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SUMMARY

This report describes the theory and the use of a program for bulk
shield design, written in Fortran IV for IBM 7090 or 360.

The removal diffusion model has been applied ; particular attention
has been paid to the treatment of the removal sources in the diffusion

equations.

Neutron fluxes for 26 energy groups and gamma fluxes for 7 groups
are calculated in plane, cylindrical and spherical geometry.

Experimentally determined removal c¢.s. are used for the more
important shielding materials.

Gamma sources include the radiation emitted either by fission or
neutron capture or inelastic neutron scattering. Three forms of region
dependent build-up-factors may be used to determine the gamma
fluxes : build-up-factors for 6 materials have been calculated with the
BIGGI 3 gamma transport program.

Other quantities calculated by SABINE may be any neutron response
function, gamma dose and energy deposition.
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SABINE (
A ONE DIMENSIONAL BULK SHIELDING PROGRAM +)

INTRODUCTION

This report describes the physical foundations, the mathe-
matical methods, the structure and the use of the program
Sabine.

The code is the result of an effort of formulating and
applying the Removal-Diffusion model in a way as accurate

as possible, of solving a wide class of shielding problems,
taking into account several possible geometries of the
gource and of the shielding regions, and of providing the
maximum amount of information concerning neutron and gamma
penetration, heat deposition, or reaction rates.

The Removal-Diffusion model is a way of solving neutron
penetration problems suggested about ten years ago [1]: it
has been applied with more or less refiniments in several
programs for shielding calculations [2, 3, 4). On the ba-
gis of the experience made up to now on these programs,

the authors think that this method of solution is satisfac-
tory and efficient, at least when applied to massive hydro-~
geneous shields, and that the recourse to more sophisticated
methods, does not give generally an increase in accuracy
such as to compensate for the greater cost.

An experimental program of removal c.s. measurements, develo-
ped in connection with the Padova University [5), has provi-
ded the basic data; on the other hand special care was ta-
ken for applying the Removal-Diffusion method in a way as
coherent and general as possible.

SABINE is a Fortran IV program for IBM 7090 or 360. It
calculates the following quantities as functions of the
distance from the core boundary:

a) Neutron fluxes for up to 35 groups
b). Total neutron dose rate
c) An integral over energy of the total neutron flux times

(+)
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d)

e)

The
ded

an arbitrary response function, e.g. reaction rate,
activation, etc.

Gamma fluxes for up to 7 energy groups, separating the
contributions of the different source regions.

Gemma heating and dose rate.

gamma flux is obtained as the product of the uncolli-
flux times a region dependent build-up-factor, which

ig interpolated from a proper table of values. Tables of
build-up-factors for several materials and gamma groups
have been calculated by the BIGGI 3 [6] gamma transport
code.

The

development of the program SABINE has been the object

of a collaboration between the Shielding Group of EURATOM-
Ispra, the A.E.G. Kernenergieanlagen in Frankfurt/Main, the

A. I

V. BURO in Darmstadt, and the "Arbeitsgruppe fir

bautechnhischen Strahlenschutz der T.H, Hannover".

The

program is available through the E.N.E.A. Computer Pro-

grem Library.



1.

DEFINITION OF THE PROBLEM,

1.1 Sources of Radiation

The program SABINE determines the energy dependent neutron
and gamma fluxes through a shield assembly composed of 1

to 20 homogeneous regions, which surround a source (core)
composed of two regions.

The neutron source is a fission density distribution inside
the 2 core regions; the gamma source is the sum of 3 terms:

a) gamma radiation emitted by figssion and fission products
at equilibrium,

b) neutron capture gamma rays,

¢) radiation from inelastic neutron scattering.

In the core regions the gamma source may take into account
all the 3 terms; in the shield, only items b and c¢ are
considered.

1.2 Geometry

The geometry of the core is defined by an index IGRC which
may take four values, corresponding to the following possi-
bilities:

Table 1
IGRC Geometry of the core
0 Infinite plane slab
1 Finite or infinite cylinder radiating in radial
direction
2 Sphere
3 Finite cylinder radiating along its axial

direction (Disk geometry)




In the different cases, the two core regions may be respec-
tively: 2 plane slabs, a cylinder surrounded by a coaxial
cylindrical annulus of equal or unequal height, a sphere
surrounded by a spherical shell, two coaxial cylinders with
equal or unequal radii (Fig.1). This last case is for
instance that of the axial shield of a cylindrical reactor.
A particular feature of the SABINE program is that the
geometry of the shield can be approximated in different
ways for the different calculations to be performed. This
fact has mainly two reasons: with the aim of saving ma-
chinetime, the real geometry can be approximated with a
simpler one for a particular type of calculation for which
this implies tolerable errors; furthermore, if our inte-
rest is focused over a gi#en quantity or region of the
agssembly, we can choose the geometrical representation
which is more convenient for that. '

In what follows we will call "primary gamma" +the radiation
originated from sources inside the core, and "secondary
gamma" the radiation produced by the gamma sources inside
the shield; besides we note that in the frame of our mo-
del, the primary gamma flux and the removal neutron flux
obey to equations which are formally equal.

The shield geometry for the different possible calcula-
tions is defined by the following indexes:

IGRS: for the Removal neutrons and primary gamma fluxes
IGDS: for the solution of the Diffusion equation
IGSS: for the calculation of the Secondary gamma fluxes,

These indexes may take the values:

0] : the shield regions are plane slabs
1 : the shield regions are cylindrical annuli
2 the shield regions are spherical shells

Furthermore the case IGSS=3 is possible: in this case the
shield regions are assumed to be cylinders, radiating along
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Fig. 1 Possible core geometries; neutron and gamma fluxes are
calculated along the horizontal axis.
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their axis, similarly to the case IGRC=3 (Fig.1); this
situation will be called briefly "disk" geometry. Most

of the funning time needed by SABINE is spent in calcula-
ting the removal neutron fluxes and the gamma fluxes, and
these calculations are more time consuming for spherical
and mainly for cylindrical geometry: when possible the
indexes IGRS=0 and IGSS=0 or 3 should be preferred.

Table 2 summarizes the possible combinations of the geome-
trical indexes; the index IGDS is not dependent upon the
others, and may be quite arbitrary. It happens frequently
that one has to solve problems for which a "disk" geometry
. is preferable for the removal flux calculation and a sphe-
rical geometry for the solution of the diffusion équation.

Table 2
Combination n° | IGRC ' IGRS IGSS
1 0 0 0
x 2 1 0 0
x 3 1 0 3.
4 1 1 0
5 1 1 1
6 1 1 3
x 7 2 0 0
x 8 2 0 3
9 2 2 -2
10 2 2 0
11 2 2 3
12 3 0 0
13 3 0. 3
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In the cases indicated with =, the outer surface of the

core and the inner surface of the shield are not coincident,
but only tangent in one point or one linet the space between
them is assumed to be filled with the material of the first

shielding region, but no gamma sources are considered there.

1.3 The ‘Shield Regi ons

The shield is composed of 1 to 20 regions numerated from

3 ont regions 1 and 2 are the core regions. Any region may
contain a number of elements (or isofopes or compounds desori-
bed in the library) emaller or equal to 10. Among the shiel-
ding regione there can be air gaps: inside the gaps the
diffuesion equation ie not solved (see section 2.8) and no
source of secondary gamme radiation is considered there.

The first and last region of the shield must not be a gap;

two air gape must not be side by side. ‘
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2. CALCULATION OF THE NEUTRON FLUX.

2.1 Neutron Energy Group Structure

In what follows reference is made for sake of simplicity
to the group structure of the neutron data library prepa-
red for SABINE, that is presently in use; however the ar-
guments can be easily generalized for a different choice
of the energy groups. '

The energy limits as well as other details concerning the
neutron groups are given in Table 3. _

The energy renge between 0.5 and 18 Mev has been divided
into 19 removal groups, having roughly constant energy
width; the calculation of the total neutron %lux is per-
formed in a 26 groups scheme, that covers the energy range
between O and about 15 Mev, with lethargy intervals of 0.5
- 1. .The number of these groups and their energy range have
been chosen mainly on the basis of the following conside-
rations:

1) The slowing down length of each group must be smaller
than the relaxation length of the penetrating component,
described by the removal flux.

2) The energy width of the groups should be narrow enough,
in order that the dependence of the group averaged c.s.
upon the weighting spectrum be not important.

3) The lethargy mesh should be more fine in the fast region
than elsewhere because: a) this is the most important
part of the spectrum to be determined; b) it is general-
ly the most penetrating component; c) the presence of
the inelastic scattering implies a detailed treatment
of the transfer matrix.

