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THE j METHOD FOR NEUTRON TRANSPORT PROBLEMS IN A HOMOGENEOUS SLAB(*^ 

1. Introduction 

The 1 method is a new analytical approach which has emerged in the 
N 

course of developing the multiple collision theory (Asaoka et al„, 
1964). The method is characterized by the ̂introduction of a discon­
tinuity factor into an integral equation govering the balance of neu­
trons (in contrast to the multiple collision method based on the neu­
tron life-cycle viewpoint) to fix the point of measurement and by the 
use of expansions in spherical Bessel functions. When this expansion 
is truncated beyond the N-th order function, the resulting approxima­
tion has been called "the j approximation", 

Ν 
It has been shown in our latest publication (Asaoka, 1967) that the 
j method is a very useful tool for treating energy-space-time de­
pendent transport problems in a bare spherical system. The stationary 
state can be treated as a limiting case of time-dependent problems 
and it is then easy to obtain the aymptotic time behaviour, critical 
condition or the value of the effective multiplication factor. For all 
these problems, the j approximation has given results comparable in 
accuracy to the Carlson S calculation. 

o 
The present work is concerned with a further development of the j 
method to deal with energy-space-angle-time dependent problems for 
an infinite homogeneous slab with finite thickness. (The results for 
stationary problems were partly submitted to the "Symposium on Ad­
vances in Reactor Theory", Karlsruhe, June 27-29, 1966 and some of 
the results for time-dependent problems were presented at the "inter­
national Conference on Research Reactor Utilization and Reactor Mathe­
matics", Mexico City, May 2-4, 1967.) Manuscript received on July 21, 1967. 



2. General Formulation for Time­Dependent Problems 

We consider here, within the context of a multigroup (G energy­groups) 

model, an infinite homogeneous slab with finite thickness, OL , in which 

the neutron scattering is spherically symmetric in the laboratory system, 

Let X. be the space co­ordinate, JUL the direction cosine of the neutron 

velocity, ¿Lo and 7Λ the macroscopic total cross­section and the 

speed of neutrons in the g­th energy­group respectively and C(^­^J) 

the mean number of secondary neutrons produced in the g­th group as a 

result of collisions in the g*­th group. Upon the surface at X= 0, 

we assume a neutron source Sa (JU, 't) UjU¿jt f°
r
 the g­th group inci­

dent with directions between U and Jl + (JU¿ (Aí>0) during the time 

interval dt around time ~t>"0. 

The number of neutrons which, due to collisions in the g'­th group, are 

born in the g­th group with directions in the range (JUL, JU+djU ) , 

positions in the interval α ϊ ' around X' and at times in clt around 
f-t/ is given by 

^^Z^Çd^rrira',^t^Ux2t'djuL. 

The p r o b a b i l i t y tha t these neutrons t r a v e l for a time t without f u r t h e r 

c o l l i s i o n i s X/W (.-Σ^ί/^Τ ) and the space co -o rd ina te a f t e r t h i s t ime 

i s X=X/+VgU't . Hence, the number of the g- th group neu t rons can be 

wr i t t en as 

71,(Χ,/*Λ > í [cLtjdxjdji' c-ψίψ^ a>,ji,t-t'ï 

x/^Stt-x'-ij/ít') 

+pt/^ç«;t­t ,)i"^tãa­^t/;] 
(1) 

Rewriting ξ (.X-X.-U.jxt ~) in the form of the Fourier representation 



2TL. 
-00 

equation (1) can be rewritten as follows 

rOO ft fui 

+■ 
-00 o 

The convolution integral in time on the right hand side suggests the 

application of the Laplace transform: 

.DO 

-οσ o 

(3) 

where β= Ί L*. ■ and 

3 â 

t*, <AJi*fí± ¿AtS3 (M^TlV,t. 

Upon performing the integration over JU from ­1 to 1, equation (3) 

gives: 

-1 
­00 

­to o 'o 

(4) 
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From this equation together with the definition: 

the following integral equation can be derived: 

Rît, ftf, Λ>€(^)^^1{ψ^οψ^Μ^(ίΤ) 
χ Irrest, f2, Λ) 

¿Λη 0 0 

(5) 

where J.»(2) is the n­th order spherical Bessel function. 

