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SUMMARY 
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Four examples arc given for some sequences, one of which for a decimal 

counter. 
An extension to ripple-through counters is applied to decimal counters, too. 



COUNTERS 

COUNTING IN ANY CODE
 + 

Introduction 

A counter is a device which can store a number of 

events (pulse for instance); every time an event occurs, 

the store number increases of 1. 

The digits of this number are written in binary form 

for the counter is built with flip-flops which are binary 

elements. 

A correspondence table for every set of digits 

(called number) and the "number value" has to be given: 

this table is called "code". 

The problem is the following: having a sequence of 

numbers, we want to design the counter. 

When the code is simple (binary, decimal, etc.) the 

circuit will be easy to design, but for general cases, it 

is necessary to use some formal method for computing the 

input conditions of the flip-flops 1 , 3 given by the 

equation 

\ « fiQ + f
2 Q-

The following graphical method allows to separate 

more eas i ly the functions f.. (set) and f ρ (clear) when JK 

f l ip-f lops are used. I t can be extended to the other types 

of f l ip - f lops . 

"♦"Manuscript received on December 6, 1966 
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Such a type of counter may be very useful for con­
trolling a sequential machine, avoiding the conventional 
circuit: counter and decoding matrix using lot of compo­
nents. 

In the following, a counter will be given a name as 
a sequence of decimal number: every decimal number will 
represent the positions of the flip-flops. For instance, 
when we speak of the "0, 2, 5 counter", we mean a set of 
3 flip-flops working in the following sequence. 

0 0 0 
0 1 0 
1 0 1. 

Now, the reader will find four examples: 

- the first one illustrates the method in a very simple 
case where no minimization is necessary; 

- the second one, rather complicate, with another type 
of flip-flop, needs a Karnaugh's table; 

- the third example is a decimal counter; 

These first three counters are coherent: every flip-
flop is triggered at the same time. 

- the fourth example shows an extension of the method 
to a decimal ripple-through counter where flip-flops 
can be triggered by the clock pulse or another flip-
flop. 
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The JK Flip-flop 

We will use the JK flip-flop type, because it is now 

the most generalized form of flip-flops of the integrated 

circuits. 

Fig. 1 : The JK flip-flop 

A JK flip-flop has two outputs A, A and 3 inputs 

called S (set), C (clear) and CK (clock). 

The flip-flop changes its state only when it receives 

a negative step on its input CK. 

If the inputs S and C are different, the output A 

becomes the same as S after the clock pulse. 

If S ■ C » 0, the flip-flop changes: the output at the 

n + 1 time becomes the complement value of that it had at 

the n time. 

Vi ~ V 

If S * c » 1, the flip-flop does not change, and 

Vi - V 

Finally, we have: 
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S 

0 
1 
1 
0 

C 

1 
0 
1 
0 

An+1 

0 
1 

*n 
n 

Now we can see that in every case, we have two pos­
sibilities for controlling a flip-flop. 

For instance, if we have 

A n - 1 

and we want to have 

we can take either 

or 

Vi » ° 

S * 0 C « 1 

s - o C » 0. 

Therefore, it will be necessary to put S « 0, but 
the input C will not be determinated. 



Example I - Counter 0, 2,3 
Let us suppose now, we want to design a counter giv­

ing the following sequence: 

Posit 
1 
2 

3 

ion a 

0 
0 
1 

b 

0 
1 
1 

From the position 3, the counter will return to the 
position 1. 

a) Let us write the 2 possible conditions of S and C for 
a. ε every position of the flip-flop a. 

Positi 

1 

2 

3 

1 

on a 

0 

0 

1 

0 

fa 
0 
1 
1 
0 
0 
0 

fa 
1 
1 
0 
0 
1 
0 

This matrix may be reduced to: 
Position a S_ C a 

take 

1 0 - 1 
2 0 - 0 
3 1 0 -

S_ having only one determinated position, we will s. 

sa - o. 



If we compare the value of C with the output of the 

b flip-flop: 

Position 

- 1 

2 

3 

b 

0 

1 

1 

fa 

1 

0 

-

If we take C * 0 in the position 3, we will have 
8. 

ca - b. 

b) Let us do the same for the b flip-flop: 

Position 

1 

2 

3 

b 

0 

1 

1 

ÜÈ 

1 
0 

1 
1 

0 
0 

s 
0 
0 

0 
1 

1 
0 

The reduced matrix is now: 

Position 

1 

2 

3 

b 

0 

1 

1 

h 
— 

1 

0 

°Λ 

0 

-

— 

If we take S, « 1 in position 1, we have 

s
b *

 a 

and C-, having only one position well determinated, we 

take 

cb - 0. 
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The schema of the counter will be : 

Γ V 
CK 

.||Ja 

1 :a 

1 a 

I 

Sb 

CK * 

,||_Eå 

■ 

b 

b 

Fig. 2: 3 positions coherent counter 

For this case, the selection of the conditions C 
.a-. a 

and S-u was very simple. In general casesXKarnaugh's table 

will be necessary for taking the minimized form as we will 

see in the following example. 
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Example II - Counter 1, 7, 3, 4, 8, 14, 11 
Let us make up another example of sequence with another 

type of flip-flop, slightly different of the preceding one: 
for the complementation we must put 1 on both inputs S and 
C. 

