

EUR 2637 g SR
VOL. II : ’ ‘ ‘

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. IT : THE COMPILER PROGRAM DESCRIPTION by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 130 Pages - FB 165

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the 1BM 7090.

EUR 2637.e
VOL. II

THE COMPILATION AND PROCESSING OF 1BM 1401 PROGRAMS ON
IBM 7090
VOL. II : THE COMPILER PROGRAM DESCRIPTION by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 130 Pages - FB 165

 In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

EUR 2637.e
VOL. II

THE COMPILATION AND PROCESSING OF IBM 1401 PROGRAMS ON
IBM 7090
VOL. II : THE COMPILER PROGRAM DESCRIPTION by A.F.R. BROWN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Information Processing Center - CETIS
Brussels, January 1966 - 130 Pages - FB 165

In the field of non-numerical data processing it is often more profitable to
use a medium-size computer instead of a big one. Compilation, however, may
better be done on a bigger machine.

The four volumes of this report describe a symbolic programming language,
its compiler for the IBM 7090 which produces IBM 1401 object programs, and
a simulator permitting the execution of these programs on the IBM 7090.

This volume explains the structure of the IBM 7090 compiler program.
Comments are given on the flow charts of this program and of some subroutines
in the 1401 program package that handle magnetic tape input and output.
The flow charts themselves are published in the fourth volume of the report.

This volume explains the structure of the IBM 7090 compiler program.
Comments are given on the flow charts of this program and of some subroutines
in the 1401 program package that handle magnetic tape input and output.
The flow charts themselves are published in the fourth volume of the report.

This volume explains the structure of the IBM 7090 compiler program.
Comments are given on the flow charts of this program and of some subroutines
in the 1401 program package that handle magnetic tape input and output.
The flow charts themselves are published in the fourth volume of the report.

EUR 2637.e¢

VOL. II

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THE COMPILATION AND PROCESSING OF
IBM 1401 PROGRAMS ON IBM 7090

VOL. II : THE COMPILER PROGRAM DESCRIPTION
by

A.F.R. BROWN

1966

Joint Nuclear Research Center
Ispra Establishment - Italy

Scientific Information Processing Center - CETIS

TABLE OF CONTENTS

page

Comments on the Flow Charts of the Compiler Program 1=113

Comments on the Flow Charts of some 1401 Magnetic
Tape Input and Output Subroutines 114-129

SUMMARY

In the field of non-numerical data processing it is
often more profitable to use a medium-size computer instead
of a big one. Compilation, however, may better be done on a

bigger machine.

The four volumes of this report describe a symbolic
programming language, its compiler for the IBM 7090 which
produces IBIK 1401 object programs, and a simulator permitting

the execution of these programs on the IBM 7090,

This volume explains the structure of the IBM 7090
compiler program, Comments are given on the flow charts of
this program and of some subroutines in the 1401 program
package that handle magnetic tape input and output. The flow
charts themselves are published in the fourth volume of the

report.

1

In the flow charts of the compiler system (see pp. 2-66 of
the fourth volume) there are three kinds of boxes:
(1) with top‘and bottom lines made of minus signs, and straight
ends. Such a box represents an action to be taken, occasionally
with a comment or explanation.
(2) with top and bottom lines made of equal signs, and curved ends.
Such a box represents a call on a subroutine, whose name is
given inside the box. Occasionally, instead of the simple name
of the subroutine, the whole calling sequence is given, beginning
with a TSX instruction. And also occasionally, such a box may
include an explanation of what the subroutine 1s supposed to
achieve. If the subroutine has more than one exit, these will
be represented by two or more numbered lines coming from the boX.
The numbers correspond to the numbers in "RETURN 1", "RETURN 2",
etc., or "EXIT 1", "EXIT 2" etc. in the flow charts for the
subroutine themselves.
(3) with top and bottom lines made of asterisks, and pointed
ends. Such a box represents a question or a switch test.
Normally it will have two exits, labelled
prlus and minus, i.e. yes and no. Occasionally the exits may be
labelled more explicitly, such as "MATCH" and "NO MATCH".
Also occasionally, there may be more than two exits, as in the
case of some boxes that contain the sentence "BRANCH ON FILE TYPE"Y,
from which there are as many exits as there are types of file, each
one labelled with the name of one type of file.

A symbol sitting immediately above a box is usually the 7090
program label of the first instruction involved in doing what the

box calls for. An isolated symbol from which an arrow leads to

Manuscript received on October 27, 1965.

a box has the same meaning, but indicates that branches come to the
box from elsewhere in the flow chart, or from other flow charts.
Such a symbol will not have an arrow leading to it. Instead, there must
somewhere be the same symbol, isolated, with an arrow leading to 1t
from a box.

Sometimes a call on a subroutine is not shown by a subroutine
box, but by something like " USE =BT4D= " within an action box.
"BT4D" 1s the name of the subroutine, and in this context it is
put between equal signs to emphasize that it is the name of a
isubroutine. In very many flow charts, the phrase "OUTPUT SPS CARDS"
.oécurs. Thils means that there 1s a call on subroutine SPS in the
program, but the subroutine as such 1s not mentioned.

Single parentheses are used to mean "the contents of";

e.g. (S&3) would mean "the contents of location S&3". Double
parentheses are used as quotation marks to enclose literals.

Occaslonally expressions like "E.5", "E.M" or "E.M&2"
occur. These refer to "elements" in a statement, and the three
expressions above would refer to the fifth, Mth, and M-plus-twoth
elements in the current statement. Recall that each compiler-language
statement 1s broken up into elements, each consisting of a word,

a punctuation, a literal, or a serles of one or more blanks. If

a statement has a label, this 1s E.1; the blank after it i1s E.2;
and the first word of the functlion code is E.S. If a statement has
no label, 1ts 1nitial series of blanks 1s E.1; then a fictive blank
1s assumed as E.Z2, so that the first word of the function code

will agaln be E.3.

Similarly, expressions like "C.8" and "C.I" are sometinmes
used to indicate the 3th, or the Ith, in somz series of characters

read from left to right.

Flow chart 1 shows subroutine BREAD, which 1s used to "read"
card images from the monitor input tape. Fundamentally, reading is
done by the IOCS subroutine " .READ " . However, the card images
may be of mixed BCD and binary cards, so subroutine "BREB" (see
flow chart 2) is provided to examine the look-ahead bits, stored in
location LOOKA , and decide how to use ".READ" . Subroutine BREB
cannot be used directly by the compiler, however, because in compiling
one statement 1t 1s sometimes necessary to know whether the next
statement has a label, and 1f so what. The compiller nust be able
to "peek" at the next statement, which might be separated from the
current statement by up to elght comment cards, without formally
reading it.

So subroutine BREAD initially reads ten records from the input
tape, and then supplies the first one as the record that has been
logically read by the single calling of the subroutine. The next ftime
BREAD 1s called, i1t will present the second record as the one that
has been loglcally read, and 1t will also physically read the eleventh
record. Thus BREAD uses ten cdrd-length buffers, loglcally arranged
in a ring. One of them always contains the card most recently
"read", and the other nine contain the following nine cards from the
input tape. '

The calling sequence for BREAD 1s:
TSX BREAD,4
PZE V

>

ress to which the program is to branch 1f the

o,

where V 1s the ad
end of the input file is read. This is called "return 1", and
the AC contains zero. Otherwise, "return 2" takes place, with a
branch So the second word after the TSX instruction, with

PZT Y,,lN in the AC and stored at IWNAD. Y is the address of the

Dirst word of the card image, and M is O for a BCD card or 1 for

& Jsed only

e

L
v

snows thie subroutine BoE3.
Ly suviroutine BREAD. The flow chart is self-explaatory.
Flow cnart 3 shows the subroutine PRELD, which stands
between the main program and 3READ. The malin program calls on
SABLAD only at WUNA -- see flow chart 131 --, when one program
nas veen compiled and the compiler 1s looking for the beginning
of The next one on the input tape. While compiling a program,
the main program calls orn BREAD via PREAD. PREAD fillters out
(a) binary cards, which cause a branch to ERR3S.
(v) cards in SPS language, which get their labels handled exactly
like labels of compiler language statements, so that compiler language'
statements and SPS instructions can branch to each otner. However,
if an SP5 card has an op-code beginning with D, it is a storage-
definer, not an instruction, and so 1ts label is not treated like
tihie label of a compiler language statement. The storage area or
constant defined by such an SPS card cannot be referenced by compiler

language statements, obut only by other SPS cards.

After subroutine "LAB" has been used to handle the label,

=
Lot

necessary, subroutine "WRATE" is used to write out the SPS
card on file WINTER, just as if it were an SPS card into wnich
a compller language statement had been translzted. For subroutbtine
WRATE, see flow chart 5. After that, subroutine 3384D is zalled again,
until a card that is not an SPS card is found.

If the 1nput file ends hefore a non-SPS and non-binary card is
read, return 1 takes place, and the program branches to V as given
in the calling sequence. Otherwise, return 2 is taken, with PZE Y
in the AC and stored at INAD, Y being the addaress of the {irst

word of the card image.

The use of PREAD to filter off SP5 cards from the cards read
by BREAD 1s an unnecessary compilcation. It would be simpler to resd
a card through BREAD, handle its label whether it was in SPS or in
compiler language, compile 1t (a trivial task in the case of the
SPS card), and thenlrepeat the process for the next card.

The reason for PREAD is historical. Originally, the compiler
did not accept SPS cards, and read the input directly tThrough BiaZEAD.
Then- it was modified to allow SPS cards, but i1t still took no
notice of their labels, so that an SPS instruction could branch
to a compiler language statement, but not vice versa. At this stage
the use of PREAD as a filter, or a gate which by-passed SP3 cards
around the compiler proper and sent them straight to subroutine
WRATE was the simplest procedure., Then it was decided that the
labels of SPS instructioﬁs should go into the symbol table, and
that the compller might sometimes construct a label and force it on

a label-less SPS card. But rather than modify the compiler proper,

giving it a simple section for SPS cards, 1t seemed safer to leave

i1t unchanged and put the processing of SPS cards in PREAD.

Flow chart 4 shows subroutine D4V, used for converting

- 4~-digit decimal numbers into binary form. The subroutine 1s entered
with a word in the AC whose leftmost four characters are supposed
to be decimal digits, and it is exited with the equlvalent as

a positive binary number in the AC. There 1s no protectlon against

any of the supposed decimal digits being letters or other characters.

Flow chart 5 shows subroutine WRATE, whose principal function
i1s to take card images in SPS language, put any symbols they
may define into a symbol table, and write them out on a work tape,
file WINTER. From there they will later be read back by a part of

the program that functions as the second pass of an SPS assembler.

L

A counter at ICTR i1nitlally contalns 0628, as the first ovallshle
address for instructlons to be assigned to. Thils counter is maintained

by subroutine WRATE. Similarly, a counter at NAFL initially

contains 7949 as the highest address to which the right-hand end

of a constant can be assigned. Cells 7950-7999 are kept as a

oO0-character word of blanks for use by compller language statements _
containing the word BLANKS. NAFL 1s not maintained by WRATE. It 1s counte
downwards, as space 1s assigned to constants, while ICTR is counted

upwards for instructions. Obviously, if they meet, the 1401 memory

has been completely assigned and cannot contain the program being

complled,

WRATE uses subroutines D4V, for which see flow chart 4, BT4D,
for which see flow chart 8, and FPASS, for which see flow chart
14. ERR50 1s 1n the program as a subroutlne, but there is no flow
chart for i1t. It merely wriltes out the error message "STATEMENT USED
7ZERO LENGTH CONSTANT TREATED AS ONE CHARACTER".

Flow chart 6 shows subroutine BT3D, which 1s used for converting
binary numbers into the equivalent 1401 three-character addresses;
e.g. for converting the blnary form of 7949 into the address I9i .
The subroutlne is entered wlth x, the number to be converted, as
a positlve blnary integer in the AC, and is exited with the
three-character 1401 address in bits P,1-17 of the AC.

If the number belng converted is above 73999, there will be an
error. However, the maln program never allows this to héppen. Since
the input to BT3D is bilnary, 1t cannot represent what a programmer
has coded untill 1t has been converted from the original input form
to blnary form, and it will at that time have been checked
for belng within the limit.

If one wilished to modify the system so as to complle for a 1401
wlth 16000 positions of memory, one would extend the table beglnning

at BT3DC from elght words to sixteen words.

Flow chart 8 shows subroutine BT4D, which is just like BT3D,
except that it 1s exited with a four-digit decimal number in bilts
P,1-23 of the AC. If the origilnal blnary number were above 9999,
there would be an error, but this 1s prevented by the same safeguards
as for BI3D.

~If one wished to modify the system so as to complle for a

1401 with 16000 positions of memory, the complications would be greater
here than for BI3D. BT4D could be modified so as to produce 5-digit
decimal numbers, and these could be used in SPS card 1lmages without
too much alteration of the compiller. But in the symbol tables used
by the compller, there are several cases in which one machine word
contains a 3-bit number indicating the category of symbol, a four-
decimal-diglt number in 24 bits, giving the address of the thing
symbolized, and nine bits giving the length of The thing
symbolized., To fit a five-digit number into such a word, since the
first digit would never be greater than 1, it would be sufficient
to represent the first diglt by one bit, which could be stolen from
the nine-bit field containing the length of the

thing symbolized. One would have to adjust the compiler wherever

1t refers to the symbol table.

Note that the four-character output from BT4D is often called,
in other flow charts, the "four-digit decimal form" or "four-digit
form" of the input. The three-character output from BT3D
is analogously called the "three-digit decimal form" or "three~diglt
form" of the input, even though the first and third characters are
not necessarily digits. Some naming conventlon had to be used on
the flow charts, and something like "1401 machine-language address form"

would have been too long.

Flow chart 7 shows subroutine DEV, which, like D4V, converts
decimal numbers into binary form. The calling seguence gilves an

address A; the word at A must be of the form PZE B, where B is the

location of a word containing from one to six decimal digits, beginning
with the leftmost character. The last declimal digit, if there are
fewer than six, must be followed by at least one pure zero, i.e.
bilnary 000000 . A gzero, as a decimal digit, must be represented for
DEV by binary 001010 .

DEV is used by the compller thus: the programmer will have
put a decimal number on a card, from one to six digits long, with
a blank or punctuation at elther end. Another routine, DECOM,
will have broken up the contents of the card into words, blanks and
punctuations; nere numbers count as words. A series of consecutive
7090 memory words will contain representations of blarks and punctuatilions
in the form of small negative numbers; locators for
literals, with the form MZE A,,B where the literal is B characters long
and is stored in the 7090 memory with its first character in the leftmost
vositlion of 7090 memory location A; and locators for words, having the
form PZE A , where the word is stored with its first character in
the leftmost position of 7090 memory location A. Any zeros that were
part of the word as keypunched will be stored in the memory as
BCD zeros (binary 001010). The word will be terminated in the 7090
memory by at least one pure zero following 1its last character. I the
last character of the word happens to occupy the last character
position of a 7090 location, the next word of 7090 memory will be
set to pure zero, and reserved as part of the representation of this
input word.

This digression may explain why the contents of A, as shown in
the flow chart, must not be negative or zero; why the pure and BCD
zeros are used as they are; and why there has to be a

protection in DEV, since it deals with words not yet certalnly known

10

to be numbers, against non-digital characters. If a non-digit 1s
found, exit 1 is taken.
If there 1s no such error, exit 2 is taken, with the binary

number 1in the AC as a positive 1integer.

Flow charts 9, 10 and 11 show subroutine DECOM. There 1is one
fregquent reference to this subroutine in the program. It is entered
at DECOM in the top left-hand corner of flow chart 9. The calling
sequence gilves an address A, and a program card lmage is supposed
to have been read into locations A to A&13., The first 72 characters
of this are to be broken up into words, blanks, punctuations, and
literals. 72 memory locations, beginning at DWD, are available for
storing words and literals. They are always stored with thelr first
characters in the leftmost character position of a memory location,
the other characters to the right and into higher memory locations
if necessary, with pure zeros as flllers 1f the last-used memory
location 1s not completely filled. To define the end of a word,
not a literal, its last character must be followed by at least one
pure zero, so that an extra word of pure zeros may be needed after
the last information character. To prevent confusion, zeros in the‘
original card image are stored as BCD zeros (binary 001010).

If more storage space beyond DWD&6E8 1s needed, there 1s an
exlt to ERR53; an error message 1s gilven, and the card is not compiled.
This 1s hardly probable, glven the difficulty of fittlng more than
so much into one program card. The only way to make an otherwise
valld statement overflow in this way would be with a PRINT or
COMPOSE statement. A sectlon of the statement, describing something

to be put in the print line, occupies two or three words in addition

11

to punctuation, and by using thirty or so sections to describe the
print line, and extending the statement with a few continuation cards,
one could make the statement uncompilable.

In DWD ff. the words and literals, items of uncertain length,
are stored. 144 locations beginning at DRAD are reserved so that
each item in a statement, including words, numbers, literals, blanks,
and punctuations, can be represented in some way by exactly one word
of 7090 memory. If storage space beyond DRAD&140 is needed, the
same exit to ERRS53 takes place as when the limit of DWD&&68 is
exceeded.

The successive items of a statement are represented by successive
menory words beginning at DRAD as follows:
(a) a series of one or more blanks by MZE 4.
(b) a punctuation by MZE P, where P=1 for left parenthesis, 2 for comna,
3 for slash, 5 for asterisk, 7 for minus, 8 for right parenthesis,
9 for period, 10 for plus, or 12 for an equal sign.
(c) a word or number by PZE A, where the first character of the word
or number is stored in the leftmost position of cell A, and successive
characters are stored rightwards and in successive cells, with at least
one pure zero marking the end.
(d) a literal by MZE A,,B , where the literal is stored approximately
as in (c) above, but B is its length in characters.

If the last item i1n the statement 1s a series of one or more
blanks, the representation of this 1s suppressed. The represen-
tation of the last ifem in the statement, apart from final blank,
is followed by zeros in the memory up to and including DRAD&143.

If the first item in the statement i1s a series of one or more

blanks, MZE 4 1s put 1nto both DRAD and DRADX&1, and the representa-

12

tion of the second item will go into DRAD&Z. This is done

because the choice at the beginning of a statement, from the programmer's
point of view, is label or no label. This means that a statement

with a label is one item longer than the same item without its label.

To equalize them, and simplify the complling of what follows the label,
the extra "blank" is put in at the beginning to £ill up the place

of a label.

If the first character of a statement i1s an asterisk, it is con-
sidered to be a comment. It will not be compiled, and DECOM will not
break 1t up. Instead, the exlt near the top left-hand corner of
flow chart 9 takes place, with zero in the AC. Otherwise,
apart from error exits, the exit will be at the point marked "EXIT
FROM DECOM", somewhat to the right of the middle
of flow chart 11. The AC will contain PZE DRAD&P, where DRAD&P-1 1is the
location into which the representation of the last item in the state-
ment has been stored.

From flow chart 9 there are exits to DCRC, which 1s the beginning
of flow chart 11, and "DCAT OR DCDL", which are at the beginning
of flow chart 10.

From flow chart 10 there are exits to:

(a) ERRS3, if the limits of DWD&68 and DRAD&140 referred to above

are exceeded.

(b) DCMD, which 1s on the top line of flow chart 9.

(c) ERRS6, if a binary card image is found in the middle of a program.
Binary cards are allowed in the input file, but only as data, after
the end of one program and before the next one if any. A binary card
found within a program causes an error message and an lmmediate

termination of the run.

13

(d) VEND ~-- but this should be impossible. If the card which
subroutine DECCM 1s now working on contalns the beginning of a literal
but not its end, presumably the completion is to follow on a
continuation card. At DCATD on flow chart 10, the program looks

ahead at the next record, without formally reading 1t. If the next
record is a fTape mark, the compiler behaves as though the literal

had been properly concluded, and the 72nd character of the current
record were its last character. Only if {this is not so; i.e. if

it is known in advance that the next record on the input tape is

not a tape mark, does the program enter subroutine PREAD on

flow chart 10. Therefore the exit to VEND cannot occur.

Subroutines DECOM and PREAD are also called in flow charts
134 and 135, during the compilation of SCRT FIRST PASS statements.
Suchi statements must be coded as if they were four statements;
this was thought to give more clarity on the page than putting
all the material into one statement, which would certainly require
continuation cards. The first statement is simply SORT FIRST PASS;
the second begins with ENTRY and tells how records for the sort
are obtained; the third begins with BUFFERS and names the save
files to be used in the sort; and the fourth begins with EXIT and
names the write files for outputting sorted blocks of records.
For obtaining the second, third, and fourth of these, PREAD and

DECOM are called in flow charts 134 and 135.

Flow chart 11 begins at DCRC, to which the branch comes from the

lower right hand corner of flow chart 9. The exits are:

14

(a) to DCMD, on the top line of flow chart 9.

(b) to EXIT FROM DECOM, the normal exit from the subroutine.

(c) to ERRS8, for the same reasons and with the same consequences

as in (c) at the bottom of the preceding page, describing flow

chart 10.

