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COUNTERS
COUNTING IN ANY CODE *

Introduction

A counter is a device which can store a number of
events (pulse for instance); every time an event occurs,
the store number increases of 1.

The digits of this number are written in binary form
for the counter is built with flip-flops which are binary
elements.

A correspondence table for every set of digits
(called number) and the "number value" has to be given:
this table is called "code".

The problem is the following: having a sequence of
numbers, we want to design the counter.

When the code is simple (binary, decimal, etc.) the
circuit will be easy to design, but for general cases, it
is necessary to use some formal method for computing the
input conditions of the flip-flops 1 , 3 given by the
equation

The following graphical method allows to separate
more e€asily the functions f1 (set) and f2 (clear) when JK

flip-flops are used. It can be extended to the other types
of flip-flops.

+Manuscript received on December 6, 1966



Such & type of counter may be very useful for con-

trolling a sequentisl machine, avciding the conventional

circuit: counter and decoding matrix using lot of compo-

nents.

In the following, & counter will be given a name as

a sequence of decimal number: every decimal number will

represent the positions of the flip-~flops. For instance,

when we speak of the "0, 2, 5 counter", we mean & set of

3 flip-flops working in the following sequence,

flop

Now, the reader will find four examples:

the first one illustrates the method in a very simple

case where no minimizetion is necessary;

the second one, rather complicate, with another type
of flip-flop, needs a Karnaugh's table;

the third example is a decimel counter;

These first three counters are coherent: every flip-
is triggered at the same time.

the fourth example shows an extension of the method
to a decimal ripple-through counter where flip-flops
can be triggered by the clock pulse or another flip-
flop.



The JK Flip-flop

We will use the JK flip-flop type, because it is now
the most generalized form of flip-flops of the integrated

circuits.
S—» . A
T CK—»
C— A

Fig. 1: The JK flip-flop

A JK flip-flop has two outputs A, A and 3 inputs
called S (set), C (clear) and CK (clock).

The flip-flop changes its state only when it receives

a negative step on its input CK.

If the inputs S and C are different, the output A
becomes the same as S after the clock pulse.

If S = C = 0, the flip-flop changes: the output at the
n + 1 time becomes the complement value of that it had at

the n time.

Finally, we have:



n+ 1

O 4 4O I v

C
1
0
1
0

53 - o

Now we can sez that in every case, we have two pos-
gsibilities for contrclling a flip-flop.

For instance, if we have

and we want to have

we can take either

or

Therefore, it will be necessary tc put S = O, but
the input C will not be determinated.



Exemple I -~ Counter 0, 2, 3

Let us suppose now, we want to design & counter giv-
ing the following sequence:

Position a b
1 0 0
2 0 1
3 1 1

From the position 3, the counter will return to the
position 1.

a) Let us write the 2 possible conditions of Sa and Ca for
every position of the flip-flop a.

Position a Sa C
1 0 0 1
1 1
2 0 1 0
0 0
3 1 0 1
0 0
1 0

This matrix may be reduced to:

Position a Sa C
1 0 - 1

2 0 - 0

3 1 0 -

Sa having only one determinated position, we will
take

S = O,



If we compare the value of Ca with the output of the
b flip-flop:

Position b Ca
1 0 1
2 1 0
3 1 -

If we take Ca = 0 in the position 3, we will have

Cy = b.

b) Let us do the same for the b flip-flop:

Position b S Cb
1 0 1 0
0 0
2 1 1 0
1 1
3 1 0 1
0 0
1 0
The reduced matrix is now:
Position E EE EE
1 0 - 0
2 1 1 -
3 1 0 -

If we take Sb = 1 in position 1, we have
Sb-a
and Cb having only one position well determinated, we

take
Cb = 0,



The schema of the counter will be:

1”_5_3 | a_ Sb LI

CK ——— CK—»

jjusl

Ca

wl
ol

Fig. 2: 3 positions coherent counter .

For this case, the selection of the conditions Ca
and Sb was very simple. In general cases§7Karnaugh's table
will be necessary for taking the minimized form as we will
gee in the following example.



Example II - Counter 1, 7, 3, 4, 8, 14, 11

Let us make up another example of sequence with another
type of flip-flop, slightly different of the preceding one:
for the complementation we must put 1 on both inputs S and
c.

This case is that of conventional flips«flop, made with
PNP transistors and working in negative logic, controlled
by two And gates with two inputs, one of them receiving the

clock pulse,

I CK »—

C

Fig. 3: Transistorized flip-flop

The equations of such a flip-flop are:

E S An+1
0 1 0

1 0 1

1 1 An
0 0 An

Now let us take the sequence 1, 7, 3, 4, 8, 14 and 11
and let us try to find the best way for organizing a counter
following such a sequence.

