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Summary

Some new methods for the transport theoretical treatment of Fast Neutron
Slowing down problems are described in this report.

These methods make widely use of integral transform techniques.

One of the main ideas developed in the present report is the expansion of
the neutron propagator in an infinite series of which the inverse is summable.
An interesting problem in the slowing down theory is the calculation of the
distribution of neutrons, which have been scattered inelastically. This problem
has been solved both for discrete and continuous distribution of the nuclear
levels. Finally a perturbation theoretical method has been developed and
another method allowing for the introduction of the central limit theorem of
the theory of random variables into the transport theory has been worked out.
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INTRODUCTION

The present reportx is devoted to the presentation of an
analytical method for the calculation of the distribution
of inelastically and elastically slowed down fast neutrons
in an infinite homogeneous medium. Up to now no attempt
has been made to solve the transport equation explicitly
by including the inelastic scattering kernel. The cor-
responding space independent problem for elastic and iso-
tropic slowing down has been solved a long time ago (l).

In the recent years some analytical methods have been
reported for the solution of the slowing down problem

with space dependent sources and for isotropic or anisotro-
pic scattering. .

A systematic treatment of the elastic slowing down problem
with anisotropic scattering has been given by Kaper (2)

in his thesis and more recently (3) in another report. His
method is bag2d on the approximate transformation of the
transport equation in finite system of differential equa-
tions with respect to the lethargy (a7 —2PPIOX. ).

This is obtained by using some properties of the genera-
lized functions and especially of the Dirac —-distribution

and its derivavives.

* It has first appeared as EURATOM internal report in

June 1966

Manuscript received on February 17, 1967,



A method based on Fourier approach and on the normal
mode approach introduced by Case (i) and generalized

to anisotropic scattering by several authors Mika (5),
Jacobs (6) has been given by Mc Jnerney (7) for elastic
scattering.

No of the above mentioned papers contain information
about inelastic slowing down.

On the other hand it is not exact, as we know to cal-
culate in general the elastic and the inelastic neutron
distributions separately, because there exist mixed

terms which get lost if it is done.

The method presented here puts inelastic and elastic
scattering on the same footing. This is obtained by sepa-
rating th2 neutron distribution according to the number
0of collisions. For large numbers of collisions, however,
the expressions become uncomfortabls., We circumvent this
difficulty by making use of a theorem from the th=ory of
random variables, the central limit theorem. The signifi-
cance of this theorem (CLT) throughout. the world of, ran-
dom phenomena is well known (8).

It is, theresfore, of considerable theoretical interest

to give a method which enables us to introduce this
remarkable law of random variables into the transport
theory.

We give here a short description of this method which

can be applied in all cases where n, the number of colli-

sions, is much greater than unity.



An important point of the theory to be developed

here is the requirement that in the expansion
O (E;p) = Z.P}(I‘)“JCE)

the functions 63 (E){}r: o, 1, 2,....} are all
proportional to 6.(E). This assumption which is in
many cases true implies that & (E,r‘)/d; (E) 1is
energy independent.

The main tools of this paper are the decomposition

of the distribution in parts according to numbers of
collisions, n , and the application of the CLT and
integral transform technigues.

In treating transport problems it is convenient to
calculate the quantity consisting of the product of the
total cross section, 6%(E), and the quantity called
the neutron«flux,\P(ﬁtU E) instead of calculating the
latter. It is the product 6,(E) Lr(x,}l,E), which we
calculate throughout this paper and which we call the
neutron distribution.

The problems treated in the present report are the fol-
lowing:

Section 1 : Connection between central limit and tran-

sport theory.



Section 2 : Transformation of the energy dependent
transport equation.

Section 3 : Elastic slowing down problem.

Section 4 : Inelastic slowing down by one single nu-
clear level.

Section 5 : Inelastic slowing down by two discrete
nuclear levels.,

Section 6 : Elastic and inelastic slowing down. Two
discrete nuclear levels.

Section 7 : Elastic and inelastic slowing down.
Continuously distributed nuclear levels.

Section & : The statistical method for the nuclear
level distribution.

Section 9 : The central limit theorem in energy
distributions.

Section 10: Perturbation method for non-vanishing
absorption cross section.

Section 11: Collision probabilities and Green's function

of the infinite plane medium.



1. CONNECTION BETWEEN CENTRAL LIMIT AND
TRANSPORT THEORY.

Let ﬁs consgider a function of the form

F(\ﬂ,?ﬁ) = [4_3,(;(,5),“(?)]—4) | 1;1

where (i) g,h, are integral transforms of certain
functions and (ii) k,p, and 8 are the Fourier,
or Laplace parameters corresponding to the space,
lethargy and time coordinates, respectively.
Forms like Eq. 1.1. occur frequently in transport
theory, whenever integral transform techniques
have been applied in infinite as well as in fini-
te media (9) .

This expression together with factors of the form
[_4+(\<\4]‘1) Ca+ikp)(U+ikp)T? ete., constitutes
the neutron propagator in the (k-p-s) image space.

If, now, there exigs® a domain in which

](}(k,s) LL()'D)] <

1.2



~-1o0~

then, from Eq. 1.1 we obtain the absolutely

convergent expansion

lops) = 2 Tgpksthipl™

1.3

The inversion of Eq. 1.3 requires integrations of

the type

I s |
ing G WS dl L

Now, if c} (\‘) ig the Fourier transform of Gj(g) ,
)

i.e.

p - A
Gé’(g) = ﬁy%r(u)e ak

e

1.5

it follows from the generalized convolution

theorem (10) that

4 g 1le
B) =95 J;TEA %Me elk

oo

S{dnq,m0 - e Gl )

- 0O ~ <O
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The central limit theorem (11) implies that integrals
like Eg. 1.6 can be represented approximately by a
"normal distribution', if the general conditions of
the central 1limit theorem are satisfied.

For a clear understanding of the conditions under
which this result can be obtained we first state the

Central ILimit Theorem (CLT).

Let there be a sequence of independent random varia-
bles. Let us further assume that the random variables
are distributed according to the distribution func-
tions f_ (x) (n =1, 2,...).

Let in addition
So

T (k) = S kX ¢

~Co

0 (x) dx 1.7

and Tn(k) be a characteristic function of the distri-
bution fn(x) (n =1, 2, 3,...).

The following assumptions are made:

: /
(i) The functions- (x) possess finite derivatives.ﬁéx)

and there exists a constant K so that

oo

S \-S-;(X)\clx < K (’h: 1,2,3, ) 1.8

— O
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(ii) The functions fn(x) possess finite moments Myn
of the first five orders (A = 1,2,3,4,5) whereby
Myn = O without loss of generality.

Then there exist positive constants &« , P such that
0<« <N‘[2n<% ’ M3n<F ’ M4_n<% ’ I\/ISn<F (n = 1727 .- '>

1.9

Here iiﬂll is the absolute .j-th moment of the n-th
distribution function.
(iii) There exist positive constants a,b, such that

for Jkl< a holds

\T, ()] < b5 (n=1,2,..0)

(iv) For every interval (01, 02) with ¢,, ¢, >0
there exists a number ? (01, c2) <1 such that for

arbitrary ke(c1 , c2)

|2 ] < 9 (eppey)  (n=1,2,3,.00)

111

If now Fy (x) is the distribution function of the
sum of the first N members of the sequence
of the random variables, then, for N--»oo the

following equalities hold uniformly



43-

1
- =5 2

- 2 X
.EN(X) = (2SZBN) exp[-— ZBIV—

S + T x 1 + \x]3

5 72 7 N2 i <z 1wt

4 N
0 (% ) X = arbitrary.

1.12

In 1.12 BN = éi anz while SN and TN are x-inde-
=1

pendent and of smaller order than N.

When M, A0, (n=1,2,...), then %% in the expoe

tial has to be replaced by (= —»M1)2, where M, = 2: M, -
M:q

We omit the proof of the theorem which is a little
lengthy (8):(12) and point out that it makes use of the

relation

oo

Pex N ,
FN (x) = (2'“')4 ge X[K1T"‘ya‘)]cu‘ p 1.13

from the general theory of characteristic functions.

This can also be written as a convolution

N
'-N (X) = -}:‘;’* '91) (X)
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with the obvious meaning of "TF*'K

Clearly, some elements of {mh:may be identical (for

generality we have put an index » ).

According to the assumptions (i - iv) for the validi-

ty of CLT the Fourier partner fn(x) of Tn(k) should

be a semipositive definite function. This condition

is not always satisfied by our functions fn(x).

To show this we consider the integral §°fn(x) dx,
-0

which according to 1.7 is given by

oo
an(x) dx = T (0) . 1.15
-~

It follows from this that whenever Tn(O) = 0, fn(x)
cannot be positive everywhere. loreover, we shall show
that fn(x) is an o0dd function of x whenever n= odd.
To prove the above assertion we consider the integral

representation
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1
T (x) = S_‘Sf__@}_
1+ ik% 1.16

Let us now take the Fourier transform of this

_ ikx
fn(x) = Tn(k) e dk

1
23 1.17

~Co

This exists and, obviously, according to Plancherel
theoren(13) £_(x)€EIL°.

Let us further consider

%0
g, ( 1x1) = 211_ S T (k) e THX dke

-0

1.18

By putting k-»-k in 1.18 and employing the obvious

property of T (k)

T (-k) = ()" T (%)
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we deduce

£ (x) = (0% g, (1% )

1.20

and hence

fn(—x) = —fn(x)

for cdd n, which proves the assertion.

From 1.21 it follows that M2n = 0 for n = odd and,
therefore, one cannot immediately apply CLT for the
convolution 1.14.

Now we wish to éhow that a simply modified notation
suffices to generalize the appl%cability of CLT +to
such cases.

Let us consider for simplicity the convolution product
fn(x)éffm(x) of only two factors fn(x), fm(g) and
suppose that n = even, m = odd.

From 1.21 it follows that

fm(X) = fm(X)‘a’(X) -f ( |x1]) '%(—X),

m

1.22
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i

3(::)

1.23

and x €il}<bl°°]~

The convolution product becomes

£ (x) %2 (x) = £ (x) %L (x) B(x) - £ (x)sef(x)

9 (=x)

1.24

Each term on the right-hand side of 1.24 is positive
definite, and its factors satisfy the conditions for

. the validity of CLT.

The generalization of 1.24 to every finite number of
factors, both odd and even, or purely odd functions of
x is quite trivial.

For the complete solution of our problem we have still
to clarify the question of the normalization.

In CLT the functions fn(x) have to satisfy

w .
an(x) dx = 1 1.25
- O

This is, however, for our functions fn(x) =fr“4{fn(k&

not the case.
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For definiteness let us consider the general expression

occuring in anisotropic transport problems

7 k) . T K)....T X
§ i1t X5 () Pio * A () PR P ()

;
(1+ikk1$) (1+i1q1) 1.26

Here, the indices § +A of T(k) may be even or odd

and do nct correspond to normalized functions f‘?ﬁéx).

The two last factors in 1.26 correspond

X

. P

P sx,}l>0

0 ; xK0, r1> 0

f(x, r)= 0 ; %0, F {0

T

1.2
e 7
They are automatically normalized
oo .
5 f(x,r)dx = S—E— ¥ ax = 1
¥ 1,28
~oo 0
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One finds easily that

M1 = }1 1.29

2
and M2 = l.l 1.30

By supposing that all indices of Tn(k) in 1.26

are even we find as normalization factor 1/1\1’n

Nn = Tn (C)

1

Sg“ 53

The first moment of fn(x) is (n = even)

;
n
Mo o= L n+1 _’l S g dg
i 2 @k 1+1k‘§ k=0
1
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The second moment (n = even) is

| 2 1 n
M 1 n+1 g‘ 1 ad
2n i 2 \’) 1 1+ikgx 3 3

2(n+1)

n o+ 3 1.32

il

From the above and from 1.12 we find for arbitrary

x(and every n = even) the result

=

g @/ Fyr Ayieees § 290

J
-1/2 % A 2 3
Sl

1l

(x-p-p) :
2BJ + O (——)
1.33

where n. = fj—1 + 3 and

1.34
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We turn now our attention to the case in which not
all indices of T(k) in 1.26 are even numbers.
For simplicity we consider two factors.

According to 1.24 and 1.32 we have for the first term

; _ n+1
BIOIl = y
M‘I n = 0 ,
M B 2(n+1)
2n T n+ 3 °?
; I S
1\Iom - 4 7
m+ 1

M = y

m m+2

_ _m+1
M2m - m+3 ’
1.35

For the second term one finds similarly

M1n = o,
My = 2(n+1) ,
n+3
n+1
M = = em——
m n+e
n+1
M = _—
em n +3

1.36
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From 1.12, 1.24, 1.35; and 1.36 we find finally

g m+1
-1/2 8 Y
F,(x) = (2x3,)"" L(nﬂ)(mﬂ)] { exp [_ (jﬁi)_

2

(x + 2]

- exp | - m+2
2 p 1.37
where
B, = 2(n+1) , m1
n +3 m +3

(n = even, m = odd).

In the same manner one can treat any case of more

than two factors of odd order.

Concluding,we remark that the central limit theorem

is applicable in all similar cases arising in the
theoretical investigation of infinite or finite media
transport problems.

In the latter case, however, the formulas become rather

complicated.
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The validity of these remarkable results for the
gpace, time and energy variables of the neutron deri-
ves from the fact that these variables can be inter-
preted as random ones.

As other fields of application of the CLT we briefly
mention here Theory of electronics, Statistical Me-

chanics and Thermodynamics.