4) The running time for the calculation of the neutron
diffusion and slowing down in SABINE, using the maximum
number of groups ,35, allowed by the program, is about
the same as the time needed for the removal fluxes cal-
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TABLE 3

Energy Structure of the Neutron Groups in the Present Library

i By du n | B (MeV) X,
1 18, 3.359,-6
° 18, Hev - _ U 2 16,5 1.348,-5
3 14,918 .062,-5
4 14, 54080, -5
2 1%- 1.;60,-4
— 1 L4 20 30,"4
1 14,918 9 k I 255 14
8 10, 1.310,=)
9 9. 2.86 ,-3
10 8., 6.15 ,=3
- — \ 11 70 1018 ""2
12 6.065 | 2.10 ,~2
2 60065 .5 13 502 3048 ""2
_ 14 4.28 s_gg ,-2r_
15 30 7. 9 -
3 3.66 *3 /116 3.00 | 1.337-1
‘ 2.23 la — —— cm—— 18i m3 !osic,-1 ‘
s 10 S ° 1 1. T.BU! -T
3 B21.keV .5 — 19 . ERTRSER =1V
7 498, ) > -
8 T 302, 25
9 183. o15
10 86.5 1,00
1 31.8 1.00
12 11.17 1,00
13 4.)1 1.00
14 1.58 1.00
15 583, oV 1,00 1 index of the diffusion groups
16 214. 1,00
17 18.9 1.00 EH upper energy of the groups
18 29.0 1,00
19 10.7 .15 du lethargy width
20 5.04 o9
21 3.06 5 n removal groups' index
22 1.85 o5
23 1.12 o5 'Xi fraotion of fission neutrons
2; f?i :'?28 emitted into the 1B group
26 +200 -
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culation, in plane geometry, and smaller for cylindrical
and spherical geometry, and hence reducing the number of
groups does not mean, in general, an important saving.
The upper limit of the highest energy group has been cho-
gsen higher than necessary: it could be reduced, but not
too much if one is interested in the knowledge of the
fast spectrum.

2.2 The Source Distribution for Removal Neutrons

The program considers as neutron sources the fission neu-
troms generated inside region 1 and 2. For both of these
regions the program computes the number of neutrons Sn(Q)
enitted with energy corresponding to the removal group n,
per unit volume and time at the point Q, as

SA(Q) =% xaYF (@)

$ = fission density at the outer edge of the region
(fissions/cm>. sec)

Xn = fraction of fission neutrons released in the nth
group according to the Cranberg fission spectrum.

Y = average number of neutrons per fission = 2.46

F(Q)= function describing the space dependence of the fis-
sion density in the region considered.

For the different possible geometries o the source regions
(efr. section 1.2 and Fig.1), F(Q) may have the different
forms considered in the following.

2.2.1 Plane Geometry, IGRC=O

In this case the function depends upon one variable z';
F(Q)=F(z'). The z'-axis has the origin on the outer face of
the region and is oriented towards the inner of the region:
we have for instance (see Fig.1)

in region 1 z} = t, -Z (1a)

and in region 2 1z} = t+t,-2 (1p)
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F(z') must be normalized in such a way to have the value
1 on the outer boundary of the region: F(0)=1.
The function F(z') may be specified in two ways:

a) pointwise, that is providing (M+1) values Fp at
equidistant points:

t
Fm.':. F(z'm)’ Z:'m.= (m-1)M_ ’ m = 1,2,-..,M+1

where t 1is the thickness of the region.
Necessarily

F,= 1 and M £50

In this case the program computes the J coefficients
of the polynomial of degree (J-1) which best fits,
in the least squares sense, the given space distri-
bution.
J -1
F(z)=Z 3,2 (2)

)-1
A value for J€ 10 must be precised by the user.
b) the J coefficients of the polynomial can be given

as input data: also in this case J< 10 and a 1

1=

2.2.2 Cylindrical Geometry, IGRC=1

We assume in this case
F(Q)= h(r').g(z)
In region 1 and 2 we have respectively (see Fig.1)

' pre-d -
r1 = t1 r

ry = t,+t,-T | (3)
The geometry and the function F(Q) are supposed to be
symmetrical around the z-axis and the plane z=0: g(z)=
=g(-z), 80 that g(z) needs to be specified only for posi-
tive z. The function g(z) is given the form (2), and can

be determined either directly through the coefficients
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aj(a1=1) or providing a table of values gm=g(zm) with
zm= (m—1)MM’ m =1,2,...,M+1’ M 50, g1=10
The function h(r') may teke one of the forms:

h(r') = e (4a)

h(r') - by rd=1 =1, I€10° (4b)
If the form (4a) is chosen, the value of k has to be given;
if the form (4b) is chosen, the user has to provide the
coefficients bj’ or a set of values hm =h(rﬁ), for M+1
equidistant radial points, with r}=0 (outer surface),
rﬁ+1 on the inner surface, and h1=1: in this case the
coefficients bj are calculated by the program.

2.2.3 Spherical Geometry, IGRC=2

In this case the source distribution is sgain a funotion
h(r'); r' has the form (3) and h(r') has the same form,
description and limitations as the corresponding function
in cylindrical geometry.

2.2.4 Disk Geometry, IGRC=3

As explained in section 1.2, this expression means that
the source regions consist of two cylinders which are
shielded in the direction of their axis; in this case the
distribution function is |

F(Q)= h(r)g(z')

r is the distance of the point Q from the z axis, and z' is
the distance between Q and the right boundary of the region
as in (1). : |

The possibilities and restrictions for h and g are the sa-
me as described in section 2.2. 2.
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2.3 Removal .Flux Calculation

The removel flux is calculated (see for instance ref. 1)
as the flux of neutrons which have not suffered "removal"
collisions.

For each of the 19 groups the contribution to the removal
flux in a point P, due to a differential volume element
dV around the source point Q (for isotropiec source) is

aFT(P) = ﬂﬂ)-%%ﬂl av (5)

AR
where
8(Q) = source strength in Q for the group considered
(neutron/cm sec)
K(P,Q)= exp[_[z (s)ds]
= region dependent macroscopic removal c.s.
The removal flux in P is the result of the integration of
eq.(5) over the source volume: this is a numeriocal inte-
gration which is performed as reported in Part 3. The point
P may move along the r or z axis shown in Fig. 1 for the
possible geometries. ‘
After the removal fluxes and the removal collision densities,
have been calculated for each of the 19 groups of Table 3,
namely

F7(P) and Fy z:;' (P)y n = 1,25.4419
these are added to get removal fluxes and collision densi-

ties corresponding to the broad groups i.
For instance for the group i=2 one has

R, flux $, (7)< i Fo (P)

R. collision dens. C (P)= F (P)Z ®)

Note that at the interface between two regions the program
calculates two values of the collision density, because this
function is discontinuous there. '
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2.4 The Source Terms of the Diffusion Egquations.

The coupling of the removal neutrons into the diffusion
equations, through the source terms, has to be considered
carefully when epplying the R.D. (Removal Diffusion) mo-
del, especially if one wishes to get from this simple
description of the physical reality a good estimate of

the neutron spectrum.

On one side we have a R. flux - describing the fast nsutron

- penetration- which strictly refers to the empirical idea
of R. c.8., and on the other the set of multigroup eqs.
that describe the neutron diffusion and slowing down,
within the frame of the D. approximation. The slowing down
of neutrons should be accounted for through a proper
transfer matrix: the same matrix will be used either for
the R or for the D neutrons, despite of the fact that their
spectra are in general different; however they should not
be 80 much different as to produce important deviations
in the average of the c.s. over the energy interval of the
same group. As shown in table 3 the lethargy width of the
fast groups is about 0.5. ,

The calculation of the total transfer matrix will be consi-
dered later: it will require some particular remarks, when
applied to the R. flux. The following notation is used:

¢§ (z) removal flux of group i at the point z

Ci (z) removal collision density for the group i at z
~Z§ macroscoPio-absorption c.8. of the ith group
)} macroscopic total transfer c.s. from the ith to

the Jth energy group.

The following balance of the neutrons removed from the
ith group, per unit volume and time at z holdg:
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¢§ (z)ZZg are absorbed

ﬂi (z)Z::i enter as diffusion neutrons into the i1
group (the meaning of the x is explained
below)

g (2) By go into the ' group (j>1)

¢i (z)ZZi-Ci(z)are removed from the group i.

It is clear that the sum +the first three terms, which

gives the total number of neutrons removed from group i

(per unit volume and time at z) must be equal to Cr (z),
otherwise the neutron balance is not saved.

