
V'

E U R 2 6 3 7 . e
VOL. III

h 'Ά
EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THE COMPILATION AND PROCESSING OF
^m. IBM 1401 PROGRAMS ON IBM 7090

VOL. Ill : THE SIMULATOR PROGRAM

HÄVSh'w

m

gbwBpwH »'¡Τ· M*

It!

This doc under MM
of the European Atomic Energy Community (EURATOM).

Commission

Neither the EURATOM Commission,

epresentation,
to the accuracy, completeness, or usefulness of the information con­
tained in this document, or that the use of any information, apparatus,
method, or process disclosed in this document may not infringe
privately owned rights; or Ü'áií·: _

Assume any liability with respect to the use of, or for damages resulting
from the use of any information,
disclosed in this document.

ι tø M r

κ

This report is on sale at the addresses listed on cover page 4

k

at the price of F F 7,— FB 70,­ M 5,60 Lit. 870 Fl. 5,10

When ordering, please quote the EUR number and the title,

which are indicated on the cover of each report.

If MMm
Printed by Guyot, s.a.

Brussels, January 1966

This document was reproduced on the basis of the best available copy, .HJtUtjjj

"Κ»:Ι;Λ ι*«

W

mmm mm/if,

EUR 2637.e
VOL. III

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. I l l : THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center
Ispra Establishment (Italy)
Scientific Information Processing Center - CETIS
Brussels. January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

EUR 2637.e
VOL. I l l

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. Il l : THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center
Ispra Establishment (Italy)
Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

EUR 2637.e
VOL. I l l

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. Il l : THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center
Ispra Establishment (Italy)
Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

On sale at
PRESSES ACADEMIQUES EUROPEENNES

EUR 2637.e 93, Chaussée de Charleroi, Bruxelles 6
VOL. III

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. I l l : THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center
Ispra Establishment (Italy)
Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained.

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow char ts
given in the fourth volume. Futhermore, the use of the program is explained.

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained.

E U R 2 6 3 7 . e
VOL. III

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THE COMPILATION AND PROCESSING OF
IBM 1401 PROGRAMS ON IBM 7090

VOL. Ill : THE SIMULATOR PROGRAM

by

A.F.R. BROWN

1966

Joint Nuclear Research Center
Ispra Establishment - Italy

Scientific Information Processing Center - CETIS

TABLE OF.CONTENTS

page

The Simulator Program Description 1-1+9
How to Use the 11+01 Simulator 50-60
How to Load the Simulator Immediately-
After the Compiler 60

Introduction

For test purposes or for short production runs it is very
useful to have the possibility of executing a program immediately
after its compilation. Therefore in addition to the IBM 7090/11+01
compiler system described in volumes 1 and 2 a simulator system
has "been developedo It permits execution of IBM 11+01 programs
on the IBM 7090.

The first 1+9 pages of this volume give a description of
this simulator system; continuous reference is made to the
corresponding flow charts. These flow charts are printed on
pp0 68-99 of the fourth volume.

The second part of the present volume is a manual for the
practical use of the simulator system«

S U Μ M A R Y
In the field of non-numerical data processing it is

often more profitable to use a medium-size computer instead
of a big one. Compilation, however, may better be done on a
bigger machine.

The four volumes of this report describe a symbolic
programming language, its compiler for the IBM 709O which
produces IBM 1*f01 object programs, and a simulator permitting
the execution of these programs on the IBM 7090.

This volume is concerned with the simulator program.
The description of this program takes the form of comments
on the corresponding flow charts given in the fourth volume.
Furthermore, the use of the program is explained.

Every character of 'ohe 1401 memory is represented by a

word in the 7090 memory, from MEM to MEM<.
1
>:7999„ The word mark ο Γ the

1401 character is represented by the 3igii bit '>'"■ '>;■ ° 7090 word, the

zone bits by the two low­order bits of the 7090 word décrément, and

the numerical bits by the four low­order bit··, of ti is 70i 0 word

adoreis. Thv..­i, for example, a group­mark with word­mark is represented

by (octal) 400003000017; a blank with a word mark by 400000000000;

the letter A with no word ­nark by 000003000001 ; trie letter Κ with

a word nark by 400002000002; the letter Τ with no word mark by

000001000003; and an equal sign with a word nark by 400000000013.

Fir¿t)C all, the simulatio. pr gran puts octal 400003000017

in the accumulator and performs ANS on c^lls MEM through MEM^7993,

in order to give a "1401 memory" containing characters that are

random, but compatible with this representation (see BEGIN to BRGA in

the listingo) Then t'r.p Λ­ ta f Lie begins to be read from the normal

monitor input tape, This may begin with from 0 to any number of BCD

cards having ****** in col3. 73­78. These are for patching the 7090

program itself, A patch card contains four fields, cols, 1­18, 19­36,

37­5i, and b.5­72. Let the 18 characters In a field be represented

KLLLLLPDI " TAAAAA. LLLLL is trie octal address, relative to the

beginning of the program, into which the patch word represented by

octal PDDDPUTAAAAA is to be stored. If K­0, the decrement DDDDD and

address AAAAA will be unchanged„ If Κ is a minus sign, the address

will be Lncreasel by the absolute address of the starting location, of

the program, before the patch word la ­torad If \ '"■· a plu·* sig:*,

Manuscript received on October 27, 1965.

the decrement DDDDD will be so increased, and if K is a blank,
both the address and the decrement wild be so increased.
(See BEGA through BEGD in the listing.)

The first card in the data file that does not have ******
in cols » 73-78 is the control card, with control characters punched
beginning with column 1, 'and continuing up to but not including the
leftmost blanko At least one of cols. 1-72 must contain a blank,
to terminate the reading of the control characters. See Plow Chart 1
for the interpretation of this csrd. The sequence of the control
characters has nc significance, except that if the character next
after a 1,2,3,4,5 or 6 is not H or L, the program will behave as
if an K were Inserted immediately after the digit, arid before the
character that actually follows it. The significance of the control
characters is as follows:
& The 1401 program will behave as if the i/o check stop switch

were on. If this character does not appear on the control card,
it will behave as if the switch were off. The only practical signi­
ficance of this has to do with the reading of cards from the input
file by the 1401 program. If the "look-ahead" from the card last read
shows that the next card will be BCD, it can be read by the 1401
program in either BCD or binary formo But if the next card will be
binary, and the 1401 program tries to read it in the BCD mode,
the simulation program will put into positions 1 -80 of the 1401
memory exactly what th^ real 1401 would put» Since a card in the
monitor input is treated as binary only if it has a 7-9 punch in

column 1, such a card would cause a validity check if read phys­
ically by a real 1401. If the 1/ 0 check stop switch is on, this
will cause the 7090 program to dump the "1401 memory" and exit.
II' the switch is off, the simulation program will continue normally»

A,B,C,D,E,F,or G The simulation program will behave as if the
corresponding sense switch on the 1401 console

were on. For each of these letters that does not appear on the
control card, the program will behave as if the corresponding
sense switch were off„

Κ Logical switch "HALTS" (located in cell CONSW-7, Immediately
after the cells for the seven sense switches) is set on.

I; this switch is off, the first "HALT" instruction obeyed by the
simulateci 1401 will cause the simulator to output the message
"1401*HALT", dump the 1401 memory, and exit. If the switch is on,
each 1401 "HALT" will cause the 7090 to print two lines on the on­
line printer, and then halt. The first line will show the contents
of the simulated 1401 I-address, Α-address, and B-address registers0

The second. line will contain the message to the operator:
"PROGRAMMED 1401 HALT. PRESS START TO CONTINUE» TURN ON SIGN KEY
AND START TO END 1401 JOB," The 7090 operator can have been instruc­
ted to check the contents of the 1401 address registers as printed,
and continue or terminate the 1401 job accordingly„ If the job
is terminated, a 1401 memory dump will be output before the simulation
program exits.

Τ Logical switch "TPST" is set on. This means that the 1401
program will be initiated by the instructions /080

M(U1001R ,001 B001 as if the "LOAD TAPE" button were pressed.
If this switch is off, because Τ has not appeared among the control
characters, the program will be Initiated by /Ό80 ,001 1001
as if the "LOAD" button on the card reader were pressed.

U Logical switch "UDISC" is set on. This means that the 1401
will "read cards" from the disc unit. If this switch is off,

the 1401 will "read cards" from the normal monitor input tape. The
first card to be read will be the one that immediately follows the
control card in the input file. In order to enable the simulator
to recognize the "last card read" condition in the card reader,
a card with this punched in columns 1-72:
///// THE NEXT CARD WOULD HAVE BEEN PHYSICALLY LAST IN THE 1401 INPUT,
must be inserted in the input file immediately BEFORE the last card.

If the 1401 is to "read cards" from the disc unit, this will
be because the simulator is being used to try out a program which
has just been compiled by the special 7090 compiler of 1401 pro­
grams. In that case, no tapes are to be mounted before, or removed
after, the 1401 job. The description of the compiler will explain
this.

$ Logical switch "CDUMP" is set. This means that before the
simulator terminates the 1401 job, it will output, for

punching, 101 extra cards, The first will have the letters MEMORY
punched on it so as to be recognizable on sight, and the other 100

cards will each contain the information from 80 cells of 1401 memory -
cells 0 to 79 on th'e first of these cards, 80 to 159 on the second,
and so on. The 80 characters are contained in binary form on the
upper half of the card. In the lower half, the eighty word marks from
the same 1401 cells are represented, as a blank for no word mark and
a minus sign for a word mark. The leftmost column of the lower half will
contain 7 and 9 punches as well, so that an absence of word mark
in the corresponding cell appears as "5", and a word mark as "N".

The program for this punching out begins at ENDD and ends just
before PAGE» Refer to flow chart 50.

« Logical switch "REMEM" is set on. This means that the 1401 progran
will not be initiated in the normal way, with the simulation of

the LOAD button. Instead, the reading of binary cards will be simulated.
These cards are supposed to be the contents of memory at the end of
a previous run, whose punching is described in the preceding section.
The first binary card Is used to fill 1401 cells 0 to 79, the second
80 to 159, and so on.

There need not be a full hundred of these binary cards; if there
are only fifty, they villi supply the contents of cells 0 to 3999 , and
so for any other number of them. The series of binary cards is ended
by a BCD card, If column 1 of this card is blank, a normal program load
is then carried out; i.e. the simulation of the LOAD button on the card
reader or the LOAD TAPE button, depending on whether switch "TPST" is
off or on. But if column 1 is not blank, it is to be the leftmost
column of a left-justified decimal number between 1 and 7999; the
simulator will execute a branch to that 1401 address and begin the
program from there.

For an example of how control cards with $ and = might be
used, consider the 1401 SPS assembly program, in the version that
does not use tapes. One loads the first-stage program into the
card reader, followed by the symbolic cards that have to be
assembled. The first-stage program reads the symbolic cards
and punches out some cards. It is then necessary to load the
second-stage program into the card reader, put the cards that
were just punched out behind it, and press LOAD. The second-
stage program does not, however, clear memory before loading itself
in, as it needs to use some tables that have been left behind by
the first-stage program. After the second-stage program, each
stage of the assembly can be carried out separately without
any need to preserve memory contents.

