
M 

J(H:P 

M» iï 

ílHlí 

EUROPEAN ATOMIC ENERG' 

1 

' 0 , 

ι 

ksi 

ÏUÎR 

ί# 
BWWWI 

if l i 
« 

* · . · > · . 

ELEMENTARY METHODS IN FAST NEUTRON 
TRANSPORT THEORY 

■ 
Pü!" 

M( 

SM 

Si! 
rø 

iií;ml] 

IS» 

SB 
¡.tsfiS?« 

Hfl 
;OTJ 

Jl 
m 

wfi 

ÍUt 

íi Ü-ïdiiithtó'·' WJ ίϊ*.!ί·ι»'ίίυΐ«;-*.ίι;;^:^ ■VÄV 

»* 
!»» 

Aí 

HB: 
fe, ki t i 

Ä »Aí 

·**;) 
*·♦»·; 

MÈI 

imi 

•w 

kA« 
?WS 

ia 

lit 

•US 
KI»2B 

»»H 

if})* 

Hf! 
»w 

; » ί;;: aww 

El* 
¡sût 

piîifn 

Joint Nuclear Research Center 
Ispra Establishment — Italy 

ìeactor Physics Department 
Eeactor Theory and Analysis 

à 

m 

wm 

¡uit* 

I 
i MU. 

i*m 

SHÏI 



NOTICE 
ES : ' 

This document was prepared under the sponsorship of the Commission 
of the European Atomic Energy Community (EURATOM) 

Neither the EURATOM Commission, its contractors nor any person 
acting on their behalf: 

Mdlcp arm win-rantv rir rpnrp-spntíition pynrpss nr i m t i i p n -unt » » i >.jiriii .1 .j-itiKWi'ï ·' i&ikTíHylíliHRÍlltj 
Make any warranty or representation, express or implied, with respect 
to the accuracy, completeness, or usefulness of the information con­
tained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately 

A ^ r i ë h , s ; o r â i É l ^ 9SBL 
Assume any liability with respect to the use of, or for damages resulting 
from the use of any information, apparatus, method or process disclosed 
in this document. 

This report is on sale at the addresses Usted on cover page 4 
í!wi¡ifllfflü¥m$íff Snu·1·4·!)!!? r r : '̂f1 '* {^ ' ί ·^" ι^Γΐ«»?!^· ι - I rSl i r =ΪΙΒ*Ώ Λ ·ί Βΐίΐ·Γ·Ίί̂ ! '-Pw^ílií 

at the price of FF 25.- FB 250 DM 20.— Lit. 3120 Fl. 18. 

When ordering, please quote the EUR number and the title, 
which are indicated on the cover of each report. 

'H 

* fun At *kíf fåfiWilm V:''$W&M"ffll * · & r P^4 !$ί#· · ^ Ι Λ Η ít*h '"{ij 



EUR 3457.e 
ELEMENTARY METHODS IN FAST NEUTRON TRANSPORT THEORY 
by C. SYROS 

European Atomic Energy Community — EURATOM 
Joint Nuclear Research Center — Ispra Establishment (Italy) 
Reactor Physics Department — Reactor Theory and Analysis 
Brussels, April 1967 - 182 Pages - 15 Figures - FB 250 

Some new methods for the transport theoretical treatment o£ Fast Neutron 
Slowing down problems are described in this report. 

These methods make widely use of integral transform techniques. 
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distribution of neutrons, which have been scattered inelastically. This problem 
has been solved both for discrete and continuous distribution of the nuclear 
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Summary 

Some new methods for the transport theoretical treatment of Fast Neutron 
Slowing down problems are described in this report. 

These methods make widely use of integral transform techniques. 
One of the main ideas developed in the present report is the expansion of 

the neutron propagator in an infinite series of which the inverse is summable. 
An interesting problem in the slowing down theory is the calculation of the 
distribution of neutrons, which have been scattered inelastically. This problem 
has been solved both for discrete and continuous distribution of the nuclear 
levels. Finally a perturbation theoretical method has been developed and 
another method allowing for the introduction of the central limit theorem of 
the theory of random variables into the transport theory has been worked out. 
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INTRODUCTION 

ae 

The present report is devoted to the presentation of an 
analytical method fo-r the calculation of the distribution 
of inelastically and elastically slowed down fast neutrons 
in an infinite homogeneous medium. Up to now no attempt 
has been made to solve the transport equation explicitly 
by including the inelastic scattering kernel. The cor­
responding space independent problem for elastic and iso­
tropic slowing down has been solved a long time ago (_|_). 
In the recent years some analytical methods have been 
reported for the solution of the slowing down problem 
with space dependent sources and for isotropic or anisotro­
pic scattering. 
4. systematic treatment of the elastic slowing down problem 
with anisotropic scattering has been given by Kaper (2) 
in his thesis and more recently (¿) in another report. His 
method is bas3d on the approximate transformation of the 
transport equation in finite system of differential eq.ua-

/ - F N 

t i o n s with respec t to the l e tha rgy (A -approx. ; . 
This i s obtained by using some p r o p e r t i e s of the genera­
l i z e d funct ions and e s p e c i a l l y of the Dirac - d i s t r i b u t i o n 
and i t s d e r i v a t i v e s . 

x I t has f i r s t appeared as EURATOM i n t e r n a l r epor t in 
June 1966 

Manuscript received on February 17, I967. 



A method based on Fourier approach and on the normal 
mode approach introduced by Case (4.) and generalized 
to anisotropic scattering by several authors Mika (5.), 
Jacobs (6) has been given by Mc Jnerney (7) for elastic 
scattering. 
No of the above mentioned papers contain information 
about inelastic slowing down. 
On the other hand it is not exact, as we know to cal­
culate in general the elastic and the inelastic neutron 
distributions separately, because there exist mixed 
terms which get lost if it is done. 
The method presented here puts inelastic and elastic 
scattering on the same footing. This is obtained by sepa­
rating the neutron distribution according to the number 
of collisions. For large numbers of collisions, however, 
the expressions become uncomfortable. We circumvent this 
difficulty by making use of a theorem from the theory of 
random variables, the central limit theorem. The signifi­
cance of this theorem (CIT) throughout, the world of, ran­
dom phenomena is well known (8). 
It is, therefore, of considerable theoretical interest 
to give a method which enables us to introduce this 
remarkable law of random variables into the transport 
theory. 
We give here a short description of this method which 
can be applied in all cases where n, the number of colli­
sions, is much greater than unity. 
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An important point of the theory to be developed 
here is the requirement that in the expansion 

the functions β". (E) [y = 0, 1, 2,.... X axe all 
proportional to 6 + (E) · This assumption which is in 
many cases true implies that β^ (Ε, Ρ- )/(Γ. (E) is 
energy independent. 
The main tools of this paper are the decomposition 
of the distribution in parts according to numbers of 
collisions, η , and the application of the CLT and 
integral transform techniques. 
In treating transport problems it is convenient to 
calculate the quantity consisting of the product of the 
total cross section, 61(E), and the quantity called 
the neutron-flux, vM̂ jf*; E) instead of calculating the 
latter. It is the product 6~, (Ε) γ(χ,\ι,Ε), which we 
calculate throughout this paper and which we call the 
neutron distribution. 
The problems treated in the present report are the fol­
lowing: 
Section 1 : Connection between central limit and tran­

sport theory. 
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Section 2 : Transformation of the energy dependent 
transport equation. 

Section 3 : Elastic slowing down problem. 
Section 4 : Inelastic slowing down by one single nu­

clear level. 
Section 5 : Inelastic slowing down by two discrete 

nuclear levels. 
Section 6 : Elastic and inelastic slowing down. Two 

discrete nuclear levels. 
Section 7 : Elastic and inelastic slowing down. 

Continuously distributed nuclear levels. 
Section 8 : The statistical method for the nuclear 

level distribution. 
Section 9 : The central limit theorem in energy 

distributions. 
Section 10: Perturbation method for non-vanishing 

absorption cross section. 
Section 11: Collision probabilities and Green's function 

of the infinite plane medium. 
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1. CONNECTION BETWEEN CENTRAI LIMIT AND 
TRANSPORT THEORY. 

Let us consider a function of the form 

f 0,p.s) =. l4-<fî>*M?)T\ 1.1 

where (i) g,h, are integral transforms of certain 
functions and (ii) k,p, and s are the Fourier, 
or Laplaoe parameters corresponding to the space, 
lethargy and time coordinates, respectively. 
Forms like Eq. 1.1. occur frequently in transport 
theory, whenever integral transform techniques 
have been applied in infinite as well as in fini­
te media (9j . 
This expression together with factors of the form 
L/!+ilt̂ 3~1; [(l + 'kpJ^-MLp)]"1 etc., constitutes 
the neutron propagator in the (k-p-s) image space. 
If, now, there exis* a domain in which 

| o(ic.s) it Cf) | < h 1.2 
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then, from Eq. 1.1 we obtain the absolutely 
convergent expansion 

' ■ τι­o 1.3 

The inversion of Eq. 1.3 requires integrations of 

the type 

(TV MlOe^Ak 
H «Jr" 

Now, if OL. (U) is the Fourier transform of G­.(̂ ) , 

i.e. 

CO 

V
5)=

 ») V
) e AV 

— A» 

1.5 

it follows from the generalized convolution 

theorem (i_o) that 
OO 

•oo 
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The central limit theorem (11) implies that integrals 
like Eq. 1.6 can be represented approximately by a 
"normal distribution", if the general conditions of 
the central limit theorem are satisfied. 
For a clear understanding of the conditions under 
which this, result can be obtained we first state the 
Central Limit Theorem (CLT). 
Let there be a sequence of independent random varia­
bles. Let us further assume that the random variables 
are distributed according to the distribution func­
tions f (χ) (η = 1, 2,...). 
Let in addition 

f (χ) dx 1.7 
n ν / 

-Co 
and T (k) be a characteristic function of the distri-

n ' 
bution fn(x) (n = 1, 2, 3,...)· 
The following assumptions are made: 

/ (i) The functions- f (χ) possess finite derivatives,Ι.(χ) n In 
and. there exists a constant Κ so that 

) VtnMl·1* < * i****'3- J 1.8 
— 0 9 



- 1 2 -

( i i ) The funct ions f (χ) possess f i n i t e moments Μ Λ̂ 

of the f i r s t f ive orders (̂ λ = 1 ,2 ,3 ,4 ,5) whereby 

Mm = 0 without l o s s of g e n e r a l i t y . 

Then there e x i s t p o s i t i v e cons tan ts <X , k such t h a t 

<K«<M2n<f>' ^ 3 η < | ' M4n<f· ' ^ n < A, (n = 1, 2, . . . ) 

1.9 

Here M~ i s the absolute j l - t h moment of the n - t h 

d i s t r i b u t i o n funct ion . 

( i i i ) There e x i s t p o s i t i v e cons tan ts a ,b , such t h a t 

for | k |< a holds 

(Tn ( k ) | < b ; (n = 1 , 2 , . . . ) 

1 .10 

(iv) For every interval (c., Cp) with c., Cp "> 0 

there exists a number Q (c., o?) <̂ 1 such that for 

arbitrary k€.(c., Cp) 

JTn (k)| < ç (cvc2) (n = 1,2,3,..·) 

1.11 

If now F„ (x) is the distribution function of the 

sum of the first N members of the sequence 

of the random variables, then, for N—>Oo the 

following equalities hold uniformly 



-15-

_ _L 2 

Fw(x) = (2 tf BN) 2 e x p [ ­ ^—~\ 

± 

SN + Τ χ / 1 + | x ) 3 \ 

O (55? ) ; χ = a r b i t r a r y . 

1.12 

■Í In 1.12 BN = 2_ P̂n'·
 w
^­'­

e
 ^w

 an
^· ̂ w

 are
 x­inde­

pendent and of smaller order than Ν, 

ρ ^ 
When M. ¿ 0, (η = 1,2,...), then χ in the expoen­

ιη Λ M 

tial has to be replaced by (x ­ M. ) , where M1 = ,2_ M1 . 

We omit the proof of the theorem which is a little 

lengthy (a)»(ü3 and point out that it makes use of the 

relation 

F„ (x) ^ (a*!
1
 ( βT jH^CO] * , 1.13 

from the general theory of characteristic functions. 

This can also be written as a convolution 

F..oO«-jr*fcW 
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with the obvious meaning of " " * ". 

Clearly, some elements of |nyj may be identical (for 

generality we have put an index ν ). 

According to the assumptions (i ­ iv) for the validi­

ty of CLT the Fourier partner f (χ) of T (k) should 

be a semipositive definite function. This condition 

is not always satisfied by our functions f (χ). 

To show this we consider the integral ( f (x) dx, 

\ 

which according to 1.7 is given by 

oc 

J fn(x) dx = Tn(0) . 1.15 

It follows from this that whenever Τ (0) = 0 , f (χ) 
η ' η ' 

cannot be p o s i t i v e everywhere. Moreover, we s h a l l show 

t h a t f (χ) i s an odd function of χ whenever n= odd. 
η ' 

To prove the above assertion we consider the integral 

representation 
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Tn(k) = \ ­¿L­SL 
n
 J 1+ i k ξ 1.16 

Let us now take the Fourier transform of this 

f (χ) = ­i­ \ Τ (k) e
ikx

 dk 

2 * J » 1­17 
­0» 

This e x i s t s and, obviously, according to Planchere l 

theorem (IJ.) f n ( x ) £ L 2 . 

Let us fu r the r consider 

g ( ) X | ) = _ ± _ ( τ (k) e i k X dk 
η / 2 χ j η 

1.18 

By putting k­>­k in 1.18 and. employing the obvious 

property of T (k) 
n 

Tn(­k) = (­)
n
 Tn(k) 

1.19 
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we deduce 

f n ( x ) = ( - ) n gn ( |x| ) 
1.20 

and hence 

fn(-x) = -fn(x) 1 .21 

for odd n, which proves the assertion. 

