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Summary 

An automated oxygen analysis system for steel samples has been ela­
borated, where with 14 MeV neutrons from a neutron generator the reaction 
ΐϋΟ(η,ρ)ΐ6Ν (Τ 1/2 = 7.4 s) is used. A fast double pneumatic transport 
system for rectangular 18 g samples has been constructed, which allows the 
standard to be activated at the same time as and behind the sample. The 
i«N Y-activities are measured above 4.5 MeV with two separated counting 
systems. Interferences from Β and F are given. Sensitivity of the method 
is approx. 0.1 mg oxygen at maximum neutron output. Correlation between 
activation and reducing fusion results has been extensively studied on numerous 
samples of different origin, and is excellent. 

The complete activation analysis apparatus for 38 g disk samples has been 
industrialised in a steel work. 

As an extension to the steel analysis the oxygen determination in 11 different 
non-ferrous metals, Al, Bi, Cd, Co, Cu, Nb, Pb, Ta, Ti, Zn and Zr has been 
studied. 

Possible matrix effects on the oxygen standards were investigated and found 
to be negligible. Whereas most matrices do not interfere with the 16N 
measurement, Pb and Zr interfere seriously, Al and Cu to a lesser degree. 
By slight changes in the measurement period of the analysis, these errors could 
be eliminated. 
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read : ... Takes tup air oxygen ... 
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Line 10 - col. 6 

Line 15 - col. 5 

Line 15 - col. 6 
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-i-
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THE DETERMINATION OF OXYGEN IN METALS 

BY 14 MeV NEUTRON ACTIVATION ANALYSIS^5 

1. INTRODUCTION. 

In the present state of the metallurgical industries a rapid and accu­
rate determination of oxygen is of extreme importance. The production 
of a great variety of metals makes it desirable to develop a method, 
suitable for various mat r ices . In the steel industry, where oxygen-poor 
steels and alloys of the most different composition a re produced, this 
situation is of the highest urgency. 

Untili quite recently oxygen in those materials was determined by a 
reducing fusion method, where the samples are melted in a graphite 
crucible in vacuum or in an inert gas atmosphere (nitrogen-argon). 
Oxygen combines with carbon to form CO, which is measured directly 
or after oxidation to CO_ by an appropriate detection method, such as 
infrared, inicio coulometry, e t c 

This rather slow method has an important blank value and uses quite 
small samples (2OC mg up to 5 g). Inherent to this technique are diffi­
culties in recovering the CO especially because of the wellknown getter-
effect. Low melting materials evaporate and deposit on the walls of the 
apparatus , e .g . high manganese steels frequently suffer from conside­
rable negative e r r o r s in the oxygen determination (1-3). 

Matrices with high melting point need the addition of fluxes which 
apart from enhancing the blank value, a r e sometimes very expensive. 
The determination of oxygen in Nb and Ta for instance uses some grams 
of platinum per analysis (4), 

The existing fusion apparatus do not always satisfy the needs of the 
industry, especially when together with the control of the finished pro­
ducts , intervention during the production is desired. In this situation 
for routine analyses a method and apparatus a re needed, which possess 
speed, rel iabil i ty, accuracy, sensitivity and even universali ty, together 
with ease of operation for technical people and the possibility to accept 
substantial samples. 

Manuscript received on June 23, I967. 



For the activation analysis of oxygen, several nuclear reactions are 
available, however the Ο(η,ρ) N (T. /_ ; 7.4 sec) is of the most p rac­
tical value. The oxygen determination applying this reaction has been the 
subject of many investigations (5-29), 

The purpose of the work, described hereafter , was with the given 
reaction to develop a method and an apparatus adapted to the needs of the 
modern metallurgical industries,, More specifically this study was directed 
towardj the steel industry, where process-control in production is of 
highest urgency. 

As the given nuclear reaction οηΐγ succeeds with fast neutrons, a 
nuclear reactor apart from being intolerable in a steelwork, is quite 
useless . Neutrons with an energy of about 14 MeV, are produced in a 
so-called neutron generator of reasonable cost. The produced radioisotope 

Ν with its short half life necessitates a fast transport system for moving 
large samples from irradiation to measurement stations in as short as 
possible t imes. An advantage of this short half life is the possibility to 
repeat the analyses on the same sample in a non destructive way. Com­
puting results in activation analysis io transposing a recorded activity into 
a concentration or weight of tiie analysed element. In order to speed up 
the analysis time it is therefore necessary to obtain the results by a 
simple calculation, or to introduce the recorded activities into a small 
calculator, printing the result as weight of oxygen. 

It is also obvious that an industrial equipment of practical value should 
provide the possibility to automate the procedure and to be able to accept 
a number of samples for analysis without any intervention from an opera­
tor. Therefore the imposed sequence of operations should be reliable and 
free from erroneous resu l t s , due to any mishap in the analysis cyclus. 



2 . PRINCIPLE OF THE METHOD. 

2 . 1 . Act ivat ion a n a l y s i s . 

The pr inc ip le of act ivat ion ana lys i s i s based on the m e a s u r e m e n t 

of the radioact iv i ty produced by bombard ing s table nuclei with adequate 

par t ic les» This act ivi ty A , e x p r e s s e d a s des in tegra t ions p e r s econd , i s 

given by the following equation 
­ λ t 

A t = f < T N (1 ­ e ) (1) 

with 
N = A ­ N A (2) 

2 
where f = i r r ad i a t i on fiux in number of pa r t i c l e s pe r c m pe r s ec ; 

rf = c r o s s ­ s e c t i o n , for the reac t ion under cons ide ra t i on , in 
2 ­24 2 

cm ; (p rac t i ca l unit : b a r n = 1 0 c m ); 

Ν = number of i r r a d i a t e d s table nuclei ; 

λ. = 7= = des in tegra t ion constant of the produced i s o t o p e s , 

with half life T j / 2 ; 

t = i r r ad i a t i on t i m e ; 

g = weight of i r r a d i a t e d e lement ; 

M = a tomic weight of the e lement ; 

23 
N . = Avogadro ' s number : 6 .02 10 . 

F r o m eq. (1) an exponential growth of the rad ioac t iv i ty i s expec ted , 

with a l imi t value of f Û~N, The re fo re the t e r m (1 ­ e~ ) i s the 

so ­ca l l ed " sa tu ra t i on f a c t o r " . It i s obvious that for t » T j M sa tura t ion 

i s obtained and the act ivi ty in the i r r a d i a t e d sample i s not i nc rea s ing 

a n y m o r e . 

Although with eq , (1) the weight of tne e lement de t e rmined can be 

calcula ted f rom the obse rved ac t iv i ty , gene ra l ly a r e l a t i ve m e t h o d , 

i s u s e d , where under ident ica l condit ions a sample (X) toge ther with a 

s tandard (S) of the e lement with known weight a r e t r e a t e d . Under th is 

condi t ion , eq . (3) can be applied 



8 X ­ A t X (3) 
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 Ä

t s 

so that the weight of element in the unknown sample can be determined 

from the ratio of the recorded activities in sample and in standard, 

2.2.Nuclear datac 

A great variety of nuclear reactions are at least of theoretical), value 

in activation analysis for the determination of oxygen : 

180(p,n>18F (30) 

1 8 0(n s v) 1 9 0 (31) 

wO(n,oO C (32) 

160(d,n)17F (33) 

160(t,n)18F (34) 

160( V ,n)150 (35) 

160(3He,p) l8F (36) 

160(n,p)16N (5­29) 

The isotopie abundances of the oxygen isotopes O, O and O 

are 99.7%, 0,037% and 0„20/o respectively. It is obvious that in order 

16 
to achieve the highest sensitivity a reaction with O is to be considered. 

On the other hand reactions with charged particles suffer from a double 

draw back. Only costly accelerators produce them and their range of 

penetration in the irradiated samples is very low. As in the determination 

of oxygen only surface layers of up to some hundred microns would be 

detected, the results for materials with surface oxidation would be with­

out value. Special precautions would have to be taken, e.g. working in 

an oxygen­free atmosphere, so that sample­taking and analysis would 

be of ne use as a routine method. From these considerations follows 

that the reaction 

16­, vl6M Ofn,p) Ν 

is the most promising possibility. As the threshold energy Ε , , for the 



reaction is of about 10 MeV, the monoenergetic 14 MeV neutrons from 
a neutron generator a re quite adequate for the activation analysis of 
oxygen. 

A survey of the most important nuclear reactions with 14 MeV neu­
trons on oxygen iron and the most frequent steel constituents is given 
in Table 2 , I (37). 

As appears from the desintegration scheme given in Fig. 2 , 1, J' N 
emit3 high energy V - r a y s of atout 6 and 7 MeV. Although also high 
energy ß ' s a re emitted, it is appropriate to use V-energy discr imi­
nation with a reasonable high counting efficiency. 

56 The iron matrix mainly produces Mn with Y-rays of max. 3.20 
MeV, The other steel constituents do not produce v-ac t ive isotopes with 
energies above 3,2 MeV. It is obvious that energy uisciimination at the 
4 ,5 I/ieV level will allow a practically trouble-free N counting for 
approx, 40% of its activity, even if sum peaks are taken into account. 
Fig. 2 , 2 , where the ^ - s p e c t r a of N and Mn are given, i l lustrates 
this possibility. 

2 . 3 . Irradiation and measurement t ime. 

The short half life of N (7.4 sec) imposes the shortest possible 
delay between the end of the iri'adiation and the start of the activity 
measurement in orde-* to achieve the highest sensitivity» Therefore 
the transport in the pneumatic system must be as fast as possible. 

However this same short half life permits short irradiation per iods, 
which speed up the analysis t ime e F rom eq. (1) giving the induced act i­
vity as a function of irradiation t ime , one calculates a saturation of 40% 
after 5 sec , and of 83% after 15 sec . 

The counting period of the activated samples can also be rather 
short . V.Tnen the delay between activation and measurement is 2 Bee. 
then counting for 7 , 2 0 and 30 sec yields r e sp . 40 , 70 and 78% of the 
total produced activity. It is obvious that further increasing the counting 
period only has a negative effect on the counting statistics by multi­
plying the background of the detectors . 
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T A B L E 2 , I . 

Γ 
R e a c t i o n 

I r r a d i a t e d 

i s o t o p e 

m b T l / 2 

R e a c t i o n p r o d u c t 

m a x 
Ρ (MeV) E „ (MeV) 

0 

1 6 0 ( n , p ) 1 6 N 

1 6 0 ( n , 2 n ) 1 5 0 

5 4 F e ( n , û ( ) 5 1 C r 

5 4 F e ( n , 2 n ) 5 3 F e 

5 6 F e ( n , p ) 5 6 M n 

5 7 F e ( n , p ) 5 7 M n 

5 5 M n ( n , p ) 5 5 C r 

5 5 M n ( n . O ( ) 5 2 V 

5 9 C o ( n , p ) 5 9 F e 

5 9 C o ( n , ^ ) 5 6 M n 

59~ , ­ \50rn 
C o ( n , 2 n ) Col 

99.7 

99.7 

5 . 8 

5 . 8 

9 1 , 7 

2.2 

100 

ICO 

100 

100 

100 

Co 

58. T . , x58m_ 
N i ( n , p ) Co 

Co 

5 8 N i ( n , 2 n ) 5 7 N i 

5 2 C r ( n , p ) 5 2 V 

C r ( n , 2 n ) C r 

2 8 S i ( n , p ) 2 8 A l 

3 2 S ( n , p ) 3 2 P 

3 1 P ( n , p ) 3 1 S i 

3 1 P ( n , û < ) 2 8 A l 

3 1 ü f , 3 0 _ 
P ( n , 2 n ) Ρ 

6 7 . 7 

6 7 . 7 

8 3 . 8 

92,3 

9 5 . 1 

100 

100 

100 

40 

200 

15 

110 

60 

40 

35 

81 

30 

800 

385 

40 

560 

35 

100 

360 

220 

80 

120 

10 

7 . 4 s 

118 s 

2 7 . 8 d 

8 .9 m i n 

2 . 6 h 

1.7 m i n 

3 . 5 m i n 

3 c 8 m i n 

45 d 

2 . 6 h 

9 . 2 h 

72 d 

9 . 2 h 

72 d 

36 h 

3 . 8 m i n 

2 . 3 m i n 

1 4 . 3 d 

2 . 6 h 

2 , 8 m i n 

2.5 m i n 

1 0 . 3 ; 4 . 3 ; 3 . 2 

β + 1 . 7 3 

p + 2 , 4 0 ; p + 2 . 7 0 

2 . 8 6 ; 1 . 05 ; 0 . 7 0 

2 . 6 0 

2,85 

2.73 

1.56; 0 . 4 6 ; 0 . 2 7 

s e e 5 6 F e ( n , p ) 5 6 M n 

β
+

0 . 4 8 

5 9 ^ , ­, x58^ 
s e e C o ( n , 2 n ) Co 

p
+
 0.85; ß

 +
 0.72 

s e e 5 5 M n ( n , V ) 5 2 V 

5 4 _ , .51 

s e e F e ( n , c( ) C r 

2 . 8 6 

1,71 

1 .48 ; 0 . 8 2 

s e e 2 8 S i ( n , p ) 2 8 A l 

ß
+
3 . 2 4 

6 . 1 3 ; 6 . 9 0 ; 7 . 1 1 

0.33 

0,38 

3 . 2 0 ; 2 , 9 3 ; 2 . 6 9 ; 2 . 5 6 ; 

