





EUR 2734.e

HYDROGEN MOTION IN PRIMARY SOLUTIONS OF HYDROGEN
IN SOME TRANSITION ELEMENTS by W. KLEY, J. PERETTI,
R. RUBIN and G. VERDAN

European Atomic Fnergy Community - EURATOM
Joint Nuclear Research Center - Ispra Establishment (ltaly)
Reactor Physics Department - Experimental Neutron Physics

Paper presented at the Brookhaven National Lal)oratory Symposium

Upton, LI, N.Y., USA - September 20-22, 1965
Brussels, February 1966 - 52 Pages - 14 Figures - FB 70

The scattering of cold neutrons was measured from VI , NbH

and PdH systems at low hydrogen concentrations. The difference of the
X

EUR 2734.e

HYDROGEN MOTION IN PRIMARY SOLUTIONS OF HYDROGEN
IN SOME TRANSITION ELEMENTS by W. KLEY, J. PERETTI,
.R. RUBIN and G. VERDAN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center - [spra Establishment (lta[y)
Reactor Physics Department - Experimental Neutron Physics

Paper presented at the Brookhaven National Laboratory Symposium

Upton, LI, N.Y., USA - September 20-22, 1965
Brussels, February 1966 - 52 Pages - 14 Figures - FB 70

The scattering of cold neutrons was measured from VH , NbH

X X

and PdH systems at low hydrogen concentrations. The difference of the
X

EUR 2734.e

HYDROGEN MOTION IN PRIMARY SOLUTIONS OF HYDROGEN
IN SOME TRANSITION ELEMENTS by W. KLEY, J. PERETTL,
R. RUBIN and G. VERDAN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center - Ispra Establishment (ltaly)
Reactor Physics Department - Experimental Neutron Physics

Paper presented at the Brookhaven National Laboratory Symposium

Upton, LI, N.Y., USA - September 20-22, 1965
Brussels, February 1966 - 52 Pages - 14 Figures - FB 70

The scattering of cold neutrons was measured from VH , NbH

X X

and PdH systems at low hydrogen concentrations. The difference of the
X



normalized intensities of the (hydrogen system>» and the pure host lattice,
reveals the neutron scattering distribution of the (hydrogen probe) in the
host lattice. Those intensity distributions show the expected high energy
«Local modes» of the hydrogen impurity well above the maximum frequency

of the host lattice. For VHx and Nbe in the « phase, also a low energy

neutron distribution of a few meV is observed, close to the energy of the
impinging neutrons. Avpart of a certain distortion near the maximum host
lattice frequency, in addition, the host lattice frequency distribution can be
« seen » through the hydrogen « Band modes ». For Nb, two pronounced
peaks are found at energy transfers of 25,9 and 18,3 meV. They agree

reasonably well with recent calculations of the frequency distribution of Nb.
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Summary

The scattering of cold neutrons was measured from VHX, Nbe
and Pde systems at low hydrogen concentrations. The difference of the
normalized intensities of the (hydrogen system» and the pure host lattice,
reveals the neutron scattering distribution of the «hydrogen probe» in the
host lattice. Those intensity distributions show the expected high energy
«Local modes» of the hydrogen impurity well above the maximum frequency
of the host lattice. For _\/Hx and Nbe in the = phase, also a low energy
neutron distribution of a few meV is observed, close to the energy of the
impinging neutrons. Apart of a certain distortion near the maximum host
lattice frequency, in addition, the host lattice frequency distribution can be
¢ seen > through the hydrogen « Band modes ». For Nb, two pronounced
peal\'s are fouad at energy transfers of 25,9 and 18,3 meV. They agree

reasonal)ly well with recent calculations of the frequency distribution of Nb.
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1. Introduction (°)

The problems connected with impurities have gained a great interest
in recent years particularly in connection with the studies of
semi—-conductors, color centers, diffusion process in solids and

the lNdssbauer effect. Many pvhysical phenomena are more strongly
dependent on the concentration of impurities than on the host

itself. This behaviour of crystals with impurities gives a great
importance to the study of the eigen—vibrations of the impurity

in the solid. As it is established in a well known series of papers
4—1-6_7, the introduction of an impurity atom into an ideal crystal
causes a modification of the normal modes. Under certain conditions
"Local" and "Band" modes of the impurity.atom are appearing. A
particular clear discussion of this phenomena is given by Dawber

and Elliott 4—7_7 and Kagan and Josilegkii 4_6_7. The existance

of "Local Kodes" was experimentally well estzblished by Infrared 4—9_7
and Raman L-10_7 Spectrometry. By the inelastic scattering of neutrons
Mozer et al. 1—11_7 and Rubin et al. 1—12_7 have brought evidence

of local modes in solid solutions.

In the interaction of neutrons with impurities it is most important
to know the cross section since otherwisevonly very qualitative
arguments can be used for the interpreation of the data. The best
approach for calculating the cross section for an impurity is
actually given in the paper by Zemach and Glauber 4_13_7 and in the
very general and most complete work by Kagan and Josilerskii L-8_7.
In this paper we deal primarily with an impurity that scatters

the neutrons almost entirely incoherently, therefore we can make
use of a simplified procedure using the Zemach and Glauber formalism.
One of the central questions is still what kind of information can
be obtained by the inelastic scattering of cold neutrons ? The

"Local modes" can be visualized but they will not reveal details

about the host itself.

(°) Manuscript received on January 7, 1965
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With the measurements of the band modes the eigiemrfrequency distri-
bution of the host lattice can be obtained. Difference measurements
of the crystal with impurity and the pure orystal will reveal all
the motions of the impurity atom in the lattice. We have choosen
to study hydrogen in some transition elements because of the

general interest in s0lid solutions of hydrogen and particular

of being best suited for neutron measurements since it has a very
large incoherent scattering cross section. Therefore no coherence
distruction will influence the shape of the difference of the neutron
distribution of the impure and pure crystal independent if the host
atoms will have coherent or incoherent cross section. Hence the
difference measurements will reveal the hydrogen vibration in the

host lattice without any distortion.