Now, when we note that the symmetric kernel on the right hand side of 

equation (5) can be expanded by Gegenbauer's addition theorem, f (J|­í?)= 

X Cap+OJo({/)j.(Ζ) .
 w e

 see that the function F(J*#{(/­d) can 

• be expressed as a series in J'mí~2~l¿J '· 

Hence, equation (5) can be replaced by an equivalent system of linear 

equations governing the coefficients ­ ^ ( ^ J * .¿O : 

It U υ """ 

(6) 

where 

-oo 0
 } (7) 

­co ­0 
♦ 

(8) 



and use has been made of the orthogonality relation for spherical Bessel 

functions. When ^J=Z,1/f or P* = 1, the integral Jmn ((X*, J ) is re­

duced to JCW/TZ) defined in a previous paper (Asaoka et al., 1964). An 

explicit expression for Jyim^a/^) has been given in appendix 1 of our 

latest paper (Asaoka, 1967). 

It will be convenient to rewrite equation (6) here in terms of B«j(l^^á) 

afe? BK(.1U>Scirri JnnK-f, S) R/J, Λ) 

Equation (3) can thus be written as follows; 

where 

­oo 'o > (11) 

which is evaluated in Appendix 1. 

Hence Tlo (X, IX, f ) can be transformed into the following form: 

Btioo , 

As has been shown prev ious ly (Asaoka, 1967), the funct ion J00(o(j,.^0 

i s e s s e n t i a l l y s i n g u l a r when t h e r e a l pa r t of A i s smal le r than 27fV¡­2jWj 

( the r e a l pa r t of R i s nega t i ve ) and hence so a l s o i s Om^ñ' -Ό 
The path of i n t e g r a t i o n of the Laplace t ransform v a r i a b l e A on t h e 
r i g h t hand s ide of equat ion (12) i s t h e r e f o r e t o be deformed so t h a t 
the r e a l pa r t of J i s always l a r g e r than Zjfy-ZjlA, Thus we g e t : 
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2lL) " τιϋ=ϋ 
-οο 

where Λ-Σ^Μ ( j = 1,"2, «..ο) is a pole of ΒχΧ^,Λ), B-^Cj", Jj ) 
stands for the residue and the last term on the right hand side repre­
sents the contribution coming from the deformation of the integration 
path. 

Upon integrating equation (13) over J¿ from ­ 1 to 1, the scalar flux 

is obtained in the form 

­00 

(14) 

where 

.oo roo 

&«l· 5*0 ̂ ajß^jjwl f>'M* «f). (15) 

The évalua ton of £%(A£.» 5", .Λ)
 h a s

 been carried out in appendix 2 of 

a previous laper (Asaoka, 1967). 

When we art interested in the number of leakage neutrons from the slab, 

it is only necessary to multiply equation (13) by fil] and to fix the 

point of measurement at X= X0 ( XB = O to observe neutrons with Jík< O 

reflected by the slab or X0-CL for neutrons with JUL > O transmitted 

through it). The total number of neutrons reflected by or transmitted 

through the slab is thus obtained by integrating \)¿\Vi7l<>(X0, llj t ) 
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over JUL from -1 to zero or from zero to 1. This gives 

+ fζμ^- i f j y ^ · ) H»(*f, W j ) ^ ^ 

where e\ 

'O 

­00 C 

(16) 

(17) 

Th is expression for HwC^T/^O i
s
 evaluated in Appendix 2, 

3. Formulae and Numerical Examples for Stationary Problems 

From equation (13), (14) or (16), the asymptotic behaviour as TJ-̂ DO 

can be written as follows: 

+i?tíi.+>rj?f, i,ß,m^ywwt, (18) 
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(20) 
W=0 ^1rL 

where _Λ=Σ,Τ/^ί stands for the largest real pole of \3ιη(%,Α ) 

When S»0","t)­*■ 0 as t­>DO , the pole I^VjAj i s to be obta ined by 

solving the determinanta l equation (see equation ( 9 ) ) : 

S,f=i,2,----,S for m,«= ο,ΧΛ, — ·, 

where, contrary to the case of a spherically symmetric system treated 

in a previous paper (Asaoka, 1967), only the elements with even values 

for both TfL and 7i appear. This fact is due to certain symmetry re­

lations holding for slab geometry, namely, U??. (X,JÅ., t ; = U,7lj(.QrX;-/t}t~) 

(see equation (11)), T̂ flj(X,t )=T$fljCíM0 t ) (see equation (15)) 

and ^Ι/1\ν3713(0,/Λϊ=)^μΐψ3(α>/ΛΪ (note that jn(.-Z)=Hfjn(.Z) 
and J«ftC0j,^) = O when 711+71 = odd). 

