EUR $3268 . e$

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

COUNTERS COUNTING IN ANY CODE

by

M. COMBET

1967

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM).

Neither the EURATOM Commission, its contractors nor any person acting on their behalf:

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4
at the price of $\mathrm{FF} 4 . \quad \mathrm{FB} 40$.
DM 3.20
Lit. 500
Fl. 3.-

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by Guyot, s.a.
Brussels, February 1967

This document was reproduced on the basis of the best available copy.

EUR 3268.e

COUNTERS COUNTING IN ANY CODE by M. COMBET
European Atomic Energy Community - EURATOM
Joint Nuclear Research Center
Ispra Establishment (Italy)
Technology
Brussels, February 1967-26 Pages - 7 Figures - FB 40
This paper describes a simple method for designing a sequential network.
Provided a sequence of numbers, written by binary code, the method allows to design the corresponding circuit made of JK flip-flops.

Four examples are given for some sequences, one of which for a decimal counter.

An extension to ripple-through counters is applied to decimal counters, too.

EUR 3268.e

COUNTERS COUNTING IN ANY CODE by M. COMBET
European Atomic Energy Community - EURATOM
Joint Nuclear Research Center
Ispra Establishment (Italy)
Technology
Brussels, February 1967-26 Pages - 7 Figures - FB 40
This paper describes a simple method for designing a sequential network.
Provided a sequence of numbers, written by binary code, the method allows to design the corresponding circuit made of JK flip-flops.

Four examples are given for some sequences, one of which for a decimal counter.

An extension to ripple-through counters is applied to decimal counters, too.

COUNTERS COUNTING IN ANY CODE

by
M. COMBET

1967

CONTENTS

INTRODUCTION 1
THE JK FLIP-FLOP 3
EXAMPLE I - COUNTER 0,2,3 5
EXAMPLE I - COUNTER 1,7,3,4,8,14,11 8
EXAMPLE III - COHERENT DECIMAL COUNTER 12
EXAMPLE IV - RIPPLE-THROUGH DECIMAL COUNTER 15
BIBLIOGRAPHY 18
APPENDIX I - EXAMPLE II 19
APPENDIX II - EXAMPLE III 22
APPENDIX III - EXAMPLE IV 24

SUMMARY

This paper describes a simple method for designing a sequential network. Provided a sequence of numbers, written by binary code, the method allows to design the corresponding circuit made of JK flip-flops.
Four examples are given for some sequences, one of which for a decimal counter.
An extension to ripple-through counters is applied to decimal counters, too.

COUNTERS

COUNTING IN ANY CODE ${ }^{+}$

Introduction

A counter is a device which can store a number of events (pulse for instance); every time an event occurs, the store number increases of 1.

The digits of this number are written in binary form for the counter is built with flip-flops which are binary elements.

A correspondence table for every set of digits (called number) and the "number value" has to be given: this table is called "code".

The problem is the following: having a sequence of numbers, we want to design the counter.

When the code is simple (binary, decimal, etc.) the circuit will be easy to design, but for general cases, it is necessary to use some formal method for computing the input conditions of the flip-flops 1,3 given by the equation

$$
X_{q}=f_{1} Q+f_{2} Q .
$$

The following graphical method allows to separate more easily the functions f_{1} (set) and f_{2} (clear) when JK flip-flops are used. It can be extended to the other types of flip-flops.

[^0]Such a type of counter may be very useful for controlling a sequential machine, avoiding the conventional circuit: counter and decoding matrix using lot of components.

In the following, a counter will be given a name as a sequence of decimal number: every decimal number will represent the positions of the flip-flops. For instance, when we speak of the " $0,2,5$ counter", we mean a set of 3 flip-flops working in the following sequence.

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 .
\end{array}
$$

Now, the reader will find four examples:

- the first one illustrates the method in a very simple case where no minimization is necessary;
- the second one, rather complicate, with another type of flip-flop, needs a Karnaugh's table;
- the third example is a decimal counter;

These first three counters are coherent: every flipflop is triggered at the same time.

- the fourth example shows an extension of the method to a decimal ripple-through counter where flip-flops can be triggered by the clock pulse or another flipflop.

The JK Flip-flop

We will use the JK flip-flop type, because it is now the most generalized form of flip-flops of the integrated circuits.

Fig. 1: The JK flip-flop

A JK flip-flop has two outputs A, A and 3 inputs called S (set), C (clear) and CK (clock).