Hydrogen in transition metals is soluable up to a certain concentra-
tion with only very small changes in the host lattice; this range

is oalled the 4 -phase, the physical sitatus of the solid solution
and with increasing concentration the/?—Hydride phase is formed.
Since we are primarily interested in the behaviour of an impurity

in a host lattice then instead of a compound like substance, our
measurements were carried out in the & -phase, the solid solution
state. The different physical status of thec(—and/f—phase cannot

be seen only by the change of the crystal structuré but also by the
different heat of solution, f.i., of hydrogen in Nb; the heat of
solution increases from 16.1 kcal/mole at H/Nb = 0.01 to 23.3 kecal/
mole at H/Nb = 0.70, the/?—phase. For Vanadium the phase diagram,
Fig. 4—1_7, is rather well known and therefore a sequence of measu-
rements were made":ttne VHO.09 at various temperatures. TFhe data
are given in Fig. 1_2_7, they reveal the effect of the phase transi-
tion from the two phases F(78) to the pured/~phase. The/?-phase

has an optical peak at an energy of E 260 meV while the ®*Local"mode
of the & -phase is peaking at E, ~ 100 meV. In this paper, emphasize

is given to measurements of Hydrogen in solid solution.



2. Experimental Methods .

The samples were prepared by using standard metnods for hydration;
All the sample were heated up to 800°C in a high wvacuum apparatus:
for purifying the samples from Oxygen and Nitrogen as well as
Hydrogen itgelf. After a sufficient long time of purification'l h
the samples were put under a pressure of spectroscopically pure
Hydrogen at a temperature of 800°C. The final hydration was made
at 400°C and towards room temperature. The hydrogen content was
measured volumetrically and by weighing the samples before and
after hydration. Satisfactory agreement was obtained for both =

methods.

The neutron measurements were carried out using the Ispra-I cold
neutron facility 1-14_7. The measurements concerning the phase
transition in Fig. 1—2_7 were carried out by using a flight path
of 5.5 meter. All the other measurements were made using a

3 nmeter tlight path. The energy resolution was sufficient with
3 meter since the "Local excitations" have a natural width that
is many times larger than the resolution width. All the data

in this paper have been corrected for : 1) Backgréund,""‘f.

2) sSample thickness, 3) Air attenuation in the flight path, and
4) The counter efficiency. For a number of.samples and measu-
rements, the data were converted and the generalized frequency
distribution function G(E) presented. For the convertion from -
the time to the energy scale, the experimental points were fittéd:'ﬁ
to a smooth curve in order to minimiize the experimental error

of each particular point. The smooth curves in the energy scale
are marked at a few energy points with the experimental errors
involved. The generalized frequency distribution function is B

defined in equation (8) and given by 3

. | [/2\7/Z / 0/27[ | _ ,{H E,&/é‘ Yy
6 £/ = /AN A /
(4 J2AE FE) Sk o B

lrr. ~.
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3. The Experimental Results

In Fig.3, the difference of the inelastically scattered neutron

intensity distribution of VH and V is plotted. This data

0.0
reveals in detail the motion of4the hydrogen in the Vanadium
lattice. There is a very broad band of "Local"™ modes but also

the "Band" or collective modes have contributed to the neutron
intensity in the frequency range of the host lattice. In
addition, the "elastically"™ scattered neutrons have been observed,
shown in detail in Fig.12; quite a large intensity contribution
can be attributed either to neutrons suffering a very small

energy transfer by inelastic scattering or to a quasi elastib
scattering process. The experimental results may be understood

in terms of two quite different models :

I. The Lattice Dynamics of Impurities in Metals

II. A Proton Band Theory.
The accuracy of the present day data does not allow to distinguish
betwéen those two models that give a quite different "pioture®

of the proton-motion in the Vanadium lattice. Very high energy
resolution experiments ( 4%??:2%) are being carried out to clarify
this point. A shape analysis of the quasi elastic scattered |
neutrons is necessary for a possible distinction on the two models.

In the following we discuss our results in view of the two models :

I. The Lattice Dynamics of Impurities in Metals

The problem of the normal modes in a crystal containing an isolate
impurity was treated in its very general form in a known seriés
of'papers Z_ 1 to 6_7. In these papers, it is predicted, that
"Local"™ and "Band" modes should appear in the eigen-frequency

distribution of the impurity.
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Therefore, it can be understood gqualitatively, that the intensity
distribution of the inelastically scattered neutrons reveal

such "Local" and "Band" motions of the proton in the Vanadium

host lattice, However, on the basis of these general theories,
one would not expect a "quasi elastic" scattering of cold neutrons
as it is observed in our measurements. For this reason, we follow
a suggestion of Kazarnovskii and Stepanov 17547 by introducing

a finite life time for the "Local' modes, that could cause a

quasi elastic contribution of the scattered neutrons. This is

not unreasonable, particular in view of recent measurements of
Mirlin and Reshina /16 / on the temperature dependence of the
infrared absorption line width due to local vibrations of .0

and D in K-Cland X-Br. At room temperature, a line width of
about 5 meV was found. Such a line width corresponds to a life
time of the order of 10—12'sec. If the local modes of the protons
in Vanadium have similar life times, than they can cause a quasi

elastic peak of the type observed in our measurements.

From the work of Dawber and kElliott 1_7;7 we know that the ampli-
tude of the impurity atom is decreasing with increasing frequency
in the host lattice frequency range. Both effects, the quasi
elastic scattering and the amplitude dependence of the impurity
in the "Band" mode region, can be investigated in the VHn system.
For that, we have to examine in more detail the quantitative
contributions of the host lattice and the impurity atoms to the
scattered neutron intensity. A gensral treatment of this problem
including the ocontributions of "Local" and "Band" modes was given
by Yu. Kagan and Ya. Josilevskii already in 1963. For simplicity,
we use for our particular problem of a Hydrogen impurity that has
an almost entirely incoherent scattering cross section, the

formalism, as derived by Zemach and Glauber /-337.
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The partial differential oross seotion is given by : © s vdue. swwsl edl

S e ¥R

V74 ' 2

) Jadr Tk v

4

wi;h ('X > “ é;/o/ /’//// //, /] aa.// 4_7-/ +

L 4 _>:4» 4 /g @70/(«/7 W/JTOC"” o/"

'\’ Z ew"“%_.e_ CYaR I ///4"///74/// a

He-te | ) wrad 22

A system of units is employed in whlch 3‘ has unit magnitude and

T is measured in units of energy. é&f 4 , the initial and final ~ =~ %"

neutron momentum-E = Ei - Ef, the energy transfered to the

neutron upon scattering.

