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SUMMARY

A consistent set of definitions of the reactor cell parameters is
presented and discussed in the framework of the multigroup, multi-
region collision probability technique. The assumptions implied in the
fundamental neutron balance and, in particular, the link with more
general integral transport theory, are examined in the light of the
recent literature on the subject.



Introduction

There exists at the present time no privileged set of lattice para-
meters capable of describing adequately every type of systems encountered
in practice, nor perhaps can there be in view of the wide variety of
designs, fuel compositions, reactor sizes suggesting an equally vast
diversity of convenient, simplified models, A deeper explanation of
this situation may be found in the fact that a complete representation
in terms of observable events is impossible or at least unpractical,
Ideally, however, a theoretical model should be able to predict 211
measurable quantities, rot only the bulk reactor parameters but also
the detailed reaction rates, in terms of which the multiplying pro-
perties of a lattice may be gauged. Within the limits of economic
considerations, it is therefore desirable that a calculation method

be built as close as possible around a system of neutron balance
equations through which the competition between the several phenomena

determining the fate of a typical neutron may be studied,

It is an essential merit of multigroup, multiregion techniques that

they allow just this sort of detailed accounting., In principle, once

the balance equations have been solved, all parameters defined in terms
of collision rates are immediately expressible., The main drawback,

of course, is that this happy situation is not achieved without much
expenditure in machine-time, be it with Monte-Carlo or most deterministic
methods, especially if the system to be analyzed is very heterogeneous,
The vigorous growth and multifarious applications of collision proba-
bility techniques during the last decade are mainly due to their

ability to reproduce with astonishing accuracy and at a far lower

cost many dearly bought results of the classical methods, Their domain
of validity is strictly limited and tkey will be of no advantage if a
very refined picture is desired, since they can only yield integral
values, However, not many differential parameters are of direct interest

in practical reactor design,

In the present report, a consistent set of definitions of the reactor
cell parameters is presented in the framework of the multigroup, multi-

region collision probability technique,
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1. The Neutron Balance Equation

The integral form of the Boltzmann equation, as applied to a neutron gas
was first established by Peierls [ﬁ] as long ago as 1939, In spite of
this early start and chiefly because of the mathematical difficulties
involved in the treatment of prectical geometries, the Peierls

equation, as it is often called, has not been so widely used, except

in special cases, as the familiar integro-differential form {?1.
However, the last few years have shown a renewal of interest, prompted
mainly by the rapid development of collision probability techniques Cﬂ ’
[4], which combine the advantages of simplicity and surprising accuracy.
This new usefulness could only be gained at the price of a few assump-
tions which limit the range of application but, at the same time, point
the way to eventual improvements. In the following paragraphs, the
neutron balance equation which serves as a basis for lattice calculations
using the concept of first collision probability is derived step by
step from the general integral transport equation and the hypotheses

introduced in the process are pointed out.

The neutron flux in an arbitrary system is a solution of the equation [5]
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Equation (1) states that the flux is obtained by looking backward from
-
point = at time t , along direction £ and summing the product of
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the sources along & and the probability of surviving the flight to

point % . The source neutrons represented by the function H may be



supplied by some externzl means independent of the system (such as a
Ra - Be source) or as a result of fission and scattering events in-
volving neutrons of the population considered., If, for the sake of

convenience, the delayed neutron emittere are considered as external
sources, and attention is focused on the virgin prompt and scattered

components of the neutron distribution, we may write {6)
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where

-
SQ;Zt,nut) = number of neutrons of energy E generated by external
sources (including delayed neutron emitters) at time t, per unit vo-

-y
lume, angle and energy at the point X and along direction f H

-
p X, £+, L) = number of prompt neutrons of energy E produced at point

and along direction fL per fission taking place at energy E' ;
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%, (X,E~E, N'~N) = cross section at point X for changing the
«hy
neutron energy and direction E' , L' , into an energy and direction
E’K H

Z (L. = fission cross section at point:; and ener E' ,

Time dependent problems can always be at least formally reduced to
stationary ones provided, as is implicitly assumed in equs.(1), (2),
that the properties of the medium do not change with time [7}, [8].
The steady state Peierls equation is therefore of very general interest
and, in view of the applicztions envisaged in the present paper, the
time variable will be dropped in the following development. In practice,
a stationary distribution of the neutron flux may be obtained either in
2 subcritical assembly fed by a permanent externzl source or in a criti-
cal reactor, where the chain reaction is self-sustaining without any
contribution from external sources., Only the second case will be con-
sidered here, We have then
-
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From the mathematical point of view, the new equation offers the ad-
vantage of being homogeneous and thus more easily tractable, Another
consequence of eliminating the external source terms is that the ab-
solute value of the flux may no longer be determined from the transport

equation alone,

Most frequently, the integral equation (3) is approximated for solution
by introducing a multigroup energy structure. Because of the interdepen—
dence of the energy loss and the angular deviation and, more importantly,
due to the space-—energy correlation this procedure is not rigorously
justified, It creates the problem of defining suitable averages for the
nuclear properties of the medium, The choice of the zpproximzate technique
will be greatly influenced by the nature of the system under study and
the position of a given group on the scale of energy. The actual width
of the groups will of course be a major limiting factor for the range

of validity of any set of group constants. This is especially true in
the resonance region where the energy variation may be very large and

abrupt. The problem will be considered in more detail in latter sections.