This remark may seem to be obvious, but if we think that

on one side the absorption and transfer c.s. are calcula-
ted from the basic c¢.s. under given assumptions for the
elastic and inelastic scattering, and on the other side

the R.c.s. 18 obtained largely, on an empirical basis, with
arguments quite indipendent from those which determine,

the calculation of the other c.s., then we realise .that
generally the neutron balance is not automaticly respected,
but must be explicitly imposed. The sum Z‘-i’ +Z-].’i ‘"+Z'i,i+1"‘"
is the total, and not the removal c.s. This discrepancy is
originated from the fact that the calculation of the transfer
c.s8., takes inté account as usual, the elastic and inelastic
scattering, and impliedly accounts also for those colli-
sions (which do not produce important energy loss or angu-
lar deflections) entering the term Zzii’ which do not re-
move actually the neutron from the virgin beam.

In order to be coherent with the assumptions of the model,

a new set of diagonal terms4zal of the transfer matrix

" will be calculated, imposing that the balance of the re-

moved neutrons be saved, namely:

¢=Z. +Z +Z|. \,+l+Z:\,b+2.
or | 2: Z" "'(Z‘ ""Z‘\. bl "'Z‘u\,-ﬁ-z )— (6)
IP e S
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The other(non-diagonal) terms of the transfer matrix ac-
counting for collisions that imply imporiant energy losses,
will be calculated in the usual way (section 2.5.2). J

The sum of the terms enclosed in parenthesis in (6) will

be indicated with Z:out because it accounts for all those
collisions which produce the loss of a neutron from the '
ith energy group.

It is now possible to write the source terms of the dif- -
fusion equations, considering all possible neutron transfer
as indicated in Table 3; the assumption is made that in the
"zero" group (above ~ 15 Mev) there are only removal neu-
trons, and these may be scattered only into the first group;
The source term of the first diffusion equation will hence

be:
8,(2)= CX(2)-L #2(2)485(2) X, (1)

The solution of this equation will be ﬂd(z), that ie the
diffusion flux of the first group and ¢ (z)—¢ (z)+¢r(z)
will be the total flux of the group.

Similarly for the following groups one has (omitting the
space dependence):

Sp= #1200+ Z3p
53= 115 3 02 %5, 3103 5

6= ‘5121,6*‘”2 Z:'2,6""“""552:5 6% Z'*

m.....

From the 7th group on, that is below about 0.5 Mev, the
R. flux is neglected:

127 Si= B, 5 3+ By Top yheeetBy 1 2uig g

\'4
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2.5 Group Cross-Sections Library

2.5.1 Data for the Removal Flux Calculation

These are of two kinds: the fission neutrons spectrum and
the energy dependent removal c.s.
The fraction of fission neutrons emitted in the n
group has been calculated on the basis of the Cranberg fis-
sion spectrum, and are written in Table 3.

th removal

The energy dependent removal c.s. come from different sour-
ces of information: if available, measured values have been
chosen, as for H20, Pb, C, Fe and Al, which have been measu-
red at the 5,5 Mev accelerator of Padova [5]), where other
measurements for different materials are foreseen in the
next future.These data will be included in the library as
gsoon as they will become’ available. For the other elements
or isotopes the compilations of Greenborg [7] and Avery [2]
have been used.

2.5.2 Data for the Diffusion Calculation

The following microscopic group c.s. are needed for the
diffusion calculation:

' Gg absorption c.s. for the "zero" group to be put into

eq. (7)

6; ; total tremsfer c.s. from the jth

to the-jth group.

sgut this c.s. accounts for all the collisions that remo-

ve the neutron from the ith

down or by absorption; it is 67%%= 81°%_ 6, ..
o1

Gitr transport c.s. of the 10 group.

group either by slowing

The above quantities have been calculated for the "elements"
listed in Table 4, using the General Atomic basic c.s. 1li-
brary, through the GGC II{E]program that is the combination
of GAM[9] and GATHER [10]. GAM calculates the fast spectrum
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in the B-3 approximation, and GATHER the thermal spectrum
in the B-1 approximation, for an homogeneous medium. Group
(either micro or macro-scopic) c.s. are then averaged over
the calculated (or optionally provided as input) fast gnd
thermal spectra.

The elastic scattering kernels are correct to sixth order
for anisotropic scattering in the C-M system; inelastic
scattering is assumed to be isotropic in the L-system. The
energy degradation by inelastic scattering is calculated
considering the excitation energies when these are known,
or using the evaporation model when they are not known.
Further details are to be found in [9,10]. As pointed out
in section 2.1 the energy width of the groups is narrow
enough, so that the group averaged c.s. do not strongly
depend on the spectrum; for the c.s. of many elements this
has been checked, but nevertheless exceptions to this rule
are possible. The weighting spectrum used hitherto is the
slowing-down spectrum due to a fission source in water.
Other data can be added to the library for the same or
different elements using an arbitrary weighting spectrum.
The program SABLIB has been prepared to read the data pun-
ched by GGC, to fearrange them, to read some other libra-
ry data (e.g. the removal c.s.) and to write them on the
Library Tape for SABINE,

Data for the 37 "elements" listed in Table 4 are now availa-

ble for the energy group structure of Table 3., Data for

other elements or different energy arrangements or weighting

spectra can be provided on request.
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Table

4

Materials included in the Library and corresponding
identification numbers.

Material ' Id. no. Material 14. no.
Hydrogen 1 Iron 26
Deuterium 2 Cobalt 27
Iithium 3 Nickel 28
Beryllium 4 Copper 29
Boron 5 Zinc 30
Carbon 6 Zirconium 40
Oxigen 8 Molybdenum 42
Sodium 11 Cadmium 48
Magnesium 12 Indium 45
Aluminum 13 Tin 50
Silicon 14 Barium 56
Phosphorus 15 Dysprosium 66
Sulfur 16 Tungsten T4
Water 18 Gold 79
Potassium 19 Lead 82
Calcium 20 - Uranium 235 235
Titanium 22 Uranium 238 238
Vanadium 23
Chromium 24
‘Manganese 25
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2.6 Solution of the Diffusion Equation

Once the removal flux has been calculated, the program
computes the source terms of the multigroup diffusion
equations as explained in section 2.4. Then for each neu-
tron group i, we have to solve an equation of the fol-
lowing kind

D [#"(r)+ E £ ()} -Z@(x)+8(x)=0 (8)
D is the diffusion coefficient calculated as'1/32:tr

Y= ro%, 182 B2 15 the buckling to account roughly for a
possible transversal leakage

>"Tangd =Wt ore evaluated for any group and region from

the microscopic c.s. of the elements which are pregent
in the region: the microscopic c.s. are considered in
gsection 2.5.2

P is a geometry index (the same as IGDS in section 1.2)

P = O means plane geometry
P = 1 means cylindrical geometry
P = 2 means spherical geometry

One has to find the solution of eq. (8) satisfying the
following boundary conditions:

a°D¢'+a.1¢+a2 = 0 at the inner boundary (8a)
b°D¢'+b1¢+b2 0 at the outer boundary (8b)

Continuity of flux and current through the internal
boundaries is assumed.

Appendix A shows how the second order linear differential
equation (8) can be replaced by the following equivalent
system of three first order differential equations

i
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M GO (92)
v o= v(-%- - -IZ°-)+s (9b)
DF'+UB+V = O (9¢)

This system has several advantages: the function U(r) can
be easily solved from eq. (9a) and inserted into (9b),
which is a linear first order differential equation sol-
vable through standard formulas; the functions U and V
can then be put into (9¢) which is similarly solved for
#(r); the continuity conditions for flux and current are
easily satisfied by imposing continuity to the functions
U(r), V(r) and #(r), as it is shown by eq. (9c¢); the
‘boundary conditions expressed in general form by eqs.
(8a) and (8b), are easily converted into boundary condi-
tions for the functions U,V and @, because (8a) and (8b)
are formally similar to (9c).

Actually the outer boundary oondifion‘ is satisfied if
we put:

U(Re)= b1/bo} at the outer boundary (10)

V(Re)= b2/b° R, of the shield

With this starting values for the functions U(r) and V(r),
the eqs. (9a and b), cen be integrated (Appendix B) pro-
ceeding from outside to inside: once the values U(R;) and
V(Ri) at the inner boundary of the shield are known the
quantity: -

- V(Ri)

. 8,
#(my) = 8,U(R; )-8 (11)

1

is taken as inner boundary value for the function #(r)

~ (see below), then eq. (9c) is integrated proceeding from
inside to outside, as shown in Appendix B.