In simulating such an assembly, one would put the following
in the monitor input:
(a) an ID card
(b) the binary program deck of the simulator
(c) an end-of-file card (7-8)
(d) a simulator control card with A$ punched in columns 1-2,
indicating that the program was to be run with sense switch A on,
and that the contents of memory were to be punched out when
the program stopped. The absence of H on the control card would
indicate that the first 1401 halt would end the 7090 job.
(e) the first section of the SPS assembly program on cards, followed
by the symbolic program cards to be assembled. The last symbolic
card would be preceded by an extra card, with:

//////THE NEXT CARD WOULD HAVE BEEN PHYSICALLY LAST IN THE 1401 INPUT,
punched in cols. l-720

In the monitor output from this run, one would get a printed
1401 memory dump, and a series of punched cards consisting of:
(a) the ID card
(b) the cards that would have been punched if the program had been
run on the 1401.
(c) a signal card, with MEMORY punched visibly on it
(d) 100 cards containing the 1401 memory, to be saved
(e) the end-of-file and OK cards.

To do the second stage of the SPS assembly, It would be
necessary to make another passage through the TjdO monitor, with
the following cards:
(a) an ID card
(b) the binary program deck of the simulator
(c) an end-of-file card
(d) a simulator control card with A= punched in columns 1-2
(e) the 100 cards from (d) in the preceding output
(f) a blank card, showing that the start for the present stage
will be with the LOAD button
(g) the 1401 program cards for the second stage of the SPS
assembly
(h) the cards from (b) in the preceding output with an extra· card
containing "///'.//THE NEXT CARD eto." inserted before the last one
(i) an end-of-file card.

8
If it were necessary to begin the second stage by pressing

the START button instead of the LOAD button, one would look at the
memory dump given by the first stage and note the I-address given
after IREG on the second line. This number would be punched in
columns 1 ff. of the card at (f) in the input to the second stage.

The loading of these memory, cards is programmed from BGA to
BGV in the simulator, and forms part of flow chart 2.

(After this digression, we continue the list of control card
characters.)
A DIGIT : This is supposed to name a tape that will be used by the

1401 program» If the digit is 7, 8, 9, or 0, or if the
digit has already appeared on the control card, this is an error,
and the 7090 job will be ended. Only digits 1 to € are valid as
1401 tape addresses, and as there is no reason for repeating a
digit, a repetition is assumed to be an error. These two errors
are shown by two branches to ERROR on the right side of flow chart 1
The program for ERROR is shown on flow chart 50.
There are many branches to ERROR in the flow charts, corresponding
to branches to ERRA, ERRB, ERRC and so on in the simulator programs„
Each of the latter branches causes the printing of a message,
followed by a memory dump. The dump begins at location DUMP in trie
simulator program, but there is no location ERROR.

The message for the present case is: CONTROL.CARD.NAMES.TAPE.
7890.OR.REPEATS.A.TAPE

The digit is to be followed immediately on the control card
by either H or L, indicating the density in which the tape is to
be used. If the next character is not H or L, the simulator

proceeds as if it were followed by H, and the character which

follows the number is treated as a normal control character.

1401 tapes 1, 2, 3, 4, 5, and 6 are represented by 7090

tapes A­5, 3­5, A­ô, 3­5, A­7, and B­7 respectively, and it is

up tu the user to arrange that if necessary, the appropriate tapes

will be mounted on the 7090 before the job, and dismounted

afterwards.

* : Logical switch "TRACE" is set on. This means that before

every execution of a 1401 Instruction by the simulator,

the 1401 address of its leftmost criaracter will be output o.t the

nonitor listing tape. These addresses will be arranged in

columns of 50, 20 columns per page. Sucri pages will appear in the

output mixed with the pages of simulated 1401 printer output.

The recording of each address is done by INS&2 through TRB­1

in the simulato!· program, 3hown in flow chart 17.

The output of each page is done by sub­routine TRD in the

simulator program, shown as flow chart 18.

K : Logical switch "SWICK" is set on. This means that an error

message and termination of the job will take place whenever

an instruction containing an invalid A­ or B­address begins to be

executed. If "SWICK" is off, however, an error will not occur

became of an invalid address in a "no­op" instruction, or because

of an invalid Α­address in a conditional branch instruction if the

condition is not met and the branch does not occur.

IC
Ir these cases, an invalid address is put into the corresponding
address register as 8000; this will cause an error exit at a point
below INS in flow chart 17, if the condition is met and the branch
occurs. Surprisingly, the 8K 1401 at CETIS behaves more nearly
like the simulator with switch SWICK off. But if it is modified in
future so as to be more stringent, it could be simulated with SWICK on.

After the control card has been read and interpreted, the
simulator goes to BEGIB, which is the normal exit from flow chart 1,
and the beginning of flow chart 2. If any digits appeared on the
control card, logical switch TMESG is on, showing that tapes will
be used. If U has appeared on the control card, logical switch
UDISC is on, showing that the job was immediately preceded by
a compilation of a 1401 program by the 7090, and that the card
input is to be taken from discs. In that case, it is assumed that
the ¡s 1m la tor is carrying out a trial, in which some tapes may be
written and trien read back, but no pre-existing tapes are to be
mounted for reading, and no tapes that may be written will be
dismounted for saving. Since the program is being tried for the
first time, it would be inappropriate to slow up the monitor by
tape handling. But if there are tapes to be used, and switch
UDISC is off, the simulator stops the 7090, to allow the operator
to mount any necessary tapes. Pressing START on the 7090 causes
the simulator to proceed in flow chart 2.

Now switch REMEM is tested, and if it is on, cards are read
to restore the memory contents from some earlier run, as described
above for $ and =* on the control card.

n

Then 1401 program execution begins, either by branching to
a starting address given by the card that follows the memory cards
(see the bottom of flow chart 2) or by branching to BEGET in the
simulator program, where either LOAD CARD or LOAD TAPE 1 is simulated.

Flow chart 2 uses simulator subroutines RDKB (read a binary
card from disc - see flow chart 5), RDKD (read a BCD card from
disc - see flow chart 4) and RCD (carry out the 1401 operation
of reading a card in the BCD mode into locations 1 to 80 - see
flow chart 10).

The error exits on flow chart 2 go to 1ER, where the message
E0F*AFTER*C0NTR0L*CARD is printed before the dump.

Flow chart 3 shows simulator subroutine RDKM, which obtains
either a whole BCD card or half a binary card from the discs.

Flow charts 4 and 5 show simulator subroutines RDKD and RDKB.
Flow chart 6 shows simulator subroutines NPD and NPB,

which are used by subroutines RCG and RCE respectively, for
converting a 7090 record (BCD or binary respectively) into a
1401 record, without disturbing word marks in the 1401 cells.

Since character table RDTAB is used by NPD, we may insert
here a description of the character tables in the simulator program.
Let us use "z" to represent the two-bit number contained by
the zone bits of a 1401 character under consideration, and "n" to
represent the four-bit number contained by its numerical bits.
CTAB : This table is used only for simulating the 1401 "compare"
instruction. Given a 1401 character, one finds at CTAB&16z&n
a number, between 0 and 63, which represents its position In the
ascending list of characters for 1401 comparison. After the number,
the character itself is put as a comment in the simulator program

12

listing. For instance, at CTAB&9, one finds "PZE 63 9", showing

that the character 9 has the highest possible value (63) for

1401 comparisono

WDTAB : This table is used in forming records for writing out on

tape in the BCD mode. Given a 1401 character, one will find at

WDTAB&lôz&n the corresponding 7090 character as it would be stored

in memory after reading from a BCD tape or before writing on a

BCD tape. For instance, the 1401 blank has all zone and numerical

bits 0, so WDTAB&16z&n = WDTAB, and at WDTAB the table contains

"OCT 60", and 60 is the octal equivalent of blank in the 7090.

The 1401 character with an Α­zone bit=l, and all other bits=0

gives 16z&n=16, and at WDTAB&16 the table contains "OCT 60",

because this character would be written on BCD tape by the 1401

as a blank.

No table is needed for forming a record to be written in the

binary mode. It is only necessary to put the 1401 zone and numerical

bits next to each other to get the character which the 7090 will

write out in the same way as if a 1401 had written it out in

the binary mode.

RMARK is given as label to the location in table WDTAB that

is used in writing, out the record mark. This has to be altered

from octal 72 to octal 53 during the simulation of 1401 printing.

Since the simulator has to write an output tape that is compatible

with the standard monitor listing program, a record mark must

not be put in the middle of a line, where it would cause the

listing program to break off the line» So record marks are

replaced by dollar signs for this purpose.

RDTAB : This table is used in breaking up records that have been

read in the BCD mode by the 7090 into 1401 characters.

13
When the 7090 reads a zero from tape, it puts octal 00 in the
memory, and at RDTAB&O, the table contains "PZE 10" ("PZE 10,,0"
would be more explicit) showing that the corresponding 1401
character has a numerical part equal to 10, and a zone part
equal to 0. When the 7090 reads a blank from tape, it puts
octal 60 in the memory, and at RDTAB&48, the table contains
"PZE 0", showing that the corresponding 1401 character has all
bits equal to 0.

No table is needed for a record that has been read in the
binary mode, since the 7090 and 1401 read such a tape almost
identically. It is enough to make the leftmost two bits of the
7090 character into the zone bits of the 1401 character, and its
rightmost four bits into the numerical bits.

Flow chart 7 shows the simulator subroutines RCG (read a
BCD card and store its contents in 1401 cells 1-80 without disturbing
word marks) and RCE (read a binary card into 7090 cells N to N&79
and N&100 to N&l79, without disturbing sign bits. If Ν=ΜΕΜ&401,
this corresponds to the reading of a binary card by the 1401.)

Note that when an end-of-file is read on the input tape, this
does not correspond to an end to the deck of cards being read by the
1401 o An end-of-file corresponds to a 7-8 card in the monitor
input, which would be physically read by the 1401 as a tape mark
in cell 1, and blanks In cells 2-80.

It is necessary to allow RCE to read into a part of the 7090
memory outside the simulated 1401 memory because a binary card can
be read by a decimal card read instruction if the I/O check stop
switch is offo The simulator will read the corresponding binary
record from tape; put the 160 characters in a workspace, and then

14
dedtice what the 1401 would have put in cells 1-80. When a binary
card is properly read by the 1401 program, the 150 characters go
into 1401 cells 401-480 and 501-580, and then the deduction for
cells 1-80 is made.

When RCG reads a card containing "//////THE NEXT CARD WOULD
HAVE BEEN etc." it sets switch LASTC on, and makes a special
exito RCG is used only by RCD and RCB, and when either of them
gets the special return from RCG, it immediately re-enters RCG to
read the "physically last" cardo

Flow chart 8 shows subroutine RCF, which converts a binary
card image in 1401 form into the equivalent BCD card image in
1401 memory cells 1-80. It is used by RCD, for reading a binary
card as if decimal, with the I/O check stop switch off, and by
RCB, for obtaining the BCD image that the 1401 produces with
a binary card read.

Flow chart 9 shows subroutine RCK, for doing the reverse.
This is used by RCB, to construct the binary card image for a
BCD card (on the monitor input tape, of course, a card becomes BCD
If it does not have 7-9 punches in column 1, regardless of how
the simulated 1401 is going to read it later) which the 1401 is
treating as binary; and by PCD, which punches decimal cards.
Since the monitor punch-out tape must be entirely binary,
the simulation of a decimal punch instruction has to be done
by writing out the equivalent binary card image.