From 1.21 it follows that Mp = 0 for n = odd. and, 
therefore, one cannot immediately apply CLT for the 
convolution 1.14. 
Now we wish to show that a simply modified notation 
suffices to generalize the applicability of CLT to 
such cases. 
Let us consider for s imp l i c i t y the convolution product 

f ( χ ) * f (χ) of only two f ac to r s f ( χ ) , f (χ) and η ' m ' J η ' ' m *' 
suppose t h a t η = even, m = odd. 

From 1.21 i t follows t h a t 

j m ( x ) = f m (x)-^(x) - fm( | x | ) §>( -x ) , 

1.22 
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$>(χ) 

1.23 

and χ β C-00'00} -

The convolution product becomes 

fn ( x )* fm ( x ) = fn ( x )* fm ( x ) ^ ( x ) " fn ( x ) * fm ( x ) 

1 .24 

Each term on the right-hand, side of 1.24 i s posi t ive 
defini te , and i t s factors sat isfy the conditions for 
the va l id i ty of CLT. 
The generalization of 1.24 to every f in i t e number of 
factors , both odd and even, or purely odd. functions of 
χ i s quite t r i v i a l . 
For the complete solution of our problem we have s t i l l 

to c lar i fy the question of the normalization. 
In CLT the functions f (χ) have to sat isfy 

η " 
OC? 

[ fn(x) dx = 1 1.25 

This i s , however, for our functions fn(x) = j ~ iT
n^kM 

not the case. 
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For definiteness let us consider the general expression 

occuring in anisotropic transport problems 

% + Λ (k) ­ Τ + , (k)....Τ ç Λ (k) . 

Τ 0­1
 + ¿j rj­2

 +
 ^0­1 J1

+
 ̂ 2 

(1+iku) (1+iku) 1 .26 

Here, the indices J + 3 of T(k) may be even or odd 

and. do not correspond to normalized, functions f f ix) 

The two last factors in 1.26 correspond 

f(x, u)= 
Γ' 

X 

0 ; x<0, u> 0 

; >L S < 

χ 

<>°j f < 

F 
,u< 0 

1 ­27 

They are automatically normalized 
Oo χ O c 

~ « * 7 

(x, j i ) dx = 
t

1 dx 

1.28 
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One finds easily that 

M1 = u 1.29 

and. Mp = u 2 1.30 

By supposing that all indices of T (k) in 1.26 
are even we find as normalization factor 1/N 

n 

Ν = Τ (0 ) 
η η 

-1 

η+1 1 · 3 1 

The f i r s t moment of f ( χ ) i s (η = even ) 
1 

M _ _L Sii. f p * 1 ΓΙ ξ 1 d5 
- i 2 j [ ^ k 1+ikj j k = 0 S 

-1 

n+1 . 0 
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The second moment (η = even) is 

1 

Iß ' ' ι ­yd. 1 n+1 ( I ' 

Is" ~)[ 
­1 *· 

l ^ ^ 5 , 

2(n+l) 

n + 3
 1.32 

From the above and. from 1.12 we find, for a r b i t r a r y 

x(and every η = even) the r e s u l t 

E
j

 ( x
' ^ õ ' ¿y--· f<\> ^1 ) 

= (2X^-^ ft f: IT φ expf 

(χ­μ­μ V 

í^-l+° *■> 
1-33 

where η . = 9 i _ 1 + J| ­¡ anã. 

¿ ( j i J ^ A ^ ' V 2 2 
J
 η \ f , .1 +^ + 3 i i

1
 r° s 

1 .34 
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We turn now our attention to the case in which not 
all indices of T(k) in 1.26 are even numbers. 
For simplicity we consider two factors. 
According to 1.24 and 1.32 we have for the first term 

M on 

1n 

M2n 

om 

M„ 1m 

M2m 

n+1 
2 

0 

2(n+ 
n + 

m+1 
4 

m+1 
m+2 

m+1 

, 

, 

D 
3 ' 

, 

, 

y 

m+3 1.35 

For the second term one finds similarly 

Μ, 0 , 1n 

MQ 2n 

1m 

M2m 

2(n+l) 
n+3 

n+1 

, 

n+2 
n+1 

, 

n +3 , 
1.36 
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From 1.12, 1.24, 1.35f and 1.36 we f ind f i n a l l y 

F2(x) = ( 2 X B 2 ) - 1 / 2 [ 

exp 

/ m+ll 
(x + mT2J 
~~ΎΕΖ 

exp 

χ 
Í m+1\ 
(x­5+?j 

2B, 

1.37 

where 

B, 
2(n+D 

η +3 

m +1 

m +3 

(η = even, m = odd) 

In the same manner one can t r e a t any case of more 

than two f ac to r s of odd order . 

Concluding,we remark t h a t the c e n t r a l l i m i t theorem 

i s appl icable in a l l s imi la r cases a r i s i n g in the 

t h e o r e t i c a l i n v e s t i g a t i o n of i n f i n i t e or f i n i t e media 

t r anspor t problems. 

In the l a t t e r case, however, the formulas become r a t h e r 

complicated. 
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Th e validity of these remarkable results for the 
space, time and energy variables of the neutron deri­
ves from the fact that these variables can be inter­
preted as random ones. 
As other fields of application of the CLT we briefly 
mention here Theory of electronics, Statistical Me­
chanics and Thermodynamics. 
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2. TRANSFORMATION OP TSE ENERGY DEPENDENT TRANSPORT 

EQUATION. 

The elastic scattering kernel for energy independent 

ν F 
cross section depends on —=­¡— , | , or (u­u

1
 ). (App.B) 

In the ν ­ or Ε­representation of the e las t i c sca t ­

tering kernel the Mellin transformation allows to 

apply the convolution theorem to eliminate the ener­

gy var iable . The same i s possible in the u­represen­

tat ion when the Laplace or Fourier transformation 

i s applied. As the lethargy variable takes values 

from zero to +°° , i t i s natural to consider the 

Laplace transformation as the appropriate one for 

the lethargy dependent transport equation. 

Let us consider f i r s t the transport equation in the 

form 

2.1 
-

Λ
 ¿¿tyl· 

κ V,E, u are the speed, energy and lethargy variables . 
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where 6**(u',U-, /u ) i s g i v e n by 

and 

? ' - 3jUA±L 2.3 

r' is the nuclear level parameter, and /u = 

It is not quite evident that the transport equation 
containing the inelastic scattering kernel too, is 
amenable to a transformation of the above kind. 
However, as it will be shown in Sec. 3 and 4 there 
exists a good, approximation enabling us to reduce 
Eq. 2.1. 

Specifically, one demande the energy independence 
of the nuclear cross sections, whenever use of 
integral transformation is made. We whish to point 
out that this condition is necessary only in space 
dependent problems. 
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A somewhat weaker condition, which is useful in space 

independent problems and which allows the application 

of the convolution theorem, is to demand, the propor­

tionality in energy of the total 6*1 (E), and the 

scattering, 6" (Ε, /U ), cross sections, i.e., 
3 / (J 

<*,c*,f»; = ΣΖ Pyc^^ce) > 

where 

Ö^CE)/(EiCEJ =ij¡nergy i n d e p e n d e n l 
2.4 

Condition 2.4 i s s a t i s f i e d a t l e a s t by the t o t a l e l a s t i c 

s c a t t e r i n g c ross sec t ion , 6~ (E), which i s a lso the 

f i r s t coe f f i c i en t i n the Legendre polynomial expansion. 

To i l l u s t r a t e t h i s fac t we give 6*1 (E) / 6*1 (E) in 

F ig . 1 for some i so topes as funct ion of the energy, 

i n which very small devia t ions from constancy are not 

represented.(Macroscopic data taken from Ref. 14)· 



V 6* t 
1 . 

.8 

.2 

ι 
IV) 

10 -2 IO -1 ιον 10 

Neutron Energy (Mev) 

Fig. 1 
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Let us now consider Eq. 2.1 for plane geometry. 

For simplicity, we assume only elastic scattering 

isotropic in CS, and we write the scattering kernel 

as (App. Β)­

<rsc«¿­~;n) ^ <rs Γ* [frÇ^ti^J 5 
2.5 

where 
I . 

b G « / M ) ­ Jt 3. . 2 .6 

From Eqs. 2.1, 2.4 and 2.5 we obtain for constant 

cross sections 

S&f/*) 
2.7 

while ζ has been defined as 

-
 X

 °i i 2.8 

and where χ is the space coordinate, 

is now given by 
0fz, f,«*) 
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φζι,ρ,Μ) - <% f(**r**) . 2.9 

We introduce now an energy independent parameter 
k , multiply both sides of Eq. 2.7 by exp 
(-ikz) and integrate over the interval *. *«=» ̂ Z . i o» 

We immediately obtain 

where ψι^^/^) and S'CkyffH) are the Fourier 
transforms of ψζ^^^λ and. Sc*?/*/** ) respecti­
vely. 

From this equation we can eliminate the variable u 
also by means of a transformation. This is possi­
ble only, because k and c are independent from 
the variable u. 
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3. ELASTIC SLOWING DOWN. 

In what follows we give the solution of the tran­
sport equation for elastic slowing down in an in­
finite monoisotopic medium of plane symmetry with 
space independent sources. The method is based 
on an expansion of the neutron propagator in the 
lethargy space in a power series of the coupling 
constant, c , of the neutron field with the 
interacting medium. We solve this problem treated 
already by Placzek (V) in order to show the ef­
fectiveness of the method. In order to obtain the 
necessary convergence a further transformation of 
the transport equation is introduced. 
If we assume a monoenergetic source and isotropic 
scattering in CS Eq. 2.1 becomes 

J f 

3.1 
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where ic¡ ±B the initial neutron lethargy, 

Now we introduce ih e assumption 

β- (¿u) rs C 0*Tf'«0 3.2 

where c is a constant. 

Eq. 3.2 is justified by the observation that 

6*1­, (u) and 6*l(u) are almost proportional for 

some isotopes of interest over a wide energy re­

gion (j_4) (see Fig. 1). We observe that this as­

sumption is very well justified in the case of 

H,C, and 0 which are three of the most frequently 

used materials acting as moderators. The somewhat 

large deviations from constancy of 6"­, / 61 for 

Na and Fe are mainly due to the inelastic scatte­

ring. U
2 3 5

 also fulfills Eq. 3.2 quite well. In 

general we define: 
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c « y­y
 ó"t('u)

 . , , 

which is taken to be constant Inaiåe£"■-<?s^J . 

By this method the hopeless task of representing 

by polynomials the rapidly varying cross sections 

is replaced by the representation of the smooth 

function 61, (u) / 6*̂  (u) (Fig. 1). 

We obtain from Eq. 3.1 and 3.2 

ψ<α)Ψ<4*) - ^(õitâY^Jzrffr^jct" 3.4 
/ 

/U-O 

Now we introduce a new variable, w, related to the 

lethargy, u, through 

The kernel and^a^^transform correspondingly like 
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exf>fu'-<u)cf<u zr i^^ey.f>['^(h/-iofJtliM 3 .6 

and 

GlC-u) ifi(<u)cl<u- f(*>)di*} 2>.7 

and Eq. 3.4 becomes 

w 
p(u¡) s ƒ p(t¿)expCr(u-u)]d*>'+S&(*-Ηι) 3 .8 

fc>-t 

where 

o· - cf' c ^ < Y 

' ^_4^ w­<y 3.9 

Laplace transformation of Eq. 3.8 and application 

of the convolution theorem yield 
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o r 

fa) -
Λ_ <í-expC-?(T+pn 3.10 

τ+ρ 

The denominator of the right­hand side of this 

equation can be written as 

iv-*tr»T 

This series is a geometric progression and con­

verges absolutely whenever 

where 
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f = * e & 3.13 

and 

* « &Cf>) 3.14 

Now the le f t -hand s ide of i n e q u a l i t y 3.12 has 

r e l a t i v e maxima a t 

which do not v i o l a t e ineq. 3.12 provided t > - T 

At ρ = 0 i n e q u a l i t y 3.12 takes on the form 

Y - expC-j) < d 3-15 

which is always satisfied. 
From Eqs. 3.4 and 3.10 it follows that the introduc­
tion of Τ is necessary only when 
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Ã >
 4
 3.16 

In every other case the convergence criterium 

c 1- e%pH(r*f>)J_ ^ Λ 3.17 

is satisfied in a wider p­domain. Inequality 3.17 

yields a lower bound for the real part of ρ 

for which the absolute convergence of series 

Eq. 3.11 is assured. 

After these considerations we can write Eq. 3.10 

in the form 

00
 ­ Γ.οΓτ*οΜΐ«. 

f(f>) =£exK-^w,;¿^ ̂-gxpC-^pyjp 3.18 

By applying the inversion operator 
Q+i'oo 

% = _rL. etp(fi*) dp 
OL-ICD 

3.19 
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on both sides of Eq. 3.18 we obtain various results 
depending on the special value of w. It is pointed 
out, that because of the absolute convergence of 
the series Eq. 3.18 we are allowed to reorder the 
terms of it arbitrarily. This property will be 
used subsequently in finding the exact form of 
the collision density first derived by Placzek 
(J_) by a different method. 
Let us. first consider the term with n = 0 

Sexp(-f»s) 3.20 

From Eqs. 3.19 and 3.20 we obtain 

Jo 2-trt. 
j 

-too 

= S^—,[^(»-o] 

The definition of *τΚχ) is 

Λ ; x > o 9ΦΟ = Γ ° 
L ο; χ<ο 
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I t follows therefore that 

é,(u») s S <S"Cw-vo,) 3 . 2 1 

We c o n s i d e r now a few c a s e s w i t h n > 0 . 

n = 1 

From Eqs . 3 .18 , 3.19 and 3.20 we o b t a i n 

*"·> - Hi ê £ £p i 3 · 2 2 

The first integral in Eq. 3.22 is equal to 

^° r ¿ o,· *<w$ 

Similary, the second in tegra l i s equal to 
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¿ f w ) = Sexp f - * f - « .3 f
 ; W>W$+,?