For a critical system, A^ must be equal to unity and equation (21) 
with Jj = 1 therefore gives the critical condition. This condition 
has already been worked out in some detail in a previous paper (Asaoka 
et al„, 1964) for the special case of a one-group model. In order to 
obtain the value of the effective multiplication factor, SJUI , for a 
given reactor. Cf£->^') is divided into two parts. These are the scat­
tering part Cj(jj+$'J = ΣΑ($->$0/Σ3 and the fission part Cf(^f) 

= 2j/(î>Zjpj /■Zjf where X* stands for the proportion of fission 

neutrons born in the g­th group ( Σ?(« - 1). Using this separation, 

the value of -ROE is obtained by solving equation (21) with -¿1 = 1 

and 



13 

The ratios between the residues Prø ( $,-̂ f ) can now be determined by the 
use of equations (9) (with S« = 0) and (21) for any of the three above-
mentioned problems, that is, the evaluation of the time-constant A^-j , 
critical condition or ~F-*U · Having thus obtained the residues, the 
flux distribution can be obtained from equation (18), (19) or (20) with 
So CM; Ό = 0 for each problem (these procedures are the same as for 
a spherical reactor described in a previous paper (Asaoka, 1967)). 

For a subcriticai system with a stationary boundary source ¡5?(/0 (M>Oj? 

only one pole A-T^ of \3ιη(.%>Λ) 1S o f importance. Hence, by multi­

plying A~^1^ on both sides of equation (9) and taking the limit 

^->&Vi ) we get 

+f«J*J0^CW(^) , 11=0.1.2,·'·', (22) 

where Β^Φ = Jwt ( Λ ­ Σ ^ Ο β ^ , Λ ) and (see equation (8)) 

$0.«*)»^A^&kC^iw&^ß- (23) 

The stationary vector flux, scalar flux and the total number of leakage 

neutrons can thus be written as follows: 

(25) 

26) 
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In addition, the expression for ÌJ^ÌV^7lj(Xo,JA-')} the angular distribu­

tion of leakage neutrons, can be simplified to 

j^iH^«^=%5^^WW(-^)|o^^^ff) (27) 

Equations (26) and (27) have been developed in a previous paper (Asa­

oka et al., 1964) for a one­group model and two cases where the angular 

distribution of the boundary source 5j(/0 is monodirectional or plane 

isotropic. 

For the three cases where 

(a) pj^^
=
%3 (plane isotropic source), 

(b) $a(J¿J= 2djjtf- (point isotropic source), 

(c) $fi(/ii=$o'S(./y--/li~) with JXf>0 (monodirectional source), 

the integral CVi^) defined by equation (23) takes respectively the 

following forms (with J = ZiVf and ζ = ή- (r,Vr>0/(2jMp ) : 

—00 0, (28a) 

(28b) 

=rt í (-i*íi ¿-"bPl Λ (28c) tFn<*.1,A,mTfcjjrify/** ), 

the explicit expression for C£(.ty, Λ ) being given in Appendix 3. 

In order to give a numerical illustration of a multigroup model, calcu­

lations using 7 energy­groups were performed on water slabs (90% water 

in volume) of various thicknesses. A stationary point isotropic source 

with the spectrum given in Table 1 was assumed to exist on the plane 
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% = 0. In addition, a set of bucklings has been introduced to account 

for the finite extention of the water slab in other two directions, 

that is, in the jj ( ̂ 1 0 cm width) and 2 (24 cm height) directions. 

(The aim of this study was to determine the optimum moderator thick­

ness for maximum thermal neutron/leakage into the beam hole of the 

SORA reactor.) The buckling values are given in Table 1, together with 

the values of the macroscopic total and transport cross­sections ( X<» 

and Σ±γα ). The anisotropy of the neutron scattering is taken into 

account by using the transport approximation, that is, by the use of 

2vtrî instead of ¿Tj . In Table 2 are shown the numerical values of 

the mean number of secondary neutrons per collision: 

€(3+Ϊ^Σ4(^'νίψ(ψΒ^/(3Χ^η. 