Flow chart 10 shows subroutine RCD, which carries out the
1401 operation of reading a card in the BCD mode, and storing the
contents in 1401 cells 1-80, without disturbing word marks«
There are two ERROR exits:
(a) If switch LASTC has been set on by a previous card-reading

15
operation, exit after printing TRIED*TO*READ*CARD*AFTER*PHYSICAL*
END-OF-DECK .
(b) if the record on the input tape is binary, the original card
must have had 7-9 punches in column 1 (otherwise it would not have
been accepted as binary by the monitor input program). Such
a card would give a validity check if read by a 1401 in the decimal
mode, and would halt the machine if the I/O check stop switch
is on. The message for this is BCD READ OF BINARY CARD WITH I/O
CKSTOP ON . If the switch is off, switch CDERR is set so that
it can be tested by a 1401 "branch on card read check" instruction.

RCD is used in simulating the LOAD button to start a program
(see flow chart 2) and by the specific routines for carrying out
1401 operations "read", "read and write", "read and punch", and
"read write and punch"; "read and branch", "read write and branch",
and so on. (See flov/ charts 22 and 24.)

Flow chart 11 shows subroutine RC3, which carrier out trie
1401 operation of reading a card in the binary mode, putting its
«binary image into cells 401-480 and 501-580, and putting its
BCD image in cells 1-80, without disturbing word marks.
The possible error exit is the same as the first one described
for RCD.

RCB is used by the specific routines for "read binary" and
"read binary and branch". See flow chart 22.

Flow chart 12 shows subroutine PCD, which carries out the
1401 operation of punching a BCD card from cells 101-18C; and
subroutine PCB, which carries out the 1401 operation of punching
a binary card from cells 401-480 and 501-580. Because the monitor
punch-out tape is binary, PCD must begin by constructing the

16

equivalent binary card image in a workspace«
The binary card image contains 160 characters of significant

information; 8 characters with no significance follow them to
bring the record up to its standard length of 28 7090 words.

PCD and PCB use the subroutine PCE, for which see
immediately below. PCB is used by the specific routines for
carrying out 1401 operations "punch binary" and "punch binary
and branch". PCD is used by the specific routines for carrying
out 1401 operations "punch", "read and punch", "write and punch",
"read write and punch", "punch and branch", "read punch and
branch", and so on« See flow charts 22 and 24.

Flow chart 13 shows subroutine PCE, which is used by PCD and
PCB to decide, before punching out the current card, what pocket
the most recently punched card went into, and to punch a "pocket
change signal card" following it, if it did not go into the same
pocket as the second-most-recently-punched card.

Three 7090 storage locations, KKLC, KKPR, and KPPR, are
used to store the necessary information.
KKLC: "0" is stored in KKLC initially, and after every punching
out of a card, to show that as far as is known so far, the card
will go into the "normal" pocket, called "pocket 0" here.
(See the bottom of flow chart 12.) Whenever a 1401 K4 or K8 instruc­
tion is executed, "4" or "8" is put in KKLC (it is assumed that
not more than one K4 or K8 is done between two punches) to show
that the last card punched was to be sent to pocket 4 or 8.
Just before punching a card, if KKLC still contains "0", it is
known definitely that the preceding card went to pocket 0; if KKLC

17

contains "4" or "8", it is known that the preceding card went to
pocket 4 or 8. If "4" or "8", nothing more need be done by PCE,
because the steps that will be described next have already been
carried out during the execution of the K4 or K8 Instruction
(See flow chart 23.) But if KKLC contains "θ", it is only
now certain that the last card went to pocket 0; "θ" is now stored
in KKPR.
KKPR: This contains the number of the pocket into which the last-
punched card went. However, "θ" here is not definitely valid until
just before the' next card is punched (or the run ends), because
a K4 or K8 instruction could intervene until then.
KPPR: Whenever "0", "4", or "8" in KKPR is known to be definitively
valid, it is compared with KPPP. If they are the saine, the last
card punched went into the same pocket as the one before it*
If they are not, a signal card with "N", "4", or "8" punched
visibly on it is punched after the last card, to show that there
was a change of pocket just before it. This is done by subroutine
KPCH, which is mentioned at the bottom of flow chart 13.

Just after a card is punched (see the bottom of flow chart 12)
the contents of KKPR are stored In KPPR, since what was the most
recently punched card is now the second-most-recently punched card.

18

Flow chart 14 shows subroutines PRN and PWM, which are used
to carry out the 1401 operations of printing the characters In
cells 201-332, and printing the word marks in the same cells.
PRN is used by the specific routines for carrying out 1401 operations
"write", "read and write", "write and punch", "read write and punch",
"write and branch", "read write and branch", and so on.
PWM is used by the specific routines for carrying out 1401 operations
"write word marks" and "write word marks and branch". (See flow
charts 22 and 24.)

The difference between PRN and PWM is that PWM fills-a work
space with blanks and ones, corresponding to absence and presence
of word marks in cells 201-331, and further processing uses the
workspace instead of cells 201-331 as for PRN.

Both of them use subroutine NQD (see flow chart 16) to
convert a series of 1401-type characters into a 7090 BCD record
of 22 words, for eventual listing.

Since the monitor listing program uses the first character
of each record to control line and page skipping, an extra character
has to be written at the beginning of each 22-word record for
listing. The character in 1401 cell 332 is dropped off to
compensate for this, so it can never be printed by the simulator.

For simplicity, the leading character of the print record is
added by saving the contents of 1401 cell 200 in location PHOL,
putting the leading character in cell 200, and using subroutine
NQD on cells 200-331 o (The analogous procedure for PWM is obvious
from the flow chart.) After the print record has been written,
cell 200 is restored from PHOL.

19

The leading character is taken from location CARR, and then
a blank is immediately put into CARR, as blank is the "neutral"
leading character, which has no effect on line or page skipping.
H non-blank will have got into CARR by the direct or indirect action
of 1401 operation "p", (See flow chart 23.) Fl , F2, F3 F§ will
have put 1,2,3...or 3 in CARR, and if this is transferred to
the next print record as its first character, it will cause the
monitor listing program to execute Fl, F2, F3 etc. before printing
the line.

After the print record is written out, location POSTP is
examined. If it contains zero, i.e. a 1401 blank, nothing more
need be done. If it contains 1,2, 3,...or 3, thi.s was put there
by a 1401 instruction FA, F3, FC,...or F), asking for a post-printing
skip to channel 1, 2, 3,...or 12. So 1, 2, 3,...or § is now put into
CARR to provide that skip before the next line is printed, or the
next non-printing SxCip is taken.

If POSTP contains / S or T, one, two or three blank print
records are written. This was the result of a 1401 F/, FS or FT
instruction, asking Tor a skip of one, two, or three lines after
the next print line.

In any case, POSTP is zeroed before the exit from PRN or
FWM.

PRN and PWM use subroutine WRUTE, shown in flow chart 15,
to simulate imperfectly the use of channel 12 on the 1401 print
carriage control tape. Normally, the tape has channel 12 punched

20

just before the bottom of a page, so that before printing a line,
the 1401 program may use a "branch on channel 12" instruction to
see whether it is so near the end of the page that it should
skip to the top of the next one (with an Fl instruction) before
printing. Subroutine WRUTE maintains a count of how many lines
have been written, normally, on the current page. If this count
stands at 50, the simulator will allow a "branch on channel 12"
instruction to branch; otherwise not. When the count reaches 51,
it is returned to r-cero, as if a new page had bee begun. The count,
stored in location WRUTA, is also set to zero whenever a l , 2, 3.o.
or @ is stored in CARR, whether by transfer from POSTP at the end
of PRN or PWM, or directly by the execution of a 1401 instruction
Fl, F2, F3,... or F@. In such a case, a skip to a channel hole in
the carriage control tape makes the existing line count meaningless.
However, Fl is by far the most common, and is used normally to begin
a new page, so the zeroing of WRUTA is appropriate.

Flow chart 16 shows subroutine NQD , which is used only by
subroutines PRN and PWM to convert groups of 1401 characters into
7090 records for eventual printing. The flow chart should be
self-explanatory.

The section of the simulator program from FFF to KKLC belongs
to flow chart 23; see the explanation later on. FFF is a

21

specific routine for the 1401 "control carriage" operation, and
KKK for the "select stacker" instruction.

The section of the simulator program from RCRD to SEVA
belongs to flow charts 22 and 24; see below for these.
It contains specific routines for the 1401 instructions whose
op codes are 1, 2, 3, 4, 5, 6, and 7.

Flow chart 17 shows the section of the simulator that begins
when the 1401 has the address of the instruction it must now execute,
and exits to INS!, IN32, INS4, INS5, INS7, or INS6 according to
the length of the instruction.

If logical switch TRACE is on, the first thing that
happens is the storage of the present I-addres3 for eventual listing,,
Sub-routine DUMPA is used to convert the address to a blank
and five decimal digits (see flow chart 49.) Sub-routine
TRD (see flow chart 18) is used to write out a page of these
addresses if it is full.

If logical switch SWICK is off, and the op-code of the
1401 instruction is Β , Ν , V , or W , switch SWICL is set on;
otherwise SWICL is set off. SWICL is tested by subroutines EVA
and EVB (flow chart 19) when they find an invalid address to
evaluate; if SWICL is on, they do not give an error halt, but
evaluate the address as 8000.

The error messages are:
(a) CUT.OFFo BY.SWITCH.6 1? the 7090 run is terminated with
sense switch six (in order to regain control and get a dump if
the 1401 program seems to be in a loop.)

22

(b) INSTRUCTION*ADDRESS*ABOVE*7999*OR*0 if the address in the
I-address register is not between 1 and 7999.
(c) OP*CHARACTER*HAS*NO*WORD-MARK If the leftmost character of
what is supposed to be the instruction has no word mark.
(d) INVALID*IN3TRUCTI0N*LENGTF. if what is supposed to be the
instruction is 3 or six characters in length, or if the word begin­
ning at the leftmost character of what is supposed to be the
instruction is more than 8 characters long, and the op code is
not slash or comma. Note that if the first character of the
supposed instruction is 3, and its fifth character is blank,
the simulator does not look further to the right for a word mark,
but accepts the instruction immediately as a 5-character
instruction.

Just before INS in the simulator program, there are a momber
of storage locations that are frequently referred to, labelled
LGTH, OP, ABIN, BBIN, ABINH, BBINH, CTRL and DCHAR:
LGTH contains PZE n, where n is the length In characters of the
Instruction being executed.
OP contains the op-code character of the instruction.
ABIN contains PZE MEM&n, where n i3 the contents of the A-address
register of the simulated 1401. This number is correctly set
immediately before and after an instruction is executed, but it is
not altered progressively during the execution as it would be
if it were the Α-address register of a real 1401. This progressive
counting is usually done in index register 1 of the 7030, which
usually contains (-MEM-n), Therefore if the simulator detects
an error during the execution of an instruction and ends the
job with a dump, the dump will show the Α-address register as

it was at the beginning of the Instruction, and this may be
a little different from what the Α-address register of a real
1401 would contain at the moment of the corresponding halt.
BBIN is analogous to A3IN, but for the B-address register.
Index register 2 of the 7090 usually contains (-MEM-n), where
n is the current B-address.
A3INH contains whatever A3IN contained just at the completion
of the preceding instruction. This is needed for the "store
Α-address register" operation of the 1401.
3ΒΙΝΉ is the same for BBEd and the "store 3-address register"
operation.
CTRL contains F¿E MRM&n, where n is the 1401 address of the
current instruction.
DCHAR contains the D-character of the current instruction, if
it; has one, or else the D-character of the last executed instruc­
tion that did have one.