 3.24 

From Eqs. 3.22 ­ 3,23 i t follows t h a t 

(, O'j IV fCUfs,Ws-Kj 

3.25 

Here and in what follows (χ,y) is the open set 

y­x. 

η = 2 

Similary we see that 

4" =
 s

O f $ ^ 

1
 <r (χ*?)* J 
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Ι η a way ana logous to t h a t used i n Eq. 3.22 we 

o b t a i n from Eq. 3 . 2 6 . 

'fW-W,); w>vd< 
φ (*>) = Sexp[--tCw-u>s);W ' 3.27 

f fw) = OexpK*-««^ j Ί 3.28 

and 

f Cui)- Senft*0~»»2< 7 3.29 

From Eqs. 3.27 - 3.29 we f i n d 
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For every positive integer n we have 

*t­1 
(W­W*)" . KjéflA^­w,^ 

3.31 

V w ^£Ws,ws+<n<}) 

proportional to ­£­

Now we observe that according to Eq. 3.5 w is 

This constant characterizes 

the coupling of the neutron field with the medium. 

It is evident that the part of the neutron distri­

bution proportional to the n­th power of the cou­

pling constant of the neutron field with the me­

dium with which it is interacting describes neu­

trons after η collisions, with arbitrary w > w . 
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Keeping th is in mind we can easily give the physical 

in te rpre ta t ion of the various par ts of the neutron 

dis t r ibut ion represented by Eq. 3.31 for n = 0 ,1 ,2 . . . 

The term (n = 0 ) 

gOO a ¿ í ^ " « » ) 3.32 

is clearly the source term. The term (n = 1) 

<&(
w
) = ^S expf­TO*­**)! ) « 6(wj, tìj­η) 3.33 

gives the distribution of the simply scattered 

neutrons which necessarily must be found in the 

interval given above, However, as it becomes clear 

from Eq. 3­31 there exist other neutrons having 

experienced a number n>1 of collisions which 

have w­values also given by Eq. 3.33· 

From Eq. 3.31 we find for these neutrons the expres­

sions: 
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n = 2 & fa) = JS ex.p[-r(u~*ojj]-(i»j-\*>s) 

n = 3 

e t c . 3.34 

By summing Eqs. 3 .33 and 3.34 w i t h 1 ^ nx<oowe 

o b t a i n the r e s u l t 

E¡C*o) - £expr(4-O('w-*,0]; wefw»^^) 3.35 

Eq. 3.35 represents the distribution of the neu­
trons which have experienced all possible numbers 
of collisions (n ^ 1) and remain in the first 
interval. 
It is seen that 

and 
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These two values coincide with those found by 

Placzek for the case of no absorption (c = 1). 

In the same way we calculate the neutron distri­

bution in the second interval. The sum now is 

F><">= 5Cg,^r-f^f3Í j«r^(^a 

or 

F2(w) = 5{
>
l­D+(w­w,­^)]expM)|€xp[(4­­cJ(v»­w»]Q 3.37 

Eq. 3·37 represents the distribution of the neu­

trons which have experienced all possible numbers 

of collisions ( 2 ^ η £οθ) and did not leave the 

second interval. 

From Eqs. 3.35 and 3.37 we see that F. (w) and 

Fp (w), although they are defined in different 

intervals, are formally related by 

P̂ Cvri) -=, F A O ) ­ J^CvO 3.38 

where 
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} 2 (vi) ­ .£ Di ■+ (w­*»*­«0] «xj>[(«­t)tw­w,y­«ü . 3 # 3 9 

From Eq. 3.39 we see fu r t he r t h a t 

Bi(vj­vi$­o)­ FzCw­v»i+o)­ Sexy(­­C<i) 3.40 

This i s the d i s con t inu i t y of the c o l l i s i o n den­

s i t i e s 

F1(w) and Fp (w) a t w = w + q. 

G­oing over to the energy r ep re sen t a t i on we obtain 

F,(e/«+o)­Falv«­°!>= SexpC­ rc , ) ^ . 3 > 4 1 

= 5­£­

This i s the well­known Placzek d i s c o n t i n u i t y . Now 

we see t h a t the n a t u r a l i n t e r p r e t a t i o n of expansion 

3.31 i s t h a t i t decomposes the neutron d i s t r i b u t i o n 

according to the number of c o l l i s i o n s and energy 

i n t e r v a l s . 
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We are now going to show that no other disconti­

nuities exist. First we calculate the collision 

density F,(w), we(ws+2^^+îi). 

If from Eq. 3·32 we build the sum 

F3U) = γ_ ψ (W) 

we find 

3 .42 

F3(VM) - S [ ^ - ^ ^ ( w - w s - ^ ^ e x p C - i ) 

+ w - V J I - 2 3J2+(vo-ws-2<tì] expC-gq)) 

W e(^s+2c^, v^+3^) 

From Eqs. 3­37 and 3.42 i t follows t h a t 

F 2 ( w s + 2 ^ ­ o ) ­ F3(w s+2cj+o) , 

i f we observe tha t the l a s t term i n Eq. 3«42 

vanishes i d e n t i c a l l y a t w = w + 2q, while the 
S 

3 .43 
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other two terms become i d e n t i c a l to Fp(w +2q). 

The t h i r d term of Eq. 3.42 h a s a non vanishing 

f i r s t order de r iva t ive a t w = w + 2q so t ha t 

éE*\ *2Üx| 3.44 

It follows by induction from Eqs. 3.43 and 

3.44 that 

and 

<£Τ„ 1 _¿ d.Fl+4 \ 
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4. INELASTIC SLOWING DOWN BY ONE SINGLE LEVEL. 

In the preceding section we have given the comple­
te solution of the slowing down problem of neutrons 
losing energy only by elastic scattering isotropic 
in CS. 
The method developed and applied there allows a 
clear analysis of the physical properties and the 
mathematical behaviour of the neutron distribution. 
Now we are going to apply our method to the slowing 
down problem of neutrons losing energy only by 
inelastic scattering isotropic in CS. Such a situa­
tion does not occur in neutron physics because 
there is always elastic scattering present, and, as 
we shall show, it interferes with inelastic scatte­
ring. We, however, consider this extreme case, be­
cause, on the one hand, it allows us to extract mo­
re clearly the special feature of inelastic scatte­
ring, and, on the other hand, because it makes it 
easier to recognize the appropriate approximations 
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which are necessary for the application of the 

method. The transport equation in the special ca­

se of a single level and a monoenergetic source, 

S £"(u­u.$) , has the form 

«<«.)*{*) = -L·. Ut ■"»T'­'T' . 4.1 

"-* J,, b-ψ^^β' 

where the kernel is different from zero only 

whenever 

In Eq. 4.1 we have defined r' by 

*­' = ¿n. ë*.·. 4.2 

and Q is the excitation energy of the nuclear 

level. 

In order to find the integration limits in Eq. 4.1, 

we have used the following model for inelastic scat­

tering. 
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Step one: Absorption of a neutron of energy E 

(lethargy u ) and excitation of the 

S 

s 

target nucleus with excitation energy 

Q (lethargy r') 

Step two: Emi ssion of a neutron as though it had 

initial energy (E ­ Q) (lethargy u +r') 

S s 

and were "elastically" and (LS) iso­

tropically scattered. 

It is clear that we cannot assume that the neutron 

was first scattered "elastically/, with initial ener­

gy E and afterwards had excited the nucleus then 

it would not have been able to excite the target 

nucleus, if E is not still larger than Q. Excita­

tion of the inelastically scattering nucleus must 

precede scattering. 

Let us now consider Fig. 2. 

* 2 

, , , p_ 

Ats <*.­r­«j' ΛΛ,­r' 4A­

Fig. 2 
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Only inelastically scattered neutrons having an 
i l ' / 

i n i t i a l lethargy, u ' , satisfying ¿L-r-tffstiCtt-r 
can contribute to ?^(u), i . e . only neutrons from 
in te rva l 1 can arrive at u. Neutrons scattered 
i ne l a s t i c a l l y from the in terva l 2 have to gain 
f i r s t the lethargy r ' and then they are sca t t e ­
red "e las t ica l ly" (according to our model);but 
meanwhile they have already passed u, and so 
they cannot reach i t at a l l . 
This simplified model implies that the lethargy 
gain, r ' , of the neutron per excitation i s constant. 
However, we shal l see that we can correct for i t 
by "renormalizing" r ' . 
To solve Eq. 4.1 we have to make an additional as ­
sumption. We f i r s t write the in tegra l term of 
Eq. 4.1 as 

xi-r 

/ f -
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I n t r o d u c i n g the d i s t r i b u t i o n 0 (w), and 

u s i n g aga in the v a r i a b l e w p r e v i o u s l y de f ined 

we o b t a i n 

fc-r 

0 4 hr^it/ 

where w is defined by 

Now we observe that the first factor of the integrand 
in Eq. 4.3 is approximately w' - independent for a 
large number of cases (see Figs. 3,4, and 5). » . 
We set therefore 

e* = <Ww-> „com*., 4.4. f1- ir-f—rKO'V*» 
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and r , q and t are given by 

■T τζ 4*'/ Τ 4.5 

e¡ - η/τ 4 . 6 

τ = —r^ 4.7 

w i s an appropr ia te w­value. Some examples of 

Eq. 4 . 4 . are given in F ig s .3 ,4and5 in which the 

e x c i t a t i o n funct ions have been taken from (15) 

and (16) . 

From Eqs. 4.3 and 4 . 4 . we have 

<J>(») -J <f>(M)exp£x(u-n)2du'\ S S~Cu-*e) 4.8 

w-r-o 

Eq. 4.8 is formally identical with Eq. 3.8 for 

elastic slowing down except that now the integra­

tion limits have different values. Taking the 

Laplace transform of Eq. 4.8 we obtain 
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[1 - &~*κρθ-ΐ}ίτ+ρ)] expC-r(r+p)]/cT+p)ll 

By repea t ing the argumentation of the preceding 

sec t ion we obtain the expansion 

expZ"-*Yrv/>?77*n 

u t o u+p J 4.10 

We apply the opera tor Eq. 3.19 on both s ides 

of Eq. 4.10 and we consider the terms of the 

r e s u l t i n g s e r i e s corresponding to var ious p r o ­

gress ing n-va lues . 

n= 0 This term y i e l d s back the source 

<£ (w) - S · £"(V-Wi) 4.-|-| 

η = 1 This term depends linearly on the coupling 
constant and represents the distribution of 
the simply inelastically scattered neutrons. 
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4.12 

η = 2 The d i s t r i b u t i o n of the twice i n e l a s t i c a l l y 
+ 

sca t t e r ed neut rons i s given by 

f 
( W - W t - Z r ) ; w e ( w s + 2 r ; WytZr+cj) 

η = 3 S imi la r ly the d i s t r i b u t i o n of the three 

times s c a t t e r e d neutrons i s given by 

w e C w*+"*r, w34.-ar4.cj) 

Ζ 2 
(w - w j - 3 r) -3(w-wt-3r-cj) · 

v* €^W4+3r+^j Ws+3r+2^) 

S|f»)«j|SexpfrC»*a ( 4.14 
(w-Wi-aO-afvi-wj-ir-cjJ+^vj-wj-^r^/, 

w «(»i+^r+a«), ws+3r4--j«j) , 

0 3 »V ̂ ("Wj+ír , Ws+3r-+3ijJ. 

The distribution of the twice inelastically slowed dawn 

neutrons vanishes identically for w<w + r . 

^ s 
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For every integer number, n , we have 

f (Vi­Wt­nrJ. 

(w­VMs­ir,lr) ­ (ÎKW­Wj­'nr­^) . 

fco.) ̂ e>pPf»W * ^
+
™ ^ ™

+
^ 

fw­W5­i)^(n)(W.vJi­.*ir­?J
,M

+(2
l
)(w­wl­*,r­2«,)

n
; 

ι 

'(<n-i)l 4.15 

For the correct understanding of Eqs. 4.13 ­ 4.15 

we must remember the definition of r
1
. In Eq. 4.1 

r' was the lethargy gain of the neutron due to 

the first excitation of a target nucleus. When 

the same neutron excites a second level ­ if its 

energy allows it to do so ­ its lethargy gain is 

no longer equal to r'. It is given rather by 

4.16 
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Let us now consider Eq. 4 .13 . I t s r igh t ­hand side 

i s d i f f e r en t from zero only in s ide the open i n t e r ­

va l 

1 ­ (>*s+2.»­; Ws+2r+a^) 4 # 1 γ 

In Eq. 4.17 2r stands symbolically for r + r« , 

the second term of which is given by Eq. 4.16 

divided by Γ . From this we see that the energy 

of a neutron twice " inelastically scattered will 

lie in the open interval 

(VYes­2<*), f£j­2c?)*) 

This follows immediately from the model for the 

description of the inelastic slowing down. 

In general, the lethargy gain of a neutron after 

η excitations will be given by 
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n 

j = 1 J E,-7lQ 

or , 

f¿ « AtÃz£2^2. 4.18 
Es- -ni? 

for the n-th excitation. 