Figures 1, 2 and 3 show the spatial distributions of the total fluxes 
(scalar fluxes) in three slabs with thicknesses 1, 7 and 20 cm res-
p ectively. Each figure contains the results for the 3rd and 7th group 
flux. For comparison, the values in the S and S approximation (ob-

4 o 
tained by using the transport approximation and adopting the same 
values of Cij­̂ îï')

 a s s n o w n i n
 Table 2) are also included in these 

figures. For thin slabs (see Fig. 1) the j results agree quite well 

with those obtained from the S calculation (only a slight under­

o 

estimate is seen near the source boundary in the case of the 7th 

group). On the other hand, for thick slabs, the j results deviate 

to some extent from the S values in some places (see Fig. 3 where 

o 
the S calculation always gives slightly lower values than the S re­

4 o 

suits). It is seen, however, that the j results are accurate enough 

to be comparable to those obtained from the S^ or S calculation. 

4 ö 

Figures 4 and 5 show the angular distributions of the 3rd and 7th group 

neutron flux, respectively, in the slab with a thickness of 1 cm. In 

each figure, the angular distributions at three different places are 

shown, that is, at the source boundary ( X, = Ο), in the middle of the 

slab ( X/(L = 0.5) and at the free boundary ( X/£L = 1). These were cal­

culated by the use of the j approximation and the values are normalized 

ó 

to unity at^U= 1. As is seen in these figures, our results coincide nicely 
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with those obtained from the S calculation (the S result for Jl = 1/3 
o 4 

at X.-LX is slightly underestimated for the 7th group). The results for 
the slab with 7 cm thickness are shown in Figs. 6 and 7, where the dif­
ference between the j and j values is indistinguishable. At the source 

ó 0 

boundary where the angular distribution is discontinuous at JÍ = O (the 
values for JX>0 are always equal to unity and represent the extraneous 
source), the results in the S approximation deviate to some extent from 
ours (as do the S results shown in Fig. 7). Figures 8 and 9 show the 

o 
angular distributions in the slab with 20 cm thickness. The j results 
around JU = 0 (parallel direction to the slab boundary) differ appre­
ciably from the j values, especially at the free boundary where the 
values are discontinuous at JU = 0 and always equal to zero for /í-< 0. 
It is seen, however, that the j results are comparable in accuracy to 

O those in the S approximation, while the difference between the S and tí 4 
S results can be judged from the values at the source boundary shown 
o 
in Fig. 9. 
Figure 10 shows the vector fluxes of the 3rd, 6th and 7th group neutrons 
with the direction cosine JU = 1 (outward normal direction) at the free 
boundary, i.e. curves of \%yi»(X-CL,Ji=i) with ¿f = 3, 6 or 7, as a 
function of slab thickness CL . The difference between the i and i re-

J3 J5 
suits is significant only for the 7th group neutrons in the very thick 
slabs. 
Additional numerical calculations were performed on the water slab with 
a thickness of 7 cm by assuming a monodirectional source with JAt = 1 
and with the energy spectrum given in Table 1. The spatial distributions 
of the scalar fluxes for the 3rd, 6th and 7th group neutrons are shown 
in Fig. 11 (compare with Fig. 2) and the angular distributions of the 
3rd and 7th group vector flux are given respectively in Figs. 12 and 13 
(compare with Figs. 6 and 7 respectively). 
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4. Some Numerical Results for Time­Dependent Problems 

For a homogeneous non­multiplying slab in which there is no up­scattering 

of neutrons, equation (9) can be reduced to 

■tîkm. 

= Ζ $ / ( 3 ^ , ^ ^ (29) 

This equation indicates that the problem of finding the poles ̂ =Zil/f2. 

