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SUMMARY

The j method (a new analytical approach) is applied within the

context of a multigroup model to solve neutron transport problems for an
infinite l’\omogeneous slab with finite thickness under the assumption that
the scattering of neutrons is spl’\erica“y symmetric in the laboratory system.

Stationary energy-space—angle dependent problems are treated as a
special case of time dependent problems. The numerical results for the
vector flux generated by a stationary boundary source show that the j5
approximation gives an accuracy comparab[e to the S8 approximation in
Carlson’s tl'\eary, regardless of the size of the system.

The numerical values of the time-eigenvalues are shown for a one-
group model and those of the first eigenvalue (asymptotic decay constant)
are compared with Judge and Daitch's results. Their values agree well
with the results of our jo approximation but appear slightly too large for

thick slabs when compared to the more accurate j4 results.
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THE jN METHOD FOR NEUTRON TRANSPORT PROBLEMS IN A HOMOGENEOUS SLAB(i)

1, Introduction

The JN method is a new analytical approach which has emerged in the
course of developing the multiple collision theory (Asaoka et al.,
1964), The method is characterized by the introduction of a discon-
tinuity factor into an integral equation govering the balance of neu-
trons (in contrast to the multiple collision method based on the neu-
tron life-cycle viewpoint) to fix the point of measurement and by the
use of expansions in spherical Bessel functions., When this expansion
is truncated beyond the N-th order function, the resulting approxima-

tion has been called "the j._ approximation',

N
It has been shown in our latest publication (Asaoka, 1967) that the

JN method is a very useful tool for treating energy-space-time de-
pendent transport problems in a bare spherical system, The stationary
state can be treated as a limiting case of time-dependent problems

and it is then easy to obtain the aymptotic time behaviour, critical
condition or the value of the effective multiplication factor., For all
these problems, the j5 approximation has given results comparable in

accuracy to the Carlson S8 calculation,

The present 'work is concerned with a further development of the jN
method to deal with energy-space-angle-time dependent problems for

an infinite homogeneous slab with finite thickness. (The results for
stationary problems were partly submitted to the "Symposium on Ad-
vances in Reactor Theory', Karlsruhe, June 27-29, 1966 and some of

the results for time-dependent problems were presented at the "Inter-
national Conference on Research Reactor Utilization and Reactor Mathe-

matics', Mexico City, May 2~4, 1967.)

* Manuscript received on July 21, 1967.



2. General Formulation for Time-Dependent Problems

We considey here, within the context of a multigroup (G energy-groups)
model, an infinite homogeneous slab with finite thickness, @ , in which

the neutron scattering is spherically symmetric in the laboratory system.

Let X be the space co-ordinate, M the direction cosine of the neutron
velocity, ZJ and ’U:’ the macroscopic total cross-section and the
speed of neutrons in the g-th energy-group respectively and C(ﬁ’—?g)
the mean number of secondary neutrons produced in the g-th group as a
result of collisions in the g'-th group. Upon the surface at X = O,

we assume a neutron source Sj (/U.'t)d/“d‘t for the g-ih group inci-
dent with directions between AU and /“d,“ (/,()O) during the time
interval dt around time 't>0,

The number of neutrons which, due to collisions in the g¥~th group, are
born in the g-th group with directions in the range (U, /LH-d/u) ,
positions in the interval JI' around X’ and at times in g(‘l" around
f-t’ is given by

1
cI>P ’ L=t At
__32_3_23,54/1 Vg My O =) dX 't

The probability that these neutrons travel for a time tl without further
!/

collision is %F(‘nggf ) and the space co-ordinate after this time

is = I’+16/1‘l_", Hence, the number of the g-~th group neutrons can be

written as

G (t 4 (1 :
My =5 (4t fopur L2 et
g (%M & odt odx#/u 72U My (L 1-1)
-zt p
X2 975 (exy ut’

_t 4
+§0dt’Sg g t-t) M s ey ut’) LDO-
@)

) ’ 7
Rewriting G (X-I*%}L'l‘ ) in the form of the Fourier representation
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equation (1) can be rewritten as follows:
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The convolution integral in time on the right hand side suggests the

application of the Laplace transform:
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Upon performing the integration over /L( from -1 to 1, equation (3)

glves:

{
Ly )= f Ly O 4
-1
-1 odo'z SITEX Dz(tkpt’. M , zr,zx’e p p
7 71 F,Q 3M(2t) dx’e Z%:’C(J"J)Z:’/L)J/(IIA>
<0 0 0 =

L 1 o9 . Vs
+§1,zjd2i‘r'7ﬂfoylhj%A)jdf/i(ﬁﬂﬂ)t
~00 (/] 0

(4)



From this equation together with the definition:

a
F(3%3, 4, A )= c(gby );,,dex ¢4,
0

the following integral equation can be derived:

