> * > 0 

J2 B A J1 J M ° 
In this case the user has to provide a couple of values oc 
and y3 for each neutron group. 
The presenoe of gaps in the problem to be solved is subjeot 
to two restrictions: namely the first and the last region 
of the shield cannot be air gaps, and two gaps cannot be 
side by side. No more than 3 gaps of this type may be pre­
sent. 

2.9 Response Functions 
SABINE can optionally evaluate three kinds of Response 
functions. 

a) RM-^^Wft ,; i¿^s^e (13) 
u · — x 
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This is the integral over energy of the total neutron 
flux times an arbitrary function of energy, which has 
to be specified group-wise. In this way the program can 
provide for instance dose rates, reaction rates, fast 
or epithermal flux (fj=1 for the proper groups) and so 
on. 

b) The response function f. may be region dependent (such 
as that required to evaluate for instance heat deposi­
tion or activation): in this case the user has to pro­
vide a table of values for each region; then SABINE 
computes the function (13) inserting for fj the table 
of the region to which χ belongs. 

o) A third possibility has been devised to calculate the 
reaction rate of threshold detectors. These are at pre­
sent the tool most frequently applied to get information 
on the fast region of the neutron spectrum. 
Macroscopic c.s. for such detectors may be provided for 
each of the removal groups, that are finer than the 
diffusion ones.(see Table 3). The program itself calcu­
lates the broad group c.s., by averaging over the com­
puted removal spectrum: for any region R 

V ' th 
x- is the (input) value for the c.s. in the η remo-* 
val group; 
0 ? ( * R ) , n=1,2,...19 is the removal spectrum in the 
middle point of the R region. 
The sums are extended to those fine groups which lie in­
side the broad group i(i=1,2',... 6) 
Then at any point χ belonging to region R the program 
evaluates 

Note that generally this function is discontinuous at 
the interfaces between two regions. 
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3. CALCULATION OP THE GAMMA FLUXES. 
3. 1 Group Structure 
SABINE can compute the space distribution of the gamma 
fluxes for 7 energy groups. This number is practically 
fixed by the gamma data library which is used: to change 
this number (or the number of neutron groups) a new li­
brary needs to be provided. The library presently in use 
implies the seven groups scheme shown in table 5. The 
subscript g, g=1 to 7, will be used to denote gamma ener­
gy groups. 

Table 5 

Gamma group 

1 
2 
3 
4 
5 
6 
7 

Energy limits (Mev) 

0. - 1.0 
1.0 - 2.0 
2.0 - 3.0 
3.0 - 5.0 
5.0 - 7.0 
7.0 - 8.5 
8.5 - 10.0 

3.2 Gamma Sources 
Inside the core regions, namely regions 1 and 2 three kinds 
of sources may be considered: 
a) Gamma rays from fission 
b) Capture gamma rays 
c) Inelastic scattering gamma rays. 
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Item a) inoludes prompt gammas emitted by fission and gam­

ma radiation by equilibrium fission products. 

In the shielding regions (region 3 and following) only 

sources of type b) and c) are considered. 

3. 2.1 Gamma Sources Inside the Core 

The gamma source for the g group (energy emitted in form 

of photons with energy belonging to the g interval) at 

the point Q of a core region is given by 

S„(Q)= S0 _G(Q) Mev/cmr.sec 
g »g 

S0 is the value of the source at the outer boundary of 
»g 

the region considered 

G(Q) is the dimensionless function describing the space 

behaviour of the source (the same for all groups),to 

be described in input with the same rules and restric­

tions as for the function 

FÍO) (section 2.2) describing the fission density. 

If the gamma source is essentially a fission source, then 

F(Q) Oí G(Q), and the same input information may be repea­

ted for both functions. 

S0 is calculated by the program as 

' e
 26 H 

■•-.¿■■•Via'·.! ν
+

δ ' · ·
Λ

· «
 ( u ) 

where 

S0 = boundary value of the fission density (section 2.2) 

f = energy emitted by fission, and equilibrium fission 

products, in the g group (Mev/fission) 

0o4= total neutron flux of the i group at the outer core 
'A 

boundary; 

is an input datum (section 4.2). 
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p ig=£ \*.,±1*'ϊΚ9β 
t h Ώ̂ π (n»ìf) = microscopie (η,#) c . s . of the i neut ron group 

th 
and e element (barns) 

th ' 

C. _, capture gamma spectrum of the e element, i . e . 
'
δ
 th 

gamma energy yield in the g group per neutron 

capture (Mev/capture) 

N e = nuclear density of the e element in the re­

gion considered (nuclei/barn, cm) 

M 
1i,g

=
 £

 L N
e

6
e

n ( i
'

i + ; j ) Q
e

( i
' 3»«> 

jo e 
6 (i,i+j)=micro. inelastic transfer c.s. from group i to 

1 T. 

i+j (barns) for the e element 

Q0(i»D»g)= gamma energy emitted into the g_> group, as a 

result of the inelastic scattering of a neu­

tron from group i to i+j, by the e element. 

The sums over e include all the elements of the region; 

the sum over j extends to a proper number of lower groups: 

in the present library M=7. The second sum in (14) extends 

to those neutron groups, from the L on which lie above 

0.5 Mev: at present N=6; if L>N this sum is negleoted. 

For normal calculations it should be L=1, to account for 

all possible gamma sources; but if only low energy groups 

need to be considered, then a suitable value of L should 

be chosen; for instance if the inelastic scattering gammas 

are negligible, and only thermal neutron capture needs to 

be considered, set L=26. Finally if L>26 no gamma source 

and no gamma flux is computed, and the calculation stops 

after the neutron results have been printed. 

Formula (14) holds for region 1 and 2 but with some minor 

differences: in the second region it is exactly applied; 

in the first region the gamma source is evaluated only if 

S0 (fission density at the outer boundary of the region) 

is positive; if S0=0, no gamma source is considered within 

the first region; in this case the region behaves as a 
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normal shielding region (but in plane geometry its présen­

os is neglected). 