of β/τκ^ζ-Ό (see equation (13)) is the same as that in a one-
group model: 

where, in general, 7ft and 71 take on all values, 0,1,2,.... (for a 
spherically symmetric system treated in a previous paper (Asaoka, 1967), 
they take on odd values only). Since IWLIL ( fy y Λ ) = ° when 7TL+7L = odd, 
this determinantal equation can be split into two equations; one con­
tains only the elements with even values of 7ft and fi and the other 
contains only those with odd values of 7/7. and 71 . (In equation (13) or 
(14), the terms with even values of 7ft on the right hand side are sym­
metric abount Χ=&/2 and JUL = 0 and the others are antisymmetric, 
that is, nm.CX,/¿,t)=HTnmai-XrjU,tj or 7lVLCXyt)=(-1)m-7ln(<l-ZJt ). ) 
The equation with odd values is nothing more than the determinantal equa-
tionfor a bare sphere with radius Z*R.-7í»(l/2 (see Asaoka, 1967). Hence, 
all poles which satisfy the condition A\ > 4~ 2j1^/(2f1^) for a spheri­
cally symmetric system with radius ZóR are, in general, also the poles 
for a slab with thickness 2j# = .2Z,R and with the same value of C($->$) 

The equation coming out of (30) on the basis of the elements with even 
values of 77Í and ft can be solved to find the poles by following the 
same procedure as illustrated for the spherically symmetric system since, 
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in equation (30), CC¿f­>¿p is always contained in the form Pj/cij"^) 

and TQCL appears always in the form 2j#fg where R = 'f­(Z'/Mr>0/(
2
3
l
'íp. 

Thus, the poles are located (as for the spherical system) as follows: 

1) Draw the curves giving 1/C as a function of slab thickness Σ0-

by solving equation (30) (with A-TSV ) in a one­group model. 

See Fig. 14(the smallest Q gives the value required to keept a 

slab, of thickness Σ& , critical) 

2) Draw the diagonal of a rectangle with sides f/Cífl­^) and Σαβ. 

and find the abscissa ZVftRj of each point of intersection bet­

ween the curves and the diagonal. 

This shows that equation (30) with even values of Tfl and 71 gives at 

most (N+2)/2 (and at least 1; see below) real poles for each energy­

group, Ν being the order of the j approximation. (In addition to 

these poles, each $~th group has generally all poles of the higher 

¿j'­'th groups which satisfy the condition Å\,/ > \ - ZjUj /( 2gU» ) , 

because of the presence of the last term on the right hand side of 

equation (29).) 

The asymptotic expressions for the poles R in the j approximation 

( 0ij=LÆ/2, CO(=C(ffîy<Xfnd y being the Euler Mascheroni are 

constant): 

o f t f ^ay t l - y - t k - j r ï-rnsccfil, ο<χ3Ρ3«ι, (31) 

^P^CtXÍf­^Jand ^ ^ ­ ­ Ç L ­ . ^ flfjPj^y. (32 

Equation (31) shows that the asymptotic decay constant Ẑ tf, U'Ai ) 

(see equation (13) or (14)) tends to ·Σ»ΊΛ» as C(<}·*? )X»Ä->0 , while 
equation (32) leads, for an infinite system, to the well known expres­
sion: 
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Table 3 shows the numerical values of the asymptotic decay constant, 

1~Aj in a one­group model for infinite homogeneous slabs with various 

values of Σ Ci and a fixed value of C = 1 (the value of ­o*·, for a slab 

with thickness (JTA+Z^}Æ. and with Ĉ f 1 is equal to the product of C 

and the A\ corresponding to a system with C - 1 and a thickness Σ& — 

T¿(]L— ΟίΣβ+Σ^Ο. ; this leads to the well known relation that the 
decay constant for the system with absorption is equal to the value for 
the system with purescattering plus XfZa. ). In Fig. 15, our results 
for the asymptotic decay constant are compared with those obtained from 
a variational calculation using a double-step spatial trial function 
(Judge and Daitch, 1964) and the experimentally observed values (Beghian 
and Wilensky, 1965). Our results in the j approximation are on the curve 
showing Judge and Daitch's results. These values are slightly too large 
for slabs with large values of Σ(Χ compared to the more accurate re­
sults obtained from the j approximation. The experimental results do 
not seem to be correct, especially for a thin slab, as Beghian and Wi­
lensky have pointed out. 