While a2 degree of separability between spectral and spatial effects must
be assumed in the calculation of every group parameter, the problem of
the transfer cross section is essentially more complex because of its
directional aspect. A device commonly used to meet this difficulty is
to expand both the flux and the transfer cross section in spherical
harmonics. Although it has been shown (9} that, for a given order of
expansion in spherical harmonics, the integral transport group equation
is inherently more accurate than the corresponding and better known
integro-differential form, the machine-time required with even a
moderately high order of expansion would be prohibitively long for
routine calculations, Fortunately, the general treatment is seldom

warranted,

Anisotropic scattering assumes increasing importance at higher energies
where the presence of a forward bias may affect neutron diffusion and
leakage to a2 significant extent. The effect on reactivity will then be
particularly large in fast and intermediate reactors., It turns out,
however, that a suitable transport approximation, leading to an isotropic
type solution,generally will yield acceptable results even in such

systems (10} , (11} . With



very light moderating nuclides, v.g. hydrogen or deuterium, some
attention must be paid to scattering anisotropy in the thermal
range. Up to a point, the effect is mitigated by the randomness

of thermal motion and the effective increase in mass of the target
nuclides due 40 molecular binding « At most, linear anisotropy
may have to be considered (12}, [13), but, here again, a diagonal

transport correction is ordinarily sufficient [14].

The great advantage of the integral formulation is that for iso-
tropic scattering the angular flux need not be computed, Thus,

in energy group n, the transport scalar flux at point ot is given
by o
'REI BT A TRRE 52 u.-.md,,.,u-.m\
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where the group transfer cross section 2A.~~m may be assumed to
be transport corrected and all nuclear parameters are supposed to
be properly averaged over energy. This is actually the type of
equation that is solved in the THERMOS ocode [14]. The expression
on the right-hand side may be simplified by transforming the line
integrals to a volume integral through the substitution
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where Twal®'%) is the "optical distance" be*ween the two points »

-
and » for group n. neutrons,

In real situations, the medium of propagation is always made up
of a number of homogeneous regions of finite extension, in each
of which the nuclear cross sections may be taken as constant.
The integration over the variable :' in equation (5) may thus

be decomposed into a sum of integrals extended over the ¥ partial

volumes V:I constituting the physical system, Defining the average

group n flux in region 3 as
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and the average emission density of group n neutrons in region J

as
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the total collision rate in region j for group n neutrons is ob-

tained from the following balance equation
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The symbol Fﬁ*ﬁ.n denotes the probability for a group n neutron

emitted in regioni to suffer its first collision in region § .

It may be appropriate to add that there now are in existence wvarious
generalized definitions of the first collision probability which
will take direct account of scattering anisotropy [23], [54]. How-
ever, it will be assumed here that an equivalent transport correc-

ted scheme has been established.

Except perhaps as a convenient shorthand notation, the concept of
collision probability would be of far less practical advantage were
it not for the fact that the interactions Pi*i‘“ are rather
insensitive to the spatial distribution of the source neutrons,
Although parabolic and more complex distributions have been con-
gsidered in particular cases [15], the most widely wused approxi-
mation is to assume that the emission density is uniformly dis-
trituted in region i. This condition holds the better, the smaller
the dimensions of the partial volumes and the nuclear cross sections

of the materials they contain., There results
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The neutron behaviour in a critical system, may therefore be des-
cribed by a matrix of linear algebraic equations of type (8) which
are easily solved for group fluxes in every region, once the group
constants have been determined from a preliminary spectrum cal-
culation and the collision probabilities have been evaluated by

performing the integrations over space indicated in equ. (10).

2., The Wigner-Seitz Model

2.1 The Unit Cell

The criticality equation for a finite system gives the relation bet-
ween the nuclear properties of an assembly and the size and shape

of the reactor which must hold if the chain-reaction within the
system is to be self-perpetuating at a constant intensity. Nearly
always, the overall physical dimension of the assembly are such that
a direct solution of the problem,using a system of collision balance
equations of the type Jjust described, is a practical impossibility.
It is also unnecessary, since the detailed flux distribution may
usually be separated into the product of a macroscopic function,
subject to a simpler representation, and a microscopic function,
which alone must be studied with great detail and accuracy as to

its variation with space and energy. A more refined picture [16]
would show that, in addition to this product, the general expression
of the flux at any point inside a reactor, contains a perturbation
term proportional to the gradient of the macroscopic flux; however
this is a small correction which may safely be neglected in most

approximations,

There logically follows a two-step procedure., Few-group parameters
are first evaluated for a limited number of homogenized regions
through preliminary multigroup-multiregion calculations which take
into account the detailed neutron distribution in space and energy
in restricted portions of the system. These nuclear parameters are
then supplied as input to a second (quite commonly, diffusion

theory) calculation applied to the whole system, but this time
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with a much coarser space-energy point network.