(d) to VEND, which is impossible for the same reason as in (d)

at the top of the preceding page, except that nothing is broken by the
end of the current card. If the next record is seen in advance to be

a tape mark, the program does not enter PREAD and goes to DCRD,

Just as if 1t had seen that there was another card, but that 1t

was not a continuation card.

Flow chart 12 shows subroutine ATTL, which constructs
a symbol table in the form of a list beginning at ldcation SNAL.
This 1s one of several lists which are contained, apart from the
very first word of each, such as the word at SNAL, in a workspace
beginning at location WORK and ending at location WKLIM-1. For
convenience in using index registers, the words in this workspace
are addressed by their distances from WKLIM. If the workspace 1is
exhausted, the compller branches to location SYSER. Thls causes
the error message "WKLIM OVERFLOWS", followed by a memory dump and
the end of the run. This should never happen, since the size of
the 1401 memory limits the number of symbols a program will
contaln. But 1f 1t did happen because of an enormous number of
symbols, one could re-assemble the compller and allow a bilgger

workspace by defining WKLIM as WORK&3000 or 4000 instead of 2000,

15

The calling sequence for ATTL 1s:

TSX ATTL,4

PZE A

BCI 1,ETC.
where location A contains PZE B, and location B contains the symbol
(normally A will be an address in the series DRAD to DRADZ140,
and B will be an address in the series DWD Lo DWD:53) and
BCI 1,ETC. represents sonme word cf informztion that descrihes the
symbol.

Using the colon tc mean "contains", we can descrite %he
way the list works thus:

initially,

SHAL: PZE C,,0

After one symbol has been stored in the 1137 -- call it SYui30L1,

and the word that descrives it DESCRI,

SNAL: PZE X1,,X]1
WKLIM-X1: PZE X1-1,,0
WKLIM-X1&1: SYMBOLI
WKLIM-X1&2: DESCR1

X1 will have been The number contained in location NWL; initislly
1t 1s equal to WKLIM-WORK. When it reaches 0, the workspace 1s
exhausted, and the branch to SYSER tzkes place. The various subroutines
that use the workspace all refer to and alter NWL to keep track of

the workspace available.

16
After a second symbol has been stored in the list:

SKAL: PZE X1,,X2
WKLIM-X1: PZE X1-1,,X2
WKLIM-X1%1: SYMBOLI
WKLIN-X1%2: DESCRI]
WKLI}-X2: PZE X2-1,,0
WKLIM-X2%:1: SYIBOL2

WKLIM-X2&:2: DESCR2
After a third symbol has been stored in the list:

SNAL: PZE X1,,X3
WKLIM-X1: PZE X1-1,,X2
WKLIM-X1&1: SYMBOLI
WKLIM-X1&2: DESCRI
WKLIM-X2: PZE X2-1,,X3
WKLIM-X2&1: SYMBOL2
WKLIM-X23:2: DESCRZ
WKLIM-X3: PZE X3-1,,0
WKLIM-X3&1: SYMBOL3
WKLIM-X3%2: DESCR3

and so on. In order to remove a symbol from the list -- say SYMBOLZ ,
1t suffices to set the address of the word just before the word in
the list, WKLIM-X2 in this case, to zero. That is, 1if the 1list

1ls being examined, and WKLIM-X2 1s found to contain a word with a

17

!

zero address, the routine will pass on immediately to WKLIM—XS‘if
the decrement in WKLIM-XZ2 1s some number other than O, which we
call X3, or will decide that it has examined the whole list 1 that

decrement 1s O.

The things that "BCI 1,ETC." in flow chart 12 can
represent are as follows:
(a) for symbols naming variables: a word whose first three bits
are 101, next 24 bits contain the address, in four-digit decimal
form, of the rightmost character of the variable, last 9 bits
give the number of characters in the variable, expressed as a binary
number.
(b) for symbols naming areas: a word of the form
PTH 4,,B
where A and B are the binary forms of the addresses of the
rightmost and leftmost characters of the area.
(c) for symbols naming statements that have not yet appeared in
the program, but which have been mentioned in "branch to" addresses:
MZE 1
(d) for symbols naming statements that have appeared in the.program,
and to which a transition could occur from the preceding statements,
without an explicit "GO TO" or other naming of the statements as
possible branch addresses:
MZE
(e) for symbols naming statements that have appeared in the program,
and to which no transition from their preceding statements is possible,
but only some sort of programmed branch:

MZE X

18

whefe X is‘some very large address.

The only reason for the distinction between (d) and (e)
above is that a symbol of type (d) will be shown in the auto-
matically produced flow chart with two vertical lines Joining it
to the preceding box, while a symbol of type (e) will not be joined
to the preceding box in this way. A symbol of type (e) may, however,
be Joined to the preceding box by a line representing an explicilt
branch. |

A symbol is put into the table as type (e) if the preceding
statement involves an unconditional branch, or a set of branches
among which one must be chosen. That is, if the preceding statement
is a GO TO, RETURN, or RELOAD statement, or a COMP statement in which
none of the three branch addresses is "NXT", or an XEC statement
in which there is at least one branch address after the subroutine
name, so that "NXT" is not supplied automatically by the compiler,
but no branch address after the subroutine name is "NXT", or finally,
& PAUSE statement in which "PAUSE" is followed by a branch address.
(f) for symbols naming program switches:

MTW |
(g) for symbols naming files:

a word whose first three bits are 000 for a reéd file, 001 for
a write file, 010 for a copy file, and 111 for a save file; -

next two bits are 00 for normal blocking, 01 for standard
'blocking, 10 for record-mark blocking, 11 for physical blocking
nekt four bits gilve the number of the tape unit as a four-bit

decimal digit. (The number of the output unit of a copy file will

not be stored; only that of the input unit.)

19

The right-hand 27 bits of the word are all O 1nitially.
If a DEFFLD statement defines field names for the file, a word
we may describe as PZE A,,B will be or'd into this word in the symbol
table. At that time, locations A-B through A-1 will contailn
the definitions of the fleld names. See the flow chart for functicn
DEFFLD, number 110. B will have to be less than 2 to the 9th power;
otherwise 1t would overflow to the field in which the tape number is
stored. To exceed thils limit, fthere would have to be more than
255 flelds defined for a single file.

The exlts from subroutine ATTL are the normal one, and SYSER

1f the workspace for lists is exhausted.

Flow chart 13 shows subroutine SCLAB, which searches the list
beginning at SNAL for symbols. The calling sequence gives an address
A, which will normally be somewhere between DRAD and DRAD&]40.

The word at location A must contain B in its address part, where

the word at locatlion B 1s the symbol that must be sought in the table.
If the symbol i1s not in the table, exlt 2 takes place; 1if it is in
the table, exlt 1 takes place, and the AC contains PZE Y ,

where WKLIM-Y 1s the address at which the symbol is stored in the
symbol table. WKLIM-Y&1 will contaln the information about the

symbol, as 1t was stored by subroutine ATTL.

Flow chart 14 shows subroutine FPASS (short for "first pass”
i.e. first pass in an SPS assembly). It is used in three different
places by subroutine WRATE (see flow chart 5) and these are its only
uses in the compiler.

When the subroutine is entered, locations SCARD to SCARDE13

20

are supposed to contain the image of an SPS card, with a symbol in

columns 8 through 13. The AC contains a bilnary number’ equal to the
1401 address that has been assigned to that symbol. If the symbol
consists of six blanks, there is really no symbol, and the subroutine
exits after doing nothing further. Otherwise, the symbol and its
binary equivalent address are stored in a list beginning at
location ASTB. It will be noted in the flow chart that before being
stored, the symbol has any record marks 1t may contain converted
to dollar signs and any BCD zeros (binary 001010) into pure zeros.
Obviously record marks do not occur in symools; 1t is Jjust that table
RMTAB does both alterations. BCD zeros are converted to pure zeros
because the symbols in the table will have to be matched with infor-
mation that has been written in the BCD mode on file WINTER and
then read vack in BCD as file RINTER; thus any character originally
coded as a zero will appear in memory as a pure zero at this time.

As with the 1list made by subroutine ATTL, the words in this
list address each other according to their distance from WKLIM, and
The location of the next available cell in the list work space 1is
saved in location NWL in the form of PZE N, where WKLIM-N 1s the
next available cell.

The list beginning at ASTB 1s effectively the symbol table
of the SPS program into which the input program is translated by
the compiler.

It is organized as follows, using the colon for "contains":

initially
ASTB: PZE 0,,0

the first time a symbol is stored, let us call it SYMBOL1 and the

21

equivalent address in binary Al, and suppose that locatlon NWL

at that moment contalns PZE X1

ASTB: PZE X1, ,X]
WKLIM-X1: PZE O
WKLIM-X1&1: BCI 1,SYMBOL]
WKLIM-X1&2: PZE Al

the second time a symbol is stored, let us call it SYMBOLZ and the
equivalent address in binary AZ, and suppose that locatlion NWL

at that moment contains PZE AZ2. The the list becomes this:

ASTB: PZE X1,,X2
WKLIM-X1: PZE X2
WKLIM-X1&1: BCI 1,SYMBOL]
WKLIM-X1&2: PZE Al
WKLIM-X2: PZE O
WKLIM-X2&1: BCI 1,SYMBOLZ
WKLIM-X2&2: PZE AZ

The third time a symbol is stored, using the same naming conventions,

the 1list becomes this:

ASTB: PZE X1,,X3
WKLIM-X1: PZE X2
WKLIM-X1&1: BCI 1,SYMBOL1‘
WKLIM-X1&Z2: PZE Al

WKLIM-XZ2: PZE X3
WKLIM-X2&1: BCI 1,SYMBOLZ

22

WKLIM-X2(:2: PZE A2
WKLIM~-X3: PZE O
WKLIM-X3&1: BCI 1,SYMBOL3
WKLIM-X3&Z2: PZE A3

And so on. Symbols are never deleted from this list. It 1s consulted
only at one point in the compller -- at WACC in subroutine WAC,
flow chert 129,

The only exlts from subroutine FPASS are the normal one and

the exlt to SYSER if the list work space 1s exhausted.

FFlow chart 15 has, 1In 1ts top line, four addresses: FIRST,
SECOND, VA, and VPA. FIRST 1s the address at which the compiller
begins 1f it has been loaded as a complete binary deck, followed by
a second fille containing the 1401 input-outpul program package and
the 1401 loader. SECOND 1s the address at which 1t begins 1f it
haé been loaded as a short blnary deck, which counts on finding
both the resﬁ of the compller and the 1401 program package and loader
iIn disc storage. In that case the short bilnary deck 1s followed
Immedliately by the file of cards to be complled. VA 1s the address
at which the compilation of each 1ndividual statement in an input
program begins; thus, whenever a flow chart shows that the compillation
of a statement has been completed, 1t shows a branch to VA, to
begin work on the next statement. VPA 1s the point to whilch the
pfogram branches after assembling the condition in a conditional state-

ment, 1f this 1s followed by something other than a GO TO statement.

23

E.g., conslder the statements
IFSWITCH B GO TO MILANO
IFSWITCH B PRINT 1/$FIRST PASS FINISHED$

For both statements, processing begins at VA for the preliminaries,
and then goes to IFSWIT (flow chart 78) for processing the
condition IFSWITCH B . The same part of the compller wlll take

care of GO TO MILANO in the first statement above, but

PRINT 1/$FIRST PASS FINISHED$ in the second will bring the program
back to VPA., PRINT 1/$FIRST PASS FINISHED$ will be processed

as a complete statement except for what lles between VA and VPA,
namely the readlng of the statement by subroutine PREAD,

1ts decomposition into elements by subroutine DECOM (these have both
been done already for the entire statement including its condition)
and everything to do with labelling the statement, since a
conditional statement cannot contaln any label except the one that

may come at the very beginning, before IFSWITCH.

Let us return to FIRST. When put on the computer for the filrst
time, so to speak, the compller reads the next file of the normal
Input tape into a large storage area, and then writes out the
whole of itself plus the storage area, in disc storage, cylinder
249, module O. The writing on disc 1s done by subroutine QWAD,
which we do not attempt to describe here. The call on QWAD at
FIRSEF 1s the only time ip 1s used 1n the program.

Note however, FIRSE, the second box 1n flow chart 15, and
the box below and the box to the right of 1t. These concern

"patech cards", which may be put at the beginningof the first file

24

read by the compiller. A patch card is recognized by having

six asterisks in columns 73-78. But after the first non-patch card
1ls read, no later card will be tested to see if 1t is a patch card.
The format of a patch card would be tedious to explain, and

can be easily deduced from the compiler program listing from FIRSB-1
to FIRSA-1. It is identical with the format of patch cards used by
the 7090 program for simulating the 1401, which are fully discussed
in the description of that program.

Patch cards are used to make minor correctlions and modifications
in the compiler program itself.

The short binary deck of the compller program, whose
preparation is described elsewhere, wlll cause a branch after
loading to SECOND . Immediately, subroutine QRAD 1s executed, which
should restore the computer memory to exactly the condition 1t was
in just after QWAD was executed the last time; i.e. by reading back
from disc storage Jjust what subroutine GWAD wrote out.

After QRAD is executed, it 1s stilll necessary to open file
BROWN, because the materlal on discs does not include the IBSYS
service programs, including the IOCS; that 1s, QRAD and QWAD do not

touch the basilc input-output routines or the buffer areas.

| The subroutines called in flow chart 15 are, apart from QRAD
and QWAD, PREAD (flow chart 3), DECOM (flow charts 9, 10, 11),
ATTL (flow chart 12), and LAB (fleow chart 17). The exlts are to VEND,
when the input file is exhausted (not counting the file that is
read between FIRST and FIRSF; what we call the input fille 1s the
one that follows that file, when the program begins at FIRST);

to ERRO1 1f the first character of a statement card is a punctuation

or the beginning of a literal (there will be an error
message, and the card will be ignored by the compiler); to ERROC2
if the statement begins with a label, but this is followed by a
punctuation or literal instead of a blank (there will be an error
message 1n either case; 1n the first case the statement will Dbe
treated as if the punctuation were a blank, and in the second, as if
the literal were separated from the label by a blank);
to ERROS if the function code in the statement, or rather the first
word of the function code, 1s not one of those in the table
beginning at FUNT (i.e. if it is not a function code, in which case
there is an error message and the statement 1s ignored by the
compiler); to ERRO4 if the function is one shown in the table FUNT
as demanding at least one number or symbol after it, and there is
not one in the statement (error message, and the statement 1s ignored);
and finally at VPH, there is an exlt to one of the routines ror
compiling the different functlons.

Here is a table of function codes, with <he
compiler program addresses where theilr routines begin, and the number

of the flow chart for each.

ADD ADD 39
AREA AREA 33
BACKSPACE BSP 45
BINARY CODE BNR 76

BINARY DECODE
CLOSE CLOSE 117
COMP COMP 40
COMPOSE BUILD 34

EiD

ERAST

GG TO

FS\ ITCH

MOVE

OPEN COPY
OPZH READ
OPEN SAVE
OPEY WRITE

OUTPUT

PAGE

PLUSE

PCBIN

PCD

PRINT

RCBIN

RCD

READ

RELOAD

REPLACE SCAN BY

RESETSW

RETURN

REVSW

REW IND

SAVE

COPY
DIFF
MEND
ERAS
GO
IFSWIT
MOVE

FOPEN

PUT
PAGE
PAUSE
PCB
PCD
PRINT
RCB
RCD
READ
RLOD
RPIC
RSTSW
RTRN
RVSW
REW
SAVE

118
110
20
45
107
78
39

120
26
121
99
97
34
98
96
118
32
31
22
104
21
95
122

217

SCAN SCAN 30

SET FSETC 102

SETSW | SETSW 22

SKIP SKIP 94

SORT FIRST PASS HA 134
SORT MERGE

SORT FINAL MERGE PASS
START SCAN LEFTWARD- START 29
START SCAN RIGHTWARD

SUBTRACT SUBT 39
TAPNUM TAPN 27
UNCHECK UNC 25
UNLOAD UNL 95
UNSAVE UNSAV 118
WREOCF WEFF 95
WRITE WRITE 122
XEC XEC 105
ZERSUP ZERS 19
9CLOSE NCL 117

Switch VIABF 1s one which may have been turned on by subroutine
GNS (flow chart 77) during the complling of the preceding statement,
to show that 1f thils statement does not have a label, a label
must be supplied to 1t. The references to VLABF 1n flow chart 15
are the only ones 1n the compller outside flow chart 77. VLABF is
used indirectly, however; 1t 1is used to’set switch LABF 1f necessary
Just before VPA in flow chart 15, and LABF 1s the switch that is

28

tested in subroutine LAB (flow chart 17) to see whether to supply

a label to this statement. The reason for this is that in an IFSWITCH
statement, the compller may decide during the processing of the condltior
that the following statement willl have to have a label. It may then
return to VPA to process what follows the condition, and if it had

set LABF to require a label for the next statement, it would cause
subroutine LAB, called at the bottom right hand corner of flow chart

15, to give a label to this statement.

Flow chart 16 shows subroutine SPS, which takes characters chosen
by other parts of the compller and inserts them 1In an SPS card lmage
in locations SCARD through SCARD&13. Whenever a word in the calling
sequence for SPS has prefix PON or MON, SPS calls subroutine WRATE
after processing that word; the SPS card image 1is written out on fille
WINTER, and the area SCARD through SCARD&13 1s blanked again.

But if the last word 1n the calling sequence for SPS has prefilx PZE
or MZE, something will be left behlind in the SPS card lmage area.

The next time subroutine SPS is called, 1t will not start to work on
a fresh card image, but will continue a card image already begun.

This remark 1s meant to point out an lnaccuracy in many flow
charts. For instance, at the end of flow chart 19, for function
ZERSUP, it says "Output SPS cards

MCS PQR =001 XZSP
MCW XZSP PQR -001 "

but 1f subroutlne LAB, called early in the processing of the statement

and before flow chart 19 was reached, decided that the statement had or

29

needed a label, 1t will have left that label at the beginning of the
SPS card 1lmage fleld. If the label was FROWN, for example, the routine
in flow chart 19 would really: "Output SPS cards
FROWN MCS PQR -001 XZSP
MCW XZSP PQR -001 "
Whenever a box in a flow chart says "Output SPS cards....."
this is done in the compiller program through subroutine SPS, but subject
to whatever may already be in the card lmage area. If something is
already there, usually a label, i1t will be added to the first card
described after "Output SPS cards".

Flow chart 17 shows subroutine LAB, which does the housekeeping for
labels in compiler language statements and SPS-language instructions.
LAB 1s called at two points in the program: in subroutine PREAD
(flow chart 3) for dealing with SPS-language instructions coded by
the programmer; and Just before VPH, at the end of flow chart 15, for
dealing with compiler language statements.

The meaning of switch LABF has Just been explalined in
connection with flow chart 15. The other switches used in subroutine
LAB are BCUT and SECND. Switch BCUT will have been set if" and only
1f the preceding statement was one from which either control could not
pass td the present statement, or could pass only by naming the
label of the present statement. The only other
reference to switch SECND is at IFU, near the upper right-hand
corner of flow chart 80. It is set there to inhibit, in subroutine LAB,

the action of switch BCUT for any statement that follows an

30

IFSWITCH statement.

E.g. after the statement GO TO MILANO
switch BCUT will be set for the next statement, because no transition
from the former to the latter 1s possible unless the latter happens
to be the one whose label is MILANO. But during the compiling of the
statement IFSWITCH B GO TO MILANO , switch SECND will be set during the
processing of IFSWITCH B, and switch BCUT will be set during the
processing of GO TO MIIANO . SECND will cancel the effect of BCUT
because a transition from IFSWITCH B GO TO MILANO to the next statement
1s possible, since it will occur whenever sense switch B 1is off.

BCUT and SECND control what is put into the symbol table, namely
the value of Q 1n the call on subroutine ATTL. This 1s referred to
above 1in the description of subroutine ATTL, flow chart 12. It has
significance, finally, only for the flow chart of the compiled program,
which the compller automatically produces.

Subroutine LAB also calls on subroutine SCLAB (flow chart 13)
to see whether the label of the current statement has previously
appeared 1in the program. If it has appeared, then there 1s an exit
from IAB to ERR12 (error message; current statement ignored by compiler)
unless the description of the label in the symbol table 1s that of
a label mentioned as a branch-to address, but whose statement has not
yet appeared. If the label i1s in the symbol table with any other sort
of description, its appearance as the label of the current statement
1s an attempt at giving it a second definition, and thls 1s not allowed.

Subroutine LAB also calls on subroutine ILABG (flow chart 18).

Flow chart 18 shows subroutine 1ABG, which is called only twice
in the program, once by subroutine IAB (flow chart 17) and once by

31

subroutine TWIG (flow chart 106). LABG constructs a label for the
current statement or SPS instruction, puts it into the card image

of the SPS instruction itself, or of the first or only SPS instruc-
tion that will be deduced from the present statement, and insures that
the label 1is in the symbol table.