This case is that of conventional flip-flop, made with 
PNP transistors and working in negative logic, controlled 
by two And gates with two inputs, one of them receiving the 
clock pulse. 

S 

Fig. 3: Transistorized flip-flop 

The equations of such a flip-flop are : 

n+1 
0 
1 
1 
0 

1 
0 
1 
0 

0 
1 
An 
iL n 

Now let us take the sequence 1, 7, 3, 4, 8, 14 and 11 
and let us try to find the best way for organizing a counter 
following such a sequence. 

The sequence written in binary, will be: 
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Pos. Decimal Value 
1 
2 

3 
4 

5 
6 

7 

1 

7 
3 
4 
8 

14 
11 

1 
1 

1 
0 
0 

0 
1 

0 
1 
1 
0 
0 
1 

1 

0 
1 
0 

1 
0 
1 
0 

0 
0 
0 
0 
1 
1 

1 

Let us write directly the normal and reduced matrixes 
for a: 

P o s . 

1 

2 

3 

4 

5 

6 

7 

1 

a 

1 

1 

1 

0 

0 

0 

1 

1 

a 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
1 
1 
0 

-

-

-

0 

0 

1 

-

0 
0 
0 
0 
1 
1 

1 
0 
1 
0 
0 
1 
0 
0 

0 

0 

1 

-

-

-

0 

The research of the simplest form for C and SD will 
a. 3 

be made with the following Karnaugh's table : 
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ab 
cd 

00 
01 
1 1 
10 

00 

0 

_ 
0 

Sa 
01 

~̂ 

1 

— 

11 

—" 

__ 

— 

10 

— 

— 

— 

ab 
cd 

00 

01 
11 
10 

00 

— 

__ 

— 

Ca 
01 

' 

„__ 

— 

11 

1 

0 

.— 

0 

10 

0 

, 

— 

The simplification method consists of making groups 
of 2Χ 4, 8 ... adjacent "ones"; the bigger is the group, 
the simpler is the form of the result. 

The cases where the function does not take a definite 
value, can be filled with 1 or 0, corresponding to the 
best way of simplification. 

The complete method can be found in reference 2 . 

In our case we have: 

S a b a 
bed. 

The same computation has been made for b, c and d 
and can be found in Appendix I. 

Finally, we have: 

a b 
c 
a + d 
a 

a 

S„ « a + d C c c 
"d " "d 

and the corresponding schema will be: 

bed 
c 
1 
a 
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Fig. 4: Coherent counter 1,7,3*4,8,14,11 
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Example III - Decimal counter with JK flip-flops 
Now, we shall use four JK flip-flops in a decimal 

sequence : 

Pos. - a b £ d 

0 
1 
2 
3 
4 
5 
β 
7 
8 
9 

We see immediately that the a function is always 
complemented from any position to the following one. 

Then: 
S » C = 0 . a a 

Let us write the matrix for b: 

Pos. b 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 

1 

0 
0 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

0 o 

1 o 

2 1 

0 
1 

1 
0 

1 
1 

0 
0 

s b 

-

-

1 

0 

1 
1 

0 
0 

0 
1 

1 
0 

c b 

1 

0 

-

-
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Pos . 

4 

5 

6 

7 

8 

9 

0 

b 

0 

0 

1 

1 

0 

0 

0 

0 
1 

1 
0 

1 
1 

0 
0 

0 
1 

0 
1 

_ 

1 

0 

_ 

_ 

1 
1 

0 
0 

0 
1 

1 
0 

1 
1 

1 
1 

1 

0 

_ 

— 

1 

1 

The c o r r e s p o n d i n g Karnaugh ' s t a b l e f o r S^ and C^ 
w i l l be : 

a b 
Sb 

00 01 10 
cd 

00 

01 

11 

10 

— 

— 

1 

— 

1 

0 

— 

0 

— 

— 

Cb 
ab 
cd 

00 

01 

11 
10 

00 

1 
1 

1 

01 

— 

— 

_̂ 

11 

__ 

— 

__ 

10 

0 

1 

0 

and we have 

a 
a + d 
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The simplest form of the Boolean functions S , C_, 
S, and C, can be found in the same way (see Appendix II). 

Finally, we have: 

0 
a 
a + b 
a 

S„ » a + b C c c 
"d ~ " vd 

and the corresponding schema will be: 

0 
a + d 
a + b 
a + b + c 

^y- r > J w 
Fig. 5: Decimal counter with OR gates 

This schema can be transformed into NOR gate. 