For homogeneous reactors,the problem is, of course, considerably
gimplified by the absence of a fine structure of the flux. To some
extent, this is also true of fast reactors, where the core dimen-
sions often are of the same order of magnitude as the average neutron
mean free path, Intermediate and thermal cores, on the other hand,
appear, from the neutronic point of view, as uniform masses of
moderating materials in which control or/and fuel elements are dis-
persed in discrete lumps of absorbing and fissile matter., Far from
the heterogeneities, the flux in the moderator varies smoothly with
position and energy, but strong local distortions are created by the
sources and sinks. The so-called "heterogeneous" method will allow,
it is true, a direct calculation of the point fluxes anywhere in

the moderator but only after the nuclear parameters attached to

the various singularities and the moderator have been obtained through
a suitable space-energy averaging over the fine group fluxes [171.
Full advantage of the decomposition into microscopic and macroscopic
fluxes is taken in the competing and long since classical Wigner-

Seits cell method,

Originally developed for the theory of crystals, the Wigner-~Seitsg
method assumes that the reactor core may be divided into a number

of cells centered around the lumped sources and sinks, Usually,

the interaction between control and fuel elements is not considered
directly, but the core is viewed as two superimposed arrays of fuel
cells and control supercells, The reactivity of the lattice is first
evaluated and homogenized few-group core parameters are derived with
the comtrol elements supposed to be completely withdrawn. The reacti-~
vity worth of the control elements is then estinated by considering
each control element as associated with a given volume of homogenized
core material, This technique has been shown to handle adequately the
cases involving relatively large numbers of evenly distributed control
elements [18]. Although the uncontrolled reactor core model is some-
what idealized, it permits such a simplification of the theory that

it is almost universally used for not too heterogeneous assemblies,

In practice, the fuel elements are distributed in a fairly regular

lattice made up of a small number of different types of cells.
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Generally, there may be a juxtaposition of several zones with different
compositions or a superposition of two or more networks, each one being
made up of identical cells, Finally, the geometrical configuration of
the lattice may be one-, two- or three-dimensional according to the

shape of the fuel elements (v.g. plates, rods or spheres),

In agreement with the postulated separability of the microscopic and
macroscopic fluxes, the Wigner-Seitz Theory assumes that the lattice
pattern is repeated to infinity. Thus small reactors, where a relati-
vely large number of fuel elements lie in the vicinity of the boundaries
and, in particular, the influence of the reflector is felt deep in the
core, are not treated adequately by the cell method: they rightly belong
to the realm of the heterogeneous method, The same reasoning applies to
multi-zoned configurations if the unit cell compositions vary markedly
and the dimensions of the zones =zre such that too many elements are
close to surfaces of discontinuity. The difficulty of defining suitable
boundary conditions between neighbouring cells of different composition
will also exclude mixed lattices if the unit cells are not closely simji-
lar, The Wigner-Seitz theory finds, therefore, its ideal field of appli~-

cation in the analysis of large reactors made up of identical cells,

Three~dimensional periodic structures present the drawback that in such
assemblies, fuel loading and discharging operations are necessarily
awkward, For this reason, except in the very early experimental piles
contructed during the war, reactor designers have elected to build

one- or two-dimensional periodic lattices, using either plates or
variants of cylindrical shapes for the fuel elements. Plane lattices
are normally associated with small reactors with highly enriched fuel.
Thus, lattices with two-dimensional periodicity constitute by far the
largest class of practical systems and 211 further discussion will be
concerned with these configurations even though Wigner-Seitz theory

covers one- and three-dimensional arrays just as well,

The very nature of the cell geometry entails an essential distinction
between the lattice plane and the direction normal to it which may be
of importance in studying neutron migrations this effect of anisotropy
will be considered later, In Wigner-Seitz theory the unit cell is

assumed to extend indefinitely along the third dimension., It may be
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noted that the resulting replacement of the finite reactor problem by

an infinite medium problem in which the flux and source distributions
inside the reactor are analytically extended throughout space is justi-
fied by the so-called second fundamental theorem of reactor physics [5],
the validity of which has been demonstrated for any reactor made up of

a large number of identical cells [19]. A last remark concerning the
longitudinal dimension of the unit cell in Wigner-Seitz theory: the
composition of the lattice is supposed to remain perfectly uniform along
this direction., While this allows a considerable simplification in the
theory, since the flux may now be taken as constant along any normz2l to
the lattice plane, it 21so introduces the problem of the end effects.
For ease of manipulation 2nd to facilitate mechanical support, the fuel
channels, especially in power reactors, are usually filled with 2 string
of rods, each one of which is terminated by joints, There results a fine
structure of the axial flux which is not directly taken into z2ccount in

the Wigner-Seitz method,

Only three types of geometricclly regular figures will completely £ill
a plane: the trizngle, the square and the hexagon. All three boundary
shapes are used in practical lattice design. Provided suitable con-
ditions 2re imposed on the neutron flux and current at the boundaries
of a2 unit cell, it is possible, in principle, to represent the periodi-
city of the lattice and, therefore, to evaluate the reactivity of a
lattice by considering the neutron balance in a single cell, Unfortuna-
tely, for cells with circular fuel channels but rectilinear outer boun-
daries, the disparity in the geometries poses a serious problem, and

it is only quite recently [12] that rigorous expressions have been
established for collision and escape probabilities in realistic cell
configurations. To obviate this difficulty, it is usual for routine
calculation purposes, to replace the actual lattice cell by an equi-
valent cylindrical cell with the same volume ratio of moderator to
fuel. In a2ddition, the cylindrical boundary is often assumed to be
perfectly reflecting. For close-packed lattices, this idealization

of the real situation may lead to serious errors [20}. By making use

of exact expressions for the interaction probabilities in regular
lattices, the effect of the transformation to cylindrical geometry

has recently been studied by several authors [21], [22). It has been

found that a much improved representation of the true flux distribu-
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tion is obtained with the equivalent cylindrical cell model if the
neutrons are supposed to be reflected isotropically at the external

boundary.

