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1 Leoture 

Definition of an ordered vector space 

L is called : ordered vector space, if 

(i) li is a real linear vector space, 

(ii) L is a partially ordered set, (i.e. for elements f, g, h,... and 

f ί g, we have 

f « g and g < h=>f * h 

f i f for all f 

f ί g and g « f=*f = g). 

These two structures are compatible,L is such that 

a) f « gs$>f+h « g+h for all h ( L, 

b) f < g=»>af « ag for all real a > 0. 

Let us recall the following definitions : 

If L is partially ordered and A is a subset of L, than the element 

g « L is called an upper bound of A if f c g for all f f A. If, in addition, 

g « g. for every other upper bound g. of A, then g is called the least 

upper bound of A, or the supremum of A« 

Notation : g = sup A or g = sup Γ f : f « A1 
Similarly, if h { f for all f β A, then h is a lower bound of A. If 

h * h. for any other lower bound h. of A, then h is the greatest lower 

bound of A, or the infimum of A. 

Notation : h = inf A or h = inf ff : f c A[ 

Manuscript rece ived on July 29 , 1966. 
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Definition of a RIESZ space 

The ordered vector space (o.v. sp.) L is called a RIESZ space if for every pair 

?t & € L, there exist sup(f,g) and inf(f,g). 

Examples 

(i) The real numbers, i.e. R . 
o 

(ii) The plan R . Partial order defined by 

f1 * «1 
t < g4» 

f 2 « g2 

f ig . I , 1 

( i i i ) The spaoe 0([_0,ΐ3)» being the set of a l l real continuous functions 

on [0 ,1] . 

Definition of f « g : f(x) * g(x) for χ c [ 0 , l j 

s ü p ( f ; g ) 
\ ^ 

f i g . 1,2 fig. I , 3 

Positive cone of L 

The positive cone of L, called L*. is by definition 

0 being the null element of L. 

Grephio representation of L for the above examples 

(i) 

I f ; f > 0 

- j ■ 1 1 1 1 — I » — < 1 1 — · — t -
L
 + 

fig. I, if 
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Fig. I, 5 

(iii) 

Fig. I, 6 

Cone properties 

t,6 < L+:=*f+g < L+ 

f * 0 = ^ a f * 0 for r e a l a * 0 

f, - f e L + =4f = 0 

f > 0=4f+g ;> g * 0=^f+g > 0 

f > 0Ì 

f < oj 
=4f = o 

Simple properties 

(i) f > g«f-g e L
+ 

(ii) f ) ( H f > sup(f>g) and g = inf(f,g) 

Λ af ï ag for a > 0 

(ui) f>*g* 
^ af < ag for a < 0 

Indeed f > g<F*f-g * 0<=}-f < -g 
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(iv) sup (f,g) and inf (f,g) : 

sup (f,g) » - inf (-f, -g) 

indeed, if h : upper bound of f,g 

then -h: lower bound of -f, -g. 

W S U P ( f+h, g+h) - a u p ( f ,g) + h 

inf inf 

We have to prove that sup(f+h, g+h) = sup(f,g)+h. 

Sinoe sup(f ,g) \ , we have sup(f ,g) + h >, , and so g+h 

sup(f ,g) + h ï, sup(f+h, g+h) (1) 

For the converse, write k = sup(f+h, g+h), only for abbreviation. Then 
+h 
g+h 

k >/
f+h=^k-h >, f =»k-h>, suptf.g^k^ sup(f,g)+h, so 

g 

sup(f+h, g+h) >y aup(f ,g)+h (2) 

The desired result follows from (1) and (2). 

(vi) sup(af, ag) = 
a sup(f,g) for a > 0 
a inf(f,g) for a < 0 

(vii) sup sup(f,g),h » sup sup(f,h), sup(g,h) « sup(f,g,h) 

i u p i f . O ) - f + 

fig. 1,7 
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Notational : sup(f,0) » f+ 

- inf(f,0) - sup(-f,0) - f" 
sup(f,-f) = |f| 

Properties of f*, f" and |f| 

(i) f+, f" € L+; f+ = (-f)" and f" = (-f)* 

because (-f)" = sup(f,0) = f+ 

ΙΊ = kl 
(ii) f = f+ - f" and inf(f+, f") = 0 

Indeed f+ -f = sup(f,0) - f = sup(0, -f) = f" 

and inf (f+, f~)*inf(f+f~, f") 

= inf (f„0) + f" « -f" + f" = 0 

|f | = f+ + f", 

because |f| = sup (f, -f) » sup(2f, 0) -f 
= 2 sup (f,0) _ f « 2f+ - (f+ - f") = f+ + f" 
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2 Lecture 

From the formula that If I = f+
+f we deduce 

o^-f+ «7f/, 

o < f " < | f | . 

The formula that f = f
 +
 -f~ yields 

-f $ f $f 

We prove now the following proposition: 

.+ ̂  + 
f^g<r^

f
 $g 

If f ̂ g , then sup(f,o)^sup(g,o); indeed, let us denote sup(g,o) by h: 

h^sup(f,o) = f , i.e., g ·> f , 
h
* ε>, t) 

n° y 
f $ g~$r - f > -g a^· s u p ( - f , o ) ¿ s u p ( - g . o ) , i . e . f~> g 

C o n v e r s e l y , i f f < g and f ^ g , then 

f = f + - f < g+-g~ 

L i s t of formulas for s u p ( f , g ) and i n f ( f , g ) 

( i ) 

( i i ) 

( i i i ) 

( i r ) 

(r) 

( r i ) 

s u p ( f . g ) = ( f - g ) + + g = f + ( g - f ) + 

i n f ( f . g ) = f - ( f - g ) + = g - ( g - f ) + 

s u p ( f , g ) + i n f ( f , g ) = f+g 

s u p ( f , g ) - i n f ( f , g ) = | f - g | 

s u p ( f , g ) = | (t+B+lf-sl) 

f(f,g) = | (f+g - |f-g/J i n 

f i g . I I , 1 
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Proof of these formulas 

(i) sup(f,g) = sup(f-g.o) + g = (f-g) +g 
(ii) inf(f.g) = inf(f-g,o) + g = -aup(g-f.o) + g = g-(g-f)+ 

To prove (iii) we have to add the left hand sides to the right hand sides 
of (i) and (ii); to prove (iv) we have to subtract them: 

(iv) sup(f,g) - inf(f.g) = (f-g)++(g-f)+ = (f-g)++(f-g)- = |f-g| 
because f = (-f) 

To prove (V),we add the left hand sides to the right hand sides of (iii) 
and (iv), then we divide by 2. To prove VI, we repeat these operations, 
subtracting instead of adding. 

Other formulas 

sup(lfl.lgl) = I (|f+gl +/f-g) ) 
i n fd f i jg i ) = | ||f+g| -lf-gl| 

P r o o f . s u p ( | f | , | g | ) = s u p ( f , - f , g , - g ) = s u p ( s u p ( f , - g ) , s u p ( g . - f ) ) 
= sup(| (f-g) + | | f+g | , |(g-f)+ I |f+g|) = | ( | f+g|+|f-gh 

by virtue of (V). The first formula is proved. 

To prove the second formula, we set f = p+q and g = p-q, so f+g = 2p and 
f-g = 2q. 

Let us apply formula (iii); we obtain 

inf(lfjjgj) = !f!+|g|- sup(/fj,|g|) 
- Ifj + lgl- | ( | f+gl + /f-g|) 

= lp+ql +lp-ql -ip/-|q| 
» 2 sup(/p/,/q/) -jp|-jq/ 

by virtue of the first formula 
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The formula (ιΓ) yields 

2 supdpl, (ql)-lpí-lql 

= {|pl + lq| + l|p|-|q|/j -!p|-|q| 

= l!pl-!q/| 

= H
, f +

«l -i
f
-«" 

q.e.d, 

Standard decomposition of f. 

f = f -f" with inf(f ,f~) = o : standard decomposition of f. 

The standard decomposition is the "minimal" decomposition. 

Then (i) If f = u- iT; u,\Te L
+
, then f

+
£ u 

f~¿ \r 

(ii) If f = u-\r ; u,vreL
+
 and inf(u,v) = o, 

then u = f and ν - f . 

Proof.(i) fíu ) / . λ . / , 
ν L sup(f,o)^u. (u is an upper bound, greater or equal 
x J the least upper bound). 

i. e. f £ u. 

Furthermore, f" = f
+
-f$u-f = ν". 

So (i) is proved. 

(ii) By virtue of the formula for infimum 

o = inf(u,\r) = u-(u-v) = u-f => u = f , 

s c , s i n c e f = u - v a n d f = f -f , we o b t a i n 

V/ « f 
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T r i a n g l e i n e q u a l i t y 

llfl-lelk M<UI +/g| 

Proof. We prove first the second inequality. 

'+««'/**} (f+g)+<f++g+ o<f+
+g+j 

(f+g)- = (-f-g)+^ (-f)++(-g)+ = f"*g~ 

Let us add the left hand sides and the right hand sides: 

lf+g|< I fMg ' 

To prove the first inequality, we substitute f-g for f in the second 
inequality 

If I « |f-gl+lg| 

or I f l - l g U If-gl 
and | g l - | f U l f - g ! 
s i n c e | f l = J - f | = s u p ( f , - f ) by d e f i n i t i o n . 

Let us now i n t r o d u c e the supremum of t h e l e f t hand s i d e s : 

llfl-lglklf-g| 

Now we change g in -g, this gives a difference on the right, but not 
on the left; and we find the desired result. 

Theorem . If ftJ:Te{T)\ is a subset of L, such that f = sup f̂ , exists, then 

sup(f.g) = suf^ [supifj. , g)J 

For both countable and uncountable sets, we use the notation f— , 
where τ runs through an appropriate index set. 
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Proof, f ^ V for allf, =^ sup(f,g) £ eupítç- ,g) for allT/ , so 

sup(f,g) ie an upper bound of the set of all elements sup(f/£-,g). 

Let h be also an upper bound of this set, so h^ sup(f—- ,g) for all X 

= Φ h } f T for allT -=> h^ f 

(f being the least upper bound/ 

of the t x ) = * hj.upif.g), 

and, since h > g 

so sup(f,g) is the least upper bound of the sup(f^.g). 

Still assuming that f β eup f_, the equality 

inf(f,g) ■ sup-x: (inf (f^-,g)) 

is also true. It is the distributive law. Thie law is of the same kind 

as the distribution law of the set of real numbers. 

