EUR 3300.e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

A CATALOGUE OF BURNOUT CORRELATIONS FOR FORCED CONVECTION IN THE QUALITY REGION

by

G.C. CLERICI(*), S. GARRIBA(**), R. SALA(*) and A. TOZZI(*) (*) ARS, SpA (**) CESNEF

1966

EURATOM/US Agreement for Cooperation

EURAEC Report No. 1729 prepared by ARS, Applicazioni e Ricerche Scientifiche SpA, Milano — Italy

Euratom Contract No. 073-65-11 TEEI

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM) in pursuance of the joint programme laid down by the Agreement for Cooperation signed on 8 November 1958 between the Government of the United States of America and the European Atomic Energy Community.

It is specified that neither the Euratom Commission, nor the Government of the United States, their contractors or any person acting on their behalf :

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4

CILLAR TRADE, BARRIS MARINE, MA	BUT I SHOW THE FORMATION OF THE BUT	AND REAL PROPERTY AND	
at the price of FF 17.50	FB 175.—	DM 14.—	Lit. 2310 Fl. 13.45
THE REPORT OF A DESCRIPTION OF A DESCRIP	875 PEARSON	「見ていた」の作品の作品もなられていた。	(10)时前1301 正规尺计电声系下处理; 大约消费1301101101101101010101

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by Van Muysewinkel s.p.r.l. Brussels, December 1966

This document was reproduced on the basis of the best available copy.

EUR 3300.e

A CATALOGUE OF BURNOUT CORRELATIONS FOR FORCED CON-VECTION IN THE QUALITY REGION by G.C. CLERICI (*), S. GARRIBA (**), R. SALA (*) and A. TOZZI (*). (*) ARS, SPA (*) CESNEF

European Atomic Energy Community - EURATOM EURATOM/US Agreement for Cooperation EURAEC Report No. 1729 prepared by ARS., Applicazioni e Ricerche Scientifiche SpA, Milano (Italy) Euratom Contract No. 073-65-11 TEEI Brussels, December 1966 - 130 Pages - FB 175

This report lists burnout correlations for the quality region and presents a first comparison between them. The report has been subdivided in three parts : *Part 1* "Original Form": The correlations are listed in their original form, using the same symbols and units of the authors. Conditions for application

EUR 3300.e

A CATALOGUE OF BURNOUT CORRELATIONS FOR FORCED CON-VECTION IN THE QUALITY REGION by G.C. CLERICI (*), S. GARRIBA (**), R. SALA (*) and A. TOZZI (*). (*) ARS, SpA (**) CESNEF

European Atomic Energy Community - EURATOM EURATOM/US Agreement for Cooperation EURAEC Report No. 1729 prepared by ARS., Applicazioni e Ricerche Scientifiche SpA, Milano (Italy) Euratom Contract No. 073-65-11 TEEI Brussels, December 1966 - 130 Pages - FB 175

This report lists burnout correlations for the quality region and presents a first comparison between them. The report has been subdivided in three parts : *Part 1* "Original Form": The correlations are listed in their original form, using the same symbols and units of the authors. Conditions for application

EUR 3300.e

A CATALOGUE OF BURNOUT CORRELATIONS FOR FORCED CON-VECTION IN THE QUALITY REGION by G.C. CLERICI (`), S. GARRIBA (``), R. SALA (`) and A. TOZZI (`). (`) ARS, SPA (``) CESNEF

European Atomic Energy Community - EURATOM EURATOM/US Agreement for Cooperation EURAEC Report No. 1729 prepared by ARS., Applicazioni e Ricerche Scientifiche SpA, Milano (Italy) Euratom Contract No. 073-65-11 TEEI Brussels, December 1966 - 130 Pages - FB 175

This report lists burnout correlations for the quality region and presents a first comparison between them. The report has been subdivided in three parts : *Part 1* "Original Form": The correlations are listed in their original form, using the same symbols and units of the authors. Conditions for application

include the geometry (circular, rectangular, or annular ducts, single channels or cluster of rods) and type of heat flux distribution (uniform or nonuniform). *Part 2* "Standard Form": has been limited to the uniform heat flux distribution and to the simplest geometries, i.e. single channels of circular, rectangular, or annular cross section.

All correlations have been rewritten in a standard form :

 $\emptyset_0 = \emptyset_0 (X_0)$

where \emptyset_0 is the burnout heat flux, X_0 the burnout steam quality at the outlet. Symbols and units have been standardized.

For each correlation the range of validity of the most important parameters (G, P, D, L, L/D, X_0 , X_{10} , \emptyset_0) has been given.

Part 3: a first comparison of the correlations for uniform heat flux distribution and round ducts is given. All the correlations have a common range of validity. The parameters were examined for the following ranges: $17.5 \le P \le 140$ ata $50 \le G \le 700$ g/cm² sec $0.2 \le D \le 2.5$ cm $20 \le L \le 250$ cm.

include the geometry (circular, rectangular, or annular ducts, single channels or cluster of rods) and type of heat flux distribution (uniform or nonuniform). *Part 2* "Standard Form": has been limited to the uniform heat flux distribution and to the simplest geometries, i.e. single channels of circular, rectangular, or annular cross section.

All correlations have been rewritten in a standard form :

$$\emptyset_0 = \emptyset_0 (X_0)$$

where \emptyset_0 is the burnout heat flux, X_0 the burnout steam quality at the outlet. Symbols and units have been standardized.

For each correlation the range of validity of the most important parameters (G, P, D, L, L/D, X₀, X₁, \emptyset_0) has been given.

Part 3: a first comparison of the correlations for uniform heat flux distributionand round ducts is given. All the correlations have a common range of validity.The parameters were examined for the following ranges: $17.5 \leq P \leq 140$ ata $50 \leq G \leq 700 \text{ g/cm}^2$ sec $0.2 \leq D \leq 2.5 \text{ cm}$ $20 \leq L \leq 250 \text{ cm}.$

include the geometry (circular, rectangular, or annular ducts, single channels or cluster of rods) and type of heat flux distribution (uniform or nonuniform). *Part 2* "Standard Form": has been limited to the uniform heat flux distribution and to the simplest geometries, i.e. single channels of circular, rectangular, or annular cross section.

All correlations have been rewritten in a standard form :

 $\emptyset_0 = \emptyset_0 (X_0)$

where \emptyset_0 is the burnout heat flux, X_0 the burnout steam quality at the outlet. Symbols and units have been standardized.

For each correlation the range of validity of the most important parameters (G, P, D, L, L/D, X₀, X_{1n} , \emptyset_0) has been given.

Part 3: a first comparison of the correlations for uniform heat flux distribution and round ducts is given. All the correlations have a common range of validity. The parameters were examined for the following ranges: $17.5 \le P \le 140$ ata $50 \le G \le 700$ g/cm² sec $0.2 \le D \le 2.5$ cm $20 \le L \le 250$ cm.

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

A CATALOGUE OF BURNOUT CORRELATIONS FOR FORCED CONVECTION IN THE QUALITY REGION

by

G.C. CLERICI(*), S. GARRIBA(**), R. SALA(*) and A. TOZZI(*) (*) ARS, SpA (**) CESNEF

1966

EURATOM/US Agreement for Cooperation

EURAEC Report No. 1729 prepared by ARS, Applicazioni e Ricerche Scientifiche SpA, Milano — Italy

Euratom Contract No. 073-65-11 TEEI

Summary

This report lists burnout correlations for the quality region and presents a first comparison between them. The report has been subdivided in three parts : *Part 1* "Original Form": The correlations are listed in their original form, using the same symbols and units of the authors. Conditions for application include the geometry (circular, rectangular, or annular ducts, single channels or cluster of rods) and type of heat flux distribution (uniform or nonuniform). *Part 2* "Standard Form": has been limited to the uniform heat flux distribution and to the simplest geometries, i.e. single channels of circular, rectangular, or annular cross section.

All correlations have been rewritten in a standard form :

$$\emptyset_0 = \emptyset_0 (X_0)$$

where \emptyset_0 is the burnout heat flux, X_0 the burnout steam quality at the outlet. Symbols and units have been standardized.

For each correlation the range of validity of the most important parameters (G, P, D, L, L/D, X₀, X_{1n}, \emptyset_0) has been given.

Part 3: a first comparison of the correlations for uniform heat flux distribution and round ducts is given. All the correlations have a common range of validity. The parameters were examined for the following ranges : $17.5 \le P \le 140$ ata

The parameters were examined for the following ranges : $17.5 \le P \le 140$ ata $50 \le G \le 700$ g/cm² sec $0.2 \le D \le 2.5$ cm $20 \le L \le 250$ cm.

TABLE OF CONTENTS

List of correlations	page	i
Introduction	page	1
Part 1: Original Form	page	4
Part 2: Standard Form	page	37
Part 3: Graphical Comparison	page	102
Water Physical properties	page	118

Ģ

Bibli o graphy	••••••	pa ge	119
Nomenclature	•••••	page	125

ACKNOWLEGMENT

Pref. M. Silvestri gave his time generously to discuss the program during the course of the investigation. Dr. R. Morin, Prof. H. S. Isbin and Prof. S. Albertoni provided encouragement and suggestions in the writing of this report.

LIST OF CORRELATIONS

Correlation Reference Original Form Standard Form

Cise 1	1	page 5	pages 38-40
Cise 2 nd	9 10	pages 16-17	pages 57-58
Cise 3 rd	19–20	pages 30-31	pages 81-82
Hewitt	21	pages 32-33	pages 83-84
Becker 1 st	23	page s 34-35	pag es 87-89
Becker 2 nd	24	page 36	pages 90 -92
Lee-Obertelli	11	page 18	pages 59-60
Tippe ts	16	pag es 25-2 6	pag es 77-7 8
Levy	6	pages 11-12	pages 49-51
Tong	18	page 29	pag es 79-80
Macbeth Round	12	pages 19-20	pages 61-67
Macbeth Rectangular	12	pages 19-20	pages 61-67
Macbeth 2 nd	15	pages 23-24	pages 74-76
Smolin	22	page 33	pag es 85-86
I v ashke vitch	2-3	pages 6-8	pag es 41-44
Konkov	7	page 13	pages 52-53
Zenkevitch	17	pages 27-28	pages 70-73
Mi r opol s kii	4-5	pages 9-10	pages 45-48
Rybin	8	pages 14-15	pag es 54-5 6
Subbotin	13-14	pages 21-22	pages 68-69
l			

•

This report lists burneut correlations for the quality region and presents a first comparison between them. The report has been subdivided in three parts : <u>In part 1</u>, "Original Form", the correlations are listed in their original form, using the same symbols and units of the authors. Conditions for application include the geometry circular rectangular, or annular ducts, single channels or clu ster of rods - and type of heat flux distribution - uniform or nonuniform.

In part 2, "Standard Form", we have restricted our attention to the uniform heat flux distribution and to the simplest geometries, i.e. single channels of circular, rectangular, or annular cross section.

All correlations have been rewritten in a standard form :

$$\phi_{o} = \phi_{o}(X_{o})$$

where \oint is the burnout heat flux, X_0 the burnout steam quality at the outlet. Symbols and units have been standardyzed and are reported in the Table I.

For each correlation the range of validity of the most important parameters (G,P,D,L,L/D,X_o, X_{in}, ϕ_o) has been given.

^(*) Manuscript received on October 20, 1966

When it was not explicitly pointed out by the authors, the range of validity was obtained by means of analysis of the experimental data used by the authors to prove or compare their correlations. This given range of validity represents the minimal and the maximal values which the single parameters may assume. The possible coupling between parameters has yet to be determined. For example, without specific details, the correlations may not be valid for the maximal flow rate and the minimal diameter.

Some information about the asymptotic trends, namely $\lim_{n \to \infty} \Phi_{o}(X \to 0), \lim_{n \to \infty} \Phi_{o}(X \to 1), \lim_{n \to \infty} \Phi_{o}(P \to P_{cin}), \lim_{n \to \infty} \Phi_{o}(G \to 0), \lim_{n \to \infty} \Phi_{o}($

<u>In part 3</u>, a first comparison of the correlations for uniform heat flux distribution and round ducts is given. All the corr<u>e</u> lations have a common range of validity.

For our comparison, we have chosen the common point : P=72 ata, G=219 gr/cm²sec, D=0,918 cm, and L=139,9 cm. In the figures 7-9, we have reported the critical heat flux versus th outlet quality, for $X_{in}=0$ and three parameters of the set P,G, D,L are fixed, plots of ϕ_o versus the free parameter are gi-

ven in Figures (10-21), with ϕ_0 vs. P in Figures (11-15), ϕ_0 vs. L in Figures (16-18), and ϕ_0 vs. D in figures (19-21). The parameters were examined for the following ranges : 17,5 \leq P \leq 140 ata 50 \leq G \leq 700 gr/cm²sec 0,2 \leq D \leq 2,5 cm 20 \leq L \leq 250 cm.

For each correlation the trend of ϕ_o was given through the whole chosen range, without care to the validity range; however this range was marked on the same diagrams. Where tables or figures were used in the original presentation to denote dependency upon pressure or upon some other physical parameters, we have employed an analytical approximation determined by a linear regression program. For these cases, the plots are further limited by the validity of the analytical approximation.