3.2.2 Gamma Sources Inside the Shield 

In any of the shielding regions except possible air gaps, 

SABINE calculates the gamma source distribution in a num­

ber of points specified by the input data and then fits 

this distribution with the product of an exponential 

function, orossing the end­point values, and a polynomial 

with a number of coefficients NGCF (and degree NGCF­1) to 

be specified in input. 

The gamma source vs. the distance x1 from the core bounda­
+Vi 

ry for the g group is 

26 N 

Λ
(
ν
β
£*ι<*ι*±,β

+
&*±<*ι>«±,β

 (15) 

In plane or spherical geometry, where S is a function of 

one space variable (IGSS is equal zero and two respecti­

vely), the source is given by (15). In the case of cylin­

drical (IGSS=1) or disk geometry (IGSS=3), S^ is depending 
g 

upon one more variable X2 (along the transversal direction), 

indicated by ζ or r for the cylindrical or disk geometry 

respectively in Pig. 1. In such cases the program assumes 

v v y - v*i
)f<x

2> 
f(Xp) i s assumed to be a polynomial with coe f f i c i en t s g i ­

ven i n input : 

NCP 
f(X2)=±Z^ β±χ |" 1 a1=1 } NCFé 6 

However i f the t r a n s v e r s a l dimension of the region i s i n ­

f i n i t e , one should put N=1 and a..=1. 
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3.3 Calculation of the Gamma Fluxes 

Once the distributions of the sources for the different 

groups have been calculated, the program computes and 

prints for each required point Ρ (of the shield) and each 
Οι 

region r, the gamma flux G ~(P) (Mev/cm sec) due to the 
th

 r
»o 4.­Ú 

sources of the g group, contained i n the r reg ion: 

Γ Β JPQ)exp(­T:(PQ)) 
r » e J g /iir T5ñ¿ 

V r 

S_(Q) = gamma energy emitted into the g group per 
e> / / 3 \ 

unit volume at Q (Mev/cm sec) 

B (PQ) = Build­up factor (see seotion 3.4), dimensionless. 

χ (PQ) = ƒ ds AA^(S) 
^ tk -1 

AA. = l i n e a r a t tenua t ion coe f f i c i en t of g 8 group (cm ) 
dV(Q) = volume element around Q, which moves to cover 

the whole volume V of the r · region. 
The following sec t ions explain how the Bu i ld -up- fac to r s 
are ca lcu la ted and how the numerical i n t e g r a t i o n of (16) 
i s worked out . 
3.4 Bui ld-up-Factors 

The gamma p a r t of the data l i b r a r y of SABINE inc ludes , fo r 
each gamma group, a t ab le of "point i s o t r o p i c dose Bui ld ­
up-Factors" vs. 1he dis tance t ( i n m. f .p . ) from the source 
poin t Q to the dose poin t P, for seven m a t e r i a l s (see Ta­
b le 6) ranging from a i r to lead. 
All what follows r e f e r s to each of the gamma groups; the 
subscr ip t g w i l l be omitted for sake of s imp l i c i t y . 
Let Bni(t) be the B. u. F. for a homogeneous medium of the 
m m a t e r i a l : these functions have been ca lcu la ted by the 
BIGGI 3 [β] program, which solves numerical ly the t r a n s p o r t 
equation for gamma rad ia t ion in plane geometry, and then 
tabula ted for t values between 0 and 30 m. f .p . a t s teps of 5. 
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Now assume we need to calculate the B. u. F. to be inserted 

in eq. (16), for a laminated medium such as shown in Fig.2: 

let Q be a point souroe in region 1 containing the mate­

rial 1, and Ρ the dose point in the Ν region containing 
+Vi 

the Ν material, xh the part of segment PQ inside region 

η with linear attenuation coefficient μ, . Now let /v 
*1

 β
 Λ

χ
ι 

*2 " *1
 +
 Λ>

Χ
2 

*N
 =
 *N-1 +

/ V N 

One can choose now among three different ways of calcula­

ting the B.u.F. vs. t, namely B(t), which provide the sa­

me result if the path t lies within a single region, but 

different results in a laminated medium (Fig. 3). The user 

may choose which way he needs by specifying the proper in­

put value NBU: 

NBU « 1 B(tN) = %(tN) 

The B. u. F. is calculated by interpolation between the 

values tabulated for the material of the region to which 

the dose point Ρ belongs. 

NBU = 2 The calculation is done with the Broder' s fl4j 

formula 

Ν Ν 
B(t„) = £ Bn(t_) - f B (t J 

Ν n=1 η η n=¿ η η­1 

which is easier to understand in the following 

recurrent form: 

Β(^) m B^tA) 

B(t„) = BjjCtj,) + [Bit^) ­ V V l î ) 

NBU β 3 This i s a modif ica t ion of Kitazume's formula [15J 

and i n r ecu r r en t form r eads : 

Β(ΐ.,) = B ^ t . , ) 
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Χ ι , 

Q 

1 

—i*—­

2 N­1 N 

Rg. 2 

å B(t) 
Ba(t) 

NBU= 1 

NBU = 2 

NBU = 3 

Fig. 3 

Build­up­factors for laminated media resulting from the 

different approximations: B,(t), B2(t), B3(t), ... are the build­

up­factors for material 1 ,2 ,3 . . . respectively. 
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B(tN) = BN(tN) +[B(tN_1) - V ^ ) ] ZN 

Z
N = ^-/N.N-W^P^-^N.N-I^N)

 +
/Ν,Ν-1 

o¿. . and p>* Λ are coefficients, tabulated for each couple 

of materials i and j, that determine the "transient" part 

of the BUF when a boundary between material i and j is 

crossed; |β]έ1. 
Fig. 3 shows the behaviour of the function B(t) in the 
three different cases, represented respectively by the 
full line, the dashed line, and the dotted line. 
Note that for NBU = 1 the function B(t) is discontinuous at 
the interface. For NBU = 2, B(t) is continuous and parallel 
inside any region η to the function Β (t). 
When NBU = 3, we have to distinguish among three possible 
cases: 
a) if p> =1 or o<=0, this case reduces to the previous one 

of the Broder's formula (NBU = 2) 
b) Λ=0, this case is equivalent to the original formula 

of Kitazume; B(t) is continuous and, if oOo, tends to 
Β (t) inside the η region as χ increases; if o¿<o the 
two curves diverge. 

c) yi<1, oOO this is the more general case: B(t) is conti­

nuous and tends to become parallel to Β (t) inside the 

η region, as x_ increases. 