F3>3?, _.‘Lg) )= c(jaj//)zja”_lfwdyjcj [_i_(ﬂ 2)]jdt Pt i (2t
XZF(ﬂ"ﬂ) 2 .A)

+C(3_>J//)Z—a 1 jo‘?ﬂ JQZ/QJ [_%q((;f E)]j‘;uLAJ(/u/-A)jd't/ (PI iyl)'t

)
. (5)
where JﬂKZ) is the n-th order spherical Bessel function,

Now, when we note that the symmetric kernel on the right hand side of
equation (5) can be expanded Ly Gegenbauer's addition theorem, J (Y-2)=

2:(2[+1)Jp(g)Jr(Z) , we see that the function F(39Z”g,,d) can
cbe expressed as a series in le(—L-ﬂ)

F@374,4)=2 In33"4) Jm (B2

Hence, equation (5) can be replaced by an equivalent system of linear

equations governing the coefficients 4£n(j9jﬁ,4)
_1__. >97 ld o Z‘:’ﬂ- G /
20 A 1754) = €I E, T B 4) 2 (558, 4)

+C(g29 23R S Cm(_zg_a_) 4) )
(6)
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*
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and use has been made of the orthogonality relation for spherical Bessel
functions. When _4=3 Uy or F:'j = 1, the integral J—,m,n (0(3,,5) is re-
duced to ;I(?n,OZ) defined in a previous paper (Asaoka et al., 1964). An

explicit expression for ,Imoz(aé,,A) has been given in appendix 1 of our
latest paper (Asaoka, 1967).

It will be convenient to rewrite equation (6) here in terms of E%n(jﬁdd)
2% T (328" 4)
1 y & N Za
271 B33 8)=Z 00907, Tnal ', 4) B3, 4)

+Zc(3+3”)z:7a3 Cm A) %

Equation (3) can thus be written as follows:

2
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where

o
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which is evaluated in Appendix 1,

Hence 713(I9u,1') can be transformed into the following form:
Btio0

-zt
w3<x,#,t>—2_,Tp_ftogz” - Lg(x,/t,A)
- _1_ uz’M)t
’u 14 15/11) LF (12)

‘xﬁﬁ('z, z, M /4)
As has been shown previously (Asaoka, 1967), the function J;o(aﬁ;,d)
is essentially singular when the real part of .4 is smaller than Zil-Zlj
(the real part of F} is negative) and hence so also is ELn(g,.A)
The path of integration of the Laplace transform variable A4 on the
right hand side of equation (12) is therefore to be deformed so that
the real part of 4 is always larger than ZQV}—E%l% Thus we get:
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where A:Z;v,/_{(j (J= 1, 2, ....) is a pole of Bm(g,,é), Bm([],,{j')
stands for the residue and the last term on the right hand side repre-
sents the contribution coming from the deformation of the integration

path,

Upon integrating equation (13) over /u from -~ 1 to 1, the scalar flux

is obtalned in the form

1
(% _x1y
%ngcx,w_fo%%%t_ﬁ)ﬂxﬂ

0 _ Ha X A4t
*;Z%__ogmfﬂ/lﬂém(ﬂ—,‘&‘“1,2'1":*‘{;)2 14
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00 . 0o
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s jjf} dy.¢ T 22 B8, 42020 G 52y eIy,
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(14)
where
1 (dz -5z 4 -pt
=_1 =L - .
Gm(%lgnd)—_zxjfl J Jm(%z)o—,l’%tM(Zf/). (15)
%0
The evalua iton of Cﬁn(aé,g;,d) has been carried out in appendix 2 of

a previous »Haper (Asaoka, 1967),

When we arc interested in the number of leakage neutrons from the slab,
it 1s only necessary to multiply equation (13) by buJ and to fix the
point of measurement at X=X, ( X, = 0 to observe neutrons with #4< 0
reflected by the slab or X,=@ for neutrons with AM> O transmitted
through it). The total number of neutrons reflected by or transmitted

through the slab is thus obtained by integrating Lur%7%(1$0u}t)
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over/ll from -1 to zero or from zero to 1. This gives

1 -
J‘ﬁ“'/“hfﬁ”rlg (To;/U, ) :Jogyls‘“?(/‘) t“i%‘/i)ﬂ naju ]’1,,:(1
: +?§0(2%—1)m8m(3;4f) Hm('z%, ZV’AJ)QZWAAJ-Dt

© _(E-iPt S L M . Za . -
g dgd D 2 (2 B3 4y H B 40,

(16)

where

1
Hm(d;j;/&)szy‘ljil Fr (8,1, 1111, 4)

1 di’-or'z Rt/ ' zt |
4711 LJJ(a”Z)j 1 [(1+5p)2" _#].
(17)

