

EUR 2637.e : ST e
vOL. III S P

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. IIl: THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

e em hw ae WS ie = ea ss s ms st sm A4 he em nw as s ke A= As m amm 4 e sm Ae e e s A im am s em e

EUR 2637.e
VOL. III

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. III : THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

ATTW= L e mm te s e e am e = w am am m e am Am v M o s Ee me sm e m kI mm om im —m e am

EUR 2637.e
VOL. III

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. II1: THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

On sale at

PRESSES ACADEMIQUES EUROPEENNES
EUR 2637.e 93, Chaussée de Charleroi, Bruxelles 6

VOL. III

IT};—IE ((:)OMPILATION AND PROCESSING OF IBM 1461 PROGRAMS ON
M 7090
VOL. III: THE SIMULATOR PROGRAM by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 60 Pages - FB 70

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

. The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

This volume is concerned with thc simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained.

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained.

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained

This volume is concerned with the simulator program. The description of
this program takes the form of comments on the corresponding flow charts
given in the fourth volume. Futhermore, the use of the program is explained.

EUR 2637.e

VOL. III

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THE COMPILATION AND PROCESSING OF
IBM 1401 PROGRAMS ON IBM 7090

VOL. III : THE SIMULATOR PROGRAM
by

A.F.R. BROWN

1966

Joint Nuclear Research Center
Ispra Establishment - Italy

Scientific Information Processing Center - CETIS

TABLE OF, CONTENTS

page
The Simulator Program Description 1-49
How to Use the 1401 Simulator 50-60
How to Load the Simulator Immediately
After the Compiler 60
ntroduction

For test purposes or for short production runs it is very
useful to have the possibility of executing a program immediately
after its compilation. Therefore in addition to the IBM 7090/1401
compiler system described in volumes 1 and 2 a simulator system
has been developed. It permits execution of IBM 1401 programs
on the IBM 7090.

The first L9 pages of this volume give a description of
this simulator system; contimwus reference is made to the
corresponding flow charts. These flow charts are printed on
pp. 68-99 of the fourth volume.

The second part of the present volume is a manual for the
practical use of the simulator system.

SUMMARY

In the field of non-numerical data processing it is
often more profitable to use a medium-~size computer instead

of a big one. Compilation, however, may better be done on a

bigger machine.

The four volumes of this report describe a symbolic
programming language, its compiler for the IBM 7090 which
produces IBM 1401 object programs, and a simulator permitting

the execution of these programs on the IBM 7090.

This volume is concerned with the simulator program.
The description of this program takes the form of comments
on the corresponding flow charts given in the fourth volume.

Furthermore, the use of the program is explained.

Every charazter of the 1401 memory 1s represented by a
word in the 7090 memory, from MEM to MEM:T79349, The word nark of the
1401 character 1s renresented by tire i, bLL 7 Lia 7030 word, taa
zone bits by the two low-order bits ol the 7090 word decreunerat, and
the namerical bits by the foar low-order bit- of tniz 70v) word
adiress, Thos, for examnle, a group-mark with word-mark 1a represented
oy (octal) 42008302001 7; a blank with a word mark by 4900020000000;
the letter i with no word mark by J00033000001; tria letter £ with
a word mark by 400002000002; the letter T wilth no word maerk Ly
J200C1020003%; and an egual sign with a word mark by 400000000012.
First »? all, tihe silmalatin. o .gram nuats octal 400003000017
In the zccumulator and nerforms ANS on c¢olls MEM tnironsh HEMw?QSB,
in order to give a "1401 memory" containlng characters thzt are
random, out compativie witn this representation (see BFGIN to BKGA 1in
the 11stins.) Then the - %3 flle vezins to b2 read ifrom the normal
mnonitor input taps, This may begln with from O to any nuanber 57 3CD
cards hzving ¥**¥*¥¥¥ i cols. 73-78. These are for patching the 7090
prograa Lo3elf, A paten card contains four flelds, cols. 1-18, 19-36,

37-3:

H>

, 2and 55-7<. Let tit2 18 characters in a fileld ve represented
KLLLLLPDI . ° 'LAAAAA. LLLLL 1s trie octal address, relative to the
beginning of the program, into which the »atc¢ch word represented by
octal PDDorsL2AAAR 13 To pe stored. If K=0, the decrement DDDDD and
address AAALA wlll ve unchanged. If K 12 a mlnus sign, the address
wiil pe Lncreasel Sy the avsoluts address of the starting locatilorn of

the program, befonre btita jaten word iz -Sorad ITT £ v 7 obas 3lgn,

Manuscript received on October 27, 1965,

the decrement DDDDD will be so increased, and if K 1s a blank,
both the address and the decrement will be so increased.
(See BRGA through BEGD in the listing.)
The flrst card in the data file that dces not have *¥xxx#
in cclss 73-78 1s the control card, with control characters punched
beginrilne with columr 71, and continulng up to but not includinz the
‘1eftmost blank. At least one of cols. 1-72 must contain a blank,
teo ter.inate the reading of tne control characters. See Flow Chart 1
for the intersretatlon of this cerd. The sequence of the control
characters has nc gelgniflcance, except that i1f the character next
after a2 1,2,3,4,5 or 8 1s not H or L, the program will behave as
if an H were 1inserted lmmedlately after the digit, and before the
character that actually follows it. The significance of the control
characters 1is as follows:
& The 1401 program will behave as if the I/0 check stop switch
were on, I this character does not appear on the control card,
it will behave as 1f the switch were off. The only practical signi-
ficance of this has to do with the reading of cards from the input
file by the 1401 program. If the "look-ahead" from the card last read
shows that the next card will be BCD, 1t can be read by the 1401
program in elther BCD or binary form. But 1f the next card will be
binary, and the 1401 program tries to read it in the BCD mode,
the simulation program will put into positions 1-80 of the 1401
memory exactly what th, real 1401 would put. Since a card in the

monitor input 1s treated as binary only 1f it has a 7-9 punch 1n

column 1, such a card would cause a valldity check if read phys-
ically by a real 1401. It the I,0 check stop swltch 1s on, this
will cause the 7090 trogram to dump the "1401 memory" and exit.

If' the switech 1s off, the simulation program will continue normally.

A,B,C,D,E,F,or G The simulatlon program willl behave as if the
corresponding sense switch on the 1401 console

were on. For each of these letters that does not apnear on the

control card, the program will ovehave as 1 the ccrresponding

sense switch were off.

H Logical switech "HALTS" (located in cell COSW«7, lmmedrately
ai'ter the celils for tne seven sense switches) 1s set on;
I: this switeh 13 off, the Cirst "HALT" instruction oveyed by the
simuietea 1407 will cause tne simulator to output the message
"1451*HALT", dump the 1401 memory, and exit. If the switch 1s on,
ezcn 7407 "HALT" will cause the 709D to print two lines on the on-
line orinter, and then halt. The first line will show the contents
of the simulated 1401 I-address, A-address, and B-address registers.
Trhie second line will contain the message to the operator:
"PROGRAMMFD 1401 HALY. PRESS START TO CONTINUE. TURN ON SIGN KEY
AND START TG END 1401 JOB." The 7090 operator can have been instruc-
ted to cneck the contents of the 1401 address regilsters as printed,
and continue or terminate the 1401 Job accordingly. If the Jjob
is terminated, a 1401 memory dump willl be output before the simulation

program exits.

T Logical switch "TPST" is set on. This means that the 1401
program will be initiated by the instructions ,/080Q

M{UT001R ,001 BOOl as if the "LOAD TAPE" button were oressed.

Iff this switch 1s off, because T has not apueared among the control

characters, the program will ve inltiated by /080 ,001 1001

as if the "LOAD" obutton on the card reader were oressed.

U Loglcal switch "UDISC" i1s set on. This means that the 140]
will "read cards" from the disc unit. If this switch is off,

"

the 1401 will "read cards" from the normal monitor input tape. The

first card to be read will be the one that immediately follows the

control card in the invut {ile. In order tc enable the simulater

to recognize the "last card read" conditlon in the card reader,

a card with this punched in columns 1-72:

///;/ THFR NEXT CARD WOULD HAVE BEEN PHYSICALLY IAST IN THE 1401 INPUT.

must be inserted in the Input file immediately BEFORE the last card.
If the 1401 is to "read cards" from the disc unit, this will

be because the simulator 1s being used to try out a program which

has Just been compiled by the special 7090 compiler of 1401 pro-

grams. In that case, no tapes are to be mounted belore, or removed

after, the 1401 job. The description of the compiler will explain

this.

$ Logical switch "CDUMP" is set. This means that before the
simulator terminates the 1401 job, it will output, for
punching, 101 extra cards. The first will have the letters MEMORY

punched on it so as to be recognizable on sight, and the other 100

cards will each contain the information from 80 cells of 1401 memory -
cells O to 79 on the first of these cards, 80 to 159 on the second,

and so on. The 80 characters are contained in binary form on the

upper half of the card. In the lower half, the elghty word marks from
the same 1401 cells are represented, as a blank for no word mark and

a minus sign for a word mark. The leftmost column of the lower halfl will
contain 7 and 9 punches as well, so that an absence of word mark

in the corresponding cell appears as "3", and a word mark as "N".

The program for thils punching out begins at ENDD and ends Jjust

before PAGE. Refer to flow chart 50.

= Logical switcn "REMEM" 1s set on. This means that the 1401 progran
will not be inilitliated in the normal way, witn the simulation of

the LOAD nutton. Instead, the reading of bilnary cards wlll be simulated.

These cards are supposed to be the contents of memory at tne end ol

a previous run, whose punching 1s described 1n the preceding sectilon.

The first blnary card ls used to f111l 1491 cells 2 to 73, tne second

80 to 159, and so on.

There need not be a full hundred of these blnary cards; 1if there
are only fifty, thney will supply the contents of cells 2 to 3939 , and
so for any other number of them. The series of binary cards 1s ended
by a BCD card. I columr 1 of this card is blank, a normal program load
is then carried out; 1.e. the simulation of the ILOAD button on the card
reader or the LOAD TAPE button, depending on whether switch "TPST" is
off or on. But 1f column 1 18 not blank, it is to be the leftmost
column of a left-Justiflied decimal number between 1 and 7999; the

simulator wlll execute a branch to that 1401 address and begln the

program from there.

For an example of how control cards with $ and = might be
used, consider the 1407 SPS assembly prozram, in the versioa that
does not use tapes. One loads the filrst-stage program into the
card reader, followed by the symbolic cards that have to be
assembled. The first-stage program reads the symbolic cards
and punches out some cards. It 1s then necessary to load the
secorid-stage program into the card reader, put the cards that
were Jjust punched out behind it, and press LOAD. Tne second-
stage program does not, however, clear memory before loading ltself
in, as 1t needs to use some tables that have been left behind by
the first-stage program. After the second-stage program, each
stage of the assembly can be carried out separately without
any need to preserve memory contents.

In simulating such an assemhly, one would put the followlng
in the monitor input:

(a) an ID card

(v) the binary program deck of the simulator

(c) an end-of-file card (7-8)

(4) a simulator control card with A$ punched in columns 1-2,
indicating that the program was to be run with sense switch A on,
and that the contents of memory were to be punched out when

the program stopped. The absence of H on the control card would
indicate that the first 1407 halt would end the 709C Jjob.

(e) the first section of the SPS assembly program on cards, followed
by the symbollc program cards to be assembled. The last symbolilc

card would be preceded by an extra card, with:

//////THE NEXT CARD WOULD HAVE BEEN PHYSICALLY LAST IN THE 1401 INPUT.
punched in cols. 1-72.
In the monltor output from this run, one would get a printed
1401 memory dump, and a series of punched cards conslsting of:
(a) the ID card
(b) the cards that would have been punched 1f the proxram had been
run on the 1401.
(c) a signal card, with MEMORY punched visibly on 1t
(d) 100 cards containing the 1401 memory, to be saved

(e) the end-of-file and OK cards.