For amall arguments, the modified Bessel functions can be

approximated by -

@ 7, /*/ /J*/ //»///

We specialize now and oconsider only the incoherent partial
differential cross seotion for elastio scattering and the one

quanta processes 1

ki

(3) ﬂ/ﬁ“ 'éf Zﬁ/“hlfﬂé/v/ ‘P/‘{(J/lér/[

//.(]t//’ qﬂy VN Y0,

1?474M4

27

[Tl g ) e f’?-z/ﬁ:::;
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The cross section for elastic scattering is therefore given by :

2k,
) /0—’ / Z ﬁ ¢ - Y T S 2 &/ g \
/ = % ' ;/ S S /’
L2 g P <o ot )/

Here W: is the contribution of each mode to the Debye Waller
exponent, For a regular lattice with 3 N normal modes, W

is of the O('EJ') therefore, if one considers only one phonon
process lo(o) = i and the elastic scattering depends only on
the Debye Waller factor exp(-2 W). However, if there are "Local"
modes, that give a considerable contribution to the Debye Waller

exponent, then the elastic scattering is given by equation (4).

For the incoherent inelastic cross section of any given excitation

process one can write by approximating Io-x 13

5) /Z\ﬂ««f: éf‘yz_ ;/:/ )[/)/ ))///(,4/ a/// zr‘/hé ”J/g:’:’/—)) /IJ

Y/ 44,

For all possible oscillations im a given system, one finds 3

_2W

2 1te, /) % %(,4/
DECSY VP a7z, o (4
/e /4’/ 1% 4, (?’/J %/// &y //4/
i = - = [ /'
with )/y rZ //’fﬂy)/? &%ér’
A ¥ &,

the Debye Waller exponent.
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Using the quasi continuous benaviour of thé frequency distri-
bution, we ocan replace = — ‘/jfu/a/ta and obtain
v,

1
by approximating I,‘(x)x; X s

y o 2 e
ﬂ/()"ubt:,éfz J'Zéét_/_”_ﬂ_.ﬂ/)/%_fj

(7) JD AF ko 3 < ¥ &) dak L2
2!/ -=
W, =, )2 27
Z ba, e 7 - JlE
9E 44413%
' W
(F / —_— 2
=2__Zi¢,f/ /., . + > 4 e ////,/E//
#E 7T —y v

Assuming an isotropic Debye Waller exponent, one obtains the

2
asual cross section formula with 4,‘,‘“{ - O e
Yy

A~ >y AL
8) ——_-:-_/__ _'ft*. ¥ v (E) x G:? /4/1‘7
JAJE  er & F L E */ /g /
= /% b 2
- FUE) glE) 26" e o/
4
= F(E) - L/EF)
2 /

Ié{-* /{ X —
A, F e’ -/
U'
4

- /
£) - -
ith F(E) e
s
GlE) - //E/+ e )bur)®

G(E) : the generalized frequency distribution funetion.
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I.l1. The amplitude dependence of the impurity atom in the "Band"
frequency range

The two component systems VHn is quite suited to measure by

inelastioc neutron scattering, the energy dependence of the amplig%d%he

impurity. Both elements, V and H, scatter neutrons almost

entirely incoherently and therefore all nuclei make additive

contributions to the scattered intensity. Hence it is possible

to determine the energy dependent intensity ratio,

o) L) ()= T 157 A )

= ~ 4, =
s G e

; 2
Using (8), we can evaluate the magnitude for CH(E) tor the

band modes by :

318) - 7 00 Z5 e

(10) //E) T/E). JE) Ay /g/f//i

- =2k

=24,
) Ty E) ey 00y e KNG 16 e

7 NV’ NH are the number of atoms in the sample.

For Vanadium we have the normalisation condition :

where N = NV+N

(12) ;;E //(3,/£3&/ - (MV = kass of Vanadium atom)
/ /7—

For Vanadium Hydride, we have a different normalisation condition :

(13) My A 6,060 % M, | 7] =



- 13 -

Agsuming isotropic distributiomsof the H-amplitudes in the
VE -lattice, we obtain from equation (10), (11), (12) and (13)

the energy dependent amplitude ratio ¢

S W rE ) - W Lrel,
(14) __.__.Z 77)/5/ Z_K = (Vies) %/4}/ 2 £,

Cyr(E) //// #

with _ (E/
- Gy (E) = Fy
% (E

for scattering at 90° angle and E° the energy of the impinging

neutrons.
(E)
In Flg.L 11 /, R(E) and ——TET are given.

This result can be compared with the caloulations of Dawber and

Elliott £-7_7 by using an effective mass ratio

——-= 0.84.
eff ;E 4

The effective mass ratio is introduced because of the experimental
Local

max
evidence that&]’ /&7V & 2.5 and not 7 as one would expect
\fM '
from Hl . Hence we can assume that the force constant of
H
Hydrogen is approximately 1/8 .2;%- of the force oconstant of

Band
Vanadium. For a frequency ratio of&5 an /Of;a'xn 0.6 and

E - { / 0.6, a
s 0.84, Dawber and Elliott é 7 / find for = ’
value about 2.5 times smaller than the measured one;

C

]EE) (E = 25 meV) = 1.48, This large deviation cannot be
v
measured understood easily. With the present day data, we

cannot exclude completely the existence of multiphonon proocesses
in the band mode region, that oould be responsible for the
experimental value large than 1. However the intensity contribu-
tions due to multiphonon processes should eccur primarily in the
energy region between 50 -~ 100 meV if the local mode with the

lowest energy occurs at 100 meV,
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Since the amplitudes of the H-atoms for the band mode region
should be 'of the same order as of the Vanadium atoms, the
multiphonon processes, due to combinations of band modes,

should be negligeable or similar as in the case of Vanadium.

A detailed analysis will be given later in the paper.
It is quite possible that the large value for
is coming from the approximation /&'Io = 1.

c 2
H
= 1.48
v
A
Since we do have a very strong localization of the hydrogen,
one should include the factor ZTI°(§A) that was made unity
A

in thé derivation of equation 8, 11 and 14. Therefore formula

14 should be written :

PN R )~ Iy 1)) EIE e

¥4 _ L=
(15) [ (7 /8) ,?/5/4 -5 L e

G /E) #) G% 7/‘:2— /;, 4] _ /
) ¢ 7 ; LA
2r

In our measurement we do not have 3 local modes but because of

the relative large concentration we might have a large number
of local modes or some modes with particular large amplitudes

that could make the product ;Orio :>‘1 and therefore account

for the deviation, /

To improve the present experimental results, experiments will

be carried out at smaller scattering angle and low temperature
c
in order to test the present, preliminary, results on )_li

Cy

and also to extend the useful range itself.