Proof. f^f/c for allf ·=*■ inf(f.g)^ inf(f^- ,g) for all X . Hence 

inf(f,g) is an upper bound of the set of all inf(f^-,g). Vie still have to 

prove that inf(f,g) is the least upper bound of the inf(f~,g). 

Let h be another upper bound of this set, so 

h} infCf^.g) for all f. 

Since the infimum of two elements equals the sum of these two elements 

minus their supremum. 

h^f^_+ g - supíf-j- ,g) = ^ 

h - g + eu^íf^. ,g)^ î^- for allT". 

We make the left hand side still larger, without changing the right hand side, 

h - g + sup(f,g)} ΐ^ for all T" 

At the left hand side we have now a fixed element, hence an upper bound of 
the f._, ; f being the least upper bound of the f^ , we obtain 

h - g + sup(f.g)^ f =» 
h % f+g - sup(f,g) = inf(f.g). 

So we have proved that inf(f,g) is tne least upper bound. 
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3 Lecture 

We have proved that if f = sup f , sup (f>g) = sup (sup(f ,g)), 

τ 

In particular, if g = 0, then f
+
 = sup f . 

From the distribution law we deduce for g ■ 0 : 

inf (f,0) » sup (inf (f , θ)) 

-f" > sup (-f~) 

f" = inf f" ; 

τ 

henea 

f
+
 = sup f

+ 

f = sup f 

V -
\/ f = inf f 

Similarly, if f = inf f , then sup(f,g) = inf (sup(f , g)). 

Remark : sup(f,g) is written sometimes as f V g, 

inf(f,g) " " " " f Λ g . 

("oup" and "cap") 

Partioular case : case of two elements. 

If f = f1 V f2, then f Λ g « (f 1Λ g) V (?2
 Λ
 «)»

 o r 

(f., v f2)A g « (f., Λ g) V (f2 Λ g) ; 

we have also 

(f, Λ f2)V g = (f., V g)A(f2Vg). 

The first formula remains correct if we interchange the symbols V and Λ 

That is the distributive law. 
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On the other hand, if f , f„ and g are real numbers, we have the law 

(f1 + f2) . g » (f1 . g) + (f2 . g), 

in this case the symbols + and « cannot be interchanged. 

Theorem. If f,g,h c L, then 

jsup(f,h) - sup(g,h)| ♦ |inf(f,h) - inf(g,h)| = |f-g| 

I II 

Corollaries 

|sup(f,h) - sup(g,h)| < | f -g | 

| inf(f ,h) - inf (g ,h) | « | f -g | 

In particular, if h is the null element, we have 

k
+

- g
+

l < I ' - « I 

| f - g ' | < | f - g | 

We first illustrate the theorem by a graph. 

mi Π 

fig. Ill, 1 

Let us consider different regions, first the region at the left of the 

intersection point A of the curves h and f ; the aupremum of f and h and 

the aupremum of g and h are h; the expression I represents nothing in the 

figure. 
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Now we pass A and go up to B, intersection point of the curves h and g; 

the supremum of f and h is f, the supremum of g and h is h ; we represent 

the expression I in the figure by a continuous line. 

We go on thus up to the end of the chosen interval« 

We proceed similarly for the expression II and use in that oase dotted 

lines. 

In this figure, therefore, I + II « jf—g| for all possible ohoioes of 

the point χ on the horizontal axis. Note : this is no proof, only an 

illustration for the case that L is the space of continuous functions on an 

interval. 

Proof. We first prove the equality, from which the inequalities can easily 

be derived. 

Using the relation 

|p-q| = sup(p,q) - inf(p,q) 

we obtain 

I+II = f V h V g V h - ( f V h ) A ( g V h)*+ (f A h) V (g Λ h) - f A h A « A h 

= f V g V h - ( f A g ) V h + ( f V g ) A h - f A g Λ h 

By arranging the terms of the last expression ifi pairs, we find 

I+II r (f V g)vh + (f V g)Ah I J I (fAg)Vh + (f A g)Ahl 

« f(fV g) + hj-f(f A g) + hi 

since the sum of the aupremum and of the infimum of two terms equals the 

aum of the two terms. We arrive at the result 

* For this demonstration we use oup and cap notation. 
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I+II - f V g - f A g 

f-g I 

Remark. Sometimes the inequalities are called: 

G. BIRKHOFF's inequalities. 

He proved first the inequalities. But it is more striking to begin with the 

equality. 

Definition, f and g are called disjoint, when inf(|f|, Igl) = 0 

Iti Notation : f J . g 

( the same as for orthogonal) 

carrier off The c a r r i e r s of f and g have no point in 

-I91 eommon (Engl ish: o a r r i e r , French auppor t ) . 

carrier of g 

f ig . I l l , 2 

Theorem 

( i ) If f i g , and |h¡ ¿ |f | , then h l g . 

( i i ) If f J - g , then a f l g for every real a. 

(iii) If f1# f 2 X g , then f1 + f 2 X g . 

(in other words, the set of all elements, which are orthogonal to a fixed 

element, is a linear subspace) 

(iv) f J-g<^f + J>g and f"l g. 

(v) If f = sup f and all f J. g, then f i g . 
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Proof. ( i ) The proof of the f i r s t propos i t ion i s t r i v i a l : 

0s< i n f ( | h | , | g | ) 4 i n f ( | f | , jg | ) = 0 . 

( i i ) f X g . e > i n l ( | f | , | g | ) = 0 = > i n i \ - x | f | , a | g | ) = 0 

for α = | a |+1 , i . e . i n f ( | a f | , |ag | ) = 0 ; 

i . e . |af | 1 |ag | 

Now | a f | < | a f | , so by ( i ) a f i . | a g | , 

f i n a l l y | g | ν | a g | , so by ( i ) a f i g , 
q .e .d . 

(iii) ' We prove first that ( |f« | V |*2|)1 g' o r t h a t 

(|fj V |f2|) Λ |g| la the null element. 

By virtue of the distribution law, 

( Κ Ι ν |f2|) A g = (|fj A |g|) V (|f2| Λ |g|) = ο V o = o 
Sinoe each of two elemente is smaller than or equal to its supremum, 

I 'll + lf
2l « 2 ( | f J ν | f 2 | ) , 

so 

(kJ + l f 2l ) i g : 

the inequality 

ΙΊ + f
2 l « k J + lf

2l 
shows that |f1 + f 21 i g, i . e . ( ^ t f ^ i g , 

( i v ) If f 1 g, then | f | 1 g; 

0 < f+ < | f | ; so f + i g ; 

0 < f " < If I; so f " l g . 

*) For f. 1 g and f_ 1 g can be said: f. and f_ are disjoint to g. 
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Conversely, if f , f i. g, then 

f = (f
+
 - O lg, 

(ν) We have f = sup f , and all f 1 g. 

We have proved earlier that 

f
+
 « sup f

+ 

f" = inf f~ 

and f
+
 1 g 

was proved sub (iv). 

So 

inf(f*, |g|) = 0 

Or, by virtue of the distribution law 

inf(f
+
, |g|) = sup(inf(f+, |g|) = sup 0 = 0; 

τ τ 

since the supremum of a set of elements, which are the null element, is the 

null element. Thus 

f
+
lg 

Then we have f" 1 g, so inf(f", |g|) = 0. 

Or, 0 i f" ξ f" for all r, 

thus 0 < inf (f", |g|) < inf(fÇ,.|g|) » 0 ; 

and so f"* 1 g» 

f
+
 1 g Λ 

Finally =^ fig , 

f" i g
 J 

which completes the proof. 
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Theorem 

f i g =>|f+g| - |f-g| = kl+|e| - | | f | - |g | l β a « p ( k l . lei) 

Proof 

We use the formula 

i n f ( p , q ) . - p+q - | p -q | 

t h u s , o = 2 i n f ( | f | , | g | ) = | f | + | g | - | | f | - | g | | = > | f | + | g | = | | f | - | g | | 

But we have proved 

f+g 
Ikl- le l l « « k M * l 

| f -g | 

Since the outer expressions are equal, they are also equal to the expressions 

in the middle. 

F i n a l l y , we observe t h a t 

s u p ( | f | , | g | ) = | f | + | g | - i n f ( | f | , | g | ) 

The infiaum being sero, the last inequality is proved. 
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ι th τ 
Η L e c t u r e 

Theorem / i f | f + g | - | f - g | , then f J - g . 

I f J f+g | - s u p d f l , | g | ) , then f±g. 

I f | f -g f t s u p d f l , | g | ) , then fJ-g. 

P roo f . We have proved 

2 i n f ( | f | , | g | ) = J|f+gl - | f - g | | , so i f j f + g j = | f - g | , t hen 

t h e h y p o t h e s i s i m p l i e s i n f ( | f | , | g | ) = o ; 

and i f J f+g | = s u p ( J f | , | g | ) , i t fo l lows from 

2 s u p ( | f | , J g | ) = | f + g | + | f - g | and 

s u p ( | f | , | g | ) = | f+g | 

by subtraction that 

s u p d f l , jg|) = ι f-g ι 

| f + g | = | f - g | = ^ f x g . 

For the third formula we replace g by -g. 

q.e.d. 

Notation 

Given the sequence f £f £f ... , we write f | , i.e. we say that 

the sequence f is monotonically increasing. 

If, in addition, f = sup f exists, we write f \ f. 
η η 

Similarly if f £ f ^ ..., we write f I . 
If, in addition, f = inf f exists, we write f i f , 

η n ^ 
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Theorem 

( i ) I f f n f f and g n f g, then f n + g n t f + g < 

( i i ) I f f t f , g ì and i f f + g f f+g, then g f g . 
n n 

( i i i ) I f f Î f , g î g, then SUP(f ,g )T S U ^ ( f , g ) , 
η η i n f η °ιι i n f ' ' 

P r o o f . ( i ) Le t η >, m : f +g < f +g < f +g 

' m °m
s
 m n v

N
 n n 

and f +K < f+g , this shows that 
n "n* 

f+g is also an upper bound of the set f +g (m,n=l,2. .. . ) 

m n 

Let h be another upper bound of the set f +g . Hence h is also an upper 

bound of f +g , that means that for all m,n such that n> m, f +g ¿" h. 
m °n ' * ' m °n * 

Keep m fixed, then g <. h-f , but g t , e
 n

v
 m °n I 

hence g = sup g < h-f =^f ζ h-g 
° ^ °n * m ' m

 s 

f ζ h-g =̂ · f + g ̂  h -=^ f+g io the least upper bound of f +g j 

q.e.d, 

(ii) and (iii) are proved in the same manner. 