Table 4 shows the numerical values of the second time-eigenvalue, i~A$ 
(the third eigenvalue for the system with the asymmetric components 
with odd values of Tfl on the right hand side of equation (13) or (14)), 
obtained from equation (30) with even values of 7TI and 71 and a one-
group model which assumes a fixed value of C= 1. From equation (31), 
it is seen that, in the j approximation, Pq takes the value zero also 
in the case where C(ft*$^¡&./2 - 12/5 (corresponding to Ι-Λ3 = 1 

when ΣΛ. = 4.8 in Table 4). In the j approximation, the asymptotic 

expression for small ftîR> 0
 1S

 obtained from: 

NO l / ^ f 3 ­y­ i ­ t 1-m/<35CoQ Ι 

ΤΓ^
1
^

 ì C0< 10 1-2&/(35αχ-)+5Ίέ/(ν(αΧ?;*> (31>) 

which shows that Pq = 0 when CM = 0 or 132 O + ̂ 1/10/35 = 2.200260 
( 1-J3 = 1 for Z Ä = 4.40052 in Table 4) or 5.342597. 

In Tables 5 and 6 are shown the numerical values of the second and fourth 
time-eigenvalues, 1~J>x and 1~A-f respectively, for a slab system with asym-
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metric flux components. These were obtained by solving equation (30) 

with odd values of Tft and Π in a one­group model and represent respec­

tively the asymptotic decay constant (the first eigenvalue) and the 

second eigenvalue for a bare sphere with radius ΣΚ~Σ<Χ/2 and with 

C = 1 (see Asaoka, 1967). In the j and J5 approximation, the asymp­

totic expressions for the poles for small I Oft Rf I are respectively 

given by 

^p3-I(í-Í(^)/(^))0-^(Wfycc«))/(í-/^5c«)^ 
( 3 3 ) 

ap.^ 5005 1-112ΛπαΧ)+2ί$ο/α7(α*?)-ΐΐ520θΛ3Π3(αΧ?) 
3 3 ^ 3?5ê> 1-15^õoAimcD(j+2Uooo/(11?Oíj(co(/2) 

r 5005 (i-i.^im/(co(W'3.2mi2/(CD(^(i-7.2í5án/(c«y) 
3 ^ " C 1-2.775ÎM/(cori)( 1- L 510257/CCD<1 ) 

(33') 

Equation (33) shows that fj = 0 when C0(=|| (5 + /­^­) ( Αχ= °
 f o r 

Za. = 2.554342^ in Table 5 or J+= 0 for ZCL = 7.731372 in Table 6). 
5 ' 

On the other hand, the j approximation gives the value ß = O when 

C(X = 1.277148 ( ZO. = 2.554296 in Table 5), 3.281392 ( Z & = 6.562784 

in Table 6) or 7.285614. In Tables 5 and 6, the negative values of Az 

and A*f are not applicable for the present slab geometry. 

Conclusion 

The neutron transport problems for an infinite homogeneous slab with 

finite thickness dealt with in this report have been solved satisfac­

torily by the j method. In particular, it has been shown that for 

stationary energy­space­angle dependent problems the j approximation 

which retains the first six terms of the expansions in spherical Bes­

sel functions (the numerical treatment of these terms is the same as 
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for the case where only three terms are retained) gives a result com­
parable in accuracy to the S calculation for all systems studied. 

o 
A computer code for energy-space-angle-time dependent problems is now 
under preparation for the case where the boundary source is represented 
in a form of a delta function in time: S-iityt ")= $<, C/li) S ( Ό . In this 
case, L^<i(JUL, Λ~)~ $<?(/£) (see equation (3)) and the integral Cfn^.À) 
defined by equation (8) is reduced to the form given by equation (28a), 
(28b) or (28c) when the angular distribution of the source is plane iso­
tropic, point isotropic or monodirectional. 
In addition, the extention of the present method to solve multiregion 
problems is under way (the formulation for stationary one-group problems 
has been completed and the computer code is being written by Mrs. E. Cag-
lioti of TCR, EURATOM-CCR, Ispra). Later, the j method will be adapted 
to treat also anisotropic scattering of neutrons. 
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Appendix 

1. Explicit expression for 'm^ 3 ' ¿j. iL· ré. 2 defined by equation (11) 

Performing the integration over 2 gives ( R = \- (Ẑ ltj­̂ )/(̂ T̂ ) ) 

where 

X = í ξ and S = ± í , w h e n y X ^ O 

and |
:
U7^ í"fí^)Ju­o stands for the residue of ^((f)

 a t ¡j = ° ancl 

<ί»ιΦ is «Pi" into two parts, j ^ p ^ V ^ + ^ ^ j ^ V ^ 
in which JM,^) is a finite series in terms of negative powers of j . 
From the expression for "t > 20(^X/jX. ¡ it is easily seen that the 

residue is always equal to zero when t ^Ü^X/j1- because J W(^)
/ V J 

%n/i2m+1)U as J/^0. 