The flip-flop changes its state only when it receives a negative step on its input CK.

If the inputs S and C are different, the output A becomes the same as S after the clock pulse.

If $S=C=0$, the flip-flop changes: the output at the $\mathrm{n}+1$ time becomes the complement value of that it had at the n time.

$$
A_{n+1}=A_{n}
$$

If $S=C=1$, the flip-flop does not change, and

$$
A_{n+1}=A_{n}
$$

Finally, we have:

S	C	A_{n+1}
		1

Now we can see that in every case, we have two possibilities for controlling a flip-flop.

For instance, if we have

$$
A_{n}=1
$$

and we want to have

$$
A_{n+1}=0
$$

we can take either

$$
\begin{array}{lll}
\text { or } & S=0 & C=1 \\
& S=0 & C=0
\end{array}
$$

Therefore, it will be necessary to put $S=0$, but the input C will not be determinated.

Example I - Counter 0, 2, 3
Let us suppose now, we want to design a counter giving the following sequence:

Position		a
1	0	\underline{b}
2	0	0
3	1	1
		1

From the position 3, the counter will return to the position 1.
a) Let us write the 2 possible conditions of S_{a} and C_{a} for every position of the flip-flop a.

Position	a	S_{a}	$C^{\text {a }}$
1	0	0	1
		1	1
2	0	1	0
		0	0
3	1	0	1
		0	0
1	0		

This matrix may be reduced to:

Position	\mathbf{a}	S_{a}	C_{a}
	-	-	-
2	0	-	1
3	0	-	0
	1	0	-

S_{a} having only one determinated position, we will take

$$
S_{a}=0
$$

If we compare the value of C_{a} with the output of the b flip-flop:

Position	b	c_{a}
	-	0

If we take $C_{a}=0$ in the position 3 , we will have

$$
C_{a}=b .
$$

b) Let us do the same for the b flip-flop:

Position	b 1	S_{b} 2	C_{b} 2
	0	1	0
3	1	1	0
	1	1	0
1	0	0	1
			0

The reduced matrix is now:

Position	b	S_{b}	C_{b}
	-	-	0
2	0	-	0
3	1	1	-
	1	0	-

If we take $S_{b}=1$ in position 1 , we have

$$
S_{b}=a
$$

and C_{b} having only one position well determinated, we take

$$
C_{b}=0
$$

The schema of the counter will be:

Fig. 2: 3 positions coherent counter.

For this case, the selection of the conditions C_{a} and S_{b} was very simple. In general cases, ${ }^{a}$ Karnaugh's table will be necessary for taking the minimized form as we will see in the following example.

Example II - Ccunter 1, 7, 3, 4, 8, 14, 11
Let us make up another example of sequence with another type of flip-flop, slightly different of the preceding one: for the complementation we must put 1 on both inputs S and C.

This case is that of conventional fliprflop, made with PNP transistors and working in negative logic, controlled by two And gates with two inputs, one of them receiving the clock pulse.

Fig. 3: Transistorized flip-flop
The equations of such a flip-flop are:

S	C	A_{n+1}
-	-	0
0	1	1
1	0	A_{n}
1	1	A_{n}

Now let us take the sequence $1,7,3,4,8,14$ and 11 and let us try to find the best way for organizing a counter following such a sequence.

The sequence written in binary, will be:

Pos.	Decimal Value	\underline{a}	\underline{b}	\underline{c}	\underline{d}
1	1	7	1	0	0
2	3	1	1	1	0
3	4	1	1	0	0
4	8	0	0	1	0
5	14	0	0	0	1
6	11	0	1	1	1
7		1	1	0	1

Let us write directly the normal and reduced matrixes for a :

Pos.	a	S_{a}		C_{a}	
1	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	0 0	0
2	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	0	0
3	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	1 1	1
4	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	1	-
5	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	1 0	-
6	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	0 1	-
7	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	0 0	0
1	1				

The research of the simplest form for C_{a} and S_{a} will be made with the following Karnaugh'stable:

The simplification method consists of making groups of 2s 4, $8 \ldots$... adjacent "ones"; the bigger is the group, the simpler is the form of the result.

The cases where the function does not take a definite value, can be filled with 1 or 0 , corresponding to the best way of simplification.

The complete method can be found in reference 2 .