I.2. The "quasi elastic" Scattering

As already mentioned, a finite life time of the "local" modes
could ocause a quasi elastic peak, if the contributions of the

"Jocal" modes to the elastic scattering is predominant.
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This could be the case if no "band" modes are observed and there-
fore all the elastic socattering due to the "locel"™ modes. However,
in our case, the band modes contribute most to the inelastiocally
scattered neutron intensitys; hence one has to examine if the
contributions of the "locel" modes to the elastic scattering

are sufficient to follow such a hypothesis.

ocal Band
Using (3) we try to estimate 0 / ?H .
elastic elastic

Evaluating (3) we obtain for elastic and inelastic scattering

(16a) M) Y L
o) - Rt At e TL )

. . T _ b)), ) _
16D ﬂ/ — / gt 7Y / 2 v/ /
( ) L - Z////d),/( :./,///4 /ff[ A e

. thdd
2 £he e )
Using (16) we write :
’ HBand - #//zi/é _Ln . |
(17) inelastic - / é"Eo ¥ e E-* o 27" —/ / f_ZB_ )
%HBand // £ X ) ﬁ)/ﬁ/
elastio ¥r

W

B

1
Since WBQ O('ﬁ), we have practially IO(XB) = 1.

is the contribution of a band mode to the Debye Waller exponent.

Local —_— , 5 £
‘f — A//Fo ‘__l—- _-——é wh ?)/;é
E{ine%astic) / é‘_'/[o */ / £, 2T __/, [/)Z o,;/,,r/
(18) /—'1»HLoc'a1 £ t e t € + —
v (elastic) ° _Z ¥ _4/_" I
Y Lnh oy /

For local modes, the contribution to the Debye Waller exponent

can be considerable and IO(KL)ZL
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With (17) and (18) we get :

Local Local [ .
9 - AL )L, (F
(19) H(elastiq), - H(inelastic) *_}/szjiff g ;Z: 2/
Band Band £ 4 E —
Han E;H - ~L, /Ji./
(elastic) {inelastic)
. £ Fp
by (B ?%f -2 }

SO~

This intensity ratio can be estimated by using the experimental
results in Fig. 1—3_7. We consider only one band frequency &ﬁ
that is obtained by the first moment of the band frequency
distribution. The intensity for the two oscillators at « = 110 meV
and Qg'- 30 meV is given by thne corresponding area under the
measured curve. The Debye Waller exponent involved have been
estimated by harmonic approximation to 2 W_ = 0,13, Using the

L
Bosenstock and Klick relation /—17 7 for an effective mass ratio

of ?H»%& = 0.16 we obtain from W. for the average contributions
v @i L
ot the band modes to the Debye Waller factor 2 W_ = 0.255.

B

With these values we get ¢ I (XL) = 1,03, 1 (X ) = 0,1(H,
Local od b
a an
11(15) 0.108, §ZH_ //7{2 = 0.144 and
i

nel inel
/Y Local Band
7ZHoca / Han = 1.2, a result that supports the
(elastio) (elastiec)

hypothesis mode at the beginning.

Therefore it is meaningful to analyse the data under the assumptions
of a2 finite life time of the ‘'local" modes. Hence we consider the
differential incoherent scattering cross section in its most general

form as given by Van Hove 1—16_7.

20) /o~ kK
JDAE  wr b

- CF{L
€ fﬂ;’,z// o/t
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For the hydrogen in the Vanadium lattice S (¥, /) may be thought
of as being constituted of possibly only two parts, the "Band"

and "Local"™ modes

@y SR ) St s O t)

ocal

From the work of Vineyard 1—19_7, we know that the function of
SB(FC¥) reaches its asymptotic form after a small number of mean
periods of atomic motions. This has been shown by Vineyard by

the calculation of the time dependent asquare of the width of 3(4;%3
for the four cases

1) gas, 2) ideal liquid, 3) Debye solid, and 4) the harmonic
oscillator. The harmonic oscillator SL(Z;!) has no limit for

t-» 103 the contribution of the elastically scattered neutrons

will be determined by the average of SL(Aafd over a time greater

-
than T, the period of the oscillation sLu,",,:) — SL(}f,DO).

If the local mode has a finite life time 7', we write for (21)

#
(22) f{%#/r%/&fm/+ e T L(H, )

20 Locec

Physically this means that the local oscillator decays in time
either from the "excited" or "ground" state in the collectivized
band modes. If one follows consequently, one could expect that
the local modes appear and disappear with a certain frequency VD,

the so called modulation frequency.
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The Fourier transform of (22) gives :

A - /"4 L) dtg) 4 ﬂk/oo),\ s

A< olF Fouod socal £4 &

The data cannot be fitted with one single > and SL. Since the
band of local modes is rather wide — and since the proton in the
tetrahedral site may oscillate in two frequencies AH and 02 - it

may be justified that two SL with two different life times 2;

may be used : T_ = 1.5 meV and T7 = J meV. With S =S, = 0.4 35

1 2 Ly L,
and 0,2 S for purely elastic scattering, one obtaines a qualitative
fit to the data shown in Fig.é-12_7. As already mentioned, expe—
riments are being made with a very high energy resolution to clarify

this particular point, that cannot be studied well with the poor

energy resolution of the present data.

Within the limits of the theory of lattice dynamics, one cannot
expect a physical explanation of the very large diffusion constant
of hydrogen in Vanadium. D g 102 cm2/sec. A proton band model

may be a better approach in this respect and probably also as far
ag the explanation of the very broad '"local modes" is concerned.
However the apparence of collective "Band" modes is always a direct
measure of the degree of localization of the proton in the host

lattice matrix.
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3.2. The Nb.Hn Data

The measurements on VHn indicate, that in principle it is
possible to deduce from the hydrogen band modes the freguency
distribution of the host lattice. This procédure requires

at least the knowledge of :

1) The Debye Waller factor for the "Band" and "Local" mode

region which can be measured ;

2) The energy dependence of the "Band" mode amplitude of the
probe. For coherent scatterer this cannot be determined
easily by experiment but it can be taken into account by
the Dawber and Elliott connection formula or the Kagan and

Josilevskii relation.