To do the second stage of the SPS assembly, 1t would ne

necessary to make another passage through trhe 7030 monlitor, with

the followlng cards:

(a) an ID card

(b) the binary program deck of the simulator

(c) an end-of-file card

(d) a simulator control card with A= punched in columns 1-2
(e) the 100 cards from (d) in the preceding output

(f) a bvlank card, snowing that the start for the present stage
will be with the LOAD hutton

(g) the 1401 program cards for the second stage of the SPS
assembly

(h) the cards from (b) in the preceding o:trut with an extra card

containing "/, ////THN NEXT CARD etc:." inserted before the last one

(1) an end-of-file card.

8
If it were necessary to begin the second stage by pressing
the START button instead of the LOAD button, one would look at the
memory dump glven by the first stage and note the I-address given
after IREG on the second line. Thils number would be punched in
columns 1 ff. of the card at (f) in the input to the second stage.
The loading of these memory, cards 1s programmed from BGA to

BGV 1in the simulator, and forms part of flow chart 2.

(After this digression, we continue the 1list of control card
characters.)
A DIGIT : This 1s supposed to name a tape that will be used by the
1401 program., If the digit 1is 7, 8, 9, or 0O, or 1f the

diglt has already appeared on the control card, this 1s an error,
and the 7090 Jjob will be ended. Only digits 1 to £ are valid as
1401 tape addresses, and as there 1ls no reason for repeating a
diglt, a repetition is assumed to be an error. These two errors
are shown by two branches to ERROR on the right slide of flow chart 1.
The program for ERROR 1s shown on flow chart 50.
There are many branches to ERROR in the flow charts, corresponding
to branches to ERRA, ERRB, ERRC and so on 1n the simulator programs.
Fach of the latter branches causes the printing of a message,
followed by a memory dump. The dump beglins at location DUMP in the
gimulator program, but there 1s no locatlion ERROR.

The message for the present case is: CONTROL.CARD.NAMES.TAPE.
7890.0R.REPEATS.A.TAPE

The digit 1s to be followed immediately or. the control card
by elther H or L, indicating the density in which the tape is to

be used. If the next character 1s not H or L, the simuiator

niroceeds as 1f 1t were followed by H, and the character which
follows the number is treated as a normal control character.
1401 tapes 1, 2, 3, 4, 5, and 6 are representeda by 7730
tanes A-5, B-5, ~A-5, B35, A-T7, and B-7 respectively, and it is
up to Lhe user to arrange that 1f necessary, the appropriata tapes

wlll ©e mountad o tha 7090 before the Jjob, and dismounted

(oY

afterwards.

* : Loglezl switen "TRACE" 1s set on. This means that before
gvary =xecuation of a 1401 instructlon Dy the simulator,

trre 14071 address of 1ts leftust characier will de oubput o.i the
ronltor 1listing tape. Thnese addresses will be arranged in
colurns <f 30, 20 coiumns per page. Such pages will appear in ﬁhe
output mixed with the pages of simulated 1401 printer output.

The recoruing of each address 1s done by INS&2 through TRB-1
in th2 simulator program, shown in flow chart 17.

The cutput of each paze is done by sab-routine TRD in the

-

simulator program, shown as flow chart iS5.

X : Logleal switch "SWICKX" 1s set on. This means that an error
message and termination of the jot will take place whenever
arr instructior contailning an invalid A- or B-address bezins to be
exg¢cuted. It "SWICK" 1s off, however, an error will not occur
beceise of zrn invalid address in a "no-op" instruction, or because

of ar invalid A-address 1n a conditional branch instruction if the

condition i1s not met and the branch does not occur.

1C
Ir these cases, ar invalid address is put into the corresponding
address register as 6000; this will cause an error exit at a point
below INS i~ flow chart 17, if the condition is met and the branch
occurs, Surprisingly, the 8K 1401 at CETIS behaves more nearly
like the simclator with switeh SWICK off. But if it 1is modified in

future so as Lo hHe more stringent, it coculd be simulated with SWICK on.

After the conirol card has been read and interpreted, the
simulator goes to BEGIB, which 1s the normal exit from flow chart 7,
and the veglinnling of flow chart 2. If any digits apyeared on the
control carcé, loglcal switch TMESG 1s on, showlng that tapes will
be used. I U has apreared on the control card, logical switch
UDISC 1s on, showling that the job was immedlately preceded vy
a compllation cf a 14C1 program by the 7090, and that the card
input is toe be taken rom discs. In that case, it is assumed that
tiie sln lator is carryilng out a trial, in which some tapes may be
written and tnen read back, but nc pre-existing tapes are to be
rniounted for reading, and no tapes that may be written will be
dismounte’ ur saving. Since the program 1s being tried for the
first Yime, 1t would be inappropriate to slow up the monitor by
tape handling. But 1f there are tapes to be used, and switch
UDISC 1s off, the simulator stops the 7090, to allow the orerator
to mount any necessary tapes. Pressing START on the 7090 causes
the simulator to proceed in flow chart 2.

Now switch REMEM is tested, and if 1t 1ls on, cards are read
to restore the memory contents from some earlier run, as described

above for $ and = on the control card.

11

Then 1401 program executlon begins, either by branching "o
a starting address given by the card that follows the memory cards
(see the bottom of flow chart 2) or by branching to BEGET in the
simulator program, where either LOAD CARD or LOAD TAPE 1 1is simulated.

Flow chart 2 uses simulator subroutines RDKB (read a binary
card from disc - see flow chart 5), RDKD (read a BCD card from
disc - see flow chart 4) and RCD (carry out the 1401 operation
of reading a card in the BCD mode into locations 1 to 80 - see
flow chart 10).

The error exlts on flow chart 2 go to IFER, where the message
EOF*AFTER*CONTROL*CARD 1s printed before the dump.

Flow chart 3 shows simulator subroutine RDKM, which obtains
elther a whole BCD card or half a binary card from the discs. ‘

Flow charts 4 and 5 show simulator subroutines RDKD and RDKB.

Flow chart 6 shows slmulator subroutines NPD and NPB,
which are used by subroutines RCG and RCE respectlvely, for
converting a 7090 record (BCD or binary respectively) into a
1401 record, without disturbing word marks in the 1401 cells.

Since character table RDTAB 1s used by NPD, we may insert
here a description of the character tables in the slimulator program.
Let us use "z" to represent the two-bit number contained by
the zone bits of a 1401 character under consideration, and "n" to
represent the four-blt number contalned by its numerical bilts.
CTAB : This table 1s used only for simulating the 1401 "compare"
instruction. Given a 1401 character, one finds at CTABX16z&n
a number, between O and 63, which represents its position in the
ascending list of characters for 1401 comparison. After the number,

the character 1ltself 1s put as a comment in the simulator program

12
listing. For instance, at CTAB%9, one finds "PZE 63 9", showing
that the character 9 has the highest possible value (63) for
1401 comparison.
WDTAB : Thls table is used 1in forming records for writing out on
tape in the BCD mode. Given a 1401 character, one will find at
WDTABX16z&n the corresponding 7090 character as 1t would be stored
in memory after reading from a BCD tape or before writing on a
BCD tape. For instance, the 1401 blank has all zone and numerical
bilts 0, so WDTAB&16z&n = WDTAB, and at WDTAB the table contains
"ocT 60", and 60 1s the octal equivalent of blank in the 7090.
The 1401 character with an A-zone blt=l, and all other bilts=0
glves 16z&n=16, and at WDTAB%16 the table contains "OCT 60",
because this character would be written on BCD tape by the 1401
as a blank.

No table 1is needed for forming a record to be written in the
binary mode. It 1s only necessary to put the 1401 zone and numerical
bits next vo each other to get the character which the 7090 will
write out in the same way as 1if a 1401 had written 1t out in
the bilnary mode.

RMARK 1s glven as label to the lcocatlon in table WDTAB that
1s used in writing out the record mark. This has to be altered
from octal 72 to octal 53 during the simulation of 1401 printing.
Since the simulator has to write an output tape that is compatible
with the standard monitor listing program, a record mark must
not be put in the middle of a line, where it would cause the
listing program to break off the line. So record marks are
replaced by dollar slgns for this purpose.

RDTAB : This table is used 1n breaking up records that have been

read in the BCD mode by the 7090 into 1401 characters.

13
When the 7090 reads a zero from tape, 1t puts octal 00 in the
memory, and at RDTAB&O, the table contains "PZE 10" ("PZE 10,,0"
would be more explicit) showing that the corresponding 1401
character has a numerilcal part equal to 10, and a zone part
equal to O. When the 7090 reads a blank from tape, i1t puts
octal 60 in the memory, and at RDTAB&48, the table contailns
"PZE 0", showing that the corresponding 1401 character has all
bits equal to O.

No table 1s needed for a record that has been read in the
blnary mode, since the 7090 and 1401 read such a tape almost
identically. It is enough to make the leftmost two blits of the
7090 character into the zone bits of the 1401 character, and 1ts

rightmost four bits into the numerical bits.

Flow chart 7 shows the simulator subroutines RCG (read a
BCD card and store 1ts contents 1n 14071 cells 1-80 without dlsturbing
wold marks) and RCE (read a binary card into 7090 cells N to N&79
and N&100 to N&179, without disturbing sign bits. If N=MEM{:401,
this corresponds to the reading of a binary card by the 1401.)

Note that when an end-of-file 18 read on the input tape, this
does not correspord to an end tc the deck of cards being read by the
1401, An end-of-file corresponds to a 7-8 card in the monitor
input, which would be physically read by the 1401 as a tape mark
in cell 1, and blanks in cells 2-80.

It 18 necessary to allow RCE to read into a part of the 7090
memory outside the simulated 1401 memory because a blnary card can
pe read by a decimal card read instruction 1f the I/0 check stop
switch 1s off. The simulator will read the corresponding binary

record from tape; put the 160 characters in a workspace, and then

14
deduce what the 1401 would have put in cells 1-80. When a binary
card 1s properly read by the 1401 program, the 150 characters go
into 1401 cells 401-480 and 501-580, and then the deduction for
cells 1-80 1is made.

When RCG reads a card containing "//////THE NEXT CARD WOULD
HAVE BEEN etp." it sets switch LASTC on, and makes a specilal
exit, RCG is used only by RCD and RCB, and when elither of themn
gets the special return from RCG, 1t immediately re-enters RCG to

read the "physically last" card.

Fiow chart 8 shows subroutine RCF, which converts a binary
card image in 1401 form into the equivalent BCD card image in
1407 memory cells 1-80. It 1s used by RCD, for reading a binary
card as if decimal, with the I/0 check stop switch off, and by
RCB, for obtaining the BCD imesge that the 1401 produces with
a binary card read.

Flow chart 9 shows subroutine RCK, for doing the reverse.
This 1s used by RCB, to construct the binary card image for a
BCD card (on the monitor input tape, of course, a card becomes BCD
1f 1t does not have 7-9 punches in column 1, regardless of how
the simulated 1401 is going to read it later) which the 1401 is
treating as bilnary; and by PED, which punches decimal cards.
Since the monitor punch-out tape must be entirely binary,
the simulation of a decimal punch instruction has to be done
by writing out the equlivalent binary card image.

Flow chart 10 shows subroutine RCD, which carries out the
1401 operation of reading a card in the BCD mode, and storing the
contents in 1401 cells 1-80, without disturbing word marks.