₩

In this case the range of validity will be indicated as: Probably Range of Validity

PART 1

,

ORIGINAL FORM

A. Cicchetti - M. Silvestri et al .

Energia Nucleare - Vol. 6, No. 10, pages 637-660 October 1959

The correlation, given for an uniform heat flux distribution and for round and rectangular channels, has the following form

$$W_{\beta}G^{n} = \frac{K^{1}\lambda}{D^{0},25} = \frac{100 - X}{X + a}$$

Symbol	Definition	Units
w	Burnout Heat Flux	$10^6 Btu/ft^2$ - hour
G	Mass velocity	10^{6} lb/ft ² - hour
D	Hydraulic Equivalent Diameter	in.
λ	Latent Heat of vaporization	Btu/lb
x	Burnout Steam Quality	dimensionless
a	Ratio between specific volu-	dime nsienless
	me of liquid and specific	
	volume change upon vaporizatio	ac
۷ _f	Specific volume of liquid	ft ³ /lb
V _{gf}	Specific volume change upon	
	vaporization (1)	ft ³ /lb
K,	Pressure dependent constant	
Π	(1) Pressure dependent constant	
P	Pressure	p.s.i.a.

(1) k' = k'(P) and n = n(P) can be obtained by means of the two diagrams of the fig. 14 and 15 - page 649 - in the above mentio_ ned reference.

A. A. Ivashkevitch

Critical Heat Flows in the Forced flow of liquid in channels *Atomnaya Energiya - Vol. 8, No. 1, pages 51-53 January 1960 **Teploenergetika Vol. 8, No. 10 pages 74-78 October 1961

The correlation, given for an uniform and non uniform heat flux distribution, for round, rectangular and annular channels, has the following form (saturated boiling) :

$$K_{er} = \frac{1.9 \cdot 10^{5} \cdot Re}{1 + 1.8 \cdot 10^{6} \frac{Re}{\Psi} (K_{3} + K_{4})}$$

where K_{cr}, Re, K₃ K₄ are the following dimensionless groups:

$$K_{er} = \frac{q_{er}}{r(1-x)(g y'')^{1/2}[\mathcal{E}(y'-y'')]^{1/4}}$$

when

when

 $D \leq \left(\frac{6}{\lambda' - \lambda''}\right)^{1}$

when	¥ K ₄ ≤ 125
when	¥ K ₄ ≥125

Symbol	Definition	Units
9 ₆₁	Burnout Heat Flux	kcal/m ² -hour
r	Latent heat of vaporization	kca 1/kg
X	Burnout Steam Quality	dimensionless
9	Gravity acceleration	m/h ²
8'. 8 ''	Liquid and Steam specific gravity	kg/m ³
ទ	Surface Tension	kg/m
ν'	Kinematic viscesity of the liquid	m ² /h
l ₁	Distance between the section	m
	at wich subcooled surface boil	ing
	begins and the section under	
	consideration can be obtained	
	by a further correlation	

\sim	liquid (🗙) er flew (**) velecity	m/h
l ₂	Distance between the section at which saturated net boiling begins and the section under consideration.	m
б d _н	Gap for rectangular and annular channels Hydraulic equivalent diameter	m m
D	$\begin{cases} d_{H}/2 \text{ for round ducts} \\ \delta/2 \text{ for rectangular and annular channels} \\ \text{with bilateral heating} \\ \delta \text{ for rectangular and annular channels} \\ \text{with unilateral heating} \end{cases}$	m

(1) For an uniform heat flux distribution $\varphi = 1$ For non uniform heat flux distribution

$$\Psi = q/\bar{q}$$
 with $\bar{q} = \frac{1}{P} \int^{P} q \, dP$ for radial nonuniformity
P is the perimeter

 $\overline{q} = \frac{1}{b} \int^{b} q \, db$ for axial nonuniformity

b is the distance between the inlet section and the section in consideration

when $\frac{b}{d_{H}}$ > 125, the integration is made between b-125 d and b

Z. H. Miropol'skii - M. E. Shitsman

The critical Heat Flux for boiling water in tubes Atomnaya Energiya - Vol. II, No. 6, pages 515-521 December 1961

Z. H. Miropol'skii - L. E. Faktorovich : General conclusions derived from experimental results on the influence of the Heated lenght of a channel on the critical Heat Flux Soviet Physics Doklady Vol. 6 N. 12 pag. 1058-1061 June 1962

The correlation, given for an uniform heat flux distribution, for round, rectangular channels and for annuli with bilateral heating, has the following form :

$\frac{q_{cr} \mathcal{M}}{6 \mathbf{Y}' \mathbf{r}} = c_1$	$\left(\frac{c_{P}' T_{a}}{r}\right)^{0.8}$	κ _w ^{0.4}	(1 - x) ⁿ
---	---	-------------------------------	------------------------------

Definition

Symbol

Units

kcal/m-hourBurnout Heat Flux 9_{er} kg-sec $/m^2$ Liquid absolute viscosity ж Surface Tension kg/n 6 kg/m³ Liquid Density at T א' kcal/kg Г Latent heat of vaporization Constant dependent on the Geometry (1) c 1 ٦s Saturation Temperature ٥K Kw Constant dependent on the pressure, mass dimensi •nless velocity (2) X Burnout Steam Quality dimensienless Constant dependent on $K_{\lambda \lambda}$ (3) n kg/m²-sec Mass velocity Wa kcal/kg-°C Cp. Liquid specific heat

(1) c_1 is a constant dependent on the geometry and on the ratio L/D

(2)
$$K_{W} = \frac{W_{S} \mu'}{5 \kappa'} \left(\frac{\kappa'}{\kappa''}\right)^{0.2}$$

(3) For round ducts and annular channels : n = 0.8 if $k < 1.610^2$; $n = 50 k_w$ if $1.610^2 \le k_w \le 6.10^{-2}$; n = 3 if $k > 6.10^{-2}$

For rectangular channels : $n = 33.3 k_w$ if $2.10^2 \le k_w \le 9.10^2$; n = 3 if $k \ge 9.10^{-2}$

and where $c_1^{\#}$ is the smaller value between $e_1^{+0.0122(100 - L/D)}$ and

$$0,373 \left[\frac{W_{a} \mathcal{U}}{6 \delta'} \left(\frac{\delta'}{\delta''} \right)^{0,2} \left(1 - \chi \right)^{2,5 n} \right]^{-0,4}$$

S. Levy

Prediction of the critical Heat Flow in Forced convection Flow - GEAP 3961 June 1962

The correlation, given for uniform and non uniform heat flux distribution, for round tubes, rectangular channels and annuli heated on one or both sides, has the following form:

$$\frac{\left(\frac{q}{A}\right)_{p} + \left(\frac{q}{A}\right)_{F} + \left(\frac{q}{A}\right)_{M} = 0,131 h_{fg} \int_{V} \left[\frac{6 g^{2} \left(\int_{L} - \int_{V}\right)}{\int_{V}^{2}}\right]^{1/4} + h_{L} \left(T_{W} - T_{s}\right) + h_{L} \Delta T - h \cdot M_{v}$$
with $M_{v} = \frac{c \int_{L}}{M_{L}} \frac{\kappa^{2} \beta^{2}}{1 - \int_{V} / \beta_{L}} G$

Definition	Units
Burnout Heat Flux for the pool boiling	Btu/hour
Burnout Heat Flux for the Forced convec-	Btu/hour
tion	
Burnout Heat Flux for the Mass Transfer	Btu/hour
Latent heat of vaporization	Btu/1b
Vapor Density	lb/ft ³
Surface Tension	lb/ft
Gravitational Constant	ft/hour ²
Liquid Density	lb/ft ³
Heat transfer coefficient for the liquid	Btu/hour-ft-°F
Wall Temperature	С F
Saturation Temperature	°F
	Definition Burnout Heat Flux for the pool boiling Burnout Heat Flux for the Forced convec- tion Burnout Heat Flux for the Mass Transfer Latent heat of vaporization Vapor Density Surface Tension Gravitational Constant Liquid Density Heat transfer coefficient for the liquid Wall Temperature Saturation Temperature

ΔT_{sub}	Subcooling	°F
С	Diffusion coefficient	ft ² /hour
Me	Liquid absolute viscosity	lb/hour-ft
к ß	Mixing length constant Dimensienless constant ⁽¹⁾ dependent	Dimensienless
	on the Pressure and Quality	
G	Lass velocity	lb/hour-ft ²

(1) β can be obtained by the tables on pages 6 and 7 in the above mentioned references

.

•

A. S. Kon'kov - V. V. Modnikova

Experimental investigation of the condition of deterioration of heat transfer during boiling in tubes Teploenergetika Vol. 9, No. 8 pp. 77-81 1962 (Translated in AEC-tr-5539)

The correlation, given for an uniform heat flux distribution and for round ducts has the following form :

$$Xd = \left[\frac{q}{\zeta \delta''} \sqrt{\frac{\delta'}{\delta' - \delta''}}\right]^{-0.125} Pr_{4}^{-0.5} \left(\frac{\mu'}{\mu''}\right)^{-0.2} \left(\frac{d}{\sqrt{\frac{\delta'}{\delta' - \delta''}}}\right)^{0.2} \left(\frac{500}{\text{Ret} \frac{\delta''}{\delta'} + 350} + 0.35\right)$$

where Rel = $\frac{G\left(1 - X_{av}\right)}{\delta' u v'}$

Symbol Definition

Units

Xal	Burnout steam quality	Dimensionless
P	Burnout heat flux	$Kcal/m^2$ hr
Ζ	Latent heat of vaporization	kcal/kg
ð; ð"	Liquid or steam density	kg/m ³
6	Surface tension	kg/m
۴'	Liquid kinematic viscosity	m^2/hr
Pre	Liquid Pran dtl's number	Dimensienless
м', м"	Liquid or steam viscosity	kg hr/m ²
d	Diameter	m
G	Total mass flow rate	kg/hr
u	Perimeter	m
Xav	Not defined in the translation	Dimensienless

Critical Thermal loads During the boiling of a saturated liquid in tube. Atomnaya Energya - Vol. 13 - No. 4 - pages 377-380 October 1962

The correlation, given for an uniform heat flux distribution, and for round ducts has the following form :

$$K = \frac{q_{cr}}{r \sqrt{g \delta''} \sqrt[4]{6 (\delta' - \delta'')}} = K_0 \left(1 - n \beta\right)$$

Symbol

Definition

Units

9 _{cr}	Burnout Heat Flux	kcal/m ² -hour
r	Latent heat of vaporization	kcal/kg
g	Gravity Acceleration	m/hour ²
۲,	Liquid density at T sat	kg/m ³
<u>እ</u> "	Steam density at T sat	kg/ m ³
Tsat	Saturation Temperature	°c
б	Surface Tension	kg/m
Ko	Value of K when $\beta = 0^{(2)}$	
n	Constant dependent on K_{yy} (1)	
ß	Volume flow rate quality	Dimensionless
Kw	Constant dependent on W_{o} and $P^{(3)}$	
$\forall b$	W _o . X ⁱ mass velecity	Kg/m ² -hour
P	Pressure	kg/m ²

(1) $n = 0.08 \frac{K_{0,55}}{W}$

(2) when
$$14 \le K_W \le 50$$
 $K_Q = 0,0575 K_W^{0,25}$
when $50 \le K_W \le 80$ $K_Q = 0.0145 K_W^{0,6}$

(3)
$$K_w = W_0 \sqrt[4]{\frac{\partial' - \partial''}{\partial_1^2 \delta'}}$$

A Research program in two-phase flow : work performed under the Euratom contract N. 002-II RDI C CAN-I) January 1963

The correlation, given for an uniform heat flux distribution ⁽¹⁾ and for round tubes (some data were taken with anular tubes for a fixed pressure, 70 ata, and external heating only) has the following form

$$\phi_{BO}^{m} G^{n} = \frac{1 - \chi_{BO}}{a + \chi_{BO}} K$$

Symbol	Definition	Units
ф _{во}	Burnout Heat Flux	watt/cm ²
G	Mass velocity	g/cm ² sec
D	Hydraulic Equivalent Diameter	cm
L	Channel length	cm
XBO	Burnout Steam Quality	Dimensionless number%
a	Ratio between specific volume of	Dimensionless number %
	liquid and specific volume change	
	upon vaporization : V1/V91	
٧į	Specific Volume of liquid	cm ³ /g
Vge	Specific Volume change upon vaporiza-	cm ³ /g
	tion	
к	Constant dependent on pressure and L/L)
	equal to 14150/ $(L/D)^{0,39}$ for P-70 at	L

n	Constant	dependent	010	the	Pressure	(2)	
m	Constant	dependent	on	the	Pressure	(2)	
P	Pressure					а	ta

(1) For uniform and non uniform heat flux distribution similar but not equivalent correlation was adopted
 by. Casagrande (- Energia Nucleare - Vol. 10 - No. 11 - pages 571-572 November 1963) for P=70 ata

$$\frac{1 - \chi_{BO}}{a + \chi_{BO}} = \frac{K}{(LID)^{1/3}} = G \phi_{BO}^{1/2} \quad \text{with } K = 11.000$$

in the case of non uniform heat flux distribution

$$\phi_{BO} = \frac{1}{L} \int_{0}^{L} \phi dL$$

(2) m=m(p) and n=n(p) can be obtained by means of the two diagrams on fig. II-40(page 185) in the above mentioned reference

D. H. Lee - J. D. Obertelli

An Experimental Investigation of Forced convection Burnout in High Pressure water, AEEW-R 213 August 1963

The correlation, which is a modified form for the WAPD-188 burnout correlation at 1000psia, is given for an uniform heat flux distribution in round tubes, and has the following form:

$$\phi = 0,45 \left(1 + \frac{0.546}{G}\right) \left(\frac{H_{B0}}{10^3}\right)^{-2} \frac{\exp\left[-0,00165 \text{ L/D}\right]}{0,77 + D}$$

Symbol	Definition	Units
ф	Burnout Heat Flux	10 ⁶ Btu/ft ² -hour
G	Mass Velocity	10^6 lb/ft ² -hour
H _{B0}	Burnout Enthalpy	Btu/1b
D	Diameter	in
L	Channel Le ngth	in

R. V.Macbeth

Forced convection burnout in single uniformly heated channels: a detailed analysis of world data. AEEW-5892 A (1963)

There are two distinct correlations for high and low mass velocities, which have been developed for round tubes and rectangular channels heated on both sides with an uniform heat flux distribution.