If cell-to-cell interaction may not always be neglected, because

of its effect on the moderator-to-fuel flux ratio, it is unlikely,

in most cases, to perturb significantly the flux distribution inside
the fuel channel, This is fortunate, in view of the wealth of exotic
as well as more conventional shapes produced by the engineer's
imagination, In practice, two types of situations may be encountered.
Quite frequently, the components are so finely and wuniformly dis=~
tributed that, at least in some energy range, the fuel assembly may
be considered as homogeneous. It can then be represented in an equi-
valent array of concentric cylindrical annuli where lattice periodi-
city is taken into account without difficulty [25]. When, on the
other hand, the heterogeneous distribution of the fuel plays a signi-
ficant part, it is often permissible to treat the fuel channel in
isolation by imposing & suitable boundary condition at the moderator
interface, without introducing lattice periodicity in the analysis

of the hyperfine structure. This assumption underlies many of the
technigues devised for the calculation of collision probabilities in
pin clusters and other complex-shaped fuel elements [26], [27]. As a
matter of fact, even circular or tubular fuel geometries are some-
times handled in this way when, in the thermal range, diffusion theory
is used in the moderator [28]. However, if such a simplified treat-
ment is not allowable, the possibility still exists of using a more
general numerical technique developed for the study of arbitrary geo-
metries, where suitable cell boundary conditions may be applied with-
out difficulty [29].

2,2, Definition of Criticality

The solution of the system of neutron balance equations for the
equivalent unit cell, with appropriate collision probabilities, will
yield the average flux in every group and every region of the correspon-
ding infinite lattice. The multiplying properties of the lattice can
then be characterized by the intensive quantity k-inf, the infinite
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mediun multiplication factor, which is simply expressed as the ratio
of the average production rate to the average absorption rate in the

equivaleny unit cell [5]:
32 Y8
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where the summations extend over all groups n cnd regions j of the

equivalent unit cell,

In a homogeneous bare reactor, the first fundamentzl theorem of
reactor physics states that the spatial distribution 1V (x) is

the principal solution of the wave equation

V"‘Q‘h:) y B2f() a0 (12)

Since the neutron distribution is supposed to be separable ir space
and energy, the geometrical buckling B2 will be the same in every
group. It is generally assumed that the large-scele flux behaviour

in a heterogeneous reactor obeys the same laws,

Just as the mean absorption and fission characteristics, it is possible,
by using the concept of geometrical buckling, to define the average
diffusion properties of a unit cell and, from this knowledge, to de-
rive the net leakage Zf n of group n neutrons from the cell (30].

Thus, we have
f,\ 'DMBlﬁuv (13)

where Dn is the diffusion coefficient for group n neutrons in the

unit cell; ¢, is the average group n neutron flux in the cell:
¢ :Z?i"‘v%
1 (14)
31
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This suggests that the criticality equation for the equivalent bare

reactor be written as
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which just states that, in a critical assembly, the total neutron
production rate is exactly equal to the neutron loss rate due to
absorption and leakage. To be fully consistent and to correct, in
some measure, for the competition between neutron leakage and ab-
sorption events, the neutron balance equations (8) should now read

* L
:‘z“ Viiib"?jﬁvv"g QAV ] 3‘ ?‘. V; ?Q‘i-mﬂl,m (16)

The value of the buckling which will make an assembly of given compo-
sition and lattice design just critical can be found by an iterative
solution of the system (15), (16).

While the definition of the rultiplication factor based on the detai-
led neutron balance combines the advantages of conceptual simplicity

and generality, an alternate formulation grounded on the idea of neutron
life-cycle is usually adopted in the literature. According to.the second
point of view, the multiplication factor in a given system is given by
the ratio of the number of neutrons of one generation to the number of
the preceding generation, It has been shown that the life-cycle and the

neutron balance multiplication factors are rigorously equivalent [5] .