There are two ERROR exits:
(a) if switch LASTC has been set on by a previous card-reading

15

operation, exlt after printing TRIED*TO*READ*CARD*AFTER*PHYSICAL#*
END-OF-DECK .
() 1f the record on the input tape is binary, the original card
must have had 7-9 punches in column 1 (otherwise 1t would not have
been accepted as binary by the monitor input program). Such
a card would give a validity check 1f read by a 1401 in the declmal
mode, and would hzlt the machine 1if the I/0 check stop switch
1s on. The message for thls 1s BCD READ OF BINARY CARD WITH /0
CKSTOP ON . If the switech is off, switch CDERR 1s set so that
i1t can be tested by a 1401 "branch on carqd read checx" Liistraction.

RCD 1s used 1in simulating the LOAD outtor. to start a program
(see flow chart 2) and by the specific routines for carrylng oub
1401 operations "read", "read and write", "read and punch", and
"read write and pineh'; "read and branch", "read write and branéh",
and so on. (See flow charts 22 and 24.)

Flow chart 17 shows subroutine RC3, which carries oat the
1401 operation of reading a card in the blnary mode, puttlag 1ts
oinary lmage into cells 401-480 and 501-580, and putting 1ts
B3CD image 1in cells 1-80, without disturbing word marks.
The pcssible error exlt is the same as the first ore described
for RCD.

RCB 1s used by the speclfic rcutines lor "read binary" and
"read vinary and vrancn". See flow chart 22,

Flow chart 1Z shows subrouvtine PCD, which carries out the
14G1 operatlon of punching a BCD card from cells 101-18C; and
subroutine PCB, whlch carries out the 1401 operation of punching
a binary card from cells 401-48C and 501-580C. Because the moritor

punch-out tape 1s binary, PCD must begln by constructing the

16

equilvalent binary card image in a workspace.

The binary card image contains 160 characters of significant
information; 8 characters with no significance follow them to
bring the record up to 1ts standard length of 28 7090 words.

PCD and PCB use the subroutine PCE, for which see
immediately below. PCB 1s used by the specific routines for
carrying out 1401 operations "punch binary" and "punch binary
and branch". PCD is used by the speclfic routines for carrying
out 1401 operations "punch", "read and punch", "write and punch",
"read write and punch", "punch and branch", "read punch and

branch", and so on. See flow charts 22 and 24.

Flow chart 13 shows subroutine PCE, which is used by PCD and
PCB to declde, before punching out the current card, what pocket
the most recently punched card went into, and to punch a "pocket
change signal card" following it, i1f it did not go into the same
pocket as the second-most-recently-punched card.

Three 7090 storage locatlons, KKIC, KKPR, and KPPR, are
used to store the necessary information.
KKIC: "O" 1s stored in KKIC initially, and after every punching
out of a card, to show that as far as 1s known so far, the card
will go into the "normal" pocket, called "pocket O" here.
(See the bottom of flow chart 12.) Whenever a 1401 K4 or K& instruc-
tion is executed, "4" or "8" is put in KKIC (it is assumed that
not more than one K4 or K8 1s done betweer two punches) to show
that the last card punched was to be sent to pocket 4 or 6.
Just before punching a card, if KKIC still contains "O", it 1is

known definitely that the preceding card went to pocket 0; if KKIC

17

contains "4" or "8", it is known that the preceding card went to
vocket 4 or 8. If "4" or "8", nothing more need be done by PCE,
because the steps that will be described next have already been
carried out during the execution of the K4 or K8 instruction
(See flow chart 23.) But if KKIC contains "C", it is only
now certain that the last card went to pocket O; "0O" 1s now stored
in KKPR.
KKPR: This contains the number of the opocket into which the last-
punched card went. However, "C" here 1s not definitely valid until
Just before the next card is punched (or the run ends), because
a K4 or K& instruction could intervene until then.
KPPR: Whenever "O", "4", cr "8" in KKPR 1is known to be definitively
valid, it is compared with KPPF. I they are the same, the last
card punched went into the same pocket as the one before it.
If they are not, a signal card with "N", "4", or "8" punched
visibly on 1t 1s punched after the last card, to show that there
was a change of pocket Jjust before 1t; Thils 1s done by subroutine
KPCH, which 1s mentioned at the bottom of flow chart 13.

Just after a card is punched (see the bottom of flow chart 12)
the contents of KKPR are stored in KPPR, since what was the most

recently punched card 1s now the second-most-recently punched card.

18

Flow chart 14 shows subroutines PRN and PWM, which are used
to carry out the 1401 operations of printing the characters in
cells 201-332, and printing the word marks in the same cells.
PRN 1s used by the specific routines for carryilng out 1401 operations
"write", "read and write", "write and punch", "read write and punch",
"write and branch", "read write and branch", and so on.
PWM 1s used by the specifiec routines for carrying out 1401 operationg
"write word marks" and "write word marks and branch". (See flow
charts 22 and 24.)

The difference between PRN and PWM is that PWM fills.a work
space with blanks and ones, corresponding to absence and presence
of word marks in cells 201-331, and further processing uses the
workspace instead of cells 201-331 as for PRN.

Both of them use subroutine NQD (see flow chart 16) to
convert a serles of 1401-type characters into a 7090 BCD record
of 22 words, for eventual listing.

Since the monitor listing program uses the first character
of each record to control line and page skipping, an extra character
has to be written at the beginning of each 22-word record for
listing. The character in 1401 cell 332 1s dropped off to
compensate for this, so it can never be printed by the simulator.

For simplicity, the leading character of the print record is
added by saving the contents of 1401 cell 200 1n location PHOL,
putting the leading character in cell 200, and using subroutine
NQD on cells 200~331. (The analogous procedure for PWM 1s obvious
from the flow chart.) After the print record has been written,

cell 200 is restored from PHOL.

19

The leadinz character is taken from location CARR, and then
a blank is immediately pub into CARR, as blank 1s the "neutral”
leading cn:zracter, which has no effect on line or page skipoing.

4 non-vlank willl have got into CARR by the direct or indirect action
of 1401 operation "F". (See flow chart 23.) F1 , F2, F3.....F2 will
have put 1,2,3...0r 2 in CARR, and if this 1s transferred to

the next print record =zt its first character, it will cause the
monitor listing orogran to execute 1, 2, F3 etc. bpefore printing
the 1ine.

After the print record is written out, location POSTP is
examined., I 1t contains zero, i.e. a 1421 blank, nothing more
need ve done. If it contains 1, 2, 3,...or &, this was put there
by a 1401 instructicn FA, F3, FC,...or F), asking for a post-printing
skip tc channel 1, 2, 3,...0r 12, So 1, 2, 3,...0r 2 is now put into
CARR to provide tnat skip pefore the next line 1s printed, or the
next non-printing s.«ip 1is taken.

If POSTP contains / S or T, one,'two or three blank print
records are wriltten. Tihls was the result of a 1401 F/, FS or FT
instruction, asking ['or a sklip of one, two, or three lines after
the next orint iine,

In any case, POSTP is zeroed before the exlt {rom PHRN or

Pdli.

PRI and PWM use subroutine WRUTE, shown in flow chart 15,
to simulate imperfectly the use of channel 12 on the 1401 print

carriage control tape. Normally, the tape has channel 12 punched

20

Just before the bottom of a page, so that vefore prirting a line,
the 1401 program may use a "branch on channel 12" instruction to

see whether 1t 1s so near the end of the page that it should

skip to the top of the next one (with an F1 instruction) before
printing. Subroutine WRUTE maintains a count of how many lines

have been written, normally, on the current page. If thils couns
stands at 50, the simulator will allow a "branch on channel 12"
instruction to branch; otherwlse not. When the count reaches 51,

it 1s returned to zero, as if a new page had bee begun. The count,
stored in location WRﬁTA, i1s also set Lo zero whenever a 1, 2, J...
or @ 1s stored in CARR, whether by transfer from POSTP at the end
of PRN or PWM, or directly by the executlon of a 1401 instruction
F1, F2, F3,... Oor F@, In such a case, a skip to a channel hole i1n
the carrlage control tape makes the existing line count meaningless.
However, F1 18 by far the most common, and 1is used normally to begin

a new page, so the zeroing of WRUTA 1s appropriate.

Flow chart 16 shows subroutine NQD , which is used only by
subroutines PRN and PWM to convert groups of 1401 characters into
7090 records for eventual printing. The flow chart should be

self-explanatory.

The section of the simulator program from FFF to KKLC belongs

to flow chart 23; see the explanation later on. FFF 1s a

21

specific routine for the 1401 "control carriage" operation, and
KKK for the "select stacker" instruction.

The sectlon of the simvlator program from RCRD to SEVA
belongs to flow charts 22 and 24; see below for these,
It contalns specific routines for the 1401 instructions whose

op codes are 1, 2, 3, 4, 5, 6, and 7.

Flow chart 17 shows the section of the simulator that begins
when the 1401 has the address of the instruction it must now execute,
and exits to INS1, IN3Z2, IS4, INSS, INS7, or INS6 according to
the length of the 1lnstruction,

If iogical switch TRACE is on, the first thing that
happens 18 the storage of the present I-address for eventual listingn
Sub-routine DUMPA 1s used to convert the address to a blank
and five decimal digits (see flow chart 49.) Sub-routine
TRD (see flow chart 18) 1s used to write out a page of these
addresses 1if it is full.

If logical switch SWICK is off, and the ou-code of the
1401 instruction is B, N, V , or W , switch SWICL 1s set on;
otherwise SWICL 1s set off. SWICL 1s tested by subroutines EVA
and EVB (flow chart 19) when they find an invalid address to
evaluate; if SWICL 1s on, they do not give an error halt, but
evaluate the address as 8000.

The error messages are:

(2) CUT.OFF.BY.SWITCH.6 17 the 7090 run is terminated with
sense switch six (in order to regain control and get a dump 1if

the 1401 program seems to be in a loop.)

22

(b) INSTRUCTION*ADDRESS*ABOVE*7999%0R*0 if the address in the
I-address register 1s not between 1 and 7999.

(c) OP*CHARACTER¥*HAS*NO*WORD-MARK I1f the leftmost character of
what 1s supposed to be the instruction has no word mark.

(d) INVALID*INSTRUCTION*LENGTE if what is supposed to be the
instructlon is 3 or six characters in length, or 1if the word vegin-
ning at the leftmost character of what 1s supposed to be the
instruction is more than 8 characters long, and the op code is
not slash or comma. Note that 1f the first character of the
supposed instruction 1s B, and 1its fifth character is blank,

the simulator does not look further to the right for a word mark,
but accepts the instruction immedlately as a 5=-character

instruction.

Just before INS in the simulator program, there are a number
of storage locations that are frequently referred to, labelled
IGTH, OP, ABIN, BBIN, ABINB, BBINH, CTRL and DCHAR:

IGTH contalns PZE n, where n is the length 1in characters of the
instruction being executed.

OP contains the op-code character of the 1lnstruction.

ABIN contains PZE MEM&n, where n is the contents of the A-address
register of the simulated 1401. This number 1s correctly set
immediately before and after an instruction is executed, but it 1s
not altered progressively during the executlon as 1t would be

if 1t were the A-address reglster of a real 1401, This progressive
counting is usually done in index reglster 1 of the 7030, which
usually contains (-MEM-n). Therefore if the simulator detects

an error during the executlon of an instruction and ends tne

Job with a dump, the dump will show the A-address register as

it was at the beginning of the lnstruction, and this may bLe

a little different from what the A-address register of a real
1401 would contain at the moment of the corresponding helt.
BBIN 1s analogous to ABIN, but for the B-address reglster.
Index register 2 of the 7090 usually contains (-MEM-n), where
n is the current B-address.

ABINH contalns whatever ABIN contalned Jjust at the completion
of the preceding instruction. This i1s needed for the "store
A-address register" operation of the 1421.