1)

High velocity

Round channels

$$\Phi_{10}^{\psi} = y_0 D^{\psi_1} \left(\frac{G}{10^6}\right)^{\psi_2} - \frac{1}{4} y_3 D^{\psi_{4+1}} \left(\frac{G}{10^6}\right)^{\psi_{5+1}} \lambda W$$

Rectangular channels with bilateral heating

$$\phi/_{10}^{6} = y_{0}^{c} s^{y_{1}^{c}} \left(\frac{G}{10^{6}}\right)^{y_{2}^{c}} 0,555 y_{3}^{c} s^{y_{4}^{c+1}} \left(\frac{G}{10^{6}}\right)^{y_{5}^{c+1}} \lambda W$$

2)

Low velocity

Round channels

$$\Phi/_{10} = \frac{\lambda}{135} \left(\frac{G}{10^6}\right)^{1/2} \left(1 - W\right)$$

Rectangular channels

$$\Phi /_{10} 6 = \frac{\left(\frac{G}{10^6}\right) \left(\lambda + \Delta H_{i}\right)}{3,78 \text{ s}^{-1,73} \left(\frac{G}{10^6}\right)^{1,1} + \frac{1,8 \text{ L}}{5}}$$

Symbol	Definition	Units
ф	Burnout Heat Flux	Btu/ft ² -hour
G	Mass velocity	lb/ft ² -hour
W	Average mass flow rate quality	1Ъ/1Ъ
λ	Latent heat of vaporization	Btu/1b
D	Internal tube Diameter	in.
S	Internal spacing between heating	in.
	surfaces of rectangular channel	
Δн;	Subcooled Enthalphy at channel inlet	Btu/ lb
L	Channel Lenght	in.
y , y ₁ , y ₂ , y ₃ , y ₄ , y ₅ y , y ,	Constants dependent on the Pressure (I)	

(1) They can be obtained by Tables on pages 10 and 15 in the above mentioned references.

G. V. Alekseyev - B. A. Zenkevitch - V. I. Subbotin

Critical Heat Fluxes in Annular Channels Teploenergetika Vol. 10, No. 10 pages 72-75 October 1963 Critical Heat Fluxes in Annular Channels with Heat Supply from two sides. Inzh. Fizieeskaia Zhurnal - Vol 7 - No. 9 pages 30-33 September 1964

The correlation, given for an uniform unilateral heating and for an uniform bilateral heating, for annular channels, has the following form :

$$q_{cr} = q_{o} \left[1 + 1.41 \cdot 10^{-6} \left(\frac{\lambda''}{\lambda'} \right)^{0.731} W_{g} K_{2} \right]$$

where
$$K_2 = \frac{l - l_{out}}{r}$$
 for unilateral heating

$$K_2 = \frac{\dot{l} - \dot{l}_{our}}{r} + \frac{3.6 \cdot 10^3 \,\text{q f}_2}{W_{\text{q}} \,r \,f_1} \qquad \text{for bilateral heating}$$

Symbol

Definition

Units

 q_{cr} Burnout Heat Fluxwatt/m² q_o Critical heat flux at X=0watt/m² δ' Liquid density at T satkg/m³ δ'' Steam density at T satkg/m³ δ'' Steam density at T satkg/m³ δ'' Saturation Enthalphykcal/kg

L _{our}	Outlet Enthalphy	Kcal/kg
r	latent heat of vaporization	Kcal/kg
q	Specific heat flux from the	watt/m ²
	surface at which no crisis	
	is expected	
f1 f2	Cross sectional are of channel Area of the surface from which d is removed	2 2 2
₩g	Mass velocity	kg/m ² -hour
L	Leng th	m

(1)
$$q_{o} = 0,611,10$$
 r L -3^{3} $1,58 - 0,262$

B. Thompson-R. V. Macbeth

Burnout in uniformly heated round tubes: A compilation of World data with accurate correlations- AEEW-R 356

The correlation, given for an uniform heat flux distribution and for round channels, is a modified form of the previous Macbeth correlation for the high velocity regime :

$$\oint \cdot 10^{-6} = \frac{A' - 0.25 D (G \cdot 10^{-6}) W \lambda}{C'}$$

$$\mathbf{A}' = \mathbf{y}_0 D^{\mathbf{y}_1} (G 10^{-6})^{\mathbf{y}_2} \left[1 + \mathbf{y}_3 D + \mathbf{y}_4 (G 10^{-6}) + \mathbf{y}_5 D (G 10^{-6}) \right]$$

$$\mathbf{C}' = \mathbf{y}_6 D^{\mathbf{y}_4} (G 10^{-6})^{\mathbf{y}_6} \left[1 + \mathbf{y}_9 D + \mathbf{y}_{10} (G 10^{-6}) + \mathbf{y}_{11} D (G 10^{-6}) \right]$$
The optimal values of \mathbf{y}_1 are given in table I(page 4) of the above mentioned reference, corresponding to the four groups of pressure 560,1000,1550,2000 psia.

y _o ^{to y} 11	Numerical values optimized by the computer	Dimensionless
λ	Latent heat at system pressure	B tu/lb
φ	Burnout heat flux	Btu/hr ft ²

F. E. Tippets

Analysis of the critical Heat-Flux condition in High - Pressure Boiling water flows. Journal of Heat Transfer - pages 23-38 February 1964

The correlation, given for round, rectangular and annular channels and for an uniform heat flux distribution has the following form :

$$q_{c} = C'' - \frac{\psi^{m}}{3}$$
with $\psi = \frac{6 \int_{L} (1 + f_{L} / f_{g})}{\Phi_{TPF}^{f_{F}} G^{2} b (1 + \sqrt{f_{L}} / f_{g})^{2}} = \frac{3}{3} = \frac{1 + (1 + C' \frac{X_{c}}{1 - X_{c}}) \frac{f_{L}}{f_{g}}}{(\frac{f_{L}}{f_{g}} + \Phi_{TPF}^{f_{F}})^{1/2} Gh_{rg}} C'' = \kappa' (2\kappa_{3}\kappa_{4})^{m} / 2$

Symbol	Definition	Units
۹ _c	Burnout Heat Flux	Btu/ft ² -sec
C'and C"	Empirical constants	Dimensionless
m	Empirical constant	Dimensienless
6	Surface Tension	lbm/sec ²
SL	Liquid Density	lbm/ft ³
Sg	Vapor Density	lbm/ft ³
A TPF	Two phase friction multiplier	Dimensienless
f _F	Fanning friction factor	Dimensienless
G	Mass Velocity	lbm/ft ² -sec.
Ь	Hydraulic Radius for rectangular	ft.
	channels and annul1. Radius for	
	c⊥rcular Tu bes	

Xc	Burnout Steam Quality	Dimensienless
h _{ta}	Latent heat of vaporization	Btu/1bm
K,K,K,K,K,K,K'	Numerical constants	Dimensienless

Burnout Heat Fluxes under Forced water flow Geneva Conference - A/Conf. 28/P/327 a May 1964

There are two correlations $\binom{(1)}{}$, given for an uniform heat flux distribution and for round ducts, with the following forms

1)
$$q_{B0} = 46,5 w_g^n (1-\chi)^m (\frac{\chi'}{\chi''})^{2/2} (1+\frac{8\cdot 10^9}{w_g^K}) \frac{2.71}{d_{10}^{0.48}}$$

2)
$$q_{B0} = \left[1,46 \cdot 10^{-4} r^{1,72} (1-x)^{m'} - 0,116 W_{g} \right] \frac{2,71}{d_{m}^{0,48}}$$

Symbol Definition

Units

(1) The first correlation is valid for high Pressures (100-200 kg/cm²), the second for the Pressure Range : 40-100 kg/cm²

(2)
$$n = 0.56 - 0.0189 \, \delta'/\delta'' \quad m = 0.7 \, \delta'/\delta'' - 0.4 \quad m' = 3.48 - 0.54 \left(\frac{\Gamma}{4.18 \cdot 10^6}\right)$$

(3)
$$K=1,13+3,6$$
 $\% / \% -0,45$ X
H. S. Tong - H. B. Currin - F. C. Engel

DNB studies in an open lattice core: WCAP 3736 August 1964 New Correlations Predict DNB Conditions Nucleonics 21,5,1963

The correlation, given for an uniform and non uniform heat flux-distribution and for round tubes, rectangular channels, and red bundle, has the fellewing ferm:

$$H_{0^{10}} - H_{1^{10}} = 0.529 \left(H_{1^{-1}} - H_{1^{10}} \right) + H_{fg} \left\{ \left(0.825 + 2.36 e^{-17 D_{e}} \right) e^{-1.5 G/10^{6}} - 0.0048 L \left| D_{1^{12}} - 1.12 \frac{\int_{g}}{\int_{L}} + 0.548 \right\} \right\}$$

Symbol	Definition	Units
H, NB	Burnout Enthalphy	Btu/lb
H _{in}	Inlet Enthalphy	B t u/lb
н _ғ	Saturation Enthalphy	B t u/lb
Hrg	Enthalphy change from saturated liquid to	Btu/lb
-	saturated vapor	
De	Hydraulic Equivalent Diameter	in.
G	Mass Velocity	lb /ft ² -hour
L	Length	in.
S	Vapor Density	lb /ft ³
S_	Liquid Density	lb /ft ³

A General correlation for predicting the heat transfer crisis with steam-water mixtures. Energia Nucleare - Vol. 11, No. 10 pages 586-597 October 1964 Heat Transfer crisis with steam-water mixtures. Energia Nucleare - Vol. 12, No. 3 pages 121-172 March 1965

The correlation, given for an uniform and non uniform (1) heat flux distribution, for round, rectangular channels and for clusters (2) has the following form :

$$\frac{\widehat{W}_{si}}{\int^{1} H_{ge}} = a_{i} \frac{L_{s}}{L_{s} + b}$$

Symbol Units Definition watt/cm² Total critical power input over L Wal to surface i where the crisis sets on. g/sec Mass Flowrate ٢ J/g Enthalphy change upon vaporization Hae a Constant dependent on the Pressure and mass velocity (3) Þ Constant dependent on the Pressure, (4) mass velocity and diameter Saturation length Ls cm g/cm^2-sec G Mass velocity Ρ Pressure ata

- D Hydraulic Equivalent Diameter
- Pcrit Critical Pressure ata

 \mathbf{cm}

(1)
$$\phi_{max}/\overline{\phi} < 4$$

(2). For complex geometries a must be multiplied by P_t/P_{tot} where p_i is the perimeter of the surface i, P_{tot} is the wetted perimeter.

(3)
$$a_i = \frac{1 - P/P_{crit}}{(G/100)^{1/3}} [C.G.S units]$$

(4)
$$b = 0.315 \left(\frac{P_{er}}{P} - 1 \right)^{0.4} D^{1.4} G \left[C.G.S units \right]$$

.

G. F. Hewitt

A Method of Representing Burnout Data in two Phase Heat Transfer for uniformly Heated Round Tubes AERE - R 4613 November 1964

The correlation, given for an uniform heat flux distribution and for round tubes, may be written in the following form, obtained from graphs reported by author,

$$X_{0} = \frac{2, 5 \, \alpha}{1 + \frac{G}{10^{6}}} \qquad \frac{L_{s}}{L_{s} + 8,48 \, \beta \, D^{8/5} \left(\frac{G}{10^{6}}\right)^{2/3}}$$

Symbol Definition

Units

×o	Burnout Steam Quality	Dimensionless number
G	Mass velocity	lb/ft ² -hour
D	Diameter	in.
Ls	Saturation length	ft.
d	Constant dependent en the Pressure(1)	
ß	Constant dependent en the Pressure(1)	-
Ρ	Pressure	ata

(1) $\mathcal{A} = \mathcal{A}(P)$ and $\mathcal{B} = \mathcal{B}(P)$ can be obtained by a simple expression which relate mathematically same experimental diagrams.