2 . 1 0 ; 1 . 8 0 ; 0 . 8 4 

0 . 1 3 ; 0 . 1 2 

1.44 

1 .29 ; 1 .10; 0 . 1 9 

0 . 0 2 5 

1 .62; 0 . 8 1 

1 . 8 9 ; 1 . 3 6 ; 0 . 4 0 ; 0 . 1 3 

1.80 

1.26 
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16 Finally the short half life of N has another advantage as ita 
allows repeated analyses on the same sample. Indeed 1 min, after 
the end of irradiation the activity has decreased to less than 0,5% of 
the original value, 

2 ,4 . Geometry factors at the irradiat ion- and ^-counting s i tes . 

As a neutron generator is in fact a disk neutron source , an impor­
tant flux gradient will exist as a function of the distance between the neu­
tron source and the irradiated sample. For samples with rinite dimen­
sions the highest activity will be induced at the face nearest to the 
tr i t iumtarget . Furthermore as the counting efficiency of the Nal(Tl) 
detectors is also influenced by the distance between sample and c rys ta l , 
the most activated face of the sample must be nearest to the detector to 
achieve the highest possible count r a t e . In this way the highest sensitivity 
for the analysis is obtained. Several authors (14, 22, 24, 27, 38) prefer 
to spin the samples during activation and counting in order to achieve 
isotropic irradiation and measurement. This method lowers the obtainable 
sensitivity as the mechanical setup increases the distances between 
sample and neutron generator and(or) the ¿f> -detector . An additional set­
back is the difficulty to construct a reliable tool to spin heavy samples 
of 40 g for the steel analysis 

A simple solution of these geometry problems has been achieved by 
constructing a transport system with aluminium tubes of rectangular 
cross section. In this way the samples necessari ly present the same 
face nearest to the neutron generator and the detector. 

An additional advantage of the transport system introduced here is 
the possibility to analyse the samples on both s ides , thus allowing the 
detection of important oxide inclusions. 
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2 . 5 , Neutron monitoring and s tandard isa t ion . 

AD an absolute activation method is difficult to r e a l i s e , a re la t ive 
analys is method is general ly adopted, where the oxygen concentra t ion 
of the sample is measu red v e r s u s a s tandard with known oxygen content . 
In most published p rocedures s tandard and sample a r e i r r ad i a t ed s u c c e s ­
s ively , whilst the neutron flux or a re la ted quantity i s m e a s u r e d . Af ter ­
wards the induced activity in sample and s tandard i s co r r ec t ed for dif­
fe rences in neutron output of the gene ra to r . 

Two poss ibi l i t ies a r e exploited for the flux monitoring : measur ing 
the activity induced in a suitable t a rge t s imultaneously with sample or 
s tandard or d i rec t neutron counting during the i r r ad ia t ion t i m e . 

In the f i rs t c a s e , genera l use i.e made of the reac t ion "Cu(n,2n) Cu 
(Twp : 9.9 m) with a c r o s s section of 0 .5 ba rn and the annihilation 
radiat ion of Cu is measu red (39). The differences of the excitation 
function for Cu and O have no influence on the accuracy of the d e t e r ­
mination as long as no different neutron energy degradat ion a r i s e s on 
success ive i r r a d i a t i o n s . 

The d i rec t neutron counting may be achieved with organic plast ic 
scintillators(14 , 2 3 , 24) o r with a B F - coun t e r , surrounded with a paraf­
fine layer to t he rma l i s e the neutrons (12, 2 0 , 2 5 , 40) . An advantage of 
this method i s the a lmost complete in sensi t ivi ty of the counter for the 
impor tant capture ν -flux assoc ia ted with the neutron product ion. How-

16 
ever it should be noted that the γ - d e t e c t i o n sys tem for Ν differs f rom 
the neutron counting cha in , thus a different drift i s possible as a function 
of t imo and t e m p e r a t u r e . Also the neutron flux mus t be constant during 
the i r r ad ia t ion as the ' Ν half life i s short compared to the activation 
per iod . Various authors (12, 14) proposed as a solution to thie problem 
the use of an integrat ing d e v i c e , with a t ime constant equal to the mean 
half Ufe of 1 6 N , i . e . Ύγ^ χ In 2 . 

In this work a p rocedure i s proposed taken from the c l a s s i c a l a c t i ­
vation analys is t echn iques , where sample and s tandard a r e i r r ad i a t ed 
at the same t i m e . Thut the s tandard in fact has a double function : 



14 

flux monitor ing and s t andard i sa t ion . Whereas i t i s poss ib le to i r r a d i a t e 

sample and s tandard next to each o ther (27, 4 1 ) , h e r e the s tandard i s 

placed behind the s a m p l e . By doing this the s a m p l e , with the lowest 

oxygen content , gets the highest neutron flux, and the lower flux in the 

s tandard i s eas i ly compensated by introducing a h igher oxygen quanti ty. 

Af terwards the ac t iv i t ies of sample and s tandard a r e m e a s u r e d s i m u l ­

taneously with two separate, but ident ica l de tec tor s y s t e m s . The oxygen 

concentra t ion in the unknown sample , i s then to be computed with the 

c l a s s i c a l act ivation ana lys is formula 

(mg O L (Act) (Act) 

where subsc r ip t s X and S respec t ive ly indica te sample and 's tandaid; Act 

the induced Ν activity and K8 r e p r e s e n t s the ana lys is factor¿ The K­

factor i s governed by the ra t io of the neutron fluxes in X and S at the 

i r r ad ia t ion s i tes a n i by the difference in counting efficiencies of both 

counting s y s t e m s . The de terminat ion of Κ is eas i ly achieved with two 

oxygen s tandards as will be explained in 8. 

It should be noted that this p r o c e d u t e does not demand addit ional 

appara tus as the neutron moni tor ing equipment i s s imply rep laced by 

a c l a s s i c a l yr­counting s y s t e m . 

Duplication of the r ec tangu la r t r a n s p o r t sys t em i s fully compensa ted 

by minimal i sa t ion of the e r r o r s in s t anda rd i sa t i on , the s impl ic i ty of 

calculat ing the r e s u l t s and the omiss ion of a spinning s y s t e m . It i s indeed 

obvious that the automatic computat ion of the ana lys i s r e s u l t s does not 

p re sen t impor tan t technica l diff icul t ies . 

It i s a lso quite c l ea r that the s tandard can be used r e p e a t e d l y , p r o ­

vided the frequence of ana lys is i s not h igher than 1 ana lys i s per minu te . 

At that moment the r e s idua l act ivi ty of Ν is lower than 0 , 5 % . No 

16 Λ 
danger of oxygen " b u r n ­ u p " ex is t s as ' Ν decays by ii> ­ V des in tegra t ion 

16 \ υ 
to the or ig ina l O. 
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3 . APPARATUS. 

3., 1. Neutron generator,, 

~.7hen deuterone a r e acce le ra ted in a high vacuum to 150 kV and bom­

bard a t r i t ium t a r g e t , they give r i s e to 14 MeV neutrons from the fusion 

react ion 

2 H + 3 H »■ 4 He + 1n 

Tli3 neutron genera tor used in this work was a SAMES Type J 150 kV 

1 mi_ a­ccelerator , which is shown in F i g , 3 , 1 and schemat ical ly presen ted 

in F ig . 3 , 2 . 

In this appara tus the deuter ium gas flow is obtained by heating a 

palladium leak attached to the gas conta iner . In the ion source the gas 

is a tomised and ionised by a 100 Mhz ­ 60 W RF g e n e r a t o r , with up to 

90% of monoatomic d e u t e r o m . The deuteron p lasma is condensed by a 

magnetic field and ext rac ted by applying a var iab le posit ive voltage into 

the acce lera t ing tube. F r o m he re the acce le ra t ion . takes p l ace , whe re ­

upon the deuteron beam bombards a t r i t i um t a r g e t , producing the des i red 

neu t rons . 

It should be noted that a positive potential i s applied throughout the 

whole p roces sus , so that the t r i t i um ta rge t i s at ea r th po ten t ia l , and a 

metal l ic t r anspo r t tube can be placed as near as useful to the acce l e r a to r 

tube , without e l ec t r i ca l shielding. The 150 kV voltage is e l ec t ro s t a t i s t i ­

cally produced and protected against excess ive voltage or c u r r e n t , 

which prevents e l ec t r i ca l haza rds on body d i s c h a r g e s . In a f i rs t vers ion 

of the a c c e l e r a t o r , the acce lera t ing potential was applied in 2 s t e p s , the 

f i rs t o n e , var iab le from 0 to ­45 kV serving a lso as focalisation potent ia l . 

Adjusting this focalisation produced a beam with a d i ame te r from 2 to 

12 m m . As a t r i t ium ta rge t has a useful d iamete r of 20 m m , it was 

imposs ib le to obtain a maximum neutron yield. Also a 2 m m beam causes 

considerable damage to the t r i t i um ta rge t by excess ive local heat ing. 

Last ly as the acce lera t ing e lec t rodes were isolated by organic polymer 

m a t e r i a l , a suitable vacuum was only obtained after pumping for at least 

6 h when a i r has entered the vacuum sys t em. 
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F o r al l these r e a s o n s , a*new acce lera t ing tube was developped, 
where 1C acce l e r a to r e lec t rodes a r e p r e s e n t , i solated by c e r a m i c 
m a t e r i a l . In this "constant field" tube a high vacuum is obtained in 10 
minu tes . Focal isat ion provides a beam with d i a m e t e r s varying f rom 6 
to 25 m m , 

A 1C~ t o r r vacuum i s obtained with an i on -pump , with 200 1 sec 
capaci ty. An ext remely clean vacuum is thus obtained and no deposi ts 
on the e lec t rodes or t r i t i um ta rge t a r t no i iceab le , a s can happen with 
oil-diffusion pumps . The ion pump is continuously working, a lso when 

no neutrons a r e genera ted , thus preventing soiling the pal ladium leak or 
-3 

the ion source . A prevacuum of the o rde r of 10 t o r r i s obtained by a 
c l a s s i ca l double rotating pump. The vacuum is monitored on the acce l e ­
r a t o r ccnt ro l by a built in vacuum-gauge . 

The target section of the genera tor can be isolated from the r e s t of 
the acce le ra to r by means of a planar va lve , allowing the rep lacement of 
a t r i t ium target without destroying the vacuum in the acce l e r a to r t ube , 
in about 20 minu tes . F a r t h e r on a d iaphragm pro tec t s the tube against 
possible deuteron bombardment and i t s consequent damage* The incident 
deuteron beam is monitored Dn the control panel and gives a rough idea 
of the defocalisation of the b e a m . 

The water -cooled ta rge t holder c loses the a c c e l e r a t o r . The t r i t i um 
ta rge t consis ts of a copper or s i lver backing, 0. 1 m m th ick , on which 
approximately 200 u of t i tanium or z i rconium is evaporated and more or 
les3 sa turated with t r i t i u m g a s . The total t r i t i um activity va r i e s f rom 
1 to 15 Ci , In this work 2 to 5 Ci t a rge t s of different or igin were used . 