Location TWIGY 1initially contains BCI 1,X11111 . There are only
two places in the program where TWIGY 1s referenced: here in LARG,
and in subroutine GNS (flow chart 77) which looks ahead to see
what the label of the next card will be, and if it has none, to
set switch VILABF so that the contents of TWIGY will be its label.
Here in LABG is the only place where the contents of TWIGY are
used up, and 1t 1s necessary to put a new value in TWIGY. ("Step up
TWIGY".) This 1s done with subroutine JACK, which is not actually
named on the flow chart for LABG. See flow chart 92 for JACK.

Then the contents of TWIGY are put in TWIGY&Z2, and PZE TWIGY&Z
is put in DRAD, so that any routine which locates the label by looking
at DRAD will find it. Then subroutine SCLAB (flow chart 13) is
used to see 1f the label 1s already 1n the symbol table; if not,
it is put in the table by subroutine ATTL (flow chart 12).

If the label from TWIGY is already in the symbol table it will be as
one that has been named in a previous statement as a branch-to
address (named indirectly, under the guise of NXT or an implied NXT
LABG does not bother to rectify this and put 1t in the table as

the label of a statement that has appeared; the point is of no
importance. Any label that begins with X Y or Z 1s assumed to

be the result of the workings of the compiler, since

the programmer is not supposed to use such labels, and thus mistakes

cannot occur with them.

32

Flow chart 19 shows the routine for a ZERSUP statement.

This uses subroutine SCLUB, for which see flow chart 24, to make
sure that the first word after ZERSUP in the statement 1s the name
of a variable, and to get i1ts description from the symbol table.
Exit 1 from SCLUB occurs if the word is not in the symbol table.
The exits from flow chart 19 to ERR58, ERR59, VA, ERR60 should be
self-explanatory. The three error exits cause an error message and
the ignoring of the statement. If it turns out that the variable
to be zero-suppressed is a single character, the statement 1s also
ignored.

In the box headed "Output SPS cards", we have the first instance
of an uneasy mixture of different categories of symbol. XZSP is what
willl actually appear on SPS cards as the B-address of the first
and the A-address of the second; 1t is the name of a word in the
1401 program package included in the compiler. PQR, on the other hand,
1s a symbol arbitrarily used in this flow chart to represent the |
name of the variable, whatever it is. In effect, we say "Suppose the
statement to be ZERSUP PQR."

Note also that the "Output SPS cards" box neglects the possibility
that the first card may have a label, left there in the card image area
by subroutine LAB. Thils 1s true of all "Output SPS cards" boxes

in these flow charts.

Flow chart 20 shows the routine for dealing with an END
statement. All preceding compller language statements have already
been translated into SPS instructions on file WINTER, and this
END statement must now be translated into an SPS END card. (Note
that an END card coded by the programmer in SPS format rather than

33

compller language format will not work; 1l.e. the END card must not
have a diglit in its first column. But there would be no temptation
to do this, as a compller language END card works exactly like an
SPS END card, and has a freer format.) J

But first the SPS program must be completed with the input-output
and other subroutines from the compiler package, as required by the
statements that have been complled previously. Swiltches, whose
location symbols all begin with Q, have been set by the compller
when certain sorts of statements were compiled. The cards in the
compilerts 1401 program package, or rather the card images, have
codes in columns 40-45, and these codes, togefher with the Q-switch
settings, determine which card images are copied onto file WINTER}
before the SPS END card. Here 1is a llst of the Q-switches, with

the occasion on which each of them can be set:

QRAN any OPEN READ statement

GRST any OPEN READ statement with ST blocking

QRRM any OPEN READ statement wlth record-mark blocking
QRNO any OPEN READ statement with normal blocking

QRPH any OPEN READ statement with physical blocking
QRMU any OPEN READ or OPEN COPY statement containing MULTI
QCAN any OPEN COPY statement

QSAN any OPEN SAVE statement

QSNO any OPEN SAVE statement with normal blocking

&SST any OPEN SAVE statement with ST blocking

QSRM any OPEN SAVE statement with record-mark blocking
QWNO any OPEN WRITE statement with normal blocking
QWST any OPEN WRITE statement with ST blocking

34

QWRM any OPEN WRITE statement with record-mark blocking

QWPH any OPEN WRITE statement with physical blocking

QWAN any OPEN WRITE statement

QCNO any OPEN COPY statement with normal blocklng

QCPH any OPEN COPY statement with physical blocking

QCRM any OPEN COPY statement wlth record-mark blocking

QCST any OPEN COPY statement with ST blocking

QOP any OUTPUT statement writing from a save file;
or any SORT FIRST PASS statement

QOR any OUTPUT statement wrilting from a read or copy file

QPRN any PRINT or COMPOSE statement

QI9CL any 9CLOSE statement

QBCD any BINARY CODE statement

QBDC any BINARY DECODE statement

QZSP any ZERSUP statement

QSCAN any START SCAN LEFIWARD, START SCAN RIGHTWARD, SCAN, or
REPLACE SCAN BY statement

QFP any SORT FIRST PASS statement

QME any SORT MERGE statement

QFM any SORT FIRST PASS or SORT MERGE statement.

As set on these occasions, the switches do not correspond
one~-to-one with the codes in the card images. The correspondences
are given in a table in flow chart 20. In order to make them
work, the switches are loglcally combined in various ways until
there 1s one swiltch corresponding to eéch card code. The table
in the program listing from PARTS to PARTE glves the correspond-

ences after this combining.

35

The program initializes subroutine DSKR and then uses 1t
to read through the 1401 program package, from the beginning to
the (EIOP) card. Fach card 1s selected or not, according to
what 1t has in cols. 40-45, and whether the corresponding
Q=switch 1s set; and i1f selected 1t 1s processed by subroutine
WRATE as 1f it had been part of the original input.

Beginning at MENDC in flow chart 20, the SPS "END" card
is composed and output by subroutine SPS. If the
fifth element (E.5) of the input statement is null, the compiler
makes the A-address of the END instruction 0628, as this 1s the
address of the first instructlon into which the first imperative
compiler-language statement was translated.

Flow chart 20 also calls on subroutine LABIG, for which see
flow chart 103. It 1s used with all declarative statements to see
if they have labels. If they do, an error message 1s given on
sach occasion and the label is ignored, but otherwise the statements
are accepted.

The only exit from flow chart 20 is to VEND, on flow chart
124. The branch to VEND takes place when the input program has
been completely translated into an SPS program, and the first
pass of the SPS assembly has been done.

Flow chart 21 shows the compiling of a REVSW statement;
Like flow chart 22, it calls on subroutine SUSW, shown in
flow chart 23, to check on the switch name. If the switch name
is that of a sense switch, or is "PAGEND" referring to the sensing

of a channel-12 punch in the printer carriage control tape, the

exlt from flow chart 21 or 22 is to ERR38, where an error
message 1s given and the statement 1s ignored. Otherwlse the exit

from both flow charts 1s to VA, as usual.

Flow chart 23 shows subfoutine SUSW, used to check on switch
names. It 1s called in flow charts 21 and 22, as mentioned above,
and in flow chart 81 for subroutine IFSS, which is used in
complling IFSWITCH statements.

The calling sequence for SUSW will give an address A, normally
cne of the addresses DRAD to DRAD&70. The word at A must contain
PZE B, where B is the location containing the switch name. If the
waord at A 1s negative or zero, the statement must have been
wrongly coded, and there 1s an exit to ERR38: message, and statement
ignored.

If the switch name is "XFIRST", there is an immediate exit
2 from the subroutine, as for a program switch. XFIRST 1s a program
switch automatically provided by the input~output package,
and does not have to be stored in the symbol table. It is considered
to be set when either no READ, COPY or UNSAVE statement has been
executed, or the most recently executed READ, COPY or UNSAVE
statement was a READ or COPY statement which read the first or
only record in its block.

If the switch name is "PAGEND", this 1is replaced with the
single character @ .

If the switch name 1s a single character, exit 1 from the
subroutine is taken.

Otherwise, subroutine SCIAB (flow chart 13) 1s used to see if the

name has already occurred in the program. If so, and it has occurred

37

as a switch name, exlt 2 takes place., If it has occurred as some
other sort of name, ERR39 occurs -- message and statement ignored.
If the name has not already occurred, it is put in the symbol
table by subroutine ATTL (see the explanation of flow chart 12)
after a character has been reserved in the memory for the switch
it names. Then exit 2 is taken.

This 1is the first instance we have mentioned so far in which
the contents of location NAFL are used to find the address to assign
to a constant or workspace in the 1401 memory. The initial value
in NAFL 1s 7949, and this 1s counted downwards as the storage space

is used up.

Flow chart 24 shows subroutine SCLUB, used in compiling
statements with functions UNCHECK (flow chart 25), TAPNUM
(flow chart 27), ZERSUP (flow chart 19), SKIP (flow chart 94),
REWIND, UNLOAD, ERASE, BACKSPACE, and WREOF (flow chart 95),
9CLOSE and CLOSE (flow chart 117), READ, COPY and UNSAVE (flow
chart 118), WRITE and SAVE (flow chart 122) and OUTPUT (flow
chart 120). These are the functions whose codes are one word,
and must always be followed in a statement by a blank and then
the name of something that has been defined by a declarative
statement: a variable for ZERSUP, and a file for the others.
The fifth element in the statement, the word after the function
code, 1s sought in the symbol table by subroutine SCIAB (flow chart
13). If it is not found, exit 1 from SCLUB is taken. If it is found,
1€s description 1s put in the sense indicator register and in the

Me; the AC 1s cleared, and the first three bits of the description

38

Mare shifted into it. Exit 2 is taken, and the routine that called
on SCLUB has the type number of the symbol immedlately available

in the AC.

Flow chart 25 shows the routine for compliling function UNCHECK.
Subroutine SCLUB (flow chart 24) is used to
check on the word after UNCHECK in the statement; 1f 1t 1s not
in the symbol table, the program goes to ERR19.
Then, 1f the symbol is not the name of a read or copy file, the
program goes to ERR35. Otherwise, the appropriate SPS instruction
is output, and the program goes to VA.

"PQR&012", when PQR is the name of a read or copy
file, 1is the address of the last character before the first
character of the buffer. The digltal part of this character is
blank for a read file, and contains the output tape number for
a copy flle. The zone bits are both 0 for a non-multi-reel file,
and both 1 for a multi-reel file. The word mark 1ls present if
the file has never been read or copled, or if the last record
copled or read did not belong to a redundant block, or if
an UNCHECK statement has been applied to the file since the

last time a block was read. Otherwlise the word mark is absent.

Flow chart 26 shows the routine for complling function
PAGE. This is translated directly into an SPS instruction card

with F in column 16 and @ in column 39.

39

Flow chart 27 shows the routine for compiling function
TAPNUM. Subroutine SCLUB (flow chart 24) is used
to see that fthe word after TAPNUM in the statement is in the
symbol table; 1if not, ERR19. Then the program goes to ERR32
unless the word 1s the name of a read, write, or copy file.
If 1t 1is a write file without blocking, or with physical blocking,
the tape number is at the position of which the compiller
language file name 1s the SPS address. Otherwlse, the tape
number 1s at the position 11 characters further right.

If the seventh element of the statement (the file name, its
fifth element, should be followed by a comma and then a tape
number) 1s not a number between 1 and 6, the program goes to

ERRO7.

Flow chart 28 shows subroutine SETSC, which is used
in the compilation of functions START SCAN LEFTWARD and START
SCAN RIGHTWARD (flow chart 29), SCAN (flow chart 30), and
REPLACE SCAN BY (flow chart 31). It makes sure that switch QSCAN
in the compiler program has been set on (see flow chart 20
and its explanation) and that "SCAN" has been put into the symbol
table as the name of a one-character variable located at 0618.
Thus, the subroutine accompishes nothing except on the first
occaslion of its use durlng the compilation of a program. If, on
that occasion, it finds that "SCAN" 1s already in the symbol
table, the program goes to ERR62Z2, because the word_has been

lmproperly used.

40

Flow chart 29 shows the routine for compilihg functions
START SCAN LEFTWARD and START SCAN RIGHTWARD. It uses subroutine
SETSC (flow chart 28) and subroutine TYPE (flow chart 73)
to determine what kind of field has to be scanned, and so how to
complle the statement.

The only speclal exits are:

(a) to ERRO4 if the functlon code begins with "START" but 1s not
properly completed.
(b) to ERR47 if the statement calls for BLANKS or a literal to be

scanned.

Flow chart 30 shows the routine for complling a SCAN statement.
This 1s quite straightforward; the only variable in the SPS
output is the statement label that must follow "SCAN" in the statement,
represented by "PQR" in the flow chart. This 1s the label of the
statement to which the program must branch if the statement finds
that the fileld has already been completely scanned.

The only subroutine called is SETSC (flow chart 28).

Flow chart 31 shows the routine for complling function
REPLACE SCAN BY . The only speclal exits are:
(a) ERRO4 if the function code begins with "REPLACE" but is not
properly completed.
(b) ERR61 if the statement attempts to replace the scanned
character with a record from some fille.

The subroutines called are SETSC (flow chart 28) and TYPE
(flow chart 73).

41

Flow chart 32 shows the routine for compiling function

RELOAD. This 1s completely straightforward.

Flow chart 33 shows the routine for compiling the declarative
function AREA. It calls subroutine DEV (flow chart 7) to get the
binary equivalents of the numbers addressing the ends of the area;
SCLAB (flow chart 13) to make sure the name of the area is not
already in use as a symbol; ATTL (flow chart 12) to
put the name of the area into the symbol table; and LABIG to
give an error message if the statement has a label (but the statement
will be accepted.)

The speclal exits are:

(a) ERR23 if eilther of the words that should give the 1401 addres-
ses of the ends of the area is not a number.

(b) ERR21 if the right end of the area is supposed to have a lower
address than the left end of the area.

(¢) ERR20 if the name given to the area has already been defined

as the name of’something else by an earlier statement.

Flow chart 34 shows the routine for compliling PRINT and
COMPOSE statements.

Such a statement can be indefinitely long. If 1t is not
"PRINT COMPOSITE", 1t consists of "PRINT" or "COMPOSE" followed

by a blank and then an indefinite number of groups of elements

of the form number/word
number/1iteral
or number/word .word

with the groups linked by commas between them.

42

When M 1s set = 5 in the flow chart, it means that "E.M" is E.5,
the fifth element of the statement, and the number of the first
groug. Since a group may consist of three or five elements, and 1s
followed by a comma unless it is the last group, M is increased by
4 or 5 as appropriate after each group has been processed.

The subroutines called are DEV (flow chart 7) to get the
binary equivalent of the number of each group, E.M; TYPE (flow chart
73) to identify what 1s meant and named by the word(s) after the
slash, E.(M%2) and possibly E.(M%4); PRINS (flow chart 36) and
PRINH (flow chart 35) -~ two subroutines used only for thess
functions, and called only in flow charts 34 and 37.

If a section names a flle, flow chart 34 branches to PRINF,
in flow chart 37, merely a contlnuation of flow chart 34.

From the lower left-hand corner of flow chart 34 there is a branch
to PRUNA, on flow chart 37.

The only speclal exlts from flow chart 34 are to ERR46 and

ERR51, 1f what should be the number of a group turns out not to

be a number.

Flow charts 35 and 36 show subroutines PRINH and PRINS, which

are called only in flow charts 34 and 37, and need no remark.

Flow chart 37 shows the continuation of flow chart 34, which
1s Jjoined to it at PRINF and PRUNA, and from which the only
exlt 1s back to PRINE on flow chart 34. It calls on subroutines
PRINH (flow chart 35) and LINC (flow chart 60).

43

Flow chart 38 shows subroutine COMQ, which 1s used in compiling
ADD, SUBTRACT, and MOVE statements (flow chart 39) and COMP
statments (flow chart 40). It calls subroutine TYPE (flow chart 73)
to get information from the symbol tables about two data names in
the statement.

The flirst data name begins with the word after the functlion
code, which 1s the fifth element in the statement. If the sixth
element (E.6) is a period, the fifth and seventh elements must be
a file name and the name of a field in records of that flle; so the
second data name must begin with the ninth element; otherwlse
wlth the seventh element. This determines the calling sequence for the
second use of TYPE: here A 1s DRADX&6 or DRAD&8. Simllarly, the
second data name may conslst of one word, or of a word, a period,
and a word, so that the first word after the second data name,
1f there 1s one, may be the ninth, eleventh, or thirteenth
element. Accordingly, PZE DRAD&8/10/12 is stored in CMPB.

Subroutine TYPE furnlshes a number for each of the types of
data name it may be applied to (see column
TYPQA in flow chart 75) and the numbers for the two data names
in the statement are combined by COMQ and the complement put in
index reglster 2, so that the routine that called on COMQ may
use an address table immediately afterwards, and branch according

to the types of the two data names.

44

Flow chart 39 shows the beginning of the routines for compililing
ADD, SUBTRACT, and MOVE statements. Initially, the fundamental
1401 operation code 1s chosen and saved: A, S,or MCW. This is .
represented by III in flow charts 43, 45, 47, 51, 52, 55, 56,
57, 58, 66, 67, 68, 69 and 70 below. Then subroutine COMQ 1ls called,
to identifyy the data names. 7090 memory locations TYTAB to TYTABXZ24
contain, in their decrement parts, the addresses of the various
routines to which the program must now branch, according to the number
left In Index reglster 2 by COMQ. However, if the function code
1s ADD or SUBTRACT, the branch can only take place 1f the correspon-
ding word in table TYTAB 1s negative; otherwlse the program goes
to ERR64, because an ADD or SUBTRACT statement may have only a
literal or variable as 1its filrst data name, and only a varlable as
1ts second data name. In additlon, the branch address taken from
the table will be ERR47 1f the statement attempts to move something
into BLANKS or into a literal.

Apart from the errors, the branch out of flow chart 39
can be to MVPG (flow chart 65), MVPK (flow chart 43), MVTB
(flow chart 51), MVPS (flow chart 70), MVPU (flow chart 66),
MVTE (flow chart 67), MVPL (flow chart 69), MVPH (flow chart 45),
MVTC (flow chart 47), MVPN (flow chart 69), MVTQ (flow chart 52),
MVTD (flow chart 56), MVTG (flow chart 68), MVTL (flow chart 59),
and MVTK (flow chart 55).

Flow chart 40 shows the beginning of the routines for
compiling COMP statements. Subroutine COMQ (flow chart 38) is
called, to ldentify the two data names and theilr types, and then,
acéording to the number left in index register 2 by COMQ, the

address in one of the words in the table from TYTAB to TYTABXZ24 is
chosen to branch to. If the statement attempts to compare BLANKS
or a literal with BLANKS or a literal, the branch will be to ERR44.
Otherwise, the branch out of flow chart 40 is to one of

CMPG (flow chart 61), CMPK (flow chart 42), CMTB (flow chart 50),
CMPP (flow chart 61), CMPS (flow chart 70), CMPT (flow chart 66),
CMPU (flow chart 66), CMTE (flow chart 67), CMPL (flow chart 66),
CMPH (flow chart 44), CMTC (flow chart 53), CMPM (flow chart 42),
CMPN (flow chart 66), CMPO (flow chart 48), CMTQ (flow chart 49),
CMTD (flow chart 54), CMTF (flow chart 50), CMTG (flow chart 67),
CMTH (flow chart 53), CMTL (flow chart 54), CMTK (flow chart 58).

Flow chart 41 shows subroutine CPREV, which is used in
compiling some COMP statements to invert the order of the two data
names, and interchange the high and low branch addresses.

This is done because 1401 comparison requires a word mark to define
the B-field, but not the A-field. It is more convenient, therefore,
to have as the second data name in the statement a variable name,

a literal, or BLANKS if possible.

Apart from the normal return, the program branches to ERRO4
if it finds that there are not enough elements in the statement
to provide three branch addresses after the second data name.

CPREV is called in flow charts 42, 50, 53, 54, 61,

66 (twice), and 67.

46

Flow chart 42 shows the routine for compiling the comparison
of a variable with BLANKS (CMPM) or BLANKS with a variable (CMPK).
the only branch is to CMPY, where the branch-on-indicator

instructions after the comparison are provided.

Flow chart 43 shows the routine for compiling a statement

that moves BLANKS into a varilable.

Flow chart 44 shows the routine for compliling a statement that
compares a literal with a variable. AAAA will be the address of the
rightmost character of the literal, which subroutine TYPE will have
found 1n the symbol table and stored, and BBBB will be the symbolic
name of the variable. The only branch is to CMPY, where the
branch~on-indicator instructions after the comparison are

provided.

Flow chart 45 shows the routine for compiling a statement
that moves a literal into a variable, or adds a literal to a
variable or subtracts a literal from a variable. The exit 1is to
VAS, as from flow chart 52 also (these are the only two flow charts
for ADD or SUBTRACT statements). At VAS, there is a test for
whether the 1401 operation was subtraction, and if so, two more
SPS instructions are constructed, to eliminate the possibity of

any zoning in the result field except minus-zone and no-zone.

Flow chart 46 shows subroutines MCTF and MCTB, which are

called only once each, in flow charts 51 and 50 respectively.