We stress this point because it is of interest to know at least
approximately the frequency distribution functions for the
transition metals. 3By using a hydrogen probe this could be done
at least for the first three elements of each group and Pd, if
G(E) will be corrected by expression (15). For Nb and Ta, we
can assume, that the energy dependence of the amplitude -
similar to Vanadium — is not very strong except at the maximum
frequency. Therefore we think that the generalized frequency
distribution function as given for Nb in Fig.7 and 8 is quite
close to the frequency distribution of Nb if G(E) will be cor-
rected by expression (15). This distribution can be compared
with the semi—empirical frequency distribution functions derived
by Nakagawa and Woods _/__20_7 for Nb; for Tantalum by Woods [.2‘!_7
Woods used the measured dispersion curves for the high symmetry
direction to deduce the frequency distribution with an eight
neighbour Born -~ von Karman torce model by calculating the

—-

frequencies at 45.926 independent values of ;Z in the irreducible

1/48 of the first Brillouin zone.
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cal
For Nb two sharp peaks have been found at energies E1 o~ 23.6 nmel
cal cal -
E2 o~ 19,9 meV and a small hump at Ej ~ 4,75 meV., The small
cal
hump at E is of similar nature as the low energy peak of

3
Vanadium /22 7.

The neutron distribution for H& Nb, Hig.T7, reveals peaks at

H
By = 25.9 meV, bi; = 18.3 meV, l‘fj = 12 meV. The two peaks &,
H cal
and £, are slightly higher in energy than E1a and Egcal'

This is somewhat surprising since the energy dependence of the
H-amplitudes should actually shift the peaks towards lower
energies. Since this is not the case, one has to conclude,
that the energy dependence of thz amplitude is very weak in Nb,
except for the max. frequency. The hump EH = 12 meV is not

3
cal
seen in the calculated spectra. The energy region E could

3
not be investigated in the present data due to the overlap
from the "quasi elastic' peak. This distribution is similar

as in Vanadium hydride.

Since the scattering cross section for Nb is almost entirely
coherent, it is of interest to see the deviation of the scattered
neutron intensities for Nb, Nb H and (Nb H-Nb). The "band"

peaks in the different distributions are clearly snifted. It

can be seen in particular for Nb and (Nb H-Nb); a striking

effect of the intensity distruction by coherence. These data
show at the same time that powder experiments are not suitable

to deduce the frequency distribution function. The interference
distruction occurs primarily towards the high and low frequency
end. The powder measure of coherent scatterers give only infor-

mation in a certain "window' region.
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3.3. 'The Pd—Hn Data

Apart of the general interest in the formation of "Local'" and
"Band" modes by the hydrogen impurity, there is a specifio
interest in the effect of addition of electrons into the
electron—bands of the host lattice. In the case of Pd, there
are certain indications, that the hydrogen looses its electrons
to the electron bands that are supposedly 8imilar instructur
as the bands in Ni(3dd 4 52) and that the bare proton is dif-
fusing around in the metal. This view is strongly supported

by the measurements of the paramagnetic susceptibility as

a function of hydrogen concentration. The susceptibility of
the pure metal decreases linearly by the addition of hydrogen
until it becomes zero and even slightly negative at concentra-
tions of 65 atom % of hydrogen. This concentration is also
about the limiting equilibrium composition that can be achieved
at 20°C and 760 mm pressure., Apart of that, the coefficient

of the linear term T in the Molar Heat Capacity is very large
for Palladium (26-31) x 10-4 cal/mole deg2 compared to other
metals. For these reasons it is of particular interest to
measure with neutronsthe "Local'" and '"Band'" modes of the proton
in Pd as function of H-concentration. 1In Fig.9 the measure

and corrected data are given. Very striking is the very low
local mode energy EL = 70 meV. The force constant must be
gquite small as it is also indicated by the very large diffusion
coefficient Do = 1.5 x 10“2 cmz/sec and the low activation energy

-E_/RT
of ED = 6800 cal/g-atom. (D=Do D/ ).

The width of the '"Local mode'" is very strongly concentration
dependent :giEL(C=l.5% at) = 40 meV and AEL(C=5% at) = 95 meV;
this phenomena is-not unexpected as shown by Lengeler and Ludwig
4_6_7. The "Band modes" must have very small amplitudes since
they could bearly be seen in the 3% sample. ‘'I'he coupling of

the proton to the host lattice must be rather weak as 1t is

also indicated by the low energy of the local mode.



from the neutron diffraction work of Ferguson et al. / <3 /
on/6L Pd HO.6b7 we know that the elastic scattering of the
hydrogen is increasing with decreasing temperature indicating
a stronger binding at lower temperatures. Consequently the
band mode amplitude should also increase and therefore it

might be possible to measure the band modes by energy loss

experiment.

Bergsma and Goedkoop / ¢4/ have measured rd H 60 atom %

0.6’
of hydrogen in Pd, the limiting equilibrium composition at

20°C and 760 mm pressure. The "Local" mode appears at an

enerzy of EL(C=60%) = 57 meV and a width of E <47 _eV.

The width is about the same as in our 3» sample, but the peak
energy is considerable lower. This is a very interesting
result, it indicates a peak position dependence on H-concen-
tration, probably it is due to the different phases as our
measurements have been made at 3 atom 7% concentration. How-
ever there night be a true peak position dependence on concen-
tration. bSuch an effect could be qualitatively understood

in terms on an increasing correlztion of the proions with
concentration and consequently an increase of the effective

rass or by a weckening ol the force constants due to the fillirg

of the 4d-bands irn Pd at a concentration of €0,

¥Yrom the neutron measurements in the temperature and concentra-—
tion range of the phase transition of VHn’ we know that at a
concentration of 20 atom % of hydrogen the Lost lattice is
already considerably distorted, this can be seen from the
change in shape of the double peak in the host lattice region,

Fig. 1_2_7. The measurenents on VD refleét the same effect.

0.2

Therefore by making the difference VDO 5 spurious peaks can

be produced especially in the host lattice frequency range.
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Such an effect is probably responsable for the appearance of

the peak in the "Difference-~Data". located between the two

B
0.2( L
follows approximately the VE relation for the Ciphase.