-24-

2. TRANSFORMATION OF THE ENERGY DEPENDENT TRANSPORT
EQUATION.

The elastic scattering kernel for energy independent

+*
cross section depends on -—{;r— , % , or (u-u'). (App.B)

In the v - or E-representation of the elastic scat-
tering kernel the Mellin transformation allows to
apply the convolution theorem to eliminate the ener-
gy variable. The same is possible in the u-represen-—
tation when the Laplace or Fourier transformation

is applied. As the lethargy variable takes values
from zero to +2 , it is natural to consider the
Laplace transformation as the appropriate one for
the lethargy dependent transport equation.

Let us consider first the transport equation in the

form

- VYR 3 ) + 6,6e) Y (B2 1)

/

= f dol { ot 04,85 B ) (7 B 0d)
_&f M}qldj

¥ V,E, u are the speed, energy and lethargy variables .
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where 6 (u',u, /uo) is given by

‘ ’ _—, —p
Clrtsfe) = og (U B2t 0 adve; 20.2) > 2.2

and

’

9 = 2L 2.3

A+
- ’_

A
r' is the nuclear level parameter, and U = =.a.

It is not quite evident that the transport equation
containing the inelastic scattering kernel too, is
amenable to a transformation of the above kind.
However, as it will be shown in Sec. 3 and 4 there
exists a good approximation enabling us to reduce

Eg. 2.1.

Specifically, one demande the energy independence
of the nuclear cross sections, whenever use of
integral transformation is made. We whish to point
out that this condition is necessary only in space

dependent problems.
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A somewhat weaker condition, which is useful in space
independent problems and which allows the application
of the convolution theorem, is to demand the propor-
tionality in energy of the total 67 (E), and the

scattering, 6 (E, /uo), cross sections, i.e.,

o (BR) = Z RGO
. 4

where

O}'CE)/OT‘:(E) =inergy independent 5.4
Condition 2.4 is satisfied at least by the total elastic
scattering cross section, 6; (E), which is also the
first coefficient in the Legendre polynomial expansion.
To illustrate this fact we give &, (BE) / 6 (E) in
Fig. 1 for some isotopes as function of the energy,

in which very small deviations from constancy are not

represented(Macroscopic data taken from Ref. 14).
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Let us now consider Eq. 2.1 for plane geometry.
For simplicity, we assume only elastic scattering
isotropic in CS, and we write the scattering kernel

as (App. B)-

S lulampg) = 0 8 [-5%0] 2.5

where

¢ Celpe) = ALP— ’-"—‘ie

From Egs. 2.1, 2.4 and 2.5 we obtain for constant

cross sections

pRE + $Epd= [da fotud ST o] per)

a’ »u,q

-+ S(Z//”I"‘) ' 2.7

while 2z has been defined as

= = XQ'{: ’ 2.8

and where x 1s the space coordinate.

¢[Z, f/a) is now given by



-29-

¢(‘z,/u,q) = J %(’(/f"t"*) ) 2.9

We introduce now an energy independent parameter
k , multiply both sides of Eq. 2.7 by exp

(-ikz) and integrate over the interval w<e S €oe

We immediately obtain

(11 §(lp)s  [da (ol STUSEnfpllp)
a “q 2.1

0
+ S'typm)

where 9’/‘;/’/4{) and S"(L/ﬂm) are the Fourier

transforms of ¢[2,,U,11) and S(z,-/ﬁu) respecti-

vely.

From this equation we can eliminate the variable u
also by means of a “transformation. This is possi-
ble only, because k and ¢ are independent from

the variable u.
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3. ELASTIC SILOWING DOWN.

In what follows we give the solution of the tran-
sport equation for elastic slowing down in an in-
finite monoisotopic medium of plene symmetry with
space independent sources. The method is based

on an expansion of the neutron propagator in the
lethargy space in a power series of the coupling
constant, ¢ , of the neutron field with the
interacting medium. We solve this problem treated
already by Placzek (1) in order to show the ef-
fectiveness of the method. In order to obtain the
necessary convergence & further transformation of
the transport equation is introduced.

If we assume a monoenergetic source and isotropic

scattering in CS Eq. 2.1 becomes

uw ’

’ 7y -1 /

Guapw) = Lo g ipie du 3.1
%u~g

+ S §(r-azy)
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where 24y is the initial neutron lethargy.

Now we introduce the assumption

O"a(ru) = C. 0.:(4") 3.2

where ¢ is & constant.

Eq. 3.2 is justified by the observation that

6;1 (u) and 6%(u) are almost proportional for

gsome isotopes of interest over a wide energy re-
gion (14) (see Fig. 1). We observe that this as-
sumption is very well justified in the case of
H,C, and O which are three of the most frequently
used materials acting as moderators. The somewhat
large deviations from constancy of 6;1 / 6% for
Na and Fe are mainly due to the inelastic scatte-
ring. U°3° also fulfills Eq. 3.2 quite well. In

general we défine:
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0;<(‘ul) ’ / / /
¢ glu)d
¢ = u{9’ Gy SO YL E ) e

—

- / / 3 * 3
f expd) Pl) () du
w9

4
which is taken to be constent inside [w-9,%] .

By this method the hopeless task of representing
by polynomials the rapidly varying cross sections
18 replaced by the representation of the smooth

function 6_; (w) / 6% (u) (Fig. 1).

We obtain from Eq. 3.1 and 3.2

«
/ / , /
O;(u)’l/r(u) = ;_C__.&foz[m’) #‘(M/E//D[u—fu)c/u 3.4
,u-q’
+ S 8- )
Now we introduce a new variable, w, related to the

lethargy, u, through

Ww o= S =
—un= T 3.5

The kernel andg@)§i%transform correspondingly like
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expleuta) dae = L-éffexp[-:'c:_‘!(wim)]du; 3.6
end
0y (m) ptu)du = $w)dw 3.7

end Egq. 3.4 becomes

w
P(w) = / P(w) exp(T(ii-w]adw'+S S(w-w,) 3.8

w-9
where
7 = C2, - - c by
a-& A—- 3.9

Laeplace trensformetion of Eq. 3.8 and application

of the convolution theorem yield

f[zp) = f(#) 4“62’)5;(?”}7 + Sexpl~pw;)
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or

_ Sexpl~rws)
f(ﬁ) 4. A—exPL9(tsp)] 3.10
T+p

The denominator of the right-hand side of this

equation can be written as

S~ [ A-expl-9(t+p)]
L { T+p

This series is a geometric progression and con-

verges absolutely whenever

1 1~ 2cosw.expl- 7("-‘+J°)J +expl29(t+p)]| 3.12
[&

(T+ f) + ¥

where
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e (p)

o
H

3.13

@ = Jnlp) 3.14

Now the left-hand side of inequality 3.12 has

relative maxima at

w::&m+0xj/m=m@z“”

which do not violate ineq. 3.12 provided t > -T .

At p = O inequality 3.12 takes on the form

1- exp(-9) <1 3.15

which is always satisfied.
From Eqs. 3.4 and 3.10 it follows that the introduc-~-

o~

tion of T is necessary only when
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In every other case the convergence criterium

c 1—expla(t+p)] < 3.7
AI-& T+

1s satisfied in a wider p-domain. Inequality 3.17
yields a lower bound for the real part of p

for which the absolute convergence of series

Eq. 3.11 is assured.

After these considerations we can write Eq. 3.10

in the form

2 ¢ a-expl-9-P] "
7([40) _ SQXP(~1°W:)Z: 14 e;P+ ]} 3.18

n=o f’

By applying the inversion operator

a+l o

= A o 3.19
} = 5= J exp(pw) df

a-~io
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on both sides of Eq. 3.18 we obtain various results
depending on the special value of w. It is pointed
out, that because of the absolute convergence of
the series Eq. 3.18 we are allowed to reorder the
terms of it arbitrarily. This property will be
used subsequently in finding the exact form of

the collision demsity first derived by Placzek

(1) by a different method.

Let us. first consider the term with n = 0

S exp(-pws) 3.20

From Egqs. 3.19 and 3.20 we obtain

122

]

~loo

= S'D?u-w;) [%’(w_w‘)]

The definition of P(x) is

4; X720

3(7() = {

©;, X<o
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It follows therefore that
g(w) = S SCN—ws) 3.21

We consider now a few cases with n)» O.

From Egs. 3.18, 3.19 and 3.20 we obtain

- exp(-pw;) .
goo = S{JF exerf 322
exp(~(Wstq)p
-c’x7(-9~r)} Zvp 1

The first integral in Eg. 3.22 is equal to

1; WoWs

0; w<wWs

$, 00 = S explzgens)] 3.23

Similary, the second integrael is equal to
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1 w) Ws+g
; W{ Wsiq

g,(w) = Sexr(f(w-ws)]{ 3.24

From Egs. 3.22 - 3,23 it follows that

¢ (W) = S eX})[‘t(W-Ws)J{4j WE(WS)WHQ) 3.25
! o, w ¢[‘Wn Wsiq)

Here and in what follows (x,y) is the open set
y—X.

n =2

Similary we see that

- exp{~pw.) 3.26
g(w) B 5{ (Trp)
- expl-(wst9)F]
-exp( 7‘); (T2

+exp(—27t) ;Z exxziihﬁjzj)ﬂj
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In a way analogous to that used in Eq. 3.22 we

obtain from Eq. 3.26.

(W-wyg) .
gé’o(w) = SeXP["Z(N“Ws)J{ ); Wi 3,27

O 5 weuwg

-2(W~qu)j W)\J,-&q 3.28

¢, (W) = SexpEt(wwq}{

0; W{ws+q

and

(w-ws-29); wp Wit1g

¢ (w)= Sexpltlws) 3.29
u OJ- w<m,+2c1
From Eqs. 3.27 - 3.29 we find
OV‘WQLFK’&(WSAAy+q)
3.30

g(w) - -Se)(F[.:t(“'U‘g [ws_w.,_ﬂ:l)/'we(wx*?; w:*ﬂﬁ)

O W fé(w;, w5+2q)
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For every positive integer n we have

n-1
(‘W-W.s)' / wé(w,l \os.p_q)

3.3
m-1 -~
(w-wq) ~ ('Z‘)(w-w,-qj‘ ! 5 W €(Wsi9, 542q)
N-we Y 2 (7) (o fY (3)(w-w,- 2‘?5“,- W E(wy+29,W5439)

: exp-tlu-w,)
fbn(w) S—-E;L—:i-j- ,

\ °;  w ¢ (Ws,ws4mq)

Now we observe that according to Eq. 3.5 w is

proportional to ;E& . This constant characterizes

the coupling of the neutron field with the medium.
It is evident that the part of the neutron distri-
bution proportional to the n-th power of the cou-
pling constant of the neutron field with the me-

dium with which it is interacting describes neu-

trons after n collisions, with arbitrary w > W
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Keeping this in mind we can easily give the physical
interpretation of the various parts of the neutron

distribution represented by Eq. 3.31 forn = 0,1,2...

The term (n = 0 )

72(\‘\‘) ::(5 SCN"WSB 3-32

is clearly the source term. The term (n = 1)

(W) = S expl-r(w-ws)]; W e(ws, Wstq) 3.33

gives the distribution of the simply scattered
neutrons which necessarily must be found in the
interval given above, However, as it becomes clear
from Eq. 3.31 there exist other neutrons having
experienced a number n»1 of collisions which

have w-values also given by Eq. 3.33.

From Eq. 3.31 we find for these neutrons the expres-

sions:
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n=2 szb w) = S expl-tluw-ws)](w-w.)
n=3 9{’; (W) = ,Sex};[-z[wsw;y ('ww,)z
° a1
R
n =4 Boow)= Sexp [ (omu)] Ce)
etc. 3. 34

By summing Egs. 3.33 and 3.34 with 1¢{ ngewe

obtain the result

Fw) = Sexp[(-a)(w-ws)]; We(Ws,Wstq) 3.35

Eg. 3.35 represents the distribution of the neu-
trons which have experienced all possible numbers
of collisions ({1 > 1) and remain in the first
interval,

It is seen that

F*;m VA (w) = S

and

Framax (W)= S exp [(Tnq] 3.36
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These two values coincide with those found by

Placzek for the case of no absorption (¢ = 1).

In the same way we calculate the neutron distri-

bution in the second interval. The sum now is

( - <0 g n-4
= SIL T - LR Jebeteel

or

Fz (W) ,S {4 [44—(w-w,-ﬂ)]exp(-q)}exy[u—t)(w-ws)] 3.37

w €(Ws+a, Ws+2q)

Eq. 3.37 represents the distribution of the neu-
trons which have experienced all possible numbers
of collisions (2\< n o) and did not leave the
second interval.

From Eqs. 3.35 and 3.37 we see that F, (w) and

1
F, (w), although they are defined in different

intervals, are formally related by

Falw) = Fy(w) = 3 (w) 3,38

where
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F200) = ST+ (w-ws=q)] explia-t)w-w)-q] ‘3.39

From Eq. 3.39 we see further that

F1 (w-ws-0) - Fp(W-ws+o0) = 3 exyp (-tq) 3.40

This is the discontinuity of the collision den-

sities

F1(w) and F, (w) at w = w, o+ Q.

Going over to the energy representation we obtain

F (Efo +0) - F, (E/a-0) = S e"P(‘tq> %‘_% 3.41
- S.&
'F: ’-ac

This is the well-known Placzek discontinuity. Now
we see that the natural interpretation of expansion
3.31 is that it decomposes the neutron distribution
according to the number of collisions and energy

intervals.
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We are now going to show that no other disconti-
nuities exist. First we calculate the collision
density F3(w), W € (W29, Wyt 3q).