An experimental Investigation of Heat Transfer crisis Journal of Nuclear Energy - Vol. 19, No. 3 pages 209-216 March 1965

The correlation, given for an uniform and non uniform heat flux distribution, and for round ducts, has the following form (on the range in which q_{cr} decreases with W_g) :

$$q_{cr} = \frac{2.41 \ 10^9}{r \ \lambda \ \delta''} \ AT_{sat} \left(\delta' - \delta''\right) \left(\frac{Re_{mix}}{Re_o^{1,15}}\right)^3 Pr^2 \left(\frac{\sqrt{\delta'}}{d}\right)^{0,5} \left(\frac{\delta'}{\delta''}\right)^2$$

Symbol	Definition	Units
۹ _{cr}	Burnout Heat Flux	kcal/m ² -hour
r	Latent heat of vaporization	kcal/kg
λ	Thermal conductivity	kcal/m-•C- hour
Α	Heat Equivalent of mechanical work	kcal/kg
T _{sat}	Saturation Temperature	•C
୪', ୪"	Liquid and Steam density	kg/m ³
Remix	Reynold's number for the mixture	Adimensional
Reo	Reynold's number for the liquid	Adimensional
Pr	Prandtl's number	Adimensional
б	Surface Tension	k g/m
d	Diameter	

33

1 . **1**

,

K. M. Becker - P. Persson

An analysis of Burnout conditions for flow of boiling water in vertical Round Duct - Journal of Heat Transfer pages 513-530 November 1964

The correlation, given for an uniform heat flux distribution and for round tubes, has the following complex form :

$$B = \frac{-\log(1-X_{bo}) + \log(0.98 - \frac{E \vee B^{1/2}}{X_{bo}^{1/4}(B+1)}) - \log(1 - \frac{E(X_{bo} + r)}{(1-X_{bo})X_{bo}^{1/4}(B+1)})}{\log \frac{X_{bo} + r}{r}} = \frac{b h_{Fg}}{V_{Fg}} \frac{1}{(\frac{\dot{m}}{F})^{1/2}(\frac{q}{A})}$$

Symbol	Definition	Units
B	Ratio between the droplet transfer	Dimensi enless
	coefficient and boiling velocity	
Kg	Droplet transfer coefficient	ma/sec
∨ _b	Boiling Velocity	m/sec
Х _{bo}	Burnout Steam Quality	Dimensienless
٤	Reentrainment coefficient	Dimensienless
r	Ratio between the specific volume of	
	the liquid and the specific volume	
	change upon vaporization	
V _f	Specific volume of the liquid	m ³ /kg
V _{fg}	Specific volume change upon vaporization	m ³ /kg
þ	Droplet diffusion coefficient	$kg^{1/2}/sec^{2/3}$
h _{fg}	Intent heat of vaporization	kj/kg

m/F	Mass velocity	kg/m ² sec
а/а	Burnout Heat Flux	kj/m ² -sec

.

.

K. M. Becker

An accurate and simple correlation for Burnout conditions in vertical Round Ducts AE - RTL - 798 June 1965

The correlation, given for an uniform heat flux distribution and for round ducts, has the following form :

$$X_{bo} = a_{o} \left(\frac{10^{5}}{G^{0,5} q / A} - a_{1} \right)$$

Symbol

Definition

Units

Burnout Steam Quality Adimensional X kg/m^2 -sec G Mass Velocity q/A kj/m^2 -sec Burnout Heat Flux Constant dependent on the Pressure (1) a_o Constant dependent on the Pressure (1) a, kg/cm² Ρ Pressure

(1)
$$a_0 = a_0(P)$$
 and $a_1 = a_1(P)$ can be obtained from the diagram
in the fig. 2 of the above mentioned reference.

PART 2

STANDARD FORM

A. Cicchetti - M. Silvestri - G. Soldaini - R. Zavettarelli

Standard Form

$$\phi_{o} = 171 \frac{H_{EG}}{D} \frac{K}{1/4} \left(\frac{135.6}{G}\right)^{n} \left(\frac{1 - X_{o}}{X_{o} + V}\right) \text{ walt/cm}^{2}$$

where n and k are constants dependent **en** the Pressure, given by means of the diagrams on the pages 641 and 649 of Energia Nucleare - Vol. 6 No. 10 - figures 1 and 15. From such diagrams, we have obtained by means of a linear regression program, the following two approximated expressions for the pressure range 70-140 ata

$$\Pi = \Pi (P) \approx -3,25 \cdot 10^{4} P^{2} + 5,57 \cdot 10^{2} P - 0,835$$

$$K = K(P) \approx 1,73 \cdot 10^{3} - 8,3 \cdot 10^{6} P$$

Range of validity for the involved parameters

G	27 ≤ 6 ≤ 420	g/cm ² sec
Ρ	35 ≤ P ≤ 140	ata
D	0.25 ≤ D ≤ 0.50	CH

The range of validity for this correlation is the same as Bettis Plant correlation: namely it has been obtained by means of a "best-fit" on their experimental data.

Asymptotic Trend

 $P \longrightarrow P_{enit} \qquad \phi_0 \longrightarrow 0$

 $G \longrightarrow 0 \qquad \phi_0 \longrightarrow \infty$

 $G \longrightarrow \infty \qquad \phi_0 \longrightarrow 0$

The correlation does not depend enL

A. A. Ivashkevitch

Standard Form

There are two correlations, of which the first one is valid for $D/2 > \left[\frac{6}{g(f_L - f_g)}\right]^{1/2}$ the second one for $D/2 < \left[\frac{6}{g(f_L - f_g)}\right]^{1/2}$

1 Standard form

1)
$$\phi_{g} = \frac{G H_{LG'}}{4} \frac{4 f(P)(1-X_{o})^{-1}, 8 \cdot 10^{-6} G X_{o}}{M_{L} \left[g(f_{L}^{-}f_{g})/6\right]^{1/2} + 9 \cdot 10^{-5} G}$$
 wart/cm²

2)
$$\phi_0 = \frac{G H_{Lg} f(P)(1-X_0)}{M_L[g(f_L-f_g)/6]^{V_2}+3,15\cdot 10^4 G}$$
 watt/cm²

2nd Standard form

1)
$$\phi_0 = \frac{G H_{LG} D}{4} \frac{4 f(P) (1 - X_0)^{-1} h \cdot 10^6 G X_0}{2 M_L + 9 \cdot 10^5 G D}$$
 watt/cm²

2)
$$\phi_{e} = \frac{H_{Lg} G \cdot D f(P)(1 - X_{o})}{2 \mathcal{U}_{L} + 3,15 \cdot 10^{4} G D}$$
 watt/cm²

The forms 1) and 1)' must be used at low quality $\frac{H_{Lg} G X_o}{4 \phi_o} \le 12$ The forms 2) and 2)' must be used at high quality $\frac{H_{Lg} G X_o}{4 \phi_o} > 125$

f(P) is a constant dependent on the pressure:

$$\mathbf{f}(p) = 1, 9 \cdot 10^{5} \beta_{g}^{1/2} \left[69 \left(\beta_{L} - \beta_{g} \right) \right]^{1/4}$$

Range of validity for the involved parameters

G	15≤ G ≤ 325	g/cm ² sec
P	1≤ P ≤ 220	ata
D	0,02≤D≤ 3	QIR.
L	3,5 ≤ L ≤ 180	CIII
l/D	1 ≤ L/D ≤ 220	
x _o	0 < X _o < 1	
X in	-0,8 < X <0 in	
ϕ_{o}	onot given	

This range of validity is given by the author

Asymptotic Trend

$$X_{o} \rightarrow 0 \qquad \begin{cases} \phi_{o}^{(1)} \rightarrow \frac{G H_{Lg} f(P)}{M_{L} \left[g(f_{L}^{-} f_{g}^{0})/6\right]^{1/2} + 9.10^{5} G} \\ \phi_{o}^{(1)'} \rightarrow \frac{D G H_{Lg} f(P)}{2 M_{L} + 9.10^{5} G D} \end{cases}$$

•

$$X_{o} \longrightarrow 1 \qquad \begin{cases} \phi_{o}^{(2)} \longrightarrow 0 \\ \phi_{o}^{(2)'} \longrightarrow 0 \end{cases}$$

$$P \longrightarrow P_{crit} \begin{cases} \phi_0^{(1)(1)} & 0 \\ \phi_0^{(2)(2)'} & 0 \end{cases}$$

$$G \longrightarrow 0 \begin{cases} \phi_{o}^{(4)(4)^{1}} & 0 \\ \phi_{o}^{(2)(2)} & 0 \end{cases}$$

.

$$G \longrightarrow \infty \begin{cases} \phi_{o}^{(1)(1)'} \longrightarrow -\infty \\ \phi_{o}^{(2)(2)'} \longrightarrow \frac{H_{eg} t(P)(1-X_{o})}{3_{j}15 \cdot 10^{4}} \end{cases}$$

The correlation does not depend on L

Note- The standard form has been obtained taking $W = G/\rho_L$ and $K_3 = 50$.

٦

L. Miropol'skii - Shitsman - Faktorovich

Standard form

$$\phi_{0} = C_{1} H_{Lg}^{0,2} \left(\frac{G}{M_{L}} \right)^{0,6} \left(\frac{f_{L}}{f_{g}} \right)^{0,0} \left(C_{L} (\Theta + 273) \right)^{0,8} (1 - \chi_{0})^{n} G^{0,4} \quad \text{watt} / c m^{2}$$

where:

c is a constant dependent on the geometry and on the ratio L/D.

n is a constant dependent on the geometry, on G and P :

Range of validity for the involved parameters

46

X_o X_o 2 0,97-3,6⋅10³ P

 $\begin{array}{c} x_{in} & \text{corresponding to} \quad \Delta T_{svb} < 150 \ ^{\circ}\text{C} \\ \phi_{s} & \phi_{o} & \text{not given} \end{array}$

* These ranges of validity have been determined by us using the data which the correlation has been compared with.

\$>0.13 cm is referred to annular ducts.

* ** The authors have not given restrictions on L and L/D and ϕ_o

Asymptotic Trend

$$X_{0} \longrightarrow 0 \qquad \qquad \phi_{\sigma} \longrightarrow C_{l} H_{L}^{0,2} \left(\frac{6 \gamma_{L}}{\mu_{L}} \right)^{0,6} \left(\frac{\int_{L}}{\int_{g}} \right)^{0,08} \left(C_{L} \left(\Theta + 273 \right) \right)^{0,8} G^{0,4}$$

- $X_0 \longrightarrow 1$ $\phi_0 \longrightarrow 0$
- $P \longrightarrow P_{crit} \phi_0 \longrightarrow 0$
- G ──► 0 ∲₀ ─► 0

٠

 $G \longrightarrow \infty \qquad \phi_0 \longrightarrow \infty$

when D is fixed and L increases, ϕ_o increases with L and reaches the saturation for L/D equal to 100.

S. Levy

Standard Form

$$\Phi_{0}=0,7323 H_{Lg} \left\{ \mathbf{5} \rho_{L}^{3} \frac{\gamma^{2}}{(1+\gamma)^{3}} \right\}^{1/4} + 0,18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,8} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,33} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,8} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,33} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,8} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,8} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,8} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,8} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,18} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,18} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{G}{\mu_{L}} \right)^{0,18} \left(\frac{\mu_{L}}{K_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{D} \left(\frac{M}{M_{L}} \right)^{0,18} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{P}{63,3} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M_{L}} \right) + 0.18 \frac{K_{L}}{M_{L}} \left(\frac{M}{M_{L}} \right)^{0,18} \Phi_{0}^{1/4} \exp\left(-\frac{M}{M$$

$$-0,695955 H_{Lg} \beta' \gamma' \left[\frac{\rho_{L}}{6(1+\gamma)} \right]^{1/4} \left(10^{5} \mu_{L} \right)^{1/3} \beta' \rho' watt/cm^{2}$$

where β ' is a constant dependent on the Pressure and on X_{ϱ} .We have calculated the following expressions for round and rectangular channels

Round ducts

$$P = 42 \text{ ata} \begin{cases} X_{o} = 0,05 & \beta' = 0,10 \\ 0,1 \le X_{o} \le 1 & \beta' = 0,11 + 0,45 X_{o} \end{cases}$$

P = 71 ata
$$\begin{cases} X_o = 0,05 & \beta' = 0,07 \\ 0,1 \le X_o \le 1 & \beta' = 0,07 + 0,4 X_o \end{cases}$$

P = 84 ata
$$\begin{cases} X_0 = 0.05 & \beta' = 0.06 \\ 0.1 \le X_0 \le 1 & \beta' = 0.06 + 0.370 X_0 \end{cases}$$

$$P = 142 \text{ ata} \begin{cases} 0 < X_o \leq 0.3 & \beta' = 0.533 X_o \\ 0.3 \leq X_o \leq 1 & \beta' = 0.09 + 0.233 X_o \end{cases}$$

Rectangular ducts

$$P = 42 \text{ ata} \begin{cases} x_0 = 0.05 & \beta' = 0.08 \\ 0.1 \le x_0 \le 1 & \beta' = 0.12 + 0.3 x_0 \end{cases}$$

P = 71 ata
$$\begin{cases} X_0 = 0.05 & \beta' = 0.065 \\ 0.1 \le X_0 < 1 & \beta' = 0.067 + 0.338 X_0 \end{cases}$$

P = 84 ata
$$\begin{cases} X_0 = 0,05 & \beta' = 0,04 \\ 0,1 \le X_0 < 1 & \beta' = 0,06 + 0,33 X_0 \end{cases}$$

P = 142 ata
$$\begin{cases} X_0 = 0.05 & \beta' = 0.03 \\ 0.1 \le X_0 < 1 & \beta' = 0.045 + 0.28 X_0 \end{cases}$$

Range of validity for the involved parameters

G

$$20 \leq G \leq 380$$
 g/cm^2 sec

 P
 $42 \leq P \leq 140$
 ata

 D
 $0.13 \leq D \leq 0.46$
 cm

 L
 $30 \leq L \leq 81$
 cm

60	
	60

$$X_{\bullet}$$
 $X_{\bullet} > 0$ X_{in} $X_{in} < 0$ ϕ_{\bullet} ϕ_{\bullet} not given

This range of validity is the " Probably Range of Validity ".