Upon repeated bombardments the t a rge t is depleted (42) and the half 
life can be es tab l i shed , i . e . the t ime n e c e s s a r y to obtain at constant 
beam cur ren t a neutron output , half of i ts or ig inal va lue . Exper imenta l ly 
it wa.3 established that a 4 CA t a rge t does not produce a neutron flux, 
double of a 2 Ci t a r g e t , but i t s half life was somewhat g r e a t e r . This i s 
prcbably due to regenera t ion by diffusion of t r i t i um from the lower 
layers of the t i tanium or z i rconium deposi t . This same phenomenon was 
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noted when the a c c e l e r a t o r was r e s t e d . The decay of the t a r g e t was a l so 
l e s s pronounced with shor t i r r a d i a t i o n s , at constant in tegra ted b e a m 
c u r r e n t . Consequent ly a s many p a r a m e t e r s influence the t a r g e t half l i f e , 
th is value i s of l imited s ignif icance. One can however accept as typ ica l 
for a "good" 2 Ci t a r g e t a f igure co r re spond ing to 30 m A . minutes for 
i r r a d i a t i o n t i m e s of 5 sec at 300 uA. 

The t a r g e t c u r r e n t i s m e a s u r e d with a p A - m e t e r in the con t ro l pane l . 
The re la t ion between beam c u r r e n t and induced act iv i ty in a oxygen s t an ­
da rd on sample and s tandard i r r a d i a t i o n s i tes i s given in F i g . 3 , 3 . 

Ctarting with 300 uA b e a m , 5 sec i r r a d i a t i o n s and if the b e a m in tens i ty 
i s gradual ly i n c r e a s e d to achieve approx imate ly constant neut ron output , 
a 2 Ci t r i t i u m t a rge t i s adequate for approx . 5 ,000 oxygen ana lyses at a 
p r i c e of 0.02 U$ t a rge t cos t pe r a n a l y s i s . 

The neut ron flux has been de t e rmined accord ing to the Texas-convent ion 

(43), A copper t a r g e t of 1 c m d i a m e t e r and 0 .25 m m th ickness i s i r r a d i a ­
i t 

ted and the absolute act ivi ty of Cu d e t e r m i n e d . The neut ron flux at the 
8 2 

i r r a d i a t i o n si te of the sample was a p p r o x . 8.10 n / c m . s e c at a b e a m 
in tens i ty of 300 uA, The neut ron genera t ion is cont ro l led by a mobi le 
watercooled tan ta lum s c r e e n . Between neutron product ions th is s c r e e n 
in t e rcep te the deuteron b e a m and i s pneumat ica l ly lowered for the i r r a ­
d ia t ions . This set up p r e s e n t s va r ious advantages : 
- i t p e r m i t s the adjus tment of the a c c e l e r a t o r p a r a m e t e r s , such as R . F . , 

ex t rac t ion and focal isat ion without u n n e c e s s a r y bombardmen t of the 
t r i t i u m t a r g e t , the incident b e a m being moni tored by the same uA m e t e r 
of the t a r g e t c u r r e n t ; 

- the a c c e l e r a t o r i s continuously in working cond i t ions , enhancing r e ­
markab ly the reproducib i l i ty of the be a m output . In g e n e r a t o r s of o the r 
type3 the neutron product ion i s regula ted by switching on and off the R . F , 
gene ra to r o r even the high vol tage; th is method i m p o s e s heavi ly upon 
the e lec t ron ic c i r cu i t s of the a c c e l e r a t o r . 
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The accelerator control panel in the counting room consists of the 
H. V. control, the vacuum meter and the potentiometers for gas-flow, 
R . F . , extraction and focalisation. These parameters are highly inter­
dependent and their relation to the beam intensities is given in Fig. 3 , 4 , 

3 .2 . Counting apparatus0 

The sample to be analysed and the oxygen standard possess separate 
but identical Y -counting systems, consisting of a common H.V. supply, 
a 7.5 χ 7.5 cm Nal(Tl) detector, preamplifier, linear amplifier with 
discriminator and scaler . An automatic background correction is in­
cluded in the scaler : the reset at the start of the counting is made on the 
compliment of the adjustable background, approx. 40 counts per 30 sec . 
It is indeed necessary to correct for the background at low oxygen con­
tents . The detectors are shielded with a 5 cm Pb r ing, and a 60 cm 
concrete wall separates the two counting stations. As no long-living 
isotope with a ^ -ene rgy of above 4,5 MeV exis ts , the discriminator 

v 65 
settings are adjusted with the help of the 1. 12 MeV X" -energy of Zn, 
and afterwards the gain of the amplifiers is reduced by a factor of 4 . 

3 . 3 , Pneumatic transport system. 

Aluminium tubes with rectangular section have been used to construct 
this transport system, thus providing the same geometry for the sam­
ples at the irradiation and the counting stations. As the analysis of 
sample and standard is simultaneous a double system was necessary. 
At the irradiation site the tubes are placed one after the other , the sample 
being nearest to the tritium target , at the measuring site the tubes are 
evidently separated and at. a distance of approx, 100 cm. 

At the beginning of the work, the transport system accepted sam­
ples of dimensions 20 χ 17 χ 7 m m , or equivalent to 18 g steel. However 
on suggestion by the European Coal and Steel Community commission 
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for the determination of oxygen in s teel , the use of cylindrical samples , 
more readily available, was considered, and a new transport system 
for samples 26 mm in diameter and 9 mm thick, or approx, 38 g was 
constructed. 

The direction of transport is reversed by means of double magnetic-
pneumatic valves. In order to arr ive at very short transit t imes , the 
transport is always done under p r e s s u r e , approx. 1.7 atmosphere. 
Typic?l values are 1.6 sec for 12 m with the 18 g system and 0.8 sec 
for 5 m^with the 38 g samples. 

At this high speeds stopping the samples is achieved with nylon 
bumpers supported by spiral springs. The presence of the samples is 
photoelectrically contiolled. As the same oxygen standard serves con­
tinuously, no exchanging mechanism is provided in its transport system. 
In the sample system a sample changer of classical design is mounted 
at the measuring station. The aluminium tube is connected to one of 
four chambers of a revolving block. When the block is moved ever 90° 
a nev/ sample is introduced in the transport tube, and the analysed 
sample is ejected in a shielded container. The number of samples in 
the charger is unlimited but Las been kept for practical purposes to 15. 
The complete design of the system is given in F ig . 3 , 5 and is pictured 
in Fig. 3 , 6 , 

The geometric reproducibility of the transport system was checked 
with reactor activated steel samples , with a total activity of about 
100,000 c/min. The samples were counted with a Nal(Tl) detector at 
the 2 measuring stations and at the irradiation station. Standard devia­
tions were calculated for 10 stationnary countings and for 10 measure ­
ments after t ransport . Results are given in Table 3 , I, From these 
results it appears that in the most unfavourable situation the s fandard 
deviation in only 0,3% higher than for stationnary measurements , 
which e r ro r is well inside the overall e r ro r of the method. 
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TABLE 3 , I, 

Counting position 
sample 
standard 

Irradiation position 
sample 
standard 

cpm + standard deviations 
(mean of 10 measurements) 

Stationnary counting 

78,780 + 240 0.31% 
88,470 + 220 0,25% 

81,770 + 210 0.26% 
79,960 + 230 0.29% 

Counting after t ransport 

78,560 + 350 0.45% 
89,500 + 500 0.56% 

81 ,170+380 0.46% 
79,990 + 210 0.26% 

3 .4 . Analysis control panel. 

In order to automate the complete analysis a control panel was 
designed, directing all manipulations in such a way that one intervention 
of the operator commands the analyses of a ser ies of samples. As all 
actions have been connected in a ser ia l way any faulty situation stops 
the cyclus and prevents the recording of erroneous resu l t s . 

An outline of the control system is given in Fig, 3 , 7 , Provision 
has been made for manual intervention at the transport stage and also 
for action on the tantalum shi3ld. 

At the "s tar t" order by the opera tor , the sample changer introduces 
a sample in the transport tube and a microswitch resets the whole appa­
ra tus . The presence of both sample and standard at the measuring site 
is photoelectrically controlled by means of light dependant res i s to rs 
(1. .D.R.) , If a positive reaction is obtained, a magnetic valve opens and 
the transport to the irradiation site is made. The a r r iva l of sample and 
standard is again photoelectrically sensed and the air p ressure is no 
longer applied. After a 3 sec delay the tantalum shield is lowered and 
the irradiation t imer started0 This 3 sec delay gives ample time to allow 
both samples to obtain their res t positions, thus preventing geometrical 
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uncertainties of the irradiation. Three irradiation times are optional, 
5 , 10 and 15 sec. At the end of the period the tantalum target is brought 
into the deuteron beam, the return-magnetic valve is opened and the 
background correction is introduced in both scalers . When the presence 
of sample and standard at their respective measuring station is detected 
and an imposed delay of 2 sec has passed both scalers are started for 
30 sec. 

At the end of the activity measurements , the counts obtained are 
recorded and the result of the analysis calculated. The possibility 
exists also of decoding both scalers into an electronic computer, where 
the ratio of the recorded activities is multiplied by the analysis factor 
K', thus producing the result in mg oxygen, which is afterwards printed 
out. 

The whole cyclus takes up about 45 sec. In order to obtain complete 
decay of the N activity, an additional delay of 15 sec is then introduced, 
Hereafter two possibilities exist : 

- or a new sample is introduced by revolving the sample changer; 
- or the sample is analysed again up to 2 times before a new sample 

is introduced. 

The complete system accelerator , control panels and measuring 
equipment has been installed in 3 adjoiningrooms of 3 m χ 5 m. The 
neutron generator is separated from the rest of the apparatus by the 
middle room where the aircompressor and the magnetic valves are lo­
cated, together with the concrete shielding as will be described below. 
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4 , BIOLOGICAL PROTECTION. 

As 14 MeV neut rons r e p r e s e n t an impor tan t rad io log ica l h a z a r d , the 
upper l imit for a 40 h r week has been in terna t ional ly es tab l i shed not to 

, 2 / exceed 10 n e u t r o n s / c m / s e c , 

THiereas dis tance i s by far the leas t expensive and mos t effective flux 
r e d u c e r , i t s l imi ta t ions a r e quite obvious . Addit ional pro tec t ion can be 
provided by low Ζ , high hydrogen content m a t e r i a l s , such a s w a t e r , paraf­
f ine , polythene and concre te (8 , 4 4 , 45) , In th is ins tance common conc re t e 
blocks ( s . g , : 2 .2) of 20 χ 19 x 40 c m have been adopted. They lend t h e m ­
se lves eas i ly to be built into walls of any d e s i r e d shape . 

Although calculat ion taking into account d is tance and wa l l - th i ckness 
with assoc ia ted stopping power of the c o n c r e t e , showed that the biological 
protect ion was m o r e than adequa t e , flux m e a s u r e m e n t s have been made 
at the mos t impor tan t and mos t dangerous points of the final s e t - u p . 

In o r d e r to achieve this a B F , - c o u n t e r su r rounded by 5 c m of paraffine 
63 f>2 

was ca l ibra ted with a Cu-foil ac t ivated by the Cu(n,2n) Cu reac t ion 
and absolutely m e a s u r e d , A value of 0 ,5 ba rn was adopted a s c r o s s sect ion 
for th is r eac t i on . Absolute counting was by gamma s p e c t r o m e t r y using 
a 3 χ 3 inch c r y s t a l according to the p rocedure r ecommended by Heath (43), 

The r e s u l t s of this flux d is t r ibut ion survey have been mapped in F i g . 4 , 1 , 
together with the ac tua l implantat ion of the complete act ivat ion a p p a r a t u s . 

The plotted values a r e e x p r e s s e d in n / c m / s e c for a flux at the sample 
9 2 

i r r ad ia t ion si te of 10 / n / c m / s e c . At a m a x i m u m beam in t ens i t y , on a 
nev/ t r i t i u m ta rge t of 4 C i , the ac tua l flux at the sample s i t e , can be e s t i ­
mated at 5 t imes this va lue . 