Through a somewhat artificial and not always‘unambiguous decomposition,
the life-cycle of an average neutron in an infinite lattice may be
divided into several phases each of which is zdequately treated by

a system of simplified balance equations, There results a set of de-
tailed parameters providing an easily visualized picture of the over-
all neutron behaviour and, which is more important, more or less

directly accessible to measurements, Thus, the four-factor formula

has enjoyed a highly successful career in the field of heavy water

and graphite reactor lattices using natural or slightly enriched uranium,
In such systems, there exists a rather well defined separation of neutron
events into lhree energy regions, the thermal range being dominated

by U-235 fission, the fast range by U-238 fission and the epithermal
range by slowing down in the moderator and resonance capture in U-238,
Furthermore, the relatively large pitches reduce the possibility of
interaction between fuel rods for non-thermal neutrons, which leads

to considerable simplifications in the expressions for the individual

parameters,
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The domain of wvalidity of the four-factor formula is of course,
limited by the ideal nature of a model where the side processes

of the neutron life cycle are often left out or, at best, receive

a rather crude treatment, In particular, it will not take epi-
thermal fission into account, To solve this problem, which may
have some importance at smaller pitches especially with enriched
fuel, a common device has been the introduction of additional para-
meters [31] ’ [32]. The necessary modifications to the definitions
of the original four factors are thus kept at a minimum. However,
if the detailed neutron balance is to be faithfully reproduced in
these condensed expressions and if the interactions between the
many competing events are to be included, the classical definitions

must yet be recast.

A possible formulation of the infinite medium multiplication factor,

from the neutron life-cycle viewpoint, is [3ﬂ

kvt h« Ula, * ) Gl (17)
For a large, predominantly thermal reactor, the criticality equation
is traditionally defined in an equivalent two-group formalism as
s k‘ (18)
Cral D) (e TBY)
It has been shown that, with the exception of the one-group model,

the various characteristic equations in current use are practically

equivelent [34].

The signification of the various symbols in the equations (17), (18)

is given in the following sections,

3, The Intensive Parameters

The quantities entering the definition of the multiplication factor

in an infinite medium having the same small-scale composition as that
of the reactor under consideration are often called intensive or
intra-cell parameters, In the present section, a consistent set of
definitions will be given for these parameters in the framework of
collision probability theory, using the neutron balance equations (8).
Unless otherwise stated, the unit cell will be assumed throughout to

be divided into the same geometrical regions.
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3.1. High Energy Range

The flux normalization for the whole energy spectrum is obtained

by arbitrarily stating that the total number of neutrons produced
per unit time in the reactor by thermal and epithermal fissions

is equal to unity. Let us suppose that we have p fast groups,

% epithermal groups and ¢ thermal groups, the highest energy group
being group l. We may then write

Y s y
C : 2 €y
mi‘:fn Z;\ "ii e ?1'“ ) (19)

where, as before, the index J refers to a cell region,

In reality, the virgin fission neutron spectrum vanishes to in-
significance outside a not very wide band of energy, roughly co-
extensive with what is normally thought of as the high energy range.
The lower boundary of this energy region has fluctuated in the
literature all the way from the fast fission thres~hold to the top

of the U-238 resonance region. It may not be desirable to extend

the fast neutron range too far down. While the scattered neutron

flux tends, after a few collisions, to assume a uniform distribu-
tions, the virgin neutron flux is strongly localized in the fuel
regions, Thus, at lower energies, even complex-shaped fuel elements
may reasonably be presented ina simpler geometry of concentric cylin-
drical annuli but, in the vicinity of the Mev-range, the rod geometry
must be more closely approximated especially with air-cooled elements,
For the sake of simplicity and because the structure of the neutron
balance equations in the high energy range is“not altered essentially
by this choice, it will be supposed here that the fast neutron region
is exactly co-extensive with the energy range in which the U-235
fission spectrum normalized to unity stays ahbove a prescribed level

of significance.

Since scattering-up from the epithermal and thermal range is of no
prectical importance, the "external" source ﬁi“‘ in each fast group
may be obtained from

%2 v..5" 3 AN}

(20)
Mz 1 %"‘ ‘ ‘ﬂ'*h M3 ‘ 1. ‘bp? ™
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Of course, at the start of the calculations, the flux distribution
in the epithermal and thermal ranges is completely unknown, However,
a reasonable initial assumption is to take the source desnity as

constant in every fuel region and zero everywhere else, so that

EZ v (21)
. . w\
mey 9 31'“ 3

The fission neutron spectrum is implicitly supposed to be known.
Once a complete neutron cycle has been investigated, a new estimate
mey be found for the fast source distribution by using equation (20)
and a second iteration performed. The effect of the fast source non-
uniformity is relatively small, so that a third iteration is not
expected to be necessary., In what follows, it will be supposed that

convergence has already been attained.

The neutron balance equations in the high energy region may be written

as

*
i‘i""*' V. < 2 2‘_2;““- ‘l;‘.‘\‘n?;’“ v 1;"‘] V"'"P;*",n Q\‘M‘?\ (22)
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where the transfer coefficient i, we~ is given by

EA'I"AM‘M ¥ i“""‘o Cimem ¥ 12(\\.1&).&,\“0/“ ¥ ("i“ PARTS 7Y (23 )
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3 vy =

and the source density §iom by equation (20),

The input cross sections for the fast and epithermal broad groups are
easily obtained through a preliminary calculation with one of the many
computer codes solving, in a rather large number of ine groups, the
neutron balance equations for a homogeneous medium [35]-[3ﬂ » Depending
on the reactor type under study, and the desired accuracy, various pro-

cedures may be adopted.

If the population of non=thermal neutrons is relatively large, as in
intermediate reactors, it is often worth-while to perform a homogeneous
calculation before each fine structure analysis. Furthermore, the cell
problem will then be attacked with a sizable number of broad groups.