This expression for }{m(aghg) is evaluated in Appendix 2,

3. Formulae and Numerical Examples for Stationary Problems

From equation (13), (14) or (16), the asymptotic behaviour as t->00

can be written as follows:

IﬁﬂJ(TJX,t)"'ﬁSg(/‘) 15/1)2—2—1/ w0

~ (18
B(g, 40 Fn(BE Ly z b)) M 0t )

)

Vi (X, t)ru/( _&5}(/4, t- /u.) T

+Z§ B8 40 Gy (3R 2X -4 z0i.8)) 85 ot (19)
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1 -
fé‘lwnﬁlnﬂ(:{o”u/t) "’fo#lsg (/U, t- ﬁ)ﬂ BN ]1,,=a

i)t (20)

*'7%.0(2%-!—1)"187@(3:/51) Hm(z:;zg', va?/jf)l ,

where _4=%V;44 stands for the largest real pole of Bm(%,4)

When Sg(jl)'t)—>0 as 100 , the pole ZjU4s is to be obtained by

solving the determinantal equation (see equation (9)):

3 S r Za _
’ 2m+;’l’ﬂ_c(g->g )LML(_{'Z_, 7-77)441) ‘ =0

(21)
3,351,2,+,6 Sor m,M=0,2,4,-"-" |

where, contrary to the case of a spherically symmetric system treated
in a previous paper (Asaoka, 1967), only the elements with even values
for both M and 7N appear, This fact is due to certain symmetry re-
lations. holding for slab geometry, namely, %ﬂa(f,}l,t):%ﬂa(a—xljl)‘t)
(see equation (11)), 'Ug’ng('l t)= 'V'nj(a Xt) (§ee equation (15))

and fd,u/ilv:,’)’la(o, ,0) = j:;u,wvana(a,/x t) (note that Jm( 7)=(-1) Jm(z)
and Jmn(oﬁ 4)=0 when M+7 = odd),

For a critical system, .44 must be equal to unity and equation (21)
with 44 = 1 therefore gives the critical‘ condition. This condition
has already been worked out in some detail in a previous paper (Asaoka
et al,, 1964) for the special case of a one-group model, In order to
obtain the value of the effective multiplication factor, 7@4{ , for a
given reactor. C(g—>3’) is divided into two parts., These are the scat-
tering part Cs(§>3)=24(3>30/ Z4 " and the fission part Cs(3>3")
:2’3,(1)?)03 /2:3 where Xj standstor the proportion of fission
neutrons born in the g-th group ( Z ?rg 1), Using this separation,
the value of 7@{{ is obtained by solv1ng equation (21) with 4y =1

and

C(323)=C(g>gH+ 5> )/ Ry .
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The ratios between the residues Bm(ﬂ,.ﬁq) can now be determined by the
use of equations (9) (with Sg= 0) and (21) for any of the three above-
mentioned ?roblems, that is, the evaluation of the time-constant .4;-1 ,
critical condition or “ﬁ;ﬂ . Having thus obtained the residues, the
flux distribution can be obtained from equation (18), (19) or (20) with
Sg (/u, 'L') = 0 for each problem (these procedures are the same as for

a spherical reactor described in a previous paper (Asaoka, 1967)).

For a subcritical system with a stationary boundary source ﬁggﬂ) (M>0),
only one pole 4= Z;VU; of Bm(ﬂ/A) is of importance. Hence, by multi-
plying 4-Z1¥y on both sides of equation (9) and taking the limit
A>ZVy, we get

B (90 Z ¢§>39% Tmn (3, Zivg) Bu (@)
+3§°‘3*3')Z<7“535m("’2—), Mm=0,4,2,+",

(22)
where Bm(g) /&m (4- Z{V;)Bm(g 4) and (see equation (8))
Az,
a7z
C‘ i (05)= I«m m%,z&)—-—faﬂw(] (o(y)j/u 7 cga (23)

The stationary vector flux, scalar flux and the total number of leakage

neutrons can thus be written as follows:

Yy (X, 1= LSy ) 5 +Z BB X u,z0), (24

]ﬂ?

= (14 ZI 22
YTy (0= jo s e P45 B G (B, -1, 307,

(25)
1 -
Jompumyo, 0= {qusyga® ],
+%D§0 (2%_2—17”57”(3)HM(%£—) 2'11)4>. (26)
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In addition, the expression for I/"'Va'ﬂa(fo,}’-), the angular distribu-

tion of leakage neutrons, can be simplified to

| '/‘"VZWJUWL):%‘/‘)’ﬁw]kf%W(-ff?/%)gog’"(g)‘im(‘i% ). (@2

Equations (26) and (27) have been developed in a previous paper (Asa-
oka et al., 1964) for a one-group model and two cases where the angular
distribution of the boundary source 53(//-) is monodirectional or plane

isotropic.