Asymptotic Trend

The correlation does not depend on L.

A. S. Kon'kov - V. V. Modnikova

Standard Form

$$\Phi_{0} = \frac{H_{eg}}{X_{o}^{8}} \frac{D^{815}}{P_{f}^{4}} \left[\frac{\mu_{e} P_{g}}{P_{e}} \left(\frac{g(S_{e} - f_{g})}{6} \right)^{1/2} \right] \left[\frac{\mu_{g}}{\mu_{e} \left(\frac{6}{g(S_{e} - f_{g})} \right)^{1/2}} \right]^{8/5} \left[\frac{0.35 DG(1 - X_{o}) + 2492 \mu_{e} f_{e}}{D G(1 - X_{o}) + 1400 \mu_{e} f_{e} / f_{g}} \right]$$
Parameter of wolidity for the involved parameters

Range of validity for the involved parameters

G
 10
$$\leq$$
 G \leq 1320
 g/on² sec

 P
 20 \leq P \leq 200
 ata

 D
 0.4 \leq D \leq 3.22
 omega

 L
 150 \leq L \leq 300
 cm.

 L/D
 93 \leq L/D \leq 375
 x.
 0.1

 X_{in}
 X_{in}
 0

 4_{o}
 10 \leq ϕ_{o}
 390
 watt/cm².

This range of validity is given by the authors.

(1) Assuming
$$X_{av} = X_{o}$$

Asymptotic Trend

ф, — → X. ----> 0 00

52

$$\mathbf{x}_{\bullet} \longrightarrow \mathbf{1} \quad \boldsymbol{\varphi}_{\bullet} \longrightarrow \frac{\mathbf{H}_{eg} \mathbf{D}^{8/5}}{\mathbf{P}_{r}^{4}} \left\{ \frac{\mathcal{H}_{e} \quad \mathbf{f}_{g}}{\mathbf{f}_{e}} \left[\mathbf{g} \frac{\left(\mathbf{f}_{e}^{-} \mathbf{f}_{g}^{-} \right)}{\mathbf{f}_{e}^{2}} \frac{\mathcal{H}_{g}}{\mathcal{H}_{e} \left(\frac{\mathbf{f}_{e}^{-} \mathbf{f}_{g}^{-} \right)} \mathbf{f}_{e}^{2}} \frac{\mathcal{H}_{g}}{\mathbf{f}_{e}^{2} \mathbf{f}_{e}^{2}} \mathbf{f}_{e}^{2} \mathbf{f}_{e$$

$$P \longrightarrow P_{crit} \qquad \oint_{0} \longrightarrow 0$$

$$G \longrightarrow 0 \qquad idem as for \quad X_{o} \longrightarrow 1$$

$$G \longrightarrow \phi_{0} \longrightarrow \frac{H_{eg}}{X_{o}^{8}} \frac{g_{o}^{8/5}}{P_{r}^{4}} \left(\frac{M_{e}}{f_{e}} \frac{g}{f_{e}} \left[\frac{g(f_{g} - f_{e})}{f_{e}}\right]^{1/2}\right) \left[\frac{M_{g}}{M_{e}} \frac{g(f_{g} - f_{g})}{g(f_{e} - f_{g})^{1/2}}\right]^{8/5} (0.35)^{8}$$

Rybin

Standard Form

$$\phi_{o} = H_{Lg} \int_{g}^{1/2} \left\{ g \left\{ G \left(\int_{e}^{2} - \int_{g}^{2} \right) \right\}_{K_{o}}^{1/4} \frac{v + [1 - (1 + v)n] x_{o}}{\gamma + x_{o}} \text{ watt } / cm^{2} \right\}$$

where:

n and k are two constants dependent on the Pressure and mass velocity.

$$n = 0,08 \left\{ \frac{G}{\int_{L}} \sqrt{\frac{f_{L} - f_{q}}{g}} \right\}^{0,55}$$

$$0,0575 \left\{ \frac{G}{\int_{L}^{0}} \sqrt{\frac{f_{L}^{2} - f_{q}^{2}}{g \ 6}} \right\}^{0,25} \text{ when } 14 < \frac{G}{f_{L}} \sqrt{\frac{f_{L}^{2} - f_{q}^{2}}{g \ 6}} \le 50$$

$$K_{0}$$

$$0,01450 \left\{ \frac{G}{f_{L}^{0}} \sqrt{\frac{f_{L}^{2} - f_{q}^{2}}{g \ 6}} \right\}^{0,6} \text{ when } 50 < \frac{G}{f_{L}} \sqrt{\frac{f_{L}^{2} - f_{q}^{2}}{g \ 6}} < 80$$

Range of validity for the involved parameters.

g/cm² sec 80 **≤ G** *≤* **7**00 G 70 **≤ p ≤**206 ata Ρ **D >** 0.6 D cm L not given Ĺ LD not given L/D $0 < X_{o} < \frac{0.85 \int_{g} / f_{L}}{0.15 + 0.85 \int_{g} / f_{L}}$ Xo Xin $x_{in} < 0$

 ϕ_{o} 65 $\leq \phi_{o} \leq$ 450 watt/cm²

This range of validity is the " Probably Range of Validity ".

Asymptotic Trend

$$x_{o} \longrightarrow 0$$
 $\phi_{o} \longrightarrow H_{Lg} \beta_{g}^{1/2} \left\{ g \delta \left(\beta_{L} - \beta_{g} \right) \right\}^{1/4} \kappa_{o}$

$$X_{o} \longrightarrow 1 \qquad \qquad \phi_{o} \longrightarrow H_{Lg} \int_{g}^{1/2} \left\{ g \delta\left(f_{L} - f_{g}\right) \right\}^{1/4} \kappa_{o} \left(1 - n\right)$$

P ---- Perit 40 ---- 0

The correlation does not depend on L .

M. Silvestri et al.

Standard Form

It is necessary to distinguish two forms for this correlation. The first form, given for ' e pressure of 70 at a only and containing the dependence on the ratio L/D, is

$$\phi_{o} = \frac{121.10^{6}}{G^{2}} \left(\frac{L}{D}\right)^{-\frac{2}{3}} \left(\frac{1-X_{o}}{X_{o}^{+}r}\right)^{2} watt/cm^{2}$$

The second form, valid for all pressures \pm to 70 ata, is

$$\phi_0^m = K G^n \frac{(1 - X_0)}{(X_0 + Y)} watt/cm^2$$

where m, n and k are constants dependent on the pressure, given by means of the diagrams on the pages 185 (Fig. II 40), 186 (Fig. II 44) of CAN 1 Report [9] . Also in this case we have obtained, by means of a linear regression program, the following approximated expressions:

 $\mathbf{n} = \mathbf{m}(\mathbf{P}) \approx -10^{-5} \mathbf{P}^{2} + 5.83 \quad 10^{-3} \mathbf{P} + 0.12$ $\mathbf{n} = \mathbf{n}(\mathbf{P}) \approx 1.3819 - 0.00459 \mathbf{P}$ $\mathbf{k} = \mathbf{k}(\mathbf{P}) \approx 0.532 \mathbf{P}^{2} - 88 \mathbf{P} + \mathbf{6} \cdot \mathbf{10}^{3}$ Range of validity for the involved parameters

This range of validity is given by the authors.

Asymptotic Trend

At 70 ata, ϕ_0 decreases with L/D increasing.

D. H. Lee - J. D. Obertelli

Standard Form

$$\phi_{o} = 360, 5 \left(\frac{10^{3} \cdot 2326}{H_{Eg}X_{o} + H_{s}}\right)^{2} \left(1 + \frac{73,98}{G}\right) \frac{\exp(-0,00165 L/D)}{1,955 + D}$$
 wart/cm²

Range of validity for the involved parameters

G	102 < G < 225	g/cm ² sec
P	P=70	ata
D	0.56 ≤ D ≤ 1.15	cm
L	22 SL S 135	CIL
ג/ם	$39 \leq L/D \leq 360$	
X,	×. > 0	
X in	$-0.23 < \chi_{in} \leq 0$	
ф,	\$ 0	not given

This range of validity is given by the authors.

Asymptotic Trend

$$X_{o} \longrightarrow 0 \qquad \varphi_{o} \longrightarrow \frac{1.95 \cdot 10^{9}}{H_{s}^{2}} \left(1 + \frac{73.98}{G}\right) \frac{\exp\left(-0.00165L/D\right)}{1.955 + D}$$

$$X_{o} \longrightarrow 1 \qquad \varphi_{o} \longrightarrow 1.95 \quad \frac{10^{9}}{(H_{Lg}^{+}H_{s}^{-})^{2}} \left(1 + \frac{73.98}{G}\right) \frac{\exp\left(-0.00165L/D\right)}{1.955 + D}$$

$$G \longrightarrow \infty$$
 $\phi_0 \longrightarrow 1,95 \frac{10^9}{(H_{Lg} X_0^+ H_s)^2} \frac{\exp(-0.00165 L/D)}{1,955 + D}$

$$\phi_o$$
 decreases with L/D.

R. V. Macbeth

Standard form

$$\Phi_0 = H_{eg} \left(\frac{G}{1356} \right)^{1/2} \left(1 - X_0 \right) watt/cm^2$$

Range of validity for the involved parameters

G	1.36 € 6 € 84	g/cm ² sec
Ρ	1.06 ≤ P ≤ 141	ata
D	0.304 ≤ D ≤ 0.99	CM
L	15.2 S L S 310	CM
L/D	L/D > 50	
xo	0. < X ₀ < 1	
×in	$-1.31 < X_{in} < 0$	

 ϕ_o ϕ_o not given

This range of validity is the " Prebably Range of Validity ".

Asymptotic Trend

The correlation does not depend on L

R. V. Macbeth

Correlation forlow velocity and rectangular ducts

Standard Form

$$\phi_{o}=11,66 H_{Lg} - \frac{S^{1,73}}{G^{0,1}} \left(1 - X_{o}\right) \quad watt/cm^{2}$$

Range of validity for the involved parameters

$$G = 2.21 \leq G \leq 75 \quad g/cm^{2} \sec P$$

$$F = 56 \leq P \leq 141 \quad ata$$

$$0.13 \leq \delta \leq 0.256 \text{ cm.}$$

$$L = 15.2 \leq L \leq 64.8 \text{ cm.}$$

$$L/D = 60 \leq L/D \leq 460$$

$$X_{\bullet} = 0 \leq X_{\bullet} \leq 1$$

$$X_{in} = -1.35 \leq X_{in} \leq 0$$

$$\phi_{\bullet} \quad not \text{ given}$$
This range of validity is the " Probably Range of Validity".
$$X_{\bullet} = 0 \qquad \phi_{\bullet} = -11.66 \text{ H}_{eg} \frac{5^{1,73}}{G^{0,1}}$$

$$X_{\bullet} = 1 \qquad \phi_{\bullet} = 0$$

$$P = P_{crit} \qquad \phi_{\bullet} = 0$$

The correlation does not depend on L.

B. V. Macbeth

Correlation for High velocity and Round ducts

Standard Form

$$\Phi_{o} = G\left\{2,325 y_{o}\left(\frac{D}{2,54}\right)^{y}\left(\frac{G}{135,6}\right)^{y_{2}-1} 0,25 y_{3} H_{eg}\left(\frac{D}{2,54}\right)^{-0,4}\left(\frac{G}{135,6}\right)^{y_{4}} X_{o}\right\} \quad \text{Wart}/cm^{2}$$

where the y_{L} are constants dependent on the Pressure, given

Range of validity for the involved parameters

	2
G	1.356 ≤ G ≤ 1060 g/cm ² sec
P	1.06 ≤ P ≤ 193 ata
D	0.101 ≤ D ≤ 2.37 cm.
L	2.54 ≤ L ≤ 310 cm.
l/D	L/D ≥ 8,5
X.	0 < X, < 1
X in	$-2.5 < X_{in} < 0$
ቂ	¢ not given.

This range of validity is the " Probably Range of Validity ".

Asymptotic Trend

$$\mathbf{X}_{\bullet} \longrightarrow \mathbf{G} \left\{ 2,325 \ \mathbf{y}_{\bullet} \left(\frac{\mathbf{D}}{2,54} \right)^{\mathbf{y}_{1}} \left(\frac{\mathbf{G}}{135,6} \right)^{\mathbf{y}_{2}-1} \right\}$$
$$\mathbf{X}_{\bullet} \longrightarrow \mathbf{1} \quad \phi_{o} \longrightarrow \mathbf{G} \left\{ 2,325 \ \mathbf{y}_{o} \left(\frac{D}{2,54} \right)^{\mathbf{y}_{1}} \left(\frac{G}{135,6} \right)^{\mathbf{y}_{2}-1} - 0,25 \ \mathbf{y}_{3} \operatorname{Heg} \left(\frac{D}{2,54} \right)^{\mathbf{0},4} \left(\frac{G}{35,6} \right)^{\mathbf{y}_{4}} \right\}$$

For $P \longrightarrow P$ the asymptotic trend is not defined because the constants y_i are given for some particular pressures only.

