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SUMMARY 

A consistent set of definitions of the reactor cell parameters is 
presented and discussed in the framework of the multigroup, multi-
region collision probability technique. The assumptions implied in the 
fundamental neutron balance and, in particular, the link with more 
general integral transport theory, are examined in the light of the 
recent literature on the subject. 
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Introduction 

There exists at the present time no privileged set of lattice para­
meters capable of describing adequately every type of systems encountered, 
in practice, nor perhaps can there be in view of the wide variety of 
designs, fuel compositions, reactor sizes~suggesting an equally vast 
diversity of convenient, simplified models. A deeper explanation of 
this situation may be found in the fact that a complete representation 
in terms of observable events is impossible or at least unpractical. 
Ideally, however, a theoretical model should be able to predict all 
measurable quantities, not only the bulk reactor parameters but also 
the detailed reaction rates, in terms of which the multiplying pro­
perties of a lattice may be gauged. Within the limits of economic 
considerations, it is therefore desirable that a calculation method 
be built as close as possible around a system of neutron balance 
equations through which the competition between the several phenomena 
determining the fate of a typical neutron may be studied. 

It is an essential merit of multigroup, multiregion techniques that 
they allow just this sort of detailed accounting. In principle, once 
the balance equations have been solved, all parameters defined in terms 
of collision rates are immediately expressible. The main drawback, 
of course, is that this happy situation is not achieved without much 
expenditure in machine-time, be it with Monte-Carlo or most deterministic 
methods, especially if the system to be analyzed is very heterogeneous. 
The vigorous growth and multifarious applications of collision proba­
bility techniques during the last decade are mainly due to their 
ability to reproduce with astonishing accuracy and at a far lower 
cost many dearly bought results of the classical methods. Their domain 
of validity is strictly limited and they will be of no advantage if a 
very refined picture is desired, since they can only yield integral 
values. However, not many differential parameters are of direct interest 
in practical reactor design. 

In the present report, a consistent set of definitions of the reactor 
cell parameters is presented in the framework of the multigroup, multi-
region collision probability technique. 

Manuscript received on July 6, 1966 
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1. The Neutron Balance Equation 

The integral form of the Boltzmann equation, as applied to a neutron gas 

was first established by Peierls fl^ as long ago as 1939. In spite of 

this early start and chiefly because of the mathematical difficulties 

involved in the treatment of practical geometries, the Peierls 

equation, as it is often called, has not been so widely used, except 

in special cases, as the familiar integro­differential form Ç^. 

However, the last few years have shown a renewal of interest, prompted 

mainly by the rapid development of collision probability techniques £3) , 

f4l , which combine the advantages of simplicity and surprising accuracy. 

This new usefulness could only be gained at the price of a few assump­

tions which limit the range of application but, at the same time, point 

the way to eventual improvements. In the following paragraphs, the 

neutron balance equation which serves as a basis for lattice calculations 

using the concept of first collision probability is derived step by 

step from the general integral transport equation and the hypotheses 

introduced in the process are pointed out. 

The neutron flux in an arbitrary system is a solution of the equation [5} 

ο β
 J 

(D 

where 

φ(.*·,£ >û> ι*' = number of neutrons in the unit volume around * , the 

unit solid angle about Δ. and the unit energy range about E which, in 

unit time around time t , will cross a unit surface area, normal to the 

direction Λ. , on the unit sphere surrounding * ; 

HCx,te,fl.#t) _ number of neutron of energy E emitted at time t, 

per unit volume, angle and energy at the point * and along direction­fi ; 

ZLx.,ú) = total neutron cross section of the medium at point ­x. 

and energy E . 

Equation (ï) states that the flux is obtained by looking backward from 

point *■ at time t , along direction Λ and summing the product of 

the sources along Λ and the probability of surviving the flight to 

point » . The source neutrons represented by the function Η may be 
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supplied by some external means independent of the system (such as a 

Ra ­ Be source) or as a result of fission and scattering events in­

volving neutrons of the population considerad. If, for the sake of 

convenience, the delayed neutron emittere are considered as external 

sources, and attention is focused on the virgin proiqpkand scattered 

components of the neutron distribution, we may write [6] 

at 

Hii,ít&*)-ò<£,í,ii,*)*[&{ ¿ α \ Α ί ,£'-£,&> 2 (*,Ê0 Φ U,e',ív/ti (2) 

«o 

J At'j ΑΛΛ 2,Α(.ί,Ε'-Ε,Λνα)γ Ιχ,Ε',Λ',Ο 

where 

5(.*Λ(Λ^) = number of neutrons of energy E generated by external 
sources (including delayed neutron emitters) at time t, per unit vo­
lume, angle and energy at the point χ and along direction A ; 

ρ Cî,£'­»£,­flu) = number of prompt neutrons of energy E produced at point 
and along direction Λ. per fission taking place at energy E' j 

^»Cx, £'·»£,Λ'­»Λ) = cross section at point *■ for changing the 

neutron energy and direction Ε' , Λ' , into an energy and direction 

Ε, Κ ; 

24Cx,fc')
 =

 fission cross section at point χ and energy E* . 

Time dependent problems can always be at least formally reduced to 

stationary ones provided, as is implicitly assumed in equs.(l), (2), 

that the properties of the medium do not change with time f7} > [δ}. 