J 
r -

JT J7 

Fig. 6: Decimal counter with NOR gates 
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Example IV - Decimal ripple through counter 
We shall work always with JK flip-flop. In that case, 

the CK inputs may be fed by the clock-pulse generator or 
the outputs of the other flip-flops: more possibilities 
are given and we can think the corresponding circuit will 
be simpler. 

A clock-pulse coming from an output of a flip-flop 
will take place for the transition from 1 to zero. 

Now we can list the clock-pulse available in a decimal 
counter: 

Available clock-pulse 
b b c c d d Pos. 

0 
1 
2 

3 
4 
5 
6 
7 
8 
9 

a 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

b 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 

£ 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 

d 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

Generator 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

a 

+ 

+ 

+ 

+ 

+ 

a 

+ 

+ 

+ 

+ 

+ 
+ 

Let us take the b digit as we did in example III. 

The clock-pulses for this flip-flop are necessary only 
when it will change its state: that is for the 1,3, 5 and 
7 positions (Nee CK). 

We can take the output a as a clock-pulse, then it 
gives pulses at the 1, 3, 5, 7 and 9 positions (a CK). 
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Therefore, we must inhibit the 9th position (instead 
of the 0, 2, 4, 6, 8 and 9th positions for a coherent 
counter). 

The S and C functions will not have determinated 
value for the 0, 2, 4, 6 and' 8th position, that explains 
the more simple form of the corresponding Boolean function. 

The matrix for the b output is: 

P o s . 

0 
1 

2 

3 

4 

5 

6 

7 

8 

9 

b 

0 
0 

1 

1 

0 

0 

1 

1 

0 

0 

Nee CK 

+ 

+ 

+ 

+ 

a CK 

+ 

+ 

+ 

+ 

+ 

1 
0 

0 
0 

1 
0 

0 
0 

0 
1 

B b 

— 

— 

-

0 

-

-

-

0 

-

-

0 
0 

1 
0 

0 
0 

1 
0 

1 
1 

c b 

— 

0 

-

-

-

0 

-

-

-

1 

We have : 
sb * ° 

and the C^ Karnaugh's table will be: 
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ab 
cd 

00 

01 
11 
10 

00 

_ 

— 

01 

_ 

-

— 

11 

__ 

— 

— 

10 

0 

1 

— 
0 

c b - d 

The computation for the c and d digits can be found 
in Appendix III. 

0 
0 
0 
0 

0 
d 
0 
b + c. 

Fig. 7: Decimal ripple-through counter 
with NOR gate 
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Appendix I - Counter 1, 7, 3, 4, 8, 14, 11 

1° ) FLIP-FLOP b 

P o s . 

1 

2 

3 

4 

5 

6 

7 

1 

b 

0 

1 

1 

0 

0 

1 

0 

1 
1 

1 
o 
0 
1 

0 
0 

1 
1 

1 
0 

0 
1 

o 

o 
1 

o 
o 

1 
1 

1 

o 

o 
1 
o 
o 

1 
1 

o 

O 

00 
01 

11 

10 

ab 
cd 

I 

00 

— 

— 

— 
__ 

01 

— 

— 

0 
_ 

11 

1 
1 

— 

0 

10 

— 

— 

— 
__ 

S b = c Cb=c 
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2°) FLIP-FLOP c 

P o s . 

3 

4 

5 

6 

7 

1 

O 

O 

1 

O 

1 

O 

o 

1 
1 

0 
1 

1 
1 

0 
1 

1 
1 

0 
1 

0 
0 

1 

_ 

1 

_ 

1 

— 

0 

0 
'I 

1 
1 

0 
1 

1 
1 

0 
1 

1 
1 

1 
0 

ab 
cd 

00 

01 

11 

10 

00 01 11 10 

f ' N 
c — — 

1 -
i 1 , 
0 

- - Ì 
Sr = a + d Cr=1 
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3 ) FLIP-FLOP d 

Pos. 

3 

4 

5 

β 

7 

0 

0 

0 

0 

1 

1 

1 

o 

0 
0 

0 
0 

0 
0 

1 
1 

1 
0 

1 
0 

0 
1 

0 

0 

0 

1 

-

-

-

1 
1 

1 
0 

1 
0 

0 
1 

0 
0 

0 
0 

1 
1 

-

-

-

-

0 

0 

1 

a b 

cd 

00 

01 

1 1 

10 

00 

— 

— 

1 

01 

— 

11 

0 

— 

0 

10 

0 

— 

a b 

cd 

00 

01 

11 

10 

00 

0 

— 

_ 

01 

— 

0 

__ 

11 

— 

1 

— 

, 

10 

— 

— 

— 

_ 

S H =ä Cd=a 



22 -

Appendix I I - Decimal c o u n t e r 

1°) FLIP-FLOP c 

Pos . 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

a b 
c d 

00 

01 

1 1 

10 

00 

- ■< 

1 

«· 

,,, 

01 

- > 

1 

_ 

_ 

11 

! 