Flow chart 18 shows subroutine TRD, which arranges 1000
addresses stored by the tracing function of the simulator into
a page of 20 columns, to be real column by column, and outputs
It for monitor listing. TRD is used by the simulator just after
INS, if a page i3 full, and by the DUMP routine at the end, to
output the last page of addresses at the end of the job.

The only reason why TRD is at all complicated is that
the page is to be read by columns, but has to be written by rows,
The first row must contain items 1,51,101,....951 ; the second

24

must contain items 2,52,102,0..952, and so on to the fiftieth
row, which must contain items 50,100,150, .·. .1000.

Flow chart 19 shows subroutines EVA and EVB, which
evaluate MEM&a and MEM&b, where a and b are the binary equivalents
of the Α-address and B-address of an instruction, indexed if
necessary. They use subroutine EV (see flow chart 20) to evaluate
the unindexed A- and B-addresses, and the contents of an index
register if necessary.

EVB is used only after control goes to INS7 or INS8, for
a 7- or 8-character instruction. EVA is used twice in the sim­
ulator: just after INS7, for a 7- or 8-character instruction,
and just after INS4, for a 4- or 5-character instruction.

There are two error messages:
(a) If the return from subroutine EV is on line 1, showing an
impossible address in the instruction or in an index register,
BAD*CHARACTER*IN*ADDRESS
(b) If the A- or B-address, before or after Indexing, is above
7999 : A*OR*B*ADDRESS*EXCEEDS*7999*OR*IS*ZERO
However, if switch SWICL is on, because switch SWICK Is off
and the address may not actually get used for memory access,
there is no error exit, and the address is evaluated as 8000.
This will cause an error exit if the address really Is used for
memory access.

Flow chart 20 shows subroutine EV, which evaluates the
binary equivalent of a three-character 1401 address, ignoring the
zone bits of the middle character. EV is used by subroutines

25

EVA and EVB (see above), and by the specific routine for the

1401 operation "modify address" (flow chart 41). The normal exit

is return 2, but if one of the address characters is bad, return 1

takes place (which causes an error in flow chart 41, and in flow

chart 19 if switch SWICL is off.)

Flow chart 21 shows the progress of the simulator between

the time at which the length of a.n instruction has been determined

(INS!, INS2, INS4, INS5, INS6, and INS8) and GO, where the

op­code character is decoded and control is sent to the specific

routine for the 1401 operation. The only subroutines used are

EVA and EVB (see above).

Note that if the second character of a 5­ or 8­character âdstruc­

tion is (, the Α­address is not evaluated. A real 1401 would put a

meaningless number in the Α­address in such a case. Thus the

final state of the simulator would differ from that of a real

1401 if a dump occurred immediately afterwards. If a 1401 program

executed such an instruction and then executed an instruction

that contained no Α­address but used the contents of the A­address

register, the results would be different for the simulator from

what they would be for a real 1401. However, it is most unlikely

to happen.

Just before subroutine EVB is called, the program turns off

switch SWICL unless the op­code is N. Whereas an Α­address may not

be used for memory accees in a conditional branch or a no­op, only

in a no­op can a B­address not be used for memory access.

26

What happens at GO is described below flow chart 21.

If the op-code of the instruction is an impossible one, the error

message is NO*SUCH*OP. Following G03, G02, G01, and GOZ in the

simulator program one sees a TRA to each of the specific routines,

with the op-code character to which it corresponds added as

a comment. TRA ERRE is used for all the impossible op-code

characters, to give the message NO*SUCH*OP.

The flow charts from number 22 on concern these specific

routines.

Here is a table of all the valid op-code characters, with

the symbolic address of the corresponding specific routine for

each one, and the number of the flow chart where it is shown:

OP-CODE ADDRESS FLOW CHART OP-CODE ADDRESS FLOW CHART

1
2
3
4
5

6
7
8
9
A

Β
C
D
E
F

H
Κ
L
M

RCRD
PRT
THR
PCH
FIV

SIX
SEV
SRF
SPF
ADD

BRA
CMP
MVD
EDT
FFF

SBR
KKK
LOD
MOV

22
22
22
22
24

24
24
24
24
38

43
40
33
48
23

33
23
26
28

N
Ρ
Q
S

υ

ν
w
Y
ζ
■

@

Plus 0
•

)

-0

/

y

(

INS
MVR
SAR
SUB
CTT

BWM
EBT
MVZ
MZR
MOD

MPY
ZAD
HLT
CWM
ZSB

CLM
SWM
DIV

17
37
33
38
29

36
36
33
34
41

44

42
46
33
42

35

33
47

27

Notice that for op-code N ("no operation") the simulator
does not go to a specific routine, but branches straight back
to INS to execute the next Instruction, having done nothing but
refill the I-, A-, and B-address registers.

For any op-code not found in the preceding table, there is
an error exit with the message N0*SUCH*0P .

Flow chart 22 shows the specific routines for op-codes 1, 2,
3, and 4. They use sub-routines RCD (flow chart 10) , RCB (flow
chart 11), PRN and PWM (flow chart 14), PCD and PCB (flow chart 12)
Flow chart 24 shows the specific routines for op-code3 5, 6, and 7.
They use sub-routines RCD, PCD, and PRN. From both flow charts
there are error exits for invalid instruction length, with the
message INVALID*INSTRUCTION*LENGTH. Since there 13 no op-code
except N for which all the possible instruction lengths (l, 2,
4, 5, 7, and 8) are valid, error exits with this message occur
in each of the specific routines; and they will not be mentioned
hereafter. From flow chart 22 there are also error exits for
invalid D-character, with the message INVALID*D*CHARACTER.
For every specific routine in which D-characters are used, this
type of error is possible, and so it will not be mentioned again
in connection with the corresponding flow charts.

Note "CLME" on flow chart 22. Every executed branch in a
simulated 1401 program will send control in the simulator to CLME.

28

In the flow charts for many specific routines, there are switches,
represented by lozenges, in which the two exits are marked not
plus and minus, but INS and CLME. Such a switch will have been
preset somewhere in the specific routine to INS if the instruction
is to be followed by the next sequential instruction, and to CLME
if it is to be followed by a branch (which is necessarily to the
A-address).

Flow chart 23 shows the specific routines for the "control
carriage" (F) and "select stacker"(K) instructions.

An F instruction can have a D-character of four kinds:
(a) unzoned, between 1 and @ . In this case, the routine puts the
character in location CARR, where it waits to become the control
character of the next line to be written out for listing; when
the output tape is eventually listed, this character will be
inserted into an F instruction, to produce the same skip to a
control-tape channel as the simulated F instruction would have
given if executed on a real 1401 with the same carriage control tape.
(See flow chart 14, and page 19 above.) But before putting the
D-character in-CARR, the simulator sees whether there is another
D-character already there, waiting to be simulated. If so, a
record of blanks, with the waiting character as control character,
is written out before the new D-character is put in CARR.
On the zeroing of WRUTA, see the top of page 19 above.
(b) plus-zoned, between A and) . In this case, the routine puts
the corresponding unzoned character in POSTP, where it will wait

29

to be used as a control character until after the next occasion
on which a line is written out for printing. If there Is already
a character waiting in POSTP, it is overwritten. Presumably
a real 1401 will disregard, e.g., an FB instruction if it is
superseded by an FA before the next print instruction. See the
second paragraph of page 19 above.
(c) minus-zoned — J, K, or L. In this case, one, two, or three
lines of blanks are written out for printing, and the count of
lines per page in WRUTA is increased accordingly. This corresponds
to a l-,2-,or 3-line skip on a real 1401.
(d) zero-zoned — /, S, or T. In this case, the character is put
in POSTP (obliterating any character that may already be waiting
there), to cause the equivalent of a 1-, 2-, or 3-line skip
immediately after the next occasion on which a line Ì3 written
for printing. See the third paragraph of page 19 above.

The only error exits are for impossible Instruction length
or D-character.

A K instruction can have a D-character of 1, 2, 4, or 8.
Kl and K2 refer to read stacker selection, and as the program does
not simulate this, a D-character of 1 or 2 causes the instruction
to be treated as a no-operation, if two characters long, or an
unconditional branch, if five characters long.

K4 and K8 refer to punch stacker selection. The simulation
of either of these insures that at the end of the 7090 run, a
message LOOK FOR POCKET CHANGE CARDS IN THE CARD OUTPUT will be
output for listing, surrounded by asterisks to give it prominence.
One may consider that the punched-card output of the run consists
of a number of groups of cards, sent into various stackers.

30

For example, suppose a series of 26 cards, which we shall represent
by small letters a to z, is punched into various stackers. In the
following list, each letter is followed by N, 4, or 8, showing
which stacker the card went into:
aN bN cN d4 e4 f4 g8 h8 14 j8 k8 IN mN n4 08 p8 q8 rN sN tN
uN vN wN xN y4 z8
Now the groups are a-c,d-f ,g-h,l, j-k,l-m,n,o-q.,r-x,y and z.
If the first group of cards in the output goes into the normal
stacker, it will not be specially indicated. But apart from this,
a special marker card will be inserted after the first card of
every group. (Note well that the marker card will be after the first
card of a group, not before it as one might expect.) Representing
marker cards by (N), (4), and (8), the 26 cards in the above list
would be interspersed with marker cards in the output as follows:
a b c d (4) e f g (8) h i (4) j (8) k 1 (N) m n (4) o (8) ρ q
r (N) s t u v w χ y (4) ζ (8) .

A marker card has holes punched around its perimeter,
and a large visible Ν 4 or 8 punched in the middle. It is punched
by subroutine KPCH, for which see flow chart 13 and page 17
above. KPCH is entered from subroutine PCE (see flow chart 13 and
pp 16-17 above), from specific routine KKK (which is now being
described), and from ENDK (see flow chart 50 and its discussion
later.)

31

"Flow chart 25" is only a note on subroutine BTD. This
is entered with PZE n in the accumulator, where n is less than
16000, and it puts the equivalent 1401 address into cells
BTDU, BTDV, and BTDW of the 7090 memory. For instance, if n=7999,
the 1401 equivalent address is I9Z, and BTD will put
PZE 9,,3 in BTDU, PZE S in BTDV, and PZE 9,,1 in BTDW.

The working of this subroutine is obvious from its listing
in the 7090 program. It is entered from specific routines
SAR, SBR, and MOD, for op-codes ft, H, and =>.

Flow chart 26 shows the specific routine for the "load" oper­
ation, except when this involves magnetic tape» There is a branch
to I0M0V&1 for "load" instructions that involve magnetic tape,
after setting sense indicator number 1 to show that the tape
will be read or written with word marks.

The routine uses "DOWNA" and "DOWNS", which are not really
subroutines but macros, whose definition will be found at the
beginning of the 7090 program listing.

Flow chart 2 7 shows how DOWNA works — it reduces the
effective A-addres3 by 1, by increasing the contents of index
register 1 by 1. If the contents of the index register are
greater than -MEM-1 , the effective Α-address is 0 or negative,
and there is an error exit with message A*OR*B*ADDRESS»EXCEEDS*
7999*OR*IS*ZERO

DOWNB is exactly the same, except that it modifies index
register 2, and the effective B-address.