The steady state Peierls equation is therefore of very general interest 

and, in view of the applications envisaged in the present paper, the 

time variable will be dropped in the following development. In practice, 

a stationary distribution of the neutron flux may be obtained either in 

a subcriticai assembly fed by a permanent external source or in a criti­

cal reactor, where the chain reaction is self­sustaining without any 

contribution from external sources. Only the second case will be con­

sidered here. We have then 

) 
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From the mathematical point of view, the new equation offers the ad­
vantage of being homogeneous and thus more easily tractable. Another 
consequence of eliminating the external source terms is that the ab­
solute value of the flux may no longer be determined from the transport 
equation ε-lone. 

Most frequently, the integral equation (3) is approximated for solution 
by introducing a multigroup energy structure. Because of the interdepen­
dence of the energy loss and the angular deviation and, more importantly, 
due to the space-energy correlation this procedure is not rigorously 
justified. It creates the problem of defining suitable averages for the 
nuclear properties of the medium. The choice of the approximate technique 
will be greatly influenced by the nature of the system under study and 
the position of a given group on the scale of energy. The actual width 
of the groups will of course be a major limiting factor for the range 
of validity of any set of group constants. This is especially true in 
the resonance region where the energy variation may be very large and 
abrupt. The problem will be considered in more detail in latter sections. 

While a degree of separability between spectral and spatial effects must 
be assumed in the calculation of every group parameter, the problem of 
the transfer cross section is essentially more complex because of its 
directional aspect. A device commonly used to meet this difficulty is 
to expand both the flux and the transfer cross section in spherical 
harmonics. Although it has been shown £9} that, for a given order of 
expansion in spherical harmonics, the integral transport group equation 
is inherently more accurate than the corresponding and better known 
integro-differential form, the machine-time required with even a 
moderately high order of expansion would be prohibitively long for 
routine calculations. Fortunately, the general treatment is seldom 
warranted. 

Anisotropic scattering assumes increasing importance at higher energies 
where the presence of a forward bias may affect neutron diffusion and 
leakage to a significant extent. The effect on reactivity will then be 
particularly large in fast and intermediate reactors. It turns out, 
however, that a suitable transport approximation, leading to an isotropic 
type solution,generally will yield acceptable results even in such 
systems (10) , [11} . With 
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very light moderating nuclides, v.g. hydrogen or deuterium, some 

attention must be paid to scattering anisotropy in the thermal 

range. Up to a point, the effect is mitigated by the randomness 

of thermal motion and the effective increase in mass of the target 

nuclides due *o molecular binding . At most, linear anisotropy 

may have to be considered [12}, [13), but, here again, a diagonal 

transport correction is ordinarily sufficient [14}. 

The great advantage of the integral formulation is that for iso­

tropic scattering the angular flux need not be computed. Thus, 

in energy group n, the transport scalar flux at point ·*■ is given 

ty 

where the group transfer cross section **,m­v*v may be assumed to 

be transport corrected and all nuclear parameters are supposed to 

be properly averaged over energy. This is actually the type of 

equation that is solved in the THERMOS oode [14]· The expression 

on the right­hand side may be simplified by transforming the line 

integrals to a volume integral through the substitution 

*$\ \Ϊ-χ'|*<|*ΑΛ 

the result being 

. .» Mil IK — I 

where t^t* ι*; is the "optical distance" between the two points x' 
and χ for group η neutrons. 

In real situations, the medium of propagation is always made up 
of a number of homogeneous regions of finite extension, in each 
of which the nuclear cross sections may be taken as constant. 
The integration over the variable *' in equation (5) may thus 
be decomposed into a sum of integrals extended over the x partial 
volumes V. constituting the physical system. Defining the average 
group η flux in region J as 
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(6) 

and the average emission density of group n neutrons in region j 

as 

V-iJ ^Jl*~.<*>v*u*>.~-^l^ï (7) 
t «tø 

the total collision rate in region j for group n neutrons is ob­

tained from the following balance equation 

* 

V;i. ψ · 2 ν . ? · Η· (8) 

with the abbreviation ^t 

J *î\ Σ fy cr>5^.1*·)♦*. tí·)] ^ Ä ' ) 

The symbol »i·*)!* denotes the probability for a group n neutron 

emitted in region i to suffer its first collision in region j . 

It may be appropriate to add that there now are in existence various 

generalized definitions of the first collision probability which 

will take direct account of scattering anisotropy [23], f24]. How­

ever, it will be assumed here that an equivalent transport correc­

ted scheme has been established. 

Except perhaps as a convenient shorthand notation, the concept of 

collision probability would be.of far less practical advantage were 

it not for the fact that the interactions Pi­»;,» are rather 

insensitive to the spatial distribution of the source neutrons. 

Although parabolic and more complex distributions have been con­

sidered in particular cases [15]> "th® most widely used approxi­

mation is to assume that the emission density is uniformly dis­

tricted in region i. This condition holds the better, the smaller 

the dimensions of the partial volumes and the nuclear cross sections 

of the materials they contain. There results 
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*? Γ *î\ !.. ,,, ., (10) 

The neutron behaviour in a critical system, may therefore be des­

cribed by a matrix of linear algebraic equations of type (8) which 

are easily solved for group fluxes in every region, once the group 

constants have been determined from a preliminary spectrum cal­

culation and the collision probabilities have been evaluated by 

performing the integrations over space indicated in equ. (10). 

2. The Wigner­Seitz Model 

2.1 The Unit Cell 

The criticality equation for a finite system gives the relation bet­

ween the nuclear properties of an assembly and the size and shape 

of the reactor which must hold if the chain­reaction within the 

system is to be self­perpetuating at a constant intensity. Nearly 

always, the overall physical dimension of the assembly are such that 

a direct solution of the problem,using a system of. collision balance 

equations of the type just described, is a practical impossibility. 