As the neutron production in ac tua l working conditions i s only for 5 sec 
per m i n , the flux levels in the counting room a r e wel l below the accep ted 
to le rance l eve l s . F u r t h e r m o r e no energy degradat ion of the 14 MeV neu-

. t rons has been c o n s i d e r e d , a l though, th is fact r a i s e s the t o l e r ance l e v e l s . 
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As additional safety m e a s u r e s for unauthorised pe r sons 
- an external signal lamp flashes i ts light when the ion source is 

switched on; 
- a warning signal on the acce l e ra to r control board is switched on 

when b a r r i e r Β is passed; 
- the High Voltage supply is automatical ly cut off when door D i s 

opened, thus stopping al l neutron generation,, 

5. NUCLEAR INTERFERENCES AT THE OXYGEN ANALYSIS IN STEEL. 

5 . i . Direct i n t e r f e r ences . 

Most nuclear in te r fe rences a r e el iminated by th? short i r r ad ia t ion 
t imes and the high ^ - e n e r g v of N. Only a radioact ive isotope of half 
life longer than 0.5 sec assoc ia ted with p - or Y - e n e r g i i s of m o r e then 
4 , 5 MeV will i n t e r f e r e . Isotopes with these c h a r a c t e r i s t i c s a r e few, 
only two being of reasonable i n t e r e s t . 

5 . 1 , 1 . Fluor ine in te r fe rence , 

F with an isotopie abundance of 100% gives r i s e to act ivi t ies with 
14 MeV neu t rons , according to the following react ion 

1 9 Γ < η ι 6 0 1 6 Ν . 

It i s obvious that no intervention can el iminate this i n t e r f e r ence . In 
o rde r to evaluate i t s i m p o r t a n c e , a NaF sample was act ivated and i t s 
activity measured under s tandard condi t ions. F r o m this it was ca lcu la ­
ted that 2.44 mg F produce the same activity as 1 mg of oxygen. This 
resu l t s in a 100% e r r o r on the oxygen determinat ion when the F / O 
rat io in a sample is 2 .44 , 

It should be noted that this exper iment does not co r roba te the values 
for the c r o s s sections of this reac t ions as given in the l i t e r a tu re (37). 
Indeed the ra t io of the induced act ivi t ies should be ident ica l to that of the 



31 

c r o s s sect ions divided by the r e s p , a tomic weights given a s r e s p . 
57 40 , 
—L and ^-. o r a 0 .85 O / F r a t i o , a d i sc repancy of a factor 3 . A s i m i l a r 
ifatio was found by Vogt (24), 

As in mos t s t ee l s amples f luorine i s not p r o s e n t , th is i n t e r f e r ence 
can be neglec ted . However should F be p r e sen t in impor tan t c o n c e n t r a ­
t i o n s , c o r r e c t i o n s can be applied as fol lows. F luo r ine can be de t e rmined 

19 19 
by the ' F ( n , p ) O reac t ion giving r i se to an isotope with T , ^ = 27 s 
and \ - e n e r g i e s of 0,2 and 1.37 MeV, The r eco rded oxygen concent ra t ion 
can then be c o r r e c t e d according to the equation 

1 
^ O p re sen t O r e c o r d e d 2 ,44 fluorine 

5 e l „ ^ . 3 "jron i n t e r f e r e n c e . 
Boron i n t e r f e r e s (10, 13 , 21) with the oxygen de te rmina t ions by 2 

r eac t ions on the B i s o t o p e , with 8 1 % isotopie abundance , 

U B ( n , ^ ) 8 L i 

1 1 B ( n , p ) U B e 
8.. Id with a T w o 0.84 sec i s a pure P - e m i t t e r with a m a x i m u m e n e r ­

gy of 13 MeV. The obse rved in t e r f e rence i s due to the B r e m s Strahlung 
and the d i rec t in te rac t ion of the p ' s with the Nal(Tl) d e t e c t o r . 

1 J B e with a T , / 2 13.6 sec i s a f j - emi t t e r with m a x , energy of 11.5 
MeV and ^ - e m i t t e r of 9 .3 and 4 . 5 MeV. A t r ip le i n t e r f e r ence i s t h e r e ­
fore to be o b s e r v e d . B r e m s s t r a h l u n g , ρ - m d V s - in te rac t ion . 

In o r d e r to m e a s u r e the in t e r f e rence an oxygen-free boron compound 
was n e c e s s a r y . Nuclear g rade boron ca rb ide was ava i l ab l e . After i r r a ­
diation with 14 MeV n e u t r o n s , the induced act ivi ty was m e a s u r e d under 
s tandard conditions and compared with the pure oxygen produced a c t i ­
vity of a s t anda rd . The decay cu rve ana lys i s of the act ivi ty above 4 . 5 
MeV allowed this c o r r e c t i o n for any oxygen p r e sen t in the B .C a s i s 
shown in F i g . 5 , 1. 

Resu l t s of the in t e r f e rence m e a s u r e m e n t s a r e given in Table 5 , I . 
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TABLE 5 , 1 . 

.Counting conditions 

Irradiation 
time (sec) 

5 
5 
5 

Delay between 
end of rradiation 

and counting 
(sec) 

2 
2 
7 

Counting 
time (sec) 

30 
7 
7 

mg Β giving r i se to the 
r o o ι ,-v,~ r» 

Without Pb 

12 
11 
19 

With Pb 

33 
40 
38 

Under standard conditions, 12 mg Β produces the same activity as 
g 

1 mg oxygen. However as the Li half life is much shorter than that of 
Ν and as the inverse applied to the ' Be half life, the interference 

could be lowered by introducing a delay before the start of counting 
g 

greater than the standard 2 s ec , so as to let decay the L i , and by 
choosing a counting time shorter than the normal 30 s e c , the Ν act i ­
vity would be favored versus the Be, As an example a rounting time 
of 7 sec after 2 sec delay enhances the interference as only 1 half life 

16 8 
of Ν is counted together with all the Li. A 7 sec delay and counting 

g 
time lowers the interference as practically all Li has decayed. 
However the effect is not very important as already one Ν half life 
has passed before the counting is s tar ted. 

A more efficient method however is to make use of the p-absorption 
in a Fb-shield of 2 mm tnickness between sample and detector. The 

Ν activity drops only for 15%, whereas as can be seen from Table 5 ,1 , 
the boron interference is noticeably lowered. Combining the appropriate 
choice of a 7 sec counting time and 2 sec delay together with the D -
absorption, an 100% e r ro r on the oxygen determination is obtained with 
a B/O weight ratio of 40 , whereas in standard conditions a ratio of 12 
gives the same e r r o r . 
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As boron is only present in special s t e e l s , the in te r fe rence is genera l ly 
to be neglected. When however Β is p resen t a s an alloying e l emen t , cor ­
rec t ions have to be made . This car be achieved by analys is of the decay 
curve of the induced act ivi t ies or by double activity m e a s u r e m e n t s . In 
the las t method sample and standard a r e to be* counted for 7 sec after 
a 5 sec delay and again 15 sec after the end of i r r ad i a t i on . F r o m these 
two countings , the exact oxygen content of the sample may be calculated 
in a s imple way. 

5 , 2 . Indirect i n t e r f e r ences . 

Important e r r o r s can be introduced in the Ν m e a s u r e m e n t by 
coincidence and saturat ion effect in the de tec to rs or e lectronic c i r c u i t s . 
This will be the case when a very intense source i s p resen ted to the 
de tec to r , even when the energy of the source is well below the d i s c r i ­
minator level . 

'./hen activating s teel samples the most impor tant source of activi ty 
i s Mn with a T , / , of 2.6 h , produced by an (n,p) reac t ion on Fe 
with c r o s s section of 100 m b , as can be seen from Table 2 , I . 

Although the i r rad ia t ion t ime of 5 sec i s re la t ive ly short compared 
56 

to tho ha l f - l i fe , the Mn activity will be quite high upon repea ted ac t i ­
vat ions . However even after a whole day of routine analys is with the 
same oxygen s tandard , no in te r fe ience could be de tec ted , as was e s t a ­
blished by a no rma l background count at the end of the working per iod . 

An in ter ference of the same kind can a lso be produced by an alloying 
element present in high concentrat ion and having an impor tant c r o s s 
section for 14 MeV neutron reac t ions with the production of an isotope 
with a reasonable half l ife. This i s most likely to happen f o r copper . 
It gives r i s e to Cu with a ci 
barn and a half life of 9 .9 m . 

f>2 It gives r i s e to Cu with a c r o s s section for the (n,2n) react ion of 0 .5 
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As v/ill be shown la te r , this interference in the oxygen determination 
f"Vi 

in copper samples could only be detected after the 4 consecutive i r r a ­
diation. It is obvious then that even for steel with high copper content no 
e r r o r s will be introduced, even at a triple analysis . 

As a conclusion, it is safe to state that oxygen determinations will 
be erroneous only in boron s teel , and even for these samples correction 
can be made by decay curve analysis or by double activity measurements . 

6. REPRODUCIBILITY AND ACCURACY. 

E r r o r s of reproducibility on the determination of oxygen will be based 
on two different causes : 

- geometry variations of the positionning of sample and standard 
during irradiation and measurement; 

- statistical e r ro r s associated with the radioactivity phenomenon. 

6 . 1 . Geometry e r r o r s . 

The internal section of the transport tubes has a width of 7.5 mm. 
In order to avoid excessive wear of the alummiumwalls a sample thick­
ness has been imposed of 7.0 mm. In this way, sample and standard 
can position themselves within 0.5 m m , and even within 1.2 mm for the 
samples at the measuring station, as it is kept in the sample changer. 
This situation induces several causes of e r ro r at the irradiation and at 
the measurement. 

6 . 1 . 1 . Irradiation. 

The neutron flux at the irradiation site presents an important gradient 
along the accelerator tube axis . The flux variations have been experi­
mentally measured in the following way. 
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Copper foils have been wrapped around s tee l samples and introduced 
in the sample and s tandard i r rad ia t ion pos i t ions , the neutron genera tor 
being positionned at different d is tances from the t ranspor ta t ion s y s t e m . 
The Ù act ivi t ies a r i s e n from the react ion 

6 3 C u ( n , 2 n ) 6 2 C u T j - 9 .9 min . 

have been m e a s u r e d , co r r ec t ed for changes in neutron output by B F , 
monitoring and plotted on a log-log d i ag ram v e r s u s the square of dis tance 
in m m (Fig. 6 , 1). 

ï r o m this figure it i s seen that in the vicinity of the sample the flux 
gradient follows a l /d law, whereas in the s tandard a r e a the flux obeys 
a l / d " law. 

It io obvious that a smal l change in position of the sample will have 
a much g rea t e r influence than the same change for the s tandard . This 
i s most easi ly experienced in the determinat ion of the factor K e . g . when 
the neutron genera tor has been moved. 

F t i r the rmore both faces of the sample to be ana lysed , being 7 m m 
a p a r t , will not rece ive the same neutron flux. If the sample is homo­
geneous , this effect will pass unnoticed. If however an impor tant oxygen 
inclusion i s as symmet r ica l ly p resen t on one side of the s a m p l e , a double 
activation of both faces of the sample will show the he terogenei ty . Apar t 
from an axial flux grad ien t , one has to take into account the fact that 
the disk source also gives r i s e to a l a t e r a l gradient (46), The l a t e ra l 
flux d is t r ibut ion , normal i sed to flux uni ty , as a function of l a t e r a l 
displacement d and as a function of axia l d is tance R was computed by 
Op de Beeck (47) and is given in F i g . 6 , 2 . 

The effect of both gradients has to be taken into account in the p r e ­
parat ion of oxygen s tandards as i s d i scussed under 7 . 
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6. 1.2, Activity m e a s u r e m e n t . 

The solid angle under which the V - r a y s of the N en te r the Nal 
c r y s t a l s , will a l so va ry with the positionning of sample and s tandard 
at the measur ing s t a t ions . 