In our case we have:

$$
\begin{aligned}
& S_{a}=b \\
& C_{a}=b c d .
\end{aligned}
$$

The same computation has been made for b, c and d and can be found in Appendix I.

Finally, we have:

and the corresponding schema will be:

Fig. 4: Coherent counter $1,7,3,4,8,14,11$

Example III - Decimal counter with © ${ }^{\text {TK }}$ flip-flops
Now, we shall use four JK flip-flops in a decimal sequence:

Pos.	\underline{a}	\underline{b}	\underline{c}	\underline{d}
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1

We see immediately that the a function is always complemented from any position to the following one.

Then:

$$
s_{a}=c_{a}=0
$$

Let us write the matrix for $b:$

Pos.	b	S_{b}		C_{b}	
0	0	0	-	1	1
		1		1	
1	0	1	-	0	0
		0		0	
2	1	1	1	0	-
		1		1	
3	1	0	0	1	-
		0		0	

Pos.	b	S_{b}		$\mathrm{C}_{\text {b }}$	
4	0	0	-	1	1
		1		1	
5	0	1	-	0	0
		0		0	
6	1	1	1	0	-
		1		1	
7	1	0	0	1	-
		0		0	
8	0	0	-	1	1
		1		1	
9	0	0	-	1	1
		1		1	
0	0				

The corresponding Karnaugh's table for S_{b} and C_{b} will be:

and we have

$$
\begin{aligned}
& S_{b}=a \\
& C_{b}=a+d
\end{aligned}
$$

The simplest form of the Boolean functions S_{c}, C_{c}, S_{d} and C_{d} can be found in the same way (see Appendix. II). Finally, we have:

$$
\begin{array}{ll}
S_{a}=0 & C_{a}=0 \\
S_{b}=a & C_{b}=a+d \\
S_{c}=a+b & C_{c}=a+b \\
S_{d}=a & C_{d}=a+b+c
\end{array}
$$

and the corresponding schema will be:

Fig. 5: Decimal counter with OR gates
This schema can be transformed into NOR gate.

Fig. 6: Decimal counter with NOR gates

Example IV - Decimal ripple through counter
We shall work always with JK flip-flop. In that case, the CK inputs may be fed by the clock-pulse generator or the outputs of the other flip-flops: more possibilities are given and we can think the corresponding circuit will be simpler.

A clock-pulse coming from an output of a flip-flop will take place for the transition from 1 to zero.

Now we can list the clock-pulse available in a decimal counter:

Available clock-pulse
Pos. $a \underline{b} \underline{c}$ d Generator $a \underline{a}$ b \underline{b} c c d \underline{d}

0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1

+
+
+
+
+
+
+
+
+
+

Iet us take the b digit as we did in example III.
The clock-pulses for this flip-flop are necessary only when it will change its state: that is for the 1, 3, 5 and 7 positions (Nec CK).

We can take the output a as a clock-pulse, then it gives pulses at the $1,3,5,7$ and 9 positions (a CK).

Therefore, we must inhibit the 9 th position (instead of the 0, 2, 4, 6, 8 and 9 th positions for a coherent counter).

The S and C functions will not have determinated value for the $0,2,4,6$ and 8 th position, that explains the more simple form of the corresponding Boolean function.

The matrix for the b output is:

Pos.	b	Nec CK	a CK				
0	0				-		-
1	0	+	+	1 0	-	0	0
2	1				-		-
3	1	+	+	0	0	1	-
4	0				-		-
5	0	+	+	1 0	-	0	0
6	1				-		-
7	1	+	+	0	0	1 0	-
8	0				-		-
9	0		+	0 1	-	1	1
0	0						

We have:

$$
S_{b}=0
$$

and the C_{b} Karnaugh's table will be:

$$
c_{b}=d
$$

The computation for the c and d digits can be found in Appendix III.

$S_{a}=0$	$C_{a}=0$
$S_{b}=0$	$C_{b}=d$
$S_{c}=0$	$C_{c}=0$
$S_{d}=0$	$C_{d}=b+c$.