It is also unnecessary, since the detailed flux distribution may 

usually be separated into the product of a macroscopic function, 

subject to a simpler representation, and a microscopic function, 

which alone must be studied with great detail and accuracy as to 

its variation with space and energy. A more refined picture [16] 

would show that, in addition to this product, the general expression 

of the flux at any point inside a reactor, contains a perturbation 

term proportional to the gradient of the macroscopic flux; however 

this is a small correction which may safely be neglected in most 

approximations. 

There logically follows a two­step procedure. Few­group parameters 

are first evaluated for a limited number of homogenized regions 

through preliminary multigroup­multiregion calculations which take 

into account the detailed neutron distribution in space and energy 

in restricted portions of the system. These nuclear parameters are 

then supplied as input to a second (quite commonly, diffusion 

theory) calculation applied to the whole system, but this time 
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with a much coarser space-energy point network. 

For homogeneous reactors,the problem is, of course, considerably 
simplified by the absence of a fine structure of the flux. To some 
extent, this is also true of fast reactors, where the core dimen­
sions often are of the same order of magnitude as the average neutron 
mean free path. Intermediate and thermal cores, on the other hand, 
appear, from the neutronic point of view, as uniform masses of 
moderating materials in which control or/and fuel elements are dis­
persed in discrete lumps of absorMng and fissile matter. Far from 
the heterogeneities, the flux in the moderator varies smoothly with 
position and energy, but strong local distortions are created by the 
sources and sinks. The so-called "heterogeneous" method will allow, 
it is true, a direct calculation of the point fluxes anywhere in 
the moderator but only after the nuclear parameters attached to 
the various singularities and the moderator have been obtained through 
a suitable space-energy averaging over the fine group fluxes [17]· 
Full advantage of the decomposition into microscopic and macroscopic 
fluxes is taken in the competing and long since classioal Wigner-
Seitz cell method. 

Originally developed for the theory of crystals, the Wigner-Seite 
method assumes that the reactor core may be divided into a number 
of cells centered around the lumped sources and sinks. Usually, 
the interaction between control and fuel elements is not considered 
directly, but the core is viewed as two superimposed arrays of fuel 
cells and control supercells. The reactivity of the lattice is first 
evaluated and homogenized few-group core parameters are derived with 
the Gomtrol elements supposed to be completely withdrawn. The reacti­
vity worth of the control elements is then estinated by considering 
each control element as associated with a given volume of homogenized 
core material. This technique has been shown to handle adequately the 
cases involving relatively large numbers of evenly distributed control 
elements [18], Although the uncontrolled reactor core model is some­
what idealized, it permits such a simplification of the theory that 
it is almost universally used for not too heterogeneous assemblies. 

In practice, the fuel elements are distributed in a fairly regular 
lattice made up of a small number of different types of cells. 
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Generally, there may be a juxtaposition of several zones with different 
compositions or a superposition of two or more networks, each one being 
made up of identical cells. Finally, the geometrical configuration of 
the lattice may be one-, two- or three-dimensional according to the 
shape of the fuel elements (v.g. plates, rods or spheres). 

In agreement with the postulated separability of the microscopic and 
macroscopic fluxes, the Wigner-Seitz Theory assumes that the lattice 
pattern is repeated to infinity. Thus small reactors, where a relati­
vely large number of fuel elements lie in the vicinity of the boundaries 
and, in particular, the influence of the reflector is felt deep in the 
core, are not treated adequately by the cell method: they rightly belong 
to the realm of the heterogeneous method. The same reasoning applies to 
multi-zoned configurations if the unit cell compositions vary markedly 
and the dimensions of the zones are such that too many elements are 
close to surfaces of discontinuity. The difficulty of defining suitable 
boundary conditions between neighbouring cells of different composition 
will also exclude mixed lattices if the unit cells are not closely simi­
lar. The Wigner-Seitz theory finds, therefore, its ideal field of appli­
cation in the analysis of large reactors made up of identical cells. 

Three-dimensional periodic structures present the drawback that in such 
assemblies, fuel loading and discharging operations are necessarily 
awkward. For this reason, except in the very early experimental piles 
contructed during the war, reactor designers have elected to build 
one- or two-dimensional periodic lattices, using either plates or 
variants of cylindrical shapes for the fuel elements. Plane lattices 
are normally associated with small reactors with highly enriched fuel. 
Thus, lattices with two-dimensional periodicity constitute by far the 
largest class of practical systems and all further discussion will be 
concerned with these configurations even though Wigner-Seitz theory 
covers one- and three-dimensional arrays just as well. 

The very nature of the cell geometry entails an essential distinction 
between the lattice plane and the direction normal to it which may be 
of importance in studying neutron migration: this effect of anisotropy 
will be considered later. In Wigner-Seitz theory the unit cell is 
assumed to extend indefinitely along the third dimension. It may be 
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noted that the resulting replacement of the finite reactor problem by 
an infinite medium problem in which the flux and source distributions 
inside the reactor are analytically extended throughout space is justi­
fied by the so-called second fundamental theorem of reactor physics [5]» 
the validity of which has been demonstrated for any reactor made up of 
a large number of identical cells [19J· A last remark concerning the 
longitudinal dimension of the unit cell in Wigner-Seitz theory: the 
composition of the lattice is supposed to remain perfectly uniform along 
this direction. While this allows a considerable simplification in the 
theory, since the flux may now be taken as constant along any normal to 
the lattice plane, it .also introduces the problem of the end effects. 
For ease of manipulation and to facilitate mechanical support, the fuel 
channels, ^specially in power reactors, are usually filled with a string 
of rods, each one of which is terminated by joints. There results a fine 
structure of the axial flux which is not directly taken into account in 
the Wigner-Seitz method. 