The explicit expression can thus be obtained in the following form by 

introducing the abbreviation Q(= CX¡ Ρ, ι 
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F 5 =à íW5© 5 +W5(^) (â 4 H^0- l? f ( -5 ) ) í f f 

<--(i^5(^)í+ío3?5(i^)5+4725(^)f+^o(Jgi)3+a/o(^y 

+ 1Ί325(1^)(ί-^ξ(1-3)}(^)\3ΐ50Ϊ1-1130-^-ί§^-3^](^Ϊ 

-ríS10-J3750-5)0- f 5(1-5X1- f 3 0-5)) ) 3 4 

-$Í135135(1$)7+135135 (£)'+t2370(i§f + m25 (£f 
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2. Explicit expression for Η^.(^<^) defined by equation (17) 

As in Appendix 1, the integration over 2 is first performed to give 

This shows that when t ^^.Df^ the residue is equal to zero for all 

values of 77Z except for 7/2=0 and 1. The explicit expression and the 

asymptotic formula for small \(X\ ( (X~ írí R ) are thus obtained as 

follows ( y being the Euler­Mascheroni constant): 

pi (f-iXftO.' ^ 

ooo, 

n
1-Tfl 3(X* 6(X

 +
3 J Y ^ J 

π
3 sex*

1
 ο Γ ^ IF

5
 õ p * W

{ j
 Τ*

 +
fì

0<
 λ 

u-j-u-Mt31™ ι is-m*" mmi^i ,35_çtála) 7 

Η ­ ¿ f. JP­i'3*, 3(35+7ΐ3") ííMzãl^ã ,15(1+51™-) 
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3. Explicit expression for Züá^Lzl. defined by equation (28a) 

As in Appendix 1, performing the integration over 2 gives 

/oo
 y0 l 

-i.frft'.-S*'»J 

This shows t h a t when f ^'■^0|J the res idue i s equal t o zero for a l l 

values of 7ft except for 7H= 0 . The e x p l i c i t expression and the asymp­

t o t i c formula for small \(X\ (tf= ¿tøp ) a re obtained as fo l lows : 

L
° 2<X

 +
){lj

£ J
^1-f-Mi2(X-Z pjjúy } X>0, 

/"« i (Λ i5-Iaoi r,5+I20í H-2l2û< v+iõ3* i ¿2<x 
Cs-WV-^ + 1^-2l^^U3Ì^~3l5%rj 



Table 1 Boundary source spectrum, a set of buckling values and the nuclear cross­sections assumed for 

numerical calculations on water slabs (90% water in volume) 

Energy­group 

3 

1 

2 

3 

4 

5 

6 

7 

Energy range 

10­3 MeV 

3­0.9 

0.9­0.1 

100­3 keV 

3­0.0226 

22.3­0.414 eV 

0.414 eV­thermal 

Average 

velocity 

2850 cm/jUsec 

1712 

822.4 

184.5 

21.18 

2.402 

0.2881 

\ 

Source spectrum 

$a (n/cm sec) 

0.001034 

0.004623 

0.008280 

0.002594 

0.001174 

0.000492 

0.000592 

Buckling 

B^+ßJ(cm
2
) 

0.030 

0.015 

0.005 

0.015 

0.030 

0.045 

0.055 

(cm ) 

0.17543 

0.26738 

0.57908 

1.14092 

1.61723 

1.71824 

2.52418 

■ ■ ' ■ ■ 

Xtrj 

(cm ) 

0.07612 

0.11498 

0.24900 

0.46778 

0.63086 

0.67124 

1.65792 

­J 



Table 2 Numerical values of the mean number of secondary neutrons per collision in water slabs 

E n e r g y - g r o u p J 

1 

2 

3 

4 

5 

6 

7 

CC3+P 

0 .23406 

0 .38096 

0 .67059 

0 .75139 

0 . 8 6 8 9 1 

0 . 8 5 2 5 3 

0 . 9 9 0 1 1 

CÍ3+3+0 

0 .24752 

0 .43149 

0 . 3 0 7 8 8 

0 . 2 3 8 3 1 

0 . 1 2 0 4 0 

0 . 1 3 3 5 7 

-

CC3+3+2Ì 

0 .07845 

0 . 0 4 6 7 8 

0 . 0 1 0 1 1 

0 .00102 

0 .00084 

-

— 

C($*3+3Ï 

0 .00785 

0 .00089 

0 

0 

-

-

"* 

00 
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Table 3 Asymptotic decay constants for infinite homogeneous 
slabs with C = 1 in a one-group model 

Thickness 

za. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
10.0 
12.0 
14.0 
20.0 

Decay constant 1~Ai 

j 2 approx. 