Fig. 7: Decimal ripple-through counter with NOR gate

BIBLIOGRAPHY

1 PHISTER J.M. - Logical Design of Digital Computers, John Wiley and Sonc, Inc., New York 1958

2 NASLIN Circuits à relais et automatismes à séquences, Dunod (Paris) 1958

3 AMADASI - LO FASO - Réalisations de compteurs numériques avec des éléments micrologiques, L'Onde Electrique Vol XLVI Mars 1966

4 WELLS C.R. - Coherent Counter using the JK Flip-Flop, Fairchild - Application Report AR. 132 October 1965

Appendix I - Counter $1,7,3,4,8,14,11$
1°) FLIP-FLOP b

Pos.	b	S_{b}		C_{b}	
1	0	1	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-
		1			
2	1	1	-	0	0
		0			
3	1	0	-	1	1
	0		0	10	-
4		0			
		0			
5	0	1	1	0	-
		1			
6	1	1	-	0	0
		0			
7	1	0	-	1	1
		1			
1	0				

$a b$	00	01	11	10	$\frac{a b}{c d}$	00	01	11	10
	$\sqrt{-1+1}$								
00					00	-	-	1	-
01	1				01	-	-	1	-
11	-	-	-	-	11	-	0	-	-
10	0	-	-	-	10	-	-	0	-
							C_{b}		

2°) FIIP-FLOP C

Pos.	c	S_{c}		${ }^{C}$	
1	0	1	1	0	-
	1	1		1	
2		0	-	1	1
		1		1	
3	0	1	1	0	-
		1		1	
4	1	0	-	1	1
		1		1	
5	0	1	1	0	-
		1		1	
6	1	0	-	1	1
		1		1	
7	0	0	0	1	-
		0		0	
1	0				

$a b$ $c d$ 0	00	01	11	10
0				
01				
11				
10	-	-	1	1
1	-	0	-	
-	-	-	-	
-	-	-	-	

$$
S_{c}=\bar{a}+\bar{d} \quad C_{c}=1
$$

3°) FLIP-FLOP d

$S_{d}=\bar{a}$
$C_{d}=a$

Appendix II - Decimal counter
1°) FLIP-FLOP C

Pos.	c	S_{c}		C_{c}	
0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
1	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
2	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
3	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	0 0	0
4	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-
5	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-
6	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	0 1	-
7	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-
8	0	0 1	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
9	0	0 1	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
0	0				

2°) FLIP-FLOP d

Pos.	d	S_{d}		${ }^{C}$	
0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	θ	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	1
1	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
2	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
3	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	1 1	1
4	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	1	1
5	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1
6	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	1	1
7	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	0	0
8	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	0 1	-
9	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	1 0	-
0	0				

Appendix III - Decimal counter ripple-through 1°) FLIP-FLOP C

Pos.	c	Nec CK	b CK				
0	0			-	-	-	-
1	0			-	-	-	-
2	0			-	-	-	-
3	0	+	+	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	--	0 0	0
4	1			-	-	-	-
5	1			-	-	-	-
6	1			-	-	-	-
7	1	+	+	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	0	1 0	-
8	0			-	-	-	-
9	0			-	-	-	-
0	0						

$$
S_{c}=C_{c}=0
$$

2°) FLIP-FLOP d

COUNTERS COUNTING IN ANY CODE

by
M. COMB:T

NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US\$ 15, £ 5.7) or free specimen copies please write to:

Handelsblatt $\mathbf{G m b H}$

"Euratom Information"
Postfach 1102
D-4 Düsseldorf (Germany)
or

Office central de vente des publications des Communautés européennes

2, Place de Metz
Luxembourg

To disseminate knowledge is to disseminate prosperity - I mean general prosperity and not individual riches - and with prosperity disappears the greater part of the evil which is our heritage from darker times.

SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

OFFICE CENTRAL DE VENTE DES PUBLICATIONS
DES COMMUNAUTES EUROPEENNES
2, place de Metz, Luxembourg (Compte chèque postal No 191-90)

BELGIQUE - BELGI MONITEUR BELGE
40-42, rue de Louvain - Bruxelles
BELGISCH STAATSBLAD
Leuvenseweg 40-42, - Brussel

DEUTSCHLAND
BUNDESANZEIGER
Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
26, rue Desaix - Paris 15°

ITALIA

LIBRERIA DELLO STATO Piazza G. Verdi, 10 - Roma

LUXEMBOURG

OFFICE CENTRAL DE VENTE
DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
9, rue Goethe - Luxembourg

NEDERLAND

STAATSDRUKKERIJ
Christoffel Plantijnstraat - Den Haag

UNITED KINGDOM

H. M. STATIONERY OFFICE
P. O. Box 569 - London S.E. 1

[^0]: +Manuscript received on December 6, 1966