It is understood Chatin Eq.4-18 n must satisfy 

/ E 
n <" integer part of ' 

Q 

In Fig. 6 Eqs'. 4.12, 4.13, and 4.14 are shown for 
a typical example of inelastic scattering by a 
single level (curve 1 single, curve 2 double scattering) 

Now, before considering more complicated situations 
of inelastic slowing down we observe the following 
properties. 
For w € (w_,w + r) the distribution function vani-

S o 

shes, i.e. no neutrons corresponding to a w belon­
ging to this interval can be found after inelastic 
scattering. 



Fig. 6 
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In terms of energy we may s t a t e : If neutrons of 
i n i t i a l energy E have been scattered i n e l a s t i ­
cally, the i r maximal f ina l energy i s equal to 
E - Q. 

I t i s pointed out that there cannot be found neu­

trons scattered i ne l a s t i ca l l y more than once having 

w-value belonging to (w . w_ + r ) . 
S s 

By setting r = 0,the distribution of the inelasti­
cally scattered neutrons reduces to the correspon­
ding distribution of elastically scattered neutrons. 
In connexion with this we observe that in the 
inelastic case the sums corresponding to Eqs. 3.35, 
3.37, and 3.42 reduce to a single term. 
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5. INELASTIC SLOWING DOWN BY TWO DISCRETE LEVELS. 

Let us now c o n s i d e r the s i t u a t i o n i n which n e u t r o n s 

a re i n e l a s t i c a l l y s c a t t e r e d by two d i s c r e t e n u c l e a r 

l e v e l s . I n p r i n c i p l e t h e method remains the same 

excep t f o r some new a s p e c t s which now must be t a ­

ken i n t o accoun t . 

The t r a n s p o r t e q u a t i o n f o r t h i s s i t u a t i o n h a s the 

form 

CM) tiu) = _ 1 _ [<,..'eiiinrifriiexpc^ 

u-

<i-s' 5 . 1 

+ -!-
J 

'U-S-f 

+ S ■ d(<u,-u.s) . 

In Eq. 5.1 the i n t e g r a l s a re d i f f e r e n t from zero 

only i f 

Λ4.' ' »~
 BS 

Q; J J
 y

 ' 
<*J 

r' and s' are defined by equations corresponding to 
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Eq. 4 . 2 . P roceed ing as i n Eq. 4 .1 we o b t a i n from 

Eq. 5.1 

u-j 

f (\Λ) - γ_ χλ A(ví)ejLp[ztví-w3aw + S¿Vw­w,) 5 2 

4 Í - J -"J-? 

Here , c . and c . a r e de f ined by e q u a t i o n s 

ana logous to Eq. 4 .4 b u t Τ , χγ and ii s 

a re now def ined by 

5.3 

**/ ~ r ■ 1c ■— '
 5

·
4 

By taking the Laplace transform of Eq. 5.2 and 

by solving it with respect to the transform we find! 



­66­

Ç(4>) τζ S <>xp(--f>W3)U-(ífck,exphp)]<!xp(-rp) 

5.5. 

where the following definitions have been used 

%
e *j

e
*Pt-

r
i)> 5.6 

lij ^ ¿j.ey/>|;­ry+tf] 
5.7 

J = f , 5 . 

Expanding the r igh t ­hand s ide of Eq. 5.5 i n a 

s e r i e s we have 

ƒ/>; - £e*T(-r»*)(i 

Afeypr­<­p>^Jeypf­¿p;­4^eχ^p^fr^jpJ­¿,eyp/:­Γ^;pJ \ * 

5 .8 
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By a p p l y i n g the o p e r a t o r Eq. 3.19 on b o t h s i d e s of 

Eq. 5 .8 we immedia te ly g e t t h e d i s t r i b u t i o n of t h e 

i n e l a s t i c a l l y s c a t t e r e d n e u t r o n s by the two d i s c r e ­

t e l e v e l s . 

n = 0 

<¿(w) = S £(w-ws) 5 .9 

n = 1 

X ; wefws+rjws+r+£ì) 

f/u) - S exp{"-r(w-Wi)J <ƒ àc5 j w e(w,+s, vSs+s+c, ) 5 , 1 0 

0 ; W^s+fîkjfr^utWj+SjWits^j] 
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From th i s equation we see that the f i r s t c o l l i ­

sion ine las t i c d is t r ibut ion i s simply the super­

posit ion of the two s ingle- level -scat tered d i s t r i ­

butions, i . e . no interference i s present. 

In Eq. 5.10 we have made use of Eqs. 5.3 and 5 . 7 . 

n = 2 

r 
^(w-Wj-^r j > wetWi-ar.Ws+ar+c}) 

Jr^(nfs+2r+a^-K)j WÊ^j+ar^jVJi+ir-w-i) 

2>TY}rj(w-Wì-r-5)J· w e(w$+r+5, vis+r+s-*-e|) 

2 Kr"tfs (wi«v *+ á+a«)-w) j w € (W i+«WC|i w5+r+i+2^) 

fifa)- 5expfr(^-ws)]( 
^ ( W - W S - Î S ) · IM e(ws+zs,wj+25+ct) 5.11 

O - w í4í(Vvts+Xr,VOs+-3.'N+2.Éí)0(Ws+2SJWs-íaS-fZ«J^ 

Here and in what follows we define 

nnr'+ U s' = Jlnf Ë ( ^ Ì 'm ,k =pos i t . in t . 5.12 



n = 3 
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&(.»)* ■jrtXfL· 

( ' Ï * 

fr[fw-w,.¿r)- 5(w-vos-a*--<}fJ ; W é/Wi+3t-+gj Ws+3r+2«̂  

^
,
h[(w-iM4-2r)-i,cw-Wj-3T.cj)+âC*'-Wi-3r-at1)

i
. 

J 3*Îïrs [(w-wf-2r-s)~3(w-^. 2r-s - ì f J ; 

•T(w-w5)]^ W efw^T.r+s-v^iWs+zrAS««!). 

^ T * î ["C W- w i-
 r

-
z
* )-'5(v-wJ-r-2S*^)+3C'w-«s- wa-*i") J · 

Q'j
 w

 ^fCW«"**^ V0j+*V^)U(vuj-rtî;Vk+'4S+'*
e
|)} 

5.13 
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η = 4 

' f· 3 

JCr (w-ws-^.r) j w e(Wj+¿).T; voj+tj.r+cjj 

Kr [(w-ws-i).\r) -i j.fw-ioj^T-^y-f G(w-wj-v-t-z<))-^(w-wv-Mr-3«jfj. 

W £ ( w $ 4 i f r + a ^ ^ Λ ^ γ - κ + ^ ) . 

,)fs(K)-\Ms-lfS)
3
j VMé(vis+<V^ VJs-Hfi-h^). 

KÄ [(vs-wj-ifs)- 4(vo-ws-as-«})V
é
 (

w
-wt-4s-2if)\lzf.(vi.»4s-tii--i<f)

3
j . 

W €.(vjs+q-S^Ws-J-ífS+q-^"). 

' r - J 1 3 

w e (-ω s+r-+T>s+3«j; το χ +τ+^ s+if-β^ . 

5.14 
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φ (tj) vanishes identically for 

In Eq. 5-14 we see that the inelastic scattering 
distribution by two discrete levels is not equal 
to the sum of the inelastic scattering distribu­
tion of two single levels, because there exist 
mixed terms representing neutrons scattered some 
times by the one and other times by the other 
level. 
We have given sofar some expressions for the 
distribution of the inelastically scattered neutrons 
generated by a strictly monoenergetic source. 

Eqs. 5.10 and 5.11 are shown in Fig. 7 for the le­
vels Q̂ , = 0,668Mev and Q0 = 0,961 Mev of 
Cu63 (il). 
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6. ELASTIC AND INELASTIC SLOWING DOWN. TWO 

DISCRETE LEVELS. 

In the preceding section we have discussed the case 

in which the scattering kernel consisted of only 

two terms corresponding to two discrete levels. 

As such a case is only approximately realizable 

we give now a discussion of the more realistic 

situation in which elastic and inelastic scatte­

ring have not been separated. This is in as much 

interesting as the sum of the elastic and inela­

stic scattered distributions does not equal the 

actually scattered distribution. 

Using the results of the previous sections we write 

w 
( ' ' ' 

φ[)Α) =· ¿f ißxpfw-^O^tvO a/W 

vJ­r 

w-r-o 

W/-S 
7 ι ' 

Λ àf5 exp$*i-v>)J?^)àvo 

\A-S-«) 

-ν- S £(>A-»s) 6.1 
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where 

τ=
 1

~« Ì c
*-+Cn,->1-»-Ct#i„ 

¡ κ - £ 

and X r , Vs are defined by equat ions ana­

logous to 5.4 and s a t i s f y Ä + y r ­ + ^ Λ. 

The Laplace transform i s now given by 

bexYC^-LsexYt-Cs+VN Y* 6.2 

where g = "3c and h = xexpC­yr) . g , h. have been 

defined analogously to Eqs. 5.6 and 5 .7 . 

The var ious con t r ibu t ions to the d i s t r i b u t i o n of 

the s c a t t e r e d neutrois are 

η = 0 
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This case corresponds again to the source term 

Eq. 3.21 discussed in Sec . 3. 

£<:*)­ ÍS £(·νί-*ο 6#3 

η = 1 

The neutrons have been scattered only once, the­
refore there cannot exist any interference of the 
elastic and inelastic scattering. Hence, we have 

W> · v» ef'Wi+T.M1>s+r+a,\ 

6 A. 

η = 2 

For η = 2 we have the first term in which interfe­
rence of the various modes of scattering occurs. 
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Th. e physical reason is that neutrons may have 

been scattered by one of the 9 modes: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

elastic 

elastic 

elastic 

r-inel 

r-inel 

r-inel 

s-inel 

s-inel 

s-inel 

-

-

-

-

-

-

-

-

_ 

elastic 

r-inel 

s-inel 

r-inel 

s-inel 

elastic 

s-inel 

r-inel 

elastic 6.5 

From these nine combinations of scattering modes 

the first, fourth, fifth, seventh, and eight are 

commutative; that means, it does not matter how 

the neutron was scattered the first and how the 

second time. The remaining cases from 6.5, however 

are not commutative. In order to show it, let us 

consider a neutron of initial energy E. 
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Let us further suppose that it has been scattered 
once by the combination 2 and the second time by 
the combination 6. 
We have the minimum final energies 

combination 2 : 

6 : 

Jf2 
E f6 

*( *E - Q ) 

<X2( E - Q ) 

whence it follows that 

Ef2 ^ Ef6 

After these considerations we can write the unsym-
metrized distribution of the twice scattered neutrons 
as it follows from the inversion of the third term 
of the series Eq. 6.2 

2 Vr-^r(vJí+r-+2^vo)j W6(vjs+r+cj,V3$+r+^) 

^ O ) =<Se>rp[--i:Cvj-u¿]/// 2>r^s(vj i+s^«{-w) ; MeC™+<i+íí>Uí+x+n) 



\ 
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^rC'w-Vús-'ai*) -, w cCw¿+2r)vst+2r4ej") 

v a n i s h e s i d e n t i c a l l y f o r 

wffl(w ,w +2q-)(j(w +2r,w +2r+2q)U(w +2s,w + 2s+2q)7 
JL S S S S S S I 

The first and second lines of Eq. 6.6 represent the 
distributions of neutrons which have suffered two 
elastic collisions. They are identical to the cor­
responding expressions of Eq. 3.31. The third and 
fourth terms, proportional to <Jf&V > represent 
the distribution of the neutrons which have been 
scattered once elastically and once by the r-level. 
The order of succession, however, is fixed by the 
definition of r', the lethargy gain during r-ine-
lastic scattering. There exist two possibilities: 

"r-^T^z 4.2 
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This definit ion of r* implies that the energy of 
the neutron af ter the scat ter ing wi l l be confined 
between <*(E -Q .) andfE -QJ\ . s r ' v s τ] 
From th is i t follows that ine las t i c scat ter ing has 
f i r s t taken place. 

^ tXEs-<S>r 
6.7 

From thus definit ion of r ' i t follows that the energy 
of the neutron af ter scat ter ing wi l l l i e between 

<Y(«Ee-Q„) and ( « E - Q j . Obviously in th is s r s r 
event e las t i c scat ter ing has f i r s t taken place. 
We therefore may s t a t e : 
Definition Eq. 4.2 of r ' corresponds to combination 
6 while definit ion Eq. 6.7 of r ' corresponds to com­
bination 2 of the scheme 6.5. 
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Eq. 6.6 has therefore to be complemented by two lines 

which make the expression symmetric with respect 

to the succession of { (r ­ inel.) ­ el.} and 

fel. ­ (r ­ inel.)j of the scattering. 

For the fifth and sixth lines of Eq. 6.6 there holds 

exactly the same, if we replace s' by r'. They cor­

respond to combinations 3 and 9 of scheme 6.5. 

The seventh and eight lines of Eq. 6.6 represent 

the distribution of neutrons scattered twice by 

the r­level. Lines ninth and tenth represent the 

distribution of neutrons scattered once by the 

r­Ievel, and once by the s­level. The order,here, 

does nor play any part. Finally the last two lines 

represent the distribution of the neutrons scatte­

red twice by the s­level. A graphical representa­

tion Of Eq. 6.6 is given in Figs. 7,8 for Cu * and Cu 5 . 

It is instructive to compare Fig. 7 with Fig. 8. 

For three collisions we obtain similarily the 

distribution. 



