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Definition of an ordered vector space

L is called : ordered vector space, if
(1) D is a real linear vector space,
(i1) L is a partially ordered set, (i.e. for elements f, g, h,... and
f € g, we have
f<geand g sh=Pf < h
f < f for all f
f < gand g < f=Pf = g),

These two structures are compatible,L is such that

a) £ € g=Pf+h < g+h for all h ¢ L,

b) £ € g=paf < ag for all real a 3 O,

Let us reocall the following definitions:

If L is partially ordered and A is a subset of L, then the element
g € L is called an upper bound of A if f ¢ g for all £ ¢ A. If, in additien,

g ¢ g for every other upper bound &4 of A, then g is ocalled the least

upper bound of A, or the supremum of A,
Notation ; g:supAorg:sup{f : f ¢A}

Similarly, if h§ f for all f ¢ A, then h is a lower bound of A. If

h )y h1 for any other lower bound h, of A, then h ia the greatest lower

1

bound of A, or the infimum of A,

Notation:h:ianorh:inf[f:f(A]

Manuscript received on July 29, 1966,












Notational : sup(f,0) = £¥
- inf(f,0) = sup(-f,0) = £~

sup(f,-f) = Ifl

Properties of f*, £~ ana |f]

(1) %, 7 et £ = (-f) and £~ = (-r)"
because (-f£)” = sup(f,0) = f*

o] - ]

1]
o

(1) £ =% - £7 and inf(e*, £7)

Indeed f' -f = sup(f,0) - £ = sup(0, -f) = £~

and inf (£*, £7)winf(f+f”, )

=inf (£,0) + £ = -f +f =0
|£] = £7 + £7,

because lfl = sup (f, -f) = sup(2f, 0) -f

=2 sup (£,0) —tm2et o (£%¥ - £7) = ¢£% & £






Proof of these formulas

(f—g)++g

(i) sup(f,g) = sup(f-g,0) + g

(11) inf(f,g) = inf(f-g,0) + g -sup(g-f,0) + g = g-(g-£)F

To prove (iii) we have to add the left hand sides to the right hand sides

of (i) and (ii); to prove (iv) we have to subtract them:

(iv) sup(f,g) - inf(f,g) = (£f-g) +(g-1)" = (£-g)*+(£-g)~ = |1-g|
because £ = (-f)~

To prove (V),we add the left hand sides to the right hand sides of (iii)
and (iv), then we divide by 2. To prove VI, we repeat these operationms,
subtracfing instead of adding.

Other formulas

(It+gl +lf-g] )

[l £+l -‘f-s‘l

sup(ltl, lgl)

intCltl, lgl)

= o=

sup(sup(f,-g), sup(g,-f))
‘f+gl) = %(lf+g|+lf—gl)

sup(f,-f,g,-g)

Proof , sup( I, {g])
= sup(% (f-g) + %‘f+gl, %(g-f)+

S Ll ||

by virtue of (V). The first formula is proved.

To prove the second formula, we set f = p+q and g = p-q, s0 f+g = 2p and

f-g = 2q.

Let us apply formula (iii); we obtain

ff'+lg‘- sup(‘f'.'g')
= ltl+1gl- 3C]t+el+ I2-gl)

inf(| £}, lgl)

| p+al +1p-al -1p]-1q]
2 sup(lpl.lql) -‘P"‘QI

u

by virtue of the first formula.



The formula (V) yields

2 sup(‘pl,‘ql)—lpl-'ql
(Ipl+'ql+“pl-lqu} ~lol-1dl
[1pl-lall

| 1eeel - le-gll

ge.e.d.

Standard decomposition of f.

£ = f¥ -t~ with inf(f*,f7) = o : standard decomposition of f.

The standard decomposition is the '"minimal'" decomposition.

Then (i) If f = u-v; u,vel’, then figu
f-g\r
(1i) If f = u-v; u,sre€l’ and inf(u,v) = o,
then u =1¢1 and v= f .

Proof (1) f¢ u‘i sup(f,0)§u, (u is an upper bound, greater or equal

osu the least upper bound),

i. e. f+$ u.

Furthermore, f = f+-fgu—f =V,

So (i) is proved.

(1i) By virtue of the formula for infimum
o = influ,v) = u-(u-v)* = u-f'=y u=f"',

s¢, since f = u-vand f = f'-f7, we obtain

Va f



Triangle ineguality

el - Lellg lessls [el +lel

Proof, We prove first the second inequality.

+ +
f+g $f +g (f+g)+( f++g+
Y thegt
(£+g)7 = (-£-g)"¢ (-0)T+(-g)" = £7g”

Let us add the left hand sides and the right hand sides:

levgl lels el

To prove the first inequality, we substitute f-g for f in the second

inequality
[e] < le-gl+ Il
or ‘fl-'sls "f'S'
and 'g'- Ifl\< If-g‘
since [fl = |-fl|= sup(f,-f) by definition.
Let us now introduce the supremum of the left hand sides:

el -lgll € le-él

Now we change g in -g, this gives a difference on the right, but not

on the left; and we find the desired result.

Theorem , If {f.L.‘:TG{T}} is a subset of L, such that f = sup £ exists, then

sup(f,g) = supp [sup(ffc- R 32]

* For both countable and uncountable sets, we use the notation fr

where T runs through an appropriate index set.



Proof. £yt for allT,=p sup(f,g))sup(ff ,g) for allT , so

sup(f,g) is an upper bound of the set of all elements sup(fg ,g).
Let h be also an upper bound of this set, so h) sup(f,r ,&) for all 1:"

=» hyf, for allT => h) f

(f being the least upper bound
of the fg ) = h3surlf,g),

and, since h 78

so sup(f,g) is the least upper bound of the sup(f,c,,g).
Still assuming that f = sup f_, the equality

inf(f,g) = supy (inf (f,g))

is also true. It is the distributive law. This law is of the same kind

as the distribution law of the set of real numbers.

Proof, £ fp for allt =% inf(f,g)» inf(fy ,g) for all T . Hence

inf(f,g) is an upper boynd of the set of all inf(fg,g)e Ve still have to
prove that inf(f,g) is the least upper bound of the inf(ffc.,g).
Let h be another upper bound of this set, so

h)/ inf(f,t.,,g) for all T,

Since the infimum of two elements equals the sum of these two elements
minus their supremum,

hy fr+ g - sup(ff—.g)s?
o~
h - g + suy(f,c,g)), f,L_ for all T .

Ve make the left hand side still larger, without changing the right hand side,

o~

h - g + sup(f,g)) f for all T

At the left hand side we have now a fixed element, hence an upper bound of

the f’t’; f being the least upper bound of the fe 4 we obtain
h - g + sup(f,g)) f =
h ) f+g - sup(f,g) = inf(f,g).

So we have proved that inf(f,g) is the least upper bound.
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Brd Lecture

We have proved that if f = sup fT , sup (f,g) = syp (SUP(fT:E))-
T

In particular, if g = 0, then £ = sup f; .
T

From the distribution law we deduce for g = 0 :

inf (£,0) = sup (inf (fT, 0))
T
-f~ = sup (-f;)
f = inf fr H
T
hence
+ +
44;ﬂ £ = sup fT
f = sup fT Q§§s
f = inf fT

Similerly, if £ = inf f_, then sup(f,g) = inf (sup(f_, &))-

T
Remark : sup(f,g) is written sometimes as fV g,
inf(f',g) " " " n f/\ € .