Definition of Convergence. (Side Remarks) 

If g £ f < h 
n n n 

then we say that f "order" converges to f, 

e nî
f
'
 h
ni-

f 

Definition of Series: If u e L for n=l,2,..., if 
n i t i - " 

S = un+u_,+ ... + u , and if S f S , then we writi 
η 1 2 η' η ' 

η = 1 

u = S 
η 
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Theorem (Dominated decomposition theorem) 

(i) If u,v,z€L , u + v = ζ and ο Çz [ ζ, then there exist sequences 

o <" u tu and o<v Τvsuch that u +v = ζ . 
ν η ' η ' η η η 

(ii) If u, V,zt L , u + v = z and ζ = Σ— a' where all z' tL , 

n = l 

then there exist series 

such that u'+v' = z*. 
η η η 

Σ. u1 = u and ΣΙ ν' = \Γ (ail u' » ν' e=L+) 
η η η » η 

(ii) is the same as (i), so we prove only (i). 

(iii) If o $ u £ ζ ' + ... + ζ' all z!6L (ρ finite), then there 

exist u' , ... , u'cL such that 
1 Ρ 

u'+ ... + u ' = u and o ¿ u ! < ζ'. (i=l, ... , ρ). 

1 ρ * ι
 s
 ι 

Therefore the name: dominated decomposition theorem. 

It is a particular case of (ii), so we prove only (i). 

Proof of (i) 

We make a guess. 

The e-uess is: Let us define u = inf(u,z ) e 6
 η η · 

Then o^u | inf(u,z) = u, become 

fnt f, gnT g=^ inf(fn,gn)tinf(f,g). 

We define ν = ζ -u . Then 
η η η 

ο <ν and u+v = ζ 
ν η η η η 

We still have to prove that v tand that ν Tv. 

η ' η ' 

We have 

°N < U n+l- U n = i B , ( t t » « n + l ) " *» '<» .» η > = 

| i n f ( u , z n + 1 ) - i n f ( u , z n ) K r | « Β + 1 τ » η | = \ + 1 ~ \ , 

( B I R K H O F F ' S i n e q u a l i t y ) 

—=> ζ -u < ζ - u . , i . e . ν < ν , , 
r η η N n+1 n+1 ' η ν n+1 
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We have already proved that o £u l u , o <v / , 

o í u +v I u + V = ^ v ( V by (ii) of convergence statements. 
n n ' n 

Generalization of the notion of monotone convergence 

Definition 

The seti f_. ; Τ € {Xj s is called directed upwards, if to any 

pair T\ , T p, there exists Τ such that 

We define similarly: directed downwards, 

Notation; f^ I or f_ j (directed upwards, downwards) 

If f,1 and f = sup f__ exists, then f | f. 

Theorem. If u, v, z € L , u + v = ζ and o%z \ z, then there exist an 

upwards directed set o s<iulu and o^ ν Τ ν such that 

u_ + v,j_ = ζ for each T . 

The proof is almost the same as for preceding theorems. 

Theorem. Let there be given an arbitrary subset of L, say J f: <5~L· jtfjc. 

Then there exists an upwards directed set jg ]) / f Λ having the 

same upper bounds as f f 1 . 

Proof Let f ^ ,·■· «.*- = (^ , · · · , <*" )
 a n

d then define (n finite but 
· <*!

 n
 i

 n 

variable) : 

g,~_ ^ = supif^. ,... , f^ ) and take the set of all these g's. 
L*l..< ^n öx \ 

Hence take the set of all suprema of finite subsets of jf<( · 

Of course j g r j O {
f
<s{ * 
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^g \ is directed upwards. In fact 

Any upper bound of g is of course an upper bound of f-, 

Conversely if k>f^-, for all <ƒ , then k y g f or all "f. 

q.e.d. 
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2 Lecture 

Examples 

l) The n-dimensional real space R , with elemente f = (f ,... f ), is a 
real linear vector space; 

f^g iff f ̂  ĝ^ for i = 1,... ,n. 

(f is smaller than g if every coordinate of f is smaller than the 
corresponding coordinate of g). 

Graphic representations for R : 

. 9 

f « g 

, 
ι 
ι 
Ι 
Ι 
i 

i'nftyg) 

sup(f,g) 

-·» 9 

fig. V, 1 fig. V, 2 fig. V, 3 
2) R , with a different ordering: lexicographical ordering 

for R : f £ g iff either f ^ g± or ίχ= g^ f 2^g 2 # 

,f 

positiv e don« 

fig. V, k 

This ie a linear ordering, i.e. 
(Vf) (Vg) : f<g or g^f. 
In this case two elements are always 
comparable, whereas in the former 
case it can occur that two elementa 
are not comparable Φ 

3) An arbitrary non-empty point set X and the set L of all real (finite 
valued) functions on X; the algebraic operations are as usual, i.e. 
L is a real vector space. 

f<g iff f(x)^g(x) for all x»X, L is a RIESZ space. All pairs 
of functions have a least upper bound; for f(x), g(x), 

(sup (f,g)) (x) = max (f(x), g(x)) 

and we have an analogous relation for the infimum. 
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Example l) is a particular case of 3), X =il, 2,..., nj 

f-i
 f

O
 f

T
 f 

1 2 3 n 
• · · ™ ~"

 —
 o 

1 2 3 n 

Every point in R is a function on this point set; f = f(l), etc. 

k) A topological space X, and L the set of all real continuous functions 

on X; the ordering is as in 3)· Then L is a RIESZ space. The 

subspace of bounded continuous functions is also a RIESZ space. 

5) X: non empty point set;i¿ : countably additive non negative measure 

in X; M;set of all real, finite-valued, ti-measurable functions on X. 

In M we identify functions which are ̂ J-almost equal; (Officially we 

have L -M/N", N: set of all u -null functions)· we call it L now; then 

L is a real linear vector space; 

f i g in L iff f(x)^g(x) li-almost everywhere. 

L is then a RIESZ space, (sup (f,g))(x)= max (f(x),g(x)) a.e.LwJ ) 

6) Many subsets of the above L are also RIESZ spaces, e.g. L (l^p^c»o); 

in particular ζ (the point set X is countable). 

{l,2,... } 
u(n) = 1 for every n. 

7) A non-empty point se t X; p f i e ld (algebra) of subsets of X. 

I f Ρ i s a c o l l e c t i o n of subsets of Χ, Ρ i s ca l led a f i e ld i f f 

( i ) Χ € Γ 

( i i ) Α , Β 6 Γ = ^ Α U B e Γ 

A - BC Γ 

Let μ be a finitely additive signed measure defined on Γ" ; i.e, 

to each A 6 p is assigned a finite real number u (A), such that 

μ (A1 U A2) = ^(Αχ) + jU (A2) 

one says also : (ö'-additive or completely additive 
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if A , A are disjoint, (finitely additive « concerns the above condition; 

signed measure»means U-is not necessarily positive), ̂ lis sometimes 

called a charge. 

Assume also that sup(||>i(A)j : A e Γ) is finite. 

Let L be the set of all such charges. 

J(fJ +fi )(A) =p (A)+/U (A) 

Addition:< 
/ (a 4ÌXA) = aji(A) 

L becomes so a linear vector space, since the chargea behave like a 

vector: 

μ±4 μ2 iff /u1(A)̂ r p 2 U ) , an A e P . 

Hence the p o s i t i v e cone L i s the subse t of a l l non n e g a t i v e c h a r g e s . 

We show now t h a t L i s a RIESZ s p a c e . 

Let the c h a r g e s u.. ,L/_ be g i v e n . 

Remark. We c a n ' t w r i t e : Li,(A) = max (μ ( A) , p (A) ) ,r> i s n ' t a d d i t i v e . 

We have to f ind a supremum t h a t i s a d d i t i v e . 

For any s e t Αβ Γ , we w r i t e 

V (A) = s u p ^ U J + f J (A-B) : BcA, B 6 p ) 

F i r s t of a l l V(A)< -»^, for 

l p » 1 ( B ) + p 2 ( A - B ) | ^ r j ^ i 1 ( B ) | + | ^ 2 ( A - B ) | 

^ e u p ( | | i 1 ( B ) I : B C D + s u p ( j ^ 2 ( C ) | : CeV)< 

Let A , A be disjoint; we shall prove that 

V>(A1U A2) -l/(A1)+U(A2) 

(From now on Β is always in the collection Ρ ). 
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I f Β CA V/A2, then Β = B'VB", where Β· - ΒΛ A and Β" = BflA Β' and Β" 
a r e d i s j o i n t , so ( c a l l i n g A « A U A ) 

/ ^ ( B ) +L^2(A-B) . 

/iW1(B') + ^ 2 U 1 " B , ) J + )ΑΊ ( Β , , ) +
 l

U 2 U 2~ B " ) j 

V(A2) 

f i g . V,5 

Hence ( \ /B , B e P , B c A ^ A ^ / ^ ( B ) t A ^ U - B ) * y (A ) + y(A ) 

sup ( i i 1 ( B ) + l ^ U - B ) : BeA , Β « Γ ) < v ' U ^ + v / U 2 ) 

i . e . V(A) $ v/ÍAj,) + V(A ) 

On the o t h e r hand t a k e 6 > Ο , and l e t 

B1 CÂ ^ such t h a t μ χ ( B1 ) + ̂ ( A ^ B ^ j N / ^ ) - £ 

B 2 CA 2 

C a l l B O B2 = B, 

»
U

1
( B

2
) +

 A
i
2

( A
2~V

> V
'

(A
2

)
 "^ 

by a d d i t i o n we have μ ( B)+ jU ¿( Α-B)? y ( A;L )+ V U 2 ) - 2£ 

sup ( ^ ( B ) +LJ2(A-B))> V ( A 1 ) + V ( A 2 ) - 2£ 

V>(A) > VÍA )+ V(A ) - 2£ 

V(A) ¿ ν ( Α χ ) + V(A 2 ) 

Hence \} i s a d d i t i v e . 

We now prove t h a t sup( |v^(A) | : Α β Γ ) i s f i n i t e . 

We a l r e a d y proved t h a t for any A e P a n d any BC A, B e P : 

) i V 1 ( B ) + ^ 2 ( A - B ) | ^ B u p d / i ^ B ) ! : BfcP) + s u p ( | J ^ Í O | 

■ °1
+C
2
 C
 ~ , 

C and C_ being fixed constants. Hence 

sup(|^1(B)+p2(A-B) | ; BCA ; A, Bcf
1
^ O^G^ 

(VA«P) |v/(A)|^C1+C2; 

thi· for every A, so 

eup (/v(A)| : Α6Π) is finite; 

hence v* is a charge. 