Only three types of geometrically regular figures will completely fill 
a plane: the triangle, the square and the hexagon. All three boundary 
shapes are used in practical lattice design. Provided suitable con­
ditions are imposed on the neutron flux and current at the boundaries 
of a unit cell, it is possible, in principle, to represent the periodi­
city of the lattice and, therefore, to evaluate the reactivity of a 
lattice by considering the neutron balance in a single cell. Unfortuna­
tely, for cells with circular fuel channels but rectilinear outer boun­
daries, the disparity in the geometries poses a serious problem, and 
it is only quite recently fi?] that rigorous expressions have been 
established for collision and escape probabilities in realistic cell 
configurations. To obviate this difficulty, it is usual for routine 
calculation purposes, to replace the actual lattice cell by an equi­
valent cylindrical cell with the same volume ratio of moderator to 
fuel. In addition, the cylindrical boundary is often assumed to be 
perfectly reflecting. For close-packed lattices, this idealization 
of the real situation may lead to serious errors [20]. By making use 
of exact expressions for the interaction probabilities in regular 
lattices, the effect of the transformation to cylindrical geometry 
has recently been studied by several authors [2l], [22], It has been 
found that a much improved representation of the true flux distribu-
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tion is obtained with the equivalent cylindrical cell model if the 
neutrons are supposed to be reflected isotropically at the external 
boundary. 

If cell-to-cell interaction may not always be neglected, because 
of its effect on the moderator-to-fuel flux ratio, it is unlikely, 
in most cases, to perturb significantly the flux distribution inside 
the fuel channel. This is fortunate, in view of the wealth of exotic 
as well as more conventional shapes produced by the engineer's 
imagination. In practice, two types of situations may be encountered. 
Quite frequently, the components are so finely and uniformly dis­
tributed that, at least in some energy range, the fuel assembly may 
be considered as homogeneous. It can then be represented in an equi­
valent array of concentric cylindrical annuii where lattice periodi­
city is taken into account without difficulty [25]· When, on the 
other hand, the heterogeneous distribution of the fuel plays a signi­
ficant part, it is often permissible to treat the fuel channel in 
isolation by imposing a suitable boundary condition at the moderator 
interface, without introducing lattice periodicity in the analysis 
of the hyperfine structure. This assumption underlies many of the 
techniuues devised for the calculation of collision probabilities in 
pin clusters and other complex-shaped fuel elements [26], [27]. As a 
matter of fact, even circular or tubular fuel geometries are some­
times handled in this way when, in the thermal range, diffusion theory 
is used in the moderator [28]. However, if such a simplified treat­
ment is not allowable, the possibility still exists of using a more 
general numerical technique developed for the study of arbitrary geo­
metries, where suitable cell boundary conditions may be applied with­
out difficulty [29]. 

2.2. Definition of Criticality 

The solution of the system of neutron balance equations for the 
equivalent unit cell, with appropriate collision probabilities, will 
yield the average flux in every group and every region of the correspon­
ding infinite lattice. The multiplying properties of the lattice can 
then be characterized by the intensive quantity k-inf, the infinite 
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medium multiplication factor, which is simply expressed as the ratio 
of the average production rate to the average absorption rate in the 
equivalent unit cell [5]: 

i i Ci*)· ti MV; ( ΐ υ 

j M ι·« M·"* % 
where the summations extend over all groups η and regions j of the 
equivalent unit cell. 
In a homogeneous bare reactor, the first fundamental theorem of 
reactor physics states that the spatial distribution ψ (χ) is 
the principal solution of the wave equation 

^S|>U) vBtyU).o (12) 

Since the neutron distribution is supposed to be separable in space 
2 and energy, the geometrical buckling Β will be the same in every 

group. It is generally assumed that the large-scale flux behaviour 
in a heterogeneous reactor obeys the same laws. 

Just as the mean absorption and fission characteristics, it is possible, 
by- using the concept of geometrical buckling, to define the average 
diffusion properties of a unit cell and, from this knowledge, to de­
rive the net leakage K. of group η neutrons from the cell [30] . 
Thus, vre have 

C -*>-«V (13) 
where D is the diffusion coefficient for group η neutrons in the 
unit cell; $M is the average group η neutron flux in the cell: 

2φ V· 
Λ XV; (14) 

ι 1 
and V * I V: 

1 ' 
This suggests that the criticality equation for the equivalent bare 
reactor be written as 2lC^) * V· -ι -Λ 't·"» y* 1 