47

Given the length X of an area named in the statement, each of them
produces the 4-digit decimal form of the address of the right-end
character of a word of blanks of the same length. Its left-end
address 1s 7950.

Flow chart 47 shows the routine for compiling a statement
that moves one area into another. The 1401 op=-code 1s
shown as III, as though it could also be "A " or "s ". But
é statement calling for addition or subtraction of two areas would

already have been rejected at the bottom of flow chart 39.

Flow charts 48 and 49 show the routines for ¢ompliling statements
that compare a variable with a literal, and two variables, respec-

tively. Compare the note on flow chart 44.

Flow chart 50 shows the routine for compiling statements that
compare BLANKS with an area (CMTB) or an area with blanks (CMTF).
In the former case, subroutine CPREV (flow chart 41) 1s used to
reverse the statement so that the second data name will be BLANKS,
which already has a word mark. In elther case, subroutine MCTB
(flow chart 46) is used to get the right-end address of the neces-

sary blank word.

Flow chart 51 shows the routine for complling statements that

move RTANKS into an area. It uses subroutine MCTF (flow chart 46)

48

to get HHHH, the right-end address of the necessary word of
blanks. Though the 1401 op-ccde 1s represented by III, a
statement that called for BLANKS to be added to or subtracted
from something would have been rejected at the bottom of

flow chart 39.

Flow chart 52 shows the routine for complling statements
that move one variable into another, or add or subtract two

varlables. See the note above on flow chart 45.

Flow chart 53 shows the routine for compliling statements that
compare a literal with an area, or an area with a literal. In the
former case, subroutine CPREV (flow chart 41) is used to reverse
the comparison and ehsure that the second data name indicates something

with a word mark.

Flow chart 54 shows the routine for compiling a statement
that compares a variable with an area, or an area with a
variable. In the former case, subroutine CPREV (flow chart 41) is

used to reverse the comparilson.

Flow chart 55 shows the routine for complling a statement
that moves an area inte a variable. Though the 1401 op-code is
represented by III, a statement that attempted to add an area
to a variable, or subtract an area from a variable, would have been

rejected at the bottom of flow chart 39.

Flow chart 56 shows the converse of flow chart 55.

49

Flow chart 57 shows subroutine MCTK, which 1s called only
in flow charts 58 and 59. Where the two data names of a COMPARE
or MOVE statement both refer to areas, MCTK provides for the
"move" or "compare'. instruction itself, and also for putting a
word mark on the second area before the action is taken, and

removing 1t afterwards.

Flow chart 58 shows the routine for compiling a statement

that compares two areas. It uses subroutine MCTK (flow chart 57).

Flow chart 59 shows the routine for compiling a statement
that moves one area into another (a statement that attempted to
add or subtract two areas would have been rejected at the bottom

of flow chart 39). It uses subroutine MCTK (flow chart 57.)

Flow chart 60 shows subroutine LINC, which is called in
flow charts 37, 61, 65, 66, 67, 68, 69 and 70. The calling
sequence (which 1s illustrated just to the right of the flow
chart) always names a 7090 memory location and a number; the
7090 location contailnes the address of the name of a flle, and
the number 1is used to construct three B-address adjusters in
the three SPS instructions produced by the subroutine. It is used
whenever the entire current record of a file has to be moved
somewhere or comparéd with something. If the name of a fille 1is,
for example, SHOAL, the address of the first character of the
record is in 1401 cells SHOAL-2, SHOAL-1, and SHOAL. The length
of the record, in the form of a 3-character 1401 address, 1s in
cells SHOAI&1, SHOAI&2, and SHOAL&3. "0602" is always the address
of a constant "I9I" , or the 16000-compement of 1.

50

Flow chart 61 shows the routine for compiling a statement
that compares BLANKS with part or all of a record, or the
converse. In the former case, subroutine CPREV (flow chart 41) is
used to reverse the comparison so that the second data name 1s BLANKS,
which already has a word mark. If a whole record 1s lindicated, sub-
routine LINC (flow chart 60) is used to get the SPS instructions that
wlll set up the right-end address of the record. If a fleld of a re-
cord is indicated, subroutines CPSA (flow chart 62) and MCPG (flow
chart 63) are called. CPSA provides an SPS instruction for putting
the address of the leftmost character of the record into index
register 1. MCPG constructs the 4-character decimal address
BBBB of the rightmost character of the blank word with a length
equal to that of the fileld.

Flow chart 62 shows subroutine CPSA, which 1s called in
flow charts 61, 66, 67, and 70 (twice). It is used, when the
first data name of a statement names a fleld of the currect
record of some file, to produce the SPS instruction that will put

the address of the first character of the record in index register 1.

Flow chart 63 shows subroutine MCPG, which is called in flow
charts 61 and 65. Given G, one less than the length of a fileld
of a record, it finds BBBB, the four-diglt decimal form
of the address of a word of blanks with the same length. If
G 1s above 49, there 1s an exlt to ERR45, because BLANKS cannot

represent a word of more than 50 blank characters.

51

Flow chart 64 shows subroutine CPSB, which is called in
flow charts 65, 68, 69, and 70 (three times). It is used,
when the second data name of a statement names a field of the
current record of some file, to produce the SPS instruction that
will put the address of the first character of the record

into index register 2.

Flow chart 65 shows the routine for compliling a statement that
moves BLANKS into a record or a fleld of a record. If a whole
record, subroutine LINC (flow chart 60) is used to get the SPS
instructions for constructing the address of the right end
of the record. If a field of a record, subroutine CPSB (flow chart
64) 1s used to get the SPS instruction that will put the address
of the left end of the record into index 2, and subroutine MCPG
(flow chart 63) is used to get the address of the right end
of the necessary blank word. RRRR, mentioned in the bottom box of
flow chart 65, will have been constructed during the last use
of subroutine TYPE, during the execution of subroutine COMQ

in flow chart 39.

Flow chart 66 shows the routines for compliling statements that
compare a literal with a record or field of a record (cMmpPL),
compare a record or field of a record with a literal (CMPT),
compare a variable with a record or field of a record (CMPN),
compare a record or field of a record with a variable (cMPU),

or move a record or field of a record into a variable (MVPU).

52

CMPL and CMPN differ from CMPT and CMPU respectively only
in beginning with subroutine CPREV (flow chart 41) to reverse
the comparison and make the second data name represent something
that already has a word mark.
CMPT differs from CMPU only in that the former gets XXXX, -
the right-end address of the literal, from where it was left
by subroutine TYPE during the execution of subroutine COM& i1n
flow chart 39; while the latter uses the symbolic name of the variable,
found in the statement 1tself, as XXXX. |
MVPU differs from CMPU only as to YYY, the 1401 op-code of
the crucial SPS instruction (compare or move) and ZzZZ, the
exlt from flow chart 66 (VA after setting up instructions for a
move, CMPY after setting up instructions for a comparison, so
as to set up the subsequent branch-on-indicator instructions.)
Though ITII 1s used in the second box below the heading "MVPU",
this must be "MCW", for any attempt to complle a statement using
a record in addition or subtraction would have been rejected at
the bottom of flow chart 39.
If a whole record is involved, subroutine LINC (flow chart 60)
i1s used for the instructions that will set up the address of
1ts right end. If a field of a record 1s involved, subroutine
CPSA (flow chart 62) is used to get the instruction that will put

the address of the beglnning of the record into index 1.

Flow chart 67 shows the routines for compiling statements
that compare an area with a record or field of a record (CMIG),

or compare a record or field of a record with an area (CMTE),

53

or move a record or field of a record into an area (MVTE).
CMTG differs from CMIT only in beginning with subroutine
CPREV (flow chart 41). MVIE differs from CMTE only as to XXX,
the op-code of the crucial 1401 instruction 2 (move or compare
respectively) and in the exit from flow chart 67 (VA after setting
up instructions for a move, CMPY after setting up instructions
for a comparison, so as to set up subsequent branch-on-
indicator instructions.)

If a whole record is involved, subroutine LINC (flow chartléo)
is used for the instructions that will set up the address of
its right end. If a field of a record is involved, subroutine
CPSA (flow chart 62) is used to get the instruction that will
put the address of the beginning of the record into index 1.

Though "III" is used to represent the op-code under MVTE, this
will have to be "MCW", as any attempt to compile a statement adding
or subtracting a record and something else will have been rejected

at the bottom of flow chart 39.

Flow chart 68 shows the routine for compiling statements
that move an area into a record or field of a record. If a whole
reeord, subroutine LINC (flow chart 50) is used for the
instructions that will set up the address of its right end. If a
field of a record, subroutine CPSB (flow chart 64) is used to get
the instruction that will put the address of the beginning of the
record in index 2.

Though III is used at one point to represent an operation code,

this must be "MCW" for the same reason as described for flow chart 67.

54

Flow chart 69 shows the routines for compiling statements
that move a variable (MVPN) or a literal (MVPL) into a record or
a field of a record. The only difference between MVPN and MVPL is
that for the former, XXXX is the symbolic name of the varilable, which
comes directly out of the statement; while for the latter, XXXX
is the four-digit decimal address of the rightmost character in
the literal, which was constructed during the use of subroutine
COMR in flow chart 39.
Subroutines LINC (flow chart 60) and CPSB (flow chart 64)
are called as by flow chart 68. The same remark on "III" as in

flow chart 68 applies here.

Flow chart 70 shows the routines for compiling statements
that move a record or field of record into another record or
field of record (MVPS) or compare a record or field of record with
another record or field of record (CMPS). The only differences
between MVPS and CMPS are in the op-code "XXX", which will be
"MCW" for the former and "C " for the latter (though III is
mentioned for MVPS, this must be "MCW" in fact, for any attempt at
addition or subtraction involving a record would be rejected
at the bottom of flow chart 39); and the exit YYYY from the flow
chart, which is VA after setting up instructions for a move, and
CMPY after setting up instructlons for a comparison, so as to
set up the subsequent branch-on-indicator instructions.

The possible assortments of first and second data name are
fleld-field (go to CMPSC), record-field (go to CMPSB),

fleld-record (go to the box Just below CMPSC in the case of a move,

55

or invert the statement with CPREV and go to CMPSB in the case

of a comparison), and record-record (go straight down the

left side of the flow chart). This gives four possible situations
for naming a whole record, with a call on subroutine LINC (flow
chart 60) for each of them; and four possible situations for

naming a field, with a call on CPSA (flow chart 62) for two of
them, and a call on CPSB (flow chart 64) foi- the other two.

There is an additional call on CPSB near the lower left-hand

corner of the flow chart: when a record is moved into or compared
with a second record, a word mark has to be put on the second record
beforehand and ‘removed afterward; it is addressed through

index 2, and CPSB 1s used for the instruction that gets the address

of the current record into the index register.

Flow chart 71 shows subroutine CMPYU, which 1s used at
various points in flow chart 72, and nowhere else. The calling
sequence, as shown in flow chart 71, gives A, which 1s usually
an address in the serles DRAD to DRADX70, and locates indirectly
a statement label or the word "NXT"; and X, which represents
blank, S, T, U, or / 1i.e. one of the D-characters that are
significant after a comparison, or blank for an uncondlitional
branch.

Below flow chart 71 are listed the abbreviations of the
various calls on CMPYU. Where the compiler program has the
‘calling sequence:

TSX CMPYU,2

PZE 0,4

BCI 1,T

56

index reglster 4 contains the complement of the address of the

word in the range DRAD to DRAD&70 which locates the first of the
three branch addresses given in the statement. Then 0,4 will
indirectly locate the high transfef address, 2,4 will

indirectly locate the equal transfer address, and 4,4 will

indirectly locate the low transfer address; these labels are sym-
~bolized THIGH, TEQ; and TLOW in the flow chart. Each one of them must
be either the label of a statement in the program, or "NXT".

Flow chart 72 shows the last sectlon of the routine for
complling a COMP statement. Branches to CMPY come from flow charts
42, 44, 48, 49, 50, 53, 54, 58, 61, 66, 67, and 70. The exlt 1s
always to VA, after the necessary branch-on-indicator instructions
have been written out. The only subroutine called 1s CMPYU,

FLow chart 71, which 1s indicated in flow chart 72 by

abbreviations as explalned Just above.

Flow charts 73 and 74 show subroutine TYPE, which 1ls used
for getting from the symbol table the necessary information
about a symbol in a statement belng compiled, or doing the house-
keeplng for a literal. "Flow chart 75" 1s a table of what 15 stored
in TYPQA, TYPQB, TYPQC and TYPQD by the subroutine, as a function
of the kind of symbol located in the calling sequence. Where a
square in the table 1s blank, the compiler wlll not look in that
location after i1t has i1dentiflied the type of the symbol from the
contents of TYPQA.

Note that at the beginning of flow chart 73, before subroutine
TYPE does anything else, 1t automatically stores the contents

57

of TYPQA through TYPQD in TYPRA through TYPRD. Thus the main
program can get from TYPQA through TYPQD the information about the
symbol to which TYPE was most recently applied, and from TYPRA
through TYPRD THE information about the symbol to which the subrou-~
tine was applied on the preceding occasion. Use of this

is made in subroutine COMQ (flow chart 38) where TYPE is applied
to the two data names in a COMP, MOVE, ADD, or SUBTRACT statement,
and leaves the description of the first data name in TYPRA through
TYPRD, and of the second data name in TYPQA through TYPQD.

Subroutine TYPE 1s called in compiling START SCAN LEFTWARD
and START SCAN RIGHTWARD statements (flow chart 29), REPLACE
SCAN BY statements (flow chart 31), PRINT and COMPOSE statements
(flow chart 34), and COMP, MOVE, ADD and SUBTRACT statements
(in subroutine COMQ, flow chart 38).

The junctlion between flow charts 73 and 74 1s at TYPK, which
1s near the centre of flow chart 73, and at the top left-~hand
corner of flow chart 74. Flow chart 74 returns to flow chart 73
at TYPX, which occurs twice at the bottom of 74,'and is at the
bottom left corner of flow chart 73.

Apart from the normal return, the subroutine may branch to
ERR28 1f the element being looked up 1s a punctuation or blank
instead of a word or literal; to ERR31 1f it is a word not
in the symbol table; to ERR41 if it is a flile name followed by a
period and what should be a field name, but was not mentioned in
the DEFFLD statement for the file; to ERRZ29 i1f 1t 1s the name
of a write file; and to ERR30 1if it 1s a statement label or switch

name.

58

Subroutines called in flow charts 73 and 74 are LIT
(flow chart 108) for setting up a new literal, or getting the
address and length of an old one; and SCIAB for seeking in the
symbol table the word to which TYPE 1s being applied.

Let us explain a}little further the table in "Flow chart 75".
Where a square contains a single diglt, séy "2", this means that
the word of 7090 memory contailns it as a_positive binary integer,
"PZE 2" in the example.

PZE RB, ,1G means that the word contains, iIn 1ts address part,
a binary number equal to the distance between the beginning of
the record and the end of the fleld, and 1n 1its
decrement part a blnary number equal to the length of the fleld,
minus 1,

IDLD means that the word contalns, in bits S,1-23, a four-
character decimal number equal to (a) in the case of
a fleld, the.dlistance between the leftmost character of the flelu
and the first character of the record, or (b) in the
case of an area, the address of the leftmost character of the area.

RDRD 1s the same as IDLD, but substituting "rightmost" for
"leftmost" in the explanation given in the preceding paragraph.

RDRD-1GG means that the word contains, in bits S,1-23,

a four-character decimal number equal to the address of the
rightmost character of a literal or varlable, and in bits 27-35,
a binary number equal to the length of the literal or variable.

59

Flow chart 76 shows the routine for compiling BINARY CODE
and BINARY DECODE statements. These simply become branches to
the corresponding subroutines in the 1401 subroutine package.
Beslides the normal return to VA, there is an exit to ERROS if the

word after BINARY 1s not CODE or DECODE.

Flow chart 77 shows subroutine GNS, which is used whenever,
in compiling one statement, 1t 1s necessary to know the label
of the next statement. The next statement has to be examined, and
if 1t does not have a label, a label in the series beginning
with X11111 must be assigned to it. In that case, switch VLABF
1s set, so that when the next statement comes to be complled, and
subroutine LAB 1s applied to it, the X11111-label will be added
to it.

GNS 1s called in the routines for compiling IFSWITCH statements
(flow chart 78) and XEC statements (flow chart 105).

No other subroutines are called by GNS.

Besldes the normal return, the only exit is to ERR48. This
occurs 1f the next nine cards after the current statement are all
comment cards. The tenth card after the current statement is not
avallable yet. If a tape mark or binary record 1is reached before
a statement, in the look-ahead, the procedure followed is as 1if
a statement was found with no label. A label in the series
X11111 £f., 1is assigned to the tape mark or binary record and used
in one or more of the instructions compiled from the present statement.
As this label i1s finally left undefined, the error is

caught during the second pass of the SPS assembly.

60

Flow chart 78 shows the beginning of the routine for complling
IFSWITCH statements. It goes as far as IFW, at which point
the first section of the condition has been delimited, and it is
known whether the statement ends in a "GO TO ..." or in some
other sort of statement.

Subroutine GNS 1s used to get the label of the next statement.
Whether this 1s a label provided by the programmer, or one provided
by the compiler from the series X11111 ff., we symbolize it "X111"
for convenience in flow charts 78 through 91.

If the IFSWITCH statement ends with a GO TO statement,
subroutine TWIG (flow chart 106) is used to record the branch
involved, for use in making the automatic flow chart.

Besides the continuation to IFW, which will be found
at the beginning of flow chart 79, there 1s an exlit to ERRO4 if
the element after IFSWITCH is not a word or a plus or minus sign,
and an exit to ERR46 if the list of switches 1s followed by "GO"

without a "TO" after it, or by "GO TO" without a word afterwards.

Flow chart 79 shows the next section of the routine for
complling IFSWITCH statements. It 1s entered only at IFW,
at the top left-hand corner, to which there 1s a branch in flow
chart 78 and two in flow char't 79 1tself., The normal exits
are to VA in flow chart 15, and to IFEL, IFT and IFU in flow
chart 80. There 1s also an exit to ERR46 1f the compller expects a
certailn element to be a switch name and finds instead a punctuation

or blank.

The function code IFSWITCH 1s followed by a blank, and then

a serlies of switch names Jjolned by plus signs, minus signs, and
slashes. For each switch name, one or two SPS-language Iinstructions
are output. Each SPS-language instruction is output by one of the
subroutines IFSA, IFSB, IFSC, IFSD, IFSE, IFSF, IFSG, IFSH and IFSK
(flow charts 83 to 91 respectively.) The points in the compiler
program at which this 1s done are as follows:
IPML: Positive switch, Medial (i.e. not last, therefore initial

or medial really), in Last section of condition.
IPMM: Positive switch, Medial, in Medial (i.e. here again initial

or medial is meant) section of condition.
IPLLF: Posiltive switch, Last in section, section is Last in condition,

final statement involves a Function not "GOTO".
IPLLG: Positive switch, Last in Last séction, final statament is

"o TO".
IPIMF: Positive switch, Last in Medlial section, final statement

involves a function not "GO TO".
IPIMG: Positive switch, Last in Medlal section, final statement

is "Go TO".
INML and INMM in flow chart 79, and INLLF, INLLG, INLMF and INIMG in
flow chart 80, are the same as IPML, IPMM, IPLLF, IPLLG, IPLMF
and IPIMG respectively, but with negative switches.

At each of these points, i1f one SPS instruction is to be

output, the name of the subroutine and an indication of the instruction
are given together within a frame of equal signs. If two SPS instruc-
tions, the two subroutines are named successively within frames of
equal signs, and then the indications of the instructions are

given afterwards within a single frame of minus signs.

62

In indicating the instructions in this way, the following

symbols are used:

X is the switch name, which may be either a sense switch or PAGEND,

or a program switch.

B is the 1401 op-code, which means "B" in an unconditional

branch or in a conditional branch when X 1s a sense switch or

the @ into which "PAGEND" is translated. But if X is a

program switch, B symbolizes "BWZ", and X symbolizes the

switch name as B-address, with a 1 as D-character.

In other words, B *&005 X means

B *¥&005 X if X 18 a sense switch name, and

BWZ *&005 X 1T if X 1s the name of a program

switch.

X111 1s the label which subroutine GNS, called at the beglinning of

flow chart 78, found in or assigned to the next statement.

Y111 1s the label, in the series ¥Y11111 ff., which will be
at IFT in flow chart 80, to the first SPS instruction
from the first switch name in the next sectlion of the

Z111 is the label, in the series Z11111 ff., which will be
at IFU in flow chart 80, to the first SPS instruction
from what follows the condition, as long as it 1s not

statement.

given,
resulting
condition.
glven,
resulting

a GO TO

GOTO is the label which follows the words "GO TO" if they occur

at the end of the current IFSWITCH statement.