Neutron Energy 

Fie. 7 

Energy d i s t r i b u t i o n of neutrons s c a t t e r e d once "(curves 1,2) and twice 
(curves 3,4,5) by the two l e v e l s of Cu°^. The dashed line represents the t 
t o t a l d i s t r i b u t i o n . 
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E (M ev J 
Fig. 8 

Energy distribution of neutrons scattered twice by the levels of Cu . 
Curves 2 and 6 represent the distributions of neutrons scattered once by 
the one and once by the other level. The dotted line is the total 
distribution. 
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& W ) = 

ifrfw-wj-ir)2· j * éOavfir,vi,+3r+T) 

^sCCvS-Ws-BS^CVi-Vs-ît-'O'+lCVI-Wi-^J-Z'ïJ^^ U Ç(WSm-«<),VirH$43<J ) 

3if JfsDV-WrS)2·-5(w^t-s-^ƒ+*( w-w,-««, f ] , wÇCWS+S+MJ^J«+V}) 
φζεκϊL^tv-wk)K 3*** fw"w*^20* j w e ( « s + i r ; « , « r + i ) 

^^[(w-ws-^-^Cvo-ws-ar^)2^ . we(Wj+2r^,ws+zr+zi) 
3
^ÌTr [(W-Vf*- 3*f~ -OC W-Ws-Zir-̂ % 3Cvj -Ws-2*--*i*fJ. WÇ(W»«T+*Í, Wj+Zr^) 

¿Kif^fw-Wí-zsj
1
 J WÇ(VÍÍ+ZS,\4,«.V«.«)) 

afrtt^Cvj-^i^OMC^-Wi-as-·tf] ; wç.(w,+2Ji-i1w,+zs+-a«) 

3tt"tts t(*-w *-^0 -^(ví-wj-7-i-^f4"?>C\«-ws--2s--a^. κG(y«i^s+i7,wttii-«?j 

^"Ks^W-Wj-zr-sf-îCvi-Wv-Zr-v^f J . VI €(vovAr+SVi,Ws«r+s+*l) 

3fcV>Ts(yj-Wi--rv.2.s)*- .̂ W€-Cwt*-r̂ aSjVjsvr̂ 4v+«j3 

* V H S ^ ^ - T - I S ) * - ^ * - « * - » · - ^ ) ^ ; W ÇK+rAS^Vlïtr+ava«)) 

6.8. 
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It can easily be seen that <6fw) vanishes identi­
cally f>r 

Formulas for tfej*) with η )> 3 can easily be 
derived. 
In this section we have considered the combined 
elastic and two-level inelastic slowing down of 
neutrons. The case of one level can immediately 
be derived from the above formulas by setting 
^5 =o. 

The case of the combined elastic and inelastic 
one-level slowing down is especially interesting 
for the derivation of formulas describing the com­
bined elastic and inelastic infinite -unresolved-
level slowing down of neutrons which is going to 
be discussed in the following section. 
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7. ELASTIC AND INELASTIC SLOWING DOWN. 
CONTINUOUSLY DISTRIBUTED NUCLEAR LEVELS. 

The transition from the discrete to the continuous 
nuclear level distribution can now easily be effec­
ted if the level distribution is given. Let us 
suppose that in the energy region (E, E ) there 
exist M discrete levels with excitation energies 
Q.., Qp....QT and with partitions o.,, £2> 
^ τ respectively 

The total distribution of the simply scattered 
neutrons is given by 

L 

where the summation is extended only over the Q's 
which lead to E. 

In Eq. 7.1 and in what follows 0 -, (E) and 
0 -jn(E) denote the n-th collision distribution. 
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To simplify the notation we introduce tke operator 
£ (E , E, Q-,) which multiplies by unity the parti­
tions of Q contributing to the distribution at E. 
and by zero all others. Eq. 7.1 can now be writ­

ten 

£W- %el^^lf^m^s^)fm 7.2 

I f we now l e t M-*oe> the r ight -hand side of the 

above equation becomes an i n t e g r a l over Q, and 

Eq. 7.2 takes the form 

«to 

%fB) " tu<*) + \%AlCtM)t(*p**)fWd* 7 ' 3 

-no 

We have extended the region of integration by de­
fining 0 n n (E,-Q), JD(-Q)=0. Here, ƒ(Q) 

is nothing but the density of the nuclear levels 
which can be excited by neutrons of energy E . 
If E is the neutron energy after inelastic scat­
tering it is seen that the maximum Q leading to 
E will be Q" ^ (E -E), and the minimum Q'J)= (E -E^ ) 
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Every Q φ. (Q' , QM) cannot lead the neutron from 

i n i t i a l energy E to f i n a l energy E. 

To ca r ry out the i n t e g r a t i o n in Eq. 7 .3 we have 

to express £f(E» E
s> Q) i n d e f i n i t e form. I t 

i s convenient to express ¿? (E, E , Q) i n i t s 

i n t e g r a l r e p r e s e n t a t i o n . 

The i n t e g r a t i o n path, Γ , i s defined by the r e a l 

k­axes and by boundary of the lower p a r t of the 

k­plane ( p o s i t i v e l y o r i e n t e d ) . For convenience 

we have introduced the parameter % which w i l l be 

put equal to un i ty af terwards . 

From Eqs. 7.4 and 7.5 we obtain 

%(*) - $>.*& 

+ _Λ_ pxp/i(ftEa­E/«)k7_e,p/l(ajg _E ) k 7
 7 · 5 

2
-*LJ ~

 S
—L dk 

Γ oc 

xl ^^ÍE,(?)pfQJe)cpC­^Q)¿¿Q 
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If we interprete the last integral as a Fourier 

transformation we have 

The second bracket in Eq. 7.6 represents the 

Fourier transform of f 0^ ±n (E,Q) Ρ (Q)}· the 

existence of which we suppose. 

We differentiate the exponetials in Eq. 7.6 with 

respect to Λ , we integrate symbolically the same 

expression over A , and we interchange the /I and 

k­integrations, and then we have 

£rø a *W« + *ƒ<" 
7.8 

xJ[expCi(xB,-e^)k]-explK*4Bf.B)l<lF(e1k)¿k 

r 
The second i n t e g r a l i n t h i s equation can again be 

understood as a Four ie r t ransformat ion. Assuming 

t h a t the in tegrand vanishes on the boundary of the 

lower k-plane we ob ta in : 



7 .9 

V/e have put a (­) in front of the in tegra l in or­

der to take into account the orientation of the 

path . This i s equivalent to 

Ef-e 

ζ
(E)

 = fi¿**)f**>
d(

i -
 BÇC

*'*
Bt) 7

· 10 

and 

ε^ε 

fit*)* %J-E)+Í%¡*ÍE'®?C^dQi EGfavEjX lm 11 

The results obtained above can be generalized for 

any number of collisions. We give here the distri­

bution of the doubly scattered neutrons in the 

energy representation for later use. 
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rcxJtH*Lj&e(**Bt) 
E 

«HV*** „ 2 

C
^ Æ ­T^ ̂

 Ee
f*YEs­<P>), <E,­<Pr)) 

The first and second terms are Q­independent and 

represent pure elastic scattering. The third and 

fourth terms are mixed terms arising from one 

elastic and one inelastic scattering. In order 

to keep these expressions simple we disregard for 

the moment symmetriζation with respect to the 

succession of elastic and inelastic scattering. 

The transition from discrete to continuous level 

distribution is now effected by means of the same 

arguments used in the case of simple inelastic 

scattering, and Eq. 7.10 applies. 

Let us consider the terms corresponding to double 

inelastic scattering. 
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If the initial and final energies of the neutrons 
are fixed, the maximum energy loss, Q., during the 
first inelastic collision cannot exceed (E - E -Q„)> 

S JL 

if Q2 is the energy loss during the second colli­
sion. 
From the above said and from Eq. 7.12 it is easily 
seen that the total distribution will be 

%(*)= ?*,U(E) i £€[«*£*>£*) 

+faf*W]d94ffa)f^Ce,(S!lJ04) *}e€(o,e5) 
o o 7.13 

In the case of 

η = 3 

we have three possibilities. 
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i) One inelastic and two elastic colli­
sions; formula Eq. 6.7 applies. 

ii) Two inelastic and one elastic collisions; 
formula Eq. 7.2 applies. 

iii) Three inelastic collisions. 

Arguing analogously we find for case iii) 

-hJcCfyfCQJJ cLQ2j>(a>t) d.4fc<?<) 

o o O 

X<b. (EjthiQiiQ*) · E€(&;«ñs) . 

-f mixed terms 
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In the general case the integrals become 

o 

­[«¿Cfcpfty [¿ft., ƒ£&.,; 

E>-f/-r-^n , . . . .£pa 

χ 

o 
¡^ff^t^jCP^r-φ,) ; EGfavEs) 7 . 1 5 

+ mixed te rms 
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8. THE STATISTICAL METHOD FOR THE NUCLEAR LEVEL 
DISTRIBUTION 

The general formulas given in the preceding section 
are now applied. Let us first consider Eq. 6.7 for 
n = 1. To carry out the integration it is required 
to make some specifications concerning the distri­
bution of the nuclear levels. As a first approxi­
mation we shall use the expression for the level 
density given first by Weisskopf (17) According 
to the statistical model of the nuclear reactions. 

fCQl- 3>ex?(\fïoQ) 8.1 

where L and a a r e n u c l e a r p a r a m e t e r s depending 

on A . ( t h e mass number) . 

From Eqs . 6.7 and 8.1 we have 
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ε &QyEs*£f) 

?<ί£) ÍS
'E¡\

3>
!^h(^exf(^^)dQ ; E€(O,ES) 

**-e/^ 

- P j a í / ^ e x f (rtõ*) d Q j E efo, <*ε>) 

In t roducing the e x p l i c i t forms of ¿Γ and 7tf^ we 

can wr i t e 

%M (4-Of) Es 

E eC*EsjPs) 

ε*-ε 

o A " g * 

Here E is a convenient value for which the expres­

sion takes its mean value. 

Now we introduce the assumption 

ÖLfeTi» 
= constant = c. 

m 8.3 
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From Eqs. 8.2 and 8.3 it follows that 

·£ ; EeC«ESìEs) 

8.4 

c 
c/*,βχ?(\Ι&(ε,-ει«)Χ\/<Η*(εϊ-ν*)-*),· E€fo,ofEs) 

The right-hand side of Eq. 8.4 vanishes identical­
ly unless E belongs to corresponding intervals 
mentioned. 

As an illustration we give in Fig.9 the graphical 
representation of Eq. 8.4 where we have used the 
following set of parameters (.17) 
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10 

10 

10 

io3 

10 Mev 
Neutron Energy 

Fig. 9 
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,-D = 1 n/cm sec 

A =63 

c* 

a 

D 

Es 

= 0,938 

= 2 Mev"1 

=0,3 Mev"1 

= 10 Mev 

= 0,9 

cin = °' 1 

As a further application we give now the energy 
distribution of the twice scattered neutrons. Again 
we assume here the validity of Eq. 8.1. The ex­
pression is not, however, convenient for the ana­
lytical integrations in Eq. 7.13, and we there­
fore approximated it by the simpler one 

p(Q) * 'Sfr* K<Q + Kz(f) 8.5 
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where K =̂ 6a 

k3 = 28a£ 

"2~5~ 

Expression 8.5 is a good approximation of the 

formula 8.1 in the interval of most interest 

0 ¿.JfCLQ. Ç 15, as it can be seen from Fig. 10. 

From Eqs. 7.12, 7.13 and 8.5 we obtain 

?<*>¿ 
_ S 

b-v)*£s 

C SU - £ - · S € QfESiceBs) 

3 *- -4 τ" 

- CC;<M"Dft ^W(P,-E/*) -Â\ expC\|ïeÎBr55) ')E β (o,<*E,) 

ν 

This equation is represented in Fig. 11 for two 

values of c/c. . 
m 

8.6 
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Fig . 10 
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9. CENTRAL LIMIT THEOREM IN ENERGY DISTRIBUTIONS. 

For the application of the CLT in the calculation 
of the convolution integrals we observe, that 
our function are of a special character. They 
vanish for negativ arguments and are zero for 
arguments greater as a given number. 
We call such functions energy limited or grid 
functions. 
Of this type are the functions occuring in elastic 
and inelastic scattering. They are constant inside 
(r, r+q) and vanish outside this interval. The 
height and width of each member of the grid depends 
on the characteristics of each nucleus contributing 
to the scattering. 
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Let us suppose we have L discret nuclear levels. 

The distribution of the simply scattered neutrons 

will have the form (Fig. 11). 

To apply the CLT we have first to normalize the 

distributions (Fig. 11), so that the grid attaines 

constant height. 

The distribution of the η times inelastically 

slowed down neutrons is given by a convolution 

integral 

Oe» 

Ã *
 β 

where 

■02. 

9.1 

9.2 

r̂  is given by 

t 
"Η = ßn. 

e>-QjL 

Shi O 
vo 

4.2 
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Q, = Mtø {&;**" '* · '·1} > 
9.3 

and 0 τ ( ζ ) i s the d i s t r i b u t i o n of the simply 

(by the 1 ­ th l eve l ) s ca t t e r ed neu t rons . 

Ρ i n the f ront of the above i n t e g r a l s i g n i f i e s 

the permutation opera to r which permuts the 

exponents tit with the ind ices of the funct ions 

ψ' ( 5 / and sums over a l l poss ib le T^Ji. such, 

t h a t Eq. 9.2 i s s a t i s f i e d . 

Now according to a modified vers ion of the CLT 

v a l i d fo r g r i d funct ions , the i n t e g r a l 9.1 i s 

given approximately by 

where »­ vJ — tLfa-tiu·*) 9.5 
¿^ ^r ■ —— · 

¡&(*ι,"*υΐι)~ Afa—*U)fì) 

G· i s given by: 
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Τ(!>*·*) Kl·*") 9 .6 

with 

* " ~Fï ' 9.7 

and 

% 9 .8 

On j ̂ , O­L and kL a r e defined as 

O-n. — ~zr Ì 

9.9 

7n = 7 , 9.10 

CLu{^j·· -HL) ■= Σ- muri 
£-ι 9.11 

and 

L(^ )--'H'.) = 'no + «xL(^·· ·^) 
9.12 
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I t is the convolution of such functions which 

yields the neutron distribution of neutrons n 

times scattered inelastically by the L discre­

te nuclear levels. The convolution integral in 

question is approximately represented by Eq. 9.4. 