("oup" and "cap")

Partioular case : case of two elements,

If £=1f V£, thenfAgs= (f,A8)V(f,Ag), or

(£, V)N &= (£,A8) V (£, A8);
we have also
(£, A2 )V e=(£,VEA(L,V 8).

The first formula remains correct if we interchange the symbols V and A.

That is the distributive law.
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Now we pass A and go up to B, intersection point of the curves h and g;
the supremum of f and h is f, the supremum of g and h is h; we represent

the expression I in the figure by a continuous line,
We go on thus up to the end of the chosen interval,

We proceed similarly for the expression II and use in that case dotted

lines,

In this figure, therefore, I + II = If—gl for all possible choices of
the point x on the horizontal axis., Note : this is no proof, only an

illustration for the case that L is the spuce of continuous functions on an

interval,

Proof, We first prove the equality, from which the inequalities can easily

be derived.

Using the relation

|p-q| = sup(p,q) - inf(p,q)
we obtain

[ ]
I.II=fVhVgVvh-(fVvh)A(gvh) + (fAR)V(eAh)-fAhAgAh
=fVgVhe-(fAgVh+(fYVgAh-fAgAh
By arranging the terms of the last expression 1in pairs, we find

I+II = {(fV g)Vh + (fV s)/\h} - gf/\s)vh + (£ A e)Ah}

-{(rv g) +h}-[(fl\ g) +h}

since the sum of the supremum and of the infimum of two terms equals the

sum of the two terms, We arrive at the result

* For this demonstration we use oup and cap notation,






Proof, (i) The proof of the first proposition is trivial:

o< inf(|n|, |g]) € inf(|f], |&]) = 0.

(11) £ Leg=int(|f|, |g]) =0 = int 2|f|, algl) =0

for a = |a|+1, i.e. inf( laf", Iag') =0,

1.0, |af| L |ag]
Now laf| < |af|, soby (1)  af.L |ag],

finally Igl < |ag|, so by (1) af 1 g,
g.e.d,

»
(114) ) e prove first that (|f1l Vv |f2|)_L g, or that

(|f1| \% lle) A Igl 18 the null element,

By virtue of the distribution law,
eyl ¥ e, N e =(fe, ] A ey v (Jt,] Ale]) =ovo=0 .
Since each of two eiements is smaller than or equal to its supremum,

e L+ egl < 2Cley v Ig,),
80
ey |+ [e,]) L s
the inequality
£, + £,] <« [£,] + |£,]
shows that [f, + f,| 1l g, 1.0. (f, +f,)1 g,
(iv) If £1 g, then |£| L g;
0«tt ¢ |f|;80f7Y g;

0t < |f]; 071 g,

*) For f1.l g and fz.L g can be said: f, and f, are disjoint to g.
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+

Conversely, if f, £~ 1 g, then

o]
n

(f" -£7) g, qe8.de

(v) We have f = sup f_, and all £l e.

We have proved earlier that

+ +
f" = sup fr

f = inf fT
and f: d s

was proved sub (iv).
So
inf(£7, |g|) =0

Or, by virtue of the distribution law

inf(£*, |g]) = aup(inf(f’;, lg|) = sup 0 = 0;
T T

since the supremum of a set of elements, which are the null element, is the
null element, Thus
S
Then we have f; 1l g, so inf(f;, ]gl) = 0.
or, O0sf < f; for all 1,
thus 0 < inf(f, |g|) « inf(f], lg|) = 0 ;
and so £ 4 g.
ff1lg
Finally } = fig ,
S

which completes the proof.
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Theorem

£1g=>|t+g| = |t-g]| = |£]|+]e| = ||£]|-|e|| = sup(|£], [g])

Proof

We use the formula
inf(p,q) = ;- {M - lp—ql}
thus, 0 =21inr(|f|, |g]) = |r|+]e]| - ||r]-]a|| = |t|+|e]| = [|r]-]e]]

But we have proved

|£+e]
[l2]-le]] < |£]+]el
|£-¢]
Since the outer expressions are equal, they are also esqual to the expressions

in the middle.

Finally, we observe that
sup(|f], |e]) = |¢]+]e] - ine (2], |e])

The infimum being zero, the last inequality is proved.
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Theorem If 'f+gl = 'f-gl, then fLg.
If |f+g| = sup(ffl,'gl), then fg.
If ,f-g, 1 sup(lf',,g‘), then fdg.
Proof, Ve have proved
2 inf (lf',lg|) = “f+g‘ - 'f-g‘,, so if|f+g| =|f-g|, then

the hypothesis implies inf(lfl,lg]) = o ;

and if |f+g| = sup(|fl,lg]), it follows from

2 sup(l£l,lgl) = | t+gl+)t-gl and
sup(l£], lel) = |t+gl
by subtraction that
sup([fl, gl = |t-g]
[t+gl = |f-g|= fle.

For the third formula we replace g by -€y

geeed,

Notation

Given the sequence flS.fZS’fB e y we write fnT y 1.e. we say that

the sequence fn is monotonically increasing.
If, in addition, f = sup fn exists, we write fnT f.

Similarly if fl;,faz eee, we write fnl .

If, in addition, f = inf f exists, we write fn¢ f.



Theorem
(1) 1f fan and gnT g, then fn+gnT f+g,
(11) 1£ £ T¢, gnT and if fn+gnT f+g, then gnT g
_ sup sup .
(iii) If fnT f, gnT g, then inf(fn’gn)Tinf(i'b)'
Proof., (i) Let n)m : £ +g I 48 ¢ f +g,

and fn+8n\< f+g , this shows that

f+g is also an upper bound of the set fm+gn(m,n=l,2,...)

Let h be another upper bound of the set fn+gn. Hence h is also an upper

bound of fm+gn, that means that for all m,n such that n)m, fm+gn < h.

Keep m fixed, then g ¢ h-f_ , but gnT,
hence g = sup gngh—fm—c;fm\(h—g$
f¢h-g=>f+g {(h =>f+g ie the least upper bound of fn+gn,

qoe-do

(ii) and (iii) are proved in the same manner.

Definition of Convergence. (Side Remarks)

If g

then we say that fn "order" converges to f.
gnT f, th/f

Definition of Series: If u & LY for n=1,2,..., if

S, = Uptust <.+ u , and if Sn']\ S , then we write



- 20 -

Theorem (Dominated decomposition theorem)
(i) If u,vyze€ L+, u+v = z and o.gzn‘fz, then there exist sequences
o\(unTu and o\<vn1\\rsuch that u Vo= 2z .
+ = +
(ii) If u,v,z€L |, u+yv =2 and z =£zsr'1 where all zrlxe'L R
n=1

then there exist series Zur'l = u and Zvr’1 = V" (all ur'l’ vr'1 GL+)

such that u'+v' = z'.
n n n

(ii) is the same as (i), so we prove only (i).

(1ii) If ogugz! + «os + 2' 5 all zi'eL+ (p finite), then there

'
1

p)
exist ui, cee uI')e LY such that
Uj+ eee + ul') = u and ogu!gz{ (i=lyeee , p).

Therefore the name: dominated decomposition theorem.,

It is a particular case of (ii), so we prove only (i).

Proof of (i)

We make a guess.
The guess is: Let us define u_ = inf(u,zn).

Then og unT inf{u,z) = u, become
fnT f, gnT g = inf(fn,gn)Tinf(f,g).