For the three cases where

(a) Sg (M) = SJ (plane isotropic source),
(b) Sa (U= 2 SJ/“ (point isotropic source),
(c) Sﬂ (/u)z 53 S(M-Uy) with /1,> 0 (monodirectiong.l source‘) ,

the integral Cm(‘xg) defined by equation (23) takes respectively the
following forms (with 4=ZY; and %51*(21'1)414)/(237{1) ):

o0 . o0
a =L.fel_2ﬂ"‘z'*" a(gjgli'-Pt' 2t |
Cm(%;,&)—-mt—wz I )'x e (47=1) (28>

G,f(‘xdné)f 4Hn(%l.J)
(28b)
Con 0ty 4) = 2F (3,1, 15, 4)
=1 | iy ;%0
C P, 1, py 539, —2/1‘]”(—(7;1.)3 el ), (28¢)

q
the explicit expression for C‘m(%,,d) being given in Appendix 3,

In order to give a numerical illustration of a multigroup model, calcu-
lations using 7 energy-groups were performed on water slabs (90% water
in volume) of various thicknesses, A stationary point isotropic source

with the spectrum given in Table 1 was assumed to exist on the plane
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X = 0, In addition, a set of bucklings has been introduced to account
for the finite extention of the water slab in other two directions,
that is, in the Y ( A 10 cm width) and 2 (24 cm height) directions.
(The aim of this study was to determine the optimum moderator thick-
ness for maximum thermal neutron.,leakage into the beam hole of the
SORA reactor.,) The buckling values are given in Table 1, together with
the values of the macroscopic total and transport cross-sections ( Z%
and Zﬂhj ). The anisotropy of the neutron scattering is taken into
account by using the transport approximation, that is, by the use of
Zzhg instead of Z% . In Table 2 are shown the numerical values of

the mean number of secondary neutrons per collision:
C(§2>3)= 24323/ (Zg* (BJr By ), /(3Zerg) ],

Figures 1, 2 and 3 show the spatial distributions of the total fluxes
(scalar fluxes) in three slabs with thicknesses 1, 7 and 20 cm res-

p ectively. Each figure contains the results for the 3rd and 7th group
flux. For comparison, the values in the S4 and SS approximation (ob-
tained by using the transport approximation and adopting the same
values of (C(§~>3’) as shown in Table 2) are also included in these
figures. For thin slabs (see Fig. 1) the j3 results agree quite well
with those obtained from the S8 calculation (only a slight under-
estimate is seen near the source boundary in the case of the 7th
group). On the other hand, for thick slabs, the j3 results deviate

to some extent from the S8 values in some places (see Fig, 3 where

8
sults). It is seen, however, that the js results are accurate enough

the S4 calculation always gives slightly lower values than the S_ re-

to be comparable to those obtained from the S4 or S8 calculation.

Figures 4 and 5 show the angular distributions of the 3rd and 7th group
neutron flux, respectively, in the slab with a thickness of 1 cm. In
each figure, the angular distributions at three different places are
shown, that is, at the source boundary ( XL = 0), in the middle of the
slab ( X/@ = 0.5) and at the free boundary ( X/@ = 1). These were cal-
culated by the use of the j3 approximation and the values are normalized

to unity at‘/1= 1., As is seen in these figures, our results coincide nicely
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with those obtained from the S8 calculation (the S4 result for U = 1/3
at X=a 1is slightly underestimated .for the 7th group). The results for
the slab with 7 cm thickness are shown in Figs, 6 and 7, where the dif-
ference between the j3 and j5 values 1s indistinguishable, At the source
boundary where the angular distribution is discontinuous at ll1= O (the
values for Jll:>0 are always equal to unity and represent the extraneous

source), the results in the S, approximation deviate to some extent from

4
ours (as do the S_ results shown in Fig. 7). Figures 8 and 9 show the

angular distribut?ons in the slab with 20 cm thickness, The j3 results
around ,ll = 0 (parallel direction to the slab boundary) differ appre-
ciably from the j5 values, especially at the free boundary where the

values are discontinuous at .[l = 0 and always equal to zero for_/l<f0,
It is seen, however, that the j5 results are comparable in accuracy to
those in the S8 approximation, while the difference between the S4 and
88 results can be judged from the values at the source boundary shown

in Fig. 9,

Figure 10 shows the vector fluxes of the 3rd, 6th and 7th group neutrons
with the direction cosine M = 1 (outward normal direction) at the free
boundary, i.e. curves of l%’na(x—-ia)/,(.:f) with 3= 3, 6 or 7, as a

function of slab thickness & . The difference between the j3 and j5 re-

sults 1s significant only for the 7th group neutrons in the very thick

slabs,

Additional numerical calculations were performed on the water slab with
a thickness of 7 cm by assuming a monodirectional source with /Lh =1
and with the energy spectrum given in Table 1, The spatial distributions
of the scalar fluxes for the 3rd, 6th and 7th group neutrons are shown
in Fig, 11 (compare with Fig. 2) and the angular distributions of the
3rd and 7th group vector flux are given respectively in Figs, 12 and 13
(compare with Figs. 6 and 7 respectively),
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4, Some Numerical Results for Time-Dependent Problems