If from Eq. 3.32 we build the sum

R = 5 b, (W)
mz3

we find

e = S {{4=01s (wwi-a)] expea)

+ &:“_“_25;2;1(2+(w—w5—2q)]exp(-29)>

. exp[G-ow-wal

W € (Ws+29, Ws+3q) 3.42

From Egs. 3.37 and 3.42 it follows that

Fa(ws+29-0) = F3(ws+‘ze!+o) ; 3.43

if we observe that the last term in Eq. 3.42

vanishes identically at w = Wy + 2q, while the
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other two terms become identical to F2(ws+2q).
The third term of Eq. 3.42 has a non vanishing

first order derivative at w = Wg + 2q so that

d.Fa #;S&Ei

dw |w= Wst+2q-0 dw &N=w‘+2c‘+o 3.44

It follows by induction from Egs. 3.43 and
3.44 that

Fi(Ws4ma-0) = Fays (Ws+ngto)

CCF"" d?Fﬂ+4\
d.w"\w:ws-mq-o 4 w™ Wz Wsimg+o |



-4 8-

4. INELASTIC SLOWING DOWN BY ONE SINGLE LEVEL.

In the preceding section we have given the comple-
te solution of the slowing down problem of neutrons
losing energy only by elastic scattering isotropic
in CS.

The method developed and applied there allows a
clear analysis of the physical properties and the
mathematical behaviour of the neutron distribution.
Now we are going to apply our method to the slowing
down problem of neutrons losing energy only by
inelastic scattering isotropic in €CS. Such a situa-
tion does not occur in neutron physics because
there is always elastic scattering present, and, as
we shall show, it interferes with inelastic scatte-
ring. We, however, consider this extreme case, be-
cause, on the one hand, it allows us to extract mo-
re clearly the special feature of inelastic scatte-
ring, and, on the other hand, because it makes it

easier to recognize the appropriate approximations
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which are necessary for the application of the
method. The transport equation in the special ca-
se of a single level and a monoenergetic source,

S &(u-ws) |, has the form

u-r’
Tn(1e) Yr(1e) explace)

e u) =
tWPn) =—— J [r- ot @ exp(u)]%’-

a-r-q
+ S &(M-M,) J

where the kernel is different from zero only

whenever

W (ln B3 2 4.1a
a
In Eq. 4.1 we have defined 1r' by

and Q is the excitation energy of the nuclear

level.

In order to find the integration limits in Eq. 4.1,
we have used the following model for inelastic scat-

tering.
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Step one: Absorption of a neutron of energy Es
(lethargy us) and excitation of the
target nucleus with excitation energy

Q (lethargy r')

Step two: Emission of a neutron as though it had
initial energy (Es - Q) (lethargy us+r')
and were "elastically" and (LS) iso-

tropically scattered.

It is clear that we cannot assume that the neutron
was first scattered“elastically,with initial ener-
gy Es and afterwards had excited the nucleus then
it would not have been able to excite the target
nucleus, if E is not still larger than Q. Exe¢ita-
tion of the inelastically scattering nucleus must
precede scattering.

Let us now consider Fig. 2.

M m-rlof Mer

Fig. 2
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Only inelastically scattered neutrons having an
initial lethargy, u', satisfying «-rig's &gwu-r’
can contribute to ﬁ'(u), i.e. only neutrons from
interval 1 can arrive at u. Neutrons scattered
inelastically from the interval 2 have to gain
first the lethargy r' and then they are scatte-
red "elastically" (according to our model) ;but
meanwhile they have already passed u, and so

they cannot reach it at all.

This simplified model implies that the lethargy
gain, r', of the neutron per excitation is constant.
However, we shall see that we can correct for it
by "renormalizing" r'.

To solve Eq. 4.1 we have to make an additional as-
sumption. We first write the integral term of

Eq. 4.1 as

a-r '
4 f ol T (a8) Yla) Ty (aé ) exp(ti-ue)
V) gl R Gewed]™

‘u-ri-q'
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Introducing the  distribution g (w), and
using again the variable w previously defined

we obtain

U-r
¢[N) - fdw’ m(,,,)?sm)exp[nw’—w)] +.S&(W-W:)

' S ] 4.3
wing GO S exed]

0% w1z
where w is defined by

Q = Esexp(-tH)

Now we observe that the first factor of the integrand
in Eq. 4.3 is approximately w' - independent for a
large number of cases (see Figs. 3,4, and 5).!.

We set therefore

»
Cin = 67"1(“’) = cons‘If. ; 4.4,

1~ h+1 @ 17
L= At o] g
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and r, q and T are given by

/
9 = ?/f 4.6
- A-&
Tt = == 4.7

w* is an appropriate w-value. Some examples of
Eq. 4.4. are given in Figs.3,4and 5 in which the
excitation functions have been taken from (15)

and (16) .
From Egs. 4.3 and 4.4. we have

Wer
pow) =f¢f~')exP£t(w-~5)]d~'+ S Swwy) 4.8
w~r-7
Eq. 4.8 is formally identical with Eq. 3.8 for
elastic slowing down except that now the integra-
tion limits have different values. Taking the

Laplace transform of Eq. 4.8 we obtain
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fp) = S expe-pus) 4.9
[1- [1~expry+p)) expl-r(tep)]/(z+p) 1]

By repeating the argumentation of the preceding

sectinn we obtain the expansion

(24
- n
ferr= Sexpirm £ frr-expeqom LRI

We epply the operator Egq. 3.19 on both sides
of Eq. 4.10 and we consider the terms of the
resulting series corresponding to various pro-

gressing n-values.

n= 0 This term yields back the source

¢ (w) = S E(w-ws) 4.11

n = 1 This term depends linearly on the coupling
constant and represents the distribution of

the simply inelastically scattered neutrons.
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1 J WG(N,*-P, Ws‘l-h‘q)

0 5 W #(Wstr, wy+ r4q)

¢(w)= .SexfC-t(w-ws)]{ 4.12

n = 2 The distribution of the twice inelastically
+
scattered neutrons is given by

(W-ws-2r); W E(Ws+2r, Wsa2riq)

¢ (w)= S explT(w-ws)] { (Wys 2r+29-w); W e(Wy+2req)w2rizg) 4 13

0; wé(wsrar, wsr2ri29).
n =3 Similarly the distribution of the three

times scattered neutrons is given by

(W~Ws-3r)2;
Wwe(Ws+3rn w,-tar.;.q)
2
(iw-ws =3r)=3(w--3r-9) ;

W €(Ws+349, Ws+3r+2q)

A - -
(») = exp(tCU Ws)] 4.14
% 2!5 (w—w;-3r)2—3(w~H,-%r-q)2+3(u-w,-3 r-Zq)z),

W &(Ws+Bri2q, Ws+3risq),

0 W& (ws+ar, Ws+3r43g).

.
P

* The distribution of the twice inelastically slowed dawn

neutrons vanishes identically for WW_ + T .



For every integer number, n , we have

nA
(W-Ns-’h'f);

W €(Wstnr, Wstmrig)

(w-wsmrd"Z () (w-ws-mr-g )"}4

W G(Wstmr+9,Wsisnrs2q
‘k,(w) = __S__exPFT(W-Ns)J : e ) 4.15

(m-1)! nen " "1
(w-wg-nr) _. (})(w.w,-nn q) +( g)(w-w,-nr-zq) ;
W &(Wstnry2q, Ws4nridg).

o; w #(w;mr,w,mrmq).

For the correct understanding of Egs. 4.13 - 4.15
we must remember the definition of r'. In Eq. 4.1
r' was the lethargy gain of the neutron due to
the first excitation of a target nucleus. When
the same neutron excites a second level - if its
energy allows it to do so - its lethargy gain is

no longer equal to r'. It is given rather by

ty = I Es=@ 4.16
Es-2Q
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Let us now consider Eq. 4.13. Its right-hand side
ig different from zero only inside the open inter-

val

I 2 (wsv2r, ws+2rs2q) 4.17

In Eq. 4.17 Z2r stands symbolically for r + Ty
the second term of which is given by Eq. 4.16

divided by T . From this we see that the energy
of a neutron twice  inelastically scattered will

lie in the open interval

(«(es-20), (£5-29))

This follows immediately from the model for the

description of the inelastic slowing down.

In general, the lethargy gain of a neutron after

n excitations will be given by
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2

’

A Es

J ’L‘E‘-'nq ’

or ,

1 = fy Es-(m-1)Q 4.18
Es- nQE

for the n-th excitation.

It is understood thatin Eq.4.18 n must satisfy

E
n < integer part of ( Qs > .

In Fig. 6 Egs. 4.12, 4.13, and 4.14 are shown for
a typical example of inelastic scattering by a

single level (curve 1 single, curve 2 double scattering).

Now, before considering more complicated situations
of inelastic slowing down we observe the following
properties.

For we (ws,wS + r) the distribution function vani-
shes, i.e. no neutrons corresponding to a w belon-

ging to this interval can be found after inelastic

scattering.






-63-

In terms of energy we may state: If neutrons of
initial energy E have been scattered inelasti-
cally, their maximal final energy is equal to

E - Q.

It is pointed out that there cannot be found neu-
trons scattered inelastically more than once having

w-value belonging to (ws, W_ + T).

S
By setting r = 0, the distribution of the inelasti-
cally scattered neutrons reduces to the correspon-
ding distribution of elastically scattered neutrons.
In connexion with this we observe that in the
inelastic case the sums corresponding to Egs. 3.35,

3.37, and 3.42 reduce to a single term.
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5. INELASTIC SLOWING DOWN BY TWO DISCRETE LEVELS.

Let us now consider the situation in which neutrons
are inelastically scattered by two discrete nuclear
levels. In principle the method remains the same
except for some new aspects which now must be ta-

ken into account.

The transport equation for this situation has the

form
u-r ) )
1- _ A+1 Qr ,
—T’L?I [4 A E: eXP(’u-{] £

“u
a-‘,‘ z /, / 5 * 1
+ 2\ dd Osin (W) Y118) Explu-1)
-« [4_5_’:”_.Qsex 644.')]'/2
'y A B P

In Eq. 5.1 the integrals are different from zero

only if

/ E .
M(ﬁ’VLQJ j\/=-'f}5-

r' and s' are defined by equations corresponding to
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Eq. 4.2. Proceeding as in Eq. 4.1 we obtain from

Eq. 5.1
u-J
3 / | ‘1 S8 (w-w
Blw) = 2_ X; ?(w)ex}o[t[w-w)]d.w-G- M) 5.0
J=hs
«j
Here, cr,in and cs,in are defined by equations
analogous to Eq. 4.4 but T , X and As

are now defined by

Ca .
aY‘_ = lpl.n ) .
J Crint+Csin 2.4

By taking the Laplace transform of Eq. 5.2 and

by solving it with respect to the transform we find:
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fte) = S Q*P(‘f-""’a){”—([g;hrexrl-?r)JQXP(-"r)

-1 .5.
+[?s*[‘seXPF?P)JexP(~5P)>?%=_} ’ 5.5

where the following definitions have been used

3= xpexpltj), 5.6
AJ = }f/.ex;:[—t(ﬁq)]) 5.7
J= +,s.

Expanding the right-hand side of Eq. 5.5 in a

series we have

f(p) = Sexplpw){1+

< 9. exp(rp) +9.xpEse)- hrexpl-(req)p] - hs@xp[-CH)F]
T+p

+<gr expl-rp)+g,exp(-5p)~hyexp[-(r+9)P] - hsexp[-(s4)p] >2
T +p

5.8
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By applying the operator Eq. 3.19 on both sides of
Egq. 5.8 we immediately get the distribution of the
inelastically scattered neutrons by the two discre-

te levels.

n =20
Pw) = S & (w-ws) 5.9
n =1
)r‘f'l' NE(W;i"r) N3+Y‘+q)
%(w):—. .Sexp[—z‘(w-w,)] 3(5)' WG(W,+S)\63+S+9) 5.10

O ) Wﬁwsﬁjmmcﬂu(w;+s,ws+s+q)}
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From this equation we see that the first colli-
sion 1inelastic distribution is simply the super-
position of the two single-level-scattered distri-

butions, i.e. no interference is present.

In Eq. 5.10 we have made use of Egs. 5.3 and 5.7,

n =2

(

2
Xy (w~w,-2r) ; WE(Wst2n, Ws+2riq )

KE(WHQN'J&]-K))' we(usumq, We+2r429)

2, (W-Ws-1=5); W e(w s+r+3, Wesres+q)

2% )5 (Wsv A -S+¢‘1—N)5 WE(Ws+rusey WsHr+3429)

W)= Sexplt(w-wy)
)= Sepbrien 5.11

)ff(w—ws—zs) ; W E(Ws+23,Ws+25+9)

Q
Xs (wiw +2$+2c7)j W e(ws+2s+c,, w;+zs+zt7)

o w%{(Wsﬂnwwl"ﬁq)U(Ws+2s,wwzs+2.q)} '

Here and in what follows we define

), m,k =posit.int. 5.12
)

rmr/+ L"S/ = ,Q/n(___E_S___
Es—m QF‘(Q-,,
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2
G:(w-w,-ar) ; W E(Ws+3T, Wsidrsg)
x:[(w-w,~3r)’:. 3(w~ws-3.-_.1)°~l sow e( Wy+3req, Wssirig)

3 2
X r [(W ‘Ns'z") Dlw-ws -'5‘!‘-01)‘2+ 3(w-ws3r- a.q)zj
W < (W,*l-br'ﬁ?) NS+3Y’+3q)
Ks(” Ns-'53) WG(NS*33 Ws'(”ls*ﬂ\

3‘5{"““‘“"‘35‘)" 3(‘"""5"35“’\)2 W e(ws-!-%S&q,wsﬂs-\.zcﬂ
3
ks[(w-ws—ss)z‘—?;(w-w;-‘s s-q)z-p 3(1o-w,-3s—21)2;
W E(Ws+3532g w5 +3543q) .
B)r:acs(w-w;-zr-s)",' w e(wnzm-s,m,nusu\)
2.
31y [ 253 g 20391
¢(”) < exfj:':(w N;)]\ W é(w,+zr+s+q,ws+zr-¥s+’&=|)
Barr'lr;((w ‘W2 r= 8 3 (welws-2r-5-9) ] F3(w-wy-2b- ;.2’)_]
W € (wes2ristag ugtars s+39).