CÉD 
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But 0(A) = sup(^1(B)+ μ2(Α-Β)) 

For the particular choice Β = 0; A-B = Â  

and it results : V U)¿ LipU). 

If we take Β = A, then A-B = 0¿ 

and V(
A
) >/ fU1(A). 

So]/is an upper bound of μ and Up. 

To prove that y
1
 is the least upper bound: 

Let y be another upper bound ofU and Up. 

V'U) 3 y(B)+ V'(A-B) for any BCA, 

so W(A)? Li^(B)+Ly2(A-B) 

y'ÍA) ̂  supt/^B) +^2(A-B); BCA) =y(A), 

thus any upper bound y" (A) is greater or equal y(A) and v* is the 

least upper bound. Hence L is a RIESZ space. 

One can easily prove that 

λ(Α) = inf( μ (Β)+μ (A-B) : BCA, Bfep) 

is a charge, such that Λ. is the greatest lower bound ofμ and u?, 

i.e., fl= inf ( μ1, μ2). 
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6 Lecture 

Remark. 
We have required that sup( |μ(Α) | : Α«Γ) would be finite. If Γ is a o-algebra 

and μ σ-additive, this condition is automatically verified, 

8°) A HILBERT space Η (on the complex numbers), the elements being x, y, z. 

The bounded linear transformation A (of Η into H) is HERMITIAN (self-adjoint) 

if 

(Ax, y) » (χ, Ay) for all x,y. 

(Ax, X) = (x, Ax) = (Ax, X) =^(AX, X) real for all x. 

The set of all HERMITIAN transformations is a real linear vector space. 
(If A, A ^ A2 are HERMITIAN, 

A1 + Α Λ 
are HERMITIAN, but iA is not HERMITIAN). 

5A 

Α ί Β iff (Ax, x) « (Bx, x) for all χ € Η. 

Positive cone: all A ï θ, θ being the null transformation, 

so (Ax, x) * 0 for all x. 

Griven A, B, HERMITIAN -» C, C being an upper bound of A and B. This set 

is not a RIESZ spaoe (KADISON; 1951), but many subspaces are RIESZ spaces, 

Example of a subspaoe containing an element A and being a RIESZ space: 

2 commutant of A, CÍA). 

* A bounded transformation is also called operator. 
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fig. VI, 1 

CB = BC for all Β f CÍA) 

Commutant of A: set of all Β (HERMITIAN) such that BA = AB : commutant C'(A). 

2
n d
 commutant of A: set of all C (HERM.) " ' 

it is called C"(A). 

We have : A < C"(A) C C'(A). 

The proof of this assertion is not trivial. We don't give it now. 

Subspaces 

Let L be a RIESZ space (linear lattice). 

Definitions 

(i) RIESZ subspace K 

(linear sublattice ;' 

sous-espace propre) 

/.o 
1 K : linear subspace of L 

2° If f,g * K, then sup (f,g) < K, 

(̂and hence inf (f,g) * K). 

(ii) Ideal A 

(solid subspace, 

sous-espace épais, 

U.R.S.S. : semi-normal 

subspace) 

(iii) Band A ίΊ°Α : ideal 

Q 
1 A : linear subspace 
2° If f < A and |g| 6 |f|, then g < A. 

(Ex. : g = |f |) 

bande ; 
(normal subspace; ' 2 If any subset of A has a sup in L, then this 

k, sup is already in A. 
U.R.S.S. : component) 

* Any subset, which verifies (ii) (2), is a solid subset. 
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Theorem Band ·=^ Ideal s ^ RIESZ subspace 

The first proposition can be derived from the definition (iii). 

Proof of the second proposition. 

Let A be an ideal; from the definition of the ideal it follows: 

If f « A, then |f | f A. 
=^If f,g € A, then |f-g| < A. 
^=»If f,g € A , then | f f+g + |f-g| e A, 

i.e. sup (f,g) « A. 

Thus A is a RIESZ space. 

Examples 

1 In C f0,1] : the set of all polynomials is a linear subspace, but not < 

RIESZ subspace. 

Graph for two linear functions : 
the supremum is not a polynomial, 

fig. VI, 2 

The eet of all real constants is a 
RIESZ subspace, but not an ideal. fix) = 1 

0 1 0 1 

f ig . VI, 3 f ig . VI, 3 bis 

f i g . VI, 3 bis : The function g(x) verif ies |gj < |f ¡, but i s not in the 

subspace. 

The set of all f * CJ0,1] satisfying f(0) » 0 is an ideal. 
The set of these functions is a linear subspace; 

f(0) = 0, |g(x)| s |f(x)|=*g(0) = 0 ; 

henoe it is an ideal. 
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It is not a band. Indeed, let us consider — . . . g(x) = i 

the sequence of functions t (see fig. VI, 4 ) , 

having always steeper slopes, when n increases. 

f, « f2 « f3 « f é
 f i S

*
 V I

'
 k

' 

In the big space, g ie the I·*
8
* upper bound of the sequence. In this 

space the function null at the origin and one everywhere else doesn't 

exist« 

Since g <j A, the considered set is not a band. 

if Example of a band. 

The set of all f such that f(x) * 0 for 0 s χ ί j is a band. 

(h(x) is no supremum, a supremum is 

identically zero for 0 ί χ ξ r) 

fig. VI, 5 

5 We consider now other spaces« 

a) X = j 1,2,3,... , (s) 1IESZ space of all real functions on X. 

f = (f(l), f(2), f(3),... ) 

(s) set of all real sequences 
f = (f.,, fg, f,,··« ) 

Properties of (s) : 

f * g = =* fk i ^ t a r k = 1' 2'··· 

Let g = (g.j, g 2 >... ) , 

then sup (f,g) = (max (f^g.,), max (f 2, g g ) , . . . ) 

f+ = (fj, f+,... ) ; |f | = (IfJ, |f2|,... ) 
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b) % : subspace of all bounded real sequences 
«a ' 

β : ideal in (s) 

sup |f I is finite, |g| « jf| 

n= 1,2,.. 

then sup |g | is also finitej 

n=1,2,..
 n 

¿ by itself is again a RIESZ space. 
oo 

c) (C ) : subspace of all sequences f = (f., f2,... ) such that fQ -+ 0. 

(C ) : subepace of Ζ : since f -* 0, the sequence f must be bounded. 

(C ) : ideal ±n£i j if |g| $ |f|, g is aleo a null-sequence . 

«a 

d) */. : subspace of all sequences f = (f., f-,... ) 3uch that \ |f | 

converges. n=1 
oo 

<t'1 : ideal in (C ) : if |g| ̂  |f|, the condition : \ |g | convergei 

is satisfied. n=1 

Ideal 

None of these ideals is a band. 

From definitions it results : 

RIESZ subspaces RIESZ subspace 

An arbitrary intersection of ideals is again a ideal 

bands band. 

We will prove this for the intersection of two ideals. Let A,, A_ be 

ideals. 

Then Α, Π A. is a linear subspace, since the intersection of two 

subspaces is a linear subspace. 
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We prove : If f c A1 Π Ag and if |g| * |f|, then g < A1 Π A2 . 

f c A.,; |g| i |f|=>g í A1 

(Α,ίΐΑ, ^ 

\ f c A ; |g| < |f|=*g < 
A 1 r> A 2 , 

ο' ι°ι ■* ι■* ι 7° * 2 

and the proposition is proved. 

Π Ar is also an ideal; indeed; 

If f t Λ AT and if |g| δ |f|, then g f Π Ar, since 

f e Π AT = ) f ( AT ¡ |g| « |f | = ^ g e AT =* g t f) Ar. 

for all τ for all τ 

If D is an arbitrary non empty subset of L, the intersection of 

RIESZ subspaces RIESZ subspace 

all ideals containing D is, therefore, a ideal 

bands band. 

RIESZ subspace RIESZ subspace 

This ideal is oalled the ideal generated by D. 

band band 

ideal 

If D consists of one element f , then the generated by f 

band 

ideal 

is oalled a principal 

band. 

The present notion of ideal is analogous to the notion of ideal in the 

algebraic sense: 

Let us consider a ring R of elements x,y,... 

I : subring 

I ideal { If χ f I and y f R 

then xy ( I . 

In an analogous manner we have : 

If f e A and g e L, then inf (|f |, |g|)t A; the infimum is analogous to the 

product in the ideal. 
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7th Lecture 

Let V be a linear vectorspace with elements f,g,h; A,Β : linear subspaces of V, 

Then 

Γ 
A + Β = f : f = f1 + f2, f1 e A, f2 < Β 

is a linear subspace, called the algebraic sum of A and B. 

If Α Π Β = 

unique. Indeed, 

!, then the representation f = f, + f2 (f. ί A, f„ < Β) is 

if also f . f » + f'2 (f j « A, f » ί Β), 

then f1 - f{ ■ f2 - f¿ - 0, 

sinoe f 1 - f 'λ € A and f - f * < Β. 

We write, instead of A+B, now Α φ Β : direct sum. 

We consider now a RIESZ space L. 

Theorem. Let A, Β be ideals in L. 

(i) A+B ideal 

(ii) Α Χ Β (i.e. f 1 g for every f e A and every g e B)t 

0 !; hence, in this case, A i Β is a direct sum. if f Α Π Β = 

L 

(iii) If A 1 Β, and if f, g e A © Β, and f = f 1 + f¿, g = g1 + g2 

(with f.,, g1 e A, f2, g2 c Β); if f « g, then ̂  « g<| and fg ^ g2< 

Proof. 

(i) We know already that A+B is a linear subspace. 

We have to prove only that if f e A+B, and |g| ζ |f| , 

then g e A+B. 

We leave the details of the proof of (i) to the reader. 
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( i i ) Let A i . Β, and assume f f Α Π Β. Then f i f , i . e . 

inf ( | f | , | f | ) = 0 ^ | f | = 0 -=>f = 0 . 

= ^ Α Π Β = 

Conversely, l e t A f l B » 

•3 
Γ 0 

I J 
. Take f1 € A, f « Β. 

f. e A, and | f . | i s a lso in A. 

Then inf ( f, , f_ ) * ¿ 

M l ' ' 2 " I f g l ^ j f (|f,|. | f 2 | ) < B 

inf (If,|, |f2|) = 0. 

A+B is a direct sum : We have f., g e A, f„, g„ e B, the decomposition 

of f and g is uniquely determined. 

But now we have to show that if f « g, the components f., g,, fv,, g2 satisfy 

f, í g. and f i g . For that purpose, consider g-f. 

g - f = g1 - f1 + g2 - f2 

g - f « A © B gl - f1 € A g2 - f2 c B 

f « g=^g-f * 0; it will be sufficient to prove that g1 - f 1 » 0 

and g2 - f2 * 0 . 