For a homogeneous non-multiplying slab in which there is no up-scattering

of neutrons, equation (9) can be reduced to

1 - PP Ty (BE 4)] Bp@r A

e g9 25 Inal T, 4)BaC3.4
n¥m

d / Zar@ ot lian ok
= ‘5;;1 8 c 322 C,p(, 4) +3§1c<3->3),§o Tnn(Z5=, 4)B, (2,4, (29)

This equation indicates that the problem of finding the poles _4= Z','U,AJ-
of B,m(g,,d) (see equation (13)) is the same as that in a one-

group model:

’ a
det l _25:7'1[3 -c(g-)g):]"mn(_z%—,/i) | =0, (30)

where, in general, 71 and 7 take on all values, 0,1,2,.... (for a
spherically symmetric system treated in a previous paper (Asaoka, 1967),
they take on odd values only), Since Jmﬂ(O(J,,A) = O when M+MN = odd,
this determinantal equation can be split into two equations; one con-
tains only the elements with even values of 7 and 72 and the other
contains only thosewith odd values of 7 and 7 ., (In equation (13) or
(14), the terms with even values of 7 on the right hand side are sym-
metric abount 1}=ﬂ/2 and ‘/i= O and the others are antisymmetric,

that 1s, Ny (X U )= (-1) Mp(aX, -4, t) or Np (XL t)= (1" Np (&L, t).)
The equation with odd values is nothing more than the determinantal equa-
tion for a bare sphere with radius Z&R=Z30/2 (see Asaoka, 1967). Hence,
all poles which satisfy the condition "'{J >1- 2'31{1/(2—1%) for a spheri-
cally symmetric system with radius Z}R are, in general, also the poles
for a slab with thickness Z'Ja=22'aR and with the same value of (C(J>J).

The equation coming out of (30) on the basis of the elements with even
values of M and /1 can be solved to find the poles by following the

same procedure as illustrated for the spherically symmetric system since,
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in equation (30), C(j~>3) is always contained in the form f%/@(j*j)
and Z'3a appears always in the form Z,a% where %;:_1—(2,‘1&—/5)/(23‘1)3).

Thus, the poles are located (as for the spherical system) as follows:

1) Draw the curves giving 1/C as a function of slab thickness XQ&
by solving equation (30) (with 4=XV ) in a one-group model,
See Fig. 14(the smallest (¢ gives the value required to keept a
slab, of thickness 3@ , critical)

2) Draw the diagonal of a rectangle with sides 1/C(3'9g) and Zga
and find the abscissa Zga% of each point of intersection bet-

ween the curves and the diagonal.

This shows that equation (30) with even values of M and 7 gives at
most (N+2)/2 (and at least 1l; see below) real poles for each energy-
group, N being the order of the ‘jN approximation. (In addition to
these poles, each 3—th group has generally all poles of the higher
3/..1;h groups which satisfy the condition ,AJ'J/>1-Z4'U;/(2.'3’U3) ,
because of the presence of the last term on the right hand side of

equation (29).)

The asymptotic expressions for the poles P:] in the jz approximation
are ( 0(35 Zﬂa/'?’ CO(EC(J"J)‘XJand X being the Euler Mascheroni

constant):

1 3y 4 1 _ 1
“J@""z””‘fiz Y2 12 1-12/(5co()]) 0<oGR<1, (31

D 11
0B~ e 1= gpye] and cm[1~517-12(m)2]) oyl >>1. (32)

Equation (31) shows that the asymptotic decay constant ZyVy({-.4;)
(see equation (13) or (14)) tends to XZ'VJ as c(gag)z:?a—;»o

, while
equation (32) leads, for an infinite system, to the well known expres-
sion:

B AP~ E (@)= 3 [Zgt & 5907,
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Table 3 shows the numerical values of the asymptotic decay constant,
{-d44 in a one-group model for infinite homogeneous slabs with various
values of ¥Xd and a fixed value of C =1 (the value of /54 for a slab
with thickness (Z;+Z;)a and with (C% 1 is equal to the product of C
and the ,51 corresponding to a system with C = 1 and a thickness ZXQ=
Za=Cc(Zrza ; this leads to the well known relation that the
decay constant for the system with absorption is equal to the value for
the system with purescattering plus V2Z, ). In Fig. 15, our results
for the asymptotic decay constant are compared with those obtained from
a variational calculation using a double-step spatial trial function
(Judge and Daitch, 1964) and the experimentally observed values (Beghian
and Wilensky, 1965)., Our results in the jo approximation are on the curve
showing Judge and Daitch®s results,., These values are slightly too large
for slabs with large values of X compared to the more accurate re-
sults obtained from the J4 approximation, The experimental results do
not seem to be correct, especially for a thin slab, as Beghian and Wi-

lensky have pointed out.