2
33“',-2\'5(\'4—“90'-23)!; W G‘(W"‘-f-{.zsl\u’.‘_Nz;*q)-
2 2
3uteary [(w-we-r-25)- 3 (W-Ws-r-2s5-9) 7] ;
W E(MWs+ 142549 ) Wear+25+29)
3 )q" {(\u—w -T zs)l—a(w-u;—r—zn )’43(m—urh-zs—zq)zj.
MW A §= - 9 ,
Woe (WeHr+2s429 ) wer ™428439)

0, w ¢{(N,+3r~, w,+3ma7)U(w,-m,wg+3s+xe,)},

5.13
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(X,f"(w -Wg— 4,«)3) We(Ws+47, wetgriq)
tXer ~Ws- l+'r) 4(N Ws— 4= )J W G(Ws+¢l‘+7;ws+qr+2e;)
0y (- w54 4 (8 -Ms- 41-q) 4 6 (- vis-ur-29)°T; W & (ugryriag, werurng)
b'\'r[(w Ws~‘+\') y(w- Ws~ﬂl-7'~°))+ G(w-ws- tn:.zt’) q,(u—w,-qr.aq)]
W E (Ws+4T+39, Werur+auq).
o\’: (w-ws- 45)3 W e(ustas, weays+q ).
Xs [(w-we~us)™ 4(“‘“’s us-9)’] 5 we(\.s;+us+q,wg+qs+z=;)
x? I (w- \s,—t;s) 4 (w-wg- q.s~°,)+é(m~\¢s—qs—2q)J u G(wﬂq_,_,z,},“swﬂg,?)
Ké [(w-ws-y )L 4(W—ws-as-q)+6 (wW-Wy -4 5-29) —4(»&-%-%-—31) 1;
W € (Wt g sy 5+ 43) .
435‘\»3(,,(»-&\);-3\'-5) 3 we(w+3r+s Ns+3¥'+s+q)
‘H\’rk‘s [(u-\ds-'sr‘.s) I(w-w,y-ar-§ —c,)-\. 3(u-w5 -3C-5- 21)—(\: We-pr-§- 33)_—]
we("“$*3¥‘+$+33,w:+3r+s+q-q)
4% [(w- Ws3r-5)~ 3(W-ws-3ros- -q) 33(w-ws-3r- “2q)3);

W &(w sHITes129,0 5434 5+3q)
4)“‘-3\‘, l:(w-\h-u—s} 1w u;—zr.s-u)] W E (1054304549 ) Ws +314542q) .
Ciﬁ-rz(w—ws-lr-'zs) s W E(Ws+2P42s, Wy 2r4254g) |
Gaﬁ o ['(w W;*ll'vZS)a—‘[-(w'wf‘z‘-‘U e,)_] 3w e(w;+zr+zs-&1,w;+’lr+‘z.mq)

€ WTY\'S [t W-Ws=2F-25) 4(W-Wy-2 5 25 -q)3+ 6( H-w;-ir—li-Zq)BJ;
W e (w 314+ L¥125429 , Wst2 r+'zs+'5'1) .

L 8 3
e¥r¥e [(\AM» ¢~ 21228 ) < 4 (w~Ws -2r-7.s-q)3+ 6(0-Ws2r25-2q)% g (w-wsezr 253 .,)3_] .

W G(Wseareast3q, Wetarizsey),

3
4&'1\);‘; (W~W:-T~3r‘) ;W E (W48 W +r +')s-§-c\_)
3 3 3
¥ [(W-9e-7-35) -3 (Wows-T3s-q) ]
W E(Ws4T+is+9, Ws+r+35429)

3 3 3
4% L—(Wdus- r-3s)C 3(w-w5_r_3s-e,)3+ 3(WWs-T-3$ -27):]3
W (W +reasiag, We+ T35 +439)

3
435 1% [(9-00-™35 Y- 3 (w5123 5-9) 43 (v - 33-49 P e-wsr-35397);

w € (w;+1—+'ss+‘57) Wy +f'r+"ss+'+<n ;
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%(u) vanishes identically for

w g (Wsier wsiirvaq) U[Wsans, worusayq)y

In Eq. 5.14 we see that the inelastic scattering
distribution by two discrete levels is not equal

to the sum of the inelastic scattering distribu-

tion of two single levels, because there exist

mixed terms representing neutrons scattered some
times by the one and other times by the other

level.

We have given sofar some expressions for the
distribution of the inelastically scattered neutrons

generated by a strictly monoenergetic source.

Eqs. 5.10 and 5.11 are shown in Fig. 7 for the le-
vels Q. = 0,668Mev and Qg = 0,961 Mev of
cu®3 (13).
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6. ELASTIC AND INELASTIC SLOWING DOWN. TWO

DISCRETE LEVELS.

In the preceding section we have discussed the case
in which the scattering kernel consisted of only
two terms corresponding to two discrete levels.

As such a case is only approximately realizable

we give now a discussion of the more realistic
gsituation in which elastic and inelastic scatte-
ring have not been separated. This is in as much
interesting as the sum of the elastic and inela-
stic scattered distributions does not equal the

actually scattered distribution.

Using the results of the previous sections we write

W
P(W) = kf@.xp[wl—w) ¢(w/) dw
W-q

w-r
1 4 /
+ bf,.f expi-w)$(w) dw
W-1-q
WS I ,
+ ij expl W (w) dw
W-5-9
4+ S S(w-ws) 6.1.
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where
- &
T= 7 )
C +Chim+Csyin
H = ~_C___..
C""C.r‘h\“’Cs.Ln
and €r, s are defined by equations ana-

logous to 5.4 and satisfy X+ Werdwg< 1.

The Laplace transform is now given by

= -h.exp -9p)
fir) = Sewepm { Tuprae

N g _exp(-rp) - lor exp(-(r+9)P]
T+p

, Bexpsp)-hs expt—fm)f?}” 6.2
T *p

where g = % and h = ¥wexp(~97T) . 851 hi have been
defined analogously to Egs. 5.6 and 5.7.
The various contributions to the distribution of

the scattered neutrors are
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This case corresponds again to the source term

Eq. 3.21 discussed in Sec . 3.

powy = O &lw-ws) 6.3

The neutrons have been scattered only once, the-
refore there cannot exist any interference of the

elastic and inelastic scattering. Hence, we have

X ¢ we(ws,wi4q)

7

e 5w €(185+T) Ws+r4q)

f(h’) =fSExP E‘C (W)

LY e—(w5+5‘,\ds+sa—e’)

6.4
0 1w é{(u,w,w,n-u‘)\)(“i*%ws*s*ﬁ)}

n =2

For n = 2 we have the first term in which interfe-

rence of the various modes of scattering occurs.
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The physical reason is that neutrons may have

been scattered by one of the 9 modes:

1 elastic - elastic

2 elastic - r-inel

3 elastic - s-inel

4 r-inel - 1r-inel

5 r-inel - s-inel

6 r-inel - elastic

7 s-inel - s-inel

8 s-inel - ©r-inel

9 s-inel - elastic 6.5

From these nine combinations of scattering modes
the first, fourth, fifth, seventh, and eight are
commutative; that means, it does not matter how
the neutron was scattered the first and how the
second time. The remaining cases from 6.5, however
are not commutative. In order to show it, let us

consider a neutron of initial energy E.
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Let us further suppose that it has been scattered
once by the combination 2 and the second time by
the combination 6.

We have the minimum final energies

combination 2 : Esy = X(&XE - Q )
6 E = &(E-Q)
: 6 =
whence it follows that
Bep £ Egg

After these considerations we can write the unsym-
metrized distribution of the twice scattered neutrons
ag 1t follows from the inversion of the third term

of the series Eq. 6.2

o (wu) ; WE(Ws,weeg)
X (wew +29) 5 W e(Wwsig, i) 6.6
< B[ w-wWs-T) 3 WE(WsHT, WetTHq)

2 ““1- (W: '\'T—}Qt."sk!)/' W 6(\),-”-4.3,\\\:1 r_,,zq)

27 %s (MW-ws=-9) ° w € (M54 ) Wirst)
J
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317;. (W-WS—ZP] y W G(‘h);+2r‘,w;+2r+cl)
2,
Ar(w-ws-2rq) 5  we(werrq Wi w429
ZKrKs(H-W ;—T—S) J WE{WgtTHS ; WgiTs+ q)

21,5 (W5 ¥ HY#5129) s W E{usaTHseq MaaTes -n.c,)
s (w-w5-25) 5w € (uytas, Wwsv2st q)

)\‘: (\.s—\o;-'zs-ﬂ Y W e('\.sn?.xﬂjusnsﬂq)

vanishes identically for

w ﬁ( W ,Ws+2q')U(ws+2r,ws+2r+2q)U(ws+2s ,wS+2s+2q?}

The first and second lines of Eq. 6.6 represent the
distributions of neutrons which have suffered two
elastic collisions. They are identical to the cor-
responding expressions of Eq. 3.31. The third and
fourth terms, proportional to &KX, , represent
the distribution of the neutrons which have been
scattered once elastically and once by the r-level.
The order of succession, however, is fixed by the
definition of r', the lethargy gain during r-ine-—

lastic scattering. There exist two possibilities:

Es—8,
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This definition of r' implies that the energy of
the neutron after the scattering will be confined
between &(E,-Q.) and(Es-Qr) .

From this it follows that inelastic scattering has

first taken place.

A «'Es
o=
| Y 6.7

From this definition of r' it follows that the energy

of the neutron after scattering will lie between
«(XE_-Q.) eand (& E,-Q.) . Obviously in this

event elastic scattering has first taken place.

We therefore may state:

Definition Eq. 4.2 of r' corresponds to combination

6 while definition Eq. 6.7 of r' corresponds to com-

bination 2 of the scheme 6.5.
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Fq. 6.6 has therefore to be complemented by two lines
which make the expression symmetric with respect
to the succession of {(r - inel.) - el.} and

{el. - (r - inel.)} of the scattering.

For the fifth and sixth lines of Eq. 6.6 there holds
exactly the same, if we replace s' by r'. They cor-

respond to combinations 3 and 9 of scheme 6.5.

The seventh and eight lines of Eqg. 6.6 represent
the distribution of neutrons scattered twice by
the r-level. Lines ninth and tenth represent the
distribution of neutrons scattered once by the
r-level, and once by the s-level. The order,here,
does nor play any part. Finally the last two lines
represent the distribution of the neutrons scatte-

red twice by the s-level. A graphical representa-

63 65

tion of Eq. 6.6 is given in Figs. 7,8 for Cu ’ and Cu
It is instructive to compare Fig. 7 with Fig. 8.
For three collisions we obtain similarily the

distribution.
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(00w Welks, veeq)
© [(u-u.) 3w ~u;—c,)+ 3(3-\03-7.1)'3 W e( Ws f.27, Wyt 37)
i C("'"‘s) 3(“-“;—‘3)‘} W &(Ws+q,ws+29)
}\'.-(H-\u ,-3‘r) ;W e (W5 33r, w543 r4q)
K,. [(v-w5-3P~ 3(\»-%-3»—3) 15 W e(Wsrdrig,wsisriag)
Kr [(w-ws-'!r) 3(\4-m-3r.e,) +3(u-u,—3r-2’) _] W e(Mg3rizq, wesdry3q)
N,[u-u;-ss)l - wWe ( Ws+3s, k!s+3$-rj)
ks[(\d Ws-'ss) 3(w-\ 5-33-—*\)"_] WG(U3+SS+1)\;_.,4'35+27)
k:[(\d*h’s"‘is) ~3(W-~ws-35-9) +3(w-\a;-u-zq)‘_] W €(Ws+35429, W 5431439
3¥Wr(w~\us-r) W€ (054 T 054749)
3 Ny[(w Ms--r) 3( N~Us~\'~qh w e(\rlo.q-m-q,wgnzq)
£ Wr[(WW#s-") 3(N-ws~r-q) ¥ 3(w- \urr-zq)’] W (Ws+ri2q, Wirredq) .
3Xx,(u w5 )? ; We (wge s,us+s+q)
%‘w) = 32;’}75[(\:0-‘.: s-S) 3 (Ww-wg~ 5'1) ;W E(u,.‘.;ﬁ,\)su-..zq)
3% Iy [(W-W5-5)"= 3 (Wws- 5-9)%3( W-N;-S-Zq)’j. W 6 (Ws+s42q, Ws454%q )
_'g’;exﬂ;«(w-u.)]é 3arar (w—ws-z»-) 3w e(ws+ar, w;+2r+cD

. 3)73'1- [( W*“’s*zr) 3(\0 Ws-Zr—ﬁj)"J WE(Ws+2r4q, Wes 2r+21)
35‘)?1—[(“*‘5‘1’“)’. 3(w- Ws-’-h-q)* 3w ~w5-2r-2¢1)2:] W 6 (Wsiar42q, Wys2ry3q)
3)\')\'_, (w w,-zs) $ WG(Wse2s,W5425+9)
33\'7‘, T(w-ws-25)-3(w- -W25-q Y] s W e (Wsa2309, Wsazse2q)
Bm's oW 3-28) -3 (- w2 5-9 T4 30 -ws-23229F ], U € (Wwys25429, Wirzsidy)
er Ws{hHﬂs-Zr-S) ; We(wsedrag, u,+zr+g+1)
33&-“‘\'5[(“ -Ws~1r~$)1-3(w~m-2r.x-q)’j W € (WsRres+q, Wsrr+5429)
337 % s [(w-ws-205) -‘s(w-ws-zr-s-1)’+3(wrw;-zr.s-zq)ﬁ o W E{W 532ra3429, W532r48439)
SK,)\'S(W-ws-n-zs) 5 Welwerr423,Wetr42s54q )
3% 95 (W -T2 823 [ W-ws-T-25-9)%] s 7 W € {wares eq Wspra15429)
5*\-70(5 CCw-w;- f—zi)~ 3(w-w s—T-ZS-qf'-} -’»(V'-"s-\‘-‘zi-?-‘\);we(u PYHLIF9, W5V 23 )
X, (w-ws-r-5 ) 5 WE(WsHrES, Wy erS4q)
E AW s [(W-Wyores ) L(Wos=Tm$-9)" ] 5 W E(Wstres+q, Wstresi2q) |

6 WSS [( w-ws-r-s)*- 2.( W-H;-r-r-qf'-&—'l( Wew s-r..s-zan’j-
J

w E(ws+h+s+2c’,w;+r+s+3q)_

6.8.
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It can easily be seen that «%(w) vanishes identi-

cally ®r

W ¢{ (W, Ws29)U Wk, Wsariaq)U (Wse3s, W s+‘%$ﬁ3'1)3

Formulas for §(W) with n > 3 can easily be
derived.