Now, the quantities y and à are given by: 

7 =r <i/JUWcù- «/(*-») 9.-I6 

and 

f \ 2/(UV*f·- «(n+z/fhV«))/^«) 9.17 

/ v i 

I t might appear surprising that Ύ) ando are 

independent from the level characteristics. 

This is , however, only the consequence of the 

normalization. The nuclear characteristics deter­

mine the factor N(E , Q..,...QL, η.,...η-r, n) 

and the interval 

(du J OLU +?ΐγ) 9.18 
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4Ί and ¿«u are the first moment and the va­

riance of the n­th distribution respectively. 

The distribution of the neutrons which have been 

scattered once by the 1­th nuclear level is ac­

cording to Sec. 4. 

. ^xpCrr>) 
with the normal iza t ion f a c t o r N¿ « t—£ΓΤ— j 

and where now Xj¿ and f are defined by 

and r«6f cO/̂ -oO 9.14 

By normalizing and using the l i n e a r t ransformation 

Eq. 9.5 , 0­j_(w) takes on the form 

Φ/V ­ î/CLd) ■ e*P(-T?V- 9.15 

(ö<f*§ < Ί ) i s the i n t e r v a l 
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inside which expression Eq. 9.4 does not vanish 
identically. 

The normalisation factor can now be written in 
the form 

L r 

A/ -
' ci 

9.19 
L 

IT E ¿ _ n£ 

The last equation can be corrected by taking 
into account the fact that the maximum energy 
after the nr-th collision by the 1-th level is 
equal to (E -n-, · Q-,) . After this the corrected 
normalisation constant., N be comes 

K|*L E S ^ K " ^ . ( S L < E Q 9.20 
ES-SLC*1·. •-•Ό 
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where 

-tnjt 

­RuK,..,^0 ~J,Cx 

and 

u 

From Eq. 9.4 and 9.20 we obtain f i n a l l y for the 

d i s t r i b u t i o n the expression 

lot.- w 

where according to Eq. 3.5 

9.21 

W ^ ­.Siw Æy, , Es. ft ηΛ 
w w

 ^­<γ^^ ε 9.22 

The operator Ρ operates on all quantities de­

pending on the partition (n1, n?,.­.;nT). 

For the right understanding of the Eq. 9.21 it 

is necessary to elucidate the nature of P. 
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The quantities in which Ρ acts, are 

Let us suppose we are given L arbitrary quan­

tities C.... C­j. and the integers n*, .. ,ni 

and n, such that ¿1 inijj — 'rL 

If we, now, constract an expression £¿4iÍc1J--'níQt.) 

and let Ρ operate on it, we have the result 

L 
n. 

= -h 1 f te<v-«icj 
L<n
­ ĵ i " 9.23 

The calculation of L requires the solution of 

the following problem: given two integers 

(L, n), to combine each of the partitions (n^, . .ni) 

with a set of numbers (C....C­J·), i.e. to find 

the number of the combinations (fl1CJl)----'nLCi,j 

The solution can be found by the following ar­

rangement. 
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where 

and 

3 n 

1 ( n - 1 , 1 ) 

2 ( n - 2 , 2 ) , ( n - 2 , 1 , 1 ) 

3 ( n - 3 , 3 ) , ( n - 3 , 2 , l ) , ( n - 3 , 1 , 1 , 1 ) 

( n - 4 , 4 ) , ( n - 4 , 3 , l ) , ( n - 4 , 2 , 1 l ) 

( n - 4 , 1 , 1 , 1 , 1 ) 

9.24 

( η - λ , λ ) , ( η - λ , Χ - 1 , 1 ) 

\ ^ η±ε 9t25 2 

λ ^ m- λ 
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In the inequality 9.25, £ is defined by 

even 

odd 9.26 

Now, the number of combinations of the first line 
of the arrangement 9.24 with c...... c-r is 
equal to ( . ) . 

The second line yields ( 2 ) combinations, and 
any of them belongs to 2Í permutations. 

We have, therefore, 2! ( 2 ) total. 

The third line yields again 2 ! ( 2. ) plus 

\ò\i w^-ere 'the divisor 2! takes into account the 

identical permutations of the unities. Conti­
nuing in the same way one obtains the result 

+ |i(L)+ ...etc. 
9.27 
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Eq. 9.21 is valid both for elastic and inelastic 

scattering the difference consisting in that 

r = 0 for this case,and that the energy after 

the n­th collision is o( Π5. 

As an illustration of the above theory we give 

an exemple in order to check the quality of 

the approximations 

n 1 

n 2 

L 

^ 

r2 

C r 

C s 

¿Y 

— 

= 

= 

= 

= 

= 

= 

= 

1 

1 

2 

0 ,118 

0 ,108 

7 . 1 0 " 2 

2,8 .10 ' 

0 ,938 

­2 

E = 1 0 Mev 
s 

Q1 = 1,114 Mev 

Q2 = 0,77 Mev 

+ 1= 3,0325 

+ 1= 3,0818 

G 1 

The results obtained from Eq, 9.21 is shown in 

Figs. 13 and 14. 
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ø. 

exact 

central limit 
theorem approx. 

1. -

.8 -

.6 

.4 -

.2 -

0 

2.5 w 

Fig. 13 
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10 -2 

Cu 65 

Qr 
Qs 

- - -

= 
= 

-

1.114 
0.77 
exact 

CLT 
total 

Mev 
M 

. ^ " - •^ 

10 

10 

6 , 5 
-r 
7 7,5 8 

~ l — 
8,5 

F ig . 14 
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4ß. PERTURBATION METHOD FOR NON­VANISHING ABSORPTION 

CROSS SECTION 

The break down oí' the proportionality between the 

total cross section, and tne scattering cross section 

is due, generally, to the appearance of inelastic 

scattering and absorption. 

As a matter of fact, it is more comfortable to 

represent the ratios of the cross sections by poly­

nomials oí small degree than to do this for the cross 

sections themselves. This observation allows us to con­

struct a perturbation method for the solution of the 

transport equation just in the energy region where 

^ ι t 

—■=— f const. 
Let us consider the slowing down equation (Sec. 3) 

tø 

#">* Í W} ^
TCK

^'^(^) 10., 
'to-Q «·

 J
 t ? 

where 

φ(κ)^ ip(κ) '<%(*>) 
10.2 
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By studying the experimental neutron data one easily 

confirms that the deviation, R(w;w ), from constancy 

of the ratio o^wV./ 6*l(w) can be approximately 

represented by a low degree polynomial. 

We write it here as 

10.3 

where 

R(w;w0; =/ / Λ = 

f Z A* f fe) ; w<w0 

O ­ ÍA)>Vv), 

In the above expansion A , A. are given for a linear 

approximation (N ■ 1) by 

A ö = - ^ = 
Otc^O ·

c
 ^ 

10.4 

Let us consider the perturbed distribution 0(w). 

Following tne standard methods of the stationary 

perturbation theory of Quantum Mechanics ( 1 8) we 

write 

10.5 
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In Eqs.10.3 and IO.5J/ is a continuous parameter 

which we take afterwards to be equal to unity, and 

0^°'(w) is the solution for ̂ (w) ­ c.o^w). 

From Eqsi.10.1 10. 3 and 10. 5 it follows by equating 

coefficients of equal power of ̂ ) that 

Φ'"(Μ) = 7 φ'°'(*>) ψ sfa·*), 

e t c . 10.6 

In E q s . i o . 6 the i n t e g r a l ope ra to r ¿ has been defined 

by 
■

0T
Ì 

» w η P-T^f/Lù-Uì ) ¡siiti 

I O . 7 1 - J expf-vfa'VjJJu. 

Here Τ is equal to (l­#)/c, where c is defined by ­

(Γ (
w
)/6"+(

w
) "

 c i n tiie r a n
£
e o f i­fcs

 validity, #= (fl"'-) . 

The first equation from Eqs.10.6 gives the unperturbed 

solution.and has already been discussed in (Sec. 3) 

All subsequent equations oan be written as 



■118­

Φ») 
Ρ Μ - J /"%J - &/*; 

' W r < * Λ 3 · · 10.8 

In E q s . 1 0 . 8 E L C O ' S have been defined by 
4q 

S^H- Ί %(*>JKCJ(¡>(^%) 
10 .9 

and can be calculated progressively from Eq. 10.6 
The physical interpretation of Eqs.10.8 is quite obvious. 
According to Eqs. 10.9 we have now modified sources which 
are determined by the perturbing deviation from the 
proportionality between 6* (W) and 6~,(W), i.e. by the 
presence of absorption and / or inelastic scattering. 
These sources cause a deformation of the initial 
distribution $r (w)i which in the presence of non-
elastic processes represents the PWP-approximation. 
Using the formulas 10. 8 and 10.9 we wish now to carry 
out the first-order perturbation. 
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First we calculate from Eq.10.9 the source S,(w) 

which actually is a sink. 

To do this, a definite form of the (non-elastic) 

ratio, R (w ; w ), is required. However, in order 

to keep the formulas as general as possible, we 

retain the integral representation of the sinks. 

In what follows we discuss the solution of the 

first-order perturbation equation 

('bui - "l dfK) - $,(*>) f M - J f M 10.10 

From this we have after Laplace transformation 

> i-ù>-e*fHtol€fatì 10·11 

where 

By expanding the right-hand side of Eq.10.11 in series 

we obtain 
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From t h i s we have (15) 

fU = -tht-^T-C^-^-^), 10.13 

/tvm<? 4HJrtt 

where 

GnM= Z t'o­ur' I 
10.14 

and 

Jv\ ­s. integral part of õ * ­

Noting that the integral 10.9 representing the sink 

is of the convolution type we can immediately write 

tUMV­ "í¡¿nx{^«w(%)i 10·15 

Using the convolution theorem for Laplace transforms (19) 

we obtain from Eqs»io.14 and 10.1 5 

c>)= Tm^tti^t^m 4 ) 10 .16 

where (.20) 

^ t ^
e
 I -c^r

 1 0
·

1 7 
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From Eq.10.l6 we obtain finally 

32 («) = |f^>-^§^ *)φ'ΐ»*Γ*ΐ)?*· 10.18 

From Sec. 3 we obtain the explicit expression for $S '(w); 

it is 

to -*<«M*;£ ψ, ff« ,ο^τ^^Γ 10, 
ψ fa) ζ: e ¿- λ (r> U'J <Μ-Λ\ΙΦ > 

where Π 1̂ 3 is the integer part of M«"X~and w£(w ,w + m'­q) 

ι S S 

For all other w­values the expression vanishes 

identically. 

By changing variables and remembering that 

' Ç C W ^ O H O ­ tf ^(w*w*) 

we conclude from Eqs.10.18 and 10.19 that 

rw'-Ws7 

tííw. i p x [ ri i-ni) 
/7 l *o ^ s "i =o 

R / ' . Λ (rt~K-Ki'q), * \ * / 1 0 ­ 2 Ü 
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The integration in Eq.10.20 seems to be very 

complicated, because the integration variable is 

involved in the summation index. 

Fortunately this is not the case, and the integral can 

be written as 

Σ>Γ (*> X * w ^ 10.21 

where 

ΛΜ 'e£o, patíAj­* (<*<«.)}, 10 .22 

and 

f t 

%(to:Uo)(W-Hi^'fJ*{W-<V- <f) ¿J 10.23 
* 

Collecting the results we have 

From EqSr<io.l3 and­10.24 it follows that 
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Φ%) = ­ Σ. TSfifçz) GZC+T*»·) . 
<**~ο /fH-O 1 0 . 2 5 

By correcting the PWP­approximation, <jr (w) , in 

the first­order perturbation we obtain the distribution 

fiC*>)- f
Ct)

C^)^(f>
(i)

(^') 10.26 

( 1 ) 

As we see .from Eq.10.25» Φ (w) is negative, and, there­

fore, 0 ( w ) ^ 0
( o )

( w ) . 

This was to be expected, because $r (w) has been cal­

culated with the PWP­c­value, which by definition is 
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11 . COLLISION PROBABILITIES AND GREEN'S FUNCTION. 

In what follows we consider ahoinogeneous monoiso-

topic infinite medium 0f plane symmetry with energy 

independent cross sections and isotropic scattering. 

The method is rigorous when 6*. - 6**, ■ const. Other 

w el 

cases, however, where this assumption does not hold, 

can be treated by the perturbation method discussed 

in Sec. 10. 

We shall give here a method for calculating the energy, 

space, and angle dependent collision probabilities 

and the corresponding Green's function. First we wish 

to define the perturbation method mentioned above. 

Let us consider the transport equation in the form 

11 .1 

where 

Al , , Μ~ 
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6", and 6*", are the total and the elastic cross sections, 
t el 

The sum inEq. 11.12 orresponds to L discrete nuclear 

levels (For more details 3ec. 6) . 

As we shall show subsequently a separation of the space 

and energy variables is possible. Since this separation 

is not affected by the presence of inelastic scattering 

we shall consider for simplicity only elastic scattering. 