Eq.(11) is the result of writing (9c) at the inner boundary,
and solving the system of this equation together with’eq.
(8a), to obtain the boundary values of flux and current.
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2.7 Boundary Conditions

It is useful to make a few more remarks about this subject.
The user has to provide a proper set of coefficients a,,
8,y 8, and b1, b2 to represent the particular boundary
conditions of his problems.

2.7.1 Quter Boundary

The coefficient b, is not allowed to be zero (that would
produce non limited values of U and V in eq. 10), so that
it has been fixed once for ever by=1; only b1 and b2 need
to be specified to the program. As a consequence of that,
it is not allowed to specify the outer value of the flux
(which is assumed to be a result and not a datum of the
problem). The usual condition at the outer boundary is of
zero incoming current, that is

PRI T

and this corresponds to the choice b,=.5, by=0, (be=1).
Similarly a linear extrapolation distance 4= x4+ 1is
expressed by b1=D/d, b,=0, being D the diffusion coef-
ficient of the extermal region.

2.7.2 Ipner Boundary

Here are a few examples of inner boundary conditions,
If one needs to define a boundary value of the flux

ao= 0
#(R3)= Bo, then the set a,= -1
a2= ¢°

into eq. (8a) realizes the required condition.
Similarly one can impose:
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All the above boundary conditions are applied to the
diffusion flux, that is to the solution of the
diffusion eq.; and hence in those neutron groups (1 to 6
for the scheme of Table 3) where a D. flux and a R. flux
cohabit, the total flux will satisfy different boundary
conditions. The only exception to this rule is the case
a,=0, which corresponds to a given boundary value of the
flux: in this case the program treats. it as a total flux;
the boundary value for the D. flux is given in such a ca-
gse either by the difference total flux minus the computed
value of the R. flux at the boundary, or it is set equal
zero if the difference were negative.

2.8 Air Gaps

SABINE can take account of the effect of air gaps inside
the shield through proper conditions connectig the va-
lues of flux and current on the two sides of the gap. Let
Tyy Tp be the position coordinates and J1, J2 the values
of the net current at each side of the gap: J(r)= -Dg'(r) .
Two different treatments of the gap are allowed.

2.8.1 P1 approximation

If the thickness of the gap is small compared to its

transversal dimensions, and hence the transversal leakage
is negligible, then the P1 approximation [11) states the
following equations for the flux and current through the

gap:
WP
J r2
- (3 (12e)
g, 4

= Jy= 5 - Iy fpld)  a=7/7, (12v)
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_whére fP(q) is a function depending on the geometry:

for plane geom. (P=1) f£o(q)= 1

for cylindrical geom. (P=2) f1(q)= ;_(gc_zj._n_q_ +{1_——q_§) |
for spherical geom. (P=3) f2(Q)= 1-(1-q2)3/2

Note that in the first cese flux and current are continuous
through the gap.

2,8.2_A Different (Optional) Treatment

If the air gap is thick, relations different from (12) may
be required in order, for instance, to take into account |
the transversal leakage in plane or cylindrical geometry.
SABINE can take account of discontinuity conditions for
flux and current through that region, in the form

¢2 = °(¢1 3 oA>0

Jo = p Iy pAO
In this case the user has to provide a couple of values o<
and 3 for each neutron group.
The pregence of gaps in the problem to be solved is subject
to two restrictions: namely the first and the last region
of the shield cannot be air gaps, and two gaps cannot be
side by side. No more than 3 gaps of this type may be pre-
gent. : S

2.9 Responge Functions

SABINE can optionally evaluate three kinds of Response
functions.

: |
8  RG=Z P& 5 1ci sl <08 (13)
|,=\.‘



b)

c)
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This is the integral over energy of the total neutron
flux times an arbitrary function of-energy, which has
to be specified group-wise. In this way the program can
provide for instance dose rates, reaction rates, fast
or epithermal flux (f;=1 for the proper groups) and so
on.

The response function f;, may be region dependent (such
as that required to evaluate for instance heat deposi-

tion or activation); in this case the user has to pro-
vide a table of values for each region; then SABINE
computes the function (13) inserting for f; the table
of the region to which X belongs.

A third possibility has been devised to calculate the

reaction rate of threshold detectors. These are at pre-
sent the tool most frequently applied to get information
on the fast region of the neutron spectrum.

'Maor0900pic c.8. for such detectors may be provided for

each of the removal groups, that are finer than the
diffusion ones. (see Table 3). The program itself calcu-
lates the broad group c.s., by averaging over the com-
puted removal spectrum: for any region R

%;:.ZL'§'CK )
LR S $T(xa)
AEL th
22 is the (input) value for the c.s. in the n’? remo-

val group}

¢r(xR), n=1,2,...19 is the removal spectrum in the

middle point of the Rth region.

The sums are extended to those fine groups which lie in-

eide the broad group i(i=1,2y...6)
Then at any point X belonging to region R the program
evaluates

6
T(x)=lz'-:':1 ﬂi(x)zi,R

Note that generally this function is discontinuous at
the interfaces between two regions.
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3. CALCULATION OF THE GAMMA FLUXES.

3.1 Group Structure

SABINE can compute the space distribution of the gamma
fluxes for 7 energy groups. This number is practically
fixed by the gamma datae library which is used: to change
this number (or the number of neutron groups) a new li-
brary needs to be provided. The library presently in use
implies the seven groups scheme shown in table 5. The
subscript g, &=1 to 7, will be used to denote gamma ener-

gy groups.

Table 5
Gamma group Energy limits (Mev)
1 O. - 1.0
2 1.0 - 2,0
3 2.0 - 3.0
4 3.0 - 5,0
5 5.0 - 7.0
6 7.0 - 8.5
7 8.5 - 10.0

3.2 Gamma Sources

Inside the core regions, namely regions 1 and 2 three kinds
of sources may be considered:

a) Gamma rays from fission
b) Capture gamma rays
¢) Inelastic scattering gamma rays.
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Item a) includes prompt gammas emitted by fission and gam-
ma radiation by equilibrium fission products.

In the shielding regions (region 3 and following) only
gources of type b) and c) are considered.

3.2, 1 Gamma Sources Inside the Core .
th

The gamma source for the g group (energy emitted in form
of photons with energy belonging to the gth interval) at

the point Q of a core region is given by

Sg(Q)= So,gG(Q) Mev/cm3.se¢

Se is the value of the source at the outer boundary of

, the region considered

G(Q) is the dimensionless function describing the space
behaviour of the source (the same for all groups), to
be described in input with the same rules and restric-
tione as for the function

F(Q) (section 2.2) describing the fission density.

- If the gamma source is essentially a fission source, then
F(Q) &~ G(Q), and the same input information may be repea-
ted for both functions.

So,g is calculated by the program as
26 N
So,g= Sofgt & Foys Py, g+ Po 00y g (14)
where |

So = boundary value of the fission density (section 2.2)

fg = energy emitted by fission, and equilibrium fission
products, in the gth group (Mev/fission)

¢°J? total neutron flux of the ith group at the outer core
boungdary;

L ies an input datum (section 4.2).
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Pig:: %‘ Ne G'e’i(n, K )Ce,g

6;,i(n,x)= microscopic (n,¥) c.s. of the i
and e~ element (barns)

th neutron group

Ce,g’ capture gamma spectrum of t%; eth element, i:e.
gamma energy yield in the g group per neutron
capture (Mev/capture) ' _

Ne = nuclear density of the eth element in the re-

gion considered (nuclei/barn.cm)
M in
qi,g=3§%Ne6e (i9i+j)Qe(i9 jag)

6:n(i,i+j)=micro. inelastic transfer c.s. from group i to
i+j (barns) for the el
Qe(i,j,g)= gemma energy emitted into the gfh group, as a
result of the inelastic scattering of a neu-
tron from group i to i+j, by the eth
The sums over e include all the elements of the region;
the sum over j extends to a proper number of lower groups:
in the present library M=7. The second sum in (14) extends
to those neutron groups, from the Lth on which lie above
0.5 Mev: at present N=6; if L> N this sum is neglected.
For normal calculations it should be L=1, to account for
all possible gamma sources; but if only low energy groups
need to be considered, then a suitable wvalue of L should
be chosen; for instance if the inelastic scattering gammas
are negligible, and only thermal neutron capture needs to
be considered, set L=26. Finally if L >26 no gamma source
and no gamma flux is computed, and the calculation stops
after the neutron results have been printed.
Formula (14) holds for region 1 and 2 but with some minor
differeﬁceé: in the second region it is exactly applied;
in the first region the gamma source is evaluated only if
S, (fission density at the outer boundary of the region)
is positive; if S,=0, no gamma source is considered within
the first region; in this case the region behaves as a

element

element,
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normal shielding region (but in plane geometry its presen-
.0e is neglected).