The coefficients ci and A have been determined by fitting 

B(t) as expressed by the third form, to a number of calcu­

lations of gamma doses (performed with BIGGI 3) in lamina­

ted media composed of two (and sometime three) materials, 

with variable thickness. Actually they have been calcula­

ted only for 4 materials, namely H20, Al, Fe and Pb; 

normal and heavy concrete are assumed to have the same va­

lues as Al and Fe respectively; for air they are not used. 
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The choice among the three forms of B. u. P. is mainly a 

matter of experience. The second (NBU=2)and even more the 

third (NBU=3) form of B.u. P. are more expensive, in terms 

of machine time, than the first, and should be prefer­

red only if necessary. NBU=1 may be suitable to know the 

gamma dose outside the shield, or at points lying beyond 

a thick (with respect to the m.f.p.) layer which is ho­

mogeneous or composed of similar materials. Similar ma­

terials are in practice ­ from the point of view of the 

gamma penetration ­ those with similar densities. NBU=2 

may be suggested to investigate the effect of a set of 

thin layers; and NBU=3 if these layers are composed of 

very "different" materials like, for instance iron and 

water. 

Furthermore SABINE allows the use of two different forms 

of B. u. F. for the radiation originated inside the core 

and for the secondary radiation. 

3.5 Gamma Energy Deposition 

Besides the gamma flux and dose, SABINE always provides 

the gamma Energy deposition (in Watt/cm ) as the product 

of the gamma flux, the macroscopic energy absorption c.s., 

and the constant 1.60 10 ■* (Mev/cm·* sec to Watt/cnr). 

This implies the assumption that the dose B.u. P. equals 

the energy absorption B.u. P., which is not always true, 

mainly for low energies or at the interfaces. 

3. 6. The Numerical Integration 

Equation (5) of section 2.3 and (16) of section 3.3 lead 

to integrations over two or three space variables which 

have to be performed numerically. Assume that as a step of 

this calculation we need to compute the value of the fol­

lowing integral 

Y = ƒ f(x)dx (17) 
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a and b being the limits for the space variable χ within 

a given source region. To choose the mesh path for the in­

tegration, the program calculates first the minimum re­

laxation length λ. for the radiation considered in that re­

gion: 

X. = —­L—» for removal neutrons 

M
ÌP [F3 

λ ­ — J — for gamma radiation 

"PLAJ 
Then the mesh path is set approximately equal to λ/m, 

where m is an integer to be specified in input for each 

source region and space variable. There are two spatial 

variables for the integration in plane, spherical and 

disk geometry (r and "θ"), and three in cylindrical geome­

try (r, ­fr,^). 

The interval (a,b) is divided in Ν equal steps, with 

N= Integer Part of £z£L· . 

However if this value is smaller than 2 or greater than 

5Ό, the program sets N=2 or N=50 respectively. 
The integration is performed with the formulae of Newton-
Cotes [l3J with η points, taking n=7 where possible and 
smaller elsewhere. 
The m's values should be chosen in order to achieve the 
needed accuracy for the numerical integration. Attention 
should be paid to the fact that the machine time required 
to perform the numerical integrations (which is most of 
the total time spent by SABINE), is proportional to the 
product m .m^ in plane, disk and spherical geometry, and 
to the product m .m^.ni, in cylindrical geometry. The tests 
which have been carried out hitherto show that m =m̂ .=m=1 
is generally sufficient to keep the numerical errors 
within a few per cent. 
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The integration (17) proceeds from the point a where 
f(x) is expected to have its maximum value to the point 
b where f(x) should have its minimum: this is in most 
cases possible due to the regular and monotonie behaviour 
of the integrands within each source region. 
To save computer time the program stops the integration 
if a point χ is reached such that 

f (a) l 

One value of t\ for each region has to be provided in in­
put: η^ΐΟ""-5 is suggested for the most important source 

-2 regions, η^10 for the others. 

3.7 Gamma Data Library 
The data needed to calculate the gamma fluxes are of 3 
kinds. 
a) General data: they include (g=1 to 7) 

f prompt plus equilibrium gamma fission spectrum 
d conversion factors from MeV/cm . sec to mR/h 

b) data for each element or mixture of elements: 
p 

mass attenuation coefficients (cm / g r ) 
p 

energy absorption coefficients(cm / g r ) 
g 

C capture gamma spectrum 
5(n, ^ ) . microscopic (n, * ) c. s. for neutrons of the i 

group, (barns). Furthermore for those elements 
which are mainly responsible for the (n ,n 'y) reac­
t ions we need: 

6CLn(i,i+j) micro, c. s. for the transfer by i ne l a s t i c 
scat ter ing from the i to the (i+j) group: 
i=1 to 6; j=1 to 7. 

Q(i»j»g)> ine las t i c scat ter ing gamma spectrum (see 
section 3.2,1') 
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c) data for the build-up factors (see section 3.4): for 
each of the 7 materials of Table 6, and each of the 7 
gamma groups, we need: 
Β(ΐ±) , t±= i . 5 , i =0 to 6; table of B. u. P. vs. dista­

nce in m. f. p. 
oi(m· ) andy5(m') coefficients which take into account 

the t rans i t ion from material m' to the material 
considered; m'=1 to 7. 