In the region in which inelastic scattering occurs C. may 

be constant but not C ,(u). If Φ « ψσ'^'Ψ' w
bere Φ and 

ψ are the unperturbed solution and the first­order­

perturbatiori corrected solution respectively then Φ satis­

fies the eq.uation 

(t&+*W' =¡4?. % + Qto»·) 11.3 

where 
M 

11 .4 

and 

4 M 

*. * ö* / . f I ­ 0**·** ) ι , t ι ' ι ι 

·"< Ai-<j 11.5 
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Th e perturbing quantity 6t(u) has been defined by 

aw = c - îsgal, 11.6 

and c is the constant value of €" ,(u)/6v, in the absence 

of non»elastic processes. 

The source term Q(x,u,u) corresponds to a sink. In the 

collision number representation of Vi>e(x,u,u) space and 

lethargy are separated, and the li­integration in Eq­|­| c 

can be carried out as it is done in Sec. 10. 

We can therefore consider 6
N
",(u ) as constant in Eq.11.2 

and treat the inelastic terms in the fashion exposed in Sec. 

6 · Under these special conditions we can use the well-

known integral transform approach. We apply Laplace and 

Fourier transformations for the 'Wand ζ (ζ ­ 6T .χ) 

variables respectively. Before doing this we introduce 

a new variable w defined by w ­ u/t , where 

and c. are constants defined by 

11.7 



­ 1 2 7 ­

o — 

°í^a¿iM¿ 
11.8 

By in t roduc ing the Four i e r and Laplace t ransform of 

<v ψ ; <f(i, h f) * %ß£hf(*,r< »)¡]
 we obtain 

from Eq.11.1 

11.9 

where 

11 .10 

­7 

The factor 

Fff)* ^ Γ L*+lf*e J 

I~O< 1— oc / 

11 .11 

is the Laplace transform of the scattering kernel. 

The separation of the variables ρ and k in Eq.11.9 

implies the separation of the energy and spaoe coordinates 

in the number­of­collisions representation of the distribution, 

when the cross sections are considered as independent from 

energy. 
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In other words, the solution of Eq.­n.­j will be of the 

form 

ψ(*/Ι*>»)~Σ- tJ~) YJ*'*)j 11.12 

where Φ (z,u) and 0 (w) are the distributions in 

z­and w­space respectively of the neutrons scattered 

n.times elastically and n~ times inelastically, n1 and 

n? satisfying tne equality n1 + n„ = n. 

The possibility to represent the solution in this way 

yields as a by­product a quantity which sometimes may 

be useful­ the collision probability. 

The n­th order collision probability, Ρ , is defined 

by the ratio 

VA*, Y>W) ~—­7 — 11.13 
,/K

 ψ fal·/**) 

Eq.11.13 gives the probability that after η collisions 

a neutron will have the energy¿tf, the direction u, 

and the space coordinate χ = —-=r . 

el in * 

If Ρ , Ρ are the partial probabilities for elastic 

η η
 r 

and inelastic collision respectively, then we have 

?»(»/M­)» Sí­fcfrr­w) 11.14 
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and 

Y¿íw) - ^?Λ*,*<-). 
* * 

11.15 

The probability that the n­th collision will result 

to an absorption is, obviously, 

?~c*,/^­ a­ P^­ ?lr. 11.16 

From Eq. 11 .1 we obtain 

(p(tjhf) ~ Λ-

11.17 

where g(k,p) is defined by 

^(i,r)» UCÍ.(»»t)
A
t* 11.1 

­4 

From Eqs.11 .ιγ and 11.18 it follows that 

11 .19 
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Th e right­hand side of Eq.11.19 is nothing but the neutron 

propagator in space and energy. 

In Eq.11.19 we have defined 

3>C^rt = 4 -FC^TCU) 
â 11.20 

where 

τΟΟ-Α> 
/\-v\t. 

à i e " Λ- ilt 11.21 

The second factor of the right­hand side in Eq.11.20 

satisfies 

­i­rCk) < A 11 .22 

for all real k­values different from zero. 

Therefore, in order to keep 

VXÌM?) \ < A 11­23 

it is required that 

\ f O ) l < A 11.24 
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whåch is possible by choosing the integration contour 

for the Laplace inversion conveniently. The procedure 

is the same as in the space independent case. 

From Eq.11.17 and from conditionsl1.22 and11.14 we 

obtain the expansion 

Λ­*«Ι«.\* 

4. _../ ­Ŝ i Β ! ­ & I II.25 

This expansion converges absolutely for c O and ρ € & . 

gk is the appropriate integration contour. 

By carrying out the Fourier and the Laplace inversions 

we obtain the expression 

¿H.­1 

11 .26 
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ψ ( z , u ) and φ (w) have been d e f i n e d by 

and 

£(*,; ^ ^ - ^ F"^)«/^-^:}. 11 .28 

From Eq.11.26 we see that by decomposing the neutron 

distribution according to the numoers of collisions 
tne separation of the energy and space coordinates 
arises in quite a natural way when C. is constant. 
In what follows we do not consider any more the w-
dependent factors in Eq.11.26· They have been givenin previous Sees, 
We focus now our attention on the ζ and u dependent 
distributions. 
The first term in Eq.11.26 represents obviously the 
distribution of the unscattered neutrons, because it is 
independent from the coupling constant,c, of the neutron 
field with the medium. 
Let us now consider the inversion in Eq*11.27 for η = 1. 
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As this term linearly depends on c it represents the 

distribution of tne neutrons having undergone one collision 

only. By carrying out the Fourier inversion we find the 

following expressions corresponding to positive and negative 

values of 
pz. 

y,/»,/·;» -¡¿ζ 

"2 
- 5 . "" M 

e κ, ­ β : z>0 
4 I c -.. - e ; 

h> o 

0
 ; 

11 .29 

For negative u­values we find 

e f* ; -ζ 4 o 

From the above equations we conclude that for z>0 

all u^O are allowed. 

For ζ <0, however, no u> 0 is allowed. This is physically 

clear for once scattered neutrons. 

For η ­ 2 we have to find the inverse 

ft
 y

 J L^íU|-XMíi»tv)í -
11.31 
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which is as follows 

11.32 

%cz>^>=,¿¿é V¿*+*W~* Ë.C ­̂)>. 
11.33 

34 

J5L -

v
2 < c

'
p <o

)
r
ïé)i

E
<

cw
)-

¿ r
* ^ 1 ^ 0 ] f·

 11
 · 35 

■Å?"'^~S + ««O­Ve"" Ε Λ^'"Μ 
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In the above equa t ions Ε . ( ζ ) and Ε . ( ζ ) have been defined 

Γ-t _ r* * 
by Ε., (χ) ­J­£­¿t • and Ε., (χ) ­ ) G-dt (21) 

X
 fc

 ­α©
 fc 

Por higher values of η the expressions for ÜJ (x,tt) become 

lenghty. We prefer, therefore, to give an approximate method 

based on the CLT for the inversion of Eq.11.27· ^he functions 

of interest here are the Fourier transforms of 'l'(k), (1 + iku) 

and ( 1 + iku ) . ­z_ ­z_ 

el , e f o 
These are in general equal to E1 (|z|), —­ and — respectively. 

f f o 
These functions are all normalized to unity. 

Their first moments for u > ü and u > 0 are easily found 

to be 

m*4 - f4· 

11 .36 

The second moments are 

n μ* 11.37 

'̂ ίίί - le 
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The corresponding variances are 

£* =
 a

/3 , 

11.31 

From Eqs. li.36­ll.38
 we f i n d f o r t h e

 S
e n e r a l c a s e 

according to Eqs.1.7 and 1 .9 

£*= /¿V+*<*~y» 11.39 

•w^ = μ +μ m 11.40 = /S+/
1 

where η takes the values 314, !» ·,·,·/· 

From Eqs. 1.8,11.39 and 11.40 we find the approximate 

expression 

r rz-zv-/^ -1 

11.41 

for n> 2, 
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If we replace the transform of the scattering kernel in Eq 11 .1 

by c then we have the energy independent case with (LS) 

isotropic scattering. 

In this case the total distribution of the scattered 

neutrons is given by 

Hwf%^rì-L0%^f) 

11 .42 

In this formula which is valid for z>0 and u'? 0 

only the three first terms are exact. 

However, the approximation is fairly good as the comparison 

(Fig.15)
 w
ith results obtained by numerical methods ( 22) 

reveals. 

For z<Oan analogous formula can be obtained in the same 

way. 

The angle independent distribution is obtained from 

Eq.11.27 by integrating it over u. The result of the 

integration Υ (ζ) is given by 
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SLGO- ̂ Η τ Α τ ί - ii. 43 
Reasoning similarly as in the case of the angle dependent 
distribution, we find for the distribution of the n-times 
scattered neutrons the approximate expression 

- 2 . 

%S*> - f* - # *&+£$*· W 11 -44 

in Eq.11 ·44^η(ζ) is given by 

and 

= * e*itrjtCii*+z(<n~,)/B)¡ 

•ζ >0 , ^^.^ , 11­46 

Analogous formulas can be obtained for z<0. 

For the special case of u » Ι,^^ζ) is given by 

%&- ¿*A*(J*)+ Ei&) * 11.47 
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The machine time for corresponding calculations re­

ported in (22} was of the order of 100 h. It should be 

pointed out that, if a still better accuracy is desired 

than that provided by the CLT in Eqs.11.42 and 11.44 

one can use more than one exact terms in the evaluation 

of the sums involved. 

For the illustration of the method we give here the 

angular distribution of the scattered neutrons for a 

plane monodirectinal source (c=0.5, ζ 0, = 1 ) with 

ζ as parameter. At small distances from the source plane 

the CLT approximation becomes bad,because there small 

numbers of collisions contribute mainly to the total 

scattered distributionÇdotted lines taken from Ref. 13). 

In these results only the distribution of the once 

scattered neutrons has been taken exactly into account. 
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12. CONCLUSIONS. 

In the preceding sections we have exposed some 
elementary methods for treating the "basic pro­
blems in Fast Neutron Transport Theory of infini­
te media in the isotropic scattering approxima­
tion. 
As the reader has already observed, the principal 
tools in obtaining our results have been the La­
place transformation and the decomposition of the 
distribution in parts according to the numbers 
of collisions. 
In those cases, in which portionality between 
β~ (E) and 6". (E) holds (i0e., no absorption or 
inelastic scattering ), the method yields the 
exact solution of the slowing down problem in the 
space independent problems . 
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As a special case we have obtained in Sec. 3 
the Placzek d is t r ibut ions in a s l i gh t ly more 
general form by including energy dependent cross 
sections. A useful observation i s that the n-th 
order d is t r ibut ions can be summed exactly over 
Yj. (from 1 to*» ), 
As a resu l t the t o t a l d is t r ibut ion in the i n t e r ­
vals ( <v £5· j °< Es ) for every posi t ive -m-̂ j i s 
obtained. 
When, however, absorption i s present some approxi­
mations are required. The most useful method for 
t rea t ing such cases i s the piece-wise-proportio­
n a l i t y approximation. In the energy region in 
which the absorption cross section does not vanish, 
the re la t ion 6" (E) = C, 6".(E) can again be 
applied, where οΛ i s a constant corresponding 

to the 3 - th energy in t e rva l . By making th i s 
assumption one can solve the transport equation in 
each in te rva l separately, by determining the source 
in the (3 + l ) - t h in te rva l from the solution in the 

JV-th in te rva l . 
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For the deviation of β^(Ε) / 6̂ .(Ε) from ολ inside 

the λ­th interval the perturbation method develo­

ped in Sec. 10 can be applied. 

Sofar no inelastic scattering has been considered. 

For the solution of the slowing down problem with 

inelastic scattering an approximate model has 

been given in Sec. 4. 

For the application of the model use has been made 

of the observation, that the expression £== —η 

is almost constant for many isotopes. 

This fact implies that the elastic and inelastic 

distributions differ only in that the latter is 

shifted toward lower energy by an amount proportional 

to Q. 

In the case of many discrete levels the method 

remains the same. 

The one­level slowing down dis t r ibut ion const i tutes 

the basis for the calculation of the dis t r ibut ion, 

when a continuous dis t r ibut ion of nuclear levels i s 

given. 
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This method is exposed in Sec.8. 
Finally in Sec. 11 a space dependent problem has 
been considered. In connection with See. 11 one 
important fact must be pointed out. 
The integral transform techniques applied and 
the expansion according to powers of c (the 
coupling constant of the neutron field with t&e 
medium) has yielded the separation 
of energy and space coordinates. This extrordi-
nary result allows to use immediately the space 
independent solutions in order to construct the 
space dependent ones, if the monoenergetic solution 
is known. 
Of course, t h i s can be done immediatly only for the 

i n f i n i t e medium. 

For f i n i t e media we have developed an analogous 

method discussed i n another paper. 
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A P P E N D I X 

INELASTIC SCATTERING KERNELS. ENERGY INDEPENDENT 
CROSS SECTIONS. 

It has become the custom to discuss elastic and 
inelastic scattering quite independently from 
each other. This procedure although some times 
meaningful is not justified by the formal rela­
tionship of these two kinds of scattering. 
To make it clear we observe that the only 
difference between them consists in the Q-value 
of the collision. In the elastic scattering 
case we have 

Q = 0 A1 
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while in the inelastic nuclear collision Q is 
not identical zero; it takes values depending 
on the corresponding energy states of the nucleus 
before and after the collision. On the other 
hand, in systems in which every neutron suffers 
at least two collisions it is impossible to 
separate the elastically scattered neutrons from 
the inelastically scattered ones. A large part 
of neutrons has been scattered both elastically 
and inelastically. According to this observation 
it appears quite natural to relate inelastic 
and elastic scattering as closely as possible 
and to consider the latter as a particular case 
of the former in which Q = 0. We proceed now 
to the derivation of the kernel for inelastic 
scattering. (A derivation and compilation of the 
most useful forms of the scattering kernels for 
neutrons does not seem to exist in the literature.) 
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a. The_ .«ZzïiEïiSSBÏ^ÏiP.S: 

We consider the collision of two particles. The first 

particle of the mass equal to 1 has a speed v' in 

the laboratory system (LS)., 

The second particle of mass A is initially at rest 

in the same system. If we introduce the center of mass 

system (CS), the first particle will have a speed given 

*y 

If, = _ ? 1Γ 
1
 h+<i A2 

The second particle will have the speed 

it - — — -v' 
* " Piti A3 

Eqs. A2 and A3 give the speeds before collision. 