3. 2.2 Gamma Sources Inside the Shleld

In any of the shielding regions except possible air gaps,
SABINE calculates the gamma source distribution in a num-
ber of points specified by the input data and then fits
this distribution with the product of an exponentiai
function, crossing the end-point values, and a polynomiail
with & number of coefficients NGCF (end degree NGCF-1) to
be specified in input.

The gamma gource ve. the distance x1 from the core bounda-
ry for the gth group is

26 N
Sgx)= L By (xdpy o K Bi(xpdey o (15)

In plane or spherical geometry, where-Sg is a function of
one space variable (IGSS is equal zero and two respecti-
vely), the source is given by (15). In the case of cylin-
drical (IGSS=1) or disk geometry (IGSS=3), S, is depending
upon one more variahle X, (along the transversal direction),
indicated by z or r for the cylindrical or disk geometry
respectively in Fig. 1. In such cases the program assumes

S (x xz)_ S (x )f(xz)

f(Iz) is assumed to be a polynomial with coefficients gi-

ven in input:
NCF

x V= i-1 _
f(xz)_i; a;X; 8=t , NCF< 6

However if the transversal dimension of the region is in-

finite, one should put N=1 and a1=1.
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3.3 Calculation of the Gamma Fluxes

Once the distributions of the sources for the different
groups have been calculated, the program computes and
prints for each required point P (of the shield) and each

region r, the gamma flux G (P) (Mev/cm2 sec) due to the
th 18 th

gources of the g group, contained in the r region:
| B.(PQ)exp(-T(PQ)) '
G (P)=fs (Q)—= av(Q)  (16)
r,& & 2 v
’ ¥ oW FQ
r o
th

Sg(Q) = gemma energy emitted into the g group per
unit volume at Q (Mev/cm3 sec) ,
Build-up factor (see section 3.4), dimensionless.

J[ ds (8)
5 U th

linear attenuation coefficient of g % group (om_1)
volume element around Q, which moves to cover
the whole volume Vr of the rth

B_(PQ)
'1§(PQ)

&)

1

* region.

The following sections explain how the Build-up-factors
are calculated and how the numerical integration of (16)
is worked out. ’

3.4 Build-up-Factors

The gamma part of the data library of SABINE includes, for
each gemma group, a table of "point isotropic dose Build-

- up-Factors" va. the distance t (in m.f.p.) from the source
point Q to the dose point P, for seven materials (see Ta-
ble 6) ranging from air to lead.

All what follows refers to each of the gamma groups; the
subscript g will be omitted for sake of simplicity.

Let By(t) be the B.u.P. for a homogeneous medium of the -
mth material: these functions have been calculated by the

- BIGGI 3[?] progrem, which solves numerically the transport
.equation for gamma radiation in plane geometry, and then
tabulated for t values between O and 30 m.f.p. at steps of 5.
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Now assume we need to calculate the B.u.F. to be inserted
in eq.(16), for a laminated medium such as shown in Fig.2:
let Q be a point source in region 1 containing the mate-
rial 1, and P the dose point in the Nth region containing
the N.bh material, x,, the part of segment PQ inside region
n with linear attenuation coefficient P Now let

t= M

Ty = B+ %o

by = ¥y FMNN

One can choose now among three different ways of calcula-
ting the B.u.F. ve. t, namely B(t), which provide the sa-
me result if the path t lies within a single region, but
different results in a laminated medium (Fig.3). The user
may choose which way he needs by specifying the proper in-
put value NBU:

NBU = 1 B(tN) = BN(tN)

The B.u.F. is calculated by interpolation between the
values tabulated for the material of the region to which
the dose point P belongs.

NBU = 2 The calculation is done with the Broder's[14]

formula
N

= &= -
B(tN) ~ n=1 Bn( tn) E=2 Bn(tn-1)
which is easier to understand in the following
recurrent form:

B(t1) = B1(t1)
B(ty) = By(ty) + [Blty_;) - Byty_y)

NBU = 3 This is a modification of Kitazume's formula [15]
and in recurrent form reads:

B(t1) = B1(t1)
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B(ty) = By(ty) +[Bty_,) - By(ty )] 2y
Zy = (1‘/5N.N-1)‘3"P(‘°‘N.N-1/"N"N) * PNiN-1

txi,J and /31,3 are coefficients, tabulated for each couple
of materials i and j, that determine the "transient" part
of the BUF when a boundary between material i and j is
crossed; |p|<1.

Fig. 3 shows the behaviour of the function B(t) in the
three different cases, represented respectively by the

full line, the dashed line, and the dotted line.

Note that for NBU = 1. the function B(t) is discontinuous at
the interface. For NBU = 2, B(t) is continuous and parallel
inside any region n to the function Bn(t).

When NBU = 3, we have to distinguish among three possible
cases?

a) if > =1 or ®=0, this case reduces to the previous one
of the Broder's formula (NBU = 2)

b) /=0, this case is equivalent to the original formula

" of Kitazume; B(t) is continuous and, if &>o0, tends to
Bn(t) inside the nth region as x increases; if o(<0 the
two curves diverge.

c) p¢l, ®>0 this is the more general case: B(t) is conti-
nuous and tends to become parallel to Bn(t) inside the
nth region, as x, increases.

The coefficients and A have been determined by fitting
B(t) as expressed by the third form, to a number of calcu-
lations of gamma doses (performed with BIGGI 3) in lamina-
ted media composed of two (and sometime three) materials,
with variable thickness. Actually they have been calcula-
ted only for 4 materials, namely H20, Al, Fe and Pb;
normal and heavy concrete are assumed to have the same va-
lues as Al and Fe respectively; for air they are not used.
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The choice among the three forms of B.u.F. is mainly a
matter of experience. The second (NBU=2)and even more the
third (NBU=3) form of B.u.F. are more expensive, in terms
of machine time, than the first, and should be prefer-
red only if necessary. NBU=1 may be suitable to know the
gamma dose outside the shield, or at points lying beyond
a thick (with respect to the m.f.p.) layer which is ho-
mogeneous or composed of similar materials. Similar ma-
terials are in practice - from the point of view of the
gamma penetration - those with similar densities. NBU=2
may be suggested to investigate the effect of a set of
thin layers; and NBU=3 if these layers are composed of
very "different" materials like, for instance iron and
water.

Furthermore SABINE allows the use of two different forms
of B.u.F. for the radiation originated inside the core
and for the secondary radiation.

3.5 Gamma Energy Deposition

Besides the gamma flux and dose, SABINE always provides
the gamma Energy deposition (in Watt/cm3) as the produdt
of the gamma flux, the macroscopic energy absorption c.s.,
and the constant 1.60.10"13 (Mev/cm3 sec to Watt/cm3).
This implies the assumption that the dose B.u.F. equals
the energy absorption B.u.F., which is not always true,
mainly for low energies or at the interfaces.

3. 6. The Numerical Integration

Equation (5) of section 2.3 and (16) of section 3.3 lead
to integrations over two or three space variables which
have to be performed numerically. Assume that as a step of
this calculation we need to compute the value of the fol-
lowing integral

Y=ff(x)dx ()

a
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a and b ‘being the limits for the space variable x within
a given source region. To choose the mesh path for the in-
tégration, the program calculates first the minimum re-
laxation length A for the radiation considered in that re-
gion:

A= — = for removal neutrons
M ‘z:n| :

A= for gamma radiation
Mg [ o)

Then the mesh path is set approximately equal to A/m,
where m is an integer to be specified in input for each

gource region and space variable. There are two spatial
variables for the integration in plane, spherical and
disk geometry (r and‘ﬁ), and three in cylindrical geome-
try (I‘,v,'\{)).

The interval (a,b) is divided in N equal steps, with

N= Integer Part of giﬁ; .

However if this value is smaller than 2 or greater than
50, the program sets N=2 or N=50 respectively.

The integration is performed with the formulae of Newton-
Cotes Bi] with n points, taking n=7 where possible and
smaller elsewhere.

The m's values should be chosen in order to achieve the
needed accuracy for the numerical integration. Attention
should be paid to the fact that the machine time reguired
to perform the numerical integrations (which is most of
the total time spent by SABINE), is proportional to the
product m_. My in plane, disk and spherical geometry, and
to the product m .My M, in cylindrical geometry. The tests
which have been carried out hitherto show that mr=mv=m$1
is generally sufficient to keep the numerical errors
within a few per cent.
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The integration (17) proceeds from the point a where
f(x) is expected to have its maximum value to the point

b where f£(x) should have its minimum: this is in most
cases possible due to the regular and monotonic behaviour
of the integrands within each source region.