Table 4 shows the numerical values of the second time-eigenvalue, 1-43
(the third eigenvalue for the system with the asymmetric components
with odd values of M on theright hand side of equation (13) or (14)),
obtained from equation (30) with even values of 71 and 7 and a one-
group model which assumes a fixed value of C =1, From equation (31),
it is seen that, in the j2 approximation, F% takes the value zero also
in the case where C(ﬂ-’j)ZJa/Q = 12/5 (corresponding to 1-43 =1
when 2d = 4.8 in Table 4). In the J4 approximation, the asymptotic
expression for small 0%F3>'0 is obtained from:

1-144/(35¢X) I
2

1 3 y. 4 1
0{7%”2%[2 Lata ek 1-264/(35¢0)+576 /(49 (co ) (31%)

which shows that Pg =0 when C{ = O or 132(17-\/H/11)/35 = 2,200260

( {-43=1 for =2 = 4.,40052 in Table 4) or 5,342597,

In Tables 5 and 6 are shown the numerical values of the second and fourth

time-eigenvalues, {-.4, and 1-44 respectively, for a slab system with asym-
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metric flux components, These were obtained by solving equation (30)
with odd values of M and 7. in a one-group model and represent respec-
tively the asymptotic decay constant (the first eigenvalue) and the
second eigenvalue for a bare sphere with radius ZR=ZO~/2 and with
C =1 (see Asaoka, 1967). In the j3 and j5 approximation, the asymp-
totic expressions for the poles for small ]D(JPﬂl are respectively

given by

04R ~ 22 (+- L (5-/4 Ytcon) (- L (5+/5 )/cor)/ - 1/5001Y)

(33)
o P ~ 5005 1‘71,?/(77C0{)+2880/( TIceny) - 115200/(3773 (CD{)S)
93856 1-15800/ (168 T ) + 216000/ (H1F0T (car )
_ 5005 (1-1.2T7#48/(con)( 1-3.281392/Cco0)) (1-T.285614/(col))
3856 (1-2.775481/(co))(1-6.590257/coi))
(33%)

Equation (33) shows that @ = O when CD(=1§%(5-T-‘/€7-) ( A4,=0 for
Za = 2&543425 in Table 5 or {44= 0 for XA = 7.731372 in Table 6).
.On the other hand, the j5 approximation gives the value F% = O when
CX = 1.,277148-( ZaA = 2,554296 in Table 5), 3.281392 ( XA = 6,562784
in Table 6) or 7.285614, In Tables 5 and 6, the negative values of .43

and ,J.,. are not applicable for the present slab geometry,

5., Conclusion

The neutron transport problems for an infinite homogeneous slab with
finite thickness dealt with in thils report have been solved satisfac-
torily by the ‘jN method. In particular, it has been shown that for

stationary energy-space-angle dependent problems the j5 approximation
which retains the first six terms of the expansions in spherical Bes-

sel functions (the numerical treatment of these terms is the same as
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for the case where only three terms are retained) gives a result com-

parable in accuracy to the S_ calculation for all systems studied.

8
A computer code for energy-space-angle-time dependent problems is now
under preparation for the case where the boundary source 1s represented
in a form of a delta function in time: S%gu,f)::ﬁb&u)é(f) . In this
case, 1—‘45 (u, 8)= SJ(/U.) (see equation (3)) and the integral Cm(%,/j)
defined by equation (8) is reduced to the form given by equation (28a),
(28b) or (28c) when the angular distribution of the source is plane iso-

tropic, point isotropic or monodirectional.

In addition, the extention of the present method to solve multiregion
problems is under way (the formulation for stationary one~group problems
has been completed and the computer code is being written by Mrs, E. Cag-
lioti of TCR, EURATOM-CCR, Ispra). Later, the JN method will be adapted

to treat also anisotropic scattering of neutrons,
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Appendix

1. Explicit expression for Fm(%; ’j',JU,/i) defined by equation (11)

Performing the integration over Z gives (%21‘(2'11}1‘/5)/(23173))

00 o0 . /
1 (GZ(1-25) s ~(Rrizu)t
Fm(%,g,/u,/j):;ijjyj d 5Jm(o(;,z)jodfﬂ 3M) (11)

LO- Mt , { -/ i
’ - P‘t
df t< 20X /M
401 : / IR0
c(1- Y ’
Shsle % ﬂjm(p] y=0, E7 X0,

where

X5§;~1 and SE."_'*I) when /LZO
and K4 f'f(ﬂ)],jzo stands for the residue of $(4) at Y= 0 and
Jm(g) iS.Split into two parts, Jm(y)zlj;l(g),e‘ﬂ-}-(—q)m ';l(—g)jly ,
in which J,”i(g) is a finite series in terms of negative powers of éf .