From the kinematics of the collision we have 

Y = To
 A6 

In Eqs. A4 and A5 ν is the speed of the first particle 

in LS after collision; &0 , nt* are the scattering angles 

in LS and CS respectively. 
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From Eqs. A4 and A5 we have 

2 ? o 
ν + 2v v,.cos +v^ = v ' 

1 1 2 2 A 7 

Introducing Eqs. A2 and A3 into Eq.A7 

we obtain 

V' ) * (*♦­/)* A8 

Eqe. A4 and A5 yield 

■fr» τ« . * " ^ Λ 
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where J* is given ( 14) by 

f 
4_ 

A ii-

4 

AH 
À 

¿er 
1>'

ζ 

A10 

In Eq. A10 Q ( > 0) is the Q­value of the 

collision. 

From Eqs. A 9 and A 10 we obtain a relation 

between the cosines of the scattering angles 

in LS and CS. 

For the case of inelastic scattering collision 

we have 

/ . Ai i ¿G 

π i + W v - "TT Ti 
cos vL -o / 7Ά / Ί+ϊ ¿ZT . Λζ Ati ¿Q 
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This relation includes the conservation laws 
for momentum and energy and permits to construct 
the scattering kernels. 

The scattering kernel Θ* (ν'·*ν·^+£) determines, 
according to its definition, the probability that 
a scattered particle will undergo a definite 
change of its coordinates in phase space during 
collision. 

The change of coordinates takes place according 
to the conservation laws mentioned above. 
This probability is proportional to the product 
of two factors. The one factor q'* [v't y ) deter­
mines the probability that the scattering from 

V- t o v will take place. The other factor 
represents the probability that the collision 
obeys the conservation laws of momentum and 
energy. 
Then it follows that 
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€?ν+^+~).£Μΐ[ρ,-ΐΖ(*',*)] 
Α12 

In this equation Ò (χ) is the Dirac delta 

JL' JL-

function; ~ f — are the two directions 

which determine AJL0 , the cosine of the scat­

tering angle in LS 

μ * =*'.=*=. -ftfr+w-ât)(i-rt)<K(trtll. A13 

es where ÂJL. , Ψ- ( L '*■ 1,1J determine the coordinai 

of the unit vectors =£=., _fr ; P*' [v'.V-j 

has yet to be determined. 

Now we want to express C (l^v/as a function 

only of variables defined in LS. 

From the same conservation laws it follows that 
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4-M- Hàt 
(Ai η

1
 (AÍψ ' 4 ν

1
* / * 

A14 

Prom Eq. A 14 we obtain the cosine, μ, of the 

scattering angle in CS 

Γ' 

(Α-t A
3
·/ 

r 
ιλΑ ν α 

1 hi-
Q 

ν u 

Ί- Α*4 ια 
. ' λ 

Α15 

Elimination of u from Eqs. A11 and A15 yields 
the desired relation between u , V (V-

UALIA for - y+* " τ*} 

Eq. A16 states that only those speeds V , l'­

axe allowed which satisfy -1 £ u < 1. From 
this we have 
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A17 

For the complete determination of Eq. A12 we 
have yet to define a normalization factor. 
This can be done by using the normalization 
condition 

A18 

From the assumption of isotropy in CS and from 
Eq. A18 it follows that this factor is 

CH (Αι1)ζνκ 

I A v'3· 

A19 

In this case Eq. A12 can be written in the 
form 
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v ( ' ' KrAv'^i-MM l v J 
Λ V A20 

This expression vanishes identically except 
for the v-values satisfying the inequalities 

AH 
and when ^y (Vvjis given by Eq. A17. 

It is sometimes convenient to expand the o -
function in a series of Legendre polynomials 

f μ:-A - £Y»>)j, ̂  ρ ^ w * * ^ 
/VUJ. 
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This form is particularly interesting in solving 
the transport equation by approximating the 
scattering kernel. With Eq. A22 we obtain from 
Eq. A20 the useful form 

1 trAv*Ji-MH( f λ <r* TAO*) 

A23 

b. The E-representation 

After having derived the inelastic scattering 
kernel in the v-representation it is easy to 
transform it in the E-representation. 

In section la it has been assumed that the 
nuclear collision takes place between two par­
ticles. The particle of mass A was at rest in 
LS. The other particle (a neutron) only posses­
sed translational energy corresponding to speed 
v'. To carry out the desired transformation 
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we only need to require the conservation of the 

elementary probabilities, i.e. 

(f? (*+9¡él+4)dvdJLw\c^(e*£i£^dE<iJL 
A24 

From Eqs. A20, A24 and from E = 

we find that 

V 

6** (t· 

ZtAF'Jj-AH Q 
' A E' 

A25 

or 

ci* ÍE'-*£ ; JL>-JL- (A4 1)
Z Ί-η 

St A£'ij-M±Q 
• A E' A26 
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This expression vanishes identically except for 

the Ε­values satisfying the inequalities 

ii-^H-iï-t-T-W
7 iL L.±—L.àtL 

(top V a' VA 

and £ [Ε',Εβ.β now given by 

A28 

Another representation of the scattering kernel 

which is frequently used ie the u­representation 



­158­

According to the definition of the lethargy 

E = ΕΛ e o 
­u A29 

(E, is an arbitrary energy) we have 

d£ 

¿U 
- ε e 

Now Eq. A25 takes on the form 

6"* (u'+u-&'-> Æ)- m V ' " r-̂
22

— u ' ìrA Jt-JU I 
Ι A E 

w 

i[åLA - £>',a)j 
A 30 

This expression is different from zero only 

for u­values defined by the condition 

ί' (A+Dx\ $> } Α εο
 /j 

(/M' (i-A/L¿PJ?J55 
A31 
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Now the function ζη fu', ¡i) is given by 

¡Γ' Γαία). 
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A P P E N D I X Β 

ELASTIC SCATTERING KERNELS. ENERGY INDEPENDENT 

CROSS SECTIONS. 

From Appendix A we can immediately derive 
as a special case the corresponding formulas 
for the elastic scattering. 

a. The v-Representation 

From Eq. A20 we obtain the elastic scattering 
kernel in the v-representation by setting 
Q = O 

v l ' ifV A v x L °v -J 
B1 
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Now condi t ion A21 becomes 

12 

In Eq. B1 ~Çe (v',v) is obtained from Eq. A17 as 

Cfc')-fr)fe)-(¥)£) ,3 

b. The_E­Renresentation 

By setting Q = 0 we obtain from Eqs. A26 and 

A 27 

^(E'^E-áL-*^), (ñíÉS tPfjLl.JL-r^E'Eìl 
E [ J

 StAE' L ?ε
[
 ' j 

B4 
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Again we have the condition 

(A i 1]
1 

B5 

and 

^m. éf-β.ψΜ 
B6 

c. The u-Regresentation 

Finally we obtain from Eqs. A30 and A32 by 

setting Q = 0. 
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i^Ca-**,£.-+£)'tefe e
uLa 

u
 l

 ' ' tr A 

P[J¿JL . ζΪΜα)] 
Β 7 

The region in which the kernel does not 
vanish identically follows from condition 
A31 

* . < « ' - ■ & ( & ) 

A-4 \
λ
 Β 8 
) 

or. 

' - & ) «
ν

« · " < « - ' 

Finally 

Β 9 
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A P P E N D I X C 

INELASTIC SCATTERING. ANISOTROPIC SCATTERING 
IN CS. ENERGY DEPENDENT CROSS SECTIONS. 

In the preceding Appendices the assumption 
of isotropic scattering in CS has been made. 
In the present section we give the correspon­
ding formulas for the general ease of anisotro­
pic scattering in CS. The main idea for the 
construction of the scattering kernels in this 
case remains the same. The scattering kernel 
is nothing but the product of two probabilities 
(or of two quantities proportional to them): 
The probability that the collision results to 
scattering, and the probability that conserva­
tion of energy and momentum holds. The first 
factor is the differential scattering cross 
section. The second factor is again a. o -

function guaranteeing the conservation of 
energy and momentum in CS. 
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a. The v­Representation 

Under the circumstances stated above the ine­

lastic scattering kernel can be written as 

L (Α* ιμ 

ci 

1Ϊ' 

AAlL1 I Tj± iQ' 1 
(AtD*! A v*P J 

Suppose, now, we want to expand the scattering 
kernel in a series of Legendre polynomials with 
arguments γ. . 

v:(v^JL->±)--i^t(v'^)i^) C2 
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Here we have 

ro 

A13 

and 
7 

ς4 fa ) - ψ-¡-C (fa-Ä-*±) Ç W Y 
-1 

C3 

I n t r o d u c i n g Eq. A12 i n t o Eq. C3 and u s i n g 

Eq. A17 we o b t a i n 

- 1 

tt+Ψ (AH)* I
 A v

'
x

i -
C4 

?
<tyo)

a
fr 
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In Eq. 04 tf (ν', μ9) is the differential 

inelastic scattering cross section in LS. 

As a matter of fact most nuclear data are 

given in CS. It seems therefore reasonable 

to transform the integral Eq. C4 so that the 

nuclear data appear in CS. 

This transformation is easily effected by 

introducing the transformation formula for 

cross sections in the special form 

r» (vtíu0)áju0 = rf Μ fl ty 

C5 

The evaluation of the integral in Eq. C4 can 

be done in two different forms. 
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­ The first method can be applied when the 

nuclear data are given in an analytical form. 

In this case we can oarry out the integration. 

Using the properties of the <y ­function we 

immediately deduce from Eqs. 04 and C5 that 

­.,·, (vUt). an âííik a ^ á k l ¡» Λ, Λ)) 
f Α ν" 

C6 

In Eq. 06 u is defined by Eq. A15, wOO
 i s 

defined by Eq. A11, and &£ (v,(u)±a the diffe­

rential inelastic scattering cross section in 

CS. 

The right­hand side from Eq. C6 is different 

from zero only under the condition A21. 
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p It happens some times that the measured dif­
ferential scattering cross seotions are gi­
ven as a Legendre series. In this case we 
can calculate the integral in Eq. C4 after 
having expanded the differential scattering 
cross section in a Legendre series. 
Then we have 

i y 
C7 

where 

J V'J C c8 
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Ιη particular ^y0(
v
'J i« the total inelastic 

scattering croes section in OS. 

From Eqs. 04 and 07 we obtain the seoond 

expression for the coefficients of the inelastic 

scattering kernel Eq. 02. 

f A v* 

Σ *■* Μ % (*) 
09 

Here u and uQ(n) are defined as in case (* >, 

the right­hand side of Eq. 09 vanishes identi­

cally for ν not satisfying condition A21. 
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b. The E-Regresentation 

Continuing we give here the scattering kernels 
for non isotropic scattering in CS in the ener­
gy representation. The way is exactly the sa­
me as in the isotropic case. The expansion 
coefficient of the scattering kernel correspon­
ding to Eq. C6 is 

06) 

010 

where μ is given by F 

I A E' 

C11 
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and the right-hand side of Eq. C10 vanishes 

identically for E not satisfying condition 

Eq. A 27. P-QÍ?-} Í 3 g i v e n "by Eq. A11 . 

E.-M I' X une' I 1+4 aï UAE' -¡77ΈΓΈ. 
V A E' 

Σ>(£,)?(«) 
; w 

012 

The same conditions as for Eq. C10 hold for 
the right-nand side of these equations and 
definitions. 
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c) The
 u

i?eP££sentation 

Finally we give here the expansion coefficients 

of the scattering kernel in the lethargy re­

presentation. 

«.) 

{Γ. Ét±iLeu·' <[Mñ) on 

where μ i s defined by t 

l ' Α Έ0
 e 
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Ρ 

6·'" ti+,Λ.ίΐίΙ (Ml
cu'-u k (μ.(ρ\) 

fi ' *b 

015 

The right-hand sides of Eqs. C13 and C15 are 
different from zero only for u satisfying 
condition A31. 
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A P P E N D I X 

ELASTIC SCATTERING KERNELS.ANISOTROPIC 
SCATTERING IN CS. 

ENERGY DEPENDENT CROSS SECTIONS. 

Here we deduce the elastic scattering kernel 
from the inelastic one in the manner mentioned 
above for the case of anisotropic scattering 
in CS. 

Por this case the coefficients of the expansion 
Eq. 02 follow immediately from Eqs. C6 and C9. 

We have respectively 
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00 

6* (ν- ^ψ^-^Μ^Μ 

D1 

and 

) 

^ (v 

Σ <. cv) ι (ή 
D2 
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The right-hand sides of Eqs. D1 and D2 are 

different from zero only for ν satisfying 

condition B2. 

b. The_E-Regresentation 

In this case we obtain from Eqs. C10 and C12 

respectively 

OC ) 

%(*■"*'*?*$ K
L
(^*(M B, 

D3 

and 
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ρ 

*?<(**<)'? IS'?<w 
ij " D4 

The right-hand sides of Eqs. D3 and D4 do 
not .vanish identically if E satisfies the 
condition B5. 

c. The u-Representation 

Finally we obtain from Eqs. C13 and C15 

Od ) 

D5 
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and 

*)·ψ^**ΙΜ) 

H r«') 3 tø 
D6 

i 
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