On the contrary, for a natural uranium thermal reactor, it could very
well be sufficient to compute once and for all a set of broad group
cross sections in a typical lattice and to examine the microscopic

flux in a very coarse energy structure,
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At any rate, it is usuzlly found that, in the high energy region,
the calculated a2bsorption and fission rates are not very sensitive
to the detailed spectrum shape, so that a small number of bdbroad
groups will generally be enough. One [38] and two=-group [3ﬂ -[41]

structures are quite common,

Tollowing Carlvik and Pershagen [42] ’ [43 s the fast multiplication
factor, & , is here defined &as the number of neutron slowing down
past the lower 1limit of the high energy region per neutron produced
in thermal and epitherm2l fission:

4 \u‘w
E+ 2 Z 2 ‘5- mamn v.\-\ ?‘."'“V; (24)

Lt m:\-n
This definition will automatically include the effects of back-
scattering from the moderator and cell-to-cell interaction, It will
also take into account the heterogeneous distribution of the fuel
and the non-uniformity in the fast flux distribution., The only con-
ditions are the use of a sufficiently fine spatial grid and the
availability of simple calculation methods for the collision proba-
bilities, In particular, in the analysis of cluster-fueled cells,
there arises the problem, already discussed above, of combining a
formalism zdapted to the description of pin-to-pin interactions in
the fuel element with a second series of expressions developed for
the treatment of annular systems such as the idealigzed moderator in

the equivalent unit cell,

Another quantity of major interest in the high energy region is the

ratio of fast fissions in U-238 to fission in U-235, denoted by 8’28

e have
i 2-'2 6'\#’“
Lt et (25)
z 27-,.-¢ V'.

may

which, for natural uranium fueled reactors, is closely approximated

by
e Z Zi...- va (26)

:.l -mst
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as
where 913 is the average number of neutrons produced in thermal
U~235 fissions,

It should be noted that, since the present definition of the fast
effect, € , depends on the overall neutron balance in the lattice,
there can be no simple relationship between ¢& and 828 ag in
the cases where the fast fission factor is calculated for a fuel

element considered in isolation as a bare reactor [5] .

3.2, TIntermediate Energy Range

As the term implies, the intermediate energy range extends from the

lower energy limit of the fast neutron region down to the upper limit
of the thermal range, which is loosely defined as a point above which
up~-scattering events and the effects of chemical binding of the mode-

rator atoms lose all significence.

Formally, the neutron balance equations for the intermediate range
are very similar to the relations pertaining to the high energy
region, However the transfer coefficients %;JVN“ no longer include
(n, 2n) nor virgin fission neutron contributions, and the source den-

sities are now given by

"
%i"‘" Z Z‘.m' 35./"\-»» *-j.m (27)

msy 3
Thus, we have

-
25...?5..“/5 : Z*h ii i;,,.-ja,-.n h..*ﬁam] v, Pzﬁm Gpersdpeq) (28)
Al]l cross sections are obtained in the same way as in the high energy
reginn, except those of the resonance nuclides, Indeed, the calculation
of the broad group cross sections for the resonance nuclides consti-
tutes the main stumbling=block for the multigroup collision probability
technique, For special studies, when one can afford to use a very large
number of groups and regions, the problem is amenable to a classical
treatment [44] . Since, in this case, the local variations in space

and energy of the cross sections and fluxes are not too large, one

may average the basic cross sections over a simple and approximate

flux spectrum, However, the transition from these very fine group

cross sections to relatively broad group constants is not ob-
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vious, Certainly, the effects of fuel lumping are far too important
to z2llow a simple weighting over a homogenized core spectrum such as

is used for smoother cross sections,

Most calculation methods presently in use for the determination of

the broad epithermal group constants of rescnance nuclides are based
on the concept of the effective resonance integral [45]—[453, i.e.

an effective absorption cross section such that, multiplied by the
unperturbed 1/% flux and the atomic density of the resonance nuclide,
it will yield the correct number of neutrons captured in = given re-~
sonance per unit volume and unit time, Though never wholly exact, a
number of correspondence relations of varying complexity have been de-
veloped in an attempt to equate the resonance integral pertaining to a
heterogeneous fuel configuration to the resonance integral in an equi-
valent homogenous systemn [5ﬂ » It has thus been shown [51] that the
detailed geometrical shape of the fuel assembly will enter the expres-
sion of the resonance integral mainly in the condensed form of an
effective fuel surface area Seff’ so that a representation of the f

form

S
1‘“" 'A"B“H (29)

where An and Bn are group constants depending only on the nature

of the resonance nuclide, is often Jjustifiable,

While for an isolated fuel rod, the effective surface area is exactly
equal to the geometrical surface area, the mutual shadowing between
the separate parts of a2 complex-shaped fuel element will result in a
depletion of the incident current which is conveniently treated as

an effective reduction of the surface-area, The correction factor is
often called the internal Dancoff coefficient and has been explicitely
formulated for a large number of geometries [54]- [56], As for the
matual shielding of neighbouring fuel elements in a close-packed
lattice, in collision probability theory based on the Wigner-Seitsz
model it is most naturally introduced through an appropriate cell

boundary condition,



- 22 =

The effective resonance integral may alternately be evaluated by
direct numerical integration of the slowing down equation in a