«.(SJ. *· V Î D . « V 
(15) 
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which just states that, in a critical assembly, the total neutron 

production rate is exactly equal to the neutron loss rate due to 

absorption and leakage. To be fully consistent and to correct, in 

some measure, for the competition between neutron leakage and ab­

sorption events, the neutron balance equations (8) should now read 

The value of the buckling which will make an assembly of given compo­

sition and lattice design just critical can be found by an iterative 

solution of the system (15), Ο Ο · 

While the definition of the multiplication factor based on the detai­

led neutron balance combines the advantages of conceptual simplicity 

and generality, an alternate formulation grounded on the idea of neutron 

life­cycle is usually adopted in the literature. According to.the second 

point of view, the multiplication factor in a given system is given by 

the ratio of the number of neutrons of one generation to the number of 

the preceding generation. It has been shown that the life­cycle and the 

neutron balance multiplication factors are rigorously equivalent [5} ■ 

Through a somewhat artificial and not always unambiguous decomposition, 

the life­cycle of an average neutron in an infinite lattice may be 

divided into several phases each of which is adequately treated by 

a system of simplified balance equations. There results a set of de­

tailed parameters providing an easily visualized picture of the over­

all neutron behaviour and, which is more important, more or less 

directly accessible to measurements. Thus, the four­factor formula 

has enjoyed a highly successful career in the field of heavy water 

and graphite reactor lattices using natural or slightly enriched uranium. 

In such syàtems, there exists a rather well defined separation of neutron 

events into ihree energy regions, the thermal range being dominated 

by U­235 fission, the fast range by U­238 fission ?.nd the epithermal 

range by slowing down in the moderator and resonance capture in U­238. 

Furthermore, the relatively large pitches reduce the possibility of 

interaction between fuel rods for non—thermal neutrons, which leads 

to considerable simplifications in the expressions for the individual 

parameters. 
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The domain of validity of the four-factor formula is of course, 
limited by the ideal nature of a model where the side processes 
of the neutron life cycle are often left out or, at best, receive 
a rather crude treatment. In particular, it will not take epi­
thermal fission into account. To solve this problem, which may 
have some importance at smaller pitches especially with enriched 
fuel, a common device has been the introduction of additional para­
meters [31] , [32J . The necessary modifications to the definitions 
of the original four factors are thus kept at a minimum. However, 
if the detailed neutron balance is to be faithfully reproduced in 
these condensed expressions and if the interactions between the 
many competing events are to be included, the classical definitions 
must yet be recast. 

A possible formulation of the infinite medium multiplication factor, 
from the neutron life-cycle viewpoint, is [33] 

\.·»Ιν^**^-«^%ΐ (17) 

For a large, predominantly thermal reactor, the criticality equation 
is traditionally defined in an equivalent two-group formalism as 

\- ^ * (18) 
(.»»Cft^CutR*) 

It has been shown that, with the exception of the one-group model, 
the various characteristic equations in current use are practically 
equivalent [34] · 

The signification of the various symbols in the equations (17), (18) 
is given in the following sections. 

3. The Intensive Parameters 

The quantities entering the definition of the multiplication factor 
in an infinite medium having the same small-scale composition as that 
of the reactor under consideration are often called intensive or 
intra-cell parameters. In the present section, a consistent set of 
definitions will be given for these parameters in the framework of 
collision probability theory, using the neutron balance equations (8). 
Unless otherwise stated, the unit cell will be assumed throughout to 
be divided into the same geometrical regions. 
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3.1. High Energy Range 

The flux normalization for the whole energy spectrum is obtained 

by arbitrarily stating that the total number of neutrons produced 

per unit time in the reactor by thermal and epithermal fissions 

is equal to unity. Let us suppose that we have ρ fast groups, 

* epithermal groups and * thermal groups, the highest energy group 

being group 1. We may then write 

4f\* t*V* 

«*»y« /AX» i « ■ (19) 

where, as before, the index j refers to a cell region. 

In reality, the virgin fission neutron spectrum vanishes to in­

significance outside a not very wide band of energy, roughly co­

extensive with what is normally thought of as the high energy range. 

The lower boundary of this energy region has fluctuated in the 

literature all the way from the fast fission thresxhold to the top 

of the U­238 resonance region. It may not be desirable to extend 

the fast neutron range too far down. While the scattered neutron 

flux tends, after a few collisions, to assume a uniform distribu­

tions, the virgin neutron flux is strongly localized in the fuel 

regions. Thus, at lower energies, even complex—shaped fuel elements 

may reasonably be presented ina simpler geometry of concentric cylin­

drical annuii but, in the vicinity of the Mev­range, the rod geometry 

must "be more closely approximated especially with air­cooled elements. 

For the sake of simplicity and because the structure of the neutron 

balance equations in the high energy range is'not altered essentially 

by this choice, it will be supposed here that the fast neutron region 

is exactly co­extensive with the energy range in which the U­235 

fission spectrum normalized to unity stays above a prescribed level 

of significance. 

Since scattering­up from the epithermal and thermal range is of no 

practical importance, the "external" source \\,m in each fast group 

may be obtained from 

* * \Λ '^ * * ̂ \\ ~» t; - Vi " (20) 



­ 18 ­

Of course, at the start of the calculations, the flux distribution 

in the epithermal and thermal ranges is completely unknown. However, 

a reasonable initial assumption is to take the source desnity as 

constant in every fuel region and zero everywhere else, so that 

* co 

«VS« \ ' "J·*» » 

The fission neutron spectrum is implicitly supposed to be known. 

Once a complete neutron cycle has been investigated, a new estimate 

may be found for the fast source distribution by using equation (20) 

and a second iteration performed. The effect of the fast source non­

uniformity is relatively small, so that a third iteration is not 

expected to be necessary. In what follows, it will be supposed that 

convergence has already been attained. 