We define v. = z ~u . Then
n n n

ogv and u +v_ = 2 .
n n n n

We still have to prove that vnT and that vnT Ve

We have

ogu -y, = inf(u,z ) - inf(u,zn)

n+l

Jinf(u,z ) - inf(u,zn)'\( lzn+1_zn' = 2z

n+l n+l” %n!?

(BIRKHOFF's inequality)

=P Zp7Un € 21 T Ypay 0 t.e. "n$ Vel
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We have already proved that o gunT u, o(vnr,

osun+vnT u+ V- =» vnTV' by (ii) of convergence statements.

Generalization of the notion of monotone convergence

Definition

The set{f,t ;"Ce{‘l:‘; is called directed upwards, if to any
pair ’t’l, Tz, there exists T, such that

5
f,
r. 2 4
3 f
P
We define similarly: directed downwards,
Notation; f,r/ror f;t.l/(djrected upwards, downwards)

If f’t’T and f = sup f,t, exists, then I;rTf.

Theorem, If u, v, z€ L+, u+v = z and oszTT z, then there exist an
upwards directed set o\(u,tTu and og v,tT v such that

+ v, Z for each T.

u T T *r

T

The proof is almost the same as for preceding theorems.

Theorem, Let there be given an arbitrary subset of L, say {1;16'6 {6;},
Then there exists an upwards directed set {g,t}){fd} having the

same upper bounds as {fd} .

Proof Let ’to_l,... on = (o’l,... ,d‘n) and then define (n finite but

variable) :

B~ o/n = Sup(fd

T yeee fo’) and take the set of all these g's.,
(= 2 n

1

Hence take the set of all suprema of finite subsets of {fd} .

Of course {g,c,} 2 {f‘s}.
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<gﬁ> is directed upwards. In fact
(v
sup(g,t ) &{ }
6 '1l“' I"m‘%rd1"h. ,Jh %t
Any upper bound of Ly is of course an upper bound of fo’ .

Conversely if k) fg, for all o , then k) B for all T .

Qe€ode






k)

5)

6)

7)

-2 -
Example 1) is a particular case of 3), X ={1, 2yeen, n}

1 2 3 n

1 2 3 n

Every point in R" is a function on this point set; £, = (1), etc.

A topological space X, and L the set of &all real continuous functions
on X; the ordering is as in 3). Then L is a RIESZ space. The

subspace of bounded continuous functions is also a RIESZ space.

*

X: non empty point set;f.l, ¢ countably additive™ non negative measure

in X; M:set of all real, finite-valued,'l-measurable functions on X,

In M we identify functions which are p-almost equalj (Officially we
have L = M/N-, N: set of all g -null functions); we call it L now; then

L is a real linear vector space;
fgg in L iff f(x) geglx) [ -almost everywhere.

L is then a RIESZ space. (sup (f,g))(x)= max (f(x),g(x)) a.e.[,l])

Many subsets of the above L are also RIESZ spaces, e.g. Lp (lngoo);
in particular @_ (the point set X is countable),
x = {1’2‘000 S
P(n) =1 for every n.

A non-empty point set X; [" field (algebra) of subsets of X.
If " is & collection of subsets of X, [" is called a field iff

1) xel
(ii) A,Bel"=>ar v Bel”
A -Befl’
Let y be a finitely additive signed measure defined on MN; i.e.

to each A€’ is assigned a finite real number H (A), such that

MGA U A = p(A) + M(A)

e . -

»
one says also:® -additive or completely additive .



- 25 -
if Al’ A2 are disjoint. (finitely additive & concerns the above condition;j
signed measure;} means rLis not necessarily positive).}iis sometimes

called a charge.

Assume alsc that sup(ly(A)‘: Ae(") is finite.
Let L be the set of all such charges.,

(M) + ) (B) =) (A)+pd, ()
(a/jXA) = afJ(A)

Addition:

L becomes so a linear vector space, since the charges behave like a

vector:
My My iff (A8 Y, (R), all Ael™,

Hence the positive cone L' is the subset of all non negative charges.

We show now that L is a RIESZ space.
Let the charges;Jl,HZ be given.

] 3 " - 1 '
Remark, We can't write "JB(A) = max (Pl(A)'PZ(A))'fﬁ ien't additive.
We have to find a supremum that is additive.

For any set A6[ , we write
V(A) = SuP(Fl(B)+H2(A—B) ¢ Bca, Be[")
First of all Vv(A)< =, for
lMl(B)+}A2(A-B)|\< lhw)l sy, (a-m)

< sup(lrl(B)‘ : Bel’) + sup(‘flz(c)l : CeN) € o=

Let A A_ be disjoint; we shall prove that

1 72

\)(AIU AZ) -U(Al)+\)(A2)

(From now on B is always in the collection (™).
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If BCAl UAZ, then B = B'UB", where B' = BA Al and B" = BnAZ
are disjoint, so (calling A = AlU AZ)

Bl

/Jl(B) +p2(A-B) =
{{Ul(B') + /.‘2(Al-B')} +{,ul(B") + ,42(1\2-13")}

€ Y (a)) + V(a,)
Aq A,y
fig. V,5

Hence (VB , Be [T, BcAUA,) (M, (B) +u,(A-B)€ Y (A)) +y(4,)

sup (’Jl(B)+ /,AE(A-B) : BeA , BelM) ¢ v(Al) +V(A2)

i.e. V() s VA + ¥(a,)

On the other hand take ¢ > O, and let
B, €A, such that u (B/) + M (A -B ) v(A) -E

B,CA, " " ,Ul(BZ) +/42(A2—82)) V(A2) -£

Call B,UB, = B,
by addition we have M, (B)+ 4, (A-B)y v(A )+ V(4;) - 2€

sup (’ll(B) +H2(A-E))) V(Al)+V(A2) - 2€

v(4) > V(Al)+ V(Az) - 2¢
v(A) 3 V(A )+ V(A)
Hence V) is additive.
We now prove that sup(JV(A)| : Ael™ ) is finite.

We already proved that for any Ae " and any B¢ A, Bel™:
|, B+ p,a-B)l € suppy (B)] + BeP) + sup() ()] : cer)

= Cl+C2 ¢ ©°

Cl and 02 being fixed constants. Hence

sup(lpl(B)+F2(A-B) |; Bca ;A BeP)E C,+C,

J

(VA& |V(a)|€C +C,

this for every A, so

sup ([v(a)| : Ae&M) is finite;

hence V is a charge.

and B!
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But V (A) = sup(py (B)+ 4, (A=B))

For the partid€ular choice B=¢g2A-B = A
and it results : V(4)) ’,,42(A)_

)

If we take B = A, then A-B = g,
and \}(A)z f"'l(A)“
Soy is an upper bound of ,,41 ana M.
o prove that V) is the least upper bound:
Let y)' be another upper bound of,,ll and Mo

y'(A) = y'(B)+ y'(A-B) for any BC A,
so V' (A)} P1(B)+H2(A—B)

=> V'{h) y sup(p (B) +p,(A-B); BCA) = y(A)

thus any upper bound y'(A) is greater or equal V(A) and V is the

least upper bound. Hence L is a RIESZ space.

One can easily prove that

A(A) = inf(p (B)+ u (A-B) : BCA, Bel)

is a charge, such that h_is the greatest lower bound ofMl and Poo

iee., A: inf (,ul,/Ja).
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6th Lecture

Remark.