For this aim: 

(iii) Assume that u > 0 is an element of Α φ B 

and u = u + u is the decomposition, so u. « A, u e B. 

We split up u and u in a positive and a negative part: 

u = (u| + up - (u~ + u~) 

(We recall that 

f = f
+
 - f", ini

1
 (f

+
, f") = 0, i.e. f

+
_L f", for every element f). 
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u, e A ̂ p , | f A, thus u. e A 

u1 f A 

u U ui" =»u| 1 (u~ + u2) 

(u+ + up 1 (u~ + up 
u| 1 u~ (u| e A and u^ ( B) 

In the same manner we find: u~ j. (u. + u„) 

Thus ut + up u~ + u~ are disjoint. 

But for f = u-v; u,v c L+, inf (u,v) » 0, it results that u = f+, v = f". 

Here we have : 

u B (u+ + up - (u~ + u p , 

the two terms being disjoint; we obtain 

u, + Up = u , u being the plus part of u , 

u. + Up = u , u being the minus part of u , 

Now u" = 0 =^u~ = u~ = 0. 

Then u. * 0 and u ï 0. 
This can be said: The greater the elements, the greater the components. 

Disjoint complements 

Definition : If D is an arbitrary non empty eubset of L, then the set 
DP = f s f 1 g for every g e D is called the disjoint 
complement of D. 
(p means perpendicular) 

We have DPP = (DP)P 

* Sometimes one uses the notation D , d : disjoint. 
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Theorem, (i) D
P
 is a band, 

( ii) D C D
PP
; D

P
 = D

PPP
; D

P
 Π D

PP
 = ¡Yl, so D

P
 + D

PP
 is a direct 

sum : D
P
(T>D

PP
. 

Proof. (i) Let g denote an arbitrary element od D. 

We have proved that if f. and f are disjoint to D, their sum is 

also disjoint to D; 

f 1 J. g 

,P 

and 

(f. + fp) 1 g j ^ ^ is a linear subspace, 

f i g -=̂  af 1 g for every real a 

f 1 X g and |f2| < ( f j ^ ^ -L g. 

From these two results it follows that D^ is an ideal. 

Finally we have to prove that, if 

f -L g for all a β σ , f = sup fff->fl g. 

But, according to a theorem, if a subset oontains elements f X g, 

and this subset has a supremum f, then f X g. 

Hence D is a band, 

(ii) D
PP
 : all elements disjoint to D

P
t 

Every element of D satisfies this condition 

D C D
P P 

PP 
D is generally a band, but D is generally no band. 

D and D can be equal, but are not always equal. 

An interesting question is : When does D equal D? 

Continuation of the proof : 

If D1 C D2, thus D
P
 D D

P
. 

(The smaller the set, the larger the complement) 
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Indeed: if f e D
P
, thus f X O¿ ==>f X D1 =»f e D

P 

By virtue of the relation 

(D
P
)
P P
 = (D

P P
)
P 

we obtain 

D C D 

DP -, DPPP 

D
P
 C D

PPP 

'/Õ' 

We can write the last inequality, since a proposition true for every subset D 

is true for D
P
. 

Hence D
P
 = D

PPP
. 

From this it follows that 

D(n+2)P=Dnp 

η = 1,2,... 

As soon as two ideals are disjoint, their intersection is the null element. 

D
P
1 D

PP
; are ideal*=*D

P
 Π D

PP 

M 
Remarks on bands 

Is every band a disjoint complement of a subset? No. 

Example 

L : lexicographically ordered plane 

l'I 

lal 

fig. VII, 1 

All f = (0, f ) form a band D. 

It is a linear subspace. 

f = (*V
 f
2
) f

1 <«1 

g = (g.,, β2) 

f s<-g iff i or 

-j
 =
 8-|, * 2 ^ &2 

It is a linear ordering. 
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It is an ideal, if jg| < |f| f D, then g « D, because |g| must be on the 
positive vertical axis. 
It is a band. If we consider a subset, lying on the vertical axis and 
having a supremum, this supremum lies on the vertical axis. 

(Subset with elements f = (θ, f„ ); N a ^ 2σ 

f = sup f ; then f = (θ, ΐΔ with f„ = sup f„ ) 

D P : all element |g : g J. f for all f f D j 
I J 

= ¡g : inf (|g|, |f|) = 0 for all f c Dj : 

¡gj and jf¡ are comparable. 

The only element satisfying the condition is the zero element . 

,> . [.] and D
PP
 » L. 

ÏPP Hence ; D is a proper subspace of the second disjoint complement D . 

The set of all bands whioh are disjoint complements is not always the set 

of all bands. 

Any set D is a disjoint complement , 

ÏPP P\P D ^ = (D
F
) 

Any set D
P
 is of the form A

P P
 for some A, 

D
r
 = D ΡΡΡ = (D*

1
) 

PïPP 

Any band which is a first disjoint complement, is also a second disjoint 

complement. But D in the above example is not a first disjoint complement. 

In L there are three bands : the null element, the vertical axis and the 

whole space. The horizontal axis is not a band, not even an ideal. Indeed, 

in the figure we have |gj Í |f|, end f is 

on the horizontal axis, but g is not. - f 

9 

f 

fig. VII, 2 
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8 Lecture 

: arbitrary subset of L =>DP band, say A, so A = DP =$ APP = DPPP = DP = A. 
PP Conversely, if A is a band such that Ar* = A, thus A is the disjoint 

complement of A . 
Example : The lexicographically ordered plane : 

A: positive 
vertical 
axis 

fig. VIII, 1 

Ji, : set of all bands 
2 ) : set of all disjoint complements 

A 4 A = ^ A not a disjoint complement 
APP _ τ 

] COC Ji » in general J J i s a proper subse t . 

i s the "smal les t" element in 53 

Let now : 

Jt : partially ordered by inclusion; 
(J> : also partially ordered by inclusion; 0 

and L the "largest" element in © . 

Theorem : If A ^ A„ ί ¡b , then A1 Γ» A¿ ( © . 

Proof : By virtue of 

D l C D2=*D
P
:> D

P
=»D

P P
CD

P P 

we have 
A

P P
 « A 

(A1 η A2)
pp

 c
 1 1

 =» (^ η A 2 )
P P

C (^ η A2) 

* Script Β 
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The oonverse 

A ^ A 2 C ( A i n A 2 )
P P 

has been already proved. 

Hence 

(A1 n A 2 )
P P

 a A1 π A 2 =»A 1 η A2 c fe>. 

We have 

A1 O A2 = inf (A.,, A 2 ) . 

Indeed, Α. Λ A_ is, in (£>, a lower bound of A. and A?. Any other lower bound 

must be inoluded in A and A , so in Α Λ A . Hence Α Π A is the greatest lower 

bound. 

Theorem : If A1, A¿ t 'S), then (A
P f\ A P

)
P t'Si and 

( Α
Ρ
Π Α

Ρ
)

Ρ
 = sup (A1# A2) in A . 

Proof t (A
P
 Π A

P
)

P
 is a disjoint complement, hence it is in the set *5>. 

Then 

( A ^ n A ^ A f . ^ 

= > so (A
P
 Π A

p
) is an upper sound of A. and A . 

(A
P
 Π A

P
)

P
D A

P P
 - A2 

Let Β í*S>suoh that Β is also an upper bound of A and A . 

Β D
 1

 = φ B
P
 C A

P
 0 A

P =φ 

B = B
P P
3 ( A

P
O A

P
)

P
, B

PP
 e 3 . 

The set Β is larger than (A
P C\ A P

)
P
, hence this is the least upper bound. 

<& has a smallest and a largest element,S>is a lattice. 

ttiven A € *S>, there exista a "complementary element", namely AP
, suoh that 

sup (A, A
P
) = L, 

inf (A, A
P
) = (Yl. 



- 42 -

We apply now the relation: 

sup (A1f A2) = (APn A P) P; 

thus indeed 

sup (A, AP) = (APn A P P) P 

inf (A, AP) «Ail AP 

Γ Ύ o 

= o . 

L , 

iß is a Boolean algebra : it is a lattice with a largest element and smallest 

element, and every element has a complementary element. 

In general JL is not a Boolean algebra. 

An element has not always a complementary element. 

In the lexicographically ordered plane the set of all bands is not a 

Boolean algebra. 

There are three bands : 0 , A, L. 

The smallest is the complement of the largest, 

but A has no complementary element. 

fig. VIII, 2 

Archimedean RIESZ spaces 

Axiom of ARCHIMEDES (axiom of EUDOXOS) : 

Let us have line segments of lengths u,v. 

There exists a natural number n, such that nu > v. 

fig. VIII, 3 

For functions in C (C0,1!) w e n a v e 



c(fo.J) - 43 -

fig. VIII, 3 bis 

Since u = 0 for 0 and 1, these is no n such that nu > v. 

For real numbers, one can equivalently say : If u > 0, ν ) 0, and nu $ τ 

for all η = 1,2,..., then u = 0. 

That relation is true for functions in Cf0,l"j. It is true for some (but 

not all) RIESZ spaces. 

Definition : If a RIESZ space L has the property that, for any u, ν < L* 

satisfying nu « ν for η = 1,2,..., we have u α 0, then L is called an 

Archimedean RIESZ space. 

The lexicographically ordered plane is not Archimedean. 

. V 

f ig . VIII, 4 

u ¿ 0 

U 5 V 

2u s ν 

3u ί ν 
• 
• 

But C(t0,l3) is Archimedean and the space of real numbers is Archimedean. 
Most spaces are Archimedean, 

ν 

In C(£o,l3) nu $ ν , u ¿ 0, 

for all n, is impossible. 

fig. VIII, 5 

Lemma : If A is an ideal, and 0 < u * A
PP
, then there exists an element 

χ c A, such that 0 < ζ t u . 

Remark : A
PP
 is often muoh larger than A. 
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Proof : We assume that no such ζ exists. Then inf (u, jf j) a 0 for every 

f * A ; (because, if, for some f f Α, ι = inf (u, jf|) > 0, thus ζ t A 

and 0 < s « u), so u l f for every f e A , 

= > u € AP
; u f A P P

= > u f A
P
D A

PP
 - j 0 ; 

=φαα = 0. This is a contradiction. 

Hence there exists such a z. 

Definition : The band generated by A is the smallest band containing A or 

the intersection of all bands containing A. 

Theorem : L Archimedean; A ideal in L => The band generated by A is A . 