All the data l i s t ed have been writ ten on the l ib ra ry t a ­
pe, behind the neutron data l ibrary . 

Table 6 

List of materials for which the Build-up-Factors have 
been calculated. 

Identification 
(MBU) 

no. 

1 
2 
3 
4 
5 
6 
7 

Material 

Air (B.u. P. =1) 
Water 
Aluminum 
Ordinary Concrete 
Heavy Concrete 
Iron 
Lead 
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4. USER'S MANUAL 
4. 1 Computer Requirements 
SABINE is a FORTRAN IV program written for the IBM 7090. 
It is an overlay job requiring a 32K memory and 7 tape 
units, not including the system monitor tapes. The use 
of tapes is described in the following table. 

Table 7 

Tape Configuration 

Port ran 
Tape No. 

2 

3 
4 
5 
6 
9 
10 . 

Unit Designation 
at Ispra 

B2 

B3 
A4 
A2 
A3 
A5 
B5 

Tape Use in SABINE 

Pool; temporary binary 
data storage 

Idem 
Idem 
Standard BCD input 
Standard printed output 
SABINE data library 
Same as B2 

4.2 Input Specifications 
The input specifications needed to run the program SABINE 
are shown schematically in Table 8, and listed here be­
low. One or more problems may be solved during the same 
run. Columns 71-80 are free for possible labels. 
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Card Columns Format Name D e s c r i p t i o n 

1 
2 

1-10 
2-70 

1-10 

110 N 
14A5 

110 IGRC 

11-20 110 IGRS 

21-30 

31-40 

110 IGDS 

n o iGss 

1-10 

11-20 

110 NREG 

110 IFGAM 

Number of problems t o be so lved 
T i t l e c a r d ; t h e c o n t e n t of t h i s 
ca rd i s p r i n t e d a s h e a d - l i n e i n 
each page of the o u t p u t . 
Index f o r t h e co re geometry 
( s e c t i o n 1.2) 
0 for plane geometry 
1 for cylindrical geometry 
2 for spherical geometry 
3 for disk geometry 
Index of the shield geometry, for 
the calculation of removal neutrons 
and gamma radiation from the core. 
0 for plane slabs 
1 for cylindrical shells 
2 for spherical shells 
Index of the shield geometry for 
the solution of the diffusion 
equa ti on. 
Same possibilities as IGRS. 
Index of the shield geometry for 
the calculation of the ( secondary) 
gamma flux originated inside the 
shield 
0 infinite plane slabs 
1 cylindrical shells 
2 spherical shells 
3 disks 
Number of regions ̂ 22 (2 source 
regions and no more than 20 
shielding regions) 
Controls the calculation of the famma sources: if IFGAM>26 number of neutron groups) no 
gamma calculation is performed. 
When IFGAM < 26 the gamma sources 
are calculated considering be­
sides the fission source, the 
reactions (n, # ) and (n,n'jf ) with 
neutrons of the groups I>IFGAM. 
This is the parameter called L 
in eqs.(14) and (15) of section 
3.2.1 and 3.2.2. 
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21­30 110 NBUC" 

31­40 110 NBUS. 

Determine the form of the 
Build­up­Factor for the Core 
and the Shield gamma radiation 
respectively (section 3.4) 

One card 5 is needed for each region J, J=1, NREG. 

5 1­10 110 J Index 6f the region 

11­20 F10.0 ZR(J) Thickness of the region (cm) 

21­30 F1Q.0 H(J) For plane geometry not used 

For cylind. geometry: height for 
finite cyl., zero for infinite 
cyl. 
For sph. geometry not used 
For disk geometry diameter of the 
disk. 

31­40 F10.0 T(J) Temperature of the region (°0) 

41­50 F10.0 DIN(J) Densi ty ( gr/cm3 ) 

51­55 15 IGAP(J) = 1 normal region 
2 t h i s region i s an a i r gap to 
be t r e a t e d i n P1 approx. 
( s ec t ion 2 .8 .1) 
3 Air gap witheid an/3 values i n 
input ( sec t ion 2 .8 .2) 

56­60 15 MBU(J) Code number of the ma te r i a l fo r 

the Build­up­Factor of t h i s region, 

61­65 15 NEMR(r) No. of elements i n the region, $ 10. 

One card 6 i s needed for each region J ; the content of co­

lumns 41­70 need to be speci f ied only for sh ie ld regions 

( J > 3 ) . 
J Index of the region 

M9(J) Determine the fraction of the mi­
jl, /j\nimum relaxation lenght to be used 
R̂  ' as mesh interval for the numerical 

M«.(J) integration alongé, R, and γ 
respectively. Use Μ^=ΜτρΜγ =1 as 
standard value (secxiofi 3.6) 

31­40 E1O0 EEHA(J) Relative accuracy for numerical 
integration (section 3.6). Use 
.001 as standard value. 

1-10 

11-15 

16-20 

21-25 

no 
15 

15 

15 
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41­45 15 NDIF(tr) 

46­50 15 NREM(J) 

51­55 15 NPRT(J) 

Number of i n t e r v a l s f o r t h e 
c a l c u l a t i o n of n e u t r o n f l u x 
(and n u m e r i c a l i n t e g r a t i o n of 
eqs . B15 and B16 of Appendix B). 
Recommanded v a l u e s f o r t h e mesh 
p a t h d=ZR/NDIF a r e g i v e n f o r 
s e v e r a l media i n Table 9. 