We have required that sup(lu(A)l : Ael') would be finite., If I' is a o-algebra

and y o-additive, this condition is automatically verified,

8°) A HILBERT space H (on the complex numbers), the slements being x, y, z.

The bounded linear transformation A (of H into H) is HERMITIAN (self-adjoint)

it

(Ax, y) = (x, Ay) for all x,y.

(Ax, x) = (x, Ax) = (Ax, x) =¥ Ax, x) real for all x.

.
The set of all HERMITIAN transformations is a real linear vector space,

(If A, A,, A, are HERMITIAN,

2

A1 + A2
} are HERMITIAN, but iA is not HERMITIAN),

BA

A € B iff (Ax, x) < (Bx, x) for all x ¢ H.

Positive cone: all A 3 6, 6 being the null transformation,

so (Ax, x) » 0 for all x.

Given A, B, HERMITIAN » C, C being an upper bound of A and B. This set

is not a RIESZ space (KADISON; 1951), but many subspaces are RIESZ spaces,

Example of a subspace containing an element A and being a RIESZ space:

2nd commutant of A, C"(A).

* A bounded transformation is also called operator.
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day

fig. VI, 1

Commutant of A: set of all B (HERMITIAN) such that BA = AB : commutant C’(A).

2" Commutant of A: set of all C (HERM,) ™ " CB =3BC for all B e C’(A):

it is called C"(A).
We have : A ¢ C"(A) C C’(A).

The proof of this assertion is not trivial. We don’'t give it now,

Subspaces

Let L be a RIESZ space (linear lattice).
Definitions

(1) RIESZ subspace K 1° K : 1linear subspace of L

(1inear sublattice;)2° If f,g ¢ K, then sup (f,g) ¢ K,

sous-espace propre) \(and hence inf (f,g) ¢ K).

(1i) 1Ideal A 17 A : linear subspace

(solid subspace, 2°If f ¢ A and |g| € Ifl, then g ¢ %
sous-espace épais,
U.R.S.S. : semi-normal (Bx., 1 g8 = |f|)
subspace)

(111) Band A 1° A : ideal
(normal subspace; 2° 1f any subset of A has a sup in L, then this
bande ; sup 1is already in A,

U.R.S.S. : component)

* Any subset, which verifies (1i) (2), is a solid subset,
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Theorem Band =)Ideal = RIESZ subspace

The first proposition can be derived from the definition (iii),

Proof of the second proposition,

Let A be an ideal; from the definition of the ideal it follows:
If £ ¢ A, then |f| € A,
=)If f,g ¢ A, then |f-g| € &,

=3If f,g ¢ A, then % {f+g + |f—g|} € A,

i.e, sup (f,8) ¢ A,

Thus A is a RIESZ space,

Examples
1° 1In ¢ [0,1] : the set of all polynomials is a linear subspace, but not a

RIESZ subspace,

Graph for two linear functions:

the supremum is not a polynomial,
fig. VI, 2

2 The set of all real constants is a

RIESZ subspece, but not an ideal, T H{x) =1

fig. VI, 3 fig, VI, 3 bis
fig. VI, 3 bis : The function g(x) verifies Igl £ Ifl, but is not in the

subspace,

3%  The set of all f ¢ C[0,1] satisfying £(0) = 0 is an ideal.

The set of these functions is a linear subspacse;

£(0) =0, |e(x)| s [£(x)|=He(0) = 0 ;

hence it is an ideal,
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L subspace of all bounded real sequences,
o

{ : ideal in (s)

sup If l is finite, lgl < !f'
n=1,2,., n
then sup |g I is also finite;
n=1,2,.. n

¢ by itself is again a RIESZ space.
-]

(Co) : subspace of all sequences f = (f1, f,5000 ) such that £ =0
(Co) : subspace of 2 : since fn -+ 0, the sequence f must be bounded,

(Co) : ldeal inE-x if Igl < Ifl, g is also a null-sequence ,

[
»_
31 : subspace of all sequences f = (f1, £o1eee ) such that 21, Ifnl
converges, n=1
=
L1 : ideal in (Co) : if Igl < |f|, the condition : ziJ |gn| converges
is satisfied. n=1
Ideal
(s)>& >(c )db
oo (o] 1
None of these ideals is a band.
From definitions it results:
RIESZ subspaces RIESZ subspace
An arbitrary intersection of 1ideals is again a ideal
bands band.

We will prove this for the intersection of two ideals. Let A1, A2 be

ideals,

Then A.1 N A2 is a linear subspace, since the intersection of two

subspaces is a linear subspace,
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We prove : If f ¢ A1 f\AZ and if |g| € Ifl, then g ¢ A1 (\Az.
f e A1; lsl £ |f|:=}g € A1
f"I“1(\A2 g¢A1nA2-
Q§y £ €Ay lgl < |f|:=§g € A,
and the proposition is proved.

N AT is also an ideal; indeed;
If £ ¢ N\ AT and if Ig[ £ Ifl, then g ¢ [\ AT, since

fe NAT =3f € AT ; Iglslf‘l:}gcAr:?geﬂAT.

for all 7 for all r

If D is an arbitrary non empty subset of L, the intersection of

RIESZ subspaces RIESZ aubspace
all ideals containing D is, therefore, a ideal
bands band.
RTESZ subspace RIESZ subspace
This ideal is called the ideal generated by D,
band band
ideal
If D oconasists of one element fo’ then the generated by fo
band
ideal

is called a principal
band.

The present notion of ideal is analogous to the notion of ideal in the

algebraic sense:
Let us consider a ring R of elements X,y,...

I : subring
I ideal If x e T andy ¢ R
then xy ¢ 1.
In an analogous manner we havse:
If f ¢ A and g ¢ L, then inf (|f|, lgl)c A; the infimum is analogous to the

product in the ideal.
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7th Lecture

Let V be a linear vectorspace with elements f,g,h; A,B : linear subspaces of V.

Then

A +B= {f : f = f1 + fz, f1 € A, f2 € B}
is a linear subspace, called the algebraic sum of A and B,
If ANB= {0 }, then the representation f = f, + f, (f1 ¢ A, f, ¢ B) is

unique, Indeed,

if also f = f; + £}

3 (f; €A, f)e B),

’ - f? =
then f, -f]=f,~f) =20,

- > - >
since f1 f1 € A and f2 f2 € B,

We write, instead of A%B, now A@ B : direct sum.

We consider now a RIESZ space L. -

Theorem. Let A, B be ideals in L.
(1) ‘A$B ideal

(11) AL B (i.e, f L g for every f ¢ A and every g ¢ B),

iff AN B = {0}; hence, in this case, A 1 B is a direct sum,

(141) 1f Ad B, and if f, g ¢ A ® B, end f = £, + f,, 8 = 8y + 8

(with £, 8, €A, Ty, 8, ¢ B); if f < g, then f, < g, and £, < g,

(1) We know already that A{B is a linear subspace.
We have to prove only that if f ¢ A}B, and Igl g Ifl ’
then g ¢ AlB,

We leave the details of the proof of (i) to the reader,
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Let AL B, and assume £ ¢ ANB, Then f 1 £, i,e.
inf (||, |£]) = 0=|t| =0=>f =0,

~am-[)

Conversely, let AN B = {0} . Take f1 € A, f2 ¢« B,

f, ¢ A, and |f1| is also in A,

£, | =int (|£,], |£,]) e a

|£,] = inf (|£,], |£,]) € B

1

Then inf (|f,], |f,]) <

inf (|£, ], |£,]) = 0.