To save computer time the program stops the integration
if a point x is reached such that

£(x) ¢
f(a) p

One value of | for each region hasgs to be provided in in-
put: qfv10—3 is suggested for the most important source
regions, 11@10'2 for the others.

3.7 Gamma Data Library

The data needed to calculate the gamma fluxes are of 3
kinds.

a) General data: they include (g=1 to 7)
fg prompt plus equilibrium gamma fission spectrum
dg conversion factors from MeV/cmz.sec to mR/h

b) data for each element or mixture of elements:

mass attenuation coefficients (cmz/gr)

;%? energy absorption coefficients(cmz/gr)

C __ capture gamma spectrum

6'(n,x)i microscopic (n,K ) c.s. for neutrons of the i

group, (barns). PFurthermore for those elements
which are meinly responsible for the (n,n'Y) reac-
tions we need:

th

Gin(i,i+j) micro.c.s. for the transfer by inelastic
| scattering from the i 5 the (i+j)th-group:
i=1 to 65 Jj=1 to T. ,
Q(1,Jj,8), inelastic scattering gamma spectrum (see

section 3.21)
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- -¢) data for the build-up factors (see section 3.4): for

each of the 7 materials of Table 6.and each of the 7

gamme groups, we need:

B(ti), t;= 1.5, i =0 to 6; table of B.u.F. vs. dista-
nce in m. f. p.

oA(m') and/b(m') coefficients which take into account
the transition from material m' to the material
considered; m'=1 to 7.

All the data listed have been written on the library ta-
pe, behind the neutron data library.

Table 6

List of materials for which the Build-up-Factors have
been calculated.

Identification no. Material

(MBU)
Air (B.u.F.=1)
Water
Aluminum

Ordinary Concrete
Heavy Concrete
Iron

Lead

N O\ =
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4, USER'S MANUAL

4.1 Computer Requirements

SABINE is a FORTRAN IV program written for the IBM 7090.
It is an overlay job requiring a 32K memory and 7 tape
wnits, not including the system monitor tapes. The use
of tapes is described in the following table.

Table 7
Tape Configuration
Fortran | Unit Designation | .
Tape No. at Ispra Tape Use in SABINE
2 ‘ - B2 Pool; temporary binary
data storage
3 - B3 Idem
4 A4 _Idem
5 A2 Standard BCD input
6 A3 Standard printed output
9 A5 SABINE data library
10 . B5 Same as B2

4,2 Input Specifications

The input specifications needed to run the program SABINE
are shown schematically in Table 8, and listed here be-
low. One or more problems may be solved during the same
run. Columns 71-80 are free for possible labels.,
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other probiems (if ony| continve |with cord 2

TABLE 8

-Ev-
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Card Columns Format Name Description

1 1-10
2 2-70
3 1-10
11-20
21-30
31-40
4 1-10
11-20

I10 N

14A5

I10 IGRC

I10 IGRS

I10 IGDS

I10 IGSS

I10 NREG

I10 IFGAM

Number of problems to be solved

Title card; the content of this
card is printed as head-line in
each page of the output.

Index for the core geometry
(section 1.2)

0 for plane geometry

1 for cylindrical geometry
2 for spherical geometry
J for disk geometry

Index of the shield geometry, for
the calculation of removal neutrons
and gaemma radiation from the core.

O for plane slabs
1 for cylindrical shells
2 for spherical shells

Index of the shield geometry for
the solution of the diffusion
equation.,

Seme possibilities as IGRS.

Index of the shield geometry for
the calculation of the (secondary)
gamma flux originated inside the
shield

O infinijite plane slabs
1 c¢ylindrical shells

2 spherical shells

3 disks

Number of regions < 22 (2 source
regions and no more than 20
shielding regions)

Controls the calculation of the
amma sources: if IFGAM > 26
number of neutron groups) no

gamma calculation is performed.

When IFGAM < 26 the gamma sources

are calculated considering be-

sides the fission source, the
reactions (n, y ) and (n,n'y) with
neutrons of the groups I > IFGAM.

This is the parameter called L

in egs.(14) and (15) of section

3.2.1 B.nd 302.20
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Build-up-Factor for the Core
and the Shield gamma radiation
respectively (section 3.4)

One card 5 is needed for each region J, J=1, NREG.
5 1-10 I10 J Index 6f the region
11~20 F10.0 ZR(J) Thickness of the region (cm)

21-30 F10, 0 H(J) For plane geometry not used
For cylind. geometry: height for
finite cyl., zero for infinite
cyl.
For sph. geometry not used
For disk geometry diameter of the
disk.

31-40 F10.0 T(J) Temperature of the region (°Q)

41-50  F10.0 DEWYJ) Density (gr/cm3)

51-55 I5 IGKJ) = 1 normal region
2 this region is an air gap to
be treated in P1 approx.
(section 2.8.1)

3 Air gap with o/ an3values in
input (section 2.8.2)

56-60 I5 MBU(J) Code number of the material for
the Build-up-Factor of this region.

61-65 IS5 NEMR{) No. of elements in the region, < 10.
One card 6 is needed for each region J; the content of co-
lumns 41-70 need to be specified only for shield regions

(32 3).
6 1-10 I10 J Index of the region

11-15 15 Mg(J) Determine the fraction of the mi-
16-20 15 M_.(J) nimum relaxation lenght to be used
R'"’ as mesh interval for the numerical
21-25 I5 M\r(J) integration alongV, R, and v
respectively. Use Mya=M_=M., =1 as
standard value (sec%iog 3.6)
3140 E100 ErHAJ) Relative accuracy for numerical

integration (section 3.6). Use
.001 as stendard value.

21-30 I10 NBUC} Determine the form of the
3140 I10 NBUS




41-45 I5 NDIF(Y)

46-50 I5  NREM(J)

51-55 I5 NPRT(J)
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Number of intervals for the
calculation of neutron flux
(and numerical integration of
eqs. B15 and B16 of Appendix B).
Recommanded values for the mesh
path d=ZR/NDIF are given for
several media in Table 9.

42 NIIF(J)<250
NREG npTR(J) < 1000

=3
The removal flux is calculated
at each NREMth point (these
points are separated by d.NREM)
and interpolated logarithmically
in the others. NDNI%J)/NREM(J)
must be integer, and

NREM(J) < 50

NREG
}';3 NDIFéJ; < 100

Neutron %&uxes are printed at
any NPRT"- mesh point, i.e. spa-
cing for neutron output is

d. NPRT.

NDIF(J)/NPRT(J) must be integer
and

N£E ¢

NDIF(J
. 200
J=3 §

If no gemma calculation is required (IFGAM > 26) no other
information is needed on this card.

' 56-60 IS KNGS (J)

61-65 I5 NGPR(J)

The spacing for gamma source
calculation is 4 . NGS: no more
than 50 source points per region
and 500 for the whole shield,i.e.:

Nm__éT}DIF J0<50 (must be integer)

?‘fm NDIF(J) o 500
=3 - =

Gamma fluxes are calculated and

printed only at points where the
neutron fluxes have be%ﬁ printed;
precisely at each NGPR of themn.

NDIF(J ust be integer
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if NGPR(J)< O, there will be no
gamma flux calculation for this
region.

6670 I5 NGCF(J) Number of coefficients for the
polynomial which fits the gempme
source distribution in the J
region (see section 3.2.2 and 4.3)

NG-CF(J) < 10, NGCF(J) < YPLELI 4

In the case of an air gap put MBU=1; the quantities H,T, of
card 5 and My, Mp, M,, ETHA, KNGS, NGCF of card 6 need not
tobe specified: set NDIF=NREM=NPRT=NGPR=1 if no gamma flux
is required inside the gap. NREM must be positive, and card
7 describing the composition must be punched also for the

gaps.
7 1-5 I5 J Index of the region
6-8 I3 ID Identification no. for the first
element or material (table 4?and
9-18 F10.0 FREM Corresponding weight fraction in
the Jth region.
19-21 A couple of value ID, FREM must
32-34 I3 ID be given for each element;
45-47" NEMR(J) couples of numbers for
58-60 the Jth region, 5 per card; if
22-31 NEMR(J)> 5, two cards 7 must
'zg:gg F10.0 FREM be present for this region.
61-70

Cards 8-10 are needed for each core region, i.e. twice:
they describe the fission source distribution (read section
2.2 before writing these cards).

8 . 1-10 E10.0 S(J) Fission/cm3.sec at the outer
boundary of the Jth region. If
S(J) €0, no other information is
needed for this region (omit
cards 9-10)

11-20 I10 ISR(J) How the radial distribution is
specified?