4£NDIF(J)<£250 

NREG NDIP(j)<:1ooO 

r=3 
The removal flux is calculated 
at each NREMifo point (these 
pointe are separated by d.NREM) 
and interpolated logarithmically 
in the others. NDNI(J)/NREM(J) 
must be integer, and 

NREM(J) <: 50 

Neutron f l u x e s a r e p r i n t e d a t 
any NPRT"1 mesh p o i n t , i . e . s p a ­
c i n g f o r n e u t r o n o u t p u t i s 
d. NPRT. 

NDIF(J)/NPRT(J) must be i n t e g e r 
and 

Γ ïgfö « «o 
If no gamma calculation is required (IFGAM> 26) no other 

information is needed on this card. 

5 6­60 15 NGS (J) The spacing for gamma source 
calculation is d . NGS: no more 
than 50 source points per region 
and 500 for the whole shield,i.e.: 

NGS^jjj^
30 (must te i n t e

S
e r
) 

NDIF 
$ 

í: 500 

61­65 15 NGPR(J) Gamma fluxes are calculated and 
printed only at points where the 
neutron fluxes have been printed; 
precisely at each NGPR

tl:1
 of them. 

NDIF 
NPT2T* ( f t imff' 

u s t be i n t e g e r 
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i f NGPR(J)éO, there w i l l be no 
gamma flux ca l cu l a t i on for t h i s 
region. 

66­70 15 NGCF(J) Number of coe f f i c i en t s for the 
polynomial which f i t s the gamma 
source d i s t r i b u t i o n i n the J " 1 

region (see sec t ion 3.2.2 and 4.3) 

NGCF(J)^10,NGCF(J)^}J^§?^ +1 

In the case of an a i r gap put MBU=1; the q u a n t i t i e s H,T, of 

card 5 and M9, MR, My, ETHA, NGS, NGCF of card 6 need not 

tobe spec i f ied : s e t NDIF=NREM=NPRT=NGPR=1 i f no gamma flux 

i s required i n s ide the gap. NREM must be p o s i t i v e , and card 

7 descr ibing the composition must be punched a lso for the 

gaps. 

7 1­5 15 J Index of the region 

6­8 13 ID I d e n t i f i c a t i o n no. for the f i r s t 

element o r m a t e r i a l ( t a b l e 4)and 
9­18 F10.0 FREM Corresponding weight f r ac t i on i n 

the J t n region. 
19­21 A couple of value ID, FREM must 
32­34 ­r, J·« be given for each element; 
Λ κ ΛΠ ­o J­Ü NEMR(J) coup le s of numbers f o r 

the J"th region, 5 pe r card; i f 

45­47 
58­60 

22­31 NEMR(J)>5, two cards 7 must 
35­44 J>­JO.o FREM t e P r e s e n " b f o r t k i e region. 

61­70 

Cards 8­10 are needed for each core region, i . e . twice: 

they describe the f i s s i o n source d i s t r i b u t i o n (read sec t ion 

2.2 before wr i t ing these c a r d s ) . 

8 1­10 E10.0 S(J) Fission/cm^, sec a t the outer 
boundary of the J t h region. If 
S ( J ) £ 0 , no o the r information i s 
needed for t h i s region (omit 
cards 9­10) 

11­20 110 ISR(J) How the r a d i a l d i s t r i b u t i o n i s 
specified? 

1 the coefficients of a polynom 
are given 

2 point wise ­kr' 

3 exponential distribution e~ ¡ 
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21-30 110 NCFR(J) Number of coefficients of the 
polynomial to be given (if 
ISR(J)=1) of to be calculated 
(if ISR(J)=2); not used if 
ISR(J)=3. 
NCFR(J)$ 10 

31-40 110 NWFR(J) If the rad ia l d i s t r ibu t ion i s 
given pointwise (ISR(J)=2), 
NWFRÍJJ^SI values a t equi­
dis tant points must be given. 
Not used i f ISR(J)=1 or 3. 
The above three quant i t i es re fer 
to the r ad ia l d i s t r ibu t ion , and 
are not used in plane geometry 
(IGRC=0). The three following 
refer to the source d is t r ibu t ion 
vs .z , and are not used in sphe­
r i c a l geometry (IGRC=2). 

41-50 110 ISZ(J) How the z -d is t r ibu t ion i s spec i ­
fied? 
1 i f the coeffic.of a polyn. are 

given 
2 pointwi se 

51-60 110 NCFZ(J) Number of coeff icients ( ^10 ) to 
be given ( i f ISZ(J)=1) or calcu­
la ted ( i f ISZ(J)=2); for i n f i n i t e 
cyl indr ical geometry NCFZ(J) 
should be 1. 

61-70 110 NWFZ(J) If ISZ(J)=2, NWFZ(J)£51 values 
at equidistant points must be g i ­
ven. Not used i f ISZ(J)=1, or 
for i n f in i t e cylinder. 

Card 9 has to be omitted in the case of plane geometry 
(IGRC=0), and inserted in the other cases: i t contains the 
coefficients or the tabulated values or the exponent for the 
radia l d is t r ibut ion: 
9 1-10 E10.0 AR.,(J) F i r s t coefficient (b1 in section 

2.2) or f i r s t tabulated value (h-|) 
or value of k in the case of expo­
nent ia l rad ia l d i s t r ibu t ion . 

21-30 E10.0 ARp(j) Other coefficients or tabulated 
E-ίο 0 AT? ( J) v a l u e s » n 0 m°re than seven per 

1 * Ait^d; card; use more cards if, necessary. 
E10.0 
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If the core geometry is not spherical (IGRC ¿ 2) card 10 

is necessary to provide the coefficients or tabulated va­

lues of the Z­distribution. 

10 1­10 E10.0 AZ.(J) Coefficients or tabulated va­
11­20 E10.0 AZp(J) lues, seven per card; use as 
: E10.0 ι many cards as necessary. 

The next card contains the values of the transversal squa­

re buckling of the shielding regions. 