A+B is a direct sum : We have f‘1, By € A, f ¢ B, the decomposition

2’ &2
of £ and g is uniquely determined.
But now we have to show that if f < g, the components f1, 8> f2, & aatisfy

f1 < 8 and f'2 ¢ &,. For that purpose, consider g-f.

2
g—f:g1—f1+82-f2

g ~-f ¢« A®B g1—f1(A gQ—fQ(B
f ¢ g=>g-f » 0; it will be sufficient to prove that 8 - f1 2 0

andgz-fzao.

For this aim:

Assume that u 3 0 is an element of AcH B

andu=u1+u2

We split up u, and u, in a positive and a negative part:

is the decomposition, so u, € A, u, ¢ B.
+ + - -

u s (up+uy) - (uy +uy)
(We recall that

£ =" -7, inr (£%, £7) = 0, i.e. £YL 7, for every element f).
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u cA=)|u1| € A, thus uf e A

1

+ -
u, L u - - \
1 1 =§uT 1 (u1 + u2)
+ - + -
uw, L u, (u; € A and u, ¢ B) . -
1 2 1 2 ? (u: + u;) 1 (u1 + u2)

In the same manner we find: u; 1 (u; + ug)
+ + - - e
Thus u; +u,, u, +u, are disjoint.

But for f = u-v; u,v ¢ L+, inf (u,v) = 0, it results that u = f+, v="_ .

Here we have:
+ + - -
u = (uf + u2) - (uy + u,),

the two terms being disjoint; we obtain

u: + uz =t ’ ut being the plus part of u ,

U +u, =u u_ being the minus part of u ,

N

Now u

0 ==}u; =u, = 0,

Then u1 # 0 and u2 z 0,

This can be said: The greater the elements, the greater the components,

Dis joint complements

Definition : If D is an arbitrary non empty subset of L, then the set
Dp = {f s £ A g for every g € D} is called the disjoint
complement of D.
*
(p means perpendicular)
We have DFP = (DP)P

* Sometimes one uses the notation Dd, d : disjoint,
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Theorem, (i) DP is a band,

(11) D C DPP; DP = DPPP; DP N DPP - {o}, so DP $ DPP 45 a direct
sum : Dp@Dpp.

Proof. (1) Let g denote an arbitrary element od D,

We have proved that if f1 and f_ are disjoint to D, their sum is

2
also disjoint to Dg

fi 18

(f1 + f2) 1zs ,-=>Dp is a linear subspace,
£f,18

and
fl g =dafd g for every real a

f, 1 gand |f2| g |f1 |=:)f2 1 g
From these two results it follows that DP 1s an ideal,
Finally we have to prove that, if
fa.L g for all o e {a}, f =sup f L1 g,
But, according to a theorem, if a subset contains elements fa 1 g,
and this subset has a supremum f, then f L g,
Hence DP is a band,
(11) DPP : all elements disjoint to DF

Every element of D satisfies this condition
D c DFP

Dpp i1s generally a band, but D is generally no band.
D and DPP can be equal, but are not always equal.

An interesting question is : When does pPP equal D?

Continuation of the proof :
P P
If D1 C D2, thus D1 DD2.

(The smaller the set, the larger the complement)
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The converse
PP

A, N A, C(A1 N A2)
has been already proved.
Hence

PP

(R, N 4,)PF 28, O a, =P, N4, « ®,

We have

A, N A, = inf (A1, Az).

Indeed, A1 N A2 is, in ®, a lower bound of A1 and Az. Any other lower bound
must be included in A1 and A2, so in A1 )) Az. Hence A1 n A2 is the greatest lower

bound,
Theorem : If A, A, ¢ T, then (A? N A‘g)p «® and
(Af ﬂAg)p = sup (A1, A2) in ©,

Proof i (Af N Ag)p is a disjoint complement, hence it is in the set .
Then

P A 2P\P 5 PP
(A1nA2) DA = A

=5 80 (A? ﬂAg) is an upper bound of A, and A,

1 2

P PyP PP
(A1 nAz) DAy =4,

Let B «® suoh that B is also an upper bound of A1 and A2.
A

B> 1==)BPCAan§=>
4

BaBP> (Afna)?, P D,
The set B is larger than (Al;(\ Ag)p, hence this is the least upper bound.

) has a smallest and a largest element,® is a lattice.

Given A ¢ ®, there exists a "complementary element", namely AP, such that

)

sup (A, AP) =

1
=
-

inf (A, AP)









Proof : We assume that no such gz exists. Then inf (u, Ifl) a 0 for every
f ¢ A ; (because, if, for some f € A, £ = inf (u, Ifl) >0, thus z ¢ A
and 0 < £ € u), sou} f for every f ¢ A,

=>u € Ap; u e App=?u € Apn APP . {0};

==>u 0. This is a contradiction,

Hence there exists such a z.

Definition : The band generated by A is the smallest band containing A or

the intersection of all bands containing A,
Theorem : L Archimedean; A ideal in L = The band generated by A is App.

We can prove, but it is more difficult, that if L is & RIESZ space, such

that for every ideal A the band generated by A is App, then L is Archimedean,

Proof : We denote the band generated by A by {A} . Then {A} c APP, 1o prove

is that {A} = APP,

We taks O < u ¢ AFP,
If every positive element in APP 43 in {A}, we can prove that every element

of APP is in {A}; (we can split it up in u® and u”).

We consider the set Au = {v : ve A Og vg u};
i.e. the elements of the ideal A, which are bstween 0 and u,
We will prove that u = sup Au;

then u = sup (subset of a),

hence u = sup (subset of {A} ) ; and so u € {A} by the definition of a band.

We prove the assumption by contradictidn.
Assume that it is not true (i.e., although u is an upper bound Au’ u is not

the least upper bound).

==q;There is another upper bound u, such that u g u, is not true.
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Let us take w = inf (u, u1) => w is an upper bound of Au, and w < u;

(for, if w = u, u, Fu, this is exactly not the case).
But, if we make an element smaller, without making it neg-tive, we remain

in APP, Thus

using the lemma
0 < u-w ¢ APP 7 There exists 0 < 2z € A

such that 0 < z € u-w,
We take now v ¢ Au.
Then v+z € A, and 0 € v4z < w2z ; but w+z € u, s0 0 € vez € u,

=?V+z € Au.

Hence, if we take any element in Au and add the element s ¢ A, we remain in Au.
= V4+NZ € Au for n = 1,2,e00

In particular nz ¢ Au for n=1,2,.00

i.e. nz € u for n=1,2,eee

Since L is Archimedean, —» z = 0.
We have obtained a contradiction, because 0 < z £ u,

" Hence the assumption made is not true and u = sup Au.
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L being DEDEKIND complete

=3 u' = sup ug exists in L —u'€A4;
according to the definition of a band, a supremum is not only in L,

but_also in A.

Similarly
u" = sup u'y exists, and u' eB.

£, =uly +uly u'+u" e A®B for all & .

f+6 being less than a fixed element, the least upper oJcund of f+6 is

smaller than this fixed element. Hence

£t § u'+u'e ADB

=——=3A @B is an ideal, f' € A@® B.
Hence A @ B is a band.