From flow chart 79 there are normal branches to VA, if the

compilation of the statement has been completed; to IFEL in

flow chart 80, which 1s simply a continuation of flow

63

chart 79 at this point; to IFT in flow chart 80, when

the last switch name in a non-last section of the condition

has been processed; to IFU in flow chart 80, when the

last switch name of the last section has been processed, and the
IFSWITCH statement does not end in GO TO something; and to

iFw, back at the beginning of flow chart 79, when a switch name

that 1s not the last 1In 1ts section has been processed.

Flow chart 80 1s a contlnuatlion of flow chart 79, entered
at IFEL, IFT, or IFU. The exlts are to VA 1f the statement has been
completely compiled; to IFV in flow chart 78 (the third box
from the top in the second column from the'right) when a new sectilon
of switch names has to be begun; and to VPA in flow chart 15 when
all the conditlions in the statement have been compliled, and the
functional statement at the end must now be complled.

The only thing to be noted in flow chart 80, not
covered in the description of flow chart 79, 1s the calling of
subroutine JACK (flow chart 92). When a label in the series
Y11111 ff. 1s given to the flrst SPS instruction resulting from
a non-filrst section of swltch names, JACK 1s used to make ready
the next label in this series. Similarly, when a label in ‘
the series 211111 ff. is glven to the first SPS instruction
resulting from the functional part of an IFSWITCH statement,
JACK 1s used to make ready the next label in this series.

64

Flow chart 81 shows subroutine IFSS, which is called in
subroutines IFSA, IFSB, IFSD, IFSF and IFSG (flow charts
83, 84, 86, 88, and 89 respectively). It applies subroutine
SUSW (flow chart 23) to the switch name at present being processed,
and gives return 1 if this 1s a single character or PAGEND,
and return 2 otherwise. In the former case, in flow charts
83 to 89, the switch name is represented by "X", and in the latter

case by "SWIX".

Flow chart 82 shows subroutine IFSSS, which i1s called
in the same flow charts as subroutine IFSS. Whenever a switch
name 1s found to be a single character, IFSSS is used to make sure
that it is a letter between A and G, or @ representing "PAGEND".
If not, there 1ls a branch to ERR49. If the switch name is accept-

able, the normal return takes place.

Flow charts 83 to 91, showlng subroutines IFSA to IFSK, should
be more or less self-explanatory. Each one outputs one SPS instruc-
tion, during the compillation of an IFSWITCH statement. They are
called only in flow charts 79 and 80.

"B" and "BWZ" symbolize themselves as 1401 op-codes. "X"
symbolizes a sense switch name or @ replacing "PAGEND".

"SWIX" symbolizes a program switch name.

X111 symbolizes the label which subroutine GNS, called at
the beginning of flow chart 78, found in or suppllied to the
next statement.

Y111 symbollizes the label, in the series Y11111 ff., which

65

will be given, at IFT in flow chart 80, to the first SPS instruc-
tion resulting from the first swlitch name in the next section of
the conditilon.

Z111 symbollzes the label, in the series Z11111 ff., which
will be given, at IFU in flow chart 80, to the first SPS instruc-
tion resulting from what follows the condition, as long as it
is not a GO TO statement.

GOTO symbolizes the label which follows the words "GO TO"

if they occur at the end of the current IFSWITCH statement.

Flow chart 92 shows subroutine JACK, which advances the
geries of labels beginning at X11111 E Y11111 , and Z11111.
The original intention was that the labels in these series should
conslst of X, Y, or Z followed by a five-diglt octal number.
But the occurrence of zeroes would have complicated the situation
when such a label came to be moved into the SPS instruction field
by subroutine SPS. So instead of using octal numbers with digits
between 0 and 7, "octal numbers" with digits between 1 and 8
are used,

JACK is called for the Y- and Z-series in flow chart 80,
and for the X-series in flow chart 18, subroutine LABG.

Flow chart 93 shows subroutine SPDA. The calling sequence
supplies A, an address usually in the range DRAD to DRAD&70.
Thils indirectly locates a symbol, and the subroutine
outputs an SPS card, via subroutine SPS,

that will eventually put the three-digit address of the first

66

instruction generated by that statement into the next three available
poslitions of program storage.
SPDA is called in flow chart 94 (compiling SKIP statements),
flow chart 105 (complling XEC statements), flow chart 117 (com-
plling CLOSE and 9CLOSE statements), flow chart 119 (subroutine
RWA, called in flow charts 118, 120, 122), flow chart 118
(READ, COPY and UNSAVE statements), flow chart 120 (OUTPUT statements),
and flow chart 122 (SAVE and WRITE statements.)

Flow chart 94 shows the routine for compliling SKIP statements.
It uses subroutine SCLUB (flow chart 24) to look up the name
of the flile to be skipped in the symbol table; and subroutine
SPDA (flow chart 93) to output part of the calling sequence in
the 1401 SPS version of the program.

Besides the normal exit to VA, there is a branch to ERR19
if the flle named in the statement has not been defined, and a
branch to ERRZ24 1f what should have been the name of a read,

copy, or save flle has been defined as something else.

Flow chart 95 shows the routine for complling REWIND,
BACKSPACE, UNLOAD, WREOF, and ERASE statements. All such statements
are translated into two SPS instructlions, the flrst of which moves
the tape number from a flle's housekeeplng sectlion into the second
instruction, and the second instruction performs the non-data
function on the tape. The only difference among the five functions
is in the D-character of the second SPS instruction; so this is
stored before anything else 1is done, and then the routine 1s common

to all functions.

67

If the file is a write file with no blocking, otherwise known
as physical blocking, the tape number will be in the character
named, in the SPS version of the program, by the name of the file
in the compiler language version. For any other sort of read, write,
or copy file, the tape number will be at that address plus 11.

The only subroutine used is SCLUB (flow chart 24), to look up
the file name in the symbol table.

Beslides the normal exlt to VA, there is an exit to ERR19 if
SCLUB shows that the file name has not been defined; to ERR32
if what should be the name of a read, write or copy flile has been
defined as something else; or to ERR27 if the statement attempts
to erase or write a tape mark on a tape assoclated with a read

or copy flle.

Flow charts 96, 97, 98, and 99 show the routines for compiling

RCD, PCD, RCBIN and PCBIN statements.

Flow chart 100 shows subroutine LIK, which 1s used to
output the SPS card or cards that set up a literal or variable
in the 1401 memory. This i1s a little complicated because there
1s no special 1limit to the length of such a word in the compiller
language, but in SPS coding there 1s a 1imlt -- here set arbitrarily
at 30 characters -- so that for a longer word 1t 1s necessary to
code the leftmost plece with a DCW card and the rest with

one or more DC cards.

68

Subroutine LIKR (flow chart 101) is used for the outputting
of each DC or DCW card.

When LIK is entered, the accumulator contains PZE A,
where A is the binary form of the address which the rightmost
character is to have. The MQR-register contains PZE B,,C
where C i1s the number of characters in the word, and B 1s the
address of the 7090 cell in which i1t begins.

LIK 1s used in complling SET statements (flow chart 102)
and by subroutine LIT (flow chart 108), which is itself used by
subroutine TYPE (flow chart 73) and in compiling WRITE and SAVE
statements (flow chart 122).

Flow chart 101 shows subroutine LIKR, which 1s called
only by subroutine LIK (flow chart 100). It does most of the work

of outputting an SPS card containing all or part of a constant.

Flow chart 102 shows the routine for compiling SET
gstatements. If DRAD&6 contains -1 , because the seventh
element of the statement was (, the statement is to define a word
of blanks, whose length 1s given by a number between parentheses.
In SPS language, this 1s provided for by a DC card giving the
name of the variable in compller language to the rightmost
character of the word in SPS language, and a DCW card which provides
a word mark on the leftmost character of the variable.
This happens after the branch in the middle of the flow chart labelled
"WORD OF BLANKS".

69

Otherwlise, the statement defines the initial value of the
variable by means of something written as a literal (the branch
in the middle of the flow chart labelled "LITERAL"). One or more
SPS cards, with op-code DCW or DCW and DC, are output by subroutine
LIK (flow chart 100).
Other subroutines used are:
IABIG (flow chart 103) to give an error message if the SET statement
begins with a label, but to allow the rest of the statement
to be accepted.
DEV (flow chart 7) to get the binary form of the number of blanks.
SCLAB (flow chart 13) to see 1f the name which is tc be given to this
varliable has already been used for something else.
ATTL (flow chart 12) to put the name of this variable into the
symbol table.
Besides the normal exit to VA, there are exlts to:
ERR36 1f the seventh element in the statement is a word. The fifth
element 1s the symbol of the variable, the sixth 1s assumed
to be an equal sign, and the seventh must be elther a literal or
the opening parenthesis of a palr enclosing a number gilving the
length of an initially blank variable.
ERR32 1f the name of the variable has already been used.
ERRO4 1f the word between the parentheses is not a number.
ERRO4 (from SETCD) 1f what should have been the opening parenthesis

turns out to be some other punctuation or a blank.

70

Flow chart 103 shows subroutine LABIG, which 1s called by the
routines for complling SET statements (flow chart 102), END
statements (flow chart 20), AREA statements (flow chart 33),

DEFFLD statements (flow chart 110), and OPEN READ,'OPEN WRITE,
OPEN COPY and OPEN SAVE statements (flow chart 111). If any of
these declarative statements has a label, an error message 1s gilven
and the label is completely ignored, but the statement 1s otherwise

accepted.

Flow chart 104 shows the routine for complling RETURN
statments. Switch QSUB 1s set so that when the 1401 subroutine
package comes to be read (see flow chart 20), cards labelled SU
will be adopted for the program; Switch BCUT is set for a reason
that has already been explalned in connection with flow chart 12.

The only error exlt 1s to ERR40, 1f the fifth element
in the statement, what follows "RETURN" and a blank, 1s not

a one-diglt number.

Flow chart 105 shows the routine for compiling XEC
statements. At the very beginning, switch BCUT 1s set, on
the assumptlon that control cannot pass to the next statement
after the subroutine has been executed. The switch will be
reset at XECH, near the lower right hand corner of the flow chart,
if "NXT" 1s found as one of the labels following the function
code. The eventual significance of switch BCUT 1s explained in

connection with flow chart 12.

71

The third element in the statement is "XEC", the fourth is
assumed to be a blank, and the fifth 1s the label of the statement
to which control 1s to pass -~ the name of the subroutine as it were.

If there 1s no sixth element, the compliler alters DRAD&6, so that
| the statement will appear to have "NXT" as a seventh element.

If there 1s a sixth element and it 1is not a comma, there is a branch
to ERRO4.

Switch QSUB 1s set for the same reason as above, in connection
with flow chart 104.

Subroutine CHAD 1s used (flow chart 109) to put the fifth
element of the statement into the symbol table as the label of an
unmet statement, if it is not already there as the label of an
encountered or unmet statement. Subroutine TWIG (flow chart 106)
1s not used on this element because it is not desired that
the automatic flow chart should show branches into subroutines.

The automatic flow chart will show, for an XEC statement, where the
program may branch to the next time a RETURN statement brings
control back from the subroutine.

Subroutine CHAD, rather than subroutine TWIG, 1s also used
at the bottom right hand corner of the flow chart when dealing with
"NXT" as an element in the statement. The fact that control may go
to the next statement after the subroutine 1s executed will be shown,
in the automatic flow chart, by an ordinary vertical, and not by an
explicit branch line. The ordinary vertical will be produced because
switch BCUT i1s reset if any "NXT" has been processed in this way.
Note that if switch BCUT has already been reset, the question at
XECH prevents the subroutine GNS (flow chart 77) from being used

72

more than once per compilation of an XEC statement. Otherwlse,
"NXT" might not represent the same thing each time it appeared in
the statement.

A variable address "M" 1s used for all the statement labels
following the name of the subroutine, in an XEC statement. Every
time the word located by M is not "NXT", subroutine TWIG is applied
to 1t so that the automatic flow chart will show a branch from
The XEC statement to the statement named by the element.

Subroutine SPDA (flow chart 93) is applied to every word in
the statement after the function code, to provide a DSA card in the
SPS version of the program. If the word is "NXT", SPDA 1s applied
not to NXT itself, but to the coded or supplied label of the next
statement.

Subroutine GNS (flow chart 77) is called the first time "NXT"
'1s encountered in the statement, to find out what explicit label

can be equated with it.

Flow chart 106 shows subroutine TWIG, which 1s used to
construct a 1list of possible branches that will be used in making
up the automatic flow chart. The list begins at location TWIT,
which 1initially contains zero, and is similar in some resvects
to the list of symbols beginning at location SNAL, described in
cbnnection with flow chart 12. However, the 1list that begins at
TWIT 1s more complicated. From TWIT extends a list of all the
statement labels to which control could branch, and from
each 1tem on that 1list extends a list of all the statement labels

from which control could branch to it.

13

If the 1list has to show that control could branch to
MILANO from LONDON, LEEDS, and WICK; to ROMA from LONDON and
THURSO; and to TORINO from BALHAM; 1t will be set up as follows,

using the colon to mean "contains":

TWIT: PZE A
WKLIM=-A: PZE B,,C
WKLIM-B: PZE D

WKLIM-B%1: BCI 1,MILANO
WKLIM-D: PZE E
WKLIM-D&1: BCI 1,LONDON
WKLIM-E: PZE F
WKLIM-E&1: BCI 1,LEEDSO
WKLIM-F: PZE
WKLIM-F&1: BCI 1,WICKOO
WKLIM-C: PZE G,,H
WKLIM-G: PZE K
WKLIM-G&1: BCI 1,ROMAQO
WKLIM-K: PZE L
WKLIM-K&1: BCI 1,LONDON
WKLIM-L: PZE
WKLIM-1&1: BCI 1,THURSO
WKLIM-H: PZE M
WKLIM-M: PZE N
WKLIM-M&1: BCI 1,TORINO
WKLIM-N: PZE
WKLIM-N&1: BCI 1,BALHAM

74

This list 1s used later between locations VENDA&Z and
LVWRX in the compiler program, as mentioned in flow chart 124.
The manner of its use will be described to some extent in the
discussion of that flow chart.

As well as making the list that begins at TWIT, subroutine
TWIG calls on subroutine CHAD to put the label of the statement
to which control may branch from the current statement, into
the symbol table. See flow chart 109 for CHAD.

According to the flow chart, subroutine LABG (flow chart 18)
is called if the current statement has no label. As far as the
author can see, this 1s Impossible. TWIG is called in the
compilation of COMP statements (see subroutine CMPYU, flow chart
71), IFSWITCH statements (flow chart 78), XEC statements (flow chart
105), GO TO statements (flow chart 107), READ, COPY and UNSAVE
statements (flow chart 118), SAVE statements (flow chart 122),
and PAUSE statements (flow chart 121). For all these kinds of
statements, at the third box from the bottom of the right-hand
column of flow chart‘]S, switch LABF wlll have been set. Before
the branch to the function routine at the end of that flow chart,
subroutine IAB 1s executed. In flow chart 17, for subroutine LAB,
1t 1is seen that if the statement does not already have a label,
subroutine LABG .(flow chart 18) will be executed, and the
statement will thereby get a label.

Therefore (returning to flow chart 106), it appears that the
call on subroutine LABG, and the question that can branch to it,

are unnecessary.

75

Apart from the normal return, the only exit from
TWIG 1s to SYSER. This could happen 1f the workspace between
locations WORK and WKLIM 1ls exhausted. See the discussion in

connection with flow chart 12.

Flow chart 107 shows the routine for compiling GO TO
statements. Subroutine TWIG (flow chart 106) is used to record
the branch for the later production of the automatic flow chart.
Switch BCUT 1s set to prevent a vertical line in the automatic
flow chart between this statement and the next one. The only

speclal exit 1s to ERRO4 i1f the word after GO 1s not TO.

Flow chart 108 shows subroutine LIT.
This 1s used by subroutine TYPE (flow chart 73) and in compiling
WRITE and SAVE statements (flow chart 122), to deal with literals.
The subroutine consults a list beginning at location FLIT
to see whether a literal identical with the current one has already
been dealt with. If so, the address of the literal in the 1401 program
in the form of four decimal characters, 1s taken out of the list
and left iIn location LITC. If the literal is a new one, 1t 1s
put into the 1list, while the word containing its address 1s ‘also
put in LITC, and SPS cards for the constant involved are output
by means of subroutine LIK (flow chart 100).
Initially, location FLIT contains zero. The first time a literal
1s put into the list, PZE N,,N 1s put into FLIT, where N 1s taken
from the address of location NWL, and shows that WKLIM-N 1s the

next free location in the 1list workspace. The literal 1s put into

76

as many words as necessary, beginning at WKLIM-N&2. Into
WKLIM-N is put PZE N-1, and into WKLIM-N&1 1is put
octal AABBCCDDOEEE, where AABBCCDD is the four-digit address of the
| rightmost character of the constant to which the literal refers,
and EEE is the length, in binéry, of the constant in characters.
Supposing the first literal encountered to be $VENEZIAS ,
the situation 1s then (using colon for "contains"):
FLIT: PZE N,,N
WKLIM~-N: PZE N-1
WKLIM-N&1: OCT AABBCCDDOOO7
WKLIM~-N&2: BCI 1,VENEZI
WKLIM;N&S: BCI 1,A00000
Now supposing the next literal encountered is $TRIESTE$, and that
when it 1s encountered locatlon NWL contains PZE ¢ . The list becomes:
FLIT: PZE N, ,Q
WKLIM~Nz: PZE N-1,,Q
WKLIM-N&1: OCT AABBCCDDOOO7
WKLIM-N&2: BCI 1,VENEZI
WKLIM-N&3: BCI 1,A00000
WKLIM-Q: PZE -1
WKLIM-Q&1: OCT EEFFGGHHOOO7
WKLIM-Q&2: BCI 1,TRIEST
WKLIM-Q&3: BCI 1,E00000

The only subroutine Ealled by LIT is LIXK (flow chart 100) .
The only exlt, apart from the normal return, is to SYSER if the
workspace between WORK and WKLIM is exhausted. See the discussion
of thls 1n connectlion with flow chart 12.

17

Flow chart 109 shows subroutine CHAD, which takes every
statement label to which a possible branch is indicated
and makes sure that i1t i1s in the symbol table. If the label 1s
already in the symbol table but not as a statement label, there 1s
a branch to ERR34., If the label 1s already in the symbol table as
a statement label, whether i1ts statement has been encountered so far
or not, there 1s a normal return. If the label 1is not yet in the
symbol table, it 1s put into 1t as the label of a statement
that must be encountered later in the program.

The subroutines called are SCLAB (flow chart 13) to search
the symbol table for the label, and ATTL (flow chart 12) to
insert the label 1n the symbol table 1f it is not already there.

The only other exit i1s ERRO4, if the element 1In the statement
that 1s supposed to be the label of some other statement 1is actually
a literal or punctuation, or if the statement is too short.

CHAD is called by subroutine TWIG (flow chart 106) and by
the routine for compiling XEC statements (flow chart 1053).

The only reason for having CHAD as a separate subroutine (instead of
including what it does in subroutine TWIG) is the necessity,

while compiling an XEC statement, of getting the name of the subrou-
tine and possibly the label of the next statement into the

symbol table without recording branches to them.

Flow chart 110 shows the routine for compliling DEFFLD statements
The name of the fille must already have been put into the symbol
table (see flow chart 111 for the compilation of OPEN READ, OPEN

78

SAVE, and OPEN COPY statements), and there will be a word
in the symbol table whose leftmost three bits indicate the
type of file (000 for read, 010 for copy, 111 for save), whose
next two bits to the right indicate the kind of blocking
(00 for normal, 01 for standard, 10 for record-mark, 11 for
physical), and whose next four bits to the right give the number of
the tape, if any. The remaining 27 bits on the right are all O.
If they are not-all 0, a DEFFLD statement has already been complled
for the file, and the current statement will be ignored.

The information about the fields willl be stored 1n a
continuous series of words in the workspace between WORK and
WKLIM. Suppose the seriles of words to be in locations X through Y.
Then PZE Y&1,,Y-X&1 will be or'd into the word with the 27 wailting
zero bilts on the right.

Between locations X and Y, each field will be defined by a
palr of words of which the first is the name of the field, and
the second 1s of the form PZE U,,V where U 1s the distance between
the first character of the record and the rilghtmost character of
the field, and V 1s the distance between the leftmost and rightmost
characters of the fileld.

The subroutines called are LABIG (flow chart 103) to note
the superfluity of a label; SCLAB (flow chart 13) to look up the
file name in the symbol table; and DEV (flow chart 7) to convert to
binary the character numbers of the two ends of each field, as
coded in decimal by the programmer.

Besides the normal return to VA, there are exits to ERRO4 if

the statement is too short to contain even one field definition;

79

ERR19 if the file name has not been defined by an OPEN statement;
ERRS57 1f the fille name 1s the name of a write file, or of
something other than a file; ERRZ20 if a DEFFLD statement for

the file has already occurred; ERRO6 if what should be the
character number of one of the ends of a field proves not to

be a number; ERR2Z 1f the character number for eilther end of

a fleld 1s 0; and ERRZ1 if the character number for the left end
of a fileld 1s higher than the character number for the

right end. (Note that the word "offset" is used in the flow
chart in what 1is probably an unclear way; if the leftmost character
of a certaln fleld is to be the third character of a record,

the "left~end offset" would be 3 according to the flow chart.
Probably the meaning of the word "offset" would be better
satisfied if the offset were considered as 2 in such a case.)
There 1s also an exlt to SYSER 1f the workspace between WORK

and WKLIM is exhausted. See the discussion of thils possibility

in connection with flow chart 12.