We can prove, but it is more difficult, that if L is a RIESZ space, such 

that for every ideal A the band generated by A is A , then L is Archimedean. 

Proof : We denote the band generated by A by j A \ . Then j A [ C App
. To prove 

is that \A\ -. APP
. 

We take 0 < u c A
PP
. 

If every positive element in A
 P
 is in j A j, we can prove that every element 

of A
PP
 is in ¡A ; (we can split it up in u

+
 and u ). 

We consider the set A B V : V « A , 0 « v « u ; 

i.e. the elements of the ideal A, which are between 0 and u. 

We will prove that u = sup A ; 

then u = sup (subset of A ) , 

hence u = sup (subset of jA ( ) ; and so u e Aj by the definition of a band, 

We prove the assumption by contradiction. 

Assume that it is not true (i.e., although u is an upper bound A , u is not 

the least upper bound). 

ssAThere is another upper bound u, euch that u s u, is not true. 
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Let us take w = inf (u, u. ) = Φ w is an upper bound of A , and w < u; 

(for, if w = u, u. > u, this is exactly not the case). 

But, if we make an element smaller, without making it negative, we remain 

in APP. Thus 

using the lemma 
0 < u-w ί A P P y There exists 0 < ζ c A 

such that 0 < ζ $ u-w. 

We take now ν e A . u 
Then v+z e A, and 0 i v+z s w+z ; but w+z ( u, so 0 « v+z e u, 

= ^ v+z e A . 

Hence, if we take any element in A and add the element s < A. we remain in A . 
* v u ' u 
«^■v+nz € A for η » 1,2,... 

u 

In particular nz f A for η = 1,2,... 

i.e. nz Î u for η =1,2,... 

Since L is Archimedean, =^· ζ = 0. 

We have obtained a contradiction, because 0 < ζ î u. 

Hence the assumption made is not true and u = sup A . 
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Q
t h
 Τ ♦ 

2 Lecture 

The set of all real numbers has the property that every subset bounded 

above has a least upper bound. (DEDEKIND Ci 187Ο) 

Definition. Any RIESZ space L with the property that every subset of L 

which is bounded above has a leaet upper bound, is called a DEDEKIND 

(or conditionally) complete RIESZ space. 

Any RIESZ space L with the property that every countable subset of L 

which is bounded above has a least upper bound, is called a DEDEKIND 

^"-complete RIESZ space. 

Theorem. Any RIESZ space L: 

DEDEKIND complete frDEDEKIND 6 -complete ̂ =£Archimedean. 

Proof. Assume L DEDEKIND ¿"-complete, and let nû T \T for u,V~eL and 

η = 1,2,... 

Let us take the set of eleme nts j nu : η = 1,2,... I boun ded above by v, 

¿D.C. 

-̂ sup nu - u exists. Then, 

n=l,2, 

(since sup f^ = f -·■■ ̂ sup af^ = af, a^ o ), 

we have 

2u = sup 2nu = sup nu = u A u = 0 
0
 T O -10 ° ° 

n=l,2, n=l,2, 

kU = o 

L is Archimedean. 

Any space, that is not Archimedean, is not DEDEKIND tf'-complete, any space 

that is not DEDEKIND cí-complete, is not DEDEKIND complete. 

Example of a RIESZ space, that is not DEDEKIND d'-complete : the space 

C ([o,l]). 

V*> 

fig. IX,1 

u2(x) — ' 

/ 

\ 

J\ 
Η 

f i g . 

1 

1 

1 

I 

1 

I X , 2 

o^u,(x) ζ u2(x)£u,(x) ζ 

fig. IX,3 

N< 

and so on 
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This sequence has no supremum in C ( [_o,lJ ) 

bound in the space of all real functions: 

There exists a least upper 

u(x) = ο , ο ζχ ζ — 

u(x) = 1 , ! < χ < 1 . 

This function is not in the space C ( Γο,Ι]} 

fig. IX,4 

Thus C (£o,l]) is not DEDEKIND 6-complete. 

and hence not DEDEKIND complete. 

Theorem. Let L be DEDEKIND complete. 

(i) If A and Β are bands such that Af) Β = /ol, then Α φ Β 

is also a band. 

(ii) For any band A , Αφ A
P
 = L . 

Remark. If L is not DEDEKIND complete, then (ii) is not necessarily true 

If, in the space C (£ο,1|), we have 

A = / f : f ( x ) = o on ο ζ χ ζ - Χ , 

Β = / f : f(x) = ο o n | c x < r i } » 

then ΑφΒ = if : f ( | ) = o I , so Αφ B / L . 

Proof, ( i ) We assume that f̂  β ΑΦΒ, such that f = sup f¿ e x i s t s . 

Since ΑφΒ i s an i d e a l , f £ , f^ € ΑφΒ , for a l l £ f and 

f
+
 = sup f£ and f~ = i n f î~a . 

To prove i s that f
+
, f" € ΑΦΒ. 

For f i t i s very e a s y . 

We take one f~¿ ; o 4 T f ~ ¿ f ¿ CAff iB^sÀf
-
 « ΑφΒ . 

• O 

For f we have : 

f£ « ΑΦ Β =—4 f ¿t = u¿ + u
1
' , where o^u'^e A and o ^ u ^ e B . 

Then o^u'^- ξ f+ for all a . 
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L being DEDEKIND complete 

y u' = sup u¿- exists in L =^u'€A; 

according to the definition of a band, a supremum is not only in L, 

but. also in A. 

Similarly 

u" = sup u1 ·̂ exists, and u"6B, 

f¿" = u k + u ¿ f ^ u ' + u " e Α φ Β f o r a l l <S¡' . 

ftj- being less than a fixed element, the least upper ocund of f^ is 

smaller than this fixed element. Hence 

f
+
 ^ u'+u" 6 Α φ Β 

^ Α φ Β is an ideal, f
+
 e A © B. 

Hence Α φ Β is a band. 

Proof of (ii). By (i), Α φ A
P
 is a band, since A and AP are two 

disjoint bands. 

A A
P 

Since A © A
P
J , ( A © A

P
) C = * Α φ A

p
 )

P
 = /o{=à (A £ A

P
)

P P
 = L. 

AP APP
 U 

Since L is ARCHIMEDEAN, the band generated by A © A
p
, is equal to 

(Α φ A
P
)

P P
, i.e. A © A

P
 = L ; 

since a band generated by a band, is the band itself. 

Question. If L is an arbitrary RIüSZ space, and A,Β are disjoint ideals 

such that A © Β = L, what can we prove about A and B? 

Theorem. If Α, Β are ideals, such that Α φ Β = L, thus Β = AP
 and 

A = B
P
, so A = A

PP
 and Β = B

pp
. 

Remark. Hence, A and Β are bands determining each other uniquely. 
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Proof. L = Α φ ß >A-LB )BÇA
P
. 

Let us take an arbitrary positive element in A , 

o < u e A
P
 ; 

by hypothesis we can decompose u : 

u = u +u with o ^ u « A and o^u «.B; 

e· A ) . 
u, AD />_ ^ ^ ,ρ^τ=9υη=ο. u=u_fiB 
1 sA^ (because o^u.^ u e A ^ ) J ~ 1 · 2 

so A
P
C Β . 

For reasons of symmetry A - Β . 

Thus, if the direct sum A © Β = L, A and ß are bands. 

Definition. If the band A has the property, that Α θ ky ~ L, then A is 

called a projection band. 

f = t1 + f2, 

f is the projection of f on the band A, 

f It II II of f on the disjoint complement, 

It results from (ii) of the next to last theorem: 

In a DEDEKIND complete space, every band is a projection band. 

(In C (j[O,ll), ƒ f : f(x) - o on o^x ξ —L is a band, but not a 
projection band : 

f f : f(x) = o on | ζ χ{ΐ}=£Αφ AP / L ) 

«A: collection of all bands: not a Boolean algebra in general. 
jß : subcollection of all disjoint complements, is a Boolean algebra. 

Ç : subcollection of all projection bands, is a Boolean algebra. 

The following theorem has been already partially proved. 

Theorem. 

(i) 

DEDEKIND complete 

(ii) not 

DEDEKIND ¿"-complete -^^"oved , ± . 

~-~>Λ Every principal band 

is a projection band 

(iii) f 
Every band is a projection band 

(V) 

> ARCHIMEDEAN 
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No arrow can be reversed. 
There are examples of DEDEKIND^-complete spaces, that are not 
DEDEKIND complete. 

Every band being a projection band, is not DEDEKIND complete. 

Although (ii)=j#(i) and (iii)^^(i), it is true that ( (ii) + (iii) ) ^ (ji ) 

(LUXEMBURG). 



- 51 -
10 Lecture 

Linear functionals, linear algebra. 

We recall the following definitions: 

Let be a real linear vector space ~\J~. If to every f 6 V", there is 
assigned a real number U?(f), ti>(f) is called a functional. 
A functional ii» is called linear, if 

^(f 1 +f 2) = ^(ίχ)+ ^(fρ) 
U>(oCf ) = (Λ ii> (f ) 

Let us take 

Definition: ^ V f i + f 2 ) ( f ) = f j / f ̂  lf£< f > 
(atí)(f) = a ίύ(ΐ) 

The linear vector space formed by the linear functionals on \f is 
called the algebraic dual of V̂  · 

Let L be a RIESZ space, we consider the linear functionals ιΛ. , U/ ,.., 

Definition : A linear functional q? on L is called positive, if (i>(f)̂ , o 
for all f e L+. 

Lemma : (Extension lemma) Let'f(u) be a real function, defined for 
all u 6 L + , such that f ( u ) ^ o andt:(u+lr) =t(u)+r(v) for all 
u,v 6 L . J-'hen there exists a positive linear functional U> such that 
<f(u) =T(u) for all u e L+. 

Proof: Let us define, for any f é L , u(f) = Τ ( f
+
) - T( f~ ), 

ThenU>(u) =T(u) for all u e L
+
. 

1° We prove first that if f = u- V ; u, Vfc L
+
, then ijKf) = if(u)- if(v ) . 

Indeed, f = u-\r=^ f+-f~ = u-V ;=^f
+
+V = f "+u=^ X(f

+
)+ T(v)=r( f ~)+T(u] 

-=^ T(f
+
)- T(f") =X(u)-T(\r) ^> «|>(f ) = (p(u) - <p( ν) 
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2° Nowd>(f+g) = l f ( f ) + * f ( g ) for a l i f, g € L. Indeed 

if (f+g) =^(f++g+-f~-g") = ^¿¿Í-(£%£)} 

--- t
(f++

e
+
> -y(f"+g") =T(f

+
+g

+
) -f(f~+g~) = 

T ( f + ) + r ( g + ) - r ( f " ) - t ( g " ) = tj)(f) + (p(g) 

3° We have still to prove : U>(af) = aU?(f) for all f e L and real a. 