Proof of (ii). By (1), A @ AP is a band, since A and AP are two

disjoint bands.

A AP
Since A@APD |, (A@AP)C  =a@aP)P = {O}___)(A@Ap)pp . L.
AP APP
Since L is ARCHIMEDEAN, the band generated by A @ AP, is equal to
(A@ AP)PP) j.e. A @ AP =L ;

since a band generated by a band, is the band itself,

Question. If L is an arbitrary RIrSZ space, and A,B are disjoint ideals
such that A@® B = L, what can we prove about A and B?

Theorem. If A, B are ideals, such that A® B = L, thus B = AP and
A=BP s0 A =APP ang B = BPP,

Remark. Hence, A and B are bands determining each other uniquely.
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No arrow can be reversed.
There are examples of DEDEKIND & -complete spaces, that are not

DEDEKIND complete.
Every band being a projection band, is not DEDEKIND complete.

Although (ii)=54 (i) and (1ii)5£(i), 1t is true that ( (ii)+(iii) ) == (i1)
(LUXEMBURG).
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lOth Lecture

Linear functionals, linear algebra.

We recall the following definitions:

Let be a real linear vector space V. If to every fe V', there is
assigned a real number  (f), gp(f) is called a functional.

A functionalcfis called linear, if

Y(fl+f2) = L((fl)+ ufv(fg)
Lf(oof) = A ~.‘> (f)
Let us tke
Definition: (~f1+ fz)(f) =Yl(f)+((2(f)
(a(f)(f) = acf»(f)

The linear vector space formed by the linmear functionals on \ is

called the algebraic dual of Y .

Let L be a RIESZ space, we consider the linear functionals gﬁ,v.’/l,...

Definition: A linear functionalLF on L is called positive, if (f(f)), o}

for a1l fe L',

Lemma: (Extension lemma)  Let T(u) be a real function, defined for
all ueL+, such that T(u)y o and T(u+v) =t (u)+T® for all
u,v & L™, then there exists a positive linear functional Lf such that

‘f(u) =T(u) for all ueL".

Proof: Let us define, for any feL, ((f) =t (£h)-T(£7),
Then(.f(u) =T(u) for all uel".
1° Ve prove first that if f = u-v; u,v-& L", then ¢(f) = ¢(u)- (v,
Indeed, f = u-—v~=)f+-f_ = u-v = fTev= fTru=> TN+ T(V)=t(f )+T(u;
=2 T(£7)- T(£7) =Tl)-T(V) = () = P - pCv)



Wow \f)(f+g) =Y(f)+ Y(g) for all f, geL. Indeed
- - + o+ - -
Y(f+g) =lf(f++g+—f -g ) = ‘f{f +g )-(f +g
o

i= \f(f++g+) -tf(f-+g-) =T(ttegt) -T(£74g7) =

T+ T(gY) - T(ET) -T(g™) = i) + t{?(g)

We have still to prove :Lf(af) = akf(f) for all fe€ L and real a.

Applying lo, we find that we can take f in the positive cone, and

for a : a non-negative number.

It is sufficient to prove that ‘1)(au) = agf(u) for u€ L’ and ay o .

For a =1, 2, 3, ... it is evident by addition. Then also for
i1 1
a =7, S 3 oo because
1 1
‘F(gu) = -3-\f(u)
Bf(%u) = ‘F(u) ) we set u = 3V,
3 ‘f(\l‘) = ‘f(BV‘)
Then also for a = -E (m, n natural numbers), so for a rational,

We assume now that a is irrational. We choose
o§r§agr' (r , r', rationals),

We have

o \<Y(ru)\( \f(au)s \P(r'u)

since au-ru 1is an element in the positive cone, and hence t‘?(au-ru)}, Oe

We find
ogr f(u)s tf(au){r'n‘o(u)
Let rTa

rila (keeping r, r' rational);

r \f(u) and r' lp(u) converge to a?(u).

Now the third term of the inequalities is constant with respect
to r and r'.

So \f’(au) = a\F(u). Hence ' is a linear functional, and ¢ is
uniquely determined.
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Definition:

A linear functionallfon L is called order bounded, if for any ucL+,

the number sup(ltf(f)l : Ifl\(u) is finite.

If tf is positive, +t):xen is order bounded. Indeed, we take ueL+,
if |flgu, then f--(uo so | ()] = ltf(f+)-f(f_)]S\f(f+)+ PeemI§ 2plu) =>
sup (lse(f)‘: lfl\(u){ 2?(\1) : finite.

If "fl’ YZ are order bounded, then ‘fl + 0?2 also.

1 Cgr+q) (O s dp (] +]g (]

If ¢f is order bounded, then a(f(a real) is it also.
Hence: the set L™ of all order bounded linear functionals is a real

linear vector space; every positive linear functiomal is in L7 .

Theorem: (JORDAN decomposition theorem). vforder bounded ¢&==p
kf:(fl— L'OZ with Lf’l,tpz positive,

Remark ., This thsorem is cailed JORDAN theorem: not because he proved

this theorem, but because he proved another analogous theorem : Every

function of bounded variation is the difference of two monotone functionms.

Proof , If «.f: ‘f’l "‘f’a with ‘fl"fZ’/ o , then ?1,?25 L,
80 yfl_ yez &€ L,
Conversely, assume that tfe L~ . For any ue L+, define

T(u) = sup (P(V) i ogV ¢ u)

Among the elements vy is the null-element; evidently

T(W) ¥ o) = o
T (u) is finite, because T (u) ¢ sup(lsf(f)l : |tlgu) is finite,
Property that ’f(ul) +’L’(u2),$'t(ul+u2) :

L : i -
et us take €> o : There exists ogv,§ u;, such that t.f(vl)) 'I'.’(ul) £,

" " of VE‘uZ " " lf(V2)7T(V2) "E.
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We add now;

’t‘(ul+u2) sup(\f(w) : ogwgul+u2) hY \P(vl+v2)

&

\f)(vl)+ \e(v2)> ’C(ul)+’t'(u2) -2

Property that ’E’(ul)f ’L’(uz)) ’l‘,(ul+u2)

Then'(according to the dominated decomposition

We take ogw \<ul+u2.

theorem) there exist w, and w, such that ogw gu,
og WS U,

and WotW, = W

Then &f(w) = Plw )+ \‘O(wa)(’t‘(ul)+”c’(u2)
’I‘:(ul+i.12) = sup(\f(w) : o\<w<u1+u2)\<’t‘(ul)+’f(u2)

We have therefore T(u)) o
’C(ul+u2) = ’C’(ul)+’[:’(u2)
There exists a positive linear functional \f+, such that Lf+(u) =T(u)
for all uel®,
So T(u) =T(w) = sup(Q (V) : ogvgu)y Pu)=3 ("= )(u)y o for uel’
%Lfi'—tf) is positive; we call it Y-, s0 lf+-\‘3= L{?—%
L?: \F+- (F_, lf+ and Lr- positive.
This concludes the proof.
If prositive, then l(?+(u) = sup((((\l') :ogVgu) = L‘?(u)
,%\fi':L?, 50 tf_ = 0.
Let us take two functionals (t)l and kf>2;
If tfl- (fa is positive,
then ((p,-,) (V) o for all vel’,
50 tpl(v)atfa(v) for vel'.

Hence, if uel’, then LF1+(u)} <€2+(u)% Pl*’- ‘f2+ is positive.