The sequence written in binary, will be:



Pos. Decimal Value a b c a
1 1 1 0 0 0
2 T 1 1 1 0]
3 3 1 1 0 0
4 4 0 0 1 0]
5 8 0 0 0 1
6 14 0 1 1 1
7 11 1 1 0 1

Let us write directly the normal and reduced matrixes

for a:
Pos. i Sa Ca
1 1 1 - 0 0
0 - 0
2 1 1 - 0 0
0 0
3 1 0 - 1 1
1 1
4 0 0 0 1 -
0 0
5 0 0 0 1 -
0 0
6 0 1 1 0 -
1 1
7 1 1 - 0 0
0 0
1 1

The research of the simplest form for Ca and Sa will
be made with the following Karnaugh's table:
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Sa Ca
ab 00 01 1" 10 ab 00 (1] 1" 10
cd cd
00 - 00 — E 0
01 0 - 01 - - 0 —
11 _ - n _ - - -
10 0 — 10 - _ 0 _

The simplification method consists of making groups

of 2, 4, 8 ... adjacent "onesg"; the bigger is the group,

the simpler is the form of the result.

The cases where the function does not take a definite

value, can be filled with 1 or O, corresponding to the

best way of simplification.

The complete method can be found in reference 2

In our case we have:
= b
Sa

Ca = bcd.

The same computation has been made for b, ¢ and 4

and can be found in Appendix I.

Finally, we have:

Sa = b Ca = bcd
Sb = C Cb = C
SC = g + d CC = 1
Sd = Cd = g

and the corresponding schema will be:
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Example III - Decimal counter with JK flip-flops

Now, we shall use four JK flip-flops in & decimal

sequence:

Pos. a L} c 4
0 0 0 o) 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0
4 0] 0 1 0]
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0
8 0 0 0 1
9 1 0 0 1

We see immediately that the a function is always
complemented from any position to the following one.

Then:

Let us write the matrix for b:

Pos. b Sy Cy
0 0 0 - 1
1 1
1 0 1 - 0
0 0
2 1 1 1 0
1 1
3 1 0 1

OO
(©]



Pos.

| o
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The corresponding Karnaugh's table for

will be:
Sb
ab 00 01 11 10
cd
00 — 1 0 -
Q1 — — — -
n — — - -—
10 — 1 —
- 1§90
and we hsave
Sy
C

o

Sb C
0 - 1 1
1 1
1 - 0 0
0 0
1 1 0 -
1 1
0 0 1 -
0 0
0 - 1 1
1 1
0 - 1 1
1 1
Sb and C
Chb
ab 00 01 1 10
cd
00 1 — — 0
01 1 - - 1
11 —_ _ — —
1
0 1 — - 0
= 3
= a + 4
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Example IV - Decimal ripple through counter

We shall work always with JK flip-flop. In that case,
the CK inputs may be fed by the clock-pulse generator or
the outputs of the other flip-flops: more possibilities
are given and we can think the corresponding circuit will
be simpler.

A clock-pulse coming from an output of a flip-flop
will take place for the transition from 1 to zero.

Now we can list the clock-pulse available in a decimal

counter:
Available clock-pulse
Pos. & b ¢ d& (Gemerator a 8 b b ¢ c & d
0 O 0 0 O + +
1 1 0 0 O + + +
2 O 1 0 O + +
3 1 1 0 O + + + +
4 O 0 1 O + +
5 1 0 1 O + + +
6 o 1 1 0 + +
7 11 1 0 + + + + +
8 O 0 0 1 + +
9 1 0 0 1 + + +

Iet us take the b digit as we did in example IIT.

The clock-puls=s for this flip-flop are necessary only
when it will change ts state: that is for the 1, 3, 5 and
7 positions (Nec CK).

We can take the output a as a clock-pulse, then it
g&ives pulses at the 1, 3, 5, 7 and 9 positions (a CK).
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Therefore, we must inhibit the 9th position (instead
of the 0, 2, 4, 6, 8 and 9th positions for a coherent

counter).
The S and ¢ functions will not have determinated

value for the 0, 2, 4, 6 and 8th position, that explains
the more simple form of the corresponding Boolean function.