It i s obvious that the combined geomet ry e r r o r s will influence the 
value cf the ra t io factor K, a l r eady defined. As this influence i s ha rd to 
c a l c u l a t e , exper imen t s have been c a r i i e d out where sample and s tandard 
where ar t i f ic ia l ly forced to taken up one of the posi t ions h e r e under : 

- n o r m a l position : sample and s tandard on i r r a d i a t i o n and m e a s u r e ­
ment a r e placed in the middle of the i r r e spec t ive avai lable s p a c e s ; 

- max imum position : a max imum dis tance i s imposed between sampl í 
and s tandard at the i r r a d i a t i o n , and at the m e a s u r e m e n t the sample 
i s a s near as poss ible and the s tandard as far away as poss ib le 
f rom the i r de tec tor ; 

- min imum position : sample is a s far away a s poss ib le f rom the 
t r i t i u m ta rge t and the d e t e c t o r , the i n v e r s e aopl ies for the s t an ­
d a r d . 

Theore t ica l ly sample and s tandard can take the e x t r e m e pos i t ions . 
In ac tua l ana lys i s it is however obvious that a p re fe ren t i a l and m o r e 
or l e s s reproducib le positionning will o c c u r , thus reducing e r r o r s due 
to th is c a u s e . 

Resu l t s from this exper imen t s show that : 

K n o r m a l = 5 . 2 3 
K max imum = 5 . 4 3 

K min imum = 5 . 0 9 

F r o m this one concludes that the e r r o r on the oxygen de t e rmina t ions 
resu l t ing from geomet ry e r r o r s will be at mos t - 3 . 8 % and + 2 , 7 % . It 
i s c l ea r that this "appa ra tus e r r o r " i s independent f rom the oxygen content 
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6.2, Radioactivity measurement e r r o r s . 

Radioactivity being a statistical phenomenon, the standard deviation 
on the measurement is given by s = v recorded counts. 

As already has been seen, the oxygen content of a steel sample is 
calculated from a formula, where intervene 

- counts recorded for the sample N„; 
- counts recorded for the standard Ν ς ; 
- weight of oxygen in the standard; 
- ratio factor K, 

The e r ror on the oxygen content of the standard is to be neglected. 
The e r ro r on K, being determined with 2 standards,giving a sufficient 
high number of counts, is also negligible in relatior with the e r ror on 
the number of counts from the sample to be analysed. 

Thu3 the e r ror on the oxygen content expresses itself as follows 

s 
X 

X 

When the standard contains sufficient oxygen, an activity is therein 
produced under normal working conditions, so that 

8N <<k SN 
S X 

and finally the e r ror on the determination is almost solely given by the 
e r ror on the activity produced in the sample. This e r ror is only de­
pendent on the oxygen content, but can be reduced by increasing the 
produced activity, i . e , the neutron output. 

Ao a result of analyses done on some 200 samples, a graph has 
been plotted where, as a function of the oxygen content, the standard 
deviation on one sample on at least 9 determinations is given in Fig. 6,3, 
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The most probable line has been drawn through these po in t s . 
A dotted line gives the e r r o r to be found when only the s ta t i s t i ca l 

phenomenon of radioact ivi ty i s taken into account . 

The spread between the two lines i s to be at t r ibuted to the "appa ra tus 
e r r o r " a l ready mentionned, and i s approx. of 1.5 to 2%. Points which 
a r c well out a r e produced by s a m p l e s , which l a te r on proved to be ve ry 
inhcmogeneous . 

7 . STANDARDS. 

As has been previously de sc r i bed , due to the flux g rad i en t , the 
specific activity produced upon i r r ad ia t ion in the s tandard will be lower 
by a factor of approx. 5 than in the s ample . Also the e r r o r on the de ­
te rminat ion will be great ly influenced by the e r r o r on the activity m e a s u ­
remen t of the s tandard . 

Combining both f ac t s , the s tandards must contain a sufficient amount 
of oxygen to be of p rac t i ca l va lue , e . g . between 200 and 300 mg . This 
amount of m a t e r i a l does not cause neutron shadowing, self shielding 
nor coincidence losses during the m e a s u r e m e n t s , as was exper imenta l ly 
checked. 

It i s a lso n e c e s s a r y that the oxygen in the s tandards i s as homoge­
neously dis t r ibuted as poss ib le . However s tee l with an oxygen content a s 
high as and as exactly known as des i r ed is not ava i lab le . Therefore the 
s tandards in this work were p repa red from ord inary s t e e l , machined 
to the exact dimensions of the samples to be analysed. In this p i e c e s , 
3 holes were d r i l l ed , filled with a weighed amount of (COOHL. 2H_0 or 
F e - ' and stoppered with s c r e w s , as r ep re sen ted in F i g . 7 , I . Thus 
were obtained s tandards with approx. 200 mg of oxygen. 
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Thin non-uniform dis t r ibut ion of the oxygen in the s tandard could 
cause e r r o r s when comparing with a homogeneous s a m p l e , as a biaxia l 
flux gradient is p resen t in the i r r ad ia t ion a r e a . Dams and Adams (48) 
calculated that placing the oxygen in a layer in the middle plane of the 
sample causes a negative, e r r o r of approx. 3 . 0 % , due to the axia l flux 
gradient . Concentrat ing however the oxygen in th ree holes , as shown in 
F ig . 7 , 2 , causes an e r r o r of +2 C 2%, due to the l a t e ra l flux gradient as 
shown by Op de Beeck (47), The resul t ing e r r o r can thus be es t imated 
at - C . 8 % . 

To chock this influence exper imenta l ly , the specific activi ty ra t io 
factor K was measu red in 3 different ways : 

- a ' " r e a l " K. de te rmined with two homogeneous samples = 3 . 0 0 

- a "de te rmined" K? a s in activation analys is work with 
two s tandards ; = 2.90 

- an "ana lys i s " K_ as p resen t in an ac t iva t ion , a homoge­
neous sample with a s tandard = 2 . 8 9 

As can be seen from this values , the use of non homogenous s tan­
d a r d s , but p repa red in the way de sc r ibed , in t roduces a negative s tan-
dar isa t ion e r r o r of 0 . 3 % through the use of K_ instead of K_. The ex­
pe r imen ta l sense of difference between K. and K_ is in ag reement with 
the calculated va lues . 

8. SENSITIVITY. 

F r o m the pieceding chap te r s it could be es tabl ished that the follo­
wing working conditions would be adequate for prac t ica l ly a l l s tee l 
samples to be analysed : 

- a 300 μΑ i r rad ia t ion for 5 sec at 150 kV; 
- a 30 sec counting after a 2 sec de lay . 
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This conditions typically yielded with a 2 Ci target 80 net counts 
for 1 mg oxygen or for 55 ppm in a 18 g sample. 

The limit of detection can be set much lower. A 15 sec irradiation 
at a feasible beam current of 1.2 mA on a 5 Ci tr i t ium target yields 
11CC net counts for 1 mg of oxygen and adopting as limit half the back­
ground counts (40/30 sec) establishes with sufficient confidence the 
limit of detection at 1 ppm of oxygen in a 18 g sample or approx. 0. 02mg, 

This limit of detection could nowever be practically limited by two 
sources of contamination. One could conceive that the samples are con­
taminated by carying A L O , from the pneumatic tube at the irradiation 
si te . It could be shown, that manual t ransport of the sample at the 
freshly polished irradiation site and pneumatic return of the sample, 
gives r ise to the same results at a 10 ppm oxygen level. Moreover it 
has been stated (22) that N recoil atoms introduce a positive e r ro r 
on the used polythere containers. Although the present method makes no 
use of containers, one can conceive that recoil can also occur on steel 
samples , which are slightly greased w*th vaseline, to insure a smoother 
t ransport . Samples irradiated in o- without a steel box showed no diffe­
rent oxygen content at the 10 ppm level. Consequently it can be conclu­
ded that if the above effects exist at a l l , they do not affect the resul ts 
for oxygen quantities of 0.2 mg or higher, 

9. COMPUTATION OF THE AMOUNT OF OXYGEN IN AN UNKNOWN 
SAMPLE. 

Starting with the classical activation analysis formula 

sX
 A c tx 

% " A c t s 
(3) 

expressing the ratio of weight of element in experiment and in standard 
being equal to the ratio of the measured activities for the element, 
tv/o conditions have to be fulfilled : 
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~ the y^-detection efficiencies have to be the same for both samples; 
- the flux in experiment and standard have to be identical. 

As has been explained previously, this is not the case in the present 
experimental set up. 

The actual calculation of the oxygen content of the unknown sample 
is therefore to be made with the following equation 

A c t x 
gX = gS ' Actg o K (5) 

where K is the factor correcting for differences in neutron flux and 
>' -detection. 

10. DETERMINATION OF K. 

"Then two identical standards are available it suffices to irradiate 
and count them at the same time, the ratio of the recorded activities 
giving K. 

When 2 non identical standards even with unknown oxygen content, 
are available , K is determinod by irradiating and covnting them in 
sample and standard position (1) and again after switching their posi­
t ions^) . Then 

K = \/(ra!-°-?- f ) . (ra?°.?.£ ) (6) 
y {activities/. ^activities L 

Practically, for every series of analyses K was redetermined with 
2 known but different oxygen standards. A typical value of K with the 
18 g transport system was 4,19 + 0.04 for 5 determinations. The 
observed values of K are highly dependent on the position of the acce­
lerator relatively to the transport system, due to the already described 
flux gradients. The neutron generator parameters influence also the 
K-value, as the quality of the deuteron beam, incident on the tritium 
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target , varies accordingly. When all conditions for K remained con­
stant, the mean value of K over a 5 week period was 4.24 with extremes 
of 4.09 and 4 .36 , 

11. RESULTS. 

From the approx, 3 ,000 analyses on more than 200 steel samples 
of different origin and composition, some results are presented he re ­
under. It will appear clearly that the proposed oxygen analysis method 
does accept steel samples with oxygen contents ranging from a few 
ppm up to more than 1000, Results a re also given for high-alloy steels 
and alloys where the other analysis methods failed up to now to give 
reliablo resul ts , A complete ser ies of analyses given indicate the ex­
cellent corrolation between activation and the fusion method in the 400-800 
pprn region. Lastly two graphs are presented which indicate the help by the 
activation analysis in improving the working conditions of the fusion 
method. 

All results were obtained on 18 g semples. 
Fig. 1 1 , 1 represents the correlation between fusion and activation 

for 15 carbon steels ranging from 12 up to 1170 ppm. Crosses indicate 
the respective extreme values obtained by the two methods. 

In Table 11 ,1 together with the composition of the samples , r e ­
sults a re given for the activation analysis for at least 9 determinations, 
together with fusion results when available. 

with n being 9 or 12. 
The excellent precision obtained, even for the low concentrations, 

should be noted. 
The important differences for 2 samples of Lab. II must be a t t r i ­

buted tc the rather poor quality of the fusion technique used, as the 
same discrepancies were observed for carbon s teels . 



Lab I . 

TABLE 1 1 , I . 

% c 

1.57 

0.06 

0 .38 

0,06 

0.13 

0.05 

0.05 

C.IC 

C. 15 

0.09 

0.05 

0 .05 

Lab . Π. 

0,44 

0.07 

0.09 

0.06 

¿­' 

0.12 

0 .20 

C. 10 

0 .20 

0.05 

0 .10 

C. 02 

Si 

0.32 

0.47 

0.42 

1.34 

0.46 

0 .64 

0.92 

0 .78 

0.42 

0 .90 

Mn 

0.44 

1.26 

0.82 

0.36 

0 .48 

0.45 

0.49 

0.85 

0.56 

0 .48 

Cu 

0.13 

0 .08 

0,32 

0.27 

C. 04 

A l 

1.48 

0.03 

C r 

12.28 

16.50 

20 .49 

23 .50 

27.12 

20 .59 

26.96 

17.31 

17,28 

28 .55 

Ni 

0.11 

11,91 

20 ,74 

0.18 

24.16 

77.22 

4 .56 

13.01 

2 .62 

0.20 

Co 

43 .13 

4 7 . 8 3 

Mo 

0.78 

2 .25 

4 .16 

0.01 

2 .48 

jC. 16 

C, 02 

W 

4 . 0 0 

T i 

0.30 

C. 5IV 

0.47Nb 

ppm 
ae t iv . 
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ppm 
fusion 
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90 
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250 
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In an investigation sponsored by the International Committee for 
the Study and Rationalisation of the Methods of Gas determination in 
Iron and Steel, 60 carbon steels we-e repeatedly analysed in an 8 day 
period. In order to present the reproducibil i ty of the resul ts in time 
and the possibility to detect inhomogeneous samples , all the individual 
results for both faces of the samples a re given in Table 11, II together 
with the resul ts from the fusion method in 2 or 3 laborator ies . 