Definition, If t.Fl,Lra €L, and tfl— Lfa is positive, then we write

\.‘712 t]02. Then L™ becomes an ordered vector space.



Remark , The remark above that if gfl— ‘01 is positive, then Lfl+-tf2+

is also positive, <can now also be stated as follows: If (Fl) 702, then
+ +
'fl 2 ¥ -

Theorem, With respect to the partial order, L% is a RIESZ space.

Proof, Given xfl,\fas L, 1let lf3= (\FZ—\fl)++ \Fl' Then

+ . .
since \f+-\r 2 o or \f 3\? is true in any notation,

\¥32 ‘Pl and "f’3>/ (‘fZ-"Fl)+ ‘fl = P>

% k‘)B is an upper bound of Lfl,sf)a. Let 1/ be another upper bound

of LFl and LFZ. Then
- c== -y (Y- ) L
e sz"‘?1=?(Y"Fl)+2(‘f)2’“f’1)+ AN A CR A £

== \FB ¢ least upper bound.,

Hence every pair of elements in L™ has a least upper bound; more precisely,

we have proved that if \’Jl,npze L, then
sup (Y 1,\P,) = (\FZ-\Fl)++\Fl'
Similarly, it can be proved that
inf (p ), p,) =4 - (LPZ-LF1)+.

Hence, L  is a RIESZ space.
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11th Lecture

Remark : In the preceeding lecture we have introduced the linear vector space L

of all order bounded linear functionals on L, and we have defined that, in L™,
® s ¢ iff ¢ - ¢ 1s positive,

This makes L~ into an ordered vector space, Given ¢ € L~, we have also defined

the positive linear functional ¢+ by
¥ (u) = sup (p(v) : 0 ¢ v s u)

for every u ¢ A Hence, the notation ¢* was introduced before it was proved
that L~ is a RIESZ space, We proved that L~ is indeed a RIESZ space; given

~

Py P, € L , we proved that

sup (9,5 9,) = (9, - 9)7 + o,
It must be shown now that ¢* is indeed the positive part of ¢ in the sense
of the RIESZ space definitions, i.e.,we must prove that ¢% = sup (¢, 0) for
every ¢ ¢ L~ , Taking 9, = 0 and P, =9 in the formula

sup (¢, ¢,) = (9, - 20" + 9,

we obtain
sup (0, ¢) = (¢ =0)" + 0=09";

this shows that the notution is in agreement with the earlier notations in

RIESZ spaces in the earlier lectures,

Theorem : L is DEDEKIND complete,

Proof : First take a subset in L+, bounded above and directed upwards; call it
Pt o€ {a} i 0 < e, € P for all o, and s .
To prove is that sup ¢ _ exists in L~. For any u ¢ LY, define 7(u) = sup, ¢a(u);

then 0 ¢ 7(u) ¢ ¢o(u); 7(u) is finite,
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If u, v € LY, then 7(u+v) = sup ¢a(u+v) = sup_ {¢a(u) + ¢o(v)}

< sup_ ¢ (u) + sup ¢ (v) = 7(u) + 7(v)

Take ¢ > O ; there exists o,, such that ¢o1(u) > 7(u) - ¢

=
" " 02’ " " ¢a2(v) > T(V)'&
There exists a}
® ¢ (u) > 7(u) -¢
such that ¢ ; 3 ot o3 = 7(u+v) 2 ¢05(u+v) > 1(u) + 7(v) - 2¢
§002 9’03(") > T(V) - £
Hence : 7(u) » 0 forall wue L'

= There exists a positive
r(usv) = 1(u) + 7(v) for u, v e L'
linear functional ¢, such that ¢(u) = r(u) for all u ¢ L', i,e.
¢(u) = sup ¢ _(u) for every u ¢ L',
== ¢ 1s an upper bound of all o

Let ¢1 be another upper bound, then ¢1 29, for all o,

=§¢1(u) PY qpa(u) for every ¢ and every u ¢ L',
¢1(u) is greater than the supremum of all ¢a(u):=%;

¢1(u) 3#(u); hence ¢ is the least upper bound of all Py

Remark for the general case : Let us consider an arbitrary subset in a RIESZ
space : we can make the subset larger by adding elements, such that the new
subset is directed upwards and has the same upper bounds (cf. the remark in
the hth lecture). Therefore the choice of a directed set involves no loss of

generality,

Definition : The element @ € L~ is called an integral, if, for every sequence

wy0inlkl, lim 9(un) = 0,

N * o

The set of all integrals is called L'; : L: is a linear subspace of L™,
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~ - ~ ~ .
Lemma : ¢ € L°4=> 7, o ¢ L& Itpl €L

(1) (1) (1i1)

-

Proof : To prove that (i)=»(ii) is the only difficult case,
To prove is that v+ € Lc' Let u ¥ 0 in L. To prove is that ¢+(un) ¥ 0.

Let05v€u1.
) ) .
Then 0 € v-inf (v, un) = inf (v, u1) - inf (v, un) Su-u,

by applying the 'BIRKHOFF’s inequalities.

Now, since ¢*(u) = sup (o(v) : O € v € u), it follows that

"if 0 & v € u, then ¢ (u) 2 o(v).

It results that

¢(v-inf (v, un)) < ¢+(u1 - un) =
0 s v+(un) < o (inf(v, un)) - o(v) + ¢+(u1); since u_ ¥ 0, we have

inf (v, un)‘l' inf(v, 0) =0 so e¢(inf (v, un)) -0,

the quantities ¢(v) and ¢+(u1) are constant, and ¢+(un) is a decreasing

sequence of positive numbers., Thus,
0 € lim ¢+(un) < ¢+(u1) - ¢(v), this for every v, such that 0 ¢ v ¢ u,,
+ + + +
hence 0 € lim ¢ (un) €9 (u1) - sup (p(v) : 0 gV g u1) = ¢ (u1) -9 (u1) =0,

This finishes the proof,

The proof of the other purts are trivial, indeed,
(11) e (i11), since [¢| = ¢* + ¢
and it is proved that L; is a linear space.

To prove that (iii)==2(i), we use the relation : o= ¢° - ¢ .

® We use the RIESZ space notation,

** We can take the absolute value of this expression, but it is not necessary.
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We know that |<p| (un) » 0 for every sequence u_ {0 in L.

fe(u )] = [e"(u) = o (u )| s ¢"(u) + 07 (u) = [o] (u)-o0.

Consequence of this lemma : L~ is not only a linear subspace, but also a band,
Theorem : L: is a band in L”.

Proof : 1) L: is & linear subspace of L, Let !d’l £ !wl and o € L:.

In order to prove that L: is an ideal, we have to prove that ¢ ¢ L:.
¢ € Lcr—‘7|¢| € Lc = |¢| ¢ Lc-#qﬁ € Lo
by virtue of the lemma.L: is an idesl,

2) In‘order to prove that L: is a band, we assume that 0 g P, € L: and Py R o,
To prove is that ¢ € L:.
For every u € LY, o(u) = sup, ¢0(u). We know that if un»l' 0 in L,
then ¢a(un). $ 0 as n+ w, for every o. To prove is that ¢(un) ¥ 0.

Take & > O, there exists o, such that ( ¢ - ¢01) (u1) <E=>

1

0g (¢ - qpo1) (un) <€ for every n; <pa1(un) <e¢ for n 2 N(e)=>

‘P(un) < 2€ for n 3 N.