The matrix for the b output is:

Pos., E Nec CK a CK !b Cb
0 0 - -
1 0 + + 1 - 0 0
0 0
2 1 - -
3 1 + + 0 0 1 -
0 0
4 0 - -
5 0 + + 1 - 0 0
0 0
6 1 - -
7 1 + + 0 0 1 -
0 0
8 0 - -
3 0 + o - 1 1
1 1
0 0
We have:

and the Cb Karnaugh's table will be:
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Appendix I - Counter 1, 7, 3, 4, 8, 14, 11

1°) PLIP-FLOP b

Pos. b

1 0

2 1

3 1

4 0

5 0

6 1

7 1

1 0
ELE_ 00 o 1" 10

c
00 - - - 1
01 1 _ - —
11 - — -
10 0 - - -
Sp=

- 19 -

00
01
"
10

b C

1 0 -

1 1

1 0 0

0 0

0 1 1

1 1

0 1 -

0 0

1 0 -

1 1

1 0 0

0 0

0 1 1

1 1
00 01 " 10
- — 1 -
— - 1 -
- 0 — -
- - 0 —

]|



2°) FLIP-FLOP c

Pos.

]

|

O

00
01
11
10

Olo

(¢ ]

- 20 -

0 1 1
1
1 0 -
1
0 1 1
1
1 0 -
1
0 1 1
1
1 0 -
1
0 0 0
0
0
00 01 " 10
——\ + 1)
1 - 0 -
r
— —- - ;fi
Sc - a a Cc -‘-1

— =
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3%) PLIP-FLOP d

Q- =

OO OO

—_— b

1

10

Pos.] E Sd
1 0 0 0
0
2 0 0 0
0
3 0 0 0
0
4 0 1 1
1
5 1 1 -
0
6 1 1 -
0
7 1 0 -
]
1 0
ab 00 01 " 10 ab 00 01
cd cd
00 0 0 00 — —
01 - - 01 0 -
11 - — 1 - 0
10 0 - 10
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Appendix 11 - Decimal counter

1°) PLIP-FLOP c

Pos. _c_ Sc
0 0 0 - 1 1
1 1
1 0 0 - 1 1
1 1
2 0 0 - 1 1
1 1
3 0 1 - 0 0
0 0
4 1 1 1 0 -
1 1
5 1 1 0 -
]
6 1 1 1 0 -
1 1
7 1 0 0 1 -
0 0
8 0 0 - 1 1
1 1
9 0 0 - 1 1
1 1
0 0
ab 00 01 1 10 ab 00 01 11 10
cd c
00 ) ) - 00 (1) 1) 0 (1
01 1 1 0 01 - — - -
11 - - - 11 - - - -
10 - — - 10 - - -

wn
0
]
1]
+
o
(@]
0
]
il
+
ol



2°) FLIP-FLOP 4

Pos. a

0 0

1 0

2 0

3 0]

4 0

5 0]

6 0

7 0

8 1

9 1

0 0
ab 00 01 11 10
c
00 -— -
01 - 0
11 - -
10

i

- 23 -

a
0 o 4 1
1 1
0 - 1 1
] 1
0 - ] ]
] .
0 - ] 1
] 1
0 - ] ]
1 1
0 - ] ]
1 1
0 - ] 1
] 1
1 - 0 0
0 0
] 1 0 -
1 ]
0 0 1 -
0 0
ab 00 O 1 10
—
cd
4 "
00 1) 1 1 (1
01 _ _ _ _
N
1 _ _ _ _
10 1 _ 0 U
Cd=a+b+t
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Appendix III - Decimal counter ripple-through

1°) PLIP-FIOP c

Pos. c Nec CK b CK Sc
0 0 -
1 0 -
2 0 -
3 0 + + 1

0
4 1 -
5 1 -
6 1 -
7 1 + + 1

0
8 0 -
9 0 -
0 0

S, = Cc = 0



2%) FLIP-FIOP a

- 25 -

Pos. d Nec CK & CK S
0 0 -
1 0 + 0
1
2 -
3 0 + 0
1
4 0 -
5 0 + 0
1
6 0 -
T 0 + 1
0
8 1 -
9 1 + 0
0
0 0
abl 00 01 1 10
c
00 _) - 1 m
Sq=0 01 - - - -
A
10 = — 0 1
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Page Ligne Expression corrigée
1 20 Xq = f1Q + sz
3 5 ... two outputs A, &
3 15 An-1-1 = An
4 5 0 O An
6 8 Ca = Db
6 24 Sb = g
8 15 1 1 A,
10 10 Ca = bed
10 14 Ca = becd
10 15 Sb = C Cb = C
10 16 Sc =a + d
10 17 Sd = g
13 avant-derniére Sy = a
13 derniére Cp = e+ d
14 5. Sb = a Cb =8 + d
14 6 sc=5+‘5 C,=a+Dd
14 T Sd = a Cd = @ + + C
15 12 Generator aa bb cc 44d
17 7 Cq = P+ C
22 ab 00 01 10 a 11 10
c d c
00 0 0 1
01 0 - 1
11 1 - -
10 1 - -
23 ab 00 01 11 10
c d
00 1 1
01 - -
11 ~ -
10 0 l1
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