32

Flow chart 28 shows the specific routine for the "move"
operation, except when it involves magnetic tape. At IOMOV in this
flow chart, there is a branch to I0M0V&1 (see flow chart 29) for
"move" Instructions that Involve magnetic tape, after resetting
sense Indicator number 1 to show that the tape will be read or written
without word marks. In the "move and binary decode" and "move and
binary code" sections, note that the A- and B-address registers
are tested only once for each pair of characters to be moved, tu
see if a zero or negative address will be involved. If this causes
an error message (A*OR*B*ADDRESS*EXCEEDS*7999*OR*IS*ZERO) and
dump, It may happen one character earlier than a real 1401 would
have halted. IT IS POSSIBLE THAT THE SIMULATOR WILL GIVE AN ERROR
WHEN THE REAL 1401 WOULD NOT HAVE HALTED, if an odd number of charac­
ters is being moved, and if moving one more character than
was actually moved would have caused location 0 of the 1401 to be
used* Since in practice the "move and binary decode" and "move and
binary code" are always used for an even number of characters,
the simulator neglects this possibility.

Flow chart 29 shows the specific routine for instructions
with op-code U, and also the continuation at I0M0V&1 for "move"
and "load" instructions that involve magnetic tape. There is an
error exit (message NO.SUCH.I.0.UNIT.TYPE) if the third character
of the instruction is not U or B. The same error message and exit

33

are given after IOMOV&l if the eighth character of the instruction
is not R or W, and in routine CTT if the fifth character is not
M, R, U, B, or E. I0M0V&1 sets sense Indicator number S if the
tape is addressed in binary mode, and resets it if in BCD; CTT
treats the tape as if it were addressed in the BCD mode in any case.

Both routines use subroutine RWA (see flow chart 30) to
find the 7090 tape address equivalent to the 1401 tape address.
The 1401 address is taken from the fourth character of the instruc­
tion; if this is not a digit between 1 and 6, the error
NOoSUCH.Ir0.UNIT.TYPE occurs. If the 1401 tape number was not
mentioned on the control card (see flow chart 1 and page 8 above),
the job is ended with a dump and the error message 1401.TAPE.
i-im»ffiER.NCT.ON.CONTROL.CARD . Otherwise, the 7090 equivalent tape
addresses is found from the table given in flow chart 1,
and made binary if necessary.

Before a "write" instruction is carried out, it Is necessary
to convert the record as it stands in simulated 1401 memory into
a 7090 record beginning at location THOLD. This is done by subroutine
SQB. (See flow chart 32.) When thi3 has been done, the simulator
tests switch UDISC (see flow chart 1 and page 4 above) to see how
to handle the difficulty created by the fact that a 7090 can read
and write only records containing an integral multiple of six
characters, (it is true that it can read a record whose length is
not an integral multiple of six characters, but it does so as if

34

the record ended with enough zeroes to fill out the last word,
and there is no way for a 7090 program to find out whether zeros
at the end of the last word came from the tape, or were supplied
in this way.) If switch UDISC is on, tapes are not to be mounted
or dismounted in connection with the run, and the simulator can
use the tapes without regard to other programs. It lengthens every
record which it writes by an extra word at the beginning; this
word is PZE n, where n is between 1 and 6. n is the remainder
after dividing the number of characters in the 1401 record by 6,
or n is 6 if this remainder is 0; thus n is the number of valid
characters in the last word of the 7090 record. In reading,
the simulator treats the first 7090 word of a tape record as
not forming part of what has to be converted to a 1401 record, but
as containing PZE n, where n is the number of valid characters in
the last 7090 word.

If switch UDISC is off, however, the reading and writing of
tapes has to be as nearly as possible compatible with what a real
1401 would do. If a record to be written does not contain an
integral multiple of six characters, it is lengthened in its
7090 form by from 1 to 5 blanks if BCD, or from 1 to 5 zeros if
binary. In reading, there is no problem for the simulator; every
record on tape contains, as far as the 7090 is concerned, an
integral multiple of six characters. Of course the 1401 may read
less than the full record on tape, if the memory space is terminated
by a group mark with word mark; in that case the simulator may
treat the record exactly as a real 1401 would have done.

The choice according to switch UDISC is made, in the simulator

35

program, by making location RTPDN contain the command TCH RTPD
if the switch is off, or IOCP RTPDB,,! if it is on. RTPDB will
in any case contain PZE n, where n is the number of valid characters
in the last word of the record. This is for writing. For reading,
substitute R for W in the above 7090 symbolic addresses. Then
RTPDB will not, of course, contain the correct PZE n if the switch
is off. The choice of command for V/TPDN and RTPD:·,' is made soon
after 3EGLA, near the beginning of the Simulator program, if
switch. UDISC is set on during the reading of the control card.

After a "read" Instruction has been partly carried out
by a 7090 read, it is necessary to convert the record in 7090 form
into a series of characters in the simulated 1401 memory. This, is
done by subroutine S PB, for which see flov; chart 31 .

The redundancy and end-of-file/end-of-reel switches,
represented by 7090 celio TAPER and ENDRL, are set and reset
according.to the same logic as a real 1401 would use; with one
exception. If a tape mark is read in the binary mode by a 1401,
the tape check indicator is set on; the simulator does not do this.
However, one does not normally test for redundancy after testing
for end-of-file, and the indicator is automatically turned off
before the next reading or writing of a tape by either a real
1401 or the simulator.

36

Besides subroutines RWA, SQB, and SPB, the routines on

flow chart 29 use subroutine LVSYS. This is not flow-charted.
It allows the simulator to make sure that data channels A and Β
are inactive, and then to disable the channel traps so that
the simulator and the "IOEX" program (used by the simulator
for input-output in all cases except the simulation of 1401
tape orders themselves) will not conflict. For reasons described
in the 7090 manual in connection with channel trapping, it is not
enough to execute TCOA * in order to be sure channel A is quiescent,
if channel A is enabled for trapping. The program to which trapping
sends control must store in a memory location some indication of
whether it is using the channel or not. In fact, "IOEX" uses
locations CHXAC, CHXAC&l, and so on for channels A, Β and so on,
storing a zero in a word whenever it has finished with the corres­
ponding channel, and a non-zero whenever It starts to use the
corresponding channel. As "IOEX" stands at present in the IBSYS
system, the octal addresses of the locations for channels A and B,
i.e. CHXAC and CHXAC&l in the symbolic version of IOEX, are
01104 and 01105. If IOEX is altered so as to change these absolute
addresses, then the two references in subroutine LVSYS of the
simulator will have to be changed accordingly.

At ENSYS on flow chart 29, and in the simulator program
listing, the simulator enables the channel traps from location
735 (octal) so that input-output will be through and under the

37

control of IOEX until the next time a 1401 tape operation
is simulated. This enablement may not actually be necessary,
as it is probably done whenever a routine of IOCS is entered.
At the moment, 735 is the location from which the traps are
always enabled in IOEX; if this changes in future, the instruction
at ENSYS in the simulator will have to be changed correspondingly,
or eliminated if it is in fact unnecessary.

Flow chart 31 shows subroutine SPB, for converting 7090
records into records in the simulated 1401 memory. The calling
sequence is explained at the top of the flow chart.

If sense indicator S is on, the record is in the binary mode,
and if off, in the BCD mode. If binary, each 1401 character can
be deduced from a 7090 character merely by spreading the zone
bits apart from the numerical bits. But if BCD, it is necessary
to use table RDTAB — see page 12 above.

If sense indicator 1 is on, the record is to be put into
1401 memory as if by a "read/write with word marks" instruction
(load); and if off, as if by a "read/write without word marks"
instruction (move).

By "0-8-5" in the flow chart is meant the character that would
be punched on a BCD card as zero, eight, and five punches. When
reading a tape with word marks, it is possible that the last
character of the record may be 0-8-5. Being the last character,
it cannot indicate a word mark on the following character, and so
it is treated as a normal character. This may or may not be what the
real 1401 does.

38

Subroutine SPB uses subroutine SPBL, which is shown at
the side of the same flow chart. It also uses macro UPB, which
is diagrammed in the same flow chart. UPB increases the effective
B-address by 1, by reducing the contents of 7090 index register
2 by 1. If the contents of this index register are less than
-MEM-7999 , the effective B-address is above 7999, and there is
an error exit with message A*OR*B*ADDRESS*EXCEEDS*7999*OR*IS*ZERO .

The macro UPA is the same as UPB, except that it
uses 7090 index register 1 for the simulated 1401 Α-address register.

Subroutine SPB is used only by the routine on flow chart 29.

Flow chart 32 shows subroutine SQB, for converting 1401
records into 7090 records. The calling sequence is explained
at the top of the chart.

Sense indicators S and 1 are used as for subroutine SPB.
SQB uses subroutine SQWA, which is shown at the right of

the same flow chart.
There is an error exit with message TRIED*TO*WRITE*ZERO-LENGTH*

TAPE*RECORD if "Β" in the calling sequence is the address of a
group mark with word mark; i.e. if the B-address of a 1401 tape-write
instruction is the address of a group mark with word mark.

Subroutine SQB is used only by the routine on flow chart 29.

39

Flow chart 33 shows the specific routines for op-codes
,) Q H D and Y

There are no peculiar error exits. However, for "store A-regist-
er" and "store B register", one may note that the error for A-address
too low is not found by the simulator 'until after the storing has
taken place, but before the Α-address register has been altered.
A real 1401, on the other hand, would adjust the Α-address register
step by step, and halt when it reached zero, leaving one or two
characters unstored.

Flow chart 34 shows the specific routine for op-code Ζ .
There are no special error exits or remarks. Flow chart 35
shows the specific routine for op-code / . There are no special
error exits or remarks.

Flow chart 36 shows the specific routines for op-codes W and
V. There are no special error exits or remarks. Flow chart 37 shows
the specific routine for op-code P, There are no special error
exits or remarks.

Flow chart 38 shows part of the specific routines for op-codes
A and S. Except for the case of a 4-character subtract instruction
(subtract a field from itself), control goes down the left side of
the flow chart while some preliminaries are being carried out,
and then there is a branch at the bottom to either ADTRU, for a
true-add operation, or ADCMP, for a complement-add. ADTRU is in
the middle of the top of the sam· flow chart, and ADCMP constitutes

40

flow chart 39.
No subroutines from other flow charts are used on flow

charts 38 and 39. At various places on these two flov; charts,
it is noted that there is an error exit if the digital part of
a character is greater than 10. The message for this is
ADD*OR*SUBTRACT*MEEIS *N0N-DIGIT .

In a true-add operation, the sign of the 3-fieid is left
unchanged; but after a complement-add, the rightmost digit of
the B-field will always be either plus-zoned or minus-zoned,
according to the sign of the result, and never unzoned or zero-
zoned, even though it was unzoned or zero-zoned initially and
is still positive.

In any character of the A- or B-field, blank numerical bits
are treated like zero numerical bits (i.e. binary xxOOOO like
xxlOlO). In the result in the B-field, however, a zero in any
position will be represented by zero, not blank, numerical bits.

Zone bits and overflow are handled as described on page 19
of the IBM System Operation Reference Manual for the 1401
and 1460, File Number 1401/1460-01, Form A24-3067-0.

Flow chart 40 shows the specific routine for op-code C.
There are no special error exits or messages.

Flow chart 41 shows the specific routine for op-code =
(modify address). This uses subroutines EV (see flow chart 20
and page 24 above) and BTD (see page 31 above). The only peculi-

41

arity is on the right hand side of the flow chart, where the

A­ and 3­address registers are altered and tested for validity

in a slightly different manner from that used by a real 1401.