11 1­10 E10.3 BSQ(3) Transverse buckling of the 
11­20 E10.3 BSQ(4) third and following regions. 
: E10.3 : 

Card 12 refers to the calculation of Response Functions 

of type (b) and (c) of section 2.9. 

12 1­5 15 NTH Number of reaction rates of 
Threshold detectors to be cal­
culated. 

6­10 15 NFRD Number of Region Dependent 
response functions to be cal­
culated. 

Cards 13­14 are needed for each threshold detector; omit 

if NTH=0. 

13 2­72 12A6 Name of the d e t e c t o r : t he 
c o n t e n t of t h i s ca rd i s p r i n ­
t ed be fo r e t h e c a l c u l a t e d 
r e a c t i o n r a t e . 

14 1­10 E10.3 Σ·« Macroscopic c . s . of t he d e t e c t o r 
11­20 E10.3 Ζ*? f o r t he energy range c o r r e s p o n ­

; E10.3 : d ing to the removal group 1 t o 19. 

^ • l 9 19 v a l u e s , seven p e r card must 

be punched. 

Cards 15­16 a r e needed f o r each r e g i o n dependent r e sponse 

f u n c t i o n ; omit i f NFRD=0. 

15 1­5 15 11 Indexes of t h e n e u t r o n groups 

A m τς ro which a r e t h e l i m i t s of t he sum 
ο - ιυ ±o J-¿ i n eq. (13) s e c t i o n 2 . 9 ; t h i s im­

p l i e s t h a t f o r t h e o t h e r g roups 
t h e co r r e spond ing te rms a r e ze ros . 

11-70 10A6 Label To be p r i n t e d a s i d e n t i f i c a t i o n 
of the r e sponse f u n c t i o n . 
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Card 16 is needed for each shielding region: J=3 to NREG. 

16 1­10 EtO.3 F(J,I1) These are the f. values of 
11­20 E10.3 P(J,I1+1) eq.(l3) section

3
^.9. Give se­

E10.3 ven values per card, and use 

as many cards as necessary. 

One of these cards or sets of cards 16 is needed for each 

shielding region; repeat the set 15­16 for each region 

dependent R.F. (i.e. NFRD times). 

Cards 17­18 contain the magnitudes t h a t determine the 

boundary condi t ions fo r the neutron groups: a couple of 

cards for each of the 26 neutron groups i s needed i f s o ­

me a i r gap to be t r ea t ed in the way described i n s ec t i on 

2 .8 .2 (with oí and^ va lues in inpu t ) i s p r e sen t , i f no t 

card 17 must be omitted. 
17 1­10 E10.3 ott One couple of va lues fo r each 

11­20 Aj of the a i r gaps fo r which 
I ott IGAP=3 i n card 5.No more than 

Λ2 th ree gaps of t h i s type may be 
51­60 /otl p r e s e n t . 

18 1­10 E10.3 b . Coef f ic ien ts t h a t determine the 
11­20 bp neutron boundary cond i t ions a t 

ao the ou te r (b­jjbp) and i n n e r 
(ao,aH,a2) boundary of the sh i e ld 
( s e c t i o n s 2.7.1 and 2 . 7 . 2 ) . a2 

We recall that the set of values corresponding to the more 

usual boundary conditions, of no incoming current from out­

side the shield, and a given flux 0O at the core­shield 

interface, is in the order the following: 0.5, 0., 0., ­1., 

0o-

The next card refers to the calculation of the region in­

dependent Response Functions. 

'i? 1­5 15 NRIR Number of region independent R. F. 
to be calculated (if any).If 
NRIR=0, cards 20­21 must be omit­
ted. 

6­10 15 IFDOSE Should neutron dose rate be cal­
culated? 

0 No 

1 Yes 
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I f NRIR i s p o s i t i v e , NRIR s e t s of cards 20-21 must be p r o ­
vided, one for each region independent R. P. 

20 1-5 15 11 Limits of the sum in eq. (13) 
6-10 15 12 sec t ion (2 .9) 

11-70 10A6 Label to be p r in t ed as i d e n t i ­
f i c a t i o n for t h i s R. F. 

21 1-10 E10.3 F(I1) Values to be specif ied group-
11-20 F(I1+1) wise of the terms f. i n eq . (13 ) : 

use as many cards as necessary, 
with seven values per card. 

I f gammas fluxes are not needed, there are no other cards 
fo r t h i s problem. 

Cards 22-24 describe the space d i s t r i b u t i o n of the gamma 
source (G(Q) of sec t ion 3.2 .1) in each core region: two 
s e t s of these cards must be given for the two core regions . 
They are wr i t t en in the same way as cards 8-10 (see Table 8), 
but the columns 1-10 i n card 22 are not read. I f the shape 
of the gamma source i s the same as t h a t of the neutron 
source, cards 22-24 are the copy of cards 8-10. Note t h a t 
i f S (1 ) - f i s s ion dens i ty a t the outer edge of the f i r s t 
r eg ion- i s zero, the cards for the f i r s t region must not 
be i n s e r t e d ; the source desc r ip t ion for the second region 
must always be given. 
For plane or spher ica l source geometries (IGSS=0 òr 2) no 
o ther information i s needed; in the o ther cases , for each 
sh ie ld region, the shape of the t r a n s v e r s a l d i s t r i b u t i o n 
of the gamma sources, i n the form of a polynomial (section 
3 .2 .2) must be speci f ied . 

25 1-5 15 J Index of the region; J = 3 , 4 . . . 
NREG 
no. of coefficients of the po­
lynomial: NCF$ 6 
Coefficients of the polynomial 

Note that for infinite cylindrical regions only one coeffi­
cient A.=1 should be given. 

1-5 15 

6-10 15 

11-20 E10.0 
21-30 

J 

NCF 

A4 
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No other card for this problem; other problems (if N> 1 in 
the first card) continue with card 2. 