In this section we have considered the combined
elastic and two-level inelastic slowing down of
neutrons. The case of one level can immediately
be derived from the above formulas by setting

Wy =0,

The case of the combined elastic and inelastic
one-level slowing down is especially interesting
for the derivation of formulas describing the com-
bined elastic and inelastic infinite -unresolved-
level slowing down of neutrons which is going to

be discussed in the following section.
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7. ELASTIC AND INELASTIC SILOWING DOWN.
CONTINUOUSLY DISTRIBUTED NUCLEAR LEVELS.

The transition from the discrete to the continuous
nuclear level distribution can now easily be effec-
ted 1if the level distribution is given. Let us
suppose that in the energy region (E, Es) there
exist M discrete levels with excitation energies
Q1, Q2....QL and with partitions ?1, fz,......
sz respectively

SR

The total distribution of the simply scattered

neutrons is given by

L
e{(e)+£<g,b,(e,ol)& 7.1

Z(E)z 73

,

where the summation is extended only over the Q's

which lead to E.

In Eq. 7.1 and in what follows ﬁn ol (E) and
b

ﬁn in(E) denote the n-th collision distribution.
H
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To simplify the notation we introduce the operator
é? (Es’E’ Ql) which multiplies by unity the parti-
tions of Q contributing to the distribution at E

and by zero all others. Eq. 7.1 can now be writ-

ten

Ple) = ¢ ,(e)+Z B (£6)El6.E,Q)PQ) 7.2

If we now let M-><oo the right-hand side of the
above equation becomes an integral over Q, and

Eq. 7.2 takes the form

}3/&) = @ opl€) +f2h(5Q)?(Es:E;Q)JO(G’)dQ 7.3

We have extended the region of integration by de-

fining ¢1'in (E,—Q), f(-Q) = 0. Here, pf(Q)
is nothing but the density of the nuclear levels
which can be excited by neutrons of energy Es'

If E 1is the neutron energy after inelastic scat-
tering it is seen that the maximum Q leading to

E will be Q" < (ES—E), and the minimum Q')= (Es‘%()'
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Every Q fé (Q', Q") cannot lead the neutron from

initial energy Es to final energy E.

To carry out the integration in Eq. 7.3 we have
to express g?(E, Eg Q) in definite form. It
is convenient to express z?(E, E,, Q) in its

integral representation.

P -2 expEik(e-eseiell-expibur oe) ;T4
(U4
k

2
r
The integration path, P , 18 defined by the real
k-axes and by boundary of the lower part of the
k-plane (positively oriented). For convenience
we have introduced the parameter ] which will be
put equal to unity afterwards.

From Egs. 7.4 and 7.5 we obtain

}3(15) = g%eéf[E)

b A @cp[i(aEs-E/a)y-exp/‘i(;\ES-E)157 T3
QWL# k dk

xS é,‘." (E, Q)P(Q)exp ikQ)dQ
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If we interprete the last integral as a Fourier

transformation we have

%[Ej = %e{,(a)

3 gexpnaz,-em)k[-egggi (AE:'E)“JH F(e W}k
¢ k

g
The second bracket in Eq. 7.6 represents the

(,0) p (Q)} the

Fourier transform of {¢1 in
b

existence of which we suppose.

We differentiate the exponetials in Eq. 7.6 with
respect to A , We integrate symbolically the same
expression over 7 y and we interchange the A and

k-integrations, and then we have

B(E) = @ op(E) + EFs5|d)
7.8

Xf@x?[i (AEs-E[ar)K] - exp f0E~E)] F (E,K) dk

r
The second integral in this equation can again be
understood as a Fourier transformation. Assuming
that the integrand vanishes on the boundary of the

lower k-plane we obtain:
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}3(5.) = ‘é,e&(E) + Esfd-ﬂg‘-"(l!,qs,.g)f)(,ag,-g)

- ES/M Q"-"CE; QEI'E/A’)\F(I}E,-E/.X) 7.9

We have put a (-) in front of the integral in or-

der to take into account the orientation of the
path . This is equivalent to
'EJ-E
. . E€(0,4E
g(E)_./%"(g,Q)Pm)dQ 5 &) 7.10
Es-E/y ‘

and

Es‘E

PrE) = gzgld(E)vufg/,,,fsa)f(O)do,- Felaggs). 7 44

The results obtained above can be generalized for
any number of collisions. We give here the distri-
bution of the doubly scattered neutrons in the

energy representation for later use.
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ML ; E 6(w5Es)
& L. E_ . EG‘(JEs)qES)
Ega?”’
S 8CCe an B9 ; EQ((Es0n)fEs-01)
Es('*“'f) 2c Ct-jnf&—. sEe ("’75:-%);‘* (Es-@r))
Cr.,p/u EI 2‘?' EG(N[ES QQ], [E‘_zq)
Cr fon E

T NES

T.12

5 E€ (' (Es-0r), K(Es-r))

o(E-26,)

The first and second terms are Q-independent and
represent pure elastic scattering. The third and
fourth terms are mixed terms arising from one
elastic and one inelastic scattering. In order

to keep these expressions simple we disregard for
the moment symmetrization with respect to the

succession of elastic and inelastic scattering.

The transition from discrete to continuous level
distribution is now effected by means of the same

arguments used in the case of simple inelastic

scattering, and Eq. 7.10 applies.

Let us consider the terms corresponding to double

inelastic scattering.
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If the initial end final energies of the neutrons
are fixed, the maximum energy loss, Q1, during the
first inelastic collision cannot exceed (ES— E —Qz),
if Q2 is the energy loss during the second colli-

sion.

From the above said and from Eq. 7.12 it is easily

seen that the total distribution will be

2
%{E) = ¢2,8£(E) N EG[G’ES)ES)
Es-r EsE.q, .
+fd@.fm;)]d®.,f[0.)9§h(e‘, @, 0,) ; FE(0f)
4 o

£4-E
+ ] dpp (@) sz,el,fq(s’ ?)
Vol [T

~| d@pl@r) f dg,p)8 . E40,) ; EE&(oEs)

(4

In the case of

n =3

we have three possibilities.
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i) One inelastic and two elastic colli-

sions; formula Eq. 6.7 applies.

ii) Two inelastic and one elastic collisions;

formula Eq. 7.2 applies.

iii) Three inelastic collisions.

Arguing analogously we find for case iii)

% (£) = ﬁ,egﬂs} , E é‘(a’iE;,E,)
Eg-E Es~ BQ, ~E-G;-0y
+fd@af(05) d@zf(@;)/d4f[(p4)

X 935 .M(E,Q,:Oy(?,) s E &(o,Es)
5;; E-e-q  Sf-g-q
Td @5 PLG,) @, R) de, P (Gy)
o (7]

[+

TR , E€loEs). 7.14

-+ mixed terms
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In the general case the integrals become
E;—E EI'E"QQ.
Jd@,,f(cp,,)fdo,,_'ymm)
o (]
Es-E-Quuw®,

X ng‘ P(QA)%,II‘R(EIQ‘"’“. &) ; E€(oE)

©

Es-Elo Es- Ef~Qn
-fuonp(@) da ponn -
° o

E)-E/d—% - ...q)z

[40,00008 (600 0) ;£ oy

[~

+ mixed terms

<15



=93~

8. THE STATISTICAL METHOD FOR THE NUCLEAR LEVEL
DISTRIBUTION

The general formulas given in the preceding section
are now applied. Let us first consider Eq. 6.7 for
n = 1. To carry out the integration it is required
to make some specifications concerning the distri-
bution of the nuclear levels. As a first approxi-
mation we shail use the expression for the level
density given first by Weisskopf (17) According

to the statistical model of the nuclear reactions.

pLE) = Dexp(Vsas) 8.1

where D and a are nuclear parameters depending

on A.(the mass number).

From Egs. 6.7 and 8.1 we have
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ax ; E &(oEs)E;s)
?(E) =D J’j‘{
e Es Xy(@)exp(Vead)d® ; EE(o,Es)

O EsEfo

- D[, (a)exp(VFaR) d© ; E €0, aAE;)

Introducing the explicit forms of # and M. we

can write

Eg 5 E €(#E,E,)

E-E
gre) = S ar«..rf,wexr(m)cg{_g_;fé@s;)
7 “~a)E OQ(E;D)V""BEJ*?
Es-Efy
_.fﬁ'fsf’cv)exp(ﬁ?r'ci) dQ - E€lo,a8,)
J

co‘t‘:(ETQ)V4-—ag—1§

8.2

Here E” is a convenient value for which the expres-

sion takes its mean value.

Now we introduce the assumption

6 (E7®) |
T — = constant = Cin 8.3
a0l 5T 8
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From Egqs. 8.2 and 8.3 it follows that

5€ ; Ee&EgEg)

8.4

Crm exp(V100EE)) (ira(y5) 1) ; E € (OrFs)

Cim€X ?{ V'ﬁﬂ (Ex‘EEXVE(EsJ/d) -4) ; EE€ (0, Eg)

The right-hand side of Eq. 8.4 vanishes identical-
ly unless E Dbelongs to corresponding intervals

mentioned.

As an illustration we give in Fig.9 the graphical
representation of Eq. 8.4 where we have used the

following set of parameters (17)
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55 =1 n/cm3 sec
A = 63

&« = Oy 938

a = 2 Mev™)

D = 0,3 Mev™ |
Es = 10 Mev

(] = 099

Cip = 0,1

As a further application we give now the energy
distribution of the twice scattered neutrons. Again
we assume here the validity of Eq. 8.1. The ex-
pression is not, however, convenient for the ana-
lytical integrations in Eq. 7.13, and we there-

fore approximated it by the simpler one

p(®) = D+ Ke @ +K20%) 8.5
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where K4 = 6ba

Expression 8.5 is a good approximation of the
formule 8.1 in the interval of most interest

0 £/4aq@ { 15, as it can be seen from Fig. 10.

Prom Eqs. 7.12, 7.13 and 8.5 we obtain

2
C/en—EEj 5 Eé'(dElex)
Cz‘eld. ——E—‘- } E € (JE;)QE,;)
G’zE_;

2.12;9; Ka (E,-E )%(1;‘, s_:_z)(s.-s)‘*
S + %}(E;-E)s-\- %g(ﬁrﬁ)e}} Ee6(0E)
- %Z{ Kol Ere) (355 - 2Kz )( -5
+ %z(ﬁs-ﬁ.’d)s-\- %};{; (E“E)G} ; E€(0,%Es)
+ CC:A,D{[' V(e B vﬂ exp Veates0) ;B €(0E)
- cc,',..D{[ m -4] ex?(m) yE € (0, Ey)

8.6

This equation is represented in Fig. M for two

values o c .
f c/cln









-101~

9. CENTRAL LIMIT THEOREM IN ENERGY DISTRIBUTIONS.

For the application of the CLT in the calculation
of the convolution integrals we observe, that

our function are of a special character. They
venish for negativ arguments and are zeroc for
arguments greater as a given number.

We call such functions energy limited or grid
functions.

Of this type are the functions occuring in elastic
and inelastic scattering. They are constant inside
(r, r+q) and vanish outside this interval. The
height and width of each member of the grid depends
on the characteristics of each Nucleus contributing

to the scattering.
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Let us suppose we have L discret nuclear levels.
The distribution of the simply scattered neutrons

will have the form (Fig. 11).

To apply the CLT we have first to normalize the
distributions (Fig. 11), so that the grid attaines
constant height.

The distribution of the n +times inelastically
slowed down neutrons is given by a convolution

integral

58 = Plo-sa280). 9.1

72,
X. .- 95 [ga)df'.....,(;n
where L
;”2,2 = 7 9.2

1y = Bn Es 4.2
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Q1= Mim{alje::d,z...[_}) 9.3

and @,(%) is the distribution of the simply
(by the 1-th level) scattered neutrons.

P in the front of the above integral signifies
the permutation operator which permuts the

exponents N4 with the indices of the functions

LT
‘?3- (§) and sums over all possible tg such,

that Eq. 9.2 is satisfied.

Now according to a modified version of the CLT
valid for grid functions, the integral 9.1 is

given approximately by

%(W) = PN(EHQ"'Q;.I”'P"”L"")G ?P("'}_)r 9.4

where £ = W — A nym) 9.5
b, -nun)~ atn,--num)

G 1is given by:
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[(Ptda+2)
I (g0 Tt 9.6

with , ,
F = /,]-l (’7"-71"'5‘11) 4
- I / 9.7
and - (4_711)[/%&#)
foo = T 9.8

g’ﬁ ) "Lf QL and b, are defined as

2 2
S = %
9.9

and

LJL('”‘)"'%‘-) = ’nﬁ + Oty (Mamy)
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It is the convolution of such functions which
yields the neutron distribution of neutrons n
times scattered inelasti.cally by the L discre-
te nuclear levels. The convolution integral in

question is approximately represented by Eq. 9.4.