The neutron balance equations in the high energy region may be written 

as 

1. V V..2.115.· .*. *>. *q "1V..P . 0«"«r") (22) 

where the transfer coefficient 4;,*«■**· is given by 

¿s*­*** \^ì 

and the source density \l,m by equation (20), 

The input cross sections for the fast and epithermal broad groups are 

easily obtained through a preliminary calculation with one of the many 

computer codes solving, in a rather large number of ine groups, the 

neutron balance equations for a homogeneous medium [35]­[37] · Depending 

on the reactor type under study, and the desired accuracy, various pro­

cedures may be adopted. 

If the population of non­thermal neutrons is relatively large, as in 

intermediate reactors, it is often worth­while to perform a homogeneous 

calculation before each fine structure analysis. Furthermore, the cell 

problem will then be attacked with a sizable number of broad groups. 

On the contrary, for a natural uranium thermal reactor, it could very 

well be sufficient to compute once and for all a set of broad group 

cross sections in a typical lattice and to examine the microscopic 

flux in a very coarse energy structure. 
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At any rate, it is usually found that, in the high energy region, 

the calculated absorption and fission rates are not very sensitive 

to the detailed spectrum shape, so that a small number of broad 

groups will generally be enough. One [38] and two­group [39] ­ fljl 

structures are quite common. 

Following Carlvik and Pershagen [42] , [43J , the fast multiplication 

factor, t , is here defined as the number of neutron slowing down 

past the lower limit of the high energy region per neutron produced 

in thermal and epithermal fission: 

ε«* i * î ; * . . -Λ.-Λ (24) 

Tlais definition will automatically include the effects of back­

scattering from the moderator and cell­to­cell interaction. It will 

also take into account the heterogeneous distribution of the fuel 

and the non­uniformity in the fast flux distribution. The only con­

ditions are the use of a sufficiently fine spatial grid and the 

availability of simple calculation methods for the collision proba­

bilities. In particular, in the analysis of cluster­fueled cells, 

there arises the problem, already discussed above, of combining a 

formalism adapted to the description of pin­to­pin interactions in 

the fuel element with a second series of expressions developed for 

the treatment of annular systems such as the idealized moderator in 

the equivalent unit cell. 

Another quantity of major interest in the high energy region is the 

ratio of fast fissions in U­238 to fission in U­235» denoted by 9 ?o· 

We have , 

U
* ^*% ^ I V-

 (25) 

which, for natural uranium fueled reactors, is closely approximated 

"by > 

¿I.**?*· %*?■ ¥ V; (26) 
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xi 

where V^ is the average number of neutrons produced in thermal 

U­235 fissions. 

It should be noted that, since the present definition of the fast 

effect, f , depends on the overall neutron balance in the lattice, 

there can be no simple relationship between t and σ ?o as in 

the cases where the fast fission factor is calculated for a fuel 

element considered in isolation as a bare reactor [5] · 

3.2. Intermediate Energy Range 

As the term implies, the intermediate energy range extends from the 

lower energy limit of the fast neutron region down to the upper limit 

of the thermal range, which is loosely defined as a point above which 

up­scattering events and the effects of chemical binding of the mode­

rator atoms lose all significence. 

Formally, the neutron balance equations for the intermediate range 

are very similar to the relations pertaining to the high energy 

region. However the transfer coefficients ^ ¿ < Μ * Λ no longer include 

(n, 2n) nor virgin fission neutron contributions, and the source den­

sities are now given by 

V S .
 ¿

v-' îj—*-H-"
 (27) 

Thus, we have 

All cross sections are obtained in the same way as in the high energy 

reginn, except those of the resonance nuclides. Indeed, the calculation 

of the broad group cross sections for the resonance nuclides consti­

tutes the main stumbling­block for the multigrotip collision probability 

technique. For special studies, when one can afford to use a very large 

number of groups and regions, the problem is amenable to a classical 

treatment [44^ . Since, in this case, the local variations in space 

and energy of the cross sections and fluxes are not too large, one 

may average the basic cross sections over a simple and approximate 

flux spectrum. However, the transition from these very fine group 

cross sections to relatively broad group constants is not ob­
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vious. Certainly, the effects of fuel lumping are far too important 
to allow a simple weighting over a homogenized core spectrum such a.s 
is used for smoother cross sections. 

Most calculation methods presently in use for the determination of 
the broad epithermal group constants of resonance nuclides are based 
on the concept of the effective resonance integral [45]-[4?] , i.e. 
an effective absorption cross section such that, multiplied by the 
unperturbed 1/E flux and the atomic density of the resonance nuclide, 
it will yield the correct number of neutrons captured in a given re­
sonance per unit volume and unit time. Though never wholly exact, a 
number of correspondence relations of varying complexity have been de­
veloped in an attempt to equate the resonance integral pertaining to a 
heterogeneous fuel configuration to the resonance integral in an equi­
valent homogenous system [50] . It has thus been shown Γ51] that the 
detailed geometrical shape of the fuel assembly will enter the expres­
sion of the resonance integral mainly in the condensed form of an 
effective fuel surface area S _„, so that a representation of the f 
form 

where A and Β are group constants depending only on the nature 
of the resonance nuclide, is often justifiable. 