As can be seen, the correlation between the two methods is ex­
cellent. For samples v/here results for both faces of the sample differ 
notably, the inhomogeneity of these samples was quite often proved 
by the fusion method (49). 

When the correlation between the two methods was studied on carbon 
steel samples from an industrial laboratory, very poor resul ts were 
obtained, especially when the oxygen content was higher than 300 ppm 
as shown in Fig . 1 1 , 2 , When later on this same laboratory changed 
its working conditions, e .g . increasing gas extraction time and tempe­
r a tu r e , the results improved remarkably as is shown In Fig . 1 1 , 3 , 
where the upper limit of the oxygen was increased to 600-700 ppm. 
Still later on, the correlation between the activation results and those 
obtained by the perfected fusion technique was of the same quality of 
these presented in Fig. 11, 1. 

As a final conclusion, it was possible to establish an equation to 
express the corrolation between results obtained by the here proposed 
activation analysis method and by the well known reducing fusion tech­
nique. 

ppxn. = 15 + f . p p m , . 
cc Activ. rr fusion 

The equation factor f varies from one laboratory to the other , with 
a mean value of 1.02 for 7 laborator ies , the extremes being 1.15 and 
0.98, No explanation however is offered for the 15 ppm residual oxygen. 
As has already been explained, this quantity of approx. 0.25 mg cannot 
be attributed to Al O from the transporttubes or from recoil N. 
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Sample 

(D 

2A 

4A 

6A 

8A 

ÏOA 

is t 

431 
440 
396 

377 
481 
427 

803 
825 
809 

819 
796 
807 

810 ¡ 

599 
666 
650 

622 
600 
636 

744 
737 
713 

737 
774 
738 

740 ι 

504 
561 
554 

550 
566 
531 

• face 

(2) 

422 

420 

421 

812 

C07 

s a l i 

630 

619 

618 ¡ 

731 

750 

3=20 

54 C 

549 

543 : 

ι 2 n d face 

(3) 

401 
419 
415 

s=30 

759 
800 
746 

787 
781 
782 

776 s 

642 
556 
590 

■ 

3=35 

703 
658 
691 

707 
722 
673 

692 £ 

526 
528 
568 

3=22 

412 

768 

783 

i=20 

596 

684 

701 

i=25 

541 

fusion 

(4) 

400 

448 

424 

830 

745 

787 

590 

587 

588 

720 

685 

702 

520 

514 

517 

Sample 

(5) 

2B 

4B 

6B 

8B 

10B 

l 8 t face 

(6) 

362 
407 
371 

404 
404 
382 

800 

838 

819 

825 
901 
780 

827 

648 
661 
600 

569 
588 
619 

614 

736 
757 
722 

754 
710 
734 

589 
602 
585 

624 
562 
622 

380 

397 

391 

819 

835 

s =41 

636 

592 

s=35 

738 

733 

713 

592 

603 

584 

2 n d face 

(7) 

394 
400 
392 

s=16 

823 
778 
782 

779 
747 
792 

783 ι 

582 
591 
508 

566 
562 
*36 

557 ι 

739 
732 
803 

s=27 

564 
557 
606 

580 
547 
571 

s=25 

395 

794 

773 

3=25 

560 

555 

s=31 

758 

576 

566 

fusion 

(8) 

340 

383 

362 

770 

755 

762 

570 

603 

587 

730 

720 

725 

540 

542 

541 
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(D (2) (3) 

592 s=35 544 s=21 

(4) 

12A 607 · 572 
632 621 529 541 
625 522 540 

541 540 538 
572 563 565 544 
577 527 

539 

(5) (6) (7) 

538 
649 583 
562 

577 s=33 

(8) 

12B 585 563 
606 585 568 563 
564 559 570 

568 

569 

15A 907 856 
873 09?. 877 871 
895 880 860 

896 861 722 
913 899 846 859 
887 870 

COC s=20 

579 s=38 

791 

16A 587 508 
661 619 592 552 
610 556 590 
554 535 562 
579 560 603 578 
570 595 

576 

15B 1007 1004 
1012 1018 1042 1038 
1034 1067 920 
1026 
1074 1059 
1077 

1038 s=29 

624 
600 629 
662 

612 s=36 

1016 

978 

16B 634 593 
600 607 551 601 
586 659 560 

598 

579 

19A 743 737 
803 795 745 753 
840 777 720 

20A 

764 
726 
003 

793 
864 
819 
763 
719 
769 

764 

771 s 

825* 

750 

=38 
743 
720 
715 
700 
745 
739 

726 

728 

742 

731 

720 
73J 

735 s=23 728 

* Resul t s omitted for the ca lcu la t ions . 

19B 820 805 
854 841 736 778 
848 793 690 

823 761 852 
881 849 780 784 
844 812 
845 s=22 781 s=29 771 

20B 725 650 
717 720 696 699 
718 750 610 
695 
699 711 
739 

710 s=29 

672 

641 
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(D 
2 IA 

22A 

23A 

24A 

25A 

I 

62C 
605 
610 
60Ö 
643 
636 

621 
572 
653 
627 
649 
652 

672 
507 
6C7 
631 
623 
599 

591 
633 
643 
509 
632 
635 

682 
645 
655 
639 
645 
614 

[2) 

614 

629 

6C5 

615 

643 

634 

622 

610 

616 

622 

619 

626 

661 

633 

637 

(3) 
569 
591 
554 
594 
639 
597 

s=28 

655 
640 
633 

s=26 

598 
664 
563 

s=35 

642 
627 
645 

s=21 

614 
614 
623 
643 
684 
589 

s=28 

571 

610 

643 

608 

638 

617 

638 

(4) 

590 
588 

509 

625 
643 

634 

520 
595 

558 

650 
634 

642 

610 
655 

633 

(5) 
2 IB 

22B 

23B 

24B 

25B 

1 
602 
617 
598 
596 
587 
610 
602 
666 
659 
705 
658 
662 
72C 

6 06 
610 
586 
618 
631 
677 

771 
793 
797 
756 
755 
744 

649 
675 
690 
630 
681 
652 

[6) 

606 

598 

s = ll 

677 

680 

678 

607 

642 

610 

787 

752 

761 

671 

654 

660 

(7) 
514 
564 
562 
583 
557 
588 
561 
675 
655 
702 

s=24 

589 
576 
599 

s=30 

722 
737 
711 
819 
735 
791 

s=34 

660 
614 
691 

s=27 

547 

576 

s=26 

677 

588 

727 

782 

655 

(8) 

515 
597 

556 

625 
582 

603 

595 
595 

595 

710 
761 

736 

585 
705 

645 
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(D 
26A 

27 A 

28A 

29A 

3 0A 

(2) 

754 
704 
755 

715 
795 
734 

520 
557 
526 

52C 
53 G 
53C 

532 

776 
758 
C37 

69C 
725 
741 

760 
765 
602 

779 
679 
770 

57C 
6C2 
571 

545 
521 
499 

730 

740 

750 

534 

529 

o=14 

79-

721 

750 

736 

745 

731 

5 04 

522 

552 

(3) 

780 
765 
744 

s=29 

587 
517 
581 

595 
557 
575 

569 

792 
73 i 
778 

714 
772 
783 

s=39 

682 
734 
722 

3=42 

537 
524 
539 

565 
576 
597 

3=30 

763 

562 

576 

s=27 

767 

756 

713 

533 

569 

(4) 

685 

747 

716 

555 

538 

547 

740 

709 

72 ' 

645 

712 

679 

605 

541 

573 

(5) 

26B 

27B 

28B 

29B 

3 OB 

(6) 

728 
797 
730 

847 
831 
791 

789 
739 
775 

777 
664 
667 

749 
727 
664 

754 
692 
771 

693 
667 
693 

724 
702 
780 

528 
467 
543 

504 
522 
406 

752 

823 

772 

768 

703 

724 

713 

739 

714 

684 

735 

713 

513 

504 

508 

(' 

759 
739 
725 

s=46 

691 
690 
723 

s=49 

652 
723 
700 

s-41 

712 
729 
713 

s=31 

493 
474 
464 

535 
520 
563 

s=32 

0 

741 

701 

692 

718 

477 

539 

(0) 

740 

728 

732 

690 

717 

7 04 

705 

712 

7 09 

665 

697 

601 

550 

524 

537 
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d) 
ΟΙΑ 

02Α 

03Α 

04Α 

05Α 

(2) 

53 C 
544 
575 

5C1 
456 
546 

604 
653 
609 

667 
615 
651 

535 
531 
511 

526 
557 
4 OC 

610 
602 
601 

563 
555 
580 

694 
733 
715 

647 
665 
719 

' 5 ' 9 

5C1 

5 :. :. 

622 

644 

624 

526 

521 

53 C 

604 

569 

505 

714 

677 

690 

(3) 

513 
4 8 1 
540 

3=34 

608 
600 
601 

575 
661 
639 

3=29 

552 
540 
535 

3=23 

555 
612 
576 

s=23 

685 
707 
714 

s=28 

511 

603 

625 

542 

581 

7 02 

(4) 

515 
4 9 0 
560 

522 

623 
560 
670 

618 

4 9 8 
490 
550 

513 

617 
550 
56 0 

576 

665 
60C 
620 

628 

(5) 

01B 

02B 

03B 

04 Β 

05B 

(6) 

493 
525 
4 7 1 

494 
4 9 0 
497 

674 
693 
713 

691 
715 
649 

608 
521 
555 

521 
492 
567 

618 
669 
572 

581 
629 
595 

689 
648 
689 

588 
635 
597 

496 

494 

501 

69C 

685 

602 

561 

527 

547 

620 

602 

613 

675 

607 

645 

(7) 

525 
508 
502 

s=17 

666 
695 
647 

s=25 

564 
529 
565 

s=35 

610 
509 
642 

s=31 

640 
668 
659 

s=36 

512 

669 

553 

616 

656 

(0) 

522 
4 9 0 
500 

531 

725 
620 
600 

675 

554 
475 
550 

526 

593 
560 
550 

568 

643 
570 
600 

614 
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(D 
06A 

07A 

08A 

09A 

ICA 

(2) (3) 

654 
651 
630 

639 
697 
610 

526 
521 
537 

407 
512 
49 C 

642 
601 
661 

633 
635 
623 

035 
706 
701 

707 
000 
795 

517 
555 
529 

506 
553 
465 

662 
640 630 

670 

651 

652 s=23 

525 
520 553 

493 

496 

516 s=23 

659 
661 621 

641 

63 C 

644 s=20 

061 
CCC 746 

056 

797 

CC6 s=38 

491 
534 522 

535 

e r o Ο Ν . O 

519 s=22 

657 

524. 

640 

821 

516 

(4) 

631 
560 
580 

59C 

535 
520 
470 

500 

680 
590 
630 

633 

726 
655 
910 

764 

505 
500 
540 

515 

(5) 

C6B 

07B 

08B 

09B 

10B 

1 

703 
672 
662 

672 
667 
637 

519 
547 
525 

537 
522 
535 

614 
694 
678 

659 
670 
635 

• 835 
868 
812 

824 
847 
852 

519 
496 
490 

494 
499 
518 

;6) 

679 

659 

679 

530 

531 

542 

662 

655 

665 

030 

041 

033 

502 

504 

510 

(7) 

723 
661 
714 

s=28 

562 
544 
555 

539 
556 
564 

s=l5 

689 
698 
648 

s=29 

784 
057 
822 

s=26 

538 
516 
524 

513 
514 
503 

s=14 

699 

554 

553 

678 

821 

526 

510 

(8) 

674 
680 
610 

655 

522 
520 
560 

534 

666 
670 
670 

669 

774 
755 
760 

763 

500 
565 
510 

525 
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12. OXYGEN ANALYSIS IN NON-FERROUS METALS. 