BBINH 1s the same for 3BCY ard the "store B-address register"
operation.,

CTRL contains PZE MEM&n, where n 13 the 1401 address of the
current instruction,

DCHAR contains the D-character of the current instruction, if
it has one, or else ths D-character of tne last executed instruc-

tion that 4id have one,

Flow chart 15 shows subroutlne TRD, wnlch arranges 1000
addresses stored by tne tracing functlon of the sim.lator into
a page of 2C columns, to b2 read column by column, and outputs
it for monitor listing. TRD 1s used by the simulator Jjust after
INS, if a page 13 full, and by the DUMP routine at the end, to
natput the last page of addresses at the end of the job.

The only reason why TRD i1s at all complicated is that
the page is to be read by coiumns, but has to be written by rows.

The first row must contain items 1,51,101,....951; the second

24

must contain items 2,52,102,,..952, and so on to the fifuieih

row, which must contain items 50,100,150,...1000.

Flow chart 19 shows subroutines EVA and EVB, which
evaluate MEM&a and MEM&b, where a and b are the binary equlvalents
of the A-address and B-address of an instructlion, indexed if
necessary. They use subroutine EV (see flow chart 20) to evaluate
the unindexed A~ and B-addresses, and the contents of an 1lndex
register 1f necessary.

EVB 1s used only after control goes to INS7 or INS8, for
g 7- or 8-character instructlon. EVA 1s used twice in the sim-
ulator: just after INS7, for a 7- or 8-chéracter instruction,
and Just after INS4, for a 4- or S5-character instruction.

There are two error messages:
(a2) If the return from subroutine EV is on line 1, showing an
impossible address in the instruction or in an index regilster,
BAD*CHARACTER*IN*ADDRESS
(b) If the A- or B-address, before or after indexing, 1s above
7999: A¥OR¥*B¥*ADDRESS*EXCEEDS*7999*0R¥*IS*ZERO
However, 1f switch SWICL is on, hecause switch SWICK 1s off
and the address may not actually get used for memory access,
there is no error exlit, and the address 1ls evaluated as 8000.
This will cause an err®r exit if the address really is used for

memory access.

Flow chart 20 shows subroutine EV, which evaluates the
binary equivalent of a three-character 1401 address, ignoring the

zone bits of the middle character. EV.1s used by subroutines

25
EVA and EVB (see above), and by the specific routine for the
1401 operation "modify address" (flow chart 41). The normal exit
is return 2, but if one of the address characters i1s bad, return 1
takes place (which causes an error in flow chart 41, and 1h flow

chart 19 if switch SWICL 1s off.)

Flow chart 21 shows the progress of the simulator between
the time at which the length of an 1nstruction has been determined
(INS1, INS2, INS4, INS5, INS5, and INS8) and GO, where the
op~-code character 1s decoded and control is sent to the specific
routine for the 1401 operation. The only subroutines used are
EVA and EVB (see above).

Note that 1f the second character of a 5- or 8-character adstruc-
tion is (, thie A~address is not evaluated. A real 1401 would put a
meaningless number in the A-address in such a case. Thus the
final state of the simulator would differ from that of a real
1401 if a dump occurred immediately afterwards. If a 1401 program
executed such an instructiorn. and then executed an instruction
that contained no A-address but used the contents of the A-address
register, the results would be different for the simulator from
what they would be for a real 1401. However, it 1s most unlikely
to happen.

Just before subroutine EVB 1s called, the program turns off
switdh SWICL unless the op-code 1s N. Whereas an A-address may not
be used for memory access in a conditional branch or a no-op, only

in a no-op can a B-address not be used for memory access.

26

What happens at GO 1s described below flow chart 21,
If the op-code of the instructlion 1s an impossible one, the error
message 1s NO¥SUCH*OP. Following GO3, GO2, GO1, and GOZ in the
simulator program one sees a TRA to each of the specific routines,
-with the op-code character to which it corresponds added as
a comment. TRA ERRE is used for all the impossible op-code
characters, to give the message NO*SUCH¥OP,

The flow charts from number 22 or. concern these specific
routines.

Here is a table of all the valid op-code characters, wlth
the symbolic address of the corresponding specific routine for
each one, and the number of the flow chart where it l1s shown:

OP-CODE ADDRESS FLOW CHART OP-CODE ADDRYSS FLOW CHART

1 RCRD 22 N INS 17
2 PRT 22 P MVR 37
3 THR 22 Q SAR 33
4 PCH 22 S SUB 38
5 FIV 24 U CTT 29
6 SIX 24 v BaM 36
7 SEV 24 W BBT 36
8 SRF 24 Y MVZ 33
9 SPF 24 z MZR 34
A ADD 38 - MOD 4]
B BRA 43 @ MPY 44
C CMP . 40 Plus O ZAD 42
D MVD 33 . HLT 46
E EDT 48) CWM 33
F FFF 23 -0 ZSB 42
H SBR 33 / CIM 35
K KKK 23 s SWM 33
L 1OD 26 (DIV 47
M MOV 28

27

Notice thatbt for op-code N ("no operation") the simulator
does not go to a specific routine, but branches straight back
to INS to execute the next instruction, having done nothing but
refill the I-, A-, and B-address reglsters.

For any op-code not found in the preceding table, there 1is

an error exit with the message NO*SUCH*OP .

Flow chart 22 shows the specific routines for op-codes 1, 2,
3, and 4. They use sub-routines RCD (flow chart 10) , RCB (flow
cnart 11), PRV and PWM (flow chart 14), PCD and PCB (flow chart 12),
Flow chart 24 shows the specific routines for op-codes 5, 6, and 7.
They use sub-routines RCD, PCD, and PRN. From both flow charts
there are error exits for invalid instruction length, with the
message INVALID¥INSTRUCTION*LENGTH. Since thern 13 nd> op-code
2xcept ¥ for which all the possible instruction lengths (1, 2,
4, 5, 7, and 8) are valid, error exits with this message occur
in each of the specific roiitines; and they will not be mentioned
nerealter. From flow chart 22 there are also ercor exits for
invalid D-character, with the message INVALID*D*CHARACTER.
For every specific routine in which D-characters are used, this
type of error 1s possible, and so it will not be mentioned again
in connectior. with thie corresponding flow charts.

Note "CIME" on flow chart 22. Every executed branch in a

simulated 1401 program will send control in the simulator to CIME.

28

In the flow charts for many specific routines, there are switches,
represented by lozenges, in which the two exlits are marked not
plus and minus, but INS and CIME. Such a switch will have beean
preset somewhere in the specific routine to INS if the instruction
1s to be followed by the next sequentlal instructlon, and to CIME
if 1t is to be followed by a branch (which 1s necessarily to the
A-address).

Flow chart 23 shows the specific routines for the "control
carriage" (F) and "select stacker"(K) instructions.

An F Instruction can have a D-character of four kinds:
(2) unzoned, between 1 and @ . In this case, the routine puts the
character in location CARR, where 1t walts to become the control
character of the next line to be written out for listing; when
the output tape 1s eventually listed, this character will be
inserted into an F instruction, to produce the same skip to a
control-tape channel as the simulated F instructlon would have
given 1f executed on a real 1401 with the same carriage control tape.
(See flow chart 14, and page 19 above.) But before putting the
D-character in-CARR, the simulator sees whether there 1ls another
D-character already there, walting to be simulated. If so, a
record of blanks, with the waiting character as control character,
is written out before the new D-character 1s put in CARR.
On the zerolng of WRUTA, see the top of page 19 above.
(b) plus-zoned, between A and) . In this case, the routine puts

the corresponding unzoned character in POSTP, where 1t will walt

29

to be used as a control character until after the next occasion
on which a line 1s written out for printing. If there is already
a character waiting in POSTP, it 1s overwritten. Presunably
a real 1401 will disregard, e.g., an FB instruction if 1t 1is
superseded by an FA before the next print instruction. See the
second paragraph of page 19 above.
(¢) minus-zoned -- J, K, or L. In this case, one, two, or three
lines of blanks are written out for printing, and the count of
lines per page in WRUTA 18 increased accordingly. This corresponds
to a 1-,2-,0r 3-1line skip on a real 1401,
(d) zero-zoned -- /, S, or T. Ir this case, the character 1s put
in POSTP (obliterating any character that may already be walting
there), to cause the equivalent of a 1-, 2-, or 3-line skip
immediately after the next occasion or which a line 1is written
for printing. See the third paragraph of page 19 above.

The only error exlits are for lmpossible instruction length

or D-character.

A K instruction can have a D-character of 1, 2, 4, or 8,
K1 and K2 refer to read stacker selection, and as the program does
not simulate this, a D-character of 1 or 2 causes the instruction
to be treated as a no-operation, 1f two characters long, or an
unconditional branch, 1f five characters long.

K4 and K8 refer to punch stacker selection. The simulation
of elther of these 1lnsures that at the end of the 7090 run, a
message LOOK FOR POCKET CHANGE CARDS IN THE CARD OUTPUT will be
output for 1listing, surrounded by asterisks to glve 1t prominence.

One may consider that the punched-card output of the run consists

of a number of groups of cards, sent 1nto various stackers.

30

For example, suppose a series of 26 cards, which we shall represent
by small letters a to z, is punched into various stackers. In the
following list, each letter is followed by N, 4, or 8, showing
which stacker the card went into:
aN bN cN d4 e4 f4 g8 h8 14 j8 k8 1N mN n4 o8 p8 g8 rN sN tN
uN vN wN xN y4 z8
Now the groups are a-c,d-f,g-h,1, j-k,l-m,n,o-q,r-x,y and z.
Iff the first group of cards 1in the output goes into the normal
stacker, 1t wlll not be specially indicated. But apart from this,
a speclal marker card will be inserted after the first card of
every group. (Note well that the marker card will be after the first
card of a group, not before 1t as one might expect.) Representing
marker cards by (N), (4), and (8), the 26 cards in the above 1list
would be interspersed wlth marker cards 1n the output as follows:
abcd (4)efg(8hi(4) j(8))k1 (N)mn (4) o (8) pa
r (N) stuvwxy (4) z (8) .

A marker card has holes punched around its perimeter,
and 2 large visible N 4 or 8 punched in the middle. It 1s punched
by subroutine KPCH, for which see flow chart 13 and page 17
above, KPCH 1s entered from subroutine PCE (see flow chart 13 and
pp 16~17 above), from speclfic routine KKK (which 1s now being
described), and from ENDK (see flow chart 50 and 1ts discussion

later.)

31

"Flow chart 25" 1s only a note on subroutine BTD. This
is entered with PZE n in the accumulator, where n 1s less than
16000, and it puts the equlvalent 1401 address 1nto cells
BTDU, BTDV, and BTDW of the 7090 memory. For instance, 1f n=7999,
the 1401 equivalent address is ISZ, and BTD will put
PZE 9,,3 in BIDU, PZE S 1 BTDV, and PZE 9,,1 in BIDW.

The working of this subroutine 1s obvious from 1ts listing
in the 7090 program. It is entered from specific routlnes

SAR, SBR, and MOD, for op-codes &, H, and =.

Flow chart 26 shows the specific routine for the "load" oper-
ation, except when this involves magnetic tape. There 1s a branch
to IOMOV&] for "load" instructions that involve magnetic tape,
after setting sense indicator number 1 to show that the tape
wlll be read or written with word marks,

The routine uses "DOWNA" and "DOWNB", which are not really
subroutines but macros, whose definitlion will be found at the
beglinning of the 7080 program listing.

Flow chart 27 snows how DOANA works -- 1t reduces the
effective A-address by 1, by lncreasling the contents of 1index
reglater 1 by 1. If the contents of the index register are
greater than -MEM-1 , the effectlve A-address 1s O or negatilve,
and there 1ls an error exlt with message A¥*OR¥B¥ADDRESS*EXCEEDS*
7999%OR*IS*ZERO

DOWNB 18 exactly the same, except that 1t modifles index

register 2, and the effectlive B-address.