2
Now, the q,uantities7 and g are given by:

7 = 1/ B () = %/ (1=%) 9.16

and

5% 2ftnt)® (14 2/uti))fir-9) §.17

l
I+t might appear surprising that ‘7 a.ndév are

independent from the level characteristics.

This is, however, only the consequence of the
normalization. The nuclear characteristics deter-

mine the factor N(Es, Qqy+eeQqy Dyyeeeny, n)

and the interval

(OL(_/ a, +72-?) 9.18
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*L» and é:?

riance of the

are the first moment and the va-

n-th distribution respectively.

The distribution of the neutrons which have been

scattered once by the 1-th nuclear level is ac-

cording to Sec. 4.

(b(w) = Xp exp(-TW]); welty, 1+9)

4,12
. . A exp(tre)
with the normalization factor Ng = )
and where now &¢ and T are defined by
— C
we= Cr/3 9.13
and
L
tz(ﬁzc"')/(”—w) 9.14

By normalizing and using the linear transformation

Eq. 9.5 , ﬁl(w) takes on the form

2“' exp(-v9%)
. -7
§(5) = 7/[,4 Cz) * €XPL-798). 9.15
(0<(¥ < 1)

is the interval
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inside which expression Eq. 9.4 does not vanish

identieally.

The normalisation factor can now be written in

the form

L
N = T exP(tW-ﬂ}_)]

L=
9.19
L
= ’IT(: Es 1™t
(Es—QQ)Ci

The last equation can be corrected by taking
into account the fact that the maximum energy
after the nrth collision by the l-th level is
equal to (Es'nl'Ql)' After this the corrected

. . *
normalisation constant, N be comes

X E ?.@u-ng SLKE 9.20
Pd ESL@%: ) < - )
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where

L
D)= 2 Gy 5(<Es)

From Eq. 9.4 and 9.20 we obtain finally for the

distribution the expression

7 Y
¥/ - oL L
%L(w) = PN Wmi]% bfan) 9.21

where according to Eq. 3.5

- S Es
w = A_o(}/”‘ E. 9.22

The operator P operates on all quantities de-

pending on the partition (n1, n2,u5nL).

For the right understanding of the Eq. 9.21 it

is necessary to elucidate the nature of P.
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The quantities in which P acts, are

*
CL,_(/'L4,-,m) jéL(”lu--,’nL) y N (47-4;--’77-1.)

Let us suvpose we are given L arbitrary quan-
s . j i
tities C1... CL and the integers Ny .0y

|
and n, such that %:aﬂgzz .
<A

. j J
If we, now, constract an expression ;}kdc4y"7hce)

and let P operate on it, we have the result

Pj[(’n'chj - 72,.C)

Ln
=2 flmic,-~nic.)
L"’“JZJ)C( T 9.23

The calculation of Ln requires the solution of

the following problem: given two integers

.

(L, n), to combine each of the partitions (n;,.. i

with a set of numbers (01"'CL)’ i.e. to find

the number of the combinations (nﬁC4;-~-7TLCL)

The solution can be found by the following ar-

rangenment,
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J n
1 (n-1,1)
2 (n"212)1 (n-21111)

3 (n-313)1(n-312’1)1 (n-31111’1)

(n-414), (n-4’311)’(n-4,2111)
(n‘4111111y1)

9.24
(n=X, 2 ), (n=X,A-1,1)
where
A = Zte 9.25
and
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In the inequality 9.25, & is defined by

even

£ = {‘ 0, 7z=
-4;11:

edd
9.26

Now, the number of combinations of the first line
of the arrangement 9.24 with Crypeees Cp is

L ).

equal to ( 1

The second line yields ( 5 ) combinations, and

any of them belongs to 2! permutations.

L
We have, therefore, 2! ( 2 ) total.
The third line yields again 2! (15 ) plus
;i(éj,wmere the divisor 2! takes into account the
21

identical permutations of the unities. Conti-

nuing in the same way one obtains the result

[, = (f;) + 2(%) +2.’('§)

+ %’.(é) 4+ -.etc. -
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Eg. 9.21 is valid both for elastic and inelastic
scattering the difference consisting in that
r = 0 for this case,and that the energy after

h
the n-th collision is & Es.

As an illustration of the above theory we give
an exenple in order to check the quality of

the approximations

n1 = 1
n, = 1
L = 2
ry = 0,118
4’2 = 0,108
_ -2
Cr = 7,10
-2

Cs = 2,8.10

X = 01938
Es = 10 Mev
Q1 = 1,114 Mev
Q2 = 0,77 Mev

+ 1= 3,0325

+ 1= 33,0818

G 1

The results obtained from Eq, 9.21 is shown in

Figs. 13 and 14.
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Af. FERTURBATION METHOD ¥OR NON-VANISHING ABSORPTION

CROSS SECTION

The break down oif the propgeriionality beizween the

total cross section and tne scattering cross sectian

is due, generally, to the appearance of inelastic
scattering and absorption.

As a matter of fact, it is more comfortable to
represent the ratios of the cross sections by poly-
nomials of small degree than to do this for the cross
sections themselves. This observation allows us to con-
struct a perturbation method for the solution of the

transport equation just in the energy region where

6;1 % const
6;
Let us consider the slowing down equation (Sec. 3)
N
4
- OéL(@V) () /
35(’“)) = f o (w TGl ¢(“‘) : _qiw.,.é”(w-ws)
W- 7 /
where

plw)= Plw) 0w,

10.
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By studying the experimental neutron data one easily
confirms tnat the deviation, R(w;wo), from constancy
of the ratio 6(wli/ €.(w) can be approximately
represented by a low degree polynomial.

We write it here as

Goe(W) _ ATy- .
Telw) % QR('L"'W’)]/ 10.3

where

R(w;wo) =

N

. . %

Z A'n (%’U-o) 2 W< W
MN=C

O 3 W>Wo

In the above expansion Ao, A, are given for a linear

]
approximation (N = 1) by

A=-A= B : 10.4

Let us consider the perturbed distribution @(w).
Following tne standard methods of the stationary
perturbation theory of Quantum Mechanics (lg) we
write

plrc) = s a"'sfﬁﬁw)('fw) .

MRS 10-5
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In Egs.10.3 and‘IO.Bj is a continuous parameter
which we take afterwards to be equal to unity, and
¢(°)(w) is the solution for 6"e(w) - c.6“t(w).

From Eqs.10.17 10.3and10.5 it follows by equating

coefficients bf equal power of 3 that

gtn) = F ) ¢ Bloa)

#w) = }S‘(ﬁfw)- } Rt ),
§lo = J# ) = FRO) P,

etc. 10.6

In Egs.10.6 the integral operator } has been defined

by "
} - feXP[:z(@-wl)]dwl 10.7
wf

Here ¥ is equal to (1-&)/c, where c is defined by "

o;g(w)/G’t(w) = ¢ in the Tange of its validity; o= (Alﬁtd) .
The first equation from Eqs.10.6 gives the unperturbed
solution. and has already been discussed in (Sec. 3) .

A1l subsequent equations can be written as
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on »
pto) = F ™) - Sutw)
M= 4,2,3 10.8

In Eqs.10.8 %u(w)'s have been defined by

,S;;”(hQ) - é;' ﬁ?(}g;zog)gb(au.?%g} ,

10.9

and can be calculated progressively from Eq. 10.6

The physical interpretation of Eqs.10.8 is quite obvious.
According to Egs. 10.9 we have now modified sources which
are determined by the perturbing deviation from the
proportionality between G;pV) and 6}(“0, i.e. by the
presence of absorption and / or inelastic socattering.
These sources cause a deformation of the initial
distribution ¢(°)(w), which in the presence of non-
elastic processes represents the PWP-approximation.
Using the formulas10.8 and10.9 we wish now to carry

out the first-order perturbation.
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First we calculate from Eq.10.9 the source S1(w)
which actually is a sink.

To do this, a definite form of the (non-elastic)
ratio, R (w ; wo), is required. However, in order
to keep the formulas as general as possible, we
retain the integral representation of the sinks.
In what follows we discuss the solution of the

first-order perturbation equation
/]
¢(’)(/w) = ? ¢()[’Io) - 84("") 1040

From this we have after Laplace transformation

{(4)(4, - L 54('“’)}

1- [1-expl-qteepllf(e+f) SRCE

where

o, . _ a)
{fr= 21 ¢t}
By expanding the right~hand side of Egq.10.11 1in series

we obtain

~q(ztp

CRNI o Ve i VPN S

'c-(-P
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From this we have (15)

By = -5 ST G e 013

meo Mze

where

10.14

G:,)(w)= \-f-d{ L{s, («D}}

G+

M= integral part of q .
Noting that the integral 10.9 representing the sink

and
Ws

is of the convolution type we can immediately write

LIS,y LI L {Rewwap ], 0

Using the convolution theorem for Laplace transforms (19)

we obtain from Egs.10.14 and 10.15

C.(‘)(’N) = f“{:ﬁ{ﬁ w}f{Q }f{%“ ”"w(’”}}) 10.16
where (20)

< {(OM)‘ -200'3 (—Hq) 10.17
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From Eq.10.16 we obtain finally

) y
G(m (w) = S({(w-'gﬂ- 5y Wo) ¢(°é'~-s,-§9 )etr‘ 10.18
B 5 e g
x )] §d82
From Sec. % we obtain tne explicit expression for ¢( )(w)

it is

-1
(W= Wg=% 7)

gb(?l _ -t(*'-”s)z-z-(_) (“’) -y , 1049

m=0 M/.o

/. -4y
where [ M1 is the integer part of M=Tand we(ws,ws + m'q).
For all other w-values the expression vanishes

identically.

By changing variables and remembering that
R(wswe) s 0 ; w E(Wsuo)

we conclude from Egs.10.18 and10 19 that

G(ﬂ( )= _-:(”‘Ws)z {i_(‘ ,m(/n

/nto Ws "'=o

R (uwe) o2, WM9) (-’ g
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The integration in Eq.10.20 seems to be very
complicated, because the integration variable is

involved in the summation index.

Fortunately this is not the case, and the integral can

be written as

o (=) (%) Loirin (w), 10. 21
/“’l
where
,»mfe {o) [gt_’z?ﬂ’;_ -4 ((wgwo)}, 10.22
and

Collecting the results we have

-z(W~wg) co

)
G, (w) = E_,..
”n ’ /
° MmcOM

(m-1)!

From Eqs+10,13% and10.24 it follows that
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4) 2= M p» «)
b)) = =2, JIN (%) G, (b-mg-ws) .

MO guzo 10.25

By correcting the PWP-approximation, ¢(°)(w) , in

the first-order perturbation we obtain the distribution

¢(M): 96(»/(.40)4_"(4)(4‘,). 10.26

As we see.from Eq+«0.25, ¢(1)(w) is negative, and, there-~
fore, f(w) < #°) ().
This was to be expected, because ¢(°)(w) has been cal-

culated with the PWP-c-value, which by definition is

c>,6“e£w) / 6‘%(w).
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11. COLLISION PROBABILITIES AND GREEN'S FUNCTION.

In what follows we consider ahomogeneous monoiso-
topic infinite medium of plane symmetry with energy
independent cross sections and isotropic scattering.
The method is rigorous when 6; - 6;1 = const. Other
cagses, however, where this assumption does not hold,
can be treated by the perturbation method discussed
in Sec. 10.

We shall give here a method for calculating the energy,
space, and angle dependent collision probabilities
and the corresponding Green's function. First we wish
to define the perturbation method mentioned above.

Let us consider the transport equation in the form
~ 1 1) B0)Slaess),
(r,%-)-( + Q)L‘)(x,rw) -ZW(P +é‘/l“f‘) )
11.1

where

W= R, + D

] - -~/ I} - ~ur.(~/‘“
= dﬂ{fc Gl ) '+ f"r B — ) .2
i “-71 d j"' P 4-u9£éa’ . 41.

“- 7~ TL A E’
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6% and 6;1 are the total and the elastic cross sections.

The sum inEqg. 11.12 orresponds to L discrete nuclear

levels (For more details 3ec. 6) .

As we shall show subsequently a separation of the space

and energy variables is possible. Since this separation

is not affected by the presence of inelastic scattering

we shall consider for simplicity only elastic scattering.
In the region in which inelastic scattering occurs G; may
be constant but not 6‘;1(u). If ?f—‘- %4-% where \//o and
y; are the unperturbed solution and the firsteorder-
perturbation corrected solution respectively then Va satis~

fies the equation

(pa& +o)t =j Ko § + Qrm)

where
A
4 _Ou-ﬂw
(2%7 =6C ‘]GIF, (=4 w 1.4
o t
-4 Ah7
and

4 A
6’ / ..(M~41' ’
Q (xypy) =-§‘—/df‘ /e 4)5‘,,('«') iy x, ) o

~1 Gt 1.5
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The perturbing quantity 6?(u) has been defined by

o () = C- 0'“("“_) P 1.6
o¢

and ¢ is the constant value of GZl(u)/6; in the absence
of non~elastic processes.

The source term Q(x,r,u) corresponds to a sink. In the
collision number representation ofﬁyo(x,r,u) space and
lethargy are separated, and the q4-integration in Eq11.5
can be carried out as it is done in Sec. 10.

We can therefore consider 6;l(u ) as constant in Eq.11.2
and treat the inelastic terms in the fashion exposed in Sec.
6 + Under these special conditions we can use the welle
known integral transform approach. We apply Laplace and
Fourier transformations for the 24«and z (z = 6;.x)
variables respectively. Before doing this we introduce

a new variable w defined by w = u/2 , where

L -4

= [c. c |

and c, are constants defined by
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4
e 6.:"‘"-('“)
= I 11.8
oz\( - 43 _@e“
1 E,
By introducing the Fourier and Laplace transform of

G/ plypp)= %y{(zl&?(zﬂ"“’)Z} we obtain

from Eq.11.1

(a4ikp)pllsfip) = 5 Fp)g(4p)+8Trt) o

11.9

Cy

where

4

?((Sf) = f?(&,,u/p)d(»‘ . 11.10

-1

The factor

—7(-:*?) L -7 (up)_]
- 4
F(p) = 4-;-[-? **—32;‘1& €

(37: TC 5, dre= ELiE

A —af 1~
is the Laplace transform of the scattering kernel.