/
From the expression for t 720(7X§u it is easily seen that the

b

residue is always equal to zero when "H?Q%X//i because J,m(y)’\’
Y™/ (am+1)!l  as Y->o.

The explicit expression can thus be obtained in the following form by

introducing the abbreviation X= 0(3}3(cj

Figar U 1255 (Yek ) 2204 |
Fa= -5 [3(&) 30250 5 +1-45(1-3)
~(3( A)’+3..L+1 )_52“7(0“:{
F3=—-—DT[15(%) +15(1-25) (% V4 6 (155 (4-50) 4o+ 425D (- 105 (1-5))
-5 (I50LL% 45 (L2 g ol 4 g g 20X ],

v
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1y, A2
Fy= e (o5 (410525 (45 (1= 55 092) (%)
F1OU-25)(-T5(1-5)) 4 +1-205 (+-5)(-T5(4-5))
~(105 (4t 105 (LY 45 (£ Vit 1055 +4) 804 ]

Fy= (915 (%) + 945(125) () r 420 Lsa-5)) (%)
105 (1-25)(1-65 (-5 (LY 415 (1-H5 (-5 (#-35(+50)) 4
+ (-25) (1285 (-5 (- T50-59))

- 5(95 (Y rass (7120 (L ros (K ris )™M

Fe=- 2] 10315 (454 10395 (125)( LY 1 4725 (+- B3 (1-57) (4
+1260 (1-25)(1- 5 00-52) (LY + 210 (-1 -0 3050 1 (%)
+2 (4"2§)f1—1?5(1~§)(1—i}gﬁ—;))]é%

+1- 459505 (- H5(1-5)) T
¢~ [10395 (410395 (14124 4725 (L P 1260 (LY 210 (&)}
=D

Fy=- 75§ 43585 (4 r 351350 1-23) (4 )+ 42370 (- Bsu-50) (4
+17325 (1-25)(4- 26 50¢-5)) (4 3150 { 130-0-E3030] (&)
+318 (25 [1- B3 15)04- B508-5)) ] (£)?
+28 (1275 (-5 (-2 50-5)(1- B 51-5)) ) 1 4
+(1-25)( 1*5“?}'(1'})(1“115(1*57(1—%5(1—5))) ]
~S[135135 ()" 135135 (50)°+ 42370 (LAY + 171325 (4 Y

+3150(451)% 378 (4 g by 4 ] G2HXIM }
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2, Explicit expression for Hm((x;];/i) defined by equation (17)

As in Appendix 1, the integration over Z 1is first performed to give

ey 41257 | B2, o o8 (o™ an
1 am ~2(Y ctﬂ/% a’
S 3t Eu[ dtp-c17 5t }{(Hfff’ gft’}]tko)
2—4—0%1:12") y — t'< 200,
2 L
Roa L2 4 {4 4878597, szf”go > 20

/
This shows that when t 720/3 the residue 1is equal to zero for all
values of M except for M = 0 and 1. The explicit expression and the

asymptotic formula for small || (o(zD@%) are thus obtained as

follows ( Y being the Euler-Mascheroni constant):

_:thxy A 3, %2 0)
H,= 4[ Jo L U Tty 20- 3 )- Dl o 3

x>0,

_ : 1_{20( +1—20( H
H”ILF[ 307 "350< +'Lf 5212“5]
X _5 6(p-1 27
7 f3’+,ﬁn20( 2 ¢>(+Z4 T2 2)(f’+1)’(20(f x>0

21524 72 24(p+1)
H2~ [Xff +j%(1-l )]N ,f_Z'(_ﬁr;)—,(llX)}

2

2% 3(5+31’“ 20
[ 42 ) 6(11 2 i B (- 2o o),

L [1- 20432 72X 45-17.8%" 14(3+2£2“) 3’5(1—1Z )]
202

N375(1_ 630( ))

Hy= - k- [1-12 X, 33549.67%)  ((28-13477) 45(7+51’“)
5 80( 202 o3

—2———270(01(? JNL%O(HO(M))
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Cliag, 4)
3. Explicit expression for m ‘Y defined by equation (28a)

As in Appendix 1, performing the integration over X gives

Cor(0,.4)= J—je‘—? | (o/z)jdt PR 67 1y (28a)