1 the coefficients of a polynom
are given

2 point wise k!

3 exponential distribution e H




21-30 I10 NCFR(J)

31-40 I10 NWFR(J)

4150 1I10

ISZ(J)

51-60 I10 NCFZ(J)

61-70 I10 NWFzZ(J)
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Number of coefficients of the
polynomial to be given (if
ISR(J)=1) of to be calculated
(if ISR(J)=2); not used if
ISR(J)=3.

NCFR(J)< 10

If the radial distribution is
given pointwise (ISR(J)=2),
NWFR(J§5'51 values at equi-
distant points must be given.
Not used if ISR(J)=1 or 3.

The above three quantities refer
to the radial distribution, and
are not used in plane geometry
(IGRC=0). The three folowing
refer to the source distribution
vs.2, and are not used in sphe-
rical geometry (IGRC=2).

How the z-distribution is speci-
fied?

1 if the coeffic.of a polyn. are
given
2 pointwise

Number of coefficients (< 10) to
be given (if ISZ(J)=1) or calcu-
lated (if ISZ(J)=2); for infinite
cylindrical geometry NCFZ(J)
should be 1.

If I87Z(J)=2, NWFZ(J)< 51 values
at equidistant points must be gi-

ven. Not used if ISZ(J)=1, or
for infinite cylinder.

Card 9 has to be omitted in the case of plane geometry
(IGRC=0), and inserted in the other cases: it contains the
coefficients or the tabulated values or the exponent for the

radial distribution:

9 1-10 E10.0 AR, (J)

21-30 E10.0 AR,(J)
- E10.0 ARy(J)

¢ E10.0

First coefficient (b, in section
2.2) or first tabulated value (hy)
or value of k in the case of expo-
nential radial distribution.

Other coefficients or tabulated
values, no more than seven per
card; use more cards if necessary.



- 49 -

If the core geometry is not spherical (IGRC #£ 2) card 10
is necessary to provide the coefficients or tabulated va-
lues of the Z-distribution.

10 1-10 E10.0 AZ1$J3 Coefficients or tabulated va-
11-20 E10.0 AZ,(J lues, seven per card; use as
2 E10.0 : many cards as necessary.

The next card contains the values of the transversal squa-
re buckling of the shielding regions.

11 1-10 E10.3 BSQ§3; Transverse buckling of the
11-20 E10.3 BSQ(4 third and following regions.
3 E10.3 :
Card 12 refers to the calculation of Response Functions

of type (b) and (c¢) of section 2.9.

12 1-5 I5 NTH Number of reaction rates of
Threshold detectors to be cal-
culated.

6-10 1I5 NFRD Number of Region Dependent
response functions to be cal-
culated.

Cards 13-14 are needed for each threshold detector; omit
if NTH=O.

13 2=T2 12A6 Name of the detector: the
content of this card is prin-
ted before the calculated
reaction rate.

14 1-10 E10.3 Z, Macroscopic c.s. of the detector
11-20 E10.3 2:2 for the energy range correspon-
«+ E10.3 : ding to the removal group 1 to 19.

.4 19 values, seven per card must
be punched.

Cards 15-16 are needed for each region dependent response
function; omit if NFRD=O.

15 1-5 I5 I1 Indexes of the neutron groups
' 6-10 15 12 which are the limits of the sum
in eq.(13) section 2.9; this im-
plies that for the other groups
the corresponding terms are zeros.

11-70 10A6 ZLabel To be printed as identification
of the response function.
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Card 16 is needed for each shielding region: J=3 to NREG.
16 1-10 E10.3 F(J,I1)

11-20 E10.3 F(J,I1+1)
E10.3

These are the fi values of
eq.(13) section 2.9. Give se-
ven values per card, and use
as many cards as necessary.

One of these cards or sets of cards 16 is needed for each
shielding region; repeat the set 15-16 for each region
dependent R.F. (i.e. NFRD times).

Cards 17-18 contain the magnitudes that determine the

boundary conditions for the neutron groups: a couple of

cards for each of the 26 neutron groups is needed if so-

me air gap to be treated in the way described in section

2.8.2 (with « andp values in input) is present, if not

card 17 must be omitted.
17 1-10 E10.3

11-20

51-60

18 1-10 E10.3

11-20

One couple of values for each
of the air gaps for which
IGAP=3 in card 5.No more than
three gaps of this type may be
present.

Coefficients that determine the

neutron boundary conditions at
the outer (b,,bs) and inner
80,84,80) boungary of the shield
gsections 2.7.1 and 2.7.2).

We recall that the set of values corresponding to the more
usual boundary conditions, of no incoming current from out-
gside the shield, and a given flux @, at the core-shield
interface, is in the order the following: 0.5, 0., O., -1.,

Bo.

The next card refers to the calculation of the region in-
Jependent Response Functions.

17 15

6-10

I5 NRIR

I5 IFDOSE

Number of region independent R.F.
to be calculated (if any).If
NRIR=0, cards 20-21 must be omit-
ted.

Should neutron dose rate be cal-
culated?

0 No
1 Yes
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Jf NRIR is positive, NRIR sets of cards 20-21 must be pro-
vided, one for each region independent R.F.

20 1-5 15 I1 Limite of the sum in eq.(13)
6-10 I5 I2 section (2.9)
11-70 1046 Label to be printed as identi-

fication for this R.PF.

21 1-10 E10. 3 F§I1) Values to be specified group-
11-20 F(I1+1) wise of the terms f. in eq.%13
use as many cards aﬁ necessary,
with seven values per card.

If gammas fluxes are not needed, there are no other cards
for this problem.

Cards 22-24 describe the space distribution of the gamma
gsource (G(Q) of section 3.2.1) in each core region: two
sets of these cards must be given for the two core regions.
They are written in the same way as cards 8-10 (see Table 8),
but the columns 1-10 in card 22 are not read. If the shape
- of the gamma source is the same as that of the neutron
source, cards 22-24 are the copy of cards 8-10. Note that
if 8(1)-fission density at the outer edge of the first
region~ is zero, the cards for the first region must not
be inserted; the source description for the second reglon
must always be given.

For plane or spherical source geometries (IGSS=0 6r 2) no
other information is needed; in the other cases, for each
shield region, the shape of the transversal distribution
of the gamma sources, in the form of a polynomial (section
3.2.2) must be specified.

25 1-5 I5 - d Index of the region; J=3,4...
. NREG
6-10 I5 NCF no. of coefficients of the po-

lynomial: NCF< 6

gJ; Coefficients of the polynomial
J

11-20 E10.0 A1
21-30 A,
Note that for infinite cylindrical regions only one coeffi-

cient A1=1 should be given.
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No other card for this problemj; other problems (if N> 1 in
the first card) continue with card 2. '

4,3 Choice of Mesh Intervals

This section contains some suggestions for choosing the va-
lues of those input parameters which determine the mesh in-
tervals for the different calculation; they are punched in
columns 41-70 of card 6.

The mesh path 4 for the diffusion calculation is the ratio
between the thickness of the region and the value of NDIF
for that region; all the other intervals (see below) are
expressed in terms of d.

Ingide each region the removal flux is calculated at in-
tervals drz d. NREM; the total neutron fluxes are printed

at intervals dp= d.NPRT; the gamma source are calculated

at points separated by ds= d.NGS; the spacing for printing
the gamma fluxes is d= dp.NGPR= 4.NPRT.NGPR (this means
that the results of the gamma calculations are printed only
at points where the neutron fluxes have also been written).
Note that the number of coefficients NGCF may not exceed
the number of source values to be fitted, namely:

NGCF s% +

1

must hold in each region. 4

The values of 4 should lie within the range suggested in
T.able 9 for several materials: finer mesh should be prefer-
red where the neutron fluxes are less regular, e.g. within
absorbing regions, or near boundaries between materials
with different properties.
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Table 9

Recommended values of the mesh path

Material d{cm)
Water 25 - .50
Heavy Water .70 =-1.50
Beryllium .50 -1.00
Graphi te 1.00 -2,00
Aluminum 1.50 =2.00
Concrete 1.50 -2.50
Iron .50 -1,00
Lead 1.50 -3.00

d_. should be small enough so that the removal fluxes can

r

be approximated by exponentials within an interval dr:

the range 5.0-10.0 cm is recommended for d .

The running time of SABINE is affected mainly by two num-
bers: the number N1 of points where the removal fluxes
are calculated and the number N2 of points where the gamma

r - B¢ NDIR(J)
2 J=3 .