0 

_ 

10 

— 

ι 
_-

_ 

o 
1 

o 
1 

o 

1 

1 

o 
1 
1 

1 
1 

1 
1 

o 
o 

o 
1 

o 
1 

ab 
cd 

1 

o 

00 

01 

11 

10 

1 

— 

— 

w 

l ì 

— 

— 

-J 

o 
o 

o 
1 

o 
1 

o 

1 

1 

o 
1 
1 

1 
1 

c 

1 

1 

1 

o 

00 01 11 10 

Sr = ã+b Cr =i+t) 
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2°) FLIP-FLOP d 

Pos. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

d 'd 

O 

O 

O 

O 

O 

O 

O 

1 

1 

o 

0 

1 

0 
1 

0 

1 

0 

1 

0 

1 

0 

1 

0 
1 

1 
0 

1 
1 

0 
0 

θ 

-

-

-

-

-

-

-

1 

0 

4 1 

1 

0 0 

0 

0 

1 

1 
0 

ab 

cd 

UU 

01 

1 1 

10 

00 

r 

1 

— 

I 

01 

"" _
 Λ 

— 

— 

I 

11 

— 

— 

m_^ 

10 

— 

0 

— 

mmt 

ab 

cd 

00 

01 

1 1 

10 

00 01 11 10 

f y 
1 

>» 

1 

'S 

1 

— 

— 

1 

— 

— 

0 

f Λ 
1 

, J 

1 

S d = ã Cd = ã +5 + C 
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Appendix III - Decimal counter ripple-through 

1°) FLIP-

P O S . 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

-FLOP c 

c 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

Nee CK 

+ 

+ 

b CK Sn C 
c c 

1 » 0 0 
o o 

1 O 1 
0 0 

Sn m C » 0 
c c 
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2°) FLIP-FLOP d 

Pos. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

d 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

Nee 

+ 

+ 

CK a CK 

+ 

+ 

+ 

+ 

+ 

-

0 
1 

-

0 
1 

-

0 
1 

-

1 
0 

-

0 
0 

s d 

-

-

-

-

-

-

-

-

-

0 

-

-

-

-

0 
0 

-

1 
0 

c d 

-

1 

-

1 

-

1 

-

0 

-

-

0 

sd = o 

ab 
cd 

00 
01 
1 Γ 
10 

00 01 11 10 

Η t 
— 

_ 

. 

1 

_» 

__ 

0 

ri 
~ 

1 

C n = c + b 
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13 

14 

14 
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15 

17 
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L i g n e 

20 
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15 

5 

8 

24 

15 

10 

14 

15 

16 

17 

a v a n t - d e r n i è r e 

a b 

d e r n i è r e 

5 · 

6 

7 

12 

7 

0 0 0 1 1 1 

E x p r e s s i o n c o r r i g é e 

Xq « f.,0. + f 2 Q 

. . . two o u t p u t s A, Ã 

n+1 

0 0 

C a = 

S b » 

1 1 

C a « 

C a -

S b = 

S c « 

S d = 

S b = 

C b = 

S b = 

S c " 

S d = 

η 

ζ 
b 

ã 

ζ 
b e d 

b e d 

c 

ã + 

ã 

a" 

ã + 

ã 

ã + 

a 

d 

d 

Έ 

G e n e r a t o r a 

c b 

c b 

C e 

C d 
a 

-

BS 

a= 

s 

b 

c 

β" 

ε 

a 

b" 

+ ά 

+ b 

+ τ + 
c "c 

c 

d d 

+ c 

1 0 a b 0 0 0 1 1 1 1 0 
c d 

0 0 
0 1 
1 1 
1 0 

f - Λ 

-

> \ 

-\ 

-

1 ^ 

-

0 

^— 
-
-

1 

c d 

0 0 
0 1 
1 1 
1 0 

'0 
1 

1 Ï 

-

0 

-

1 

1 

23 a b 0 0 0 1 1 1 1 0 

c d 

0 0 
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NOTICE TO THE READER 

All Euratom reports are announced, as and when they are issuer!, in the monthly 
periodical EURATOM INFORMATION, edited by the Centre for Information 
and Documentation (CID). For subscription (1 year : US$ 15, £ 5.7) or free 
specimen copies please write to : 

1¡ 

; To disseminate knowledge is to disseminate prosperity — I mean 

; general prosperity and not individual riches — and with prosperity 

I disappears the greater part of the evil which is our heritage from 
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All Euratom reports are on sale at the offices listed below, at the prices given on the back of the 
front cover 
shown on 
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