Flow chart 111 shows the beginning of the routine for
compiling OPEN READ, OPEN COPY, OPEN WRITE, and OPEN SAVE
statements. The subroutines called are LABIG (flow chart 103)
for disregarding labels in such statements, and OPM (flow chart
112) for determining whether the statement ends with "MULTI"
or not, and accordingly putting a plus in location MULTI and
setting switch QRMU, or leaving zero in location MULTI and not
setting the switch.

At the first decision point in flow chart 111, according to

80

the word following "OPEN" in the statement, index 2 1s set to

the complement of the address of QSAN, QCAN, QWAN, or QRAN.

Each of these locatlons beglns a seriles of 10 locations, one

series for each class of file (save, copy, write, or read),

wlth the following uses:

0,2

1,2

2,2

5,2

[6))
-
V]

7,2

Switch location showing whether
been opened.

Location containing the address
branch, according to the class
leaves flow chart 111 (see the
corner).

Switch showlng whether any file
blocking, has been ogened.

Switch showing whether any file
blocking, has been opened.

Switch showlng whether any file

any file of the class has
to which the compiler will
of the file, when it

box in the lower right hand
of the class, with normal

of the class, with standard

of the class, with record-

mark blocking, hass been opened.

Switch showilng whether any file

blocking, has been opened.

of the class, with physical

Location containing the prefix for the class of file,

for use in the descriptive word that goes along with

the name of the file into the symbol table (see the

box in the upper right-hand corner of flow chart 114,

and the box immediliately to its

Location containing the address

left.)
to which the compiler is to

branch after putting the file name and description into the

symbol table (see the second box from the top in the right-

most column of flow chart 114.

)

81

8,2 Location contalning the address to which the compiler 1s to
branch at the end of flow chart 114 (see the lower
right-hand corner of flow chart 114, and the beginning
of flow chart 115.)

9,2 Location containing the address to which the compller is to
branch after OPWPH, when the file has been found to have
physical blocking. (See the decision box near the center
of flow chart 113.)

The normal exits from flow chart 111 are to OPWD and OPSD
in flow chart 113. The other possible branches are to ERROS if
the word "OPEN" 1s not followed in the statement by "READ", "Copy",
"WRITE", or "SAVE"; and ERR14 if an OPEN COPY statement has
something other than a diglit between 1 and 6 where the number of

the output tape should be.

Flow chart 112 shows subroutine OPM, which 1s called only in
flow chart 111. It tests whether an OPEN READ or OPEN COPY
statement ends with "MULTI", and if so sets switch QRMU
and puts a plus instead of a zero at the right end of location
MULTI. The normal return is the only one possible. If the statement
has an element in the position where "MULTI" is allowed, but this
element 1s not the word "MULTI", there 1s an error message,
this element in the statement is ignored, and the statement 1s

otherwlse accepted.

82

Flow chart 113 shows the continuation from flow chart 111,
It is entered only at OPWD and OPSD, which are the two points
of normal exit from flow chart 111. One subroutine 1s called on
Flow chart 113; DEV (flow chart 7) for getting the record length
in case of normal blocking. |

The normal exits are OPWT, for a write flle with physical
blocking, and to OPWE for all other sorts of file. The error exits
are to ERRO4 1f the statement 1s too short to be complete; to
ERRO7 1f the mode letter for the tape unit is not U or B, or if the
tape number i1s missing or is not a digit between 1 and 6; to
ERR15 1f the input and output tape numberé of a copy flle are
the same; and to ERRO8 1f the statement tries to open a save fille
with physical blocking, or contalilns something unintellligible where
the indication of the type of blockling should be.

Flow chart 114 shows the continuation from flow chart 113.

It 1s only entered at OPWE and OPWT, whlch are the two points of
normal exit from flow chart 113. The normal exlits are to VA for
a write file with physical blocking, and otherwlse to OPWP or
OPWQ in flow chart 115 (see. the lower right-hand corner of flow
chart 114, and the beginning of flow chart 115.)

Subroutines called are DEV (flow chart 7), for finding the bin-
ary form of the buffer length; SCIAB (flow chart 13), for making
sure the file name is not already in the symbol table as the name of
something else; and ATTL (flow chart 12), for putting the file name
into the symbol table.

83

Beslides the normal exits to VA, OPWP, and OPWQ, there are
error branches to ERRO4 1f the statement 1s too short to be
complete; to ERRO9 1f the word in the statement that should be
the length of the buffer is not a number; to ERR10 if it is a
number but 1s higher than 4000; to ERR12 if the file name has
already been used as the name of something else. An error message
is given if the file has normal blocking, and the buffer length
is not an integral multiple of the record length. But the compiler
accepts the statement, after effectively reducing the buffer length
to the nearest lower integral multiple.

Flow chart 115 glves the rest of the routine for compiling
OPEN statements. It is entered from flow chart 114 at OPWQ or
OPWP. The only exit 1s to VA. The'only subroutine called is STS
(see flow chart 116), which is named in the lower box in the left-
hand column, and in the box in the middie of the page.

Flow chart 116 shows subroutine STS, which 1s used at only
two points in the compiler, both in flow chart 115. It 1s used
to output a series of SPS cards putting constants in adjacent
words of the 1401 memory. No subroutines (except SPS) are

used, and the only exit 1s the normal return.

Flow chart 117 shows the routine for compiling 9CLOSE and
CLOSE statements. The normal exlt is to VA; there are also branches
to ERR32 if the file named is not in the symbol table, and to
ERR4Z if what should be a write file name 1s in the symbol table

as the name of something else.

84

If a 9CLOSE statement names a write file which does not have
normal blocking, it i1s treated as a CLOSE statement, and no special
indication is given.

The subroutines called are SCLUB (flow chart 24), to scan the
symbol table for the file name, and SPDA (flow chart 93), to output
the SPS card containing the address constant equivalent to the

file name.

Flow chart 118 shows the routine for compiling READ, COPY,
and UNSAVE statements. Apart from the normal exit to VA, there are
error branches to ERR32 if the file name is not found in the symbol
table; to ERR35, ERR33, or ERR32 if the file name is in the symbol.
table, but not as the proper sort of file for the function code;
to ERRO4 if the branch-at-end-of-file address is not gilven.
If a punctuation, literal, or non-final blank 1s found where
the branch-on-repeated-redundancy address 1is allowed, an error
message is given (ERR18) but the statement is accepted and
compiled as if 1t ended after the branch-on-end-of-file address.
Subroutines called are SCLUB (flow chart 24), to find the file
name in the symbol table; RWA (flow chart 119), to output the SPS
card lmages containing a branch to the appropriate subroutine
in the 1401 program package, and the name of the file ;
TWIG (flow chart 106), to record the possible branches to the end-of=-
file address and the repeated-redundancy address, for later use in
making the automatic flow chart; and SPDA (flow chart 93),
to output the SPS card images containing these possible branch

addresses as address constants.

Flow chart 119 shows subroutine RWA, which is called in flow
charts 118, 120, and 122; i.e., in the compilation of all READ,
WRITE, COPY, SAVE, UNSAVE, and OUTPUT statements. The branch
to the proper 1401 subroutine is selected before entering RWA, and
then RWA outputs the SPS card image contalning this branch, followed
by an SPS card image containing the address constant for the file
named by the word next after the function code. It also
checks whether the statement contains at least one more word after
this file name, and branches to ERRO4 if not. This is the only
special exit. The only subroutine called i1s SPDA (flow chart 93)
for outputting the file name as an SPS address constant.

Flow chart 120 shows the routine for compiling OUTPUT
statements. The only cholce in the compilation concerns whether
the second file named, whose buffer contalins the information to
be output, i1s a read/copy file or a save file. Two different subrou-
tines in the 1401 program package are involved, and accordingly
the branch to PUTB or PUTA 1in this flow chart 1s taken. On the
significance of switches QOP and QOR, see the notes for flow chart
20,

Subroutines called are SCLUB (flow chart 24), to make sure that
the write fille on which the information 1s to be written is really
in the symbol table as such; SCIAB (flow chart 13) to look up in
the symbol table the name of the file containing the information;
RWA (flow chart 119), to output the SPS card images containing the

branch to the proper routine in the 1401 program package, and the

86

name of the write file as an address constant; and SPDA
(flow chart 93) to output the address constant for the file con-
talning the information to be written.

Besldes the normal exit to VA, there are branches to ERR3Z,
if the name of the write file 1s not in the symbol table; ERR4Z,
if 1t 1s in the table but as some other kind of name; ERR63, 1f
1t 1s the name of a write flle, but not one with physical blocking;
ERRO4, if the name of the file contailning the informatlion to
be written 1s missing from the statement; ERR32, if it is in the
statement but not in the symbol table; and ERRZ9, i1f it 1is
in the symbol table but not as the name of a read, copy, or save

flle.

Flow chart 121 shows the routine for compiling PAUSE
statements. Recall that the functlon code PAUSE may stand by
itself in the statement (branch td PAUSB in the
flow chart) or be followed by the label of some other statement
(rightward branch from the second box in the flow chart) or
be followed by a number in parentheses, which 1s to be the
B~-address of the halt instruction.

Subroutines called are DEV (flow chart 7) to convert the
number between parentheses to binary (it is converted back to
4-diglt decimal form at the bottom of the flow chart by subroutine
BT4D, which here, as usually, 1s not explicitly mentioned); and
TWIG (flow chart 106) to record the possible branch for the

automatlic flow chart.

87

Besides the normal exits to VA, there are branches to
ERRO4, if the word PAUSE is not followed by a blank and then eilther
a word or an opening parenthesis; and ERRZ25, 1f the element after the
opening parenthesis 1s not a number, or if the number 1is above

7999.

Flow chart 122 shows.the routine for complling WRITE and SAVE
statements.

Subroutines called are SCLUB (flow chart 24) to make sure
the word after the function code is in the symbol table; RWA (flow
chart 119), to output SPS card images containing a branch to the
appropriate write subroutine in the 1401 program package, and the
name of the save or write file as an address constant; LIT (flow
chart 108) to deal with a literal if that 1s what 1s to be written;
SCLAB (flow chart 13) if any other sort of thing is to be written,
to look up 1ts name in the symbol table; SPDA (flow chart 93) to
output SPS card images contalining address constants for a read,
copy, or save file name (at WRITM in the flow chart) if the material
to be written 1s to be taken from such a file, and for the
branch-on-buffer-full address if the statement is a SAVE statement;
and TWIG (flow chart 106) to record such a possible branch for
use in constructing the automatic flow chart.

Besides the regular exit to VA, there are branches to
ERR32 1f the word after the function code 1s not 1n the symbol table;
to ERR52 or ERR42 if 1t is in the table, but 1s not the name of
a file of the class appropriate to the function code;
to ERR28 1f the element of the statement that indicates what

is to be wriltten is not a word or literal; ERRS55 1f it is a word

88

not in the symbol table; ERR55A if it is the name of a switch
or a statement label; ERR29 if it is the name of a write fille;
ERR46 if, in a SAVE statement, what should be the branch-on-buffer-
full address is a blank, punctuation, or literal; or ERRO4 1f

that branch address is missing altogether.

Flow chart 123 shows subroutine DSKR, which "reads" the
1401 program package, card by card, from the memory area into
which 1t was read from disc by subroutine QRAD, Just under
"SECOND" at the top of flow chart 15. The address in location
DSKRA 1s set = FAKE in flow chart 20, Jjust before DSKR 1s first
called in the compilation of any individual programw.

There are two groups or "flles" of card images in what begins
at FAKE; the first ends with a card containing " (EIOP) "
(end of input-output package), and the second with a cerd contalning
" (ELDR) " (end of loader). When elther of these special cards is
found by DSKR, return 1, a sort of end-of-{ile, is taken. Otherwilse,
return 2. The first of the special cards terminates the use of
DSKR in flow chart 20, and the seconc¢ terminates i1ts use in flow
chart 124, These are the only two places in the compiler where
subroutine DSKR 1s called, and the complete set of card images
beginning at FAKE 1s gone through once per program ccmpiled,
the first part up to "(EIOP)" in flow chart 20, and the remainder
in flow chart 124.

Flow chart 124 shows the beginning of the last section of
the compiler. It is entered at VEND, to which control can come

from five places: two on the right side of flow chart 20,

89

after an END card has besn read (these are the points from
which VEND ought to be reached) and six at the six places
where subroutine PREAD 1s called, in flow charts 10, 11, 15, 134
and 135 (these all represent a coding error, a program having been
ended by the end of the input file without an END card.)
The exits are to WENT, at the beginning of flow chart 128,
WCA, at the beginning of flow chart 125, WA, at the beginning
of flow chart 126, and WBH, in flow chart 127.
From WENT, the program goes through flow chart 128 and branches
to WENTA, at the top of flow chart 131. From WCA, the
program goes through part or all of flow chart 125 and branches to
WCBB, in flow chart 127, and through that flow chart and back to
WBD, 1n the mlddle of flow chart 124. From WA the program goes
through flow chart 126 and then to WB, in flow chart 127; after
going through flow chart 127, i1t returns to WBD in the middle of
flow chart 124. From WBH in flow chart 127, 1t returns immediately
to WBD.

There are no error exlits as such from flow chart 124.

The box that says, "make flow chart in listing (see VENDA&2
to LVWRX)" covers a long section of the compiler program, which
18 not flowcharted because 1t 1s essentilally lndependent of the
-production of a 1401 machine-language program. If one removed
everything in the program from VENDA&Z to LVWRX&1 inclusive,
the compiller would work Just the same but would not produce a
flow chart automatically in the listing. However, a partial
explanation is given here:

FEach line of the printed flow chart is output by subroutine
LVWR after being set up in locations SAVEA to SAVEA&Z21. The

90

subroutine can be entered at LVWR or LVWRA, The calling

sequences are the following:

at LVAB-3: TSX
PZE
at LMDB: TSX
PZE
at IMDC-2: TSX
PZE
at LMBA-2: TSX
PZE
a¥t IMBA&25: TSX
PZE

LVWR, 4
LU
LVWR, 4
M .
LVWRA , 4
IM
LVWR, 4
LU
LVWR, 4
LL

LU ("left upper"), IM ("left middle"), and LL ("left lower")

are each at the

beginning of a series of 66 words. Each of these

words contributes its rightmost two characters to the printed

line; hence 22 words are obtained.

The first 30 words, beginning at LU, 1M, or LL, represent

30 columns on the left side of the page. Fach column 1s two

characters wide, and could contain (using "b" to represent

a blank): bb 1b
A branch on the

something like

¥ ¥= o or ==

left stde of the page will be represented by

¥rmoemery

but the number of 1's forming the upward line is variable, and

91

so are the number of --'s to the right of *- , and the number
of =='sg to the right of *= ,

The next four words, LU&30 to LU&33, LM&30 to IM&33,
or LI&30 to LIX&33, will contain either eight blanks, or
81x blanks with a parenthesis at either end, or the six characters
of a 1401 instruction label (which will be either a statement
label coded by the programmer, or one of the labels in the series
X11111 £f., Y11111 £f., Z11111 £f.) with a parenthesis at either
end, or "...ieee "y, /0y 0 B 1

The thirty words beginning at RU ("right upper"), RM ("right
middle"), and RL ("right lower") represent thirty columns on
the right side of the page. Each column 1s two characters wide
and could contain: bb bl -% =% .- or ==
A branch on the right side of the page will be represented by
something like

but the number of 1's forming the downward line is variable, and
so are the number of --'s to the left of -¥ and the number of
=='g to the left of =% |,

Thus the flow chart consists of a central channel, eight
characters wide, containing the labels of instructions, with boxes
enclosing labels or groups of labels; thirty two-character

columns to the left; and thirty to the right, contalning the

92

representations of branches.

When subroutine LVWR 1s entered at LVWRA, whatever 1s 1n the
30 locations beginning at LU, IM, or LL, in other words the material
for the left side of the chart, 1s used as 1t 1s. But when
it 1s entered at LVWR, the contents of those 30 cells have thelr
sequence reversed. The reason i1s that it was usually convenlent
to think of the columns on the left as numbered from the center
outwards, but when the moment came, in subroutine LVWR, to assemble
them along with the columns on the right, they had to be reversed.
For the thirty columns on the right, the problem never arises,
because the center-outwards order 1s the same as the usual

left-to-right order.

To see how the material for the columns 1s constructed,
we go back to Just after VENDA, and before KVA. We have a
list beginning at TWIT, showing all the possible branches.
See the discussion of flow chart 106 for the organization of this
list. It 18 a 1list of labels to which branches occur, and to
each label of this kind 1s attached a 1list of labels from which
branches to i1t can occur.

We alsq@ have a general symbol table beginning at location
SNAL, which contains all the symbols that have appeared
in the program, mére or less in the order of their first appearances
in the program. The exception to thls order i1s that when a-
statement label has appeared as a branch-to address, and its own
statement appears later in the program, the recording of the

earlier appearance will be erased from the list beginning at SNAL.

893

Thus the list contains the labels of all labelled statements in
the same order as that of the statements. When a label has occured
as a branch-to address but its statement has never turned up,

it will be in the list in its original sequential position,

as an undefined label, and will cause a group of slashes above

it in the flow chart as well as an error indication in the

second pass of the SPS assembly.

In short, we have a list from which we can extract all the
labels that have occured, in the same order as their statements.
Undefined labels will be marked as such in the 1list, and
thelr relative position in it does not matter much.

Assuming that there are not more than 299 statement labels
in the program, we have 300 pairs of locatlons beginning at
SYMBS. As we get each label out of the list beginning at SNAL,
we put it in the first cell of the next availlable pair. In
the second cell, we put PZE 0,0,0 for labels of statements to
which control could pass without a branch from the -immediately
preceding statements; PZE 0,1,0 for labels of statements to
which it could not so pass; and MZE 0,1,0 for undefined labels.

In the 1list that begins at SYMBS, every label 1n the program
has an implicit position number, and every branch could be
specified by the earlier label it involves, the distance in the
SYMBS list to the later label it 1nvolves, and whether the branch
1s forwards or backwards in the list.

The program now constructs, for each label in the SYMBS 1list,
two lists beginning at the word that follows the label itself and
showing all the branches to or from later labels. This is done

in three stages:

94

(1) Each label now has an implicit number, between O and a possilble
maximum of 596 (299 labels possible.) In the 1llst beginning

at TWIT, every label, whether a branch-to label in the primary

list or a branch-from label in a secondary 1list, 1s replaced by

its number.

(2) The secondary lists are attached to the odd-numbered words in
the space beginning at SYMBS, using the addresses that were

left vacant i1n the words stored above as PZE 0,1,0; or PZE 0,0,0 .
(3) For each label in the SYMBS list, all the lists attached in
step (2) are scanned to see if that label occurs as a branch-from.
If so, a second llst 1s constructed in the workspace between

WORK and WKLIM, giving the numbers of the labels to which that
label branches. This new list 1s attached by means of the decrements
of the words that were initially PZE 0,0,0 or PZE 0,1,0 and whose
addresses were used in step (2) above to attach the list of

the branches to the symbol.

Now to glve an example, suppose the program contains only
five labelled statements, occurring in the order TORINO, ROMA,
MIILANO, ZURIGO, EMPOLI; and that there are branches from
TORINO to ROMA and MILANO, from ROMA to MILANO, ZURIGO, and
EMPOLI, from MILANO to ROMA and EMPOLI, from ZURIGO to
TORINO, and from EMPOLI to MILANO,. Using the colon for

"contains", we should have the following:

95

SYMBS&O: BCI 1,TORINO

SYMBS&1 : PZE A,,B

SYMBS&2 : BCI 1,ROMAOO

SYMBS&3: PZE E,,F

SYMBS&4 : BCI 1,MILANO

SYMBS&S5 : PZE N,,P

SYMBS&6 : BCI 1,ZURIGO

SYMBS&7 PZE U,,V

SYMBS&S8 : BCI 1,EMPOLI

SYMBS&9: PZE X,,Y

SYMBS&10: PZE 0,,0

WKLIM-A: PZE C

WKLIM-A%1: PZE O

WKLIM-C: PZE O

WKLIM-C%1: PZE 8 (to Torino from Zurigo)
WKLIM-B: PZE 2,,D (from Torino to Roma)
WKLIM-D: PZE 4,,0 (from Torino to Milano)
WKLIM-E: PZE G

WKLIM-E&]1 ¢ PZE 2

WKLIM-G: PZE H

WKLIM-G&1: PZE O (to Roma from Torino)
WKLIM-H: PZE O

WKLIM-H&1: PZE 4 (to Roma from Milano)
WKLIM-F: PZE 4,,K (from Roma to Milano)
WKLIM-K: PZE 6,,M (from Roma to Zurigo)

WKLIM-M: PZE 8,,0 (from Roma to Empoli)

96

WKLIM-N: PZE Q

WKLIM-N&1: PZE 4

WKLIM-Q: PZE R

WKLIM-Q&1 : PZE O (to Milano from Torino)
WKLIM-R: PZE S

WKLIM-R&1 : PZE 2 (to Milano from Roma)
WKLIM-S: PZE O

WKLIM-S&1: PZE 8 (to Milano from Empoll)
WKLIM~-P: PZE 2,,T (from Milano to Roma)
WKLIM-T: PZE 8,,0 (from Milano to Empoli)
WKLIM-U: PZE W

WKLIM-U&l: PZE 6

WKLIM-W: PZE O

WKLIM-W& : PZE 2 (to Zurigo from Roma)
WKLIM-V: PZE 0,,0 (from Zurigo to Torino)
WKLIM~X: PZE Z

WKLIM-X&1 2 PZE 8

WKLIM-Z: PZE AA

WKLIM-Z&1 : PZE 2 (to Empoli from Roma)

WKLIM-AA: PZE O

WKLIM~-AA&T: PZE 4 (to Empoll from Milano)

WKLIM-Y: PZE 4,,0 (from Empoli to Milano)

Every branch 1s recorded twice, once under the label the branch
comes from, and once under the one 1t goes to. But the program will
only be interested in the recording under the earlier label,

as this will indicate the top of a branch line. The branch line will

be continued down the page to the other end of the branch, on the

97

left of the page if the program 1s logically branching upwards,
and on the right if logically downwards.