1.1

The separation of the variables p and k in Eg.11.9

implies the separation of the energy and space coordinates

in the number-of-collisions representation of the distribution,
when the cross sections are considered as independent from

energy.
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In other words, the solution of Eq.11.,4 will be of the

form

[= =4
90(2, ) =(§D ¢.0) L(ZF), 11.12
where yhﬂz,r) and ¢n(w) are the distributions in
z-and w-space vrespectively of the neutrons scattered
n1times elastically and n, times inelastically, n, and

n, satisfying the equality n, +n, = n.

2
The possibility to represent the solution in this way
yYields as a by-product a quantity which sometimes may
be useful- the collision probability.

The n-th order collision probability, Pn’ is defined

by the ratio

%’(‘0) 4’4,(2/")
Yb(zlﬁl“v)

Eq.11.,1% gives the probability that after n collisions

11.13

qan(z)rfuo =

a neutron will have the energy W, the direction r,
and the space coordinate x = —ér 9

. t
If le, Pin are the partial probabilities for elastic

and inelastic collision respectively, then we have

2 _
P =iiw) = %R(z'r'w), 11.14
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and
? (z ) = (z,r,w) 11.15

The probability that the n~th collision will result

to an absorption is, obviously,

P = R-Po_ P . 1

From Eq.11.1 we obtain

F'(/P) 8((‘ D —? ¢ 5[ K)
Atithp 2

cf(h»w)

11.17

where g(k,p) is defined by

A
%(5,9)-.- g(‘s(L,t\,e)dt& . 11.18
From Egs.qq,17 and11.18 it follows that

- PWs)
(he) = —=21=1-
8, ) F) [A —l((‘d?)](’ﬁ l‘a“o)

11.19
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The right-hand side of Eg.11.19 is nothing but the neutron
propagator in space and energy.

In Eq.11.19 we have defined

:D(\L)v} = fg F(P)TQ")

11.20
where
\
— Adb\L
T(k) = & hedm 1
2l A=k 1.21
The second factor of the right-hand side in Eq.11.20
satisfies
4 - )
75-—T (}* <: A 11.22

for all real k-values different from zero.

Therefore, in order to keep

\ D) | ¢ 4 11.23

it is required that

\FC/P)\ < A 5 11.24
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vwhﬁlch is possible by choosing the integration contour
for the Laplace inversion conveniently. The procedure
is the same as in the space independent case.

From Eq.11.17 and from conditions11.,22 and11.14 we

obtain the expansion

o
' _ exp[-Pws) N m o med
Cf(\b)vw) T (b Ry om g < F (P)T (k)

- Me/&;[-em]. 11.25

At kp
This expansion converges absolutely for ¢ €1 and p€®-
$ is the appropriate integration contour.
By carrying out the Fourier and the Laplace inversions

we obtain the expression
2

o F
L"(z) l"“’)m‘ Svw) Bluwmn) %
= Zq:j -?-%\Pm(lm)%’..('w)

mw=4q
11.26
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q)n(z,r) and ¢n(w) have been defined by

‘fm(z/f*)'z (}"4 T ) } 5 11.27

a+ikpYa+ilty)

and

Sét(a") = Yﬂf Fm(',r')expE'PWs]}.HJS

From Egq.11.26 we see that by decomposing the neutron
distribution according to the numoers of collisions

the separation of the energy and space coordinates
ariges in quite a natural way when 61 is constant.

In what follows we do not consider any more the w-
dependent factors in Eq.11.26 . They have been givenin previous Secs.
We focus now our attention on the 2z and u dependent
distributions.

The first term in Eq.11.26 represents obviously the
distribution of the unscattered neutrons, because it is
independent from the coupling constant,c, of the neutron
field with the medium.

Let us now consider the inversion in Eqe11.27 for n = 1.
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As this term linearly depends on ¢ it represents the
distribution of the neutrons having undergone one collision
only. By carrying out the Fourier inversion we find the
following expressions corresponding to positive and negative

values of IJ.)Z.

TN

-2 -
e};“e e 2P0

('Z — / p>e
(h /l"‘) fo~r o . z&eo 11.29
2 kdo-
For negative }L-values we find
-2
e ¥ ; 240
( __4__' > H <o
2 = - = .
Y l=k) = Yk [ ek =
2 t<o 11.30

From the above equations we conclude that for z>0

all P><0 are allowed.

For z <0, however, no }1)0 is allowed. This is physically
clear for once scattered neutrons.

For n = 2 we have to find the inverse

= L) — - ¢ 7L
Y).?( J H) - (:f @ﬁhp)(n-u‘hro))} 13T
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which is as follows

° to ] -
1/ (2%, >)—m){[er‘ 9",4+ +E, &)+ el (A_é:,zilh
11.32
z _2__
leFe@q R ey |
11.33

&}) (z>0 p(o)_ o F){ v"’ﬂu'ﬁ'w-\'e (z'>*e \“. E.Ct&’z‘ﬂt‘o
+| E,(12)- i axltd N}
[ < E’t( it 51\ 3

o (=<0, 170) = :*){[EAZ\) ef“e E, (Hn “\)1“ 11.34

E-l +
- [E} (=) -e® E, (1—‘:?' \z‘ﬂ \‘} ,

2 _
i 4 - B AxYeoiz 11.35
Heer P :(r(t‘_r){[s‘(:zu)_et‘ Bl \)] fo

=T - .
STttt v )2 E, (5]
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In the above equations E1(z) and 51(2) have been defined
OO-t _ +
by B (x) = (Eat , ana E(x) = [ € ae (21)
x t - &
Por higher values of n tie expressions for lvn(ji,}i) vecome
lenghty. We prefer, therefore, to give an approximate method
based on the CLT for the inversion of Eq.11.27. The functions

of interest here are the Fourier transforms of u(k), (1 + ik}l)-1

and (1 + iktlo)-1° v -z -z
These are in generdl equal to E1 (lzl),-gll and -e_P‘o respectively.

0
These functions are all normalized to unity.

Their first moments for r()() and \.1)0 are easily found
©

to be

3
!
0

11.3%6
The second moments are
alg= 23
’ A
mp = M,
< 11.37

7
Az = fe -
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t'he corresponding variances are

5\2: 9/3)

From Egs. 11.%6-11.38 We find for the general case

according to kgs.1.7 and 1.9

c{;z = R 2-/- /‘12-4- -?(40-4)/3 5

n = fL TR

where n takes the values 39448 epoyepe

11.58

11.39

11.40

From Egs.1.8,11.29 and 11.40 we find the approximate

expression

[_ (2 ;— /—g‘/‘"{)'?
) _ O exbl g(EF+ RS+ 2(n-1)(3) ]
‘t/n('zlﬁ) =2 ‘/;37

for n> 2.

T(K*+ [+ 20-1)/3 ) ’

11.41
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If we replace the transform of the scattering kernel in Eq 11.1
by c then we have the energy independent case with (LS)
isotropic scattering.

In this case the total distribution of the scattered

neutrons is given by

Z

Y& p) = %E Slr-rs)+ S0

SONAZAPAINLL
11.42

In this formula which is wvalid for z> 0 and }1')0

only the three first terms are exact.

dowever, the approximation is fairly good as the comparison
(Fig.15) with results obtained by numerical methods (22)
reveals.

For z <0an analogous formula can be obtained in the same
way .

The angle independent distribution is obtsined from
Eg.11.27 by integrating it over F. The result of the

integration;(n(z) is given by
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jﬂcz}a (\})-4{ -mCh) } ’ 11.43

A-H‘"-Vo

Reasoning similarly as in the case of the angle dependent
distribution, we find for the distribation of the n-times

scattered neutrons the approximate expression

-Z o
L=<t eqernighe

in Eg.11 '44'~Xn(z) is given by

q'f (z) = I‘&[)&,"fH'o E (4-:“9;)},.]:4(2). 11.45

Z>0 )y =4

and

(z - 4 )%
» exel=2¢ o 2(m-1)/3 )7

dn =2 Ve (1} +-2.(m-4)/3) g

=509, m3A . 11.46

Analogous formulascan be obtained for z< 0.

For the special case of Bo = 1,}1(2) is given by

A, (2= & Bu(32) + E4(Z) o 1.47
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The machine time for corresponding calculations re-
ported in (22) was of the order of 100 h. It should be
pointed out that, if a still better accuracy is desired
than that provided by the CLT in Eqs8.11.42 and 11.44

one can use more than one exact terms in the evaluation
of the sums involved.

For the illustration of the method we give here the
angular distribution or the scattered neutrons for a
plane monodirectinal s»aurce (c=0.5, z G, =1 ) with

z as paraheter. At small distances from the source plane
the CLT approximation becomes bad,because there small
numbers of collisions contribute mainly to the total
scattered distributionf(dotted lines taken from Reft. 13).
In these results only the distribution of the once

scattered neutrons has been taken exactliy into account.
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12. CONCLUSIONS.

In the preceding sections we have exposed some
elementary methods for treating the basic pro-
blems in Fast Neutron Transport Theory of infini-
te media in the isotropic scattering approxima-
tion.

As the reader has already observed, the principal
tools in obtaining our results have been the La-
place transformati on and the decomposition of the
distribution in parts according to the numbers

of collisions.

In those cases, in which portionality between

6; (E) and 6}(E) holds (i.e., no absorption or
inelastic scattering ), the method yields the

exact solution of the slowing down problem in the

space indcpendent problems .
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As a special case we have obtained in Sec. 3

the Placzek distributions in a slightly more

general form by including energy dependent cross
sections. A useful observation is that the n-th
order distributions can be summed exactly over

n (from 1 tooee ).

As a result the total distribution in the inter~

vals ( o Es, 5?455 ) for every positive mys is

obtained.

When, however, absorption is present some approxi-

mations are required. The most useful method for
treating such cases is the piece-wise-proportio-

nality approximation. In the energy region in

whi¢h the absorption cross section does not vanish,
the relation 6; (E) = C, 6%(E) can again be
applied, where ¢; is a constant corresponding

to the QA -th energy interval. By making this
assumption one can solve the transport equation in
each interval separately, by determining the source

in the (2 + 1)-th interval from the solution in the

A-th interval.
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For the deviation of 65(E) / 6%(E) from ¢, ingide
the M-th interval the perturbation method develo-
ped in Sec. 10 can be applied.

Sofar no inelastic scattering has been considered.
For the solution of the slowing down problem with
inelastic scattering an approximate model has
been given in Sec. 4.

For the application of the model use has been made
Sim (E)
-An Q@ (
- B 0lE)

of the observation, that the expression

is almost constant for many isotopes.

This fact implies that the elastic and inelastic
distributions differ only in that the latter is
shifted toward lower energy by an amount proportional
to Q.

In the case of many discrete levels the method
remains the same.

The one-level slowing down distribution constitutes
the basis for the calculation of the distribution,
when a continuous distribution of nuclear levels is

given.
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This method is exposed in Sec.8.

Finally in Sec. 11 a space dependent problem has
been considered. In connection with Sec. 11 one
important fact must be pointed out.

The integral transform techniques applied and

the expansion according to powers of ¢ (the
coupling constant of the neutron field with the
medium) has yielded the : separation

of energy and space coordinates. This extrordi-
nary result allows to use immediately the space
independent solutions in order to construct the
gspace dependent ones, if the monoenergetic solution
is known.

Of course, this can be done immediatly only for the
infinite medium.

For finite media we have developed an analogous

method discussed in another paper.
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APPENDIX A

INELASTIC SCATTERING KERNELS, ENERGY INDEPENDENT

CROSS _SECTIONS.

It has become the custom to discuss elastic and
inelastic scattering quite independently from
each other. This procedure although some times
meaningful is not justified by the formal rela-
tionship of these two kinds of scattering.

To make it clear we observe that the only
difference between them consists in the Q-value
of the collision. In the elastic scattering

case we have



PR N
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while in the inelastic nuclear collision Q is
not identical zero; it takes values depending

on the corresponding energy states of the nucleus
before and after the collisicn. On the other
hand, in systems in which every neutron suffers
at least two collisions it is impossible to
separate the elastically scattered neutrons from
the inelastically scattered ones. A large part
of neutrons has been scattered both elastically
and inelastically. According to this observation
it appears quite natural to relate inelastic

and elastic scattering as closely as possible
and to consider the latter as a particular case
of the former in which Q = O. We proceed now

to the derivation of the kernel for inelastic
scattering. (A derivation and compilation of the
most useful forms of the scattering kernels for

neutrons does not seem to exist in the literature.)
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We consider the collision of two particles. The first
particle of the mass equal to 1 has a speed v' in
the laboratory system (ILS).

The second particle of mass A is initially at rest
in the same system. If we introduce the center of mass

system (CS), the first particle will have a speed given

by
v,= A o
T A+ A2

The second particle will have the speed

. 1
vy = —mmm v

Egs. A2 and A3 give the speeds before collision.

From the kinematics of the collision we have

1q<‘H2P-+'v}== T DA | A4

e S R L A5

¢ 7; A6

In Egs. A4 and A5 v is the speed of the first particle

U]

in LS after collision; f%, %> are the scattering angles

in IS and CS respectively.
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From Ege. A4 and A5 we have

2 A7

Introducing Eqe. A2 and A3 into Eq.A7

we obtain

2
v | . A+2Au+1

n————t -

’

v (Ae )" A8

Egqs. A4 and A5 yield

tan ‘qu = Sin 78

/+ca;12 A9
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where J‘ is given ( 14) by

P
A 2O
A Y1-4 5

A10

In BEq. A10 Q ( » 0) is the Q-value of the

collision,

From Eqs. A 9 and A 10 we obtain a relation
between the cosines of the scattering angles

in LS and CS.