32

Flow chart 28 shows the specific routine for the "move"
operation, except when 1t involves magnetic tape. At IOMOV in this
flow chart, there is a branch to IOMOV&1 (see flow chart 29) for
imove" instructions that involve magnetic tape, after resetting
sense indicator number 1 to show that the tape will be read or written
wilthout word mafks. In the "move and binary decode" and "move and
binary code" sections, note that the A- and B-address registers
are tested only once for each palr of characters to be moved, tu
see 1f a zero or negative address will be involved. If thls causes
an error message (A*OR*B¥ADDRESS*EXCEEDS*7999*%0R*IS*ZERO) and
dump, 1t may happen one character earlier than a real 1401 would
have halted. IT IS POSSIBLE THAT THE SIMULATOR WILL GIVE AN ERROR
WHEN THE REAL 1401 WOULD NOT HAVE HALTED, if an odd number of charac-
ters 1s belng moved, and if moving one more character than
was actually moved would have caused location O of the 1401 to be
used. Since in practice the "move and binary decode" and "move and
binary code" are always used for an even number of characters,

the simulator neglects this possibility.

Flow chart 29 shows the specific routine for instructions
with op-code U, and also the continuation at IOMOV&1 for "move"
and "load" instructions that involve magnetic tape. There is an
error exit (messagé NO.SUCH.I.O.UNIT.TYPE) if the third character

of the instruction is not U or B. The same error message and exit

33

are given after IOMOV&1 if the eighth character of the instruction
is not R or W, and in routine CTT if the fifth character 1s not
M, R, U, B, or E. IOMOV&] sets sense indlcator number S if the
vape 1s addressed in bilnary mode, and resets it if in BCD; CTT
treats the tape as 1if 1t were addressed in the BCD mode in any case.

Both routines use subroutine RWA (see flow chart 30) to
find the 7090 tape address equivalent to the 1401 tape address.
The 1401 address 1s taken from the fourth character of the instruc-
tion; 1if this 1s not a digit between 1 and 6, the error
NO.,SUCH,I.O.,UNIT.TYPE occurs. If the 1401 tape number was not
mentioned on the control card (see flow chart 1 and page 8 ahove),
the job 1s ended with a dump and the error message 1401.TAPE.
NUMBER.NOT.ON.CONTROL.CARD . Otnerwise, the 7090 egquivalent tépe
addresses 1s found from the taovle given in flow chart 1,
and made bilnary i1f necessary.

Before a "write" instruction 1s carried out, it 18 necessary
to convert the record as it stands in simulated 1401 memory into
a 7090 record beginning at locatlon THOLD. This is done by subroutine
SQB. (See flow chart 32.) When this has been done, the simulator
tests switch UDISC (see flow chart 1 and page 4 above) to see how
to handle the difficulty created by the fact that a 7090 can read
and write only records contalning an integral multiple of six
characters. (It is true that it can read a record whose length is

not an integral multiple of six characters, but it does so as if

34

the record ended with enough zeroces to fill out the last word,

and there 18 no way for a 7090 program to find out whether zeros
at the end of the last word came from the tape, or were supplied
in this way.) If switch UDISC is on, tapes are not to be mounted
or dismounted in connection with the run, and the simulator can
use the tapes wlthout regard to other programs. It lengthens every
record which 1t wrltes by an extra word at the beginning; thils
word is PZE n, where n is between 1 and 6. n 1s the remalnder
after dividing the number of characters in the 1401 record by 6,
or n is 6 1f thils remainder is 0O; thus n 1s the number of valild
characters in the last word of the 7090 record. In reading,

the simulator treats the first 7090 word of a tape record as

not forming part of what has to be converted to a 1401 record, but
as containlng PZE n, where n is the number of valid characters in
the last 7080 word.

If switch UDISC 1s off, however, the reading and wrliting of
tapes has to be as nearly as possible compatible with what a real
1401 would do., If a record to be written does not contain an
Integral multiple of six characters, 1t 1s lengthened in 1its
7020 form by from 1 to 5 blanks if BCD, or from 1 to 5 zeros if
binary. In reading, there 1ls no problem for the simulator; every
record on tape contains, as far as the 7090 is concerned, an
integral multiple of six characters. Of course the 1401 may read
less than the full record on tape, if the memory space 18 terminated
by a group mark with word mark; in that case the simulator may
treat the record exactly as a real 1401 would have done.

The choice according to switch UDISC is made, in the simulator

35

program, by making location RTPDN contaln the command TCH RTPD
if the switch 1s off, or IOCP RTPDB,,1 1f it 1s on. RTPDB will
in any case countain PZE n, where n is the number of valld characters
1n the last word of tne record. Thls 1s for wrliltlcs. For readlng,
substitute R for W in the above 7090 symbolic addresses. Then
RTPD3 wlll not, of conr3se, contzain the correct PZE n 1f the switch
is off. Tn= cholce ol command for WILPDN znd RTPDN s nade soon
after BEGIA, near the veginning of the siaslator progream, 1if
switeh UDISC 13 set on ducinz th= readling of the control card.
ATter z "reai" instraction nas been nartly carried out
oy a 7090 read, it 13 necessary to convert the record in 70350 form
into a serles i characters 1n the simulated 1401 memory. Tnis. 1s
done vy suoroabine SP3, for whlcn gee [low chartc 31.
Tne redundancy ant ead-of-file/end-of-reel switches,
reoresented by 7090 cells TAPER and ENDRL, are set and reset

according. t

Q
N

tre same loglc as 2 r=2al 1401 would use; with one
excepition. IT & tapes mark is read 1ln the blnary aode oy a 1401,

thhe tape check iLadicator 1s set on; the sinmniator does not do this,
fowever, one does not normally Test for.redundancy after testing
for end-of-Iile, and the lndicator 1s automatically turned off

before tie next rszading or writing ol & tape by elther a real

1407 or the simulator.

36

Besides subroutines RWA, SQB, and SPB, the routines on

flow chart 29 use subroutine LVSYS. Thils is not flow-charted.
It allows the simulator to make sure that data channels A and B
are lnactive, and then to disable the channel traps so that
the simulator and the "IOEX" program (used by the simulator
for lnput-output 1n all cases except the simulation of 140]
tape orders themselves) will not conflict. For reasons described
in the 7090 manual in connection with channel trapping, it is not
enough to execute TCOA ¥ in order to be sure channel A 1ls qulescent,
if channel A 1s enabled for trapping. The program to which {rapping
sends control must store in a memory location some indication of
whether 1t is using the channel or not. In fact, "IOEX" uses
locations CHXAC, CHXAC&1, and so on for channels A, B and so on,
storing a zero in a word whenever it has finished with the corres-
ponding channel, and a non-zero whenever 1t starts to use the
corresponding channel. As "IOEX" stands at present in the IBSYS
system, the octal addresses of the locations for channels A and B,
i.e. CHXAC and CHXAC&1 in the symbolic version of IOEX, are
01104 and 01105. If IOEX is altered so as to change these absoclute
addresses, then the two references in subroutine LVSYS of the
simulator will have to be changed accordingly.

At ENSYS on flow chart 29, and in the slmulator program
listing, the simulator enables the channel traps from location
735 (octal) so that input-output willl be through and under the

37

control of IOEX until the next time a 1401 tape operation

is simulated. This enablement may not actually be necessary,

as 1t 1s probably done whenever a routine of IOCS is entered.

At the moment, 735 is the location from which the traps are

always enabled in IOEX; if this changes in future, the instruction
at ENSYS in the simulator will have to he changed correspondingly,

or eliminated i1f it is in fact unnecessary.

Flow chart 31 shows subroutine SPB, for converting 7030
records into records in the simulated 1401 memory. The calling
sequence 1s explained at the top of the flow chart. v

If sense indicator S is on, the record is in the binary mode,
and if off, in the BCD mode. If binary, each 1401 character can
pe deduced from a 7030 character merely by spreading the zone
bits apart from the numerical bits. But if BCD, it 1s necessary
to use table RDTAB -~ see page 12 above.

If sense indicator 1 1s or,, the record is to be put into
1401 memory as 1f by a "read/write with word marks" instruction
(load); and 1f off, as if by a "pead/write without word marks"”
instruction (move).

By "0-8-5" in the flow chart is meant the character that would
be punched on a BCD card as zero, eight, and five punches. When
reading a tape with word marks, 1t 1s possible that the last
character of the record may be 0-8-~5. Belng the last character,
1t cannot 1lndlcate a word mark on the followlng character, and so
it 18 treated as a normal character. This may or may not be what the

real 1401 does.

38

Subroutine SPB uses subroutine SPBL, which 1s shown at
the side of the same flow chsrt. It also uses macro UPB, which
i1s dlagrammed in the same flow chart. UPB increases the effectlve
B-address by 1, by redvcing the contents of 7090 index register
2 by 1. Iff the contents of this index reglster are less than
-MEM~-7999 , the effective B-address 1s above 7999, and there 1s
an error exit with message A*OR*B¥*ADDRESS*EXCEEDS*7999*¥0R*IS*ZERO .
The macro UPA is the same as UPB, except that 1t
uses 7090 index register 1 for the simulated 1401 A-address register.

Subroutine SPB is used only by the routine on flow chart 29.

Flow chart 32 shows subroutine SQB, for converting 1401
records into 7090 records. The calling sequence 1s explained
at the top of the chart.

 Sense indicators S and 1 are used as for subroutine SPB.

SQB uses subroutine SQWA, which 1s shown at the right of
the same flow chart.

There 1s an error exit with message TRIED*TO*WRITE*ZERO-LENGTH*
TAPE*RECORD if "B" in the calling sequence 1s the address of a
group mark with word mark; i.e. if the B-address of a 1401 tape-write
instruction 1s the address of a group mark with word mark.,

Subroutine SQB is used only by the routine on flow chart 29.

39

Flow chart 33 shows the specific routines for op-codes
s JQHDand Y

There are no pecullar error exits. However, for "store A-regist-
er" and "store B reglster", one may note that the error for A-address
too low 1s not found by the simulator until after the storing has
taken place, but before the A-address register has been altered.
A real 1401, on the other hand, would adjust the A-address regilster
step by step, and halt when 1t reached zero, leaving one or two

characters unstored.

Flow chart 34 shows the specific routine for op-code Z .
There are no speclal error exits or remarks. rFlow chart 35
shows the specific routine for op-code / . There are no special
error exlts or remarks,

Flow chart 36 shows the specific routines for op-codes W and
V. There are no speclal error exits or remarks. Flow chart 37 shows
the specific routine for op-code P. There are no speclal error

exlts or remarks.

Flow chart 38 shows part of the specific routines for op-codes
A and S. Except for the case of a 4-character subtract instruction
(subtract a field from 1tself), control goes down the left side of
the flow chart whlle some prelimlinarles are bheing carried out,
and then there 1s a branch at the bottom to either ADTRU, for a
true-add operation, or ADCMP, for a complement-add. ADTRU 1s in
the middle of the top of the same flow chart, and ADCMP constitutes

40

flow chart 39.

No subroutines from other flow charts are used on flow
charts 38 and 39. At various places on these two flow charts,
it 1is noted that there is an error exit if the digltal part of
a character 1ls greater than 10. Tne message ror this is
ADD*OR*SUBTRACT*MEETS*NON~DIIT .

In a true-add operation, the sign of the B-{ield is left
nchanged; but alter a complement-add, the rightinost diglt of
the B-field will always be either plus-zoned or minus-zoned,
according to the sizn of the result, and never unzoned or zero-
zoned, even though 1t was unzoned or zero-zoned initially and
1s still positive.

In any character of the A- or B-fleld, blank numerical bits
are treated like zero numerical bits (i.e. binary xx0000 like
xx1010). I~ the result in the B-field, however, a zero in any
position will be represented by zero, not blank, numerical blts.

Zone bits and overflow are handled as described on page 19
of the IBM System Operation Reference Manual for the 1401

and 1460, File Number 1401/1460-01, Form 424-3067-0.