12. 1, In t roduct ion , 
As a n o r m a l extension of· the proposed s tee l ana lys is me thod , the 

oxygen ana lys i s in var ious non f e r rous m a t e r i a l s was cons ide red . I<- Is 
well-known that for the reducing fusion method these m a t r i c e s can p r e ­
sent s e v e r a l difficulties : e . g . ge t te r ing effect for Z n , Cu , A l , P b , e t c . 
o r high melt ing points for Nb , T a , e t c . 

Whereas in s tee l ana lys i s no conta iner was u sed , the lack of m e ­
chanica l s tabi l i ty of some me ta l s made the use of a conta iner n e c e s s a r y , 
A f r ame or a box was machined for th is p u r p o s e , f rom carbon s t e e l , 
with a blank value of appro: : , 0 .5 mg oxygen. This f rame accepted 
samples of 18 χ 15 χ 7 m m , w h e r e a s the box accomodated 17 χ 14 χ 5 m m 
s a m p i o s , 

\7hile most e l ement s do no cause nuc lea r i n t e r f e r e n c e s , for some of 
t h e m , T b , Z r , Cu and A l , changes in the ana lys i s p rocedure had to be 
in t roduced to e l imina te or to c o r r e c t for s o u r c e s of e r r o r s . 

Surface oxidation for s e v e r a l of the me ta l s studied was an impor tan t 
cause of posi t ive e r r o r s , espec ia l ly for the low oxygen contents encoun­
t e r e d . Cleaning the s amples with ab ra s ive s4 l icon ca rb ide paper under 
p e r c h l o r o - e t h y l e n e , and keeping them a f t e rwards in the s ame solvent 
v/as an adequate solution to th is p r o b l e m . It mus t be noted that me ta l s 
like T a , N b , C u , Pb and Zn do behave quite differently in this a spec t . 
Where a Ta sample with 17 ppm oxygen take_ up oxygen ve ry rapidly 
(4 min) yielding a 25 ppm concen t r a t ion , a Zn sample has an oxygen 
content i nc reas ing slowly (10 min) f rom 15 to 2 0 ppm under the same 
working condi t ions . 

A3 i t v/as de s i r ab l e to use the s ame oxygen s tandards as for the s tee l 
a n a l y s i s , an e x t e n s i l e study was made of this pointc Indeed, according to 
Ander s (14) and Fuji i (15) impor tan t e r r o r s a r e in t roduced when the 
samples of different m a t e r i a l a r e ana lysed with an unique s t a n d a r d , the 
r e a s o n being differences in neutron adsorption, , - s c a t t e r i n g and energy 
degrada t ion . 
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12 .2 . Matr ices without nuclear i n t e r f e r e n c e s . 

Fror._ the study of the nuclear data given in Table 12, I , it appea r s 

that for B i , Zn , Cd, Co , Nb, Ta and Ti no nuclear in t e r fe rences for 

che oxygen determinat ion were to be feared . Indeed upon i r r ad ia t ion with 

14 MeV neutrons no radioact ive isotopes a r e produced in these m a t r i c e s 

with ?. p ­ 3r >f­energy exceeding the choosen energy d i sc r imina t ion of 

4 , 5 MeV. Even m o r e , or the c r o s s sect ions for the given reac t ions a r e so 

lew or the half­l ive ε of the radioact ive species a r e so long that no high 

intensity sources a r e formed which could sa tura te the detection s y s t e m s . 

It was therefore possible to de te rmine the oxygen contents of the given 

ma te r i a l s in the same way as in the s tee l a n a l y s i s . It was however f r e ­

quently neces sa ry to step up the beam in t ens i t i e s , 600­900 uA, to obtain 

sufficient precis ion at the low concentrat ions found. 

1 2 . 3 . Matr ices with nuclear in terference 's . 

In. the oxygen analysis of P b , Z r , Cu and A l , nuclear in te r fe rences 

wero encountered. The most probable nuclear reac t ions with 14 MeV 

neutrons for these m a t e r i a l s a r e given in Table 12, II , Although no i s o ­

topes a ro produced with energies ( (o or V ) g r e a t e r than 4 , 5 MeV, s eve ra l 

short living species with intense act ivi t ies a r e formed which then cause 

e r r o r s by coincidences or sa tura t ion . It should indeed be r e m e m b e r e d 

tha t , depending on the density of the meta l s , 10 to 40 g samples a r e 

i rradiatoci . 

.■­iea_. and z i rconium give r e s p . r i s e to the isotopes Pb and Z r 

with half­ l ives of about 0* 8 s e c . It i s obvious that with a 5 sec i r r ad ia t ion 

p rac t i ca l saturat ion is achieved,; In s tandard condi t ions , with a counting 

delay of ?.. sec , in the f i rs t seconds of the m e a s u r e m e n t an impor tant 

activity i s r e c o r d e d , only duo to coincidences and sa tura t ion of the de t ec ­

tor and the electronic c i r c u i t s . Introducing a 10 sec delay should pe rmi t 
16 

unhindered ^ Ν activity m e a s u r e m e n t s . This was exper imenta l ly checked 
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TABLE 12, I . 

R e a c t i o n 

: 0 9 B i ( n , p ) 2 0 9 P b 

: 0 9 B i ( „ ^ ) 2 C 6 T l 

)4„ , v64­, 
Z n ( n , p ) C u 

, 4 Z n ( n , 2 n ) 6 3 Z n 

)6„ , \ 6 6 „ 
Z n ( n , p ) Cu 

>0„ , \6C„, 
Z n ( n , p ) C u 

' 3 N b ( n , ^ ) 9 ° S Y 

' 3 N b ( n , 2 n ) 9 2 N b 

: 8 1 T a ( n , p ) 1 8 1 H f 

Ì 8 1 T a ( n , 2 n ) 1 8 0 m T a 

1 1 4 ­ . , vi 14 , 
C d ( n , p ) Ag 

■ 1 4 C d ( n ( c V ) l n % d 

L 1 2 C d ( n , 2 n ) l l l m 2 c d 

: i o _ , . v i i c , 
C d ( n , p ) Λ β 

i9„ , N 5 9 „ 
C o ( n , p ) F e 

> 9 Co(n ,0 ( ) 5 6 iV in 

>9~ , ~ v50m_ 
C o ( n , 2 n j *̂ ,o 

5C„ 
Co 

T i ( n , p J Se 

t 6 T i ( n , 2 n ) 4 5 T i 

r 7 T i ( n , p ) 4 7 S c 

' 9 T i ( n , p ) 4 9 S c 

I r r a d i a t e d 

i s o t o p e 

% 

100 

100 

4 0 . 9 

4 8 . 9 

2 7 . 8 

18 .6 

100 

100 

9 9 . 9 

9 9 . 9 

2 8 . 9 

2 8 . 9 

2 4 . 0 7 

1 2 . 4 

100 

100 

100 

7 3 . 5 

7 . 9 

7 . 7 

5 . 5 

(mb) 

1 

1 

350 

180 

00 

25 

9 

500 

2 . 5 

1100 

0 . 5 1 

01 

3 0 

800 

305 

66 

20 

200 

55 

T l / 2 

3 0 2 h 

4 . 2 m i n 

1 2 , 8 h 

3 8 . 3 m i n 

5 , 1 m i n 

32 s 

64 h 

13 h 

46 d 

8 . 1 h 

2 m i n 

22 m i n 

4 8 . 6 m i n 

24 s 

45 d 

2 . 6 h 

9 . 2 h 

72 d 

44 h 

3 . 0 7 h 

3 . 4 3 d 

57 m 

R e a c t i o n p r o d u c t 

Ε ft (MeV) 
m a x 1 N 

Û063 

1.51 

0 . 5 7 ; \Ϋ 0 .6é 
t 

β + 2 . 3 2 ; β + 1 .40 
1 1 
2 . 6 3 ; 1.65 

3 . 0 0 

2 . 2 6 

-

0 . 4 0 

0 . 7 1 ; 0 . 6 1 

2 . 1 5 ; 1 . 0 4 ; 0 . G 0 ; 

0 . 7 0 

2 . 8 4 ; 2 . 1 6 

1 . 5 6 ; 0 . 4 6 ; 0 . 2 7 

2 . 8 6 ; 1 . 0 5 ; 0 . 7 0 

| 0 + 0 . 4 0 

-

0 . 6 4 

[5+ 1.02 

0 . 6 2 ; 0 . 4 4 

2 . 0 5 

Ε * 

-

1.34 

2 , 6 0 , 1 .90 ; 

1.04 

-

-

1 .84; 0, 93 

0 . 6 1 ; 0 . 4 0 ; 

0 . 1 1 

0 . 3 4 ; 0 . 2 4 

0 . 2 5 ; 0 . 1 5 

0 , 9 4 

1 .29; 1 .10 ; 

3 . 2 0 ; 2 . 9 3 ; 2 

2 . 5 6 ; 2 . 10; 1 

1 .62; 0 . 0 1 

0 . 0 2 5 

1 .33 ; 1 ,05 ; 

-

0 . 10 

-

! 

(MeV) 

0 . 9 7 

: 

! 
; 
; 
■ 

i 

0. 14 i 

j 

0 . 19 

. 6 9 ; 

, 8 C ; 0 . 8 4 

0 . 9 0 

' 
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TABLE 12, I I . 

Reaction 

2 0 8 P b ( n , p ) Z C 0 T l 

2 0 0 D , . ,χ205τ . Pb(n ,o( ) Hg 

2 0 8 P b ( n , 2 n ) 2 0 7 m F b 

2 0 7 P b ( n , p ) 2 C 7 T l 

90 >09m. 
Zr(n,?,n) ^.r 

09„ 
Z r 

90_ , , , 90m n Z r ( n , n ' ) Z r 
94 ,94 
^ Z r ( n , p ) ^ Y 

9 4 Z r ( n , ^ ) 9 1 S r 

9 1 Z r ( n , p ) 9 1 m Y 

9 1
Y 

91„ . _ .9 Cmr Zr(n ,2n) ¿.r 

^ ζ φ , ο Ο
9 3

^ 

Cu(n,2n) "Cu 

6 5 C u ( n , p ) 6 5 N i 

6 5 Cu(n ,<Y) 6 2 Sco 

65„ , _ s64„ 
Cu(n,2nj Cu 

2 7
 I H \ 2 7 λ , ΛΙ(η,ρ) Mg 

2 7 Α 1 ( η , Ύ ) 2 ^ 
2 7 . . , _ v26rn Α1(η,2η) Al 

I r rad ia ted 
isotope 

/o 

52.3 

52.3 
52.3 
22 .6 

31 .5 

51.5 
17,4 
17.4 

11.2 

11.2 
2 .8 

69 .1 
30 .9 
30 .9 

30 .9 

100 

100 

100 
! 

(mb) 

0.96 

1.58 
1700 

80 

700 

10 

5 

17 

180 

5 

500 
30 

7 . 5 

1000 

60 

120 

; 

T l / 2 

3 . Imin 

5 „ 5min 
0.84 s 
4 . 8min 

4 , 4 m 

79 h 
0.83 s 
16. 5min 
9o7 h 

50 min 
61 d 
0.03 s 
7 min 

9 .9min 
2,6 h 
14 min 

12 h 

9 . 5min 
15 h 
6.6 s 

i 
.1 

Reaction product 

E ft (MeV) max ν 

2.37; 1.79; 1.28 

1.60 

1.44 

_ 

β + 2 . 4 3 ; Ρ>+ 0.90 

2 .70 ; 1.4C; 0.80 

-

1.55; 0.36 
90 ,N90m_ see Z r ( n , n ' ) Zr 

Ρ+2.91 
2 .10 ; 1.01; 0.60 
2 .80 ; 0.85 

0 . 5 7 , Ρ>+ 0.66 

1.75; 1.50 
1.40 

ίο+ 3 .20 

Ε ^ (MeV) 

2„61 ;0 ,86 ;0 .58 ; 
0„51;0.27 

1.01; 0 .50 

0.59 
0.91 
2 .30 

~ 
1.41 ;1 .02 ;0 .93 ; 
0 .75 ;0 .64 ;0 .55 
0.55 
1.16 

1.49; 1.12; 0.37 
2 .50 ;2 .00 ;1 .70 ; 
1 .50;1 .17;1.00 
1.34 

1.02; 0 .84; 0.17 
2 .76 ; 1.38 

-
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as given in Table 12 , III with a z i rconium sample where the oxygen 
concentrat ion is given as function of the delay between end of i r r a d i a ­
tion and s t a r t of counting,, 

TABEL 12, III . 