For the case of inelastic scattering collision

we have

At1 4@
1+ AM - TA =
cos o, -

20 2, A+1 28
7/:+ lA[“/;'AAii‘ —J,E-"'A"A 72 A1
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This relation includes the conservation laws
for momentum and energy and permits to comnstruct

the scattering kernels,

The scattering kernel 6"(v’->v'-‘-’-'rl*-’!9 determines,
according to its definition, the probability that
a scattered particle will undergo a definite
change of its coordinates in phase space during

collision.

The change of coordinates takes place according
to the conservation laws mentioned above.
This probability is proportional to the product
of two factors. The one factor q:’ (v, 1;) deter-
mines the probability that the scattering from
v' to ¥ will take place. The other factor
represents the probability that the collision
obeys the conservation laws of momentum and
energy.

Then it follows that
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6in (o> w20 2) - 4 (09)0 [ 4= T (1]

A12

In this equation A (x) is the Dirac delta

/
function; £ | i‘ are the two directions
which determine Mo the cosine of the scat-

tering angle in LS

= 2 =g ) s e

where M 77‘ ([t 1,1) determine the coordinates

. ! n
of the unit vectors =&, 2% i Gy (‘L", z;.)

has yet to be determined.

n
Now we want to express ZV (‘U:v)as a function
only of variables defined in LS.

From the same conservation laws it follows that
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2 Q
- = 20

(A+ 1)*  (4+1)* 4 v

From Eq. A 14 we obtain the cosine, F’ of the

scattering angle in CS

GG 1) ¢ f1-55)
fL' V}_ A+1 2@

A p'

A15

Elimination of B from Egs. A11 and A15 yields

/
the desired relation between z%y v Y

(A+1)1(v2‘ Q
. 1+A[.14 1 *7“},—17

’ ]/ 2 [[A+1)* (v? Q], ;2 A128
1 2B (v )y q- G pe 22128

‘*A16
A v2

Eq. A16 states that only those speeds 2 o
are allowed which satisfy -1$Z%)< 1. From

this we have
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: (4+1) (ﬁ- ) e

gmé’lv)s 1+ 4747 w2 1/+1 7
! 2.2

BT ) - S AT

p'?

AT

For the complete determination of Eq. A12 we
have yet to define a2 normalization factor.
This can be done by using the normaligation

condition

,[//asn (7’/"7*;'—419&)0(-& dy = 1

A18

From the assumption of isotropy in CS and from

Eq. A18 it follows that this factor is

in 44 1)* v 6~

ql (7‘/," = (e 1) v &y A19

v s Av”‘-/1—__4” <K
A

yla

In this case Eg. A12 can be written in the

form
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G'i"(vbvl:&'—) J—): ﬂ* ﬂlv 6:.” == O(’[_L/:{'z: - g;:nﬁlll V)]
v PRy v
4 v A20

This expression vanishes identically except

for the v-values satisfying the inequalities

! _444 24 / 4 Q
’ [Wm( st A v*ﬂ“‘” [(AM (’ MV’M'J

A1

and when ?fh (?/I"z/> is given by Eq. A17.

It is sometimes convenient to expand the 0/’ -

function in a series of Legendre polynomials

PL T )] z%p{(-_ﬂ;ﬁ);{;@»y
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This form is particularly interesting in solving
the transport equation by approximating the
scattering kernel. With Eq. A22 we obtain from
Eq. A20 the useful form

Tt k). Bl SR )

A23

b. The E-representation

After having derived the inelastic scattering
kernel in the v-representation it is easy to

transform it im the E-representation.

In section Ia it has been assumed that the
nuclear collision takes place between two par-
ticles. The particle of mass A was at rest in
LS. The other particle (a neutron) only posses-
sed translational energy corresponding to speed

v'. To carry out the desired transformation
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we only need to require the conservation of the

elementary probabilities, i.e.

65 60, &2 )dvd ) e;‘”(E’-afié'ai)olEd.ﬂ-l

A24
v 2
Prom Eqs. A20, A24 and from E = ET-
we find that
] 2
¢ (B Lsn). (421) bin
£ ' A25

STAE J4-At1_ Q'
A E'

x f[zl_.ﬁ : gw(ggg)]

or

g (E'—-»E;JL_;_/L_) . (A1) 8
E

&7 A E"}/z{- A1 @
1 F A26

9

J’[-_/L_’.—_ﬂ_ - ?E”’ (E’,E)J
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This expression vanishes identically except for

the E-values satisfying the inequalities

Elt-gtli- e -2 E] cEcr
A T

and gEin(E’, E)is now given by

_fl+_4)z E 8
m ] 1+ A ) 1—
S (t4) wfﬁu[ £. )+1—2—5] AI-A—’ i 426

Another representation of the scattering kernel

which is frequently used is the u-representation.
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According to the definition of the lethargy

E =E e ¥ A29

(Eo is an arbitrary energy) we have
dE -u
—| - Ee
du

Now Eq. A25 takes on the form

6 (u'-)u-ﬁl—) -_/_.L)z ___Mlea'-u Sin
u !

fr A 7/1—;411 Q.
A E

-]

FlLL ;'” («, a)]

A30

This expression is different from zero only

for u-values defined by the condition

f——-(-—w-—)]

[1 (a11)2 (Z-%ea'— [ AMQ_ u?]
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Now the function g:’ [a',u) is given by

q"ﬂ(u;u)= l
1o A e ) 1o e ]

Vtraa el 1) 1- e e L 2
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APPENDIX B

ELASTIC SCATTERING KERNELS. ENERGY INDEPENDENT

CROSS SECTIONS.

From Appendix A we can immediately derive
as a special case the corresponding formulas

for the elastic scattering.

a. The v-Representation
From Eq. A20 we obtain the elastic scattering
kernel in the v-representation by setting

Q=20

(7 ) (A+1}:v6" el
G: (v__,vi_a.—) ___)-.- LTS J’[.._/L_-/Z. - g 7):1;)7
47 Ay'% v .

B1



-161-

Now condition A21 becomes

!

)
y A1 Syrsy
A+1

32

In Eq. B1 et p'v) is obtained from Eq. A17 as
P 1
?e((v v)- ‘4“ (_ _(ﬁi (1'
v 2 7 B3

By setting Q = O we obtain from Eqs. A26 and
A 27

oo (eor e ). B0 Loty o]
d Er AE’ "
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Again we have the condition

A cpgE

(4 +1) ) BS

el ,_, A4 JE A4 |E'
¢ (ep)- A4 —_-~-—-—]/_
3 (€:€) 2 [E'" 2 [F

Finally we obtain from Egs. A30 and A32 by

setting Q = 0.
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The region in which the kernel does not

vanish identicelly follows from condition

A31

Weu € u'-4n (ﬁ-)", B 8
01;’ ( —(Ai‘;ﬁ)e‘u’é e
Finally

T ) o e ) ot 2]
« ! )— L 2 B 9
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APPENDIIX C

INELASTIC SCATTERING., ANTSOTROPIC SCATTERING

IN CS. ENERGY DEPENDENT CROSS SECTIONS.

In the preceding Appendices the assumption

of isotropic scattering in CS has been made,

In the present section we give the correspon-
ding formulas for the general case of anisotro-
pic scattering in CS. The main idea for the
construction of the scattering kernels in this
case remains the same. The scattering kernel

is nothing but the product of two probabilities
(or of two guantities proportional to them):
The probability that the collision results to
scattering, and the probability that conserva-
tion of energy and momentum holds. The first
factor is the differential scattering cross
section. The second factor is again a cﬁ -
function guaranteeing the conservation of

energy and momentum in CS,
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a. The v-Representation

Under the circumstances stated above the ine-

lastic scattering kernel can be written as

Gt;n (‘l)‘l—ﬁv,‘:@.’_) _-fé) =6§7 (v:%)

' 2
cf’[vz—v 1, U(%8)

(A4 1)3

_ 242*"'}/7_&_4 2a’ ]
(a+1)% A V"/u

C1

Suppose, now, we want to expand the scattering

kernel in a series of Legendre polynomials with

arguments Fo.

o0 (1ani ) T 67 (U)o
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Here we have

pot £ L
A13
and
6 (s 2mﬂw@w%ﬁ@www
C3

Introducing Eq. A12 into Eq. C3 and using
Eq. A17 we obtain

4

Wﬂ@ﬂﬁ?ﬂﬁmwd*”+

-1

+ 2v"%4 (1~—rz : J.A‘b‘u' 4 20 ]C4
et aaqp] A

e, ) g,
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In Eq. C4 8? (v, /%) is the differential

inelastic scattering cross section in LS.

As a matter of fact most nuclear data are
glven in CS., It seems therefore reasonable
to transform the integral Eq. C4 so that the

nuclear data appear in CS.

This transformation is easily effected by
introducing the transformation formula for

cross sections in the special fornm

6“;" (v,‘u,,)c{/uo = 0‘;" ﬁ'f(u) du

C5

The evaluation of the integral in Eq. C4 can

be done in two different forms.
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% The first method can be applied when the

nuclear data are given in an analytical form.

In this case we can carry out the integration.

Using the properties of the /’-function we
immediately deduce from Egs. C4 and C5 that

. ' 2001 (A+1)y &7 [‘Zl’,a\
oin (rsv) - 2 “”"7'{ M'm B (o ()

Cé

In Eq. C6 p is defined by Eq. A15, B.(P) is
defined by Eq. A11, and 6V (vu)1is the diffe-
rential inelastic scattering cross section in

CS.

The right-hand side from Eq. C6 is different

from zero enly under the condition A21,



-169-

P It happens some times that the measured dif-
ferential scattering cross sections are gi-
ven as a Legendre series, In this case we
can calculate the integral in Eq. C4 after
having expanded the differential scattering
cross section in a Legendre series.

Then we have

o) Tel () o
e,

where

c8
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In particular 6:,":, (‘V') is the total inelastic

scattering oross section in CS.

From Eqa. ¢4 and C7 we obtain the second
expression for the soefficients of the inelastic
scattering kernel Eq. 02,

Y ot Ble(n) Get)o
6;74 (v—*v) ] 234 feIiW 2A¥'Y
A U
Jz o (+') 7, (k)

)

Here p and PO(P) are defined as in case (v );
the right-hand side of Eq. C9 vanishes identi-
cally for v not satisfying condition A21.
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Continuing we give here the scattering kernels
for non isotropic scattering in CS in the ener-
gy representation. The way is exactly the sa-
me as in the isotropic case. The expansion
coefficient of the scattering kernel correspon-

ding to Eq. C6 is

o)

in

. aeet (Aet)* 6 (B p)
6"71 (E’—) E)= cl l[‘AEr.' 1_‘5;;_4_-;-: P‘e@ocu))

E ¢

C10

where F is given by

e ﬁﬁ)"(_ﬁ_f_ﬂ,;(,,%) C11
_ {1_:4_”_@7

A FE
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and the right-hand side of Eq. C10 vanishes
identically for E not satisfying condition

Eq. A27. FO(F) is given by Eq. A11.,

/5)

. ) )
67 (FsE), et (ot)* Yo (o)
X CRE L

2o (e) )

The same conditions as for Eq. C10 hold for
the right-hand side of these equations and

definitions.
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¢) The u-Representation

Finally we give here the expansion coefficients
of the scattering kernel in the lethargy re-

presentation,

o)
n [ ! a1 (A+1)* «
OCRDRE oa

6y (a',,u_)
-;/1_ ﬁi_‘f_ é_eu" P{(/l,,([u)) C13

Eo

where F is defined by

B [y Q ’
{ (uu-4)+4- eu

e 2A 1Eo
11-

e
41 G eu? C14
A Eo
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P)

67 (il ) o 2281 Ce)* tu R (pofu))
u, “l*=3 4 € 7 —,
1 ]/’f-ﬁi.g_e“‘

4 E

L C15

The right-hand sides of Egqs. C13 and C15 are
different from zero only for wu satisfying

condition A31.
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APPENDIX D

ELASTIC SCATTERING KERNELS.ANISOTROPIC

SCATTERING IN CS,

ENERGY DEPENDENT CROSS SECTIONS.

Here we deduce the elastic scattering kernel
from the inelastic one in the manner mentioned
above for the case of anisotropic scattering

in CS.

Por this case the coefficients of the expansion

Eq. C2 follow immediately from Eqs. C6 and C9.

We have respectively
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o)

{ ! ¢+1 (A+1)* ¢ 1
o8 foen)s 22 T2 (et 1)

D1

and

P)

6# (o) 26 B D (1 fu)

4 At

Yol (v) (1]

J

)
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The right-hand sides of Eqs. D1 and D2 are
different from zero only for v satisfying

condition BZ2.

In this case we obtain from Egs. C10 and C12

respectively

o )

e ' 1 (A+1)* el [
o (£ore 2 LE et () J )

D3

and
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‘5)

el [ _ k! (A+1)?
65'((5»5)_2; A

fv_e;i (E°) P (#)

D4

The right-hand sides of Egs. D3 and D4 do
not wvanish identically if E satisfies the

condition B5.

c¢c. The u-Representation

- — y — T T > i iy > — . —— — ————

Finally we obtain from Egs. C13 and Ci15

o)

Gu‘i’ (u'— u):‘g%i (ﬁé}zeul_uqd(u’,ﬂ) \7f /é“"/d“))

D5



p )

6";( (a'—-su
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),*E*_f %ﬂzeu'_u Pz(/‘v[/‘))

<

Jgé‘:‘] («) i ()

D6
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