Flow chart 40 shows the specific routine for op-code C.
There are no speclal error exlits or messages.

Flow chart 41 shows the specilifilc routine for op-code =
(modify address). This uses subroutines EV (see flow chart 20

and page 24 above) and BID (see page 31 above). The only peculi-

4

arity 1s on the right hand side of the flow chart, where Fhe
A- and B-address reglsters are altered and tested for validity
in a slightly different manner from that used vy a real 1401.
This makes no difference to the running of a program, but i1f there
1s an error halt here, the A- and B-addresses and the
contents of the 3-fleld will not ve gqulte the same as when a real
1401 halted.
There 1s another error exlt if either the A-field or the B-

field contalns an impossible character, as shown by return 1 from EV.

Flow chart 42 shows the speciflec routines for the "zero and
add" and "zero and subtract" operations. The only peculiarity is that
for a four-character instruction, tne error exit for A-address'
reduced to zero will leave the A- z2nd 2-address registers contalning
different rniumoers [rom wnat they would contaln at the corresponding

nzlt on a real 1401,

Flow chart 43 shows the specifié routine for op-code B,
There are no speclal error exits Or messages.

Yiote that z "wranch on character equal” with K or Z as its
D-character resets tne end-of-tape or overflow indicator, respec-
tively, whether it results in a branch or not.

L five~-character branch instruction wlth 9 as i1ts D-character
is treated as a "rno operation". However, a five-character branch
with » as 1cs D-character (represented by "8-4" in a lozenge

on tie flow chart) is treated as a branch if location WRUTA

contalns 50; as explained above on page 20, the simulator attempts

42

to simulate a printer with a carriage control tape that has
a punch 1in channel 1 at the top of the page, and a punch in
channel 12 fifty lines below it.
A five~character branch instruction with minus-zero,
record mark, or (as its D-character is treated as a no-operation,
because there 1s no simulation of punch errors, printer errors,
or the kind of processing check deteeted by "branch on processing
check".
A five-character branch instruction whose D-character 1is
none of 9 @ K I, minus-zero / S T U Z record mark (A BC D E F blank

or plus-zero 1s treated as an error.

Flow chart 44 shows the specific routine for the "multiply"
operation. Fof the sake of -simplicity and speed, this i1s not
carried out by the method a real 1401 would use. The multiplier
and multiplicand are evaluated as binary numbers, by subroutine
MPA (see flow chart 45); they are multiplied by a 7090 multiply
instruction, and the product is converted to decimal form and
stored in the simulated 1401 memory by subroutine MPB (see flow
chart 45).

If K, the length of the product fileld, 1is greater than
21 characters, or if P, the length of the multiplicand, is greater

than 10 characters, or if K-P, the length of the multiplier,

43

1s greater than 11 characters, this 1s arbitrarily conslidered tn
be an error; the message before the dump is PRODUCT*OVER*Z21*OR¥*
FACTOR*OVER*10*DIGITS . If K-P 1s less than 2, this 1s a genulne
error; the product field and the multiplier are too short; and the
error message 1s PRODUCT*FIELD*TOC*SHORT . .

The 7080 multiplication i1s done with positive factors. If
the product 1s not less than the 35th power of 2, 1t cannot Dve
contained in one 7090 word or regilster; 1t is necessary to divide
it by the 10th power of 70 and use the remainder from this
divislon to fill in the low-order ten digits of the 1401 product,
and the quotient to fill in the remaining high-order digits.

The factors are lim ted to ten diglts each because all
ten-diglt numbers are less than 2 to the 35th, while an eleven-
digit number may not be. The product of two such factors cannot
be as great as 10 to the 20th, so dividing a long product by
10 to the 10th must glve a remainder and a quotient that are both

less than 10 to the 10th, and no divislon overflow can result.

Flow charﬁ 45 shows subroutines MPA and MPB, which are
used by the specific routines for "multiply" and "divide" (see
immedlately above for multiplication, and see flow chart 47
below for division.)

MPA 1gnores the zone bits of the characters. If the numerical
blts of a character are all zero, 1t 18 treated as a zero; if

they add up to more than 10, there 1s an error exit.

44

MPE converts a bilnary 7090 number to an unsigned 1401

number. There are no error exits.

Flow chart 46 shows the specific routine for the "halt"
operation. There are no special checks or error exlts. If
the control card contalned an H, logical switch "HALTS" is on,
and the 7090 prints an on-line message for the operator,
showlng the contents of the I-, A-, and B~address reglsters as
decimal numbers. The program then halts. If the slgn key on
the 7090 console is off when the start button 1s pressed,
the 1407 program obeys the halt instruction and continues as if
the 1401 start button had been pressed. Otherwlise, pressing the
7090 start button causes an exlt like an error exit, with the
message "1401 HALT".

Though 1t 1s not shown explicitly in the flow chart, the
routine uses subroutine DUMPA (see flow chart 49 below) to

convert the register contents into decimal form for printing.

Flow chart 47 shows the specific routine for the "divide"
operation. This 1s not carried out by 1401 logic, but by
a 7090 division. However, thils makes no difference to the
result as long as the divisor and dividend are not too long.

If K, the length of the divisor, 1s greater than 10 charac-
ters, there 1s an arbltrary error exit with the message

DIVISOR¥OVER*10O*DIGITS. This i1s because a -decimal number of

45

more than 10 digits may not be less than 2 to the 35th, and
8o may be too large for a 7090 divisor.

The B-address of the instruction refers to the leftmost
digit of the dividend. The check for a sufficlent number of
positions to the left of this, before a word mark i1s encountered,
1s not made yet. The next check after K 1s found verifies that
all positions to the left of the character at B, up to and inclu-
ding the nearest one with a word mark, contain zeros. Thils check
is not made by a real 1401, but if those positions do not contain

zeros, the real 1401 would give a wrong answer. The message for

-

this error exit 1s LEFT*END*QOF*B*FIELD*MNOT*ZERO .

The next part of the routine vegins at the 3-position and
looks rightward until 1t finds a character with zoning. If this
is not standard plus or minus zoning, 1l.e. is zero zonlng, thecre
1s an error exlt with the message DIVIDEND UNSIGNED OR IMPROPERLY
SO, I a character with a word mark i1s found before a signed
character, the same error exlt and message occur. Let P be the
address of the signed character. Then P-B&1l 1is the length of
the dividend, If this 1s greater than 20 characters, an arvltrary
error exlt occurs, with the message DIVIDEND*OVER¥20*DIGITS.

The reason for thls 1s that a longer dilvidend might not be small
enouzh for a 7090 dividend and even 1f small enough might

produce a 7090 divlide overflow with a 10-diglt divisor.

46

There are no further error exlits from this routine.
If the divisor has been found to be zero, division does not
take place, and the same procedure 1s followed as for a real
1401.

The blnary equivalent of the divisor 1s found by subroutine
MPA (see flow chart 45 and page 43 above). If it is longer than
10 digits, its high-order part ls evaluated and multiplied
by 10 to the 10th, and added in double-precision addition to
the binary eguivalent of the low-order 10 diglits. As this sum
stands in the AC, containing "x", and the MQ, containing "y",
it 1s equal to x times 2 to the 35th, plus y. If x 1s not less
than the binary form of bthe divisor, division cannot take
place Immediately. The divisor 1s repeatedly multiplied by 10,
until a number greater than x 1ls obtalned. The dividend is
divided by thils number; the guotient Q1 and remainder R1 are
saved. Rl 1s now divided by the original dividend, giving a
guotient Q2 and remainder RZ2. R2 1s the blnary form of the
final remainder. The flnal quotient is @2 plus (Q1 multiplied
by 10 as many tTimes as the divisor had to be multipliled by 10).
If the number of multiplications by 10 is "z", 1t is known that
Q2 is smaller than 10 to the z-th. (R1 was smaller than
'the divisor times 10 to the z-th, so R1 divlided by the divisor
must gilve a quotient, G2, smaller than 10 to the z-th.) So
the program can combine g1 and Q2 in the 1401 memory by putting

the decimal equivalent of Q2 in the low-order z vositions of the

47

quotient fileld, and the decimal equivalent of Q1 in the remailning
high~order positlons.

If the length of the dividend 1s less than 10 dlgits, or
if the high-order half of a longer dividend, when waiting in the
AC and Mg to be divided, 1is greater than the divisor, the
dividend can be divided immediately by the divisor, and the
quotient and remainder are each converted to decimal numbers

simply, and stored in the proper fields in the 1401 memory.

Flow chart 48 shows the specific routine for the "edit"
instruction. The only special error exit occurs if the cl.aracter
at the A-address has a word mark; the message [or this is
TRIED*TO*EDIT*A*]-~-CHARACTER*FIELD . This routine uses no
sub-routines.

The editing 1s done as if by a 1401 without the "expanded

print edit" feature.

Flow chart 49 shows the subroutine DUMP4, which converts
a 7030 address into a blank and five decimal digits that glve
the 1401 equivalent of the 7090 address. "MEM", the 7090
address of locatlor. O in the simulated 1401 memory, is first
subtracted from the number, and the remainder 1is converted tc
decimal.,

DUMPA 1is used in flow chart 17 (see page 21 above)
to make printable addresses when tracing has been requested on

the control card; by the specific routine for the "halt" operation

48

(see flow chart 4G and page 44 above) to get printable addresses
for an operator message; and by the routine DUMP (see flow
chart 50 immediately below) to get printable addresses for

listing in the final dump.

Flow chart 5C beglns at ERROR, which 1s not actually the
name of an instruction in the simulator program, onut represents
the various points in the program at which error messages are
printed, and from which the program always branches to DUMP.
(See the definition of the macro ERRR at the beginning of the
simulator program listing.)

Beginning at DUMP, the following things are done:

(1) If the control card contained an asterisk, so that logical
switeh "TRACE" is on, and if a partially-filled pagzge of

addresses 1s waiting to be written out, subroutine TRD (see flow
chart 18 and page 23 above) writes 1t out.

(2) The contents of the I-, A-, and B-address registers are
written out for listing, along with "OFLO", "TPCK", "ENDRL",
"A=B", "UNEQ", "AHIGH", and "BHIGH". After each of these words,
elther "ON" or "OFF" is written, according to whether each of the
indicators for overflow, tape redundancy, end-of-file or end-
of-tape, A = B, A not = B, A greater than B, or A less than B

is on or off.

49

(3) A dump of the 1401 memory is written out for listing.

(4) If location KCARD contains non-zero, at least one K4 or

K8 instruction has been simulated, and the punched-card output
will contain one or more pocket-change cards (see flow chart 23

and page 29 above). As a warning,

I B I W I I N AWK S I B I I S I I I K I W I I I WKW NN H

¥ LOOK FOR POCKET CHANGE CARDS IIN THE CARD OUTPUT *
LA g e A s R ey e eI 3T T SRR

is written immediately after the dump.

In addition, if the last card punchied was sent by the
program to a different pocket from the one preceding it
(or if only one card was pu:ch.ed and it went to pocket 4 or 8)
the appropriate pocket change card 1s written out for
punching.
(5) If the control card contained a dollar sign, so that
logical switch CDUWMP 13 set, a card wlth MEMORY visibly punched
on 1t 1s written out for punching, followed by 100 binary
cards that reproduce the contents of the 1401 memory. (Sne
pages 4 ff. above.)

(6) CALL EXIT 1s executed, terminating the 7090 Job.

- 50 -
HOW TO USE THE 1401 SIMULATOR

1. Get a copy.of the small binary program deck (about 20 cards).
Substitute your ID card for the sample ID card near the beginning

of this deck. If the 1401 program may punch out some cards, put a

"Punch Binary Cards" control card immediately before the ID card.