This makes no difference to the running of a program, but if there

is an error halt here, the A­ and B­addresses and the

contents of the 3­field will not be quite the same as when a real

1401 halted.

There is another error exit if either the Α­field or the B­

field contains an impossible character, as shown by return 1 from EV.

Flow chart 42 shows the specific routines for the "zero and

add" and "zero ano subtract" operations. The only peculiarity is that

for a four­character instruction, the error exit for A­address

reduced to zero will leave the A­ and 3­address registers containing

different numbers from what they would contain at the corresponding

halt on a real 1401 ,

Flow chart 43 shows the specific routine for op­code 3.

There are no special error exits or messages.

Note that a "branch on character equal" with K or Ζ as its

D­character resets the end­of­tape or overflow indicator, respec­

tively, whether it results in a branch or not.

A five­character branch instruction with 9 as its D­character

is treated as a "no operation". However, a five­character branch

with ¿ as ics D­character (represented by "8­4" in a lozenge

on trie flow chart) is treated as a branch if location WRUTA

contain?. 50; as explained above on page 20, the simulator attempts

42

to simulate a printer with a carriage control tape that has
a punch In channel 1 at the top of the page, and a punch in
channel 12 fifty lines below it.

A five-character branch instruction with minus-zero,
record mark, or (as its D-character is treated as a no-operation,
because there is no simulation of punch errors, printer errors,
or the kind of processing check detected by "branch on processing
check".

A five-character branch instruction whose D-character is
none of 9 © K L minus-zero / S Τ U Z record mark (A B C D E F blank
or plus-zero is treated as an error.

Flow chart 44 shows the specific routine for the "multiply"
operation. For the sake of -simplicity and speed, this is not
carried out by the method a real 1401 would use. The multiplier
and multiplicand are evaluated as binary numbers, by subroutine
MPA (see flow chart 45); they are multiplied by a 7090 multiply
instruction, and the product is converted to decimal form and
stored in the simulated 1401 memory by subroutine MPB (see flow
chart 45).

If K, the length of the product field, is greater than
21 characters, or if P, the length of the multiplicand, is greater
than 10 characters, or if K-P, the length of the multiplier,

43

is greater than 11 characters, this is arbitrarily considered to
be an error; the message before the dump is PR0DUCT*0VER*21*0R*
FACT0R*0VER*10*DIGITS . If K-P is less than 2, this is a genuine
error; the product field and the multiplier are too short; and the
error message is PRODUCT*FIELD*TOO*SHORT .

The 7090 multiplication is done with positive factors. If
the product is not less than the 35th power of 2, it cannot be
contained in one 7090 word or registei'; it is necessary to divide
it by the 10th power of 10 and use the remainder from this
division to fill in the low-order ten digits of the 1401 product,
and the quotient to fill in the remaining high-order digits.

The factors are lim ted to ten digits each because all
ten-digit numbers are less than 2 to the 35th, while an eleven-
digit number may not be. The product of two such factors cannot
be as great as 10 to the 20th, so dividing a long product by
10 to the 1Oth must give a remainder and a quotient that are both
less than 10 to the 10th, and no division overflow can result.

Flow chart 45 shows subroutines MPA and MP3, which are
used by the specific routines for "multiply" and "divide" (see
immediately above for multiplication, and see flov; chart 47
below for division.)

MPA ignores the zone bits of the characters. If the numerical
bits of a character are all zero, it is treated as a zero; if
they add up to more than 10, there is an error exit.

44

MPB converts a binary 7090 number to an unsigned 1401
number. There are no error exits.

Flow chart 46 shows the specific routine for the "halt"
operation. There are no special checks or error exits. If
the control card contained an H, logical switch "HALTS" is on,
and the 7090 prints an on-line message for the operator,
showing the contents of the I-, A-, and B-address registers as
decimal numbers. The program then halts. If the sign key on
the 7090 console is off when the start button is pressed,
the 1401 program obeys the halt instruction and continues as if
the 1401 start button had been pressed. Otherwise, pressing the
7090 start button causes an exit like an error exit, with the
message "1401 HALT".

Though it is not shown explicitly in the flow chart, the
routine uses subroutine DUMPA (see flow chart 49 below) to
convert the register contents into decimal form for printing.

Flow chart 47 shows the specific routine for the "divide"
operation. This is not carried out by 1401 logic, but by
a 7090 division. However, this makes no difference to the
result as long as the divisor and dividend are not too long.

If K, the length of the divisor, is greater than 10 charac­
ters, there is an arbitrary error exit with the message
DIVIS0R*0VER*10*DIGITSo This is because a-decimal number of

45

more than 10 digits may not be less than 2 to the 35th, and
so may be too large for a 7090 divisor.

The B-address of the instruction refers to the leftmost
digit of the dividend. The check for a sufficient number of
positions to the left of this, before a word mark is encountered,
is not made yet» The next check after K is found verifies that
all positions to the left of the character at 3, up to and Inclu­
ding the nearest one with a word mark, contain zeros. This check
is not made by a real 1401, but if those positions do not contain
zeros, the real 1401 would give a wrong answer. The message for
this error exit is LEFT*END*0F*3*FrELD*N0T*ZER0 .

The next part of the routine begins at the 3-position and
looks rightward until it finds a character with zoning. If this
is not standard plus or minus zoning, i.e. is zero zoning, there
is an error exit with the message DIVIDEND UNSIGNED OR IMPROPERLY
SO. If a character with a word mark is found before a signed
character, the same error exit and,message occur. Let Ρ be the
address of the signed character. Then P-B&l is the length of
the dividend. If this is greater than 20 characters, an arbitrary
error exit occurs, with the message DIVIDEND*0VER*20*DIGITSo
The reason for this is that a longer dividend might not be email
enough for a 7090 dividend and even if small enough might
produce a 7090 divide overflow with a 10-digit divisor.

46

There are no further error exits from this routine.

If the divisor has been found to be zero, division does not

take place, and the same procedure is followed as for a real

1401.

The binary equivalent of the divisor is found by subroutine

MPA (see flow chart 45 and page 43 above). If it is longer than

10 digits, its high­order part is evaluated and multiplied

by 10 to the 10th, and added in double­precision addition to

the binary equivalent of the low­order 10 digits. As this sum

stands in the AC, containing "x", and the MQ, containing "y",

it is "equal to χ times 2 to the 35th, plus y. If χ is not less

than the binary form of the divisor, division cannot take

place immediately. The divisor is repeatedly multiplied by 10,

until a number greater than χ is obtained. Trie dividend is

divided by this number; the quotient Ql and remainder Rl are

saved. Rl is now divided by the original dividend, giving a

quotient C¿2 and remainder R2. R2 is the binary form of the

final remainder. The final quotient is Q2 plus (Ql multiplied

by 10 as many times as the divisor had to be multiplied by 10).

If the number of multiplications by 10 is "z", it is known that

Q2 is smaller than 10 to the z­th. (Rl was smaller than

the divisor times 10 to the z­th, so Rl divided by the divisor

must give a quotient, Q2, smaller than 10 to the z­th.) So

the program can combine Ql and Q2 in the 1401 memory by putting

the decimal equivalent of Q2 in the low­order ζ positions of the

47

quotient field, and the decimal equivalent of Ql in the remaining
high-order positions.

If the length of the dividend is less than 10 digits, or
if the high-order half of a longer dividend, when waiting in the
AC and MQ to be divided, is greater than the divisor, the
dividend can be divided immediately by the divisor, and the
quotient and remainder are each converted to decimal numbers
simply, and stored in the proper fields in the 1401 memory.

Flow chart 48 shows the specific routine for the "edit"
instruction. .The only special error exit occurs if the character
at the Α-address has a word mark; the message for this is
TRIED*T0*EDIT*A*1-CHARACTER*FIELD . This routine uses no
sub-routines.

The editing is done as if by a 1401 without the "expanded
print edit" feature.

Flow chart 49 shows the subroutine DUMPA, which converts
a 7090 address into a blank and five decimal digits that give
the 1401 equivalent of the 7090 address. "MEM", the 7090
address of location 0 in the simulated 1401 memory, is first
subtracted from the number, and the remainder Is converted to
decimal.

DUMPA is used in flow chart 17 (see page 21 above)
to make printable addresses when tracing has been requested on
the control card; by the specific routine for the "halt" operation

48

(see flow chart 46 and page 44 above) to get printable addresses
for an operator message; and by the routine DUMP (see flow
chart 50 immediately below) to get printable addresses for
listing in the final dump.

Flow chart 50 begins at ERROR, which is not actually the
name of an instruction in the simulator program, but represents
the various points in the program at which error messages are
printed, and from which the program always branches to DUMP.
(See the definition of the macro ERRR at the beginning of the
simulator program listinge)

Beginning at DUMP, the following things are done:
(1) If the control card contained an asterisk, so that logical
switch "TRACE" is on, and if a partially-filled page of
addresses is waiting to be written out, subroutine TRD (see flow
chart 18 and page 23 above) writes it out.
(2) The contents of the I-, A-, and B-address registers are
written out for listing, along with "OFLO", "TPCK", "ENDRL",
"A=B", "UNEQ", "AHIGH", and "BHIGH". After each of these words,
either "ON" or "OFF" is written, according to whether each of the
indicators for overflow, tape redundancy, end-of-file or end-
of-tape, A = B, A not =» B, A greater than B, or A less than Β
is on or off.

49

(3) A dump of the 1401 memory is written out for listing.
(4) If location KCARD contains non-zero, at least one K4 or
K8 instruction has been simulated, and the punched-card output
will contain one or more pocket-change cards (see flow chart 23
and page 29 above). As a warning,
*********** **
* LOOK FOR POCKET CHANGE CARDS IN THE CARD OUTPUT *
***********************************x** * ********** **

is written immediately after the dump.
In addition, if the last card punched was sent by the

program to a different pocket from the one preceding it
(or if only one card was punched and it went to pocket 4 or 8)
the appropriate pocket change card is written out for
punching.
(5) If the control card contained a dollar sign, so that
logical switch CDUMP is set, a card with MEMORY visibly punched
on it is written out for punching, followed by 100 binary
cards that reproduce the contents of the 1401 memory. (See
pages 4 ff. above.)
(6) CALL EXIT is executed, terminating the 7090 job.

­ 50 ­

HOW TO USE THE 1401 SIMULATOR

1. Get a copy>of the small binary program deck (about 20 cards).
Substitute your ID card for the sample ID card near the beginning

of this deck. If the 1401 program may punch out some cards, put a
"Punch Binary Cards" control card immediately before the H) card.

2. After the last card of the program deck, put a 7­8 card. Then
put a control card for the simulator. This card will contain

various characters, punched continuously from column 1. The
program will stop scanning the control card when it encounters
the first blank column, so any characters punched to the right
of the first blank will be ignored. I.e., punch the control
characters continuously, with no blanks interrupting them.

The control characters and their meanings are as follows:

& (12­punch) The simulated 1401 will behave as if the I/O check
stop switch were on. If this character does not appear on the

control card, it will behave as though the switch were off.

* Every time the simulated 1401 is about to execute an instruction,
the address of that instruction will be written out, to

help in tracing errors. The address will be in the form of §■'
five­digit number; the numbers will be arranged in columns CÎ fifty,
twenty columns to a page. Such pages are to be read by columns,
not by rows. They will be mixed up in the output with whatever
pages the simulated 1401 has printed, but this should cause no
confusion.