While for an isolated fuel rod, the effective surface area is exactly 
equal to the geometrical surface area, the mutual shadowing between 
the separate parts of a complex-shaped fuel element will result in a 
depletion of the incident current which is conveniently treated as 
an effective reduction of the surface-area. The correction factor is 
often called the internal Dancoff coefficient and has been explicitely 
formulated for a large number of geometries [54] - [56] · As for the 
mutual shielding of neighbouring fuel elements in a close-packed 
lattice, in collision probability theory based on the Wigner-Seitz 
model it is most naturally introduced through an appropriate cell 
boundary condition. 
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The effective resonance integral may alternately be evaluated by 
direct numerical integration of the slowing down equation in a 
more or less approximate representation of the real geometry [52] , 
[53] . However, at the present time, even this sophisticated 
approach commonly retains two assumptions which may be of some 
importance. A single collision with a moderator atom is supposed 
to remove a neutron from the resonance being considered: this is the 
narrow resonance approximation for the moderator. Furthermore, the 
flux is taken as uniformly distributed both in the fuel and the 
moderator. How, it has, in fact, been found possible [51J , [59] 
to correlate the results obtained from the Zut-Tuz code which incor­
porates Nordheim's numerical technique with a simple analytical for­
mula of type (29). Whether an equally simple representation will 
still apply when the restrictions just mentioned are removed from 
the more exact theoretical model remains to be seen. Recent com­
parisons with Monte Carlo results suggest, indeed,rather strongly 
the need for an improved treatment of the neutron slowing down in 
the moderator and spatial distribution across the cell, especially 
at small lattice pitches and for large fuel elements [60] ., [6l] , 

It is customary to study separately the effect of each individual 
resonance, the flux being assumed to recover its asymptotic behaviour 
in the intervening energy intervals. While this procedure is justified 
for heavy absorbers such as U-238 where, in the resolved range, the 
resonances are relatively far apart, its validity is mora doubtful 
in the case of fissionable nuclides in which the level spacings are 
much smaller [57] > [58] · ̂ n addition to this effect, interference 
between U-235 and U-278 resonances may play a significant part in 
lattices using enriched fuel. In natural uranium reactors, since 
the resonance peaks of U-235 are roughly ten times lower than those 
of U—238 and the concentration is over a hundred times smaller, only 
the U-238 resonance absorption need be considered in great detail. 

Once the resonance integral for every energy group has been obtained, 
the corresponding resonance cross sections are derived, ideally, by 
applying a correction factor which takes into account the divergence 
of the real flux from the asymptotic l/E law. Typically, the flux 
depression factor reduces the effective U-238 cross sections by about 
10 'fo. While an effect of this magnitude is not negligible, it is still 
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small enough to admit an approximate treatment. A reasonable 

procedure would be to evaluate first the flux distribution is 

the epithermal range in the absence of absorption. A second calcu­

lation might then be performed with absorption, the U­238 resonance 

cross section being defined as equal to 

ν· . «birr (30) 

An initial guess of the flux depression factor in region j and 

group η is given by _îii , where φ · m is the group η 

neutron flux in region j in the absence of absorption and γ·,Μ 

is the value of the same quantity obtained with absorption present. 

The new v a l u e 

χ« Ο) x* l·) A°? 
sr> — ™ 4 . M 

(31) 

may now be fed into a third flux calculation and the iterations 

continued until u ^ 

χί O) 
G»*.,^,* 

Xj le) 

* ^ /Ué . j . « 

β * 

Τ^,Λ» 

¿*»Λ,Μ 
1 1 . * » (32) 

zt t«*­·) 

The cross section library being completed and the detailed neutron 

balance established, the epithermal parameters are now readily 

evaluated. The probability ρ that a neutron will escape absorption 

while slowing down through the intermediate energy region is simply 

expressed as 

t* Τ " ΐ ^ l (32) 
The denominator is seen to be exactly equal to £ as defined through 
equation (24); the numerator, completely analogous in form, represents 
the total number of neutron slowing down into the thermal range. 
Next, the epithermal multiplication factor ( v̂ l ) , may be defined 
as the number of neutrons produced in epithermal fission per neutron 
absorbed in the intermediate energy range : 
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ζ 1 tviiV φ. ÄVfc 

^ " F ^ ~ r ' \ ' l ^ 5 * Φ V
 (33) 

As mentioned above, it is a distinct advantage of a consistent multi­

group scheme such as the one presented here that, provided the energy 

structure is fine enough, all cell parameters expressible in terms of 

reaction rates are immediately given once the neutron balance equations 

have been solved. At least in principle, this is true even of quantities 

like the cadmium and relative conversion ratios which involve fluxes 

pertaining to different energy regions. 

3.3 Thermal Energy Sange 

The only formal distinction between the neutron balance equations for 

the thermal energy region and the corresponding relationship for the 

epithermal range is due to the presence of up­scattering terms. Quite 

generally, we may write 

\ Λ Λ · 3 ^ ^ ί ζ - ν - - ^ - Μ ^ ί ^ ^ ν Mn^n-H (34) 
where γ·^ 

li·*"S, Zi-"ii VVi (35) 
The calculation of thermal spectra is, at present, a very active field 
of research [62]-[64]. In addition to the fundamental work directed 
towards the formulation of accurate scattering laws for the various 
moderating materials, much effort is being devoted to an improved 
understanding of the neutron distribution in heterogeneous lattices. 
Selective absorption in the fuel and rethermalization in the coolant 
entail the need for a careful treatment of the space-energy correlation. 
Thus, just as in the resonance range, it is often necessary that the 
basic cross sections be weighted over a spatially dependent spectrum 
in a more or less approximate representation of the cell geometry. 