more or less approximate representation of the real geometry [5?],
[53] . However, at the present time, even this sophisticated
approach commonly retains two assumptions which may be of some
importance, A single collision with a moderator atom is supposed

to remove a neutron from the resonance being considered: this is the
narrow resonance approximation for the moderator., Furthermore, the
flux is taken as uniformly distributed both in the fuel and the
moderator, Now, it has, in fact, been found possible [51] ’ [59]

to correlate the results obtained from the Zut-Tuz code which incor-
porates Nordheim's numerical technique with a simple analytical for-
mla of type (29). Whether an equally simple representation will
still apply when the restrictions just mentioned are removed from
the more exact theoretical model remains to be seen. Recent com-
parisons with Monte Carlo results suggest, indeed,rather strongly
the need for an improved treatment of the neutron slowing downm in
the moderator and spatial distribution across the cell, especially

at small lattice pitches and for large fuel elements [60]., [Gﬂ .

It is customary to study separately the effect of each individual
resonance, the flux being assumed to recover its aeeymptotic behaviour
in the intervening energy intervals, While this procedure is justified
for heavy absorbers such as U-238 where, in the resolved range, the
resonances are relatively far apart, its validity is more doubtful

in the case of fissionable nuclides in which the level spacings are
much smaller [57] ’ [58] . In addition to this effect, interference
between U-235 and U-278 resonances may play a significant part in
lattices using enriched fuel. In natural uranium reactors, since

the resonance peaks of U-235 are roughly ten times lower than those
of U-238 and the concentration is over a hundred times smaller, only

the U-238 resonance absorption need be considered in great detail.

Once the resonance integral for every energy group has been obtained,
the corresponding resonance cross sections are derived, ideally, by
applying a correction factor which takes into account the divergence
of the real flux from the asymptotic 1/E law, Typically, the flux
depression factor reduces the effective U-238 cross sections by about

10 %, While an effect of this magnitude is not negligible, it is still
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small enough to admit an approximate treatment., A reasonable
procedure would be to evaluate first the flux distribution is
the epithermal range in the absence of absorption. A second calcu-
lation might then be performed with absorption, the U-238 resonance

cross section being defined as equal to

as (o) 3

Liom
[\3 . 2 > 30
o * (30)
An initial guess of thekglux depression factor in region j and

group n is given by J:_:‘ , Where ¢::; is the group n
L U

» Q)

neutron flux in region j in the absence of absorption and fﬁ,

is the value of the same quantity obtained with absorption present,

The new value

d,_g (6} 2y te) ¢°1‘A
: « & A M . ____;_
et T .y T (31)
;-
may now be fed into a third flux calculation and the iterations
continued until . (W)
‘M,i,u
TRCE N (32)
€ g

The cross section library being completed and the detailed neutron
balance established, the epithermal parameters are now readily
evaluated., The probability p that a neutron will escape absorption
while slowing down through the intermediate energy region is simply

expressed as

by -}nvv _
2 2-4» “ ‘2‘. 1%“"#‘ -Z;.,-\ ¢i,h\V'a
)(n n;u MJ[:u\%r (32)
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Mt sy
The denominator is seen to be exactly equal to € as defined through
equation (24); the numerator, completely analogous in form, represents

the total number of neutron slowing down into the thermal range.

Next, the epithermal multiplication factor ( L} )epi may be defined
as the number of neutrons produced in epithermal fission per neutron

absorbed in the intermediate energy range:
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As mentioned above, it is a distinct advantage of a consistent multi-
group scheme such as the one presented here that, provided the energy
structure is fine enough, 2ll cell parameters expressible in terms of
reaction rates are immediately given once the neutron balance equations
have been solved, At least in principle, this 1is true even of quantities
like the cadmium and relative conversion ratios which involve fluxes

pertaining to different energy regions,

3,3 Thermal FEnergy Range

The only formal distinction between the neutron balance equations for
the thermal energy region and the corresponding relationship for the
epithermal range is due to the presence of up-scattering terms. Quite

generally, we may write

Z8.N, 3-?.\“7;‘ o JimmaPirm *Gin | L P SIS o el S N BTy

where -\n‘.

fimZ, Zim dimon Vi (35)

The calculation of thermal spectra is, at present, a very active field
of research [62]-[64] « In 2ddition to the fundamental work directed
towards the formulation of accurate scattering laws for the various
moderating materials, much effort is being devoted to an improved
understanding of the neutron distribution in heterogeneous lattices,
Selective absorption in the fuel and rethermalization in the coolant
entail the need for 2 careful treatment of the space-cnergy correlation,
Thus, just as in the resonance range, it is often necessary that the
basic cross sections be weighted over a spatially dependent spectrum

in a more or less approximate representation of the cell geometry.

In the light of these considérations, a three-step procedure might

be adopted for routine calculatinn. Basic cross sectiong could
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first be averaged over an homogenized core spectrum [66] in a
very fine group structure., A many-broad-group but few=-region
problem might then be performed using equations of type (34)

or (4). Finally, a one-group, many-region calculation would yield
a detailed picture of the spatial behaviour, In general, the first
step need only be executed once for a given type of lattice., As
for the second step, it should be remembered that the collision
probability technique goes over to the integral transport solution
as the number of spatial zones increases, Besides, recent progress
sustains the hope that 2 phenomenomenological model may soon pro-
vide a simple and reliable description of spatially dependent
spectra even in irradiated lattices with complex-shaped fuel
elements, thus, in effect, short-circuiting this part of the

problem with a considerable saving in machine-time [67].