Applying 1 , we find that we can take f in the positive cone, and 

for a : a non-negative number. 

It is sufficient to prove that (¿>(au) = aitf(u) for u£L and a^o . 

For a = 1, 2, 3, ... it is evident by addition. Then also for 

a = — —, —, ... because 

f(iu) = iy?(u) 

3<f(ju) = f(u) , we set u = 3V, 

3y>(v) =^(3V) 

Then also for a = — (m, η natural numbers), so for a rational» 
η 

We assume now that a is irrational. We choose 

o ^ r i a ^ r ' (r , r', rationals). 

We have 

o ̂ (ru)v< \u(au)s VP(r'u) 

since au-ru is an element in the positive cone, and hence iP(au-ru)^, o. 

We find 

o^rw?(u)^ <|>(au) £ r 'tf>(u) 

Let ría 

r'J,a (keeping r, r' rational)^ 

r Y>(u) and r'y>(u) converge to a<p(u). 

Now the third term of the inequalities is constant with respect 

to r and r'. 

So Y>(au) = a v 0 ( u ) . Hence Φ i s a l i n e a r f u n c t i o n a l , and if i s 

u n i q u e l y d e t e r m i n e d . 
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Definition : 

A linear functional IP on L is called order bounded, if for any uCL , 
the number sup(|^(f) | : |f|{u) is finite. 

If Φ is positive, then ψ is order bounded. Indeed, we take u e l , 
if |f|{u, then f

f- 4 u, so|if(f)| = | lf( f+ )-f( f ") j 4 ̂ (f+ )+ Φ(ΐ ~)¿ 2y(u) 

sup (|*f(f)|: | f | ^ u ) ^ 2^(u) : finite. 

If 10.. , φ are order bounded, then (A. + Φ- also. 

I
( í

f i
+ (

f 2
) ( f ) |

 * < f i
( f )

i
 +

1γ2
(
*)\ 

If (/is order bounded, then acp(a real) is it also. 

Hence: the set L"* of all order bounded linear functionals is a real 

linear vector space; every positive linear functional is in L"". 

Theorem: (JORDAN decomposition theorem), border bounded 

<-P = Φ - LP with ^fiiifp P
oeitive

· 

Remark . This theorem is called JORDAN theorem: not because he proved 

this theorem, but because he proved another analogous theorem : Every 

function of bounded variation is the difference of two monotone functions. 

Proof . If U>= y i -Lf2 with «f !· f 2 ̂  ° ·
 t h e n <

fl
, <
f2

€ l
*"· 

so f i - tf2 6 IT. 

Conversely, assume that tfCL"* . For any utL , define 

T(u) = sup («p(v) : o ^ V ^ u ) 

Among the elements ν is the null-element; evidently 

f(u) > lf(o) = o ; 

f(u) is finite, because t (u) ξ sup(|0>(f)| : |f|^u) is finite. 

Property that T U ^ + T(u2) 4 TÍu^+u ) : 

Let us take £ > o : There exists o ( ν f u such that tí(v.. )> f(u ) -£ 

" " °^
v
2<

u
2 " " <f(v 2

) ? T ( v
2
)
 "*· 
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We add now; 

ttu +u ) = sup(Vi>(w) : o^w^u +u ) >. cp(v +v ) 

= ^ ( v 1 ) + a > ( v 2 ) > ' r ( u 1 ) + r ( u 2 ) - 2£ 

Property that T ^ )+ T U )¿, TXU ; L+U 2 ) : 

We take o^w^u +up. Then (according to the dominated decomposition 

theorem) there exist w and w such that o^w -, ̂  u 

o < w 2 ¿ u 2 

and w +w_ = w. 

Then tf(w) = l̂ >(w1)+ «p(w2)^'T(u1)+
y
r(u2) 

/
r(u1+ú2) = sup(i|)(w) : o^w^u..+u -){ tiu^ + tiu-) 

We have therefore T(u)^o 

T(U;L+u2) = TT(u î+T^Cu ) 

There exists a positive linear functional Φ , such that LP (u) = "V(\x) 

for all u d , 

So <i>+(u) = f ( u ) = s u p ( c P ( V ) : o^v-^u)^ iZ) (u )=^(vp + - v^) (u)^ o for u e L + 

= ^ Φ -LP i s p o s i t i v e ; we c a l l i t LP~, so LP - L£> = ti? " ■■■ ^ 

Up= l{?+- <Ρ~, CP+ and £tf~ p o s i t i v e . 

This c o n c l u d e s t h e p r o o f . 

I f e x p o s i t i v e , t hen tf?+(u) = s u p ( c p ( V ) : o ^ V ^ u ) = Í P ( u ) 

W
+
 = <i> , so t¿>~ = o, 

Let us take two functionals ψ and Φ ; 

If Ψ-,-Φρ is positive, 

then ( φ Ί - ^ 2 ) ( V ) > o for all v<sL+, 

so lp1(V)>0>2(V) for V É L + . 

Hence, i f u e L + , t hen <p + ( u ) ¿ ( Z ? 2
+ ( u ) = ^ (ΰ + - <¿> + is positi ve, 

Definition . If LO , O? £ L , and CP - (Ρ is positive, then we write 

LP ^ LP . Then L'"' becomes an ordered vector space. 
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+ .Λ + 
Remark . The remark above t h a t i f iS> - ψ„ i s p o s i t i v e , then νΛ - LÕ 

i s a l s o p o s i t i v e , can now a l s o be s t a t e d a s f o l l o w s : If LO ^ ψ , t hen 

Theorem. With r e s p e c t to the p a r t i a l o r d e r , L*** i s a RIESZ s p a c e . 

Proof . Given ^ . ^ f i L ' ' , l e t LÛ = ( γ 2 ~ <f± )++ LÛ χ . Then 

s i n c e LO -<P } o or \ψ £ κρ is t r u e i n any n o t a t i o n , 

f3*fl a n d f3>/ ( f 2 - f l ) + f l = ψ2 
—\ LO i s an upper bound of i£> , Lp?. Let y be ano the r upper bound 

of LP and U> . Then 

Î-fi> °—»ψ"?ι
 B (

^-fi
}
 ) = ^ r . f > ( f f ) + ^ 

f2-fl=^
(
Y-fl

)
>

(
f2-fl

)
) ^

T T T T T T
' 

S ^P^ ; l e a s t upper bound . 

Hence every p a i r of e lements i n L"~ has a l e a s t upper bound; more p r e c i s e l y , 

we have proved t h a t i f ψ , κβ β L*"" , then 

sup ίψνγ2) = (vpp-f^^fr 

S i m i l a r l y , i t can be proved t h a t 

inf ifvf2) =lf2- (f2-fx) + . 

Hence, L ^ Ì B a RIESZ s p a c e . 
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11 Lecture 

Remark : In the preceeding lecture we have introduced the linear vector space L 

of all order bounded linear functionals on L, and we have defined that, in L~, 

φ i ψ iff φ - φ is positive. 

This makes L into an ordered vector space. (Jiven φ e L , we have also defined 

the positive linear functional φ by 

Ψ (u) = sup (*>(v) : 0 $ ν « u) 

for every u e L . Hence, the notation φ was introduced before it was proved 

that L is a RIESZ space. We proved that L is indeed a RIESZ space; given 

φ., Pp € L , we proved that 

sup ( 9 r 9>2) = (<P2 - <̂ )
 +
 + Ψλ 

It must be ehown now that φ+ ia indeed the positive part of φ in the sense 

of the RIESZ epace definitions, i.e.,we must prove that <p
+
 = sup (φ, θ) for 

every φ e L~. Taking φ - 0 and φ = φ in the formula 

sup (*.,, <P2) = («>2 - <P1)
+
 + 9>1 , 

we obtain 

sup (0, φ) = (φ - 0 ) +
 + 0 = φ* ¡ 

this shows that the notation is in agreement with the earlier notations in 

RIESZ spaces in the earlier lectures. 

Theorem : L is DEDEKIND complete. 

Proof : First take a subset in L , bounded above and directed upwards; call it 

φ l β ( U ¡ Oí ? i φ for al l σ, and φ f . 
σ I J σ ο ' σ 

To prove is that sup φ exists in L~. For any u f L
+
, define T(U) = sup φ (u); 

α σ' 

then 0 < T(U) S φ (u); T(U) is finite, 
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If u, ν € L , then T(U+V) = sup φ (u+v) = sup ) φ (u) + φ (ν) 

S 3UPo *>0(u) + 3Upa φσ(ν) = T(U) + T(V) 

Take 6 > 0 ; there exists σ , such that φ .(u) > T ( U ) - g 

°2» " ^ 2 ^
 > T

(
V

) ~
Ä II II 

=>r (u+v) * i> ,(u+v) > T(U) + T ( V ) - 2 £ 

There ex i s t s σ.. 

V i l *O3(u) > T(U) " € 

such t h a t φ , * I 

"a, J V 5 ( v ) > T<v) -t 
Hence : T(U) » 0 for all u < L

+
 ^ 

ν
= =
Φ There exists a positive 

r(u+v) = r(u) + T(V) for u, v t L~J 

linear functional φ, such that ̂ (u) = r(u) for all u < L , i.e. 

^(u) = sup φ (u) for every u < L , 

= > φ is an upper bound of all φ . 

Let ψ. be another upper bound, then φ > ψ for all σ. 

βφ^τ (u) > ρ (u) for every σ and every u c L , 

r̂.(u) is greater than the supremum of all φ (u);=^ 

ffr.(u) if (u); hence φ is the least upper bound of all φ . 

Remark for the general case : Let us consider an arbitrary subset in a RIESZ 

space : we can make the subset larger by adding elements, such that the new 

subset is directed upwards and has the same upper bounds (cf. the remark in 

th ν 
the 4 lecture). Therefore the choice of a directed set involves no loss of 

generality. 

Definition : The element φ e L~ is called an Integral, if, for every sequence 

u X 0 in L, lim φ(η ) = 0. 
η » »

 χ
 η' 

η -» «ο 

The set of all integrals is called L~ : L~ is a linear subspace of L~. 

o o 
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Lemma : φ e L ~ < ^ · +, <f>~€ L~<=^ \φ\ ( L~ 
. (i) (υ) (ui) 

Proof : To prove that (i)=^(ii) is the only difficult case. 