In the light of these considérations, a three-step procedure might 
be adopted for routine calculatinn. Basic cross sections could 
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first be averaged over an homogenized core spectrum [66] in a 
very fine group structure. A many-broad-group but few-region 
problem might then be performed using equations of type (34) 
or (4). Finally, a one-group, many-region calculation would yield 
a detailed picture of the spatial behaviour. In general, the first 
step need only be executed once for a given type of lattice. As 
for the second step, it should be remembered that the collision 
probability technique goes over to the integral transport solution 
as the number of spatial zones increases. Besides, recent progress 
sustains the hope that a phenomenomenological model may soon pro­
vide a simple and reliable description of spatially dependent 
spectra even in irradiated lattices with complex-shaped fuel 
elements, thus, in effect, short-circuiting this part of the 
problem with a considerable saving in machine-time [67] . 

The validity of the single-group representation for the detailed spa­
tial distribution is fairly well established [14], \66\. Comparisons 
with Monte-Carlo results and experimental values have shown that 
it will yield reasonably accurate values for the disadvantage factor 
and the various thermal parameters. However, in very weakly absorbing 
regions, the mean flux is extremely sensitive to any change in the 
self-collision probability, since, in the one—group model, the flux 
in region j reduces to 

*i' fj-f «Ujp. Λ (36) 
Thus, a large number of regions must always be used in the moderator, 
if it is to be treated with collision probability theory. For this 
reason, in the thermal range, one will often prefer to use diffusion 
theory away from the fuel moderator boundary, since, fortunately, 
this simpler technique then bec?.';ies asymptoticaly valid [3] . 

From a knowledge of the microscopic flux distribution, the value 
of the thermal multiplication factor (Mi ) is immediately de­
duced, the factor ( tIA ).. being classically defined as the number 
of neutrons produced in thermal fission per neutron absorbed in the 
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thermal range. In general, with r thermal groups, we have 

\ X ^ „ t , . v ; (37) 
W*· f ^ ^ ———

 l ; 

4» The Extensive Parameters 

Although they are only used in connection with the macroscopic flux 

distribution, the so­called extensive parameters are entirely de­

termined by the properties of the unit lattice cell. 

The migration area, which represents the average distance traveled 

by a neutron between birth and capture and thus determines the to­

tal quantity of leakage from the critical reactor, is conveniently 

divided into two parts. The first phase of a neutron lifetime being 

typically spent in the slowing down process from fission to thermal 

energy, the mean neutron displacement through the high and inter­

mediate energy ranges is a strong function of the moderating pro­

perties of the medium and appropriately defined in terms of the 

slowing down area C , Once the average neutron has become 

thermalized, it will migrate through the lattice until absorbed: 

this last stage of its existence is summarily described in the de­

finition of the thermal diffusion area, L . 

4.1. The Slowing Down Area 

The slowing down area in a homogeneous medium is readily evaluated 

as the second moment of the slowing down kernel [ 5] · Since most of 

the neutrons are slowed down in the moderator, this suggests that 

the neutron age in a lattice could be reasonably well approximated 

by multiplying the slowing down area in the infinite moderator, 

obtained through a preliminary spectrum calculation Γ37Ì > by a 

correcting factor taking into account the heterogeneous distribu­

tions of the various cell materials. Thus, for every fast and inter­

mediate group, we have 

V^.-î·
 (38) 
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As, in most practical cases, the heterogeneity factor QM is not 
very far from unity, no large error will be incurred by using in its 
derivation the approximate Fermi age theory. In such a case, the slowing 
down area in a narrow-energy range may be expressed as the ratio of 
the average diffusion coefficient to the average"slowing-down" cross 
section, and we may write 

>"-£-· p ~ (39) 
where ^ M 4 Z^(M are moderator properties and PM>^-S9,M a r e averaged 
over the unit cell. 
In the definition of the slowing down cross section, allowance must 
be made for inelastic scattering, for instance, by writing 

5.**AM * * Φ ; **'1'* A ****'*>* Δ Λ ΐ 1.-] (40) 

where À<*I,M is the average lethargy increment per inelastic scattering 
event for nuclide 1 in neutron group n. As for the diffusion coefficient 
Ό Μ it has been shown 30 that a proper space-aTMa^ia^» procedure 
is given by 

M ' S^V^i.M (41) 

S\ being the transport cross section in region j. 
Lattice anisotropy is taken into account by defining radial and axial 
diffusion coefficients, through the introduction of directional pro­
babilities. Thus, the diffusion coefficient along direction k is ob­
tained by substituting Pu.-k to P¿ ■ in equation (41)· If ili 

is the directional coefficient which identifies the component in 

the k­direction of the average first­collision probability^' we have 

­TCÍ'.x) 

V
 m

L· J
 a

 J
Ä
 · VFP ·

a; (42) 

?
-i · τ \ V 

(43) 
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Explicit expressions are available in the literature for these 
directional quantities in a geometry of concentric cylindrical 
annuii Γ68Ί , or in a pin cluster geometry [30] , [27I . 

4.2. The Thermal Diffusion Area 

The programme of evaluation of the thermal diffusion area L is 
essentially the same as for the slowing down area. If, for the sake 
of simplicity, the thermal range is assumed to be described as a single 
energy group, we may write 

where the average thermal absorption cross section is given by 

**,4k Σφ ι Α\/; (45) 
and the cell-averaged diffusion coefficient is obtained through an 
equation of the form (4I )· If so desired lattice anisotropy may be 
introduced in just the same way as in the fast and epithermal energy 
regions. 

Here, as in the evaluation of t , the separability of leakage and 
absorption (or slowing down) effects is taken for granted, although 
this assumption is not necessary. 
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