Ros [ Lm0} (T80 H<20g,

Ral§e U, D], 172

12
This shows that when T 720(5 the residue is equal to zero for all
values of M except for M= O, The explicit expression and the asymp-

totic formula for small || (o= %Pa ) are obtained as follows:
a_ 1—1"20( _fL - 20 _ ( 2
C,“————(1 e )m—LZ F,(zoo
“£ A-d gL
&=L (1- +—1‘) F (5o Zepo- 2oty

AN = I T
_20((1 20 t5 202 =15 ai) 72“ 705“)

+ j—zq _ ~200
J(X" 2f5 ‘;a,; 1".21"7':}7— )"’:?15“'*0(0(4)))

2 )
G :ﬁ(f“m;,}e +310:32

— -4 +.52% Y il 52 7
Co'= (1 1520( +75—D{, -21824 +633—%— a5 5

~———(1+0(zx+>)



Table 1 Boundary source spectrum, a set of buckling values and the nuclear cross-sections assumed for

numerical calculations on water slabs (90% water in volume)

Energy-group Source spectrum Buckling Zb ZEng
Average 2 2 2, -2 -1 =1
+

3 Energy range velocity 5&(n/cm sec) &1 E&(cm ) (cm™) (cm™)
1 10-3 MeV 2850 cm//usec 0.001034 0.030 0.17543 0.07612
2 3-0.9 1712 0.004623 0.015 0.26738 0.11498
3 0.9-0.1 822 .4 0.008280 0.005 0.57908 0.24900
4 100-3 keV 184.5 0.002594 0.015 1.14092 0.46778
5 3-0.0226 21,18 0.001174 0.030 1.61723 0.63086
6 22,3-0.414 eV 2,402 0.000492 0.045 1.71824 0.67124
7 0,414 eV~thermal 0.2881 0.000592 0.055 2.52418 1.65792

Le




Table 2 Numerical values of the mean number of secondary neutrons per collision in water slabs

Energy-group § c(3>3> C(3>3t1) C(3>3+t2> C(§>3t3)
1 0.23406 0.24752 0.07845 0.00785
2 0.38096 0.43149 0.04678 0.00089
3 0.67059 0.30788 0.01011 0
4 0.75139 0.23831 0.00102 0
5 0.86891 0.12040 0.00084 -
6 0.85253 0.13357 - -
7 0.99011 ~ - -

8¢



Table 3 Asymptotic decay constants for infinite homogeneous
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slabs with C =1 in a one~group model
Decay constant {-.44
Thickness
2a j, approx. J, approx.
0.1 *5.19565x10—8 X5.1057x10 °
0.2 X5 .7329x10 *5,73305x10_4
0.3 0.989255 0,9892545
0.4 0,957051 0,9570495
0.5 0.,905493 0.905490
0.6 0.843992 0.843986
0,7 0,7801475 0,7801385
0.8 0.7183665 0.718355
1.0 0.608089 0.608074
1.5 0.413221 0.413205
2,0 0.296855 0.296843
2,5 0.223383 0.223376
3.0 0.,174267 0.174264
4.0 0.114716 0.114716
5.0 0.0813385 0.0813362
6.0 0.0607554 0.0607481
7.0 0.0471762 0.0471637
8.0 0.0377365 0.0377182
10.0 0.,0258350 0.0258085
12,0 0.01836375 0.0183352
14.0 0.0145342 0.0144996
20.0 0,0080986 0.0080607

values

for 44 (

A4= 0 when Z A = 0),.
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Table 4 The second time-eigenvalue for a symmetric slab system
(the third eigenvalue for an asymmetric slab system)
with C =1 in a one-group model

Thickness Time—-eigenvalue {—.43
za J, approx. j, approx,
%* 1 1
5 0,978187 0.837113
6 0.764917 0.606030
7 0,6151015 0.4594685
8 0.,511749 0.361304
10 0,381296 0,241573
12 0,303363 0.1736445
14 0.251846 0.131194
20 0.,166989 0.068230
b

2ZQA = 4,8 or 4,40052 in the j, or j, approximation
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Table 5 The second time-eigenvalue for an asymmetric slab system

with. C =1 in a one-group model
Thickness Time-eigenvalue 1-.4,

PN/ J3 approx. js approx.

o 13.30210 13.30210

° 9.96427 9.96426

o 7 .84035 7 .84032

6,38405 6 .38400

5.33123 5.33118

o 3.92531 3.92527

2,21107 2,21106

2.0 154487335 1.448732
° 1.033564 1.033540

* 1 1

3.0 0.779077 0.779006
4.0 0,492604 0.492437
5.0 - 0,341557 0,341248
6.0 0.251515 0.251084
7.0 0.193338 0.192822
8.0 0.153442 0.152860
10.0 0.103652 0.102994
12,0 0.0748453 0.0741657
14.0 0.0566358 0?0559678
20,0 0.0294103 0.0288512

*x ZA= 2,55434 or 2,,554295 in the ‘j3 or ‘j5 approximation
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