Vanadium peaks. The local peak of VD = 88,6 meV)

However there is a considerable change in width of the local

L L
peak EVD'.\—-' 40 meV, much smaller than AEVH . This is not

unexpected since the proton or deuterium is sitting in a

rather shallow-potential well as it is also suggested by the

low activation energy of hydrogen in Nb and Ta.



- 24 -

4. Discussion of the Results for Vanadium Hydride

4.1 JIntroduction

Hydrogen being an incoherent neutron scatterer the 1xst
intensity observed for V-H is the sum of two contributions
coming from V and H separately. It is likely that for a
small hydrogen concentration, the contribution of wvanadium
is very similar to the IiS intensity due to pure vanadium
and is rather well known 4—14_7. The interesting part is
therefore the INS intensity scattered by hydrogen, which,
in principle, should give information on the motion of

hydrogen in metallic lattices, vanadium in our case.

We can think of the hydrogen as sitting in fixed intersti-
tial positions in the vanadium lattice or as moving
through a periodic potential due toifions and electrons,
with minima corresponding to these interstitial positions.
In the first case, the interpretation of the experimental
data is to be Sought in the theories of lattices defects
as it is developped for example by lontroll, Maradudin

and Veiss 1—23_7 with corrections taking into account
anharmonicity and the possibility of Jjumps from one posi-
tion to the next. In the second case, one would start
from a calculation of energy bands for the proton supposing
that the vanadium ions are held fixed at their equilibrium
positions and then try to correct this picture by taking

into account the motions of the lattice ions.

+ INS means Inelastic Neutron Scattering, in analogy

with NMR, ESR and so on.
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Whatever the method of calculation, we believe that the
difference experimentally observed between vanadium

hydride and the other metal hydrides measured up to now
(Zry Y, Pi) comes from the fact that vanadium has a body
centered cubic lattice, instead of a faced centered one
like the above mentioned hydrides. This is corroborated
by the experiments we have made on niobium and tantalum
hydrides, which both are bcc and show a behaviour identical
to vanadium hydride, and on the other hand an palladium

hydride which behaves more like zirconium hydride.

In both fecc and beec lattices, a proton or a hydrogen atom
(or negative ion) is likely to "stay" in an interstitial
position of the octahedral (o) or of the tetrahedral (t)
type. These sites are defined in the Table 1. A study of
D.N. Beshers 1—24_7

has shown that in bec it is most probable that small ions
like hydrogen ions prefer t-site, contrary to larger ions
(CyN) which prefer o-sites. Also neutron diffraction
experiments on tantalum deuteride 155_7 seem to confirm
that the t-sites are those occupied by hydrogen. Concerning
their interstitial sites the fcc and bcc lattices differ

in the following way.

(a) In the bcc lattices o and t—-sites are aligned in [100:]
direction making the chanelling of hydrogen very probable
in the three directions [100:]. In the fcec lattice no such
a situation occurs. The jump of hydrogen from o to t or,
o to o, and so on, necessitates the going through the ion
ocloud, i.e. a very high kinetic energy. A better localiza-

tion results for fcc lattices.
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(b) In the fec lattice, o and t—sites have the full cubic
symmétry, so that a local oscillation of hydrogen is
triply degenerate and only one frequency for the localized
mode is observed. Instead of that, in the bcc lattices,
the o and t—-sites have only the tetragonal symmetry, which
means that localized oscillations should correspond to

two different frequencies, one being doubly degenerate,

and the other not degenerate.

These general remarks are elaborated in the following

sections,

A model with localized modes

We assume that the hydrogen is staying permanently in t-site
and is linked with its four neighbour vanadium atoms, and
that to a first approximation the system is harmonic. It

is to be noticed that the harmonic approximation is less
valid for vanadium hydride than for pure vanadium, because
of the rather large vibration amplitudes of hydrogen for

the local modes (as for optic modes). Therefore the har-
monic approximation has to be corrected by the anharmonic

coupling between the local mode and the band modes.

We know from theory 4_23_/ that in the harmonic approximatio
the presence of hydrogen, with mass MH = 1, located in the
lattice of vanadium atoms mass MV = 50.9H will give rise

to normal modes the eigen frequencies L?’LUZ’LOB of which
are larger than the maximum frequency(xa of the band modes,
provided that the force constants between hydrogen and
vanadium are not too small compared with the force constant

in wvanadium.,
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These modes correspond to vibrations of the system in which
the amplitudes decreases exponentially from the impurity
atom. Because of the large disparity of the masses we shall
agsume that for these lecalized modes the exponential decay
is so rapid that we can consider the vibration of the wvana-
dium atoms around hydrogen as very small or negligible.

This permits to evaluate the mean square displacement (U-2>
of the hydrogen by assuming that most of the energy of the
local mode is concentrated on the hydrogen atom. If n (W)

is the Bose occupation number for energy1ﬂu), we have
2 }
(2.1.) MHQ)2<u,> = [m(mu;]t\u

By choosing three orthogonal axes (x, y, z) or (1, 2, 3)
parallel to the edges of the cube, and in such a way that

z is the 4-=fold inversion axis of the t-site, we can write :

L 2 4
(2.2.) <ui> = <u.f,> LI OV <u£>=h’ﬂ(w3)* z
MHQ)4 MHU‘)J

It is eamily seen that if we neglect the motion of vanadium
ions and assume central forces between hydrogen and its four
nearest neighbouring, then(»)1 =GJ2 =L03\r§. This equation
is still approximately wvalid if one takes into account the

motion of V ions,

For the temperature range used in our experiment, it is a good
approximation to neglect n(uﬁ) and n(u%) with respect to 1/2,

the frequenciesw1 andcuj being given by

(2.3.) YA w4 = 105 meVru 1260 ° t\wsu 75 meV AU 900°K
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The Debye-Waller exponent for hydrogen (DWe) is defined by

2 W, = 55_ R K < U (0) Up(0) >

where K are the components of the momentum transter. Ior
a

tetragonal symmetry, we have :
2.) <UL (NULO)D = O, < UE>; A P=xy
(.. <°< r5 )T—- °<,ﬁ -, ) ) )

and thus the contribution of local modes to the DWe is

2 2 3
(2'5.) 2 Wéo) = t\(Kx + Ky) + -F\ KE
2 My, Wy, 2 Myos

The exact value of the DWe depends on the direction of the
.—)
vector K with respect to the z axis of the t-site. An estimate
2 2 2
can be obtained by replacing Kx’ Ky, Kz by their average

1 2
value — K , thus giving

3

(2 6 ) W(o) = _EL » 1 = 2 + g
i 2M, w, Wo 3w, 3w
P We = 92.6 mev

If EO and E are the energy of the incoming and scattered

neutron and £ = E—Lo the energy gain of the neutron we have

E+h
(o) o €
2.7, 2 W = = (2W_ —_—
(2.7.) H R Wo ( H)elastic * e
For B = eV, (24 i . i
r B 5 meV, ( H)elastic is equal to 0.1 and its value at

the highest energy transfer is 1.23.