I r rad ia t ion 
(sec) 

A 

3 
V~J 

"~ 

5 

1 

5 

5 

Delay 
(sec) 

2 

1,5 

2 

10 

Counting 
(sec) 

30 

3 

7 

30 

j — , 

ppm 

4,670-
47 ,960 

7,330 
1,110 

V/hen tho ac t iv i ty , m e a s u r e d under s tandard conditions (5 sec i r r a ­
dia t ion, 2 sec delay and 30 sec counting), i s no rmal l i sed as 100% 

Q Cím 1 A 

of the to ta l activity for both Zr and N , then in exper iment B 100% 
of the z i rconium activity i s r ecorded with only 8% of the N counts , 
thus giving ex t remely high r e s u l t s . Although in exper iment C st i l l 
100% of the Zr i s counted, measur ing 53% of the total oxygen p r o ­
duced counts d e c r e a s e s the e r r o r . In the finally choosen condi t ions , 
where no Zr i s counted, 50% of the N activi ty i s r e g i s t e r e d . 

F o r lead ana lyses , the activity of the ma t r ix i s lower than for 
z i r con ium, so that a delay of 5 sec suffices to i n su re an in te r fe rence 
free oxygen de te rmina t ion . 

In the copper analys is a sa tura t ion effect i s no t iceab le , due to the 
ve ry incense 9 .9 m annihilation radiat ion produced in the m a t r i x . The 
in te r fe rence was exper imenta l ly checked when the same copper sample 
was i r r ad i a t ed 10 t imes for 5 sec at 300 uA at a r a t e of 10 sec per cyc le . 
After tho complete N decay , repeated background m e a s u r e m e n t s 
were made as a function of t ime for both sample and oxygen s tandard 
and the i r r a t ios compared to those obtained with non activated s a m p l e s . 
The r e s u l t s a r e given in Table 12, TV, 
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TABLE 12, IV. 

Γ ­

ι 

or ig inal 

after 

: 

5min 

15 

25 

35 

45 

55 

Ratio bac kg round s a m p l e / s t a n d a r d 

1.03 

1.27 

1.19 

1.08 

1.03 

1.00 

1.03 

F r o m this r e su l t s it can be concluded that only after 4 consecut ive 

i r r a d i a t i jns at the s tandard per iodic i ty (1 ana lys i s per minute) the Cu 

in te r fe rence will be m e a s u r a b l e , 

.'/hilo analysing Al samples it was noticed that the r e c o r d e d Ν 

activi ty i nc r ea sed continuously upon repea ted i r r a d i a t i o n . As a p p e a r s 

from Table 12, II Mg, because of c r o s s ­ s e c t i o n and U ­ V ene rg i e s 

can bo excluded from the pos­ ib le i n t e r f e r e n c e s . Upon ana lys i s of the 

decay curve above 4 , 5 MeV a long­l iving spec ies was found and could 
24 

bo a t t r ibuted to the 15 L Ν a isotope with a 2 ,75 V ­ r a y . By double 

counting this e r r o r can be c o r r e c t e d , G a m m a s p e c t r o m e t r y showed 

also the p r e sence of the 511 MeV {_> annihilat ion radia t ion of Al , 

Decay curve ana lys is above 4 , 5 MeV did not yield informat ion about the 

p o s s i b l e , but unl ikely, i n t e r f e rence of the 3 .20 MeV Π act ivi ty when 
i Í 

measur ing N. This imposs ib i l i ty of c o u r s e i s due to the sma l l difference 

in half­l ife : 6 .6 sec v e r s u s 7 ,4 s e c . As however even for a luminium 

with very low oxygen content the m e a s u r e d half­l ife was always l a r g e r 

ban 7 s e c , the e r r o r s causeo by the m a t r i x i tself will be un impor tan t . 

±) "vThon wri t ing this r e p o r t , the au thor s r ead an a r t i c l e by Fuj i i , who 

came to s imi l a r conclusions (Japan A n a l y s t , 15 , 1245 (1966) ), 
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From the above considerations the following analysis procedure was 
finally adopted : 5 sec i r radiat ion, 2 sec delay, first counting during 
30 s ec , 1 min delay, second counting for 30 sec . The second counting 

24 
result is directly substracted from the f i rs t , as the decay of Na is ne­
gligible in a 2 minutes interval . 

12.4. Standards. 

The materials studied in this part of ihe work have widely varying 
physical and nuclear proper t ies . This densities range from 2.7 for Al 
to 16.6 for Ta , their atomic densities varying by a factor of 3 . The 
total cross sections for 14 MeV neutrons vary from 1,7 to 5.5 b a r n s , 
their macroscopic c ress sections varying by a factor of 2 . 7 . A survey 
is given in Table 12, V. 

Anders (14) and Fujii (15) has shown that matrix effects on 14 MeV 
neutrons a re not to be neglected, regarding differences in scattering 
effect and energy degradation. However it would be very interesting if an 
unique oxygen standard, such as prepared for the steel analysis , could be 
used throughout the whole range of mater ials under investigation. 

Experiments were undervaken where a standard was irradiated in 
the sample position and backed by different mater ia ls ; the activity in 
this standard recordeu and related to a steel backing. The inverse was 
also done where a standard in the standard position was activated , being 
protected by the different materials under investigation, and its activity 
again related to the reference steel. 

Tha different matr ices were A l , B i , Nb, Ta , Co, Cd and Cu. The 
resul±3 are given in Table 12, VI and F ig . 12, 1, and plotted versus 
ascending atomic density and total macroscopic c ross sections. No 
significant influence of the matrix can be found outside the experimental 
e r r o r s . This was ascertained when a cobalt-oxygen standard was prepa­
red in a manner described ea r l i e r , and Co-samples were analysed 
against both Co and steel standard. 
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TABLE 12, 

E lement 

A l 

Ti 
Co 

Cu 

Zn 

Z r 
Nb 

Cd 
Ta 

Pb 

Bi 

F e 

Atomic weight 
a . w . 

26 .90 

4 7 . 9 0 

58.94 

63 .54 
6 5 . 3 8 

91.22 

92 .91 
1 1 2 . 4 ! 

180.95 

207 .21 
209 .0 

55 .85 

Specific gravi ty 
s . g . 

2 . 70 

4 . 5 

0.9 
0.92 

7.14 

6 .4 

0 .55 
C.64 

16.6 

11.3 
9 .80 

7.86 

^ t o t a l fr> 
G~r£ 

1.7 
2 .3 

2 .7 
2 .95 

3 . 1 
4 . 1 
4 . 0 
s. /. 

5 . C 

5.3 

5.5 

2 .6 

S * s · χ 6 J 0 2 3 

a . w . 

0.100 

0.094 

0.151 
0.140 

0.109 
0.070 

0,092 

0.077 
0.092 

0.055 

0.047 

0.141 

^ . * f i W ' 

0.170 

0.216 
C.400 

C.413 
C. 33 3 

0.287 
C, 3o 3 

0.339 
C.453 

0.290 

0 .253 

C. 367 

6 J 0 2 3 
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TABLE 12, VI. 

Metal 

F e 

Al 
Co 
Cu 
Nb 
Cd 
Ta 

Bi 

s tandard 

Sample 

1000 + 20 

967 + 2 5 
909 + 20 

1011 + 20 

995 + 15 
994 + 25 
984 + 20 

967 + 3 5 
m = 987 

989 + 10 

Standard 

1000 + 15 

1014 + 14 
998 + 14 

1006 + 14 
1018 + 14 
1026 + 12 
996 + 16 

1039 + 16 
m = 1014 

1 0 1 8 + 1 6 

I 
3 .28 + 0 .08 

3 .13 + 0.10 
3 .23 + 0.09 
3 .28 + 0,09 
3 .18 + 0.07 
3 .15 + 0.10 
3.22 + 0.09 
3 .03 + 0.11 
m = 3 .18 

3.16 + 0 . 0 7 

F u r t h e r m o r e two copper foils were i r r ad i a t ed separa ted by 7 m m a i r 
and a lso by 7 m m of the investigated m e t a l s . In no ca se a different ra t io 
in the induced act ivi t ies of the foils could be m e a s u r e d . 

The apparent difference in specific activi ty of var ious m a t r i c e s 
noticed by Anders and Fujii i s there fore r a t h e r to be in te rp re ted in 
the light of their neutron monitoring technique. Both au thors employ 
plas t ic s c in t i l l a t o r s , which a r e sensi t ive not only to neut rons but a lso 
to gamma 1 s . Obviously the p resence of a different sample will va ry 
the prompt and react ion product gamma f lux, thus causing a var ia t ion 
in the neutron detection efficiency. 

Hereaf ter unique s tee l s tandards w e r e used for the oxygen d e t e r ­
minations in the var ious m a t e r i a l s . 

12 .5 . R e s u l t s . 

In Table 12, VII r e su l t s a r e given of the oxygen ana lyses in 11 non 
fe r rous m e t a l s . As most of the me ta l s studied p r e sen t impor tan t diffi-
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culties for the fusion method, comparative results a re r a r e and when 
available, have been included. 

The camples had different origin and their overall purity varied 
from commercial quality to 99.9999%. Most samples were very ho­
mogeneous in regard to their oxygen content, only 1 niobium sample 
showed a clear change in oxygen concentration when it was analysed 
on i ts two faces. 

it should also be noted that the weight of che samples varied from 
6 g for Al to 38 g for Ta. Thus at the same concentration a tantalum 
sample contained 6,3 times more oxygen than an aluminium sample , 
therefore yielding 6,3 times more recorded N counts, and improving 
in thi s way the reproaucibility of the r e s u l t s , 

Jfe 

Samples marked witn were transported in the already mentionned 
steel frame or box. The practical sensitivity obtained is quite sufficient 
for the oxygen concentration actually encountered. 

/ Γ Δ ~ 2 

Consequently the standard e r ro r s = \ /—τ γγ (η = 9) on these 
results ic much greater than for normally transported samples . 

It wa3 also possible to extend the " e r ro r -ppm" curve , given as 
Fig, 6 , 3 , into the lower concentration region. 
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TABLE 12, VII. 
Oxygen Analysis of Non F e r r o u s Metals (ppm). 

Metal 

Bi 

Cd 

Co 

Nb 

Ti 

T a 

Zn 

! 

uality or 
origin 

1 
2 
3 
4 

1 
2 
3 

1 

2 

3 

1 
2 
3 
4 

1 

1 

2 

3 

1 * 
2 

3 * 
1 

l S t 1 

1 sample 

8 + 1 
10 + 1 
10 + 1 
10 + 1 

20 + 1 
16 + 1 
23 + 1 

402 + 10 
110 + 3 

15 + 1 

18 -i- 1 
49 + 1 
45 + 1 

228 + 4 ( 1 s t face) 

770 + 11 

18 + 1 

19 + 1 
6 + 1 

1 2 + 4 
15 + 1 
9 + 4 

_nd , 2 sample 

390 + 4 

111 + 2 

15 + 1 

307 + 11 ( 2 n d face) 

776 + 9 

18 + 1 
17 + 1 
16 + 1 

fusion 
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(D 

Al 

Cu 

Fb 

1 
2 
3 

4 

5 

1 

2 

3 
4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

(3) 

¿JX 

42 + 8 
35 + 3 
26 + 5 
31 + 5 
18 + 2 

6 7 + 4 

1 1 + 3 
312 + 10 

463 + 8 

2 9 + 4 

27 + 5 
8 + 4 

46 + 8 
30 + 4 

57 + 12 
100 + 4 

52 + 13 
3 7 + 4 

1110 + 15 

(4) (5) 

1095 + 12 1170 + 30 (n=7) 
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