 $G \longrightarrow \varphi_0 \longrightarrow f \infty$ in correspondence of the values of y_2 and y_4 .

The correlation does not depend on L.

Piata	У ₁	У ₂	У _З	У ₄	У _о
1.05	-0.211	-0.324	+ 0.0010	-1.05	+1.12
17.5	-0.533	-0.260	+ 0.0166	-0.937	+1.77
37	-0.566	-0.329	+ 0.0127	-0.737	+1.57
7 0	-0.487	-0.179	+ 0.0085	- 0.555	+1.06
1 10	-0.527	+0.024	+ 0.0121	-0.096	+0.720
140	-0.268	0:192	+ 0.0093	-0.343	+0.627
190	, 1.45	+0.489	+ 0.0097	-0.529	+0.0124
					l

Table I for the values of the constants y

R. V. Macbeth

Correlation for high velocity and rectangular ducts

Standard Form

.

$$\Phi_{o} = G \left\{ 2,325 \, y_{o} \left(\frac{\delta}{2,54} \right)^{y_{1}} \left(\frac{G}{135,6} \right)^{y_{2}-1} - 0,555 \, H_{eg} \left(\frac{\delta}{2,54} \right)^{-0,4} \left(\frac{G}{135,6} \right)^{y_{4}} X_{o} \right\} \qquad \text{Watt/cm}^{2}$$

where the y_i are constants dependent on the Pressure, given by means of table II.

Range of validity for the involved parameters

G	13.56	٤	G	€	6 48	g/cm ² .	sec
P	42	.≼	P	\$	141	ata	
	0.13	≤	5	₹	0 .2 56	cm.	
L	15.2	٤	\mathbf{L}	≤	6 8 . 4	cm.	
l/ S	60	4	l/5	≤	460		
X.	0	<	X,	<	1		
X _{in}	0,8	\$	Xin	` <	0		

This range of validity is the " Prebably Range of Validity ".

Asymptotic Trend

$$\mathbf{x}_{\bullet} \longrightarrow \mathbf{0} \quad \phi_{\bullet} \longrightarrow \mathbf{G} \left\{ 2,325 \, \mathbf{y}_{\bullet} \left(\frac{\delta}{2,54} \right)^{\mathbf{y}_{\bullet}} \left(\frac{\mathbf{G}}{135,6} \right)^{\mathbf{y}_{2}-1} \right\}$$

$$\mathbf{I}_{\bullet} = \mathbf{I} \quad \phi_{0} = \mathbf{G} \left\{ 2,325 \, y_{\bullet} \left(\frac{\int}{2,54} \right)^{y_{I}} \left(\frac{G}{135,6} \right)^{y_{-1}} - 0,555 \, H_{eg} \left(\frac{\int}{2,54} \right)^{0,4} \left(\frac{G}{135,6} \right)^{y_{4}} \right\}$$

For $P \longrightarrow P_{crit}$ the asymptotic trend is not defined because the constants y_i are given for some particular pressures only.

For $G \longrightarrow \infty$, $\phi_0 \longrightarrow \ddagger \infty$ in correspondence with the values of y_i , whose values oscillate from negative values to positive ones.

The correlation does not depend on L.

Table II for the values of the constants y

P ata	y.	y 1	у ₂	^у 3	y 4	
43•7	+23.4	-0.472	-3.29	+0.123	-3•93	-
58•5	+0.445	-1.01	+0.384	+ 0.0096	-0.0067	
88	+1.88	-0.081	-0.526	+ 0.0035	-1.29	
146	+ 0 . 546	-0.315	-0.056	+ 0.0027	-0.725	
					I	

V. Subbotin - B. Zenkevitch - V. Alekseyev

Standard Form

$$\Phi_{g} = 1,11 \cdot 10 \frac{2}{L} \frac{H_{eg}^{1,58}}{C^{0,262}} \left\{ 1 - 5,07 \cdot 10^{-2} \left(\frac{f_{g}}{f_{e}} \right)^{0,731} G \left(X_{o} - X_{e} \right) \right\} \qquad \text{watt/cm}^{2}$$

where X_e is a constant which is equal to 0 for unilateral internal heating and equal to $\frac{\Phi_{NB} \quad S_{RNB}}{G \quad Heg \quad S_{f}}$ for bilateral internal heating.

Range of validity for the involved parameters

 $36 \leq G \leq 310$ g/cm². sec G 100 ≤ P ≤ 185 Ρ ata 0.6≤D ≤ 1.2 D om. 0.1 € 5 ≤ 0.2 cm. $10 \leq L \leq 40$ L CM. L/D not given L/D X. < 0.2 X. $X_{in} < 0$ X in ቀ ϕ_0 not given

This range of validity is given by the authors.

Asymptotic Trend

$$\mathbf{X}_{e} \longrightarrow 0$$
 $\phi_{o} \longrightarrow 1,11 \cdot 10^{-2} H_{eg}^{1,58} - 0,262 \left\{ 1 + 5,07 \cdot 10^{-2} \left(\frac{f_{g}}{f_{e}} \right)^{0,731} G \cdot \mathbf{X}_{e} \right\}$

$$X_{\bullet} \longrightarrow 1$$
 $\varphi_{\bullet} \longrightarrow$ to value $\gtrless 0$ in correspondence of the values of G and P.

 ϕ_o decreases monotonically with L.

B. A. Zenkewitch - G. V. Alekseyev 1 correlation

(High Pressure)

Standard Form

$$\Phi_{0} = \frac{4,18}{D^{0,48}} \left(G \cdot 3,6 \cdot 10^{4} \right)^{n} \left(\int_{C} / \mathcal{O}_{g} \right)^{2,2} \left[1 + \frac{8 \cdot 10^{9}}{(3,6 \cdot 10^{4} \text{ G})^{\text{K}}} \right] \left(1 - X_{0} \right)^{\text{m}} \text{watt} / \text{cm}^{2}$$

where :

m and n are two constants dependent on the Pressure, k is a constant dependent on the Pressure and on the outlet quality.

$$m = m(P) = 0,7 \frac{P}{J_g} - 0,4$$

$$n = n(P) = 0,56 - 0,0189 \int_{L} / \int_{g}$$

$$K = K(P, X_b) = 1,13 + 3,6 \int_{g} / \int_{L} - 0,45 X_b$$

Range of validity for the involved parameters

$$\cdot$$
G110 \leq G \leq 500g/cm² secP100 \leq P \leq 200ataD0.4 \leq D \leq 1.2cmLL \geq 20cmL/DL/D net given

This Range of validity is given by the authors.

Asymptotic Trend

$$X_{0} \longrightarrow 0 \qquad \varphi_{0} \longrightarrow \frac{4.18 \cdot 10^{3}}{0} \left(G \cdot 3, 6 \cdot 10^{4} \right)^{n} \left(\int_{L} / \int_{g} \right)^{2,2} \left\{ 1 + \frac{8 \cdot 10^{9}}{(3, 6 \cdot 10^{4} \text{ G})^{K}} \right\}$$

$$X_0 \longrightarrow 1$$
 $\phi_0 \longrightarrow 0$

$$P \longrightarrow P_{crit} \quad \phi_{o} \longrightarrow \frac{4.18 \cdot 10^{3}}{D^{0.48}} \left(G \ 3,6 \cdot 10^{4} \right)^{n} \left(1 + \frac{8 \cdot 10^{9}}{\left(3,6 \cdot 10^{4} G \right)^{K}} \right) \left(1 - \chi_{o} \right)^{m}$$

$$m \longrightarrow 0,3 \qquad n \longrightarrow 0,5411$$

$$K \longrightarrow 4,73 - 0,45 \chi_{o}$$

$$G \longrightarrow 0 \qquad \phi_{o} \longrightarrow \infty$$

G → ∞ Φ, → 0

B. A. Zenkevitch - G. V. Alekseyev

2nd correlation (Average Pressure)

Standard Form

$$\Phi_{o} = \frac{0.376}{D^{0.45}} \left[5.110^{-3} H_{L_{0}}^{1.72} (1-X_{o})^{-6} \right] \quad \text{wart/cm}^{2}$$

where m is a constant dependent on the Pressure.

Range of validity for the involved parameters

 $56 \leq G \leq 500 ext{g/cm}^2 ext{sec}$ G $40 \leq P \leq 100$ P ata $0.4 \leq D \leq 1.2$ D cm. L/D L/D not given $0 \leq X_{\bullet} \leq 0.4$ X, X not given X in ϕ not given Φ

This range of validity is given by the authors.

Asymptotic Trend

$$x_{\bullet} \rightarrow 0$$
 $\phi_{e^{-}} = \frac{0.376}{D^{0.4^{\bullet}}} (5.1 \text{ H}_{e^{-}} 10^{-2} \text{ G})$

72

4 22

The correlation does not depend on L.

B. Thompson-R. V. Macbeth

Standard Form

$$\phi_{0} = 315,4 \qquad \underline{A^{*} - 3,12 \ 10^{-4} \ D \ G \ H_{4.5} \ X_{0}}$$

$$C^{*}$$

$$A^{*} = Y_{0} \left(\frac{D}{2,54}\right)^{Y_{1}} \left(\frac{G}{135,6}\right)^{Y_{2}} \left(1+Y_{3} \frac{D}{2,54} + Y_{4} - \frac{G}{135,6} + Y_{5} \frac{D \ G}{344}\right)$$

$$C^{*} = Y_{6} \left(\frac{D}{2,54}\right)^{Y_{7}} \left(\frac{G}{135,6}\right)^{Y_{8}} \left(1+Y_{9} \frac{D}{2,54} + Y_{10} \frac{G}{135,6} + Y_{11} \frac{D \ G}{344}\right)$$

where the y_i , constants dependent on the pressure, are given in the enclosed table III

Range of validity for the involved parameters

G
$$1 \le G \le 1800 \text{ g/cm}^2 \text{ sec}$$

P defined only for P=40,70,110,140 ata
D $0,09 \le D \le 2,5 \text{ cm}$
L $2,54 \le L \le 366 \text{ cm}$

74

This range of validity is the " Probably Range of Validity ".

Asymptotic Trend

$$X_{\circ} \rightarrow 0$$
 $\varphi_{\circ} \rightarrow 315,4 \frac{A'}{C'}$

- $X_{\bullet} \rightarrow 1 \qquad \varphi_{\theta} \xrightarrow{} 315,4 \xrightarrow{A'} 3,1210^{\circ} G D H_{\ell_{\theta}}$
- $P \longrightarrow P_{cri}$ not defined

$$\begin{array}{ccc} G \longrightarrow \infty & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Table III

OPTIMAL VALUES FOR Y

7 1	114	36,0	65,5
20 0	,811	0,509	1,19
25 0) ,2 21	-0,109	ə , 376
,940 -	-0,128	-0,190	-0,577
,0324 0	, 0274	0,0240	0,220
,111 –	0,0667	0,463	-0,373
3 1	27	41,7	17,1
959 1	,32	0,953	1,18
031 0	,411	0,0109	-0,456
51 –	0,274	0,231	-1,53
0578 -	0,0397	0,0767	2,75
24 –	0,0221	0,117	2,24
	7 1 20 0 425 0 940 - 940 - 0324 0 0324 0 111 - 3 1 959 1 331 0 51 - ,0578 - 24 -	7 114 20 $0,811$ 425 $0,221$ $,940$ $-0,128$ $,0324$ $0,0274$ $,0324$ $0,0274$ $,111$ $-0,0667$ $,3$ 127 $,959$ $1,32$ $,31$ $0,411$ $,51$ $-0,274$ $,0578$ $-0,0397$ $,24$ $-0,0221$	711436,0200,8110,5094250,221-0,109,940-0,128-0,190,03240,02740,0240,111-0,06670,463,312741,79591,320,9533310,4110,010951-0,2740,231,0578-0,03970,076724-0,02210,117

F. E. Tippets

Standard Form

$$\Phi_{o} = 3,63C_{2} \frac{H_{e_{3}}\left(\sigma\left(1+\frac{Q_{e}}{Q_{s}}\right)\right)^{3/4} q_{e}^{1/4} q_{2}^{4/2}}{G^{0,45}_{a} D^{0,7}_{a} \mu_{e}^{0,05} \left(1+\sqrt{\frac{Q_{e}}{Q_{s}}}\right)^{3/2} \left[\frac{Q_{g}}{Q_{e}}+\frac{1+X_{o}(C_{1}-1)}{1-X_{o}}\right]} \frac{W_{a}tt}{cm^{2}}$$

c and c are two constants dependent on the geometry. c is equal to 6,5 for one surface heated annular channels and equal to 1 for round ducts and both surfaces heated rectangular channels.

c₂, for round ducts, is equal to 0,53 when D>0,426 and to $0.53 \left(\frac{D}{0.426}\right)$ when D<0,426 c₂, for rectangular ducts, and annular channels is equal to 0,86

 c_2 , for rectangular ducts, and annular channels is equal to 0,86 when D > 0,855 and to 0,86 $\left(\frac{D}{0,855}\right)^{0,9}$ when D < 0,855

Range of validity for the involved parameters

G	24 ≼ G	≤ 440	g/cm ² -sec
P	42 ≤ P	≤ 175	ata
D	0,122 ≤ D	≤ 1,2	2 cm Reund ducts

D	0.2	244 ≤	D	≤	2.44	CII.
l/D	20	Ę	l/I	2 ≤	400	
L ⁽⁺⁾	15	<u> </u>	L	≥	275	cm.
X.	0	≤	X.	≥	0 .7	5
X			X i	n	not	given
<i>ቀ</i>			ф) 7	not	given

rectangular and annular

channels

+ "Probably Range of Validity".