4.3 Choice of Mesh Intervals 
This section contains some suggestions for choosing the va­
lues of those input parameters which determine the mesh in­
tervals for the different calculation; they are punched in 
columns 41-70 of card 6. 
The mesh path d for the diffusion calculation is the ratio 
between the thickness of the region and the value of NDIF 
for that region; all the other intervals (see below) are 
expressed in terms of d. 
Inside each region the removal flux is calculated at in­
tervals d as d.NREM; the total neutron fluxes are printed 
at intervals d = d. NPRT; the gamma source are calculated 
at points separated by d = d.NGS; the spacing for printing 
the gamma fluxes is d= d .NGPR= d.NPRT.NGPR (this means 
that the results of the gamma calculations are printed only 
at points where the neutron fluxes have also been written). 
Note that the number of coefficients NGCF may not exceed 
the number of source values to be fitted, namely: 

NGCF ¿3fflT§ + 1 
must hold in each region. 
The values of d should lie within the range suggested in 
Table 9 for several materials: finer mesh should be prefer­
red where the neutron fluxes are less regular, e.g. within 
absorbing regions, or near boundaries between materials 
with different properties. 
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Table 9 

Recommended values of the mesh path d. 

Material 

Water 
Heavy Water 
Beryllium 
Graphite 
Aluminum 
Concrete 
Iron 
Lead 

d(cm) 

.25 

.70 

.50 
1.00 
1.50 
1.50 
.50 
1.50 

- .50 
-1.50 
-1.00 
-2.00 
-2.00 
-2.50 
-1.00 
-3.00 

d should be small enough so t h a t the removal f luxes can 
be approximated by exponent ia ls wi th in an i n t e r v a l d : 
the range 5.0-10.0 cm i s recommended for d . 
The running time of SABINE i s af fected mainly by two num­
b e r s : the number N1 of po in t s where the removal f luxes 
are ca lcu la ted and the number N2 of po in t s where the gamma 
f luxes are ca lcu la t ed ; they are 

J = 3 . _ , , ; N2 - ~ NP^T(J).SGPSIJ) N 1 
NREG NDIF(J) 

HfflÖfj) 

Sometime i t may be convenient to divide a region i n two 
or more p a r t s , i n order to have there d i f f e r en t mesh i n ­
t e r v a l s , to improve accuracy or speed. This happens mainly 
fo r water reg ions ; for them i n p a r t i c u l a r , cons idera t ions 
r e l a t e d to problems of under - and over-flow suggest to use 
water regions no more than 60 cm th ick , by subdividing i f 
necessary, i n more regions . 
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4.4 Output of the Program 
The output of the program does not require particular expla­
nations: the content of the title card (card 2) is printed 
as headline of each page of the output; labels have been 
provided for any quantity which is printed so that no dif­
ficulty should arise for their understanding. The input 
values are printed out in a way quite similar to how they 
are written in the input sheet, to allow for an easy check 
of them. 
The output consists mainly of three parts: the input data, 
the neutron fluxes and related magnitudes, and the results 
of the gamma part. 
In the second part, after the total neutron fluxes vs. 
distance from the core boundary have been printed for the 
26 groups, the results of each neutron Response Function 
(if any) are printed with the proper label. 
The third part starts with a description of the gamma sour­
ce distribution in the whole system: either given in input 
or calculated by the program. Then for any point Ρ at 
which the gamma fluxes have been computed, the following 
quantities are printed: 
- ζ distance of the point from the core boundary 
- G(IRS,IG), IG=1 to 7; IRS=1 to NREG; gamma flux at Ρ due 

to the energy emitted inside the gamma group IG, in 
the region 1RS. 

- Gamma flux per source region (sum over IG of G(IRS,IG)) 
and per group (sum over 1RS) 

- Total gamma flux 
- Total gamma dose, and the contributions of each group. 
- Gamma energy deposition, and the contributions of each 
gamma group. 
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CONCLUSION 

The SABINE program has been devised to provide an efficient 
tool for the solution of a wide class of practical shield 
design problems. 
A comparison between the predictions of SABINE and the re­
sults of experimental measurements for the shield of dif­
ferent reactors is in progress. Water, Iron and Concrete 
shields are being considered: the result of these compari­
sons will be the subject of a separate report. However 
from our experience up to now the calculations show a sa­
tisfactory agreement with measurements also for deep pene­
trations (s¿200 cm). 
The running time for a neutron problem in plane geometry 
is normally in the range from 5' to 15' on the IBM 7090; 
the time for a problem with both the neutron and the gam­
ma flux calculation is rougly the double. 
The results of SABINE, as well as of many other similar 
programs, are in general rather sensitive to the way of 
representing a given problem through the input data 
(choice of the geometry indexes, description of the ra­
diation sources, boundary conditions, parameters for the 
numerical integrations, etc.); the user should carefully 
read this report and pay attention to the input prepara­
tion in order to save man and machine time, and to get 
reliable results. 
For questions concerning the understanding of the report, 
the data library, or the use and results of the program, 
the reader may apply to Dr. C. Ponti - EURATOM ,T..C.R., 
C.C.B. Ispra (Varese) Italy. 
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APPENDIX A 

The Factorization of the Diffusion Equation 
The following procedure is different but equivalent to that 
suggested by E. C Ridley 12 
Eq. (8) may be rewritten in the form 

I0"(r)+ | 10·- 0(r) + S(r)= 0 (A1) 
D and are region dependent constants. 
One looks for two functions U (r) and V(r) which satisfy 
the following equation 

I0'(r)+U(r)0(r)+V(r)=O (A2) 
when 0 ( r ) i s the solution of (A1). 
By deriving eq.(A2) we have 

D0W+U0'+U,0+V,= 0 

Inserting here 0' as solved from eq.(A2) we get 

D0"=0(52-U')- V+ Sg: (A3) 

Now substitute 10" from eq. (A3) and 10' from eq.(A2) into 
(A1) and have an eq. in 0: 

0(§2-υ·-|υ- )+JjJ-v«-|v+s-o 
In order that this becomes an identity the two following 
equations must hold: 

and these are the first order differential eqs. that deter­
mine U and V respectively. 
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APPENDIX Β 

The Solution of the System of Differential Equations (9) 

In Appendix A it is shown how the diffusion eq. 