Sometime it may be convenient to divide a region in two

or more parts, in order to have there different mesh in-
tervals, to improve accuracy or speed. This happens mainly
for water regions; for them in particular, considerations
related to problems of under - and over-flow suggest to use
water regions no more than 60 cm thick, by subdividing if

fluxes are calculated; they are

G
N, = o Fpre(a)
J=3

necessary, in more regions.
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4.4 Output of the Program

The output of the program does not require particular expla-
nations: the content of the title card (card 2) is printed
as headline of each page of the output; labels have been
provided for any quantity which is printed so that no dif-
ficulty should arise for their understanding. The input
values are printed out in a way quite similar to how they
are written in the input sheet, to allow for an easy check
of them.

The output consists mainly of three parts. the input data,
the neutron fluxes and related magnitudes, and the results
of the gamma part. '

In the second part, after the total neutron fluxes vs.
distance from the core boundary have been printed for the
26 groups, the results of each neutron Response Function
(if any) are printed with the proper label.

The third part starts with a description of the gamma sour-
ce distribution in the whole system: either given in input
or calculated by the program. Then for any point P at

which the gemma fluxes have been computed, the following
quantities are printed: '

- z distance of the point from the core boundary
G(IRS,IG), IG=1 to 7; IRS=1 to NREG; gamma flux at P due
to the energy emitted inside the gamma group IG, in

the region IRS.
Gamma flux per source region (sum over IG of G(IRS,IG))
and per group (sum over IRS)
Total gamma flux
Total gamma dose, and the contributions of each group.
- Gamma energy deposition, and the contributions of each

gamma group.
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CONCLUSION

The SABINE program has been devised to provide an efficient
tool for the solution of a wide class of practical shield
design problems.

A comparison between the predictions of SABINE and the re-
sults of experimental measurements for the shield of dif-
ferent reactors is in progress. Water, Iron and Concrete
shields are being considered: the result of these compari-
sons will be the subject of a separate report. However
from our experience up to now the calculations show a sa-
tisfactory agreement with measurements also for deep pene-
trations (a2 200 cm). -

The running time for a neutron problem in plane geometry
is normally in the range from 5' to 15' on the IBM 7090;
the time for a problem with both the neutron and the gam-
ma flux calculation is rougly the double.

The results of SABINE, as well as of many other similar
programs, are in general rather sensitive to the way of
representing a given problem through the input data
(choice of the geometry indexes, description of the ra-
diation sources, boundary conditions, parameters for the
numerical integrations, etc.); the user should darefully
read this report and pay attention to the input prepara-
tion in order to save man and machine time, and to get
reliable results.

 For questions concerning the uﬁderstanding of the report,
the data library, or the use and results of the progranm,
the reader may apply to Dr. C.Ponti - EURATOM ,T.C.R.,
C.C.R. Ispra (Varese) Italy.
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APPENDIX A

The PFactorization of the Diffusion Eguation

The followihg procedure is different but equivalent to that
suggested by E.C. Ridley 12
Eq.(8) may be rewritten in the form

6"(r)+ £ D'~ F(r)+ S(r)=0 (1)

D and are region dependent constants.
One looks for two functions U (r) and V(r) which satisfy
the following equation

DB (r)+ U (r)P(r)+V(r)=0 (a2)
when @(r) is the solution of (A1).
By deriving eq.(A2) we have

DE"+UP +U' B+V'= O
Inserting here @' as solved from eq.(A2) we get

2
W= g3 U )-v+ (43)

Now substitute D" from eq.(A3) and DJ' from eq.{A2) into
(A1) and have an eq. in g:

2
gF-v-E0- )+ F-v-Zwso0

In order that this becomes an identity the two following
equations must hold:

2
Fo-Zo o

Fv-E . 50

and these are the first order differential egqs. that deter-
mine U and V respectively.




- - 60 -

APPENDIX B

The Solution of the System of Differential Egquations (9)

In Appendix A it is shown how the diffusion eq.
Dg"(r) + = ' (r) - #(zr) + S(x) = 0 (B1)

may be separated into the following equivalent system:
2

U-=g_§u- (B2)
Vi =V([-2) +S (B3)
D' + U8 + V=0 ' (B4)

This system may be solved, integrating eqs. (B2, B3 and B4)
one after the other. '
Now let t = Kr, being K =VZL7D>>O, and write

g = ag(t)/at

and sihilarly for the other functions; the above system
becomes

U = U?/KD - PU/t - KD (B5)
V = V(U/KD - P/t) + S/K (B6)
KD + U + V=0 (B7

Eq. (B5) is a Riccati equation, which can be transformed
into a known second order differential equation through the
substitution '

U= -KDi U n(t) £ 0 (B8)

Eq. (B5) becomes now

B+ % hon =0 f (39)
The general solution of (B9) is known for the three geome~
tries; they are generally dependent from two coefficients,
which are determined from the boundary conditions; but since
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we are interested only in the ratio n/n that determines U,
- we 4o not care for a proportionality factor, .so that the
gsolutions of (B9) may be written respectively:

P=0 n(t) = Bese~ ¥
P =1 n(t) = BI,(t)+Ko(t) (B10)
P=2 n(t) = %(Bet-fe—t)

- I,(t) and Ko(t) are the modified Bessel functions of zero
‘order.

Now assume that the shield contains N regions with outer
radii Ty j=1 to N (Fig. B1), and let

t =
31 = EyT g1
t =
s2 = 555y
t;“g $< ‘I:;'2 is the interval of t corresponding to the jth
region with inverse diffusion length K, #'Zj/oj

Let the boundary condition for the function TU(t) be

O(ty, ) = Uy
then eq. (B8) at t = ty o &lves

'K,;H; - “(EN-2) (B11)




- 62 -

and this equation determines the coefficient B of (B10).
Once n(t) and U(t) are known for the last region, one com-
putes U(tN'1) at the left boundary, and since U has to be
continuous

Ultyeq,2) = Ulty 4)

Similarly one can evaluate a new coefflclent B for the
function n (t) in region N-1.

This process is continued until n(t) has been determined
in the whole shield.

Now using (B8), eqs. (B6) and (B7) become

V = -V(% + -,:E)+ % ' (312)
g=g2-% (B13)

These are linear first order differential eqs. the integral
of which can be easily written. '
If the initial value for V(t) is

then, as it may be directly checked, the solution of (B12)
for the N'B

Tn2
V(t>_—-——[ N Nan(tNg-_fS(x)x n(X)dx] (315)

Now being V continuous through the interfaces

reglon is

V(ty 4

and decreasing the index from N to 1 in (B15), the program
calculates the function V proceeding stepwise from the outer
¢» the inner regions.

Then the solution of (B13) may be written for the first
shielding region: 4

t .
V&) g
¢(t)=n[-k%61f n (%) g n(tu)_-] (B16)

44
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being ¢1 =:¢(t1 1) the boundary value for the flux.
?
A boundary value for the second region is taken as

¢2 = ﬂ(t2,1) = ¢(t1,2)

and increasing the index from 1 to N , the program computes
finally the flux, proceeding stepwise from the inner to the
outer regions.

The method outlined provides an analitical solution of the
diffusion equation, except for the fact that the integrals
appearing in eqs. (B15) and (B16) are evaluated numerically
by the program.
The choice of the mesh path for the numerical integration
(performed with the Simpson's rule) is less delicate than
in the finite difference methods, and the mesh path requi-
red to get a given accuracy is now greater than that needed
with finite difference method, with a corresponding saving
of machine time.
Recommended values of mesh interval are given for some ma-
. terials in Table 9; in general it should be chosen in such
a way that the mesh interval + in terms of the variable
t be

At £ 5

All the above analysis holds if the following requirements
are fulfilled:

a) X>0 -
b) t+ >0  when P>O
e) n(t)#0

Condition a) is satisfied for all media but vacuum, for
which a particular treatment is needed (see section 2.8).

- Condition b) implies that for cylindrical or spherical geo-
metries the origin ¥, of the shield is positive, since the
-point r = 0 is a singularity.
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Condition c¢) is verified in all the "physical" problems:
actually it is easy to see that the function n(r) is,
except for a proportionality factor, a solution of the ho-
mogeneous diffusion equation, satisfying the outer bounda-
ry condition

boDn'(r) + b1n(r) =0 at r =R,
which is the homogeneous eq. corresponding to (8.b).

- In other words n(r) is a solution of the homogeneous pro-
blem, that is the original problem, in which it is set
S(r)=0 in eq.(8), b,=0 in eq. (8b), and neglecting eq. (8a).
More precisely one can see, by proceeding analitically,

that the function n(r) may never be equal to zero if b1/b°
is positive, which is always true at the outer boundary of
a shield. ’
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