-29 -

These values, very large compared with the calculated
values for vanadium (0.02 for elastic scattering), mean
that the extension cloud of hydrogen, as seen by the
neutrons, is very important. 1t is thus necessary, even
in the harmonic approximation to take into account multi-
phonon processes, due to combination of the local modes

with one another and with the band modes.

As for band modes, we can borrow some conclusions from
Elliott and Dawber 4_7_7 who have considered the case of

an isotopic impurity of mass M' in a cubic lattice with
mass M and a Debye spectrum, 'They have shown that when

&= 1 - M!'/M is positive, the amplitude of the impurity u_'
is always less than the amplitude 44 of the host atoms for
all in-band modes, the ratio 4&7u tending towards unity
when the frequency tends to zero. Transposing this into
our case, we can assume that for band modes the amplitude
of hydrogen tﬁiis always of the same order as the amplitude
of vanadium 1&; The contribution of band modes to the

DWe of hydrogen is therefore of the order of 0.02 for elastic
scattering, i.e. negligible compared with the contribution
coming from local modes, eq.(2.7.). Besides this, the one-
Phonon approximation can be considered as valid for the

band modes either for vanadium or for hydrogen.

We shall therefore analyze the data on the basis of the
“&emach and Glauber (ZG) formalism L?.&7 retaining only the

one-phonon terms

A.C. Zemach and R.J. Glauber, Phys. Rev. 101, 118 (1965) sect.3

for the band modes. We use their notations.
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The differential scattering cross section is for coherent
case

-iet .
(2.8.) T (6,€) :%Z\; OLZ-;— je © H_<Xt\,>d~t

Y

Where we write A\ for band modes and L = 1, 2, 3 for the
three local modes with frequencies 041,002,603. We assume

- W,
that oo3<9) ;=%

We use the tollowing additional notations :

A2
A (K.CJ, ) Ny 2 - Wy
X = W= (k 4w ) coth{ —
2T y .
W/ T -
2 wi‘ n(w)= [e —-'1-]

’hf(W) = M(w)+1 = e.w/-r’n(w)

Flw) = N‘CH(w)l2(2w)'18,(w)"n(w)
Frw = e¥T F(w)
o= Lo(x?) Io(x® Io(x3) 42 T (x*) I (x")I(x*

J\ = IO(XB) IOQXQ)I,'L(XZ) + Io (x:") Io (XZ)Id(X—l;)

d3 = IO(XQ)Io(Xz)IQQKB)
2> 3 2 4
Jl-s: I.,l(xs) Io(x'l) I4(K 'j-\—Iﬂ.(x )Io(x )Id_(.x
We assume that the vectors Clza:e smooth functions of energy

A (2 2 2
and that we can replace (K'CV ) by K Cy (u&)

due to the symmetry of the crystal and to the fact that we
are investigating a powder. g(@) is the frequency distri-

bution of the band modes. In(x) is a modified Bessel function

of order n.



- 31 =

We can write the cross section of hydrogen as a sum over
different processes. We are mainly interested by the
intensity of neutrons scattered with, an energy gain &,
positive and less than GJ,. In this range the contribu-

tion to the cross section are proportional to :

a) elastic scattering :

Jo @ (E)

b) one-phonon scattering :
KiJdy Flw)d (&=l +dJ, &

c¢) two—phonon scattering : ©1/2
-3

k2d, Flw)e 72T (8w r ki, Fluye " 5(erw-w)

+ Vi3 exp [:‘(.QJI“C33;>//2:T'] E’( -+ W3 )

- g /2T
w‘/QT&(é-w4)+Jse 3/ a(e_ws)

d) three—-phonon scattering :

K*Ji3 exp [-(wq—ws)/:ﬂ] Frw)o (E-w+w3+w)

The corresponding cross-—sections are obtained by multiplying

2 - -
these quantities by }éo NHO{H exp /- (2W + 2W(°))_/

For Vanadium the only contributions are :

a) the elastic scattering

3 ()

b) the one phonon scattering

k? P (w) o (€-w)

where FV(Q» is obtained by replacing CH(QD by CV(QD in F(w).

The cross sections are obtained by multiplying these quantities

by
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It is easy to obtain an estimate of tlie multiphonon scattering
of hydrogen in the range 22-29 meV. By inspection it is seen
that the multiphonon contribution in this range is tae three-
phonon scattering Ij; the ratio of it to the one-phonon scatte-
ring I1 is given by

y , ( )ﬁw/S‘_T
I w’ Flw)Mlw)e '
— = J N
’ ) 2T
L 13, %(w’) n(w’)e«
where w'=5=w¢~w3"w

using the value of J13 calculated in the Table I1, we see that
this ratio is of the order of 10—3. We can therefore neglect
the multiphonon scattering and compare the data with the one-
phonon formula as we have done in preceeding section. e
therefore conclude that it is not possible to explain the
observed intensity as the basis of a purely harsonic theory

with hydrogen on t-sites only.

A first explanation would be that we have a large enhancement
of the two and three-~phonons processes due to anharmonicity;
it is very difficult in the present status of the theory to

make any quantitive analyses of ths data on this basis.

Another interpretation of these results is that of tue two

frequencies Q%’COZ of tae local modes, one is larger than

(uh and the other is smaller than W giving rise to a reso-
m

nance of the Brout-Visscher type. This suggestion has been

made in another context by Takeno,/ 25 /.
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4.3. A model with motion of protons in the lattice with a band

structure

We observe that the ©¢ and t—-sites are aligned on straight
lines parallel to the [100] directions. I1f o and t-sites
are minima of the potential along this direction, and owing
to the geometry of the crystal, the potential hills between
minima are not very high, and the o~t lines would behave as
open channels for the motion of the proton. We shall assume
as a first approximation that the proton is moving in this
one dimensional potential, that the vanadium ions are fixed
and that the motion of the proton transverse to the channel
corresponds to oscillation of very high (200, 300 meV) energy.