2. After the last card of the program deck, put a 7-8 card. Then
put a control card for the simulator. This card will contain
various characters, punched continuously from column 1. The
program will stop scanning the control card when it encounters
the first blank column, so any characters punched to the right
of the first blank will be ignored. I.e., punch the control
characters continuously, with no blanks interrupting them.

The control characters and their meanings are as follows:

& (12-punch) The simulated 1401 will behave as if the I/0O check
stop swiltch were on. If this character does not appear on the
control card, it will behave as though the switch were off.

* Every time the simulated 1401 1is about to execute an instruction,
the address of that instruction will be written out, to .
help 1n tracing errors. The address will be in the form of &
five-digit number; the numbers will be arranged in columns ¢f fifty,
twenty columns to a page. Such pages are to be read by colunns,
not by rows. They wlll be mixed up in the output with whatever
pages the simulated 1401 has printed, but this should cause no
confusion. :
. If the control card does not contaln an asterisk, this tracing
will not be done.

ABCD The simulated 1401 willl behave as though every sense switch
EF or G whose letter appears on the control card were on, and

every sense swltch whose letter does not appear on the con-
trol card were off.

H Whenever a programmed halt occurs in the slmulated 1401

program, the 7090 will halt, and print a message on-line,
showlng the contents of the I-address register, A-address register,
and B-address register, and telling the operator:
PROGRAMMED 1401 HALT. PRESS START TO CONTINUE. TURN ON SIGN KEY
AND START TC END 1401 JOB.
The 7090 operator must have been instructed to check the contents
of the 1401 registers as printed, and continue or terminate the
1401 Job accordingly, by having the sign key on the console
off or on, respectively, when the start button 1s pressed.

If there 1s no H in the control card, the first programmed

halt in the 1401 program will terminate the Job automatically.

K Whenever an instruction with an invalid A- or B~address 1s
executed, the Job will be terminated as for a 1401 error halt.

If. there is no K in the control card, invalid addresses in "no-op"

Instructions will be tolerated, and so will invalid A-addresses

in conditional branch instructions 1f the condition is not met

and the branch does not take place. This 1s more nearly the way

the 8-K 1401 at CETIS works at present.

- 51 -

1TH 2H 3H 4H 5H 6H For every tape which the 1401 program will use,
1L 2L 3L 4L 5L 6L the number (i.e. the 1401 address number) and
density must be given as two characters on the
control card. If the 1401 program addresses any tape that has not
been mentioned on the control card, the Job wlll be terminated
automatically.
1%01 t%pe nﬁmber 1 corresponds Eo 7990 t%pe A-5.

2 B-5.
n n i 3 fn] n n A -6 .
n n n 4 fn n L n B_6
1] it n 5 1 n fn n A- 7 *
n n n 6 1] fn " n B_ 7 :

Just as one would instruct the 1401 operator, in terms of 1401 tape
numbers, what tapes to mount on what units, so one must instruct
the 7090 operator, in terms of the corresponding 7090 unit numbers,
what specific tapes and work tapes to mount before the job and
remove afterwards.

If the control card contains any 1401 tape number(s), the
simulator program will halt when 1t has finlshed reading the
control card. In thls case, 1t 1s essentlal to Instruct the opera-
tor, on the Jjob card, either (a) to make sure the proper tapes
have been mounted, and then press START, or (b) simply to press
START if only work tapes will be used by the 1401 program. .

(It is possible to get messages printed on-line by the 7090, which
the operator will look at during this halt. Thls lnvolves putting
comment cards somewhere near the ID card 1n the input deck; 1t

i1s left to the reader to investlgate thls detall of the IBJOB
system.)

If the control card does not contaln any tape numbers,
the simulator does not halt automatically at this point.

T The 1401 program will be inltlated by simulating the pressing of
the LOAD TAPE button, 1.e. by the sequence of instructions
/080 ,001 M(U1001R BOO1l
If the letter T does not appear in the control card, the pro-
gram will be initliated by simulating the pressing of the LOAD
button on the card unit; 1.e. /080 ,001 1001

$ At the end of the Jjob, the contents of the 1401 memory will be
punched out on 100 binary cards (or rather, written on tape

for later off-line punching.) These 100 cards will follow all the

cards that may have been punched out by slmulated 1401 instructions,

and they will be preceded by a marker card with MEMORY punched

visibly on it. The MEMORY card should be discarded, and the

100 cards that follow 1t preserved for possible use as explalined 1n

the next paragraph. If $ does not appear in the control card,

these 101 cards wlll not be punched.

= If the equal sign appears on the control card, the control card
must be followed immediately by 100 cards that were punched after

a previous job, as explained in the preceding paragraph. These
cause the 1401 memory- to be returned to the state 1t was in at the
end of that previous job. The next card after those 100 cards must
have elther blanks or a 4-diglt decimal number punched in columns 1-4,
This 1s a "transfer" card. The next card after the transfer card
can be thought of as belng the first card in the deck placed in the
card reader of the simulated 1401. If the transfer card 1s blank,
the program is 1nitiated by simulating the pressing of the LOAD
TAPE button or the LOAD button on the card reader, depending on
whether the control card contalned a T. Otherwise, the four
digits at the beginning of the transfer card are taken to be a
1401 address, and the program is ilnitiated by branching to that
address.

If the equal sign does not appear on the control card, the
1401 memory initlally contalns random information. The first card
after the control card can be thought of as the first
card in the deck placed in the card reader of the simulated 1401.
The program l1s initiated as described 1in paragraph T above.

U If this letter appears on the control card, the simulated
card reader willl not take the cards that follow the control

card as the input deck. Instead, it will assume that the lmmedlate-
ly preceding jobb in the monlitor was a compilation which left
a copy of the program(s) and data in the "common" section of
disc storage. Therefore, the simulator will take what 1s 1in that
part of the disc storage as the input deck. See."How to Load the
Simulator Immediately after the Cémpiler", at the end of these notes.

If the control card does not contain "U", the simulation of
card readlng takes place in the ordinary way, as described in tne
varilous notes on the simulator program.

3. After the control card, if 1t contalns no = , or after the 100
cards that must follow it 1f 1t does contalin = , put whatever
cards would be loaded In the card reader of a real 1401. If 1t
happens that the program does not call on the card reader, or 1if
the control card contains "U", put a few blank cards there anyway --
say 10.
Before the last card of the deck that would be loaded 1n a
real 1401, 1lnsert a card with:

/////, THE NEXT CARD WOULD HAVE BEEN PHYSICALLY LAST IN THE 1401 INPUT.

punched in columns 1-70, and blanks in columns 71-72.

This artificial indication of the end of the input deck is
needed because a tape mark on the monitor input tape does not
represent the end of the deck; 1t represents a 7-8 card.

Whenever the card input to the simulated 1401 includes a card with
two holes 1in column 1, in the 7- and 8-rows, this will become, on

55

the input tape for the 7090 monitorf a tape mark. When the simulated
1401 meets a tape mark in its "card" input, 1t interprets it as a
card with the 7-8 punch in column 1, and blanks in colwans 2-80.

If a card has a tape mark in column 1 and information in

columns 2-80, thne simulated 1401 1s unable to read the information.

4. After the last card of the 1401 input, place a 7-3 card,
$IBSYS and $EXECUTE FORTRAN control cards, and another
7-6 C&I’d.

5. On the Job card, you may instruct the operator that 1f the
time 1limit 1s exceeded, he should set sense swltch 6

of the 7090 to on; this should cause the simulator to terminate the

Jjob.

6. Apart from this use of sense switch 6, and of key S at a
programmed 1401 halt, the sense switches and the 36 input

keys on the 7050 console are ignorsd by the simulator.

7. Whenever a 14271 Job 1s terminated, whether through a programmed
halt or througn an error hait, the simulator writes an appro-

orilate message on trie monltor listing tape, then the contents

of the simulated I-address, kA-address and B-address registers, and

the settings of all the simulated indicators, and finally a complete

dump of the simulated 1401 memory.

8. Apart from input-output, multiplication, and division, the

simulater 1s Intended to behave Just like the 14C1-2 at CETIS.
dere are the essentlal remarks abvout the simulation of these
functions:

CARD READING: Any cards that must ve read by the simulated 140]

willl have to pe read by the monitor card-to-tape
program. This 1s naturally veyond the control of the simulation
program, and it means that only two types of cards can be
accepted -- those in which 21l 80 columns contaln something that
would be valid for 3CD reading (i.e. not more than one numerical
punch, or & wlth one other numerical punch; not more than one
zone punch, but O may count a3 numerical IiIn the combinations &O
and -0); and those that have rows 7 and 9 punched in column 1,
but not rows 4, 5, 5, and & in that column.

The former type of card will be converted to a BCD record by
the card-to-tape program, unless column 1 contains the 7-8 punch
for a tape mark. Then the card will be converted to a tape mark
on the tape, regardless of the contents of columns 2-80.

The latter type of card will be converted to a binary
record.

A BCD card image on the input tape can be read by a simulated
1401 instruction for elther binary or BCD reading. But a binary card
image represents a card with 7-9 in column 1, which would certainly
cause a read check 1f a 1401 attempted to read it with a BCD
instruction. Therefore a simulated BCD read instruction,
applied to a bilnary record on the input tape, will cause a read check

- 5“ -

but will put into the 1401 memory Just what a real 1401 would have
read from the original card, if it tried to read it in BCD.

This 1s the only occaslion on which a read check can occur for
the simulator. If the control card contained a plus sign,
the I/0 check stop switch 1s simulated on, and there i1s a dump and
termination of the job, representing an error halt on a real
1401. Otherwise, the card read check indicator can be tested
and turned off by the appropriate 1401 instructlon.

The real 1401 has the instructions K1 and K2 for directing
cards into special pockets after reading them. No attempt to
simulate this 1s made, and such instructions are treated as
no~-operations or as unconditional branches, depending on whether
they are 2-character or 5S5-character instructions.

CARD PUNCHING: As already pointed out, if the simulated program is
golng to punch any cards, 1t 1s necessary to lnsert a

"PUNCH BINARY CARDS" control card just before the ID card in

the 1nput to the monltor.

The 1401 program ls free to punch BCD or binary cards. They
will come back to the programmer, in the monitor output, with the
usual extra cards before and after -- at least an ID card before
and a 7-8 card after.

The real 1401 has the instructlons K4 and K3 for dlrecting
cards 1nto speclal pockets after punching them. If any such
Instructions are executed durlng a Job, a message wlll be printed
at the end of the monitor output:

3 36 3 I 3 I I I I I WK W I I I I 6 I I I I I I 6N I I I I I I K KK I H I %

* LOOK FOR POCKET CHANGE CARDS IN THE CARD QUTPUT *
36 I I I 33 I I W I I I I I I I I I I I I I K I I K I I I I I I KW K I KK H

When the output cards are obtailned, one should do the following:
(a) look through the output deck for any "pocket change cards" (if
the message quoted above was not printed, there will not be any).
These cards have a double row of holes punched around all four
edges, and a vislible N , 4 , or 8 punched 1n the center.
Every pocket change card should be moved forward one place 1n the
deck; l.e., 1t should exchange places wlth the card that lmmedlately
precedes 1t.
(b) if the first card in the deck 1s not now a pocket change card,
put a pocket change card with N 1in the center at the beginning
of the deck. .
(c) deal the cards into three plles, an N pile, a 4 pile, and an 8
vlle. Whenever a pocket change card 1s reached, 1t should be thrown
away, and all the cards followlng 1t should be dealt onto the
pile it named, untll the next pocket change card 1s reached.

One wlll then have, in the N plle, all the cards that a real
1401 would have punched into the normal pocket; in the 4 pille,
those that a real 1401 would have punched 1nto the 4 pocket; and
in the 8 plle, those that a real 1401 would have punched into
the 2/8 pocket.

Obviously, steps (a), (b), and (c) above can be combined
in a single handling of the output deck, but the explanation is
clearer 1f the steps are separated.