To prove is that φ e L . Let u ^ 0 in L. To prove is that φ (u ) ̂  0. 

Let 0 6 ν < u.. 

Then 0 ί v-inf (v, u ) = inf (v, u ) - inf (v, u ) « u - u , 

by applying the BIRKHOFF's inequalities. 

Now, since 9>+(u) = 3up (<p(v) : 0 i ν € u), it follows that 

'if 0 «; ν * u, then <p+(u) ? *>(v). 
It reeults that 

*(v-inf (v, un)) s ç>+(u1 - un) = * 

0 « φ (u ) ί φ (inf (ν, u )) - φ(ν) + ?>+(u, ); since u ψ 0, we have 

inf (v, u ) ψ inf(v, O) = 0 so »»(inf (v, u )) -> 0 , 

the quantities <o(v) and ¥>+(u. ) are constant, and φ (u ) is a decreasing 
sequence of positive numbers. Thus, 

0 « lim <9+(u ) s Ç>+(u.) - 9>(v), this for every v, such that 0 < v « u. 

hence 0 ς lim φ+(η ) < ί»+(^) - sup (φ(ν) : 0 < ν < ̂  ) ■ φ*(^) - 9
+
(^) « 0, 

This finishes the proof. 

The proof 'of the other parts are trivial, indeed, 

(ii) *s^(iii), since \φ\ = φ + φ 

and it is proved that L~ is a linear space. 

To prove that (iii)s=^(i), we use the relation : φ= φ - φ . 

* We use the RIESZ space notation. 

** We can take the absolute value of this expression, but it is not necessary. 
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We know that \φ\ (u ) -► 0 for every sequence u 1 0 in L. 

|v(un)j = |v+(un) - *>"(un)| s *+("η) + f~(u
n) = M (un) - 0. 

Consequence of this lemma : L is not only a linear subspace, but also a band. 

Theorem : L is a band in L . o 

Proof : 1) L~ is a linear 3ubspace of L~. Let \φ\ i \φ\ and φ f L~. 
— — — — Q I I I I Q 
In order to prove that L is an ideal, v.e have to prove that φ e L~. 

9 e L~ =^ M « L~ =* |φ\ ( ΐΤ^=9φ( L~ 

by virtue of the lemma.L is an ideal. J c 

2) In order to prove that L~ is a band, we assume that 0 ί φ e L and φ ^ φ. 

To prove is that φ * L . 

For every u < L+, <P(U) = sup φ (u). We know that if u ψ 0 in L, 

then ψ (u ) X 0 aa η -♦ », for every a. To prove is that φ{\χ ) b 0. 

Take S > 0, there exists a such that ( φ - φ A (u ) < 6 => 

0 * (9 - 9 A (u ) < ζ for every η; φ (u ) <fc for η ? N(e)=> 

9>(u ) < 2 ε for η * N. 

Hence 4>(u ) -» 0. so φ ( L . x
 η c 

L : DEDEKIND complete apace. 

L~ : band in L~; any element in L disjoint to L~ is called a singular linear 
o c 

functional: hence the set of all singul; r functionals is the disjoint 

complement of L , L ; L = (L ) , 

C S 3 O 

IT* = L*" © If (by a theorem in the 9 lecture), 

i.e. every φ < L~ has a unique decomposition; φ = φ + φ , 

Ο s 

where φ : integra^ 

φ : singular. 
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The relation between φ and φ holds in a formula: 

c 

For every u < L and φ : positive linear functional, we have 

φ (u) = inf (lim <p(u ) : 0 î u ♦ u) 
ο η' η ' 

(u is fixed, but we can take a different sequence u ; then we have taken 

η 

the infimum of the numbers lim φ(\χ )). 
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12 Lecture 

Remark 

L~ being the subspace of all integrala φ , we have in an analogous manner: 
L subspace of all normal integrals : φ is a normal integral, if, for any 
downwards directed set u 1 0 in L, inf |<p(u ) | = 0. This definition is 
analogous to that of an integral. 

A normal integral is always an integral, but there are many examples, where 
integrals are not normal integrals. 

L is a band, η ' 
L~ : set of all φ disjoint to L~, sn η 

L~ = L~@L~ (analogous to L~ = L~ Q L~). 

If φ > 0 in L~, u t L+, then φ (u) = inf (lim <p(un) : 0 ί u \ u) , 

but we can write also: inf (sup <P(U ) : 0 < u ^ u) , 

* = V »sn 
If φ * 0 in L~, u t L+, then φ (u) = inf (sup ?(U T) : 0 « U T t u). 
This proposition is true, but very difficult to prove. 

i l There exist examples where L = 0 
J 
, although L is infinite dimensional. 

Example j'X : non empty point set , 

μ : countably additive measure in X such that 0 < μ(Χ) < » , 

L : set of all real (finite valued) μ-measurable functions 

on X, with identification of functions, which are u-almost 
equal. 

Then L is a RIESZ space, L~ = j 0 j. 
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We take the LEBES&UE measure in (-», +»), we take 0 < ρ < 1. 

L : all LEBESGUE measurable real functions f(x) on (-co, +») 

+00 

such that / |f(x)|
P
dx is finite = > L : RIESZ space =*L~ = 0 I. 

Definition : L is a RIESZ space. If to every f e L is assigned a real 

number p(f) such that 

(i) 0 $ p(f) < » and p(f) = 0 iff f = 0, 

(ii) p ( ^ + f2) s p(fA + p(f2), 

( i i i ) p(af) = |aj p(f) for every real a, 

( iv) (compatibility of order and norm) : f p(f) = P Í I M ) 

if |f | < | g | , then p(t) i p (g)=^( iv) equiv. to -Í if 0 « u S ν , 

t then p(u) $ p (v) , 

then ρ is oalled a RIESZ norm, and L is now called a normed RIESZ spaoe. 

p(|f|)« P ( 0 
If g » f , (iv) is satisfied, hence /and 

P(f) < P(|f|) 

Many examples of normed spaces taken in functional analysis are RIESZ spaces. 

C(L
0
»
1
]) ·' p(f) = max (|f(x)| : 0 ξ χ ί 1 ) is a RIESZ norm. 

LP : 1 $ ρ < « : p(f) = ( j |f(x)|P du)1'P is a RIESZ norm. 

L* : p(f) = ess. sup (|f(x)| : χ c Χ) : RIESZ norm. 

(These spaces cover a great part of functional analysis). 

Definition : L is a normed RIESZ space, L* is the space of all norm 
bounded linear functionals φ with: 

||?|| = sup (|„(f)| :p(f) s 1) 
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Here is no order, this definition is valid for a normed linear space. As 

examples of normed spaces we have the BANACH spaces. 

L does not only consist of the null-element ■■,, j> 

L* also does not only consist of the null-element. 

The dimension of L* is never less than the dimension of L. 

Theorem : L : normed RIESZ space. 

(i) L* is an ideal in L~, not necessarily a band. 

(ii) If L is norm coeplete (i.e. L is a BANACH space), then L· = L~, 

(Every CAUCHY sequence has a limit in L). 

It is true that any element of L* is an element of L , or L* C L . 

Part of the_proof : We have to prove that if φ c L·, then ψ * L~. To prove is that, 

for any u * L
+
, sup (|f(f)| : |f| $ u) li finite. 

Since, jf j < u=^p(f) 6 p(u), we have that 

if |f| « u, then ¡*(f)j < JM| p(f) « ¡ |»! I PH 

= ^ s u p ( |»>(f) | : j f | « u) < | M I p ( u ) , f i n i t e . 

Is L* an ideal? 

We have to prove that if ?> e L*, and \φ\ « \ψ\ φ f L*. 

For φ, \φ\, we have 

I M I = Il W\ Il 

The continuation of the proof is easy. 

We consider now the theory of bounded linear functionals. 

It is not difficult to prove that any ideal in a DEDEKIND complete RIESZ space, 

is, by itself, a DEDEKIND complete RIESZ spfce :=s>L·, by itself : 

DEDEKIND complete RIESZ space. 
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Define : 

and 

L * L (+)L 
C

 w
 3 

L* = L~ f\ L* 
C 0 

L* - L~ Π L* -
s s 

L*= L*(+)L* 

*"* *— _ ̂* Similarly, L » L (+) L implies that 
"" n

w
 sn 

L* = L* © L* 
n

w
 sn 

Examples 

1) L spaces : e.g. with respect to the LEBESGUE measure; in the real line, 

Hence , for 1 s ρ < «> , then 

p(f) = ( f *" |f(x)|
p
 dx)

l / p
 : L~ = L* = L* = L· 

i -Bo 

Every element is an integral, the only singular functional is the null 

functional. 

2) L" , for ρ = « : 

p(f) = ess. sup ( |f(x) | :-oo<x<+co) : L~ = L*, 

I£ and L* are both proper subspaces of L*, L* / 0 ; L*n ji j 0 I. 

η Λ 1 

L* j isometrio with L
q
 (p"" + q" ■ 1) for 1 « ρ < «; 

1 CO 

L* i isometrio with L in the case that L ■ L · 
o · 

3) C([0,1]) : L~- L* = L¡ 

Every linear functional is singular; there are no integrals except the 

null functional. 

Last definition : The norm ρ is called normal norm, if for any downwards 

directed set, u X 0, we have inf p(u ) = 0. 
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Theorem : ρ normal norm <!=>L* = L* 

Proof of =φAssume ρ normal norm, and let φ e L*. To prove is that, for any 

u r4, 0, inf |v(ur) | = 0. 

| K « r ) | * II·! I P(ur)=^inf |sp(ur) | s ||f>|| inf p(uT) = 0. 

Proof o f ^ = founded upon HAHN - BANACH extension theorem. 

This part is not elementary. 

Remark : In L (1 s ρ < co) ρ is a normal norm, but not in L™, also not in C(£P,l3), 

Theorem : We oonsider the following properties in a normed RIESZ space L, 

ρ : RIESZ norm. 

(i) L* « L* (i.e., ρ normal) 

,(ii) Every norm closed ideal is a band, 

(it is easy to prove that in every normed RIESZ 

space, every band is always norm closed) 
(i)<=»(ii)<S»»(iii)«' 

|(iii) In L* every band is weak* closed 

(it is easy to prove that in every normed 

RIESZ space, every weak* closed linear subspace 

is always a band) 
Some RIESZ spaces have the property (i), but not all RIESZ spaces have this 

property. 

This theorem was proved by (T. ANDO , W.A.J. LUXEMBURG, A.C. ZAANEN). 

It can be proved that this theorem is a particular case of a more general 

theorem,and that theorem is true in any RLESZ space. 
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