If the control card does not contain an asterisk, this tracing
will not be done.

A B C D The simulated 1401 will behave as though every sense switch
E F or G whose letter appears on the control card were on, and

every sense switch whose letter does not appear on the con­
trol card were off.

H Whenever a programmed halt occurs in the simulated 1401
program, the 7090 will halt, and print a message on­line,

showing the contents of the I­address register, Α­address register,
and B­address register, and telling the operator:
PROGRAMMED 1401 HALT. PRESS START TO CONTINUE. TURN ON SIGN KEY
AND START TO END 1401 JOB.
The 7090 operator must have been instructed to check the contents
of the 1401 registers as printed, and continue or terminate the
1401 job accordingly, by having the sign key on the console
off or on, respectively, when the start button is pressed.

If there is no H in the control card, the first programmed
halt in the 1401 program will terminate the job automatically.

Κ Whenever an instruction with an invalid A­ or B­address is
executed, the job will be terminated as for a 1401 error halt.

If. there is no Κ in the control card, invalid addresses in "no­op"
instructions will be tolerated, and so will invalid A­addresses
in conditional branch instructions if the condition is not met
and the branch does not take place. This is more nearly the way
the 8­K 1401 at CETIS works at present.

- 51 -

1401
n
II

It
It

π

t ape number
It
It

tl

π
η

1
2
3
4
5
6

IH 2H 3H 4H 5H 6H For every tape which the 1401 program will use,
IL 2L 3L 4L 5L 6L the number (i.e. the 1401 address number) and

density must be given as two characters on the
control card. If the 1401 program addresses any tape that has not
been mentioned on the control card, the job will be terminated
automatically.

corresponds to 7090 tape A-5.
It tt It π Q _ 5 #

" A-6.
" " " " B-6.
" " A-7.

Just as one would instruct the 1401 operator, in terms of 1401 tape
numbers, what tapes to mount on what units, so one must instruct
the 7090 operator, in terms of the corresponding 7090 unit numbers,
what specific tapes and work tapes to mount before the Job and
remove afterwards.

If the control card contains any 1401 tape number(s), the
simulator program will halt when it has finished reading the
control card. In this case, it is essential to instruct the opera­
tor, on the job card, either (a) to make sure the proper tapes
have been mounted, and then press START, or (b) simply to press
START if only work tapes will be used by the 1401 program,
(it is possible to get messages printed on-line by the 7090, which
the operator will look at during this halt. This involves putting
comment cards somewhere near the ID card in the input deck; it
is left to the reader to investigate this detail of the IBJOB
system.)

If the control card does not contain any tape numbers,
the simulator does not halt automatically at this point.
Τ The 1401 program will be initiated by simulating the pressing of

the LOAD TAPE button, i.e. by the sequence of instructions
/080 ,001 M(U1001R B001

If the letter Τ does not appear in the control card, the pro­
gram will be initiated by simulating the pressing of the LOAD
button on the card unit; i.e. /080 ,001 1001
$ At the end of the job, the contents of the 1401 memory will be

punched out on 100 binary cards (or rather, written on tape
for*later off-line punching.) These 100 cards will follow all the
cards that may have been punched out by simulated 1401 instructions,
and they will be preceded by a marker card with MEMORY punched
visibly on it. The MEMORY card should be discarded, and the
100 cards that follow it preserved for possible use as explained in
the next paragraph. If $ does not appear in the control card,
these 101 cards will not be punched.

- 52 -

= If the equal sign appears on the control card, the control card
must be followed Immediately by 100 cards that were punched after

a previous job, as explained in the preceding paragraph. These
cause the 1401 memory-to be returned to the state it was in at the
end of that previous job. The next card after those 100 cards must
have either blanks or a 4-digit decimal number punched in columns 1-4.
This is a "transfer" card. The next card after the transfer card
can be thought of as being the first card in the deck placed in the
card reader of the simulated 1401. If the transfer card is blank,
the program is initiated by simulating the pressing of the LOAD
TAPE button or the LOAD button on the card reader, depending on
whether the control card contained a T. Otherwise, the four
digits at the beginning of the transfer card are taken to be a
1401 address, and the program is initiated by branching to that
address.

If the equal sign does not appear on the control card, the
1401 memory initially contains random information. The first card
after the control card can be thought of as the first
card in the deck placed in the card reader of the simulated 1401.
The program is initiated as described in paragraph Τ above.
U If this letter appears on the control card, the simulated

card reader will not take the cards that follow the control
card as the input deck. Instead, it will assume that the immediate­
ly preceding jbb in the monitor was a compilation which left
a copy of the program(s) and data in the common" section of
disc storage. Therefore, the simulator will take what is in that
part of the disc storage as the input deck. See *"How to Load the
Simulator Immediately after the Compiler", at the end of these notes.

If the control card does not contain "U", the simulation of
card reading takes place in the ordinary way, as described in the
various notes on the simulator program.

3. After the control card, if it contains no =» , or after the 100
cards that must follow it if it does contain = , put whatever

cards would be loaded In the card reader of a real 1401. If it
happens that the program does not call on the card reader, or if
the control card contains "U", put a few blank cards there anyway —
say 10.

Before the last card of the deck that would be loaded in a
real 1401, insert a card with:
//////THE NEXT CARD WOULD HAVE BEEN PHYSICALLY LAST IN THE 1401 INPUT.
punched in columns 1-70, and blanks in columns 71-72.

This artificial indication of the end of the input deck is
needed because a tape mark on the monitor input tape does not
represent the end of the deck; it represents a 7-8 card.
Whenever the card input to the simulated 1401 includes a Card with
two holes in column 1, in the 7- and 8-rows, this will become, on

- 53 -

the input tape for the 7090 monitor, a tape mark. When the simulated
1401 meets a" tape mark in its "card input, it Interprets It as a
card with the 7-3 punch in column 1, and blanks in columns 2-80.
If a card has a tape mark in column 1 and information in
columns 2-80, the simulated 1401 is unable to read the information.
4. After the last card of the 1401 input, place a 7-3 card,

$I3SYS and $EXECUTE FORTRAN control cards, and another
7-C card.
5. On the job card, you may instruct the operator that if the

time limit is exceeded, he should set sense switch 6
of the 7090 to on; this should cause the simulator to terminate the
job.
6. Apart from this use of sense switch 6, and of key S at a

programmed 1401 halt, the sense switches and the 36 input
keys on the 7090 console are Ignored by the simulator.
7. Whenever a 1401 job is terminated, whether through a programmed

halt or through an error halt, the simulator writes an appro­
priate message on the monitor listing tape, then the. contents
of the simulated I-address, Α-address and B-address registers, and
the settings of all the simulated indicators, and finally a complete
dump of the simulated 1401 memory.
8. Apart from input-output, multiplication, and division, the

simulator is intended to behave just like the 1401-2 at CETIS.
Here are the essential remarks about the simulation of these
functions:
CARD READING: Any cards that must be read by the simulated 1401

will have to be read by the monitor card-to-tape
program. This is naturally beyond the control of the simulation
program, and it means that only two types of cards can be
accepted — those in which all 80 columns contain something that
would be valid for 3CD reading (i.e, not more than one numerical
punch, or 8 with one other numerical punch; not more than one
zone punch, but 0 may count as numerical in the combinations &0
and -O); and those that have rows 7 and 9 punched in column 1,
but not rows 4, 5, 6, and 8 in that column.

The former type of card will be converted to a BCD record by
the card-to-tape program, unless column 1 contains the 7-8 punch
for a tape mark. Then the card will be converted to a tape mark
on the tape, regardless of the contents of columns 2-80.

The latter type of card will be converted to a binary
record.

A BCD card image on the input tape can be read by a simulated
1401 instruction for either binary or BCD reading. But a binary card
image represents a card with 7-9 in column 1, which would certainly
cause a read check if a 1401 attempted to read it with a BCD
instruction» Therefore a simulated BCD read instruction,
applied to a binary record on the input tape, will cause a read check

- 5k -

but will put Into the 1401 memory just what a real 1401 would have
read from the original card, if it tried to read it in BCD.

This is the only occasion on which a read check can occur for
the simulator. If the control card contained a plus sign,
the I/O check stop switch is simulated on, and there is a dump and
termination of the job, representing an error halt on a real
1401. Otherwise, the card read check indicator can be tested
and turned off by the appropriate 1401 instruction.

The real 1401 has the instructions Kl and K2 for directing
cards into special pockets after reading them. No attempt to
simulate this is made, and such instructions are treated as
no-operations or as unconditional branches, depending on whether
they are 2-character or 5-character instructions.

CARD PUNCHING: As already pointed out, if the simulated program is
going to ounch any cards, it is necessary to insert £

"PUNCH BINARY CARDS" control card just before the ID card in
the input to the monitor.

The 1401 program is free to punch BCD or binary cards. They
will come back to the programmer, in the monitor output, with the
usual extra cards before and after — at least an ID card before
and a 7-8 card after.

The real 1401 has the instructions K4 and K3 for directing
cards into special pockets after punching them. If any such
instructions are executed during a job, a message will be printed
at the end of the monitor output:

* LOOK FOR POCKET CHANGE CARDS IN THE CARD OUTPUT *

When the output cards are obtained, one should do the following:
(a) look through the output deck for any "pocket change cards" (if
the message quoted above was not printed, there will not be any).
These cards have* a double row of holes punched around all four
edges, and a visible N , 4 , or 8 punched in the center.
Every pocket change card should be moved forward one place in the
deck; i.e., it should exchange places with the card that immediately
precedes it.
(b) if the first card in the deck is not nov; a pocket change card,
put a pocket change card with N in the center at the beginning
of the deck.
(c) deal the cards into three piles, an N pile, a 4 pile, and an 8
pile. Whenever a pocket change card is reached, it should be thrown
away, and all the cards following it should be dealt onto the
pile it named, until the next pocket change card is reached.

One will then have, in the N pile, all the cards that a real
1401 would have punched into the normal pocket; in the 4 pile,
those that a real 1401 would have punched into the 4 pocket; and
in the 8 pile, those that a real 1401 would have punched into
the 2/8 pocket.

- 55 -

Obviously, steps (a), (b), and (c) above can be combined
in a single handling of the output deck, but tho explanation is
clearer if the steps are separated.

No punch checks can occuro

PRINTING: The simulation program will behave like a 1401 in which
the rightmost position on the printer always printed

blank, whatever character 332 in the memory might be.
Whenever a real 1401 would print a record mark, the simulator

will produce a dollar sign in the same position. This is because
the output from the simulator has to be listed by the ordinary mon­
itor listing program, which treats every record mark as an end-of-
line signal instead of printing it.

The simulator can simulate F-instructions by writing out
records with the appropriate control characters at the beginning,
which the listing program will translate into F-skips
afterwards. However, the output has to be listed by the ordinary
monitor listing program, so only channels 1 and 12 of the printer
carriage control tape will be significant.

A. real 1401 can use a branch instruction to test whether
the printer carriage is at a point corresponding to a punch
in channel 12 of its control tape. The simulator maintains
a counter which is initially zero, and is increased by one every
time a line is printed. When it reaches 50, the simulator behaves
as though a punch in channel 12 of the carriage control tape
were available for sensing. When it reaches 51, it is immediately
reset to 1. When an F-instruction causes one, two or three
lines to be skipped, the same number is added to the counter,
with a return to 1, 2, or 3 if 51, 52, or 53 is reached.
When an F-instruction that causes a skip to some channel punched
in the control tape is executed, the counter is set to 1 .