The validity of the single-—-group representation for the detailed spa-
tial distribution is fairly well established [14], [66]. Comparisons
with Monte-Carlo results and experimental values have shown that

it will yield reasonably accurate values for the disadvantage factor
and the various thermal parameters, However, in very weakly absorbing
regions, the mean flux is extremely sensitive to any change in the
self=-collision probability, since, in the one-group model, the flux

in region j reduces to
- Z. \2»,1‘;:?;]%\7;:.1'
ZV; (- _5—1) Pi)

(36)

Thus, a large number of regions must always be used in the moderator,
if it is to be treated with collision probability theory. For this
reason, in the thermal range, one will often prefer to use diffusion
theory away from the fuel moderator boundary, since, fortunately,

this simpler technique then bec-'.es asymptoticaly wvalid [3].

From a knowledge of the microscopic flux distribution, the value
of the thermal multiplication factor (4‘1 )th is immediately de-
duced, the factor ('1* )th being classically defined as the number

of neutrons produced in thermal fission per neutron absorbed in the
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thermal range. In general, with r thermal groups, we have
010V
g - e T O bV (37)
‘ A < !\: = [3
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4, The Extensive Parameters

Although they are only used in connection with the macroscopic flux
distribution, the so-called extensive parameters are entirely de-

termined by the properties of the unit lattice cell.

The migration area, which represents the average distance traveled
by a neutron between birth and capture and thus determines the to-
tal quantity of leakage from the critical reactor, is conveniently
divided into two parts, The first phase of a neutron lifetime being
typically spent in the slowing down process from fission to thermal
energy, the mean neutron displacement through the high and inter-
mediate energy ranges is a strong function of the moderating pro-
perties of the medium and appropriately defined in terms of the
slowing down area € , Once the average neutron has become
thermalized, it will migrate through the lattice until absorbed:
this last stage of its existence is summarily described in the de-

finition of the thermal diffusion area, L',

4.1. The Slowing Down Area

The slowing down area in a homogeneous medium is readily evaluated
as the second moment of the slowing down kernel [5] . Since most of
the neutrons are slowed down in the moderator, this suggests that
the neutron age in a lattice could be reasonably well approximated
by multiplying the slowing down area in the infinite moderator,
obtained through a preliminary spectrum calculation [37] sy by a
correcting factor taking into account the heterogeneous distribu-
tions of the various cell materials, Thus, for every fast and inter-

mediate group, we have

Rz T G (38)
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As, in most practical cases, the heterogeneity factor 3“ is not

very far from unity, no large error will be incurred by using in its
derivation the approximate Fermi age theory. In such a case, the slowing
down area in a narrow-energy range may be expressed as the ratio of

the average diffusion coefficient to the average"slowing-down" cross

section, and we may write

% = P_:\\. isn.m
" oD 3% . (39)

A wA
where D,.. ,2,°,,. are moderator properties and D«-isv.n are averaged

over the unit cell,

In the definition of the slowing down cross section, allowance must

be made for inelastic scattering, for instance, by writing

239,‘.& : N"\iﬁ 6-‘""1!0‘ + G'M;LIIIA A“l"‘] (40)
where Aulm. is the average lethargy increment per inelastic scattering
event for nuclidel in neutron group n, As for the diffusion coefficient
V. it has been shown 30 +that a proper space-averaging procedure
is given by

it' ?‘» Vv, *'t.“m“"” V. »gm

P} -
? %Vs v.'.,» (41)

™

Lattice anisotropy is taken into account by defining radial and axial

being the transport cross section in region j.

diffusion coefficients, through the introduction of directional pro-
babilities, Thus, the diffusion coefficient along -direction k is ob-
tained by substituting ?;$4‘ to ?;i in equation (41). If IL%
is the directional coefficient which identifies the component in
the k-direction of the average first-collision probabilityFﬂi we have
%)
P“h!-é— 5 &:5&.‘:‘. ¢ n.‘* (42)

L & - 43
V.. » %V& (43)
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Explicit expressions are available in the literature for these
directional quantities in a geometry of concentric cylindrical

annuli [68] , or in a pin cluster geometry [30], [27] .

4,2, The Thermal Diffusion Area

The programme of evaluation of the thermal diffusion area LY is
essentially the same as for the slowing down area, If, for the sake
of simplicity, the thermal range is assumed to be described as a single

energy group, we may write

., Da

XN (44)
&)
where the average thermal absorption cross section is given by
s 22,490 Vi
athr
249 q V. (45)

and the cell-averaged diffusion coefficient is obtained through en
equation of the form (41). If so desired lattice anisotropy may be
introduced in just the same way as in the fast and epithermal energy
regions,

Here, as in the evaluation of <X s the separability of leakage and

absorption (or slowing down) effects is taken for granted, although

this assumption is not necessary.
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