No punch checks can occur.

PRINTING: The simulation program will behave 1like a 1401 in which
the rightmost position on the printer always orinted
blank, whatever character 332 in the memory might be.

Whenever a real 1401 would print a record mark, the simulator
will ovroduce a dollar sign in the same positlon. This 1s because
the output from the simulator has to be listed oy the ordinary mon-
itor listing program, whicn treats every record mark as an end-of-
line signal instead of printing it.

The simulator can simulate F-Instructions by writing out
records with the appropriate control characters at the beginning,
whilch the listing program will translate into F-skips
afterwards. However, the output has to be listed by the ordinary
monitor listing program, so only channels 1 and 12 of the printer
carriage control tape will be significant.)

£ real 1401 can use a branch instruction to test whether
the printer carriage 1s at a point corresponding to a punch
in channel 12 of i1ts control tape. The simulator malintains
a counter which 1s initially zero, and 1s 1ncreased by one every
time a line 1is printed. When 1t reaches 50, the simulator behaves
as though a puach in channel 12 of the carriage control tape
were avallable for sensing. When 1t reaches 51, 1t 1s immediatcly
reset to 1. When an F-instruction causes one, two or three
lines to be sklpped, the same numoer 1s added to the counter,
with a return to 1, 2, or 3 1if 51, 52, or 33 is reached.

When an F-instruction that causes a skip to some channel punched
in the control tape 1s executed, the counter 13 set to 1.

MEGRNETIC TAPE READING: If a tape record belng read contains an
Integral multiple of silx characters, therc
1s no difficulty. If it does not, the 7090 will read it as if
1t contalned an extra 1 to 5 zeros, to make up a total
vwhich is a multinle of six.
If the 1401 program happers to provide a group ma~k with
a word mark in the memory, correctly delilning the length of
the reccrd, any extra zeros of thils kind at the end
of the record will ve lgnored by the simulator.

MAGWETIC TAPE WRITING: If the number ol characters in a record

to be written 1s not an integral multiple
of 8ix, the simulator has to extend it with from 1 to 5 extra
characters, before the 7080 can deal with 1t. The extra characters
will be blanks 1f the record i1s BCD, and zeros 1f binary.

- 56 -

MULTIPLICATION AND DIVISION: Limitations are put on multiplication
and division, to avoild dividends
and products that will not fit in the AC-MQ of the 7090.
In multiplication, the product field must not be more than
21 characters long, the multiplicand must not be more than 10
characters long, and the multiplier must not be morc than
11 characters long.
In division, the dividend must not be more than 20 characters
long, and the divisor must not be more than 10 characters long.
There are a few conditions in which a real 1401 would produce
a wrong answer for a multiplication or division, because the
program had not set up the fields correctly, but in which the
simulator will make an error halt and dump.

HOW TO LOAD THE 1401 SIMULATOR FROM SCRATCH

The small binary program deck depends on finding most of
the the simulator program on the discs, in cylinder 248 of
module O. If the program 1s to be modified, or if something
has happened to the information on the discs, it 18 necessary
to begin again with the complete binary program deck. One should
load the following into the monitor input:

1 IBSYS

2 RESTORE

3 EXECUTE IBJOB

4 our ID card

5 IBJOB NOSOURCE,MAP, FILES

6) the binary program deck for AFR3, from the $IBLDR card,

AFRBO0OJ0O , to the $DKEND AFR3 card which at present is
AFRB0235 .

§7§ a 7-8 card

8) a card with A in coluan 1, and blank otherwise. This will be
fhe simulator control card.

(9) a card with ,008009. in columns 1-8 . This is a minimal
"program" for the simulator to execute.

10) a 7-8 card.
11 %IBSYS
12) $EXECUTE FORTRAN

13) a 7-6 card.

The output from this monitor Jjob wlll naturelly be completely
uninteresting. Items (8) and (9) above could be replaced by a
control card and 1401 program that did have some interest, but we
are assuming for the moment that what 1s wanted 1s not to do
any particular job of 1401 simulation, out merely to get the
simulator program established 1in disc storage.

Once this has been done, one can Drepare the small binary
deck as follows:
(a) Prom the binary program deck for AFRB, copy all the cards
beginning at AFRBOO0OO and ending with the card that contailns
locatlion CHARGE; at present this 1s location 00063 (octal) in
the program, and 1s to be found on card AFRBOO009.

If some future modification of the simulator program altered
"the location of CHARGE, or the number of the program card that
contained 1it, one would have to take account of thils 1n preparing
the small binary deck. But for the remainder of this description
we shall assume the values 00063 and AFRBOO09 without further
comment.
(b) Prepare a card which 1s to replace everything after AFRBOOO9
in the complete binary deck, up to but not including the
$CDICT AFRB card. This card must contain the equivalent of

BSS n where n 1s the number of locations occu-

END CHARGE pled by the rest of the complete binary

deck.

- 58 -

To find n , look for the page headed "AFRB CONTROL DICTIONARY"
near the end of the MAP assembly listing. This page begins
with the listing of a BCD card containing "$CDICT AFRB".
Then follows the listing of a binary card; one sees on the
page something like this:

BINARY CARD ID. AFRBOZ233
036056000062 PREFACE etc. etc.

The total length of the program 1s contained in the decrement

of the first word of information on this card; the length in the
example above, which 1s taken from the present state of the
program, 1s octal 36056 . This willl change slightly whenever the
program 1s re-assembled, but let us accept 1t as 36056 for the
rest of this discussion.

From this number, 36056, subtract the octal address of the
first word of program on the next card after the one containing
location CHARGE; 1.e. on the first blnary program card that is not
being copled in the short deck. Since CHARGE falls at present in
card AFRBOO09, we look at the MAP assembly listing to find that
the octal address of the first program word on card AFRBOO10
1s 00066. Subtracting 00066 from 36056 gives octal 35770.

So we need a binary program card containing the equivalent
of:

BSS n where n 1s the decimal equivalent of octal 35770

END CHARGE
and we look up CHARGE in the assembly listing and find that
its octal equivalent is 00063 .

Therefore we punch a column blnary card with the followlng
in 1ts first seven words (octal representation):

704502000003
000000000000
013600000000
000000000000
000000000000
200000035770
000000000063

The only variable parts of thls card are the 00003 at the
end of the first word, the 35770 at the end of the sixth word,
and the 00063 at the end of the seventh word. The derivation of
the 35770 has Jjust been explained at length above, and the 00063
is the equivalent of CHARGE. The 00003 is one more than the number
in the same positlion of the preceding card. After the
$TEXT AFRB card, succeeding cards in the deck contain consecutive
numbers in this position, beglinning at 00000 for the card next after
$TEXT AFRB . The last card we retailned, AFRBOOO9 as things stand,
has at present 00002 in thils position because it is the third card
after $TEXT AFRB .

In columns 73-80 of thils card, punch AFRB0O010, assuming that
AFRBOO0O9 1s the number of the last card retalned from the complete
deck.

59

Now take the last Part of the complete program deck, beginning
with the " $CDICT AFRB " card, and copy it; but modify the plug-
board of the reproducer so that columns 77-80 of the new cards
are left blank. Into these columns, 1lnsert serial numbers followlng
on from the number of the last card prepared (as this was AFRBO010
in the current example, these numbers will be 0011 ff.)

One more modification has to be made to the first card follow-
ing the " $CDICT AFRB " card (number AFRBOO12 in the current
example). The address part of the third column bilnary word on
this card gives the address at which the program wilill begln to
be executed. As the program 1s assembled, thls address 1s LOAD,
octal 00062; but in the small binary deck 1t must be CHARGE,
octal 00063. As long as LOAD and CHARGE have these octal
egulvalents, the modification of the card 1s very simple: put an
extra punch in the 9-row of column 9, altering 00062 to 00063,
and an extra punch in the O-row of column 1, showing that the
check sum 1s no longer valid.

There 1s no reason to expect that 00062 and 00063 wlll change
through re-assembly of the program, because what lles between
locatlons 00000 and 00063 1n the program 1s concerned only with
copylng the program itself to and from the discs, and there 1is no
inducement foreseeable for changing this. But 1f these addresses
should change, the final card modlfication descrlbed 1n the previous
paragraph would become more compllicated. Presumably the change
would affect only the last four octal digits of the address; the
simplest thing then would be to copy the card once more, with the
plugboard of the reproducer altered to leave column 9 of the
new card blank. Then one would punch into column 9 the equivalent
of the last four diglts of the octal equlvalent of CHARGE. It
would still be necessary to add the punch 1in the O-row of column
1, to show that the check sum had been invalidated.

(c) At the beginning of this shortened binary deck, put the first
five of the control cards mentioned at the top of page 8 above;
namely, $IBSYS, $RESTORE,$EXECUTE IBJOB your ID card, and
$IBJOB NOSOURCE,MAP,FILES .

We now have a new small binary program deck, which can be
used as described at the beginning of "How to Use the 1401 Simulator".
Thils procedure must be gone through whenever the simulator
program 1s re-assembled.

Mlnor corrections to the simulator program can be made wilith
patch cards. Thelr format 1s explained at the beginning of the
commentary on the flow charts for this simulator. Near the
ennd of the MAP assembly llsting of the simulator, there
1s a card: PATCH BSS 200 which reserves 200 cells for putting
program correctlons in without dlsturbing the total length
of the program. (Typically, a program correction, if done by
patchlng, requires the replacement of an instruction in the program

- 60 -

by a branch to some point outside the program, where the new version
of whatever is being corrected has been loaded. The space reserved
inside the program by the PATCH card is for such "new versions".)
Patch cards, if any, are to be put immedlately after the 7-8
card that follows the small binary deck, and before the simulator
control card. The simulator program willl note that there are patch
cards, and after the last one has been read and obeyed, 1t will
copy 1tself in its newly-modified form onto the discs.
(This 1s different from the system in the compiler
program described elsewhere. If that program is to be modified by
patch cards, it has to be loaded from the complete binary deck,
as if it were not already on the discs.)

When the simulator is re-assembled by the MAP assembler,
it 1s possible to use it immediately afterwards, during the same
monttor. But this does not necessarily put the program correctly
on the discs. It must still be loaded at least once from the
complete binary program deck.

HOW TO LOAD THE SIMULATOR IMMEDIATELY AFTER THE COMPILER

The simulator program can be loaded in the monitor with
" U " punched on the control card, in addition to any other
necessary characters, and with no program cards following the
control card.

This is only to be done if the simulator program immediately
follows a ccmpiler job in the monitor input. The program or
programs that the compller compiles will then be executed in
the same order by the simulator.

There 1s an important limltation on this. No magnetic tapes
are to be mounted before the programs are executed, or dismounted
afterwards. The way in which the simulator will read and write
tapes, during such execution, is incompatible with normal
1401 operation. Since there 1s no need for the 7090 operator
to do anything about tapes, the simulator program will not halt
after readlng the control card, even 1f it names one or more tapes.

So 1if one wants to compile and .test immediately, on the
7090, a 1401 program -that -- say -- reads a magnetlc tape,
does somethling with the information, and writes 1t on another
tape, 1t will be necessary to glve the followlng as input to
the compiler:

(a) a compiler-language program for reading in information on
cards and copying 1t onto tape 1in a sultable format for use as
input by the main program.

Eb? the cards for (a) to use.

c) a " (PROG) " card, followed by the main program in compiler

lan%uage.

(d) a " (PROG) " card, followed by a compiler-language program
for reading from tape the output of the main program, and printing
it.

Sometimes thlis will be more trouble than it is worth, but
often items (a) and (d) will be perfectly simple, and the testing
immediately upon compilation will save wailting half a day to find

out, when a 1401 becomes avallable, that there 1s an error
in the main program that was complled.

	The Simulator Program Description
	How to Use the 1401 Simulator
	How to Load the Simulator Immediately-After the Compiler