Asymptotic Trend

L. Tong - H. B. Currin - F. C. Engel

Standard Form

$$\phi_{0} = \frac{9}{32} H_{eg} \frac{G D}{L} \left\{ \frac{17}{9} \left[\left(0,825 + 2,36e^{-6,7D} \right) e^{-0,0111G} - 0,41e^{-0,0048 \text{L}1D} - 1,12 \frac{\int_{g}}{\int_{e}} + 0,548 \right] - X_{0} \right\}$$

Range of validity for the involved parameters

G	54	4	G	ž	550	g/cm ²	sec
Р	55	4	P	<	150	ata	
ע	0.2	54≲	D	Ś	1.	37 cm	
L	23	\$	L	<	195	CM	
l/D	21	<	l/D	4	66 0		
X.	0	<	I.	~	0.	.9	
X in	0	>	I. in	<u>۽</u> ڊ	930-H H	1 <u>s</u> 9	
ቈ	30 <	φ	6 <	•	5 50	watt,	/cm ² .
Phe/p	0,88	4	<u>Pre</u> P	4	1		

Asymptotic Trend

$$X_{\bullet} \longrightarrow 0 \quad \varphi_{0} \longrightarrow \frac{17}{32} H_{eg} \frac{GD}{L} \left\{ \left(0,825+2,36e^{-6,7D} \right)_{e}^{-0,0111G} - 0,41e^{-0,0048L} \int_{12}^{D} \int_{e}^{f_{0}} + 0,548 \right\}$$

$$X_{\bullet} \longrightarrow 1 \quad \varphi_{0} \longrightarrow \frac{9}{32} H_{eg} \frac{GD}{L} \left\{ \frac{17}{9} \left[\left(0,825+2,36e^{-6,7D} \right)_{e}^{-0,0111G} - \frac{-0,0048L}{-0,41e} \int_{12}^{P} \int_{9}^{f_{0}} + 0.548 \right]$$

$$P \longrightarrow P_{crit} \qquad \varphi_{0} \longrightarrow 0$$

$$G \longrightarrow 0 \qquad \qquad \varphi_{0} \longrightarrow 0$$

$$When L \text{ increases, } \varphi_{0} \longrightarrow 0.$$

S. Bertoletti - G. P. Gaspari - C. Lombardi - G. Peterlongo -M. Silvestri - F. A. Tacconi: CISE 3

Standard Form

$$\phi_{o} = \frac{0.794}{D^{0.4}} \frac{H_{Lg}}{(P-P)^{0.4}} \frac{P^{0.4}}{(P-P)^{0.4}} \left(a - X_{o}\right) \quad \text{Walt/cm}^{2}$$
where
$$a = \frac{P_{cri} - P}{P_{cri} \cdot (G/100)^{4/3}}$$

Range of validity for the involved parameters

G	$100(1 - \frac{P}{P_{ri}})^3 \le G \le$	400	g/cm ² sec
P	45≤ P≤	150	ata
D	D >	0.7	cm.

$$L^{(+)}$$
 20.3 $\leq L \leq 267$ cm.

$$X_{\bullet} \qquad X_{\bullet} > 0$$

$$X_{in} \qquad X_{in} \leq 0.2$$

$$\phi_o$$
 not given

This range of validity is given by the authors.

(+) - determined by an examination of the L used during the experiments.

Asymptotic Trend

$$x_{\bullet} \rightarrow 0 \qquad \phi_{\circ} \rightarrow \frac{0.794 \text{ H}_{s} \text{ P a}}{\text{D}^{0.4} (\text{ P}_{r,\bar{s}} \text{ P})^{0.4}}$$

The correlation does not depend on L.

G. F. Hewitt

Standard Form

$$\phi_0 = 0,115 \frac{\overline{D}^{3/5} G^{1/3} H_{eg}}{\beta(P)} \left\{ \frac{2,5 \ a (P)}{1 + \frac{G}{135,6}} - X_0 \right\} watt/cm^2$$

This correlation is an analytical approximation of the graphical correlation of Hewitt $\alpha(P)$ and $\beta(P)$ are two constants depending on the Pressure, having the following approximated expressions:

$$\mathcal{A} = \mathcal{A}(P) \cong -0.3126 \ 10^8 \ P^4 + 0.133 \ 10^2 P + 0.7123$$

$$\mathcal{B} = \mathcal{B}(P) \quad \text{is given as ratio with } \forall (P)$$

$$\mathcal{A}(P)/\mathcal{B}(P) \cong \ 0.34 + 9.4/(P - 7.3)$$

Range of validity for the involved parameters

G

$$68 \leq G \leq 410$$
 g/cm^2 sec

 P
 $49 \leq P \leq 112$
 ata

 D
 $0.55 \leq D \leq 1.13$
 cm.

 L
 $21 \leq L \leq 205$
 cm.

 L/D
 $39 \leq L/D \leq 360$
 X.

 X.
 X.
 > 0

 Jin
 $-0.37 < X_{in} < 0$
 ϕ_{e}

 Model
 ϕ_{e}
 mot given

Asymptotic Trend

$$x_{\bullet} \rightarrow 0$$
 $\phi_{\rho} \rightarrow 0,115 \frac{\overline{D}^{3/5} G^{1/3} H_{eg}}{\mathcal{B}(P)} \frac{2.5 \mathcal{A}(P)}{1 + \frac{G}{135,6}}$

$$x_{\bullet} \rightarrow 1$$
 $\phi_{\bullet} \rightarrow 0,115 \frac{\overline{D}^{3/5} G^{1/3} H_{eg}}{\mathcal{B}(P)} \left\{ \frac{2,5 \mathcal{A}(P)}{1 + \frac{G}{135,6}} - 1 \right\}$

$$P \longrightarrow P$$

crit for this value $\mathcal{L}(P)$ and $\mathcal{B}(P)$ are not defined

$$G \longrightarrow \infty \qquad \qquad \phi_0 \quad \text{is reduced to the point } \phi_0 = 0; X_0 = 0$$

$$G \longrightarrow 0 \qquad \qquad \phi_0 \longrightarrow 0$$

The correlation does not depend on L.

V. N. Smolin - V. K. Polyakov - V. I. Esikov

Standard Form

$$\phi_{o} = 2,36 \cdot 10^{\frac{5}{(\Theta + 273)_{K}}} \frac{\left(\int_{E} - \int_{G}^{0}\right)^{0,75} \rho^{2}}{\int_{g}^{3}} \left(\frac{\int_{G}}{g}\right)^{0,25} \left(\frac{\mathcal{U}_{b}}{G}\right)^{0,45} \frac{P_{p}^{2}}{D^{0,95}} \left[\frac{1 + \left(\frac{\mathcal{U}_{E}}{\mathcal{U}_{G}} - 1\right) \times_{o}}{1 + \left(\frac{\int_{C}}{\int_{g}} - 1\right) \times_{o}}\right]^{3} \text{ watt} / cm^{2}$$

We have considered only the trend in which ϕ_0 is a decreasing function of mass velocity.

Range of validity for the involved parameters:

G

$$100 \leq G \leq 800$$
 g/cm^2 sec

 P
 $98 \leq P \leq 196$
 ata
 when
 $I_0 > 0.05$

 P
 $78 \leq P < 98$
 ata
 when
 $I_0 > 0.10$

 P
 $49 \leq P < 78$
 ata
 when
 $I_0 > 0.15$

 D
 $0.5 \leq D \leq 1.6$ cm.
 L
 L > 260 cm.

 L/D
 L/D not given

$$X_{o} \qquad \times_{o} > \frac{2,11 \, 10^{5} \frac{G \, D^{0,5}}{\mathcal{M}_{L}} \left(\frac{6}{(f_{L} - f_{g}) \, g} \right)^{0,25}}{\left(\frac{P}{P_{cvit}} \right)^{-2,28} \left(\frac{\mathcal{M}_{L}}{\mathcal{M}_{g}} - 1 \right) + \left(\frac{f_{L}}{f_{g}} \right)^{0,25} \frac{G \, D^{0,5}}{\mathcal{M}_{L}} \left(\frac{6}{(f_{L} - f_{g})} \right)^{0,25}}{\mathcal{M}_{L}} \right)^{0,25}}$$

The range of validity is given by the authors

Asymptotic Trend

-

.

$$X_{o} \longrightarrow 1 \qquad \varphi_{o} \longrightarrow 2,36 \cdot 10^{5} \frac{(\Theta + 273)}{(\Theta + 273)} \left(p - \rho \right)^{0.75} \frac{2}{G} \frac{(\Theta + 273)}{(\Theta - 25)} \frac{M_{e}}{(\Theta - 25)$$

$\mathbf{G} \longrightarrow \infty \qquad \mathbf{\phi}_0 \longrightarrow \mathbf{0}$

The correlation does not depend on L

K. M. Becker - P. Persson

1st correlation

,

Standard Form

We determine first of all
$$\phi_{e}^{*} = \frac{b H_{eq}}{V_{eq} G^{1/2} B}$$
 Watt/cm²

where
$$B = \frac{-\lg(1-\chi_0^*) + \lg(0.98 - \frac{\xi v B^{1/2}}{\chi_0^{*1/4}(B+1)}) - \lg\left(1 - \frac{\xi(\chi_0^* + v) B^{1/2}}{(1-\chi_0^*)\chi_0^{*1/4}(B+1)}\right)}{\lg\frac{\chi_0^* + v}{v}}$$

Successively we find ϕ_o and X_o by means of the two expressions:

$$\phi_{o} = K_{d} \phi_{o}^{*} \qquad W_{atr/cm^{2}}$$

$$X_{o} = X_{o}^{*} + \frac{4(K_{d} - 1)L}{G H_{Lg} D} \phi_{o}^{*}$$

E and **b** are two constants dependent on the Pressure, k_d is a constant dependent on the diameter. These constants are given by means of the diagrams of the Report AE-178.

By means of a linear regression program we have determined the following approximated expressions:

$$\mathcal{E} = \mathcal{E}(P) \approx -0.385 \cdot 10^6 P^3 + 2.1867 10^4 P^2 - 2.1182 10^2 P + 0.5913$$

$$b = b(P) \approx 1,0677/P - 0,6688 \cdot 10^{6} P^{3} + 0,199 \cdot 10^{3} P^{2} - 0,02184 P + 1,0876$$

Range of validity for the involved parameters:

						-	
G	12	4	G	4	545	g/cm ² sec	
P	2.	7 ≤	P	≤	101	ata	
D	0.	.4 ≤	D	≤	2.5	om.	
L	40	4	\mathbf{L}	≤	390	CH.	
l/D	40	Ś	l/D	\$	890		
X.	0	\$	X.	<	1		
$ imes_{in}$	cerrespe	ndi	ng t	•	30 <	ΔT<240	°C
ቀ	35	<	ቀ	<	686	watt/cm.	

This range of validity is given by the authors.

88

Asymptotic Trend

The correlation does not depend on L.

K. M. Becker

2nd correlation

Standard Form

We determine first of all

$$\Phi_{0}^{*} = \frac{3,16 \cdot 10^{3}}{G^{1/2} \left(a_{1} + \frac{X_{0}^{*}}{a_{0}} \right)} \quad \text{Watt/cm}^{2}$$

where **a** and **b** are two constants dependent on the Pressure which may be determined by means of the diagrams of the Report RTL-798 (fig. 2). By means of a linear regression Program we have determined the following approximated expressions:

$$a_0 = a_0(P) \approx -118.505/P^2 + 0.113281 \cdot 10^5 P^3 - 0.196885 \cdot 10^{-3}P^2 + 1.13773$$

 $a_1 = a_1(P) \approx 0.196257 \quad 10^6 P^3 - 0.124829 \quad 10^{-2}P + 0.40475$

Successively we find ϕ_o and X_o by means of:

$$\phi_0 = K_d \phi_0^*$$
 Watt/cm²

$$X_{o} = X_{o}^{#} + \frac{4(K_{d} - 1)}{G \cdot H_{eg} \cdot D} \varphi_{o}^{#}$$

k is a constant dependent on the diameter, given by the diagram of the Report RTL-798 (fig. 3). By means of a linear regression program we have obtained from such a diagram the following approximated expression:

$$V_{d} = K_{d}(D) \approx$$

1,019 - 0,048 D D ≤ 1,2

Range of validity for the involved parameters:

This range of validity is given by the author.

91

Asymptotic Trend

The correlation does not depend on L.

÷.