The program has now reached LVA 1in the listing. The addresses
SYMBS in LVA and SYMBS&1 in LVBA were iniltialized just after
VENDA, in flow chart 124. The address of both LVA and LVBA 1s
increased by 2, after each label 1s dealt with, and when instruction
LVA gets a zero, there are no more labels. The flow chart is
terminated wlth a line of perlods under the last box in the centre,
and the program goes to VENX, on flow chart 124,

Inltially, bvlanks are put in the four groups of 30 locations
beginning at RU, RL, LU, and LL. The 30 locations beginning at
RCOL, which initially contaln zeros, represent the thirty columns
on the right side of the page, and the 30 locations beginning
at LCOL, also initially contalning zeros, represent the thilirty
columns on the left. However, the ones on the left are numbered
from right to left; thus LCOL and RCOL contaln information about
the columns nearest the center of the page, while RCOL&XZ29 and
LCO1L&29 contaln informatlion about the columns at the edges of the
page.

Whenever the part of the program beginning at LVBA finds
a branch from the label now being considered to a later label,
it looks for a word in the RCOL series which is now zero, indicating
a free column, and then puts the distance covered by the branch into
that word. The same 1s done by the part of the program beginning
at LVFB&1; if there is a branch to the current label from a later
label, it looks for a free word in the ILCOL series, and puts the
length of the branch into 1t. At the same time, the former part

S8

of the program puts =%* in the corresponding word of the RL
series, showing the upper corner of the branch line, and the latter
part of the program puts *- 1in the corresponding word of the LL
series, showing the upper corner of the branch line. At RIHI, and
LIHI, an indication of the corner farthest from the center on that
line 1n each direction 1s stored.

Before each new label begins to be dealt with, tThe program
prepares two lines full of blanks for the flow chart (4 groups
of 30 words beginning at RU, LU, RL, LL). Then it checks the
contents of all the words in the RCOL and ICOL series; wherever
one of these 1s non-zero, 2 is subtracted from it. If the result
is 0, the lower end of a branch has been reached, and must be
noted for the current label. If the result is not zero, it is
replaced in the word in the RCOL or LCOL series, and the program
stores bl or 1b in the corresponding word of the RU or LU series.
If the result 1s zero, the program stores -¥ or ¥= in the
corresponding word of the RU or LU series. 1b or bl represents
a continuation of a downward line, whille -%* or ¥*= represents the
lower corner of a branch. When a lower corner is stored, RUHI or
LUHI 1s checked to see 1f it is further from the center than
any other lower corner on that line, so that the farthest-out
one on each side can be found afterwards from RUHI and LUHI.

When all the continuations of branches and lower corners of
branches for the current label have been dealt with in this way,
== or -- 1s put into words in the RU and LU serles as necessary

8o as to Join the farthest lower corner on each side to the centre.

99

Then:

(1) (a) If the label now being dealt with does not begin
with X, Y, or Z, it 1s one that was coded by the programmer, and
80 a new box on the flow chart is to begin with it. A line
is set up in the sixty cells beginning at 1M, with continuations
of all vertical lines coming from corners that have been listed and
going to corners that have not yet been listed, end eight periods
in the middle to close the preceding box. Then this line is
output by subroutine LVWR. Then blanks or two 1's with three blanks
on elther side are put in the middle of the ILM-row, and it 1is
output again; but this time LVWR is entered at LVWRA, beause
the thirty columns on the left have already been reversed once.
Whether there are two 1's 1in the centre of the line depends on
whether the current label 1s one to which control could come from
the preceding statement without an explicit branch.

This 1s done between IMA and IMDC-1 1n the compiler
program listing. The two writings out of the ILM-row are not done
if the current label is the first in the program -~ location IMDA
is used as a switch for this purpose just before IMDB in the
listing.

Then, between IMDC and IMBA-1, elthero... Or «.////..
1s put in the centre of the LU-row, to form the top of the
new box, and the LU-row is written out. The slashes are used
1f the label 1s an undefined one.

(v) If the label now being dealt with begins with
X, Y, or Z, it 1s presumed to be one supplied by the compiller,

and hence not important enough to the programmer to begin a new

100

box. The Ll-row, which contains the label itself, will have to
be output, but the LU-row may not have to be; it 1s useful only
to provide room for branch lines to be drawn.

The lines that come horizontally to a label from the lower
corner of a branch are put in the LU-row, while those that come
in from the upper corner of a branch are put in the LL-row.

If cell LU or RU contalns part of a horizontal, the LU-row

must be written out. If cell LL contalns part of a horizontal,

and cell LLP (which contains what was LL for the last label)

also does, the LU~-row is wrltten out to provide separation between
the two horizontals. Similarly for RL and RLP. Of course, however
many reasons there may be for writing out the LU-row, it 1s only
written out once. It has blanks in the middle.

This is done between LVK&4 and IMA-1 in the compiler
listing.

(2) Beginning at IMBA in the compiler listing, the label
is put in the middle of the LL-row, and it is output. The
contents of LL and RL are saved in LLP and RLP respectively,
for the test mentioned in (1) (b) above.

If, on either side of the diagram, the program finds
itself having to find room for more than thirty vertical lines,
it abandons the flow chart and branches to VENX. Otherwise,
it branches to VENX, after completing the flow chart, at
LVAB-1.

This brings us to VENX, on flow chart 124, and ends the

discusslon of the automatic flow chart.

101

Subroutinegs called in flow chart 124 are DSKR (flow chart
123) as already mentioned, and TRITE (flow chart 133), once
to deal with the cards of the 1401 loader, and once to
deal with assembled SPS instructions, one line per instruction.‘
The cards of the loader are written out on the monitor punch tape,
and also on file WANTER, where they are saved for inclusion in
the listing after the assembled SPS 1nstructions. The assembled
Instructlons are written out directly on the monltor 1listing tape.
(The absolute versions of the assembled instructions are
meanwhile belng gathered into card-length groups, and written
on the punch tape and on file WANTER, Jjust as the loader cards
were, at WCBC on flow chart 125, WBC in flow chart 127,

and at the very end of the program at two points in flow chart 128.)

Flow chart 125 shows a section of the last part of the
compiler. It 1s entered only at WCA, and only from the lower
right-hand corner of flow chart 124, when a constant 1s to
be dealt with. The only two exits both go to WCBB, at the
top right-hand corner of flow chart 127, and thence through that
flow chart to WBD in the middle of flow chart 124.

Subroutines called are WAC (flow chart 129) and WAE (flow
chart 130) for evaluating SPS addresses, and TRITE (flow chart 133)
for writing the absolute constant card on the punch tape and
on file WANTER. (The constant in symbolic form will be written
on the normal listing tape Jjust after WBD in flow chart 124.)

102

Flow chart 126 shows a section of the last part of the
compiler. It 1s entered only at WA, to which the program can
come from several points in flow chart 124, when the op-code
of a 1401 instruction has been determined but the rest of the
instruction remains to be assembled.

The exit from flow chart 126 is always to WB, at the
beginning of flow chart 127. The only subroutines called are
WAC (flow chart 129) and WAE (flow chart 130) for evaluating

the A- and B-addresses of the instruction.

Flow chart 127 shows the continuation from flow chart 126,
at WB, or from flow chart 125, at WCBB, through to the
return to Ylow chart 124 at WBD. It can also be entered at WBH
-from flow chart 124, when a "DS" card is encountered.

WB 1s reached when an instructlon has been set up 1in absolute
form 1in the record for listing. It is then put into the buffer
beginning at PCARD, from which absolute program cards are written
out on the punch tape.

WCBB 1is reached when a constant has already been set up and
output on the punch tape, and has been set up ready to be output
on the listing tape. If the SPS "instruction" that created
the constant had * as its A-address, the constant i1s milxed up -
wlth instructions in the serles of words constituting the program;
since the constant has been output fdr punching from the CCARD
buffer, the continuity of the words in the PCARD buffer has been
broken, and so PCL 18 set = 8] so that the next time an instruc-

tion has to be put in the PCARD area, the previous card will be
written out, and a new one will be begun with the address of

103

the flrst instruction after this constaht.

At the conclusion of flow chart 127, WBH, the SPS-language
part of the currént record for listing 1s moved 36 characters
rightward. This is intended to give them some visual separation
from the compller-language statements wlith which they are
vertically mixed.

The only subroutine called in flow chart 127 is TRITE, for
writing out absolute program cards on the punch tape and one

file WANTER.

Flow chart 128 shows the last section but one of the
compiler. It is entered only at WENT, to which the program
comes from flow chart 124 after reading the end of file RINTER,
or-an END card on that file. If there 1s an incomplete card of
absolute instructions in the PCARD buffer, this is output; then
the END card 1s converted to a transfer card at the end of
the absolute program cards.

File WANTER, on which the absolute program cards have been
saved for later listing, 1s now closed and rewound,
and the same tape 1s prepared for reading as file RANTER.

These cards have already been output for punching, but their list-
ing has been delayed so as not to confuse further the main
assembly listing. The program then goes to WENTA, in flow chart
131,

Subroutines called are TRITE (flow chart 133), to output
a possivle last card of instructions, and the transfer card,
on the punch tape and on file WANTER; and WAC (flow chart 129)

and WAE (flow chart 130) to evaluate the A-address on the END
card.

104

Flow chart 129 shows subroutine WAC, which evaluates the
first part of an A- or B-address (blank, or a four-
digit number, or an asterisk, or an input-output unit address, or
a symbol) and leaves the result in binary form in S&2. This
is where the symbol table that was constructed by subroutine
FPASS (flow chart 14, called'only by subroutine WRATE, flow
chart 5) is used.

Flow chart 130 shows subroutine WAE, which evaluates the
address adjuster, if any, of an A- or B-address, adds it to
what was left in S&Z2 by subroutine WAC, converts this to
3-digit decimal form, and zones the middle digit if necessary
according to the indexlng of the address. An undefined address
1s converted to the three characters ===

Both subroutines WAC and WAE have no error exits, and call
no other subroutines. They are always called together, four

times in all, in flow charts 125, 126 (twice), and 128.

Flow chart 131 shows the last part of the compiler. It is
entered only at WENTA, to which the program comes from
flow chart 128. First, file RANTER is copied onto the monitor
listing tape. This contains the eard images of the absolute
program deck that was also written on the punch tape, except that
record marks have been changed to dollar signs. Then various
parts of the compller program are lnitialized, as shown in the

large box in the middle of the flow chart.

105

Then subroutine BREAD is used (see the notes on subroutine
BREAD, flow chart 1, and subroutine PREAD, flow chart 3, to see
why BREAD and not PREAD is used here). Somehing from the
ordinary monitor input file is read. This can be:

(1) A BCD card image containing " (PROG) " in columns 1-6.

This signals the beginning of a new program to be compilled.
The program goes through WUNF to VAN, on flow chart 15,
and compilation of the new input program begins.

(2) A BCD card image not containing " (PROG) ", or a binary card
Image. This 1s supposed to be a data card for the last-
compilled program to use when 1t is tried out by
the 1401 simulation program. It is copied onto disc by
subroutine WDK (flow chart 132). However, if the card is
BCD and has group marks in its first 6 columns, it is
copled as if 1t were an ordinary 7-8 card. An ordinary
7-8 card could not have been included in the input file
conveniently, as it would have become a tape mark.

(3) A tape mark, which signals the end of the run. At GOUT, one
more program card ls copled onto the disc, such that if
the last-complled program is tried out and ends with a
RELOAD statement, this wlll cause a programmed 1401 halt
rather than some random action depending on what happens
to be on the unused part of the disc. Then the disc-track
buffer area 1ls copiled onto the appropriate track, since
i1t probably contains a waltling incomplete track image,

and the run is terminated at HOUT.

106

The only exits from flow chart 131 are to VAN and the final exit
at HOUT. Subroutines called are BREAD (flow chart 1) and
WDK (flow chart 132) three times.

Flow chart 132 shows subroutine WDK, which 1s used for
copying absolute 1401 program cards, as produced by the compller,
and data cards that may be between the programs in the input
file, onto the common tracks of the disc file. Thus there 1is set
up the image of a fille of cards, and 1t is possible to try the
effect of loading this file into a 1401 and pressing the LOAD
button immediately after the compllation. The compiller Job may be
followed immediately, in the monitor input, by a job using the
1401 simulator program with a U in the control card.

WDK uses the subroutine WRDISC, which 1s not part of the
compller program, to write the 462-word buffer beginning
at DKBUF on successively higher-numbered tracks of the common
dlsc storage cylinders.

WDK 1s called once in subroutine TRITE (flow chart 133)
to write program cards on the disc, and three times in
flow chart: 131 to write data cards -- once for each BCD card,
and twice for each binary card, since 1t moves only 14 words at

a time.

Flow chart 133 shows subroutine TRITE, which has two
different uses depending on the calling sequence. This is

explained at the top of the flow chart. There are no exits except

107

the normal return, and the only subroutiné called is WDK
(flow chart 132).

TRITE is called only once with an IOCD prefix in the calling
sequence, near the middle of flow chart 124. With an MZE prefix,
it is called Jjust below VEND in flow chart 124, twice in
flow chart 128, at WBC in flow chart 127, and at the end
of flow chart 125 at WCBC. |

Flow chart 134 shows the beginning of the routines for
compiling SORT FIRST PASS, SORT MERGE, and SORT FINAL
MERGE PASS statements; and the completion of the latter two.

The compllation of a SORT FIRST PASS statement 1s completed on
flow chart 135.

Flow chart 135 i1s merely a continuation of flow chart 134;
it is entered only at HBE in the upper left-hand corner, to
which control goes from the upper right-hand corner of flow
chart 134. We shall discuss 134 and 135 together.

A SORT FINAL MERGE PASS statement 1s merely translated into
the SPS instruction B XFMER . If there 1s not, elsewhere in the
program, a SORT MERGE statement, the 1401 package program in which
XFMER occurs will not be selected, and XFMER will finally furn up
as an undefined symbol.

A SORT MERGE statement 1s turned into:

(a) the SPS instruction B XMERG, 1.e. a branch to the package
program that does the work.

(b) four SPS "DS" instructions, equating "YTHREE", "YFOUR",
"YONE", and "YTWO" to the absolute values of the names of

the two read and two write files that must be named after the

function code. This is done by the four calls on subroutilne

108

H37 (flow chart 133) in the lower left-hand corner of flow chart
134,

(c) two pairs of SPS instructions that essentially equate

"YRDJ" and "YWTJ" to the names of the read and write routines

in the program package that are appropriate to the type of blocking
in file "YTHREE". Since SPS coding does not allow the eguating of
two symbols, and since the absolute values of XRDN, XRDM, etc.

are not yet known, we cannot equate them directly. And we

cannot use a simple branch instruction to give the effect of
equating them, because of the "store B-address register" instructions
at XRDN, XRDM, XRDS, and so on. A pair of instructions, as shown
in flow chart 138 for subroutine HBT, has to be used for each
effective eguation. This is all done by subroutine HBT, flow chart
138, called in the lower left-hand corner of flow chart 134.

(d) SPS "DC" and "DCW" instructions setting up two words of blanks,
named XACH and XBDH, exactly long enough to contaln the rield
called KEY in the file equated to YTHREE. These words are used

as workspaces 1ln which the preceding key in each of the input

files can be found, so as to show whether the present key breaks
the sequence. These are outout by subroutine HKFY, flow chart 137.
(e) SPS "DS" instructions defining XKEY as the offset of the right
end of field KEY 1in the file equated to YTHREE, and XIKEY as the
offset of the left end of the same field. This is also done

by subroutine HKEY, flow chart 137.

(f) An SPS no-op instruction with label YFIN, which glves the

merge program in the package an address to return to when it has

109

finished. This 1is simpler for the merge program than having to behave
as a subroutine in the matter of returning. Since the merge program
can only be called once in a program, it need not return as

a subroutine normally does.

4 SORT FIRST PASS statement must have all 1ts specifications
coded as 1f in three followlng statements. It would have been
possible to regquire the programmer to code, e.g.

SORT FIRST PASS FIND,GCARD,BUFA,BUFRZ,8UFC,BUFD,OUTA,OUTB
but 1tv seemed, for once, better to have the information spread
out as:
SORT FIRST PASS
ENTRY XEC FIND USE GCARD
BUFFERS BUFA,BUFB,BUFC, BUFD

EXIT OUTA,OUTS
This 1s the only type of statement with such an extended
format, and conseouently the only one in compiling which
subroutines PREAD and DECOM (flow charts 3 and 9)
are called anywhere except in flow chart 15.

The word following USE, symbolized by YYYY in flow chart 134,
1s treated rather in the way the name of the record to be saved
is treated in compiling a SAVE statement -- compare flow chart 12z,
The address of the address of the leftmost character in the record
to be sorted is, in the last box before HBE in flow chart 134,
furnished to the package sort program as an address constant
whose own label 1s XINPUT.

All in all, a SORT FIRST PASS statement with the three
supplementary statements that must follow it is translated into:

110

(a) a simple SPS branch instruction equating XRCARD with whatever
follows ENTRY XEC in the statement; this must be the compiller-language
label of a subroutine for getting the next record to be sorted.
(b) an address constant labelled XINPUT, as explained

ten lines above, for locating the record to be sorted.

(¢c) four SPS "DS" instructions equating XBUFA, XBUFB, XBUFC and
XBUFD to the four save file names given after "BUFFERS" in the
second supplementary statement; or rather to the absolute
addresses equivalent to those names. This is done by the four
calls on subroutine HBV (flow chart 136) in the leftmost

column of flow chart 135.

(d) two pairs of SPS instructions dealing with XRDJ and XWTJ

just as YRDJ and YWTJ were dealt with in section (c) for a

SORT MERGE statement, according to the type of blocking in the
save flle whose name 1s equated with XBUFA. This 1s done by
subroutine HBT (flow chart 138).

(e) and (f) -~ the same as (d) and (e) above for a SORT MERGE
statement, but based on the field named KEY in the file

whose name 1s equated with XBUFA. These are done by the call

on subroutine HKEY (flow chart 137) in the leftmost column

of flow chart 135.

(g) SPS "DS" instructions equating XTHREE and XFOUR to the absolute
addresses equivalent to the write flle names given after EXIT

in the third supplementary statement. This is done by the two
calls on subroutine HBV (flow chart 136) on the right side

of flow chart 135.

(h) An SPS no-op instruction with label XFIN. See the explanation

in (f) above for a SORT MERGE statement.

111

To summarize, the subroutines called in flow charts 134 and
135 are PREAD (flow chart 3), DECOM (flow chart 9), SCLAB
(flow chart 13), HBV (flow chart 136), HKEY (flow chart 137),
and HBT (flow chart 138). The only exits are to VA, if the

statement complles correctly, or to ERR65 in case of any ERROR.

Flow chart 136 shoﬁs subroutine HBV, which 1s called several
times 1in flow charts 134 and 135 to equate some fille name as given
by the programmer with the fixed name under which a package sort
program will have to refer to it. There are error branches to
ERR65 1f the file name given by the programmer is not in the symbol
table, or if it does not name the proper type of file (read, write
or save) reguired at that point in the compilation.

The symbol table which SCLAB uses 1s not helpful in construc-
ting the SPS "DS" instructions, as 1t does not contain the
absolute address of the key point in the file, the address to which
the file name 1s equivalent in the SPS version of the program.
Therefore the symbol table used By subroutine WAC has to be used,
because the fille name must already have been put into that table,
when the relevant OPEN FILE statement was compiled, sending several
SPS cards through the subroutine FPASS. This 1s the only: place
where subroutine WAC is used, outside the second pass of the
SPS assembly in flow charts 125, 126, and 128.