D0»(r) + | 3#'(r) ­ 0(r) + S(r) = 0 (B1) 

may be separated into the following equivalent system: 

2 u
' - S - I

 u
 - <

B 2
> 

V = Y(J - |) + S (B3) 

DØ' + UØ + V = 0 (B4) 

This system may be solved, integrating eqs. (B2, B3 and B4) 

one after the other. 

Now let t = Kr, being K =/21/D>0, and write 

'0 = d0(t)/dt 

and similarly for the other functions; the above system 

becomes 

Û = U
2
/KD ­ PU/t ­ KD (B5) 

V = V(U/KD ­ P/t) + S/K (B6) 

KDØ + U0 + V = 0 (B7 

Eq. (B5) is a Riccati equation, which can be transformed 

into a known second order differential equation through the 

substitution 

U a -KD |UÌ n(t) A 0 (B8) 

Eq. (B5) becomes now 

Ρ 
τ ü + ? n­η = 0 (B9) 

The general solution of (B9) is known for the three geome­

tries; they are generally dependent from two coefficients, 

which are determined from the boundary conditions; but since 
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we are interested only in the ratio n/n that determines U, 

we do not care for a proportionality factor, .so that the 

solutions of (B9) may be written respectively: 

Ρ = 0 n(t) = Be^e"* 

Ρ = 1 n(t) « BI0(t)+K0(t) 

Ρ = 2 n(t) = (̂Bê ­e""*) 

(B10) 

I0(t) and Ko(t) are the modified Bessel functions of zero 

order. 

Now assume tha t the sh ie ld conta ins Ν regions with outer 

r a d i i r . , j=1 to Ν (Fig . B1), and l e t 

t 4 . = K^r. Λ 

*J2 " V j 
t,.^ "fĉ i? i e t l i e i n ^ e r v a l o f * corresponding to the j 

region with inverse dif fusion length K. »!■£: ' D j 

th 

ir. 

reg. Λ 

η γ
Η . Γΐ 

Fig. B1 

Let the boundary condition for the function U(t) be 
D < % , 2 > = % 

then eq. (B8) at t = t^ 2 gives 

Ά " ή (%,2) 
n ^ N . 2 ; (B11) 
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and this equation determines the coefficient Β of (B10). 

Once n(t) and U(t) are known for the last region, one com­

putes U(t„ ­) at the left boundary, and since U has to be 

continuous 

ïï
<Vl,2> =«%,!> 

Similarly one can evaluate a new coefficient Β for the 

function η (t) in region N­1. 

This process is continued until n(t) has been determined 

in the whole shield. 

Now using (B8), eqs. (B6) and (B7) become 

V = ­ V ( | + | ) + | (B12) 

These are linear first order differential eqs. the integral 

of which can be easily written. 

If the initial value forV(t) is 

V ( t
N,2

)
 =

 V
N
 ( B U ) 

then, as it may be directly checked, the solution of (B12) 
XT. 

for the Ν region i s 

Vrø­fJv^^V­lfswAwa«] (B15) 

Now being V continuous through the interfaces 

v(t N | 1) =v(t H_ 1 > 2) =T,., 

and decreasing the index from Ν to 1 i n (B15), the program 

c a l c u l a t e s the function V proceeding stepwise from the ou t e r 

ÜO the inner regions . 

Then the so lu t ion of (B13) may be wr i t t en for the f i r s t 

sh ie ld ing region: 

t 

9^ -
n
L KDJ ftW n(\tÌJ 
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being 0Λ = 0(ti 1) the boundary value for the flux, l 1,1 
A boundary value for the second region is taken as 

* 2-Λ*2,1> -«*1,2> 
and increasing the index from 1 to Ν , the program computes 
finally the flux, proceeding stepwise from the inner to the 
outer regions. 
The method outlined provides an analitical solution of the 
diffusion equation, except for the fact that the integrals 
appearing in eqs. (B15) and (B16) are evaluated numerically 
by the program. 
The choice of the mesh path for the numerical integration 
(performed with the Simpson's rule) is less delicate than 
in the finite difference methods, and the mesh path requi­
red to get a given accuracy is now greater than that needed 
with finite difference method, with a corresponding saving 
of machine time. 
Recommended values of mesh interval are given for some ma­
terials in Table 9; in general it should be chosen in such 
a way that the mesh interval t in terms of the variable 
t be 

At ̂  5 
All the above analysis holds if the following requirements 
are fulfilled: 
a) K>0 
b) t >0 when P>0 
c) n(t)=£o 

Condition a) is satisfied for all media but vacuum, for 
which a particular treatment is needed (see section 2.8). 
Condition b) implies that for cylindrical or spherical geo­
metries the origin f0 of the shield is positive, since the 
point r =s 0 is a singularity. 
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Condition c) is verified in all the "physical" problems: 
actually it is easy to see that the function n(r) is, 
except for a proportionality factor, a solution of the ho­
mogeneous diffusion equation, satisfying the outer bounda­
ry condition 

b0Dn'(r) + b.,n(r) = 0 at r = RQ 

which is the homogeneous eq. corresponding to (8.b). 
In other words n(r) is a solution of the homogeneous pro­
blem, that is the original problem, in which it is set 
S(r)=0 in eq. (8), b2=0 in eq. (8b), and neglecting eq. (8a). 
More precisely one can see, by proceeding analitically, 
that the function n(r) may never be equal to zero if b../b0 
is positive, which is always true at the outer boundary of 
a shield. 
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