We shall try to correct for the motion of V ions afterwards.

We, therefore, consider the band structure for the proton
moving in a Kronig and Penney L§§_7 potential V(x) defined

as follow :
afp < x & dalv

3.1) Vix) =
W -ala< x< alw

V(x) is periodic w1fh the period a = a°/4, the distance bet-
ween o and t sites. ao = 3,028 AO is the lattice parameter

of the cubic cell. We have determined W so that the distance
between the lowest energy band (lower band) and the first
excited band (mpper band } is approximately equal to the obser—
ved energy of the high energy peek of VHx . This gives the
value of the depth of the potential.

(3.2.) W = 142.5 mev
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With this value the lower band extends on a range Aﬂio=‘l4 meV,
the bottom of the upper band is separated from the top of
the lower band by a gap Eg = 8Y9.7 meV and the width of the
upper band is[}ﬂ1 = 46.(7 meV, In Pig. L?2L7 we have shown
the band structure. We interpret the neutron data by

considering :

(a) scattering in which a proton is scattered from a state
in the lower band down to another state of the same band.
This scattering explains the intensity observed for energy

gain in the range 0=14 meV,

{(b) scattering in which a proton is scattered down from a
state in the upper band to a state in the lower band., This
scattering explains the intensity observed faran cnergy gain in
the range 88.7 - 149.4 neV, the peak being centered around

119 meV. A schematic drawing of the intensity scattered is

given in Fig. 124;7.

The exact cross section to be expected from these transitions
is somewhat uncertaln because it depends on the exact wave
function of the proton which is a sensitive function of the
exact potential shape. ''he population factor relevant for
the calculation is the Boltzmann tactor, since the protons

are far from Fermi degeneracy, at room temperature.

We have to add to this picture two features :

First

The vibration of the lattice will drive the proton perpendi-
cularly to the channel direction with its frequency. l'nus it
is expected to observe an intensity scattered by the proton
analogous with the intensity scattered by vanadium in the
acoustic modes range, superimposed on the intensity shown in

¥ig. /14, /.



- 35 =

Second
The longitudinal vibration of the lattice moving parallel to

the channel will induce transitions between states of the

Kronig Penney potential. Tnis kind of proton-phonon interaction

will give rise to self-energy terms. We can estimate this by

evaluating the number of phonons in the phonon cloud around

>
a proton with wave vector k

IVQL\/\/z ~1R
P CIC |
W = g ok |
@Wﬁ?@tsﬁi<ﬂ qm}qc_l&
(3.2.)

Gmtqgc 2k
qc+?>?1

+ (g 2[) hh

With a sound velocity Os = 5,305 cm/sec, a density F = 57an
interaction constant W = 140 peVA, 0.224 ‘IO—12 ergs, we
obtain a value qc = 2 Mcs/¢& = 1.b 109 cm—1. We have evalua-~
ted <N> for the maximum k = 17 /2a = 4.14 1O8 em | and have

e} -1
assumed q_ = 5.72 100 em .+ The value of <> is then
LN> = 0.276

which means that the phonon-proton interaction is not so large
as to invalidate our previous results. At temperature T,

the shift to be expected for the maximum value of K is of the
order of N n(W )y, . & T = 300°K and T = 600°K,

we obtain for this thermal broadening of the proton bands 3
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L=
i}

300°K N>y, Thtop, = 2.8 nev

=]
0

600°K LNDT (w,,‘) ixwh= 9.08 meV

One seegthat this broadening is not negligible compared
with the original width of the Jower band and that it

increases rapidly with temperature.



Position of

o~-s8ite t-site
Metal ions*
11 111 111
fce OOO_)O22 >3 7 Z..ZZ
1~1 1
—0=y+ =0 <L 00 etc 311 etc
’ 3 ° -— e—— ww—= .
2 2%'} 2 477
111 11 10 1
—_—— — - 0 0L
bce 000 5> 2 o 2? 4 >
00—1-etc. 31 etec.
2 4972

Table I : Coordinates of the octahedral (o) and tetrahedral (%)

interstitial sites in fcc and bec lattices

+ cubic cell of edge a.




..._58_

elastic X maximum

d 1.000 1.014
o

- -1
.'J'1 0.81 10 2 0.89 10

-2
Jj 1.48 10 0.164

- -2
J13 1.44 ‘104 1.74 10

Table II : Values of the coefficients JO,_._I_1 ’_.‘13’_;]_13

at T = 300°K for elastic scattering and maximum

value of
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Conclusion

Using the hydrogen probe in a orystal, it is possible to
deduce from inelastic nwutron scattering experiments the
generalized frequency distribution G(w) of the host lattice.
The actual frequency distribution g{Ww) can be obtained by
correcting G(kD by the energy dependent amplitude of the

hydrogen in the host lattice :

2 2wy(E)

! ()| °©

gl) = G(E)
hydrogen

FPor such a procedure the energy dependent amplitude of the
impurity atom has to be determined experimentally - as it
is possible in vanadium - or theoretically,to be taken into

account.

The inelastic scattered neutron distribution can be fairely
well understood in terms of the general theory of defect
modes. The quasi-elastic scattered neutron distribution can
be interpreted by introducing a finit life~-time for the local

modes,

A proton band theory describes wvery well the high energy
transitions and their corresponding width. The quasi elastic
scattered neutrons can be understood as transition in a split

ground state level.
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Figure captions

Phase diagram of V-H

Spectra of inelastic scattered neutrons by
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Neutron Intensity Ratio

JVH(E)—JV(E) JH(E)

J () = J(8)

R(#) =

as a function of Energy Transfer at H0°C.

Ratio of the Hydrogen to Vanadium mean
square amplitude as a function to Energy
Transfer at »0°C calculated from formula(14).

Time of flight spectrum of (VE-V)=H at H0°C
in the elastic range

he "quasi-elastic" scattered neutron are
fitted to a sum of two weighted Lorenzian
S1, 52 and anPlastic 50 contribution

(0,4 S1 + 0,4 52 + 0,2 50).

Band structure on V-H model.

Schematic picture of intensity scattered by
lower and upper band.
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