It would be simpler if one could code, in SPS, something lilke

03 XBUFA DS BUFA
and leave it until the second pass of the SPS assembly to find out

the numerical equivalent of BUFA. But we have followed the

112

ordinary conventions of SPS in not allowing such a DS instructlon,
and so this bit oﬁ the second pass has to be done ahead of time
by the compller.

Notice also that subroutine SPS is used rather oddly to
put "BUFA", or whatever the file name given by the programmer is,
into location SCARD so that i1t will appear, to subroutine WAC,
as BUFA with blanks after it, and not as BUFAOO . SCARD i1s blanked
agaln lmmedlately afterward.

Subroutines called in flow chart 136 are SCIAB (flow chart 13),
SPS (flow chart 16) and WAC (flow chart 129).

Flow chart 137 shows subroutine HKEY, which 1s called once
each in flow charts 134 and 135. It sets up two necesaary
work spaces, named XACH and XBDH, and equates XKEY and
XILKEY to the right and left offsets of the key fleld in the file
indicated by the calling sequence: If SORT FIRST PASS and SORT MERGE
occur in the same program, the compller presumes that the latter
continues the sort which the former began, and that therefore
the length and locatlion of the key fleld is the same. So subroutine
HKEY wlll be fully executed only once per program, even 1f called
twice; thils 1s ensured by switch QFM, which also serves for the
selection of a few cards in the 1401 program package, common
to both phases of sorting.

The only subroutine called is SCIAB (flow chart 13).

The only exit, besides the normal return, is to ERR65 in

113

case the file name indicated in the calling sequence is not in
the symbol table; or i1f no fleld called KEY has been defined

for that file by a DEFFLD statement.

Flow chart 138 shows subroutine HBT, which 1s called
once each in flow charts 134 and 135. See the explanations
in section (c) for a SORT MERGE statement and section
(d) for a SORT FIRST PASS statement.

When subroutine HBT 1s entered, subroutine HBV (flow chart
136) has recently been executed and has left the description
of some file 1in location HBVD. There are two bits in this word
which Indicate the type of blocking for the file, and they are
used to get two branch instructions, appropriate to that type
of blocking, from locations READI&n and WRITEL&n. The symbolic
addresses to which these instructions branch are then equated,
effectively, to either XRDJ and XWTJ, or YRDJ and YWTJ, according
to the calling sequence by which HBT was entered.

No subroutines are called in flow chart 138, and there are

no abnormal exlts.

114

Flow charts 201 to 224 describe not the compiller,
but various subroutines in the 1401 program package that

accompanies the compiler.

Flow chart 201 shows subroutine XRDA as 1t operates when
called in reading or copying a file. It 1s called for this
purpose in flow chart 204 (subroutine XRDN for reading or copying
a record with normal blocking), flow chart 206 (ditto with
record-mark blocking), flow chart 207 (ditto with physical
blocking), and 209 (ditto with standard blocking).

The address of the last-read record is put in index 2. But if
.the third character of this address 1s) it 1s not the address of
the first character of the current record, but merely a sign
that a block must be physically read before a record can be
loglically read. In that case control goes to XRDAD, otherwise
to XRDAF.

If the name of the file is X, the address of the file is
X, and what 1s describéd in the preceding paragraph 1s stored
in cells X-2, X-1, and X. In cells X&1, X&2, and X&3 will be the
length of the last-read record. This, at XRDAF, 1s added
To the address of that record. If the address is now
equal to the address in X&4, X&5, and X&6, the block i1s exhausted,
and control goes to XRDAF. Otherwlise swltch XFIRST 1s reset,

to show that the new record is not the first of a block, and

115

the address of the first character of the new record is put into
index 3. Then the program takes exit 2 from the subroutine,
showlng that a block was not read during the execution of the

subroutine.

At XRDAD the program sets up a read instruction to get
the next block of the file. Then, if the file 1s a copy file,
not a read file, and i1f the address of the last-read record does
not end in) , which would show that the current physical file had not
yet begun to be read, i1t writes out the last-read block on the out-
put tape.
This brings the program to XRDAE, from which point the
flow chart should be self-explanatory. If an end-of-file
is read, the program goes to XRDAKS, puts) at the file
address, writes two tape marks on the output tape if the file
is a copy file, and branches to the end-of-file exlt that
was given 1n the calling segquence for the routine that

called XRDA.

Flow chart 202 shows subroutine XRDA as 1t operates
when unsaving a file. It is called for this purpose in flow
chart 205 (unsave record with normal .blocking), |
flow chart 206 (unsave record with record mark blocking),
and 210 (unsave record with standard blocking.)

If X is the name of the file, there is a character at X&i1
giving the status of the file -- N for neutral, R for read,
W for write, and H for hold. If this is R, the program goes to

XRDAF, adds the length of the preceding record to the

116

address at X, and tests for equality with the address at X&6G.

That address was stored when the flle was last

moved from write status to read or hold status, and indicates

the limit up to which information was stored when the file was
last 1n write status.

If the addresses are equal, the program goes to XRDAKT,
puts the file in hold status, and takes the end-of-fille exit.
This was included in the calling sequence of the subroutine
that called XRDA in its turn. Otherwlise, return 2 from XRDA
occurs, snowlng that the record just unsaved 1is not the first
in the buffer.

If the file is 1n hold status, 1t 1is put into read status,
and subroutine XSAVD is called (flow chart 203) to set the
file address egual to the beginning of the buffer. This 1is
X&x25 1f the file has standard blocking, and X4%13 otherwise.

It appears impossible to the author that (FILE) should then
=(FILE&S), but timidity prevents him from removing the decision
box Jjust above XRDAY from the program. The address 1s then

put in index 3, and return 1 occurs, showing that the record
Just unsaved 1is the first in the buffer.

If the file 1s in neutral status, nothing has ever
been saved in 1t, and the end-of-file exit 1s taken at once,

If the file is in write status, X-2, X-1, and X contain
the address plus 1 of the last character stored in the buffer
by the most recent save instruction. Thls address is stored in
X&4d, X&5, and X&6 to mark the end of the saved file; then
the file 1s put in read status, subroutine XSAVD is executed

and so on as if the file had been in hold status.

117

Flow chart 203 shows subroutine XSAVD, which puts the address
of the first character cf a buffer into the location whose name
1s the same as the name of the file. It is only used for write
and save flles, and is called 1n subroutines XRDA
(flow chart 202), XWTR (flow chart 214), and XWTA (flow chart
218). If the file has standard blocking, the address 1s the
address of the name of the file, plus 25; otherwlse plus 13.

If standard blocking, it 1s also necessary to put thils address,
in four-digit form, at X&13, X&14, X&15, and X&16; and to put
"0004" in X&21, X&22, X&23, and X&24.

If the program contains no write or save files with

standard blockilng, the compller will have left out the instruc-

tions corresponding to the left side of the flow chart.

Flow chart 204 shows subroutine XRDN, as it is executed for
2 read or copy file with normal blocking. Most of the work 1s done
by subroutine XRDA (flow chart 201). If the return from XRDA
is on 1line 2, a new block has not Jjust been read, and all that
remains to ve done 1s to test the switch for non-redundancy in the
block. If this is on, the norimal exit from XRDN occurs. This may be
because the current block was not redundant, or because an UNCHECK
statement has been applied to the current file since the block was
read. The redundarcy check branch in the calling sequence to
XRDN may be 000 (i.e. left uncoded in the READ or COPY statement)
but if not, the program now branches to that address, 1f the non-

redundancy switch 1ls off.

118

If the exit from XRDA is on line 1, a new block has Just beenv
fead, and the program checks whether its length is such as to
contain an integral number of records. If the address of the end
of the block is the same as that of the end of the buffer, this
must be so, because the length of the buffer was checked during
compilation. Otherwise, the program constructs all the possilble
record addresses in the buffer; if none of them coincildes
with the end of the block, the block is bad and there 1s a halt.

If the length of the block is acceptable, the program goes to
XRDEND, as 1if the exlt from XRDA had been on line 2.

Flow chart 205 shows subroutine XRDN, as 1t is executed
for a save fille with normal blocking. Most of the work is done
by subroutine XRDA (flow chart 202). If the exit from XRDA 1s on
line 2, a normal return from XRDN takes place immediately.
Otherwlse, XRDA has obtalned the first record in the file, which
has Jjust been moved from write or hold status to read status.
The buffer 1s checked tc see that it contalns an integral number
of records, though the author cannot see a possibility of error

in this, and then the normal return takes place.

Flow chart 206 shows subroutine XRDM as it is executed for
a read or copy file with record-mark blocking (XRDM on the left)
and also for a save file with record-mark blocking (XRDM on the
right). In elther case, most of the work is done by subroutine
XRDAV(flow chart 201 for XRDA on the left, and flow chart 202
for XRDA on the right.)

If the flle 1s read or copy, and the exit from XRDA is on
line 1, a new block has Just been read, and the program puts a
record mark in the last character of the block. There should be one
there in any case, but the block might be one prepared by some other
program, divided into records by record marks, but without a record
mark at the end of the last. |

Then, whatever the return from XRDA, the program goes to
XRDM3. The address ol the end of the current record, plus one, has
been found by moving it into itself with a "P" instruction.
The address df the beginning of the record is subtracted from this,
after both have been converted to 4-dligit numbers, and the difference
is stored in the three characters reserved for the length of the
current record. The program then goes to XRDEND, in flow chart
204, tc deal with the question of redundancy and exlt from the

subroutine.

Flow chart 207 shows subroutine XRDP, for reading or copyilng
records with physical blocking. Once agaln, most of the work is
done by subroutine XRDA (flow chart 201), the return from which
is always on line 1 because every record 1ls the first and only
one in a block. The address of the end of the new record, plus one,
is the same as for the block, and this has already been saved
by subroutine XRDA., Using this address, the program goes to

XRDMB and proceeds as for a file with record-mark blocking.

Flow chart 208 shows subroutine XSKP. For a read or copy

file, the execution of this subroutine means simply that) is put

120

at the location named by the file name. The next time the
file is read or copiled, anything now in the buffer will be ignored,
and a new block will be read immediately. (See the first decision
box in subroutine XRDA, flow chart 201.)

For a save file, the subroutine makes sure that 1t 1s
in hold status, unless it is still in neutral status. If 1t
is in read status, this involves nothing more than changing the
status character; if it is in write status, the address of the last
point reached must be stored at th& location named by the file name
plus 6, to show the limit of readable information in the buffer.

Flow chart 209 shows subroutine XRDS, as executed for a
read or copy file. Subroutine XRDA (flow chart 201) does most of the
work, but some extra checks are carried out. If the return from
XRDA is on line 2, the record 1s not the first in a block.
Its first four characters are converted to 1401 3-digit form and
stored in the space reserved for record length. They are also checked
for being all digits, and are subtracted from the total length
of the block, in the first four characters of the buffer. If
this number becomes negative, something was wrong with the
organization of the block.

If the return from XRDA 1s on line 1, the new record is the first
of its block, and extra checks are made on the block, to see that
1ts first four characters are digits that gilve the length of the
block.

121

Flow chart 210 shows subroutine XRDS as it is executed for
a save file. The only difference from flow chart 209 is that some
tests are omitted. Since what is being unsaved must have been
. saved previously by the subroutine XWTS (flow chart 216) it must

be well-organized.

Flow chart 211 shows subroutine XWOD, which is used by
subroutines XWTA (flow chart 218), XWTP (flow chart 219),
and XOUTR (flow chart 221) to execute a write instruction,
and to take the necessary steps if the write instruction results
in a redundancy check or an end-of-reel indication. The flow
chart is self--~iplanatory. Note that after box XWODK has been
executed, the computer hangs up until the unloaded tape has been
replaced with another one, and the start button has been pressed

on that tape unit.

Flow chart 212 describes subroutine XWMOV, which 1s used wher-
ever a non-data instruction (write tape mark, rewind, unload, erase,
or backspace) has to be applied to a tape. Its only purpose is to
save a few characters in the program. A call on XWMOV requires only
four characters for the branch and one for the function character,
whereas an in-linc method of getting the same result would reqguire
seven characters for the moving of the tape number into the tape

control instructior;, and five for the instruction itself.

Flow chert 213 shows subroutine XWTR as 1t is executed for a

write file. It is called by subroutine XWTN (flow chart 215)

122

subroutine XWTS (fiow chart 216) and subroutine XWIM (flow

chart 217). The exit from each of these subroutines is at XWIX, and
it may be noted that the address there 1s set by XWTR, using

what the outer subroutine put in index register 1. Then XWTR

fills up the index registers: XR1 with the address of the address

of the first character in the record to be written (typically, this
is the base address of a read, copy, or save flle, and at that

base address will be found the address of the record itself);

XR2 with the base address of the write file; and XR3 with the

address found at that base address, which 1s the address of the first

avallable character position in the write buffer.

Flow chart 214 shows subroutine XWIR as 1t 1s executed for
a save flle. The difference consists of the extra things that must
be done for a save file:
(a) There is a possibility of an "end-of-file" condition, and the
branch address for this has to be moved from the callling sequence
to the instruction at XSAVC,
(b) If the file 1s in read or hold status, the base address, showing
the next avallable character position in the buffer, must be initial-
ized by subroutine XSAVD (flow chart 203).

Flow chart 215 shows subroutine XWTN, for writing or saving
a record in a file with normal blocking. Subroutine XWTR (flow chart
213 or 214) is used to put useful numbers in the index registers.
If the name of the file 1s X, then locations X&7, X&8, and X&9

contain the address of the first character after the end of the

buffer. So 1f the address of the next available position of the
buffer, found at X-2, X-1, and X, 1s the same as this, the buffer
is full. Subroutine XWTA (flow chart 219) must be used to

signal the "end-of-file" condition for a save file, or to write out

the buffer on tape, in the case of a write file.

Flow chart 216 shows subroutine XWTS, for writing or
saving a record in a file with standard blocking. This differs
from XWTN in having some extra checks:
(a) There is a halt if the first four characters of the record to
be written or saved are not digilts.
(b) The length of the record is not constant, but depends on these
digits; therefore thelr 3-digit equivalent 1s found and stored in
the appropriate place. The four diglts are also added to the previous
length of the block, which 1s kept in the first four digits of the
buffer. If the total is too large, the existing block is written
out, and the program tries again to move the record into the
buffer.
(c) But if the address of the next available position in the buffer
has its initial value, the record cannot be fitted into the buffer,

and the program halts.

Flow chart 217 shows subroutine XWTM, which writes or saves
records in files with record-mark blocking. After subroutine
XWTR (flow chart 213 or 214) has been used to fi1ll the index
reglsters, XWTM counts the characters of the record, up to the

nearest record mark, agalnst the characters in the unused part of

124

the buffer. If the buffer is exhausted first, 1t is transferred to
tape (in the case of a write file) or the end-of-file branch 1s taken
(in the case of a save file) by subroutine XWTA (flow chart 218).
Then, for a write file, the character-by-character counting
is repeated. If it happens that the buffer is exhausted first
by this counting, while the address of the next avallable cell 1n
the buffer has its initial value, the record is longer than the
buffer and the program halts.
Once 1%t is known that the buffer has room for the record, it

1s conveniently moved into the buffer with a P instruction.

Flow chart 218 shows subroutine XWTA, which is called by
subroutines XWTN (flow chart 215), XWTS (flow chart 2156), and
XWTM (flow chart 217) to deal with the position when the buffer
has not enough room to contain the record that is to be written
or saved., |

I the file 1s a save file, the "end-of-file" branch whose
address was moved into instruction XSAVC by subroutine XWTR (flow
chart 214) is taken.

3 I A 2K KKK NI I F K, WKWK K HH X KN R KK W WK HHHH KW WX R XN *
Note that if tThere are one or more save files in the program, but
the file currently being dealt with is a write file, the A-address
of instruction XSAVC will be a nonsense at best, and an invalid
address at worst. The branch in the instruction is not executed,
however, and the 1401, at least the 8K 1401 in the Cetis building,

does not hang up on account of the bad A-address.

The author did not notice thils posslbility in programming
the subroutine, and it should cause no trouble. It may be that
a different 1401, or the same machline after engineering modifications,
would hang up on an invalid A-address, even when contained in a
condltlonal branch 1lnstruction for which the condition is
not met. Then 1t would be necessary to replace instruction XSAVC
witn the following two instructions:

v * &005 0011 2 1 SV
XSAVC B 0000 SV

99 I K W A K I KWWK N BND QF WARNII‘IG ¥ KWW WKWK K KR KNX

If the file ic a write file, a group mark with word mark 1is
vut into 1ts next available position, or into the position next
after the end <i’ the buller 1f it is eoxactly full. The block is
then written via.subroutine XWOD (flow chart 211). Note that the
veginning of the block is at a different vposition, relative to the
baslc azddress of the file, according as the file has stardard
blocking or not.

Then the word mark is removed from that groun mark, and a
groun nerk witn word mark is put in the nositlon rext alter the
erd of the oulrler -- tniz 1s merely to corrcect the situation if
the wora mark has just peen removed from that position beczause
the whole buffer has Just been written out.

Thie address of the next available positicon in the opuffer

18 then initialized by suorocutine XSAVD.

126

Flow chart 219 shows subroutine XWTR, for writing a record
with physical blocking. This differs from the kinds of writing
mentioned so far in that there is no write buffer, and no possib-
ility of saving rather than writing.

The end of the record to be written is determined by the f{irst
group mark encountered. This is presumed to be without a word mark;
in any case it will be left without a word mark after the writing.

The writing 1s actually accomplished by subroutinz XWOD (flow

chart 211).

Flow chart 220 shows subroutine XOUT, for carrying out an
OUTPUT statement which wrltes the contents of a save fille on
a write tape with physical blocking. If the file is not in
write status, nothing 1s done, but no error indlcation 1s glven.
X0UT determines the starting address of the hlock to be written,
according to wnether the save flle has standard blocking or not.

I the startinz address is also the next avallable address,
nothinz is done by the subroutine; but the author does not
think this condition can arise.

The end of the block to be written is found not by looking
for a group mark, but accerding to the next-available-location
address in the save flle. The program branches to subroutine
XWTP (flow chart 219) at the point where the group mark with
word mark ls placed after the end of the block,

The writing 1s actually accomplished by subroutine XWOD

(flow chart 211).

Flow chart 221 shows subroutine XOUTR, for carrylag out
an OUTPUT statement which writes the contents of a read or copy
buffer on a write tape with ohysical blocking. It diifers from
the preceding subroutline because thz block to be written begins
not at the beginning of the buffer, but at the beginning of the
most recently read record in the buffer. Also, it 1s Important
to restore the group mark with word mark at the end of the buffer,
when the writing has been completed. This is not necessary in
the buffer of a save file, since no tape ever gets read into 1t.

If the last accessing of the read or copy file by a READ or
COPY statement found an end-of-file, the subroutine, and therefore
the OUTPUT statement, will do nothing, but will give no special
indication.

The writing 1s actually accomplished by subroutine XWOD

(flow chart 211).

Flow chart 222 shows subroutine X39CLO, for closing a wrilte
file that has normal blocking 1n such a way that the last block
is the full length of the buffer. If the bulfer is elther
completely empty or completely full, tThe closing 1s done as if
subroutine XCLOSE (flow chart 223) had been called in the first place.
If the buffer i1s partly full, the unused part is filled
with 9's., A word mark is put on the first unused position of the
buffer, a 9 1s put into the last posiltion, and a move instruction

moves the 9 one position leftward. This results in filling the

128

memory with 9's down to the nearest position with a word mark,
which is the first unused peosition of the buffer. The word mark
is removed, and the file is closed as 1if the buffer had been
full of information.

If the records of the file with normal blocking were each
1 character long, and all but the last record in the buffer
contained information, this method of filling in 9's would
wrongly replace the last record of information, l.e. the
last record in the buffer but one, with a 9.

After the padding of 9's has been inserted, 1f necessary,
the program branches into subroutine XCLOSE (flow chart 223).

Flow chart 223 shows subroutine XCLOSE, for closing a write
file with standard or record-mark blocking, or with normal
blocking 1f an incompletely full block at the end of the file
need not be padded with 9's.

If the buffer is empty, the program goes directly from
XCLOSA to XCLOSB; otherwise 1t uses subroutine XWTA (flow chart
218) to write out what there is in the buffer.

At XCLOSB, the subroutine gets the mode and number of the
tape unit associated with the file (though the mode is hardly
necessary) and at XCLOSD it uses subroutine XWMOV (flow chart

212) to write two tape marks on the tape and rewind it.

129

Flow chart 224 shows subroutine XCISP, for closing a write
file with physical blocking. Since there is no buffer, there is
no question of writing out waiting records. The tape number and
mode are found eleven positions to the left of where they would
be found in a flle with any other kind of blocking. After they
have been found, the program joins subroutine XCLOSE (flow chart

223) for the tape marks and rewinding.

	Table of contents
	Comments on the Flow Charts of the Compiler Program
	Comments on the Flow Charts of some 1401 Magnetic Tape Input and Output Subroutines