Hence <p(un) + 0, so 9 ¢ L:.

L~ : DEDEKIND complete space.
L: : band 1in LN; any element in L~ disjoint to L: is called a singular linear
functional: hence the set of all singul:r functionals is the disjoint

complement of L:, L: ; L: = (L:)P.
L™ =17 ®L] (by a theorem in the 9~ leoture),

i,0e. every ¢ € L~ has a unique decomposition; ¢ = P+ ¢a’
where ?, : integral,

Py ¢ singular,
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The relation between ¢ and ¢c holds in a formula:

For every u ¢ LY and o : positive linear functionel, we have
¢°(u) = inf (1lim ¢(un) :0<u A u)

(u 48 fixed, but we can take a different sequence u s then we have tuken

the infimum of the numbers 1im (p(un)).
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12 Lecture

Remark

~

L° being the subspace of all integruls ¢ , we have in an analogous manner:

~

Ln subspace of all normal integrals : ¢ 1s a normal integral, if, for any
downwards directed set u_ Y 0in L, inf |¢(uT)| = O, This definition is

analogous to that of an integral.

A normal integral 1s always an integral, but there are many examples, where

integr&lsare not normal integrals,
L; is a band,
L~ : set of all ¢ disjoint to L ,
sn n
L~

. ~ t R L~ .
= Ln®Lan (analogous to L Loe s)

1

If 2 0in L, u ¢ LY, then ¢,(u) = inf (lim o(u ) : O < u 4 u),

but we can write also: inf (sup tp(un) :06¢u 4 u),

9= +P

If 2 0in L, u ¢ LY, then ¢n(u) inf (sup ¢(uT) : 06 u tu).
This proposition is true, but very difficult to prove.

There exist examples where L” = {0} , although L is infinite dimensional.

Example :'X : non empty point set,
B : countably additive measure in X such that 0 < 4(X) < w»,

L

set of all real (finite valued) p-measurable functions
on X, with identification of functions, which are u-almost

equal,

Then L is a RIESZ space, L~ = {0}.
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We take the LEBESGUE measure in (—w, +w), we take O < p < 1,

L : all LEBESGUE measurable real functions f(x) on (-w, +w)
+o0
such that / lf(x)lpdx is finite = L : RIESZ space =L = [07.
J
- -]

Definition : L is a RIESZ space. If to every f ¢ L is assigned a real

number p(f) such that
(1) 0 < p(f) < o &nd p(f) =0 iff f = 0,
(1)  p(f, + £,) < p(£,) + o(£f,),

(111) p(af) = la! p(f) for every real a,

H

p(|£])

if Ifl < |g|, then p(f) < p(g)=>(iv) equiv. to if 0susxgwv,

(iv) (compatibility of order and norm) : p(f)

then p(u) s p(v),

then p is called a RIESZ norm, and L is now called a normed RIESZ space.

p(I£]) < p(£)

If g = |f|, (iv) is satisfied, hence and
p(f) < p(l£])

Many examples of normed spaces taken in functional analysis are RIESZ spaces.

C([b,1]) : p(f) = max (]f(x)’ : 0 €« x < 1) 1is a RIESZ norm,

1]

LP i 1¢p < w i p(f) < [ l£(x)|P du)1/p is a RIESZ norm.

Jx

ess. sup (|f(x)] : x € X) : RIESZ norm.

i]

L= : p(f)

(These spaces cover a great part of functional analysis),

Definition : L is a normed RIESZ space, L* is the space of all norm

bounded linear functionals ¢ with:

H?H = sup (Iw(f)l :(f) < 1)
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Here 1is no order, this definition is valid for a noymed linear space. As

examples of normed spaces we have the BANACH spaces,

L does not only consist of the null-element ==>
L* also does not only consist of the null-element,

The dimension of L* is never less than the dimension of L,

Theorem : L : normed RIESZ space,

(1) L* is an ideal in L~, not necessarily a band,

(11) If L is norm complete (i.e. L is a BANACH space), then L® = L,

(Every CAUCHY sequence has a limit in L).

It is true that any element of L* is an element of L, or L* C L .

Part of the proof : We have to prove that if p e 1*, thenp ¢ L, To prove is that,
for any u ¢« LY, sup (lp(f)l : lfl s u) 4s finite.
Since, 'fl € u=Pp(f) ¢« p(u), we have that

ir If‘l € u, then ‘P(f)l < |lloll o(t) « |lol| p(u)

==psup (|p(f)‘ : Ifl s u) ¢ ||ell p(u), finite,
Is L* an ideal?
We have to prove that if ¢ € L*, and |¢]| ¢ |o]|, ¢ ¢ LS.

For ¢, |¢|, we have

Hell = 11 1ol 1
The continuation of the proof is easy.
We consider now the theory of bounded linear functionals,
It is not difficult to prove that any ideal in a DEDEKIND complete RIESZ space,
ias, by itself, a DEDEKIND complete RIESZ sprce :=3L*, by itself ;:

DEDEKIND complete RIESZ space,
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~ o~ ~
L = LG®L3
. s - 1L~ . ,, L* »
Define : L% =L (L = L*= L@ L}
* . 1L~ *
and Ls Ls NL

Similarly, L = Ln@ Lsn implies that

L*

* *
Ln® Lsn
Examples

1) Lp spaces : e.g., with respect to the LEBESGUE measure; in the real line,

Hence , for 1 €« p< » , then

p(f) = ( ]“ £) [P ax)P s 1 = 1w - Lt = L*

Every element is an integral, the only singular functional is the null

functional,
2) L, for p = o :

~

p(f) = ess, sup(lf‘(x)| i ~w< X< +w) t L =L*,

L3 and L; are both proper subspaces of L*, L; A {0}; Ly, A {0}.

-1

I* ; isometric with L3 (pm1 +q =1)for1¢p<am;

L: { isometric with I.1 in the case that L = L™,
¢ 1™ = L* *
3) ¢([0,1]) : L = L* = L
Every linear functional is singular; there are no integrals except the

null functional.

Last definition : The norm p 1s called normal norm, if for any downwards

directed set, uT\l« 0, we have inf p(ur) = 0,
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Theorem : p normal norm &=PL* = Ly

Proof of =3)Assume p normal norm, and 1let ¢ ¢ L*. To prove is that, for any

u_§ 0, inf qu(uT)' = 0.
lo(u)| < [[o]] su)=pint [o(u)] ¢ [[o]] 10 p(a) = 0.

Proof of ¢<== founded upon HAHN - BANACH extension theorem,

This part is not elementary.

Remark : In LP(1 < p < ) p 1s a normal norm, but not in L®, also not in C([0,1]).

Theorem : We oonsider the following properties in a normed RIESZ space L,

p : RIESZ norm,

(1) L* = L (i.es, p normal)
(11) Every norm closed ideal is a band,
(It is easy to prove that in every normed RIESZ
space, every band is always norm closed)
(1) (11)=>(1i1)
iii) In I* every band is weak* closed.
(It is easy to prove that in every normed

RIESZ space, every weak® closed linear subspace

is always a band)

Some RIESZ spaces have the property (i), but not all RIESZ spaces have this
property,

This theorem was proved by (T. ANDO , W,A.J. LUXEMBURG, A.C. ZAANEN).

It can be proved that this theorem is a particuler case of a more general

theorem,and that theorem is true in any RIESZ space,
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