*5.1956,xl0~ 
* 5 -4 5.7329x10 
0.989255 
0.957051 
0.905493 
0.843992 
0.780147, 5 
0.718366, 

0 0.608089 
0.413221 
0.296855 
0.223383 
0.174267 
0.114716 
0.0813385 
0.0607554 
0.0471762 
0.0377365 
0.0258350 
0.0183637, 5 
0.0145342 
0.0080986 

J4 approx. 

*5.1957xlO~ 
*5.7330 xl0~4 

5 
0.989254, 5 
0.957049, 5 
0.905490 
0.843986 
0.780138, 5 
0.718355 
0.608074 
0.413205 
0.296843 
0.223376 
0.174264 
0.114716 
0.0813362 
0.0607481 
0.0471637 
0.0377182 
0.0258085 
0.0183352 
0.0144996 
0.0080607 

values for Aj ( A^ = O when % CL = O) 
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Table 4 The second time-eigenvalue for a symmetric slab system 
(the third eigenvalue for an asymmetric slab system) 
with C = 1 in a one-group model 

Thickness 

za. 

± 
5 
6 
7 
8 
10 
12 
14 
20 

Time-eigenvalue 1~A$ 

j approx. 

1 
0.978187 
0.764917 
0.615101, 5 
0.511749 
0.381296 
0,303363 
0.251846 
0.166989 

j approx. 

1 
0.837113 
0.606030 
0.459468, 
0.361304 
0.241573 
0.173644, 
0.131194 
0.068230 

ΣΟ. = 4.8 or 4.40052 in the j or j approximation 
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Table 5 The second time-eigenvalue for an asymmetric slab system 
with C = 1 in a one-group model 

Thickness 

za 

0.4 
0.5 
0.6 
0.7 
0.8 
1.0 
1.5 
2.0 
2.5 

* 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
10.0 
12.0 
14.0 
20.0 

Time-eigenvalue 1~A¿ 

J3 approx. 

13.30210 
9.96427 
7.84035 
6.38405 
5.33123 
3.92531 
2.21107 
1.448733, 5 
1.033564 

1 
0.779077 
0.492604 
0.341557 
0.251515 
0.193338 
0.153442 
0.103652 
0.0748453 
0.0566358 
0.0294103 

j approx. 

13.30210 
9.96426 
7.84032 
6.38400 
5.33118 
3.92527 
2.21106 
1.448732 
1.033540 

1 
0.779006 
0.492437 
0.341248 
0.251084 
0.192822 
0.152860 
0.102994 
0.0741657 
0.0559678 
0.0288512 

* Z Æ = 2.55434 or 2.55429 in the j or j approximation 
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Table 6 The fourth time-eigenvalue for an asymmetric slab system 
with C = 1 in a one-group model 

Thickness 
ΣΟ. 

0.4 
0.5 
0.6 
0.7 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
10.0 
12.0 
14.0 
20.0 

Time-eigenvalue 1~Αή-

j 3 approx. 

33.1759 
25.7336 
20.9003 
17.5248 
15.0429 
11.6538 
7.33428, 5 
5.28879 
4.10833 
3.34237 
2.40237 
1.83332 
1.44066 
1.15669, 5 
0.951168 
0.690369 
0.538589, 5 
0.441105 
0.286313 

j approx. 

32.3282 
25.1785= 5 
20.5207 
17.2580c o 
14.8527 
11.5559 
7.32059c o 
5.28873 
4.09787 
3.30922 
2.29817 
1.63904 
1.18404 
0.884635, 5 
0.686477 
0.451620 
0.322078 
0.242478 
0.126045 

Af = O when ΣΟ, = 7.73137 or 6.56278 in the j or j, 
approximation', 
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