MAGNETIC TAPE READING: If a tape record being read contains an
integral multiple of six characters, there

is no difficulty. If it does not, the 7090 will read it as if
it contained an extra 1 to 5 zeros, to make up a total
which is a multiple of six.

If the 1401 program happens to provide a group ma'"k with
a word mark in the memory, correctly defining the length of
the record, any extra zeros of this kind at the end
of the record will be ignored Όγ the simulator.
MAGNETIC TAPE WRITING: If the number of characters in a record

to be written is not an integral multiple
of six, the simulator has to extend it with from 1 to 5 extra
characters, before the 7090 can deal with it. The extra characters
will be blanks if the record is BCD, and zeros if binary.

- 56

MULTIPLICATION AND DIVISION: Limitations are put on multiplication
and division, to avoid dividends

and products that will not fit in the AC-MQ of the 7090.
In multiplication, the product field must not be more than

21 characters long, the multiplicand must not be more than 10
characters long, and the multiplier must not be more than
11 characters long.

In division, the dividend must not be more than 20 characters
long, and the divisor must not be more than 10 characters long.

There are a few conditions in which a real 1401 would produce
a wrong answer for a multiplication or division, because the
program had not set up the fields correctly, but in which the
simulator will make an error halt and dumo.

- 57 -

HOW TO LOAD THE 1401 SIMULATOR FROM SCRATCH

The small binary program deck depends on finding most of
the the simulator program on the discs, in cylinder 248 of
module 0. If the program is to be modified, or if something
has happened to the information on the discs, it is necessary
to begin again with the complete binary program deck. One should
load the following into the monitor input:
'1) $IBSYS
2) ¿RESTORE
3) $EXECUTE IBJOB
4) your ID card
5) $IBJ0B N0S0URCE,MAP,FILES
6) the binary urogram deck for AFR3, from the $IBLDR card,

AFRBOOOO ,"to the $DKEND AFR3 card, which at present is
AFR30235 .
a 7-8 card
a card with A in column 1, and blank otherwise. This will be
the simulator control card.

(9) a card with ,008009. in columns 1-8 . This is a minimal
"program" for the simulator to execute.

10) a 7-8 card.
11) flBSYS
12) -̂ EXECUTE FORTRAN
13) a 7-6 card.

I)

The output from this monitor job will naturclly be completely
uninteresting. Items (8) and (9) above could be replaced by a
control card and 1401 program that did have some interest, but we
are assuming for the moment that what is wanted is not to do
any particular job of 1401 simulation, but merely to get the
simulator program established in disc storage.

Once this has been done, one can prepare the small binary
deck as follows:
(a) From the binary program deck for AFRB, copy all the cards
beginning at AFRBOOOO and ending with the card that contains
location CHARGE; at present this is location 00063 (octal) in
the program, and is to be found on card AFRB0009.

If some future modification of the simulator program altered
the location of CHARGE, or the number of the program card that
contained it, one would have to take account of this in preparing
the small binary deck. But for the remainder of this description
we 3hall assume the values 00063 and AFRB0009 without further
comment.
(b) Prepare a card which is to replace everything after AFRB0009
in the complete binary deck, up to but not including the
$CDICT AFRB card. This card must contain the equivalent of

3SS n where n is the number of locations occu-
END CHARGE pied by the rest of the complete binary

deck.

- 58 -

To find η , look for the page headed "AFRB CONTROL DICTIONARY"
near the end of the MAP assembly listing. This page begins
with the listing of a BCD card containing n$CDICT AFRB".
Then follows the listing of a binary card; one sees on the
page something like this:
BINARY CARD ID. AFRB0233

036056000062 PREFACE etc. etc.
The total length of the program is contained in the decrement
of the first word of information on this card; the length in the
example above, which is taken from the present state of the
program, is octal 36056 „ This will change slightly whenever the
program is re-assembled, but let us accept it as 36056 for the
rest of this discussion.

From this number, 36056, subtract the octal address of the
first word of program on the next card after the one containing
location CHARGE; i.e. on the first binary program card that is not
being copied in the short deck. Since CHARGE falls at present in
card AFRB0009, we look at the MAP assembly listing to find that
the octal address of the first program word on card AFRB0010
is 00066. Subtracting 00066 from 36056 gives octal 35770.

So we need a binary program card containing the equivalent
of:

BSS η where η is the decimal equivalent of octal 35770
END CHARGE

and we look up CHARGE in the assembly listing and find that
its octal equivalent is 00063 .

Therefore we punch a column binary card with the following
in its first seven words (octal representation):

704502000003
000000000000
013600000000
000000000000
000000000000
200000035770
000000000063
The only variable parts of this card are the 00003 at the

end of the first word, the 35770 at the end of the sixth word,
and the 00063 at the end of the seventh word. The derivation of
the 35770 has just been explained at length above, and the 00063
is the equivalent of CHARGE. The 00003 is one more than the number
in the same position of the preceding card. After the
$TEXT AFRB card, succeeding cards in the deck contain consecutive
numbers in this position, beginning at 00000 for the card next after
$TEXT AFRB . The last card we retained, AFRB0009 as things stand,
has at present 00002 in this position because it is the third card
after $TEXT AFRB .

In columns 73-80 of this card, punch AFRB0010, assuming that
AFRB0009 is the number of the last card retained from the complete
deck.

- 59 -

Now take the last part of the complete program deck, beginning
with the " $CDICT AFRB 1| card, and copy it; but modify the plug­
board of the reproducer so that columns 77-80 of the new cards
are left blank. Into these columns, insert serial numbers following
on from the number of the last card prepared (as this was AFRB0010
in the current example, these numbers will be 0011 ff.)

One more modification has to be made to the first card follow­
ing the " $CDICT AFRB " card (number AFRB0012 In the current
example). The address part of the third column binary word on
this card gives the address at which the program will begin to
be executed. As the program is assembled, this address is LOAD,
octal 00062; but in the small binary deck it must be CHARGE,
octal 00063. As long as LOAD and CHARGE have these octal
equivalents, the modification of the card is very simple: put an
extra punch in the 9-row of column 9, altering 00062 to 00063,
and an extra punch in the 0-row of column 1, showing that the
check sum is no longer valid.

There is no reason to expect that 00062 and 00063 will change
through re-assembly of the program, because what lies between
locations 00000 and 00063 in the program is concerned only with
copying the program itself to and from the discs, and there is no
inducement foreseeable for changing this. But if these addresses
should change, the final card modification described in the previous
paragraph would become more complicated. Presumably the change
would affect only the last four octal digits of the address; the
simplest thing then would be to copy the card once more, with the
plugboard of the reproducer altered to leave column 9 of the
nev; card blank. Then one would punch into column 9 the equivalent
of the last four digits of the octal equivalent of CHARGE. It
would still be necessary to add the punch in the 0-row of column
1, to show that the check sum had been Invalidated.
(c) At the beginning of this shortened binary deck, put the first
five of the control cards mentioned at the top of page 8 above;
namely, $IBSYS, $RESTORE,$EXECUTE IBJOB, your ID card, and
$IBJ03 NOSOURCE,MAP,FILES .

We now have a new small binary program deck, which can be
used as described at the beginning of "How to Use the 1401 Simulator"
This procedure must be gone through whenever the simulator
program is re-assembled.

Minor corrections to the simulator program can be made with
patch cards. Their format is explained at the beginning of the
commentary on the flow charts for this simulator. Near the
end of the M P assembly listing of the simulator, there
is a card: PATCH BSS 200 which reserves 200 cells for putting
program corrections in without disturbing the total length
of the program. (Typically, a program correction, if done by
patching, requires the replacement of an instruction in the program

- 60 -

by a branch to some point outside the program, where the new version
of whatever is being corrected has been loaded. The space reserved
inside the program by the PATCH card is for such "new versions".)

Patch cards, if any, are to be put immediately after the 7-8
card that follows the small binary deck, and before the simulator
control card. The simulator program will note that there are patch
cards, and after the last one has been read and obeyed, it will
copy itself in its newly-modified form onto the discs.

(This is different from the system in the compiler
program described elsewhere. If that program is to be modified by
patch cards, it has to be loaded from the complete binary deck,
as if it were not already on the discs.)

When the simulator is re-assembled by the MAP assembler,
it is possible to use it immediately afterwards, during the same
monitor. But this does not necessarily put the program correctly
on the discs. It must still be loaded at least once from the
complete binary program deck.

HOW TO LOAD THE SIMULATOR IMMEDIATELY AFTER THE COMPILER

The simulator program can be loaded in the monitor with
" U " punched on the control card, in addition to any other
necessary characters, and with no program cards following the
control card.

This is only to be done if the simulator program immediately
follows a compiler job in the monitor input. The program or
programs that the compiler compiles will then be executed in
the same order by the simulator.

There is an important limitation on this. No magnetic tapes
are to be mounted before the programs are executed, or dismounted
afterwards. The way in which the simulator will read and write
tapes, during such execution, is incompatible with normal
1401 operation. Since there is no need for the 7090 operator
to do anything about tapes, the simulator program will not halt
after reading the control card, even if it names one or more tapes.

So if one wants to compile and test immediately, on the
7090, a 1401 program-that — say — reads a magnetic tape,
does something with the information, and writes it on another
tape, it will be necessary to give the following as input to
the compiler:
(a) a compiler-language program for reading in information on
cards and copying it onto tape in a suitable format for use as
input by the main program.
(o) the cards for (a) to use.
(c) a " (PROG) " card, followed by the main program in compiler

language.
(d) a (PROG) " card, followed by a compiler-language program
for reading from tape the output of the main program, and printing
it.

Sometimes this will be more trouble than it is worth, but
often items (a) and (d) will be perfectly simple, and the testing
immediately upon compilation will save waiting half a day to find
out, when a 1401 becomes available, that there is an error
in the main program that was compiled.

mWMMißügfiii: general prosperity and not individual rie
4.. ¡Vi"" -"£ïrv%*s laxx¿\ riisannpar« Ή Ι Α errezier n a r t hf -rTie' «wil

utoft r:.,.;'.^· I;ÏJ

disappears the greater p__
'On Λ . fa;*,»

1

tir.

liíffi

III mmm llllPfl
AH Euratom reports are on sale at the offices listed below, at the prices given on the back of the
cover (when ordering, specify clearly the EUR number and the title of the report, which are shown j

D E U T S C H L A N D

B U N D E S ANZEIGER
. ■ : : ; . ; .κ ;■...-;■.{;-· <

il
,ø-':M'-

II ιρ i l ESPI ÊiPi i l i l l
pf l ; Λ Ρ fe Éfe»*

3
^^ ?-·■

 i; :i
-
;I
J tó^

;
* -51

L', :i"'. · , . ' Ρ Λ ' : · ! ; .'¡Ri' : S T Á A ' T S T I R T T - K - K I R P T T Í . S · Ι- , ·«Ι. ·ΊΊΗ,Ι, ·Ϊ-Ι-- ·Ι ''t

SERVICE DE VENTE EN FRANCE
DES PUBLICATIONS DES

s ; " * ; ' - ' . · " Ρ ■-"■■ i ·;,:. ·■> I i- lt l¡, i¡ j V ; ' « i : r , 7 : ~

	The Simulator Program Description
	How to Use the 1401 Simulator
	How to Load the Simulator Immediately-After the Compiler