RANGE OF VALIDITY FOR G

RANGE OF VALIDITY FOR PRESSURE

Fig.2 given by the authors

94

RANGE OF VALIDITY FOR L

RANGE OF VALIDITY FOR L/D

RANGE OF VALIDITY FOR X

	G	Р	D	L	r/d	X,	X _{in}	Ф.	
CISE I	2 7– 420	35 1 40	0 •25– (••5	-	21 - 365	0 .15-0.8 0	<٥	6 3– 630	
CISE II	100-450	45-85	0.3 -1	10–80	20–266	< X _{osim}	~ 0 ₀ 05 =0 ₀7	7 10-500	
CISE III	G(₽)	4 5–15 0	>0.7 2	20•3–267	-	>0	<0.2	-	
Hewit t	58 - 410	49 112	0 .55–1.1 3	21– 205	3 9- 360	70	-0.37-0	-	
Becker I	12 - 545	2.7-101	0.4-2.5	40-3 90	40-890	0–1	-	35-686	
Becker II	12-700	20-91	0 •4-3•75	40-375	40-890	-0.05-0.5	-	50 -7 00	
Lee-Ober	102 -2 25	7 0	0.56-1.15	22–1 35	39-360	> 0	• 0.23-0	-	
Tippets	24– 440	42 - 175	0 .122-1.22	15-275	20-400	0 - 0.75	-	-	

	G	P	D	ىل	L/D	×.	X _{in}	¢.
Levy	20-380	42 1 40	0 .13- 0 . 46	30-81	> 60	>0	< 0	-
Tong	54 - 550	55 -1 50	0.254-1.37	23–195	21– 660	0–0•9	-	30-550
Macbeth Ro.	1.36-84	1.06-141	0.304-0.99	15.2-310	> 50	0-1	- 1. 31-0	-
Macbeth Re.	2.21-75	56 141	0.13 -0.256	15,2 - 64.8	60-460	0-1	- 1.25- 0	-
Macbeth II	1-1800		0.09-2.5	2•54-3 66	-	0–1	< 0	-
Smolin	100-800	49 1 96	0 .5-1. 6	> 260	-	$X_{\bullet}(P)$	< 0	-
Ivashkevitch	15-325	1–220	0.02-3	3.5-1 80	1–2 20	0-1.0	-0.8-0	-
	G	Р	D	L	L/D	X _o X _{in}	φ,	
-----------------------	------------	-----------------	-------------	-------------------	---------------	--------------------------------	-----------------	
Macbeth Ro. High G	1.356-1060	1.06-193	0.101-2.37	2.54-310	> 50	0-1 -2.5-0	-	
Macbeth Re. High G	13.56-648	42–141	0.13 -0.256	15.2- 68.4	60-460	0-1 -1.435-0	₹	
Konkov	10-1320	20-200	0.4 -3.22	150 -300	9 3375	>0,1 <0	10-390	
Zenkevitch	56-110-500	40-100-200	0.4 -1.2	20	~	0-0.4 -	~	
Miropolskii	20-1000	2 0– 200	▶0.4	~	-	<0.8 - dep.on P		
Ribin	80-700	7 0–206	> 0,6	-	_	70 <0	65 - 450	

PART 3

ι.

GRAPHYCAL COMPARISON

e

. .

-

WATER PHYSICAL PROPERTIES

For our graphical comparisons we have used the following correlations for the steam water physical properties (ref.26):

$$\begin{split} \Theta &= 118,052 \cdot P^{0,22451} - 47,778 \\ H_{s} &= 408,86 \cdot P^{0,26452} & \text{for} \quad 7 < P < 70 \\ H_{s} &= 337,73 \cdot P^{0,30934} & \text{for} \quad 70 \leq P < 140 \\ H_{eg} &= 2144,8987 - 13,4 \cdot P + 8,07524 \cdot 10^{2} \cdot P^{2} - 2,82159 \cdot 10^{-4} \cdot P^{3} \\ \mathcal{V}_{eg} &= \frac{1.87903 \cdot 10^{3}}{P} - 7,866 & \text{for} \quad 7 < P \leq 21 \\ \mathcal{V}_{eg} &= \frac{2.3 \cdot 10^{3}}{P} - 6,242 & 21 < P < 140 \\ Q_{e} &= 1.022078 - 4,9862 \cdot 10^{-4} \cdot \Theta + 3,3705 \cdot 10^{-7} \cdot \Theta^{2} - 6,33927 \cdot 10^{-9} \Theta^{3} \\ \sigma &= 70,043 \cdot (Q_{e} - Q_{g})^{4} \\ \mathcal{M}_{e} &= \frac{10^{-2}}{3,7 \cdot 10^{2} \cdot \Theta - 0,22282} \\ \mathcal{M}_{g} &= 0,56478 \cdot 10^{-4} + 0,524722 \cdot 10^{-6} \cdot \Theta + \frac{4,21847 \cdot 10^{-4}}{\Theta - 374,5} \\ C_{e} &= -8,32376 + 0,1811 \cdot \Theta - 0,8582 \cdot 10^{-3} \Theta^{2} + 1,371 \cdot 10^{-6} \cdot \Theta^{3} \\ R &= 0,41688 \cdot 10^{-15} \cdot \Theta^{5} - 0,35633 \cdot 10^{-12} \cdot \Theta^{4} + 0,180574 \cdot 10^{-5} \cdot \Theta + 6,705 \cdot 10^{-3} \\ \end{split}$$

BIBLIOGRAPHY

۰.

A. Cicchetti - M. Silvestri et al.
A Critical survey of the literature on burnout studies
with wet steam
Energia Nucleare - Vol.6 - N. 10 pages 637-660 October 1959

2 A. A. Ivashkevitch Critical heat fluxes in the forced flow of liquid in channels Atomnaya Energiya - Vol.8 - N. 1 pages 51-53 January 1960

3 A. A. Ivashkevitch Critical heat flux and heat transfer coefficient for boiling liquids in forced convection Teploenergetika - Vol.8 - N. 10 October 1961

Z. H. Miropolskii - M. E. Shitsman
The critical heat flux for boiling water in tubes
Atomnaya Energiya - Vol. 11 - N. 6 pages 515-521 December 1961

5 Z. H. Miropolskii - L. E. Faktorovich

General conclusions derived from experimental results on the influence of the heated length of a channel on the critical heat flux.

Soviet Physics Doklady - Vol.6 - N. 12 pages 1058-1061

June 1962

- 6 S. Levy Prediction of the critical heat flux in forced convection flow GEAP 3961 - June 1962
- 7 A. S. Konkov V. V. Modnikova
 Experimental investigation of the condition of deterioration of heat transfer during boiling in tubes
 Teploenergetika Vol.8 N. 8 pages 77-81 August 1962

8 R. A. Rybin Critical thermal loads during the boiling of a saturated liquid in tubes Atomnaya Energiya - Vol.13 - N. 4 pages 377-380 October 1962 9 M. Silvestri et al. A research program in two phase flow CAN I - CISE January 1963

10 i. Casagrande

Energia Nucleare - Vol.10 - N. 11 pages 571-572 November 1963

11 D. H. Lee - J. D. Obertelli An experimental investigation of forced convection burnout in high pressure water AEEW-R 213 August 1963 AEEW-R 355 1965

```
12 R. V. Masbeth
Forced convection burnout in single uniformly heated channels:
a detailed analysis of world data.
AEEW-5892 A (1963)
```

```
    G. V. Alekseyev - B. A. Zenkevitch - V. I. Subbotin
    Critical heat fluxes in annular channels
    Teploenergetika - Vol.10 - N. 10 pages 72-75 October 1963
```

- 14 G. V. Alekseyev B. A. Zenkevitch V. I. Subbotin Critical heat fluxes in annular channels with heat supply from two sides Inzh. Fiz. Zhurnal - Vol.7 N. 9 pages 30-33 September 1964
- 15 B. Thompson R. V. Macbeth Burnout in uniformly heated round tubes: a compilation of World data with accurate correlations AEEW-R 356 1964
- 16 F. E. Tippets Analysis of the critical heat flux condition in high pressure boiling water flows J. Heat Transfer - Vcl.86 - N. 1 February 1964
- B. A. Zonkevitch G. V. Alekseyev et al.
 Burnout heat fluxes under forced water flow
 Geneva Conference A/Conf.28/P/327 May 1964
- H. S. Tong H. B. Currin F.C. Engel
 DNB studies in an open lattice core
 WCAP 3736 August 1964

- S. Bertoletti G. P. Gaspari et al.
 A general correlation for predicting the heat transfer
 crisis with steam water mixtures
 Energia Nucleare Vol.11 N. 10 pages 586-587 October 1964
- 20 S. Bertoletti G. P. Gaspari et al. Heat transfer crisis with steam water mixtures Energia Nucleare - Vol.12 - N. 3 pages 121-172 March 1965
- 21 G. F. Hewitt A method of representing burnout data in two phase heat transfer for uniformly heated round tubes AERE - R 4613 November 1964
- V. N. Smolin B. K. Polyakov V. I. Esikov
 An experimental investigation of heat transfer crisis
 J. Nuclear Energy Vol.19 N. 3 pages 209-216 March 1965
- 23 K. M. Becker P. Persson
 An analysis of burnout conditions for flow of boiling
 water in vertical round duct
 J. Heat Transfer pages 513-530 November 1964

24 K. M. Becker

An accurate and simple correlation for burnout conditions in vertical round ducts AE-ETL 798 June 1965

25 L. S. Tong - H. B. Currin - A. G. Thorp New Correlations Predict DNB Conditions Nucleonics 21, N. 5, 43-47 (1963)

26 R. S. Pyle

STDY-3 A program for the thermal analysis of a pressurized water nuclear reactor during steady state operations WAPD-TM-213 june 1960

NOMENCLATURE

Symbol	Definition	Units			
D	equivalent diameter $\frac{4S}{P}$	cm.	L		
D he	equivalent heated diameter 4S P- he	C	L		
G	mass velocity	<u> </u>	<u>ж</u> г ⁻² т ⁻¹		
Hgl	enthalpy of vaporization	joule g	L ² T ⁻²		
^н s	saturation enthalpy	joule g	L^{2} T^{-2}		
ì	heated length	сш	L		
Ls	saturation length	cm	L		
N _u	Nusselt number	dimensionless	-		
F	absolute pressure	ata	M L ⁻¹ T ⁻²		
Pcrit	critical pressure	ata	ML ⁻¹ T ⁻²		
Pr	Prandtl number =	dimensionless	-		
Re	Reynolds mumber=	dimensionless	-		
S	flow aerea	cm ²	L E		
W	power	watt	$\mathbf{H} \mathbf{L}^2 \mathbf{T}^{-3}$		
¥.	saturation power	watt	ML ² T ⁻⁵		
X•	outlet quality	dimensionless	-		
ar ^X	inlet quality	dimensionless	-		
c ¹	liquid specific heat	g C	L^2 T^2		
Ce	vapor specific heat	joule g C	L ² T -		

Symbol	Definition
--------	------------

δ

 ΔT_{svb} inlet subceeling

g	acceleration due to gravity	<u>sec</u> ²	LT ⁻²
k	thermal conductivity	watt cm °C	MLT-3
Р	wetted wall area per unit	cm	L
	duct length		
\mathtt{P}_{he}	heated wall area per unit	Cm	L
	duct length		
θ	saturation temperature	°C	-
μ	dinamic viscosity	g/cm sec	M L-1 _T -1
√ع	vapor specific volume	cm^3 / g	M-1 ³
V _L	liquid specific volume	cm ³ /g	^{M−1} L ³
Vig	differential evaporation	cm ³ / g	^{™-1} ³
	volume		
V	$\frac{V_{L}}{V_{L}}$	dimensionles	ss -
ρ	vapor density	g / cm^3	ML-3
ρ	liquid density	g / cm ³	_{ML} -3
б	surface tension	dine/cm	<u>м</u> т-2
Ø.	critical heat flux	$watt/cm^2$	м т ⁻³
Ø _{tpf}	two-phase friction factor	dimensionles	38 -
δ	gap	cm	L

Units

126

°c

-

NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US 15, £ 5.7) or free specimen copies please write to:

or

Handelsblatt GmbH "Euratom Information" Postfach 1102 D-4 Düsseldorf (Germany)

Office central de vente des publications des Communautés européennes 2, Place de Metz Luxembourg

To disseminate knowledge is to disseminate prosperity — I mean general prosperity and not individual riches — and with prosperity disappears the greater part of the evil which is our heritage from darker times.

Alfred Nobel

SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES

2, place de Metz, Luxembourg (Compte chèque postal Nº 191-90)

BELGIQUE — BELGIË

MONITEUR BELGE 40-42, rue de Louvain - Bruxelles BELGISCH STAATSBLAD Leuvenseweg 40-42 - Brussel

DEUTSCHLAND BUNDESANZEIGER Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 26, rue Desaix - Paris 15°

ITALIA

LIBRERIA DELLO STATO Piazza G. Verdi, 10 - Roma LUXEMBOURG OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 9, rue Goethe - Luxembourg

NEDERLAND STAATSDRUKKERIJ Christoffel Plantijnstraat - Den Haag

UNITED KINGDOM H. M. STATIONERY OFFICE P. O. Box 569 - London S.E.1

> EURATOM — C.I.D. 51-53, rue Belliard Bruxelles (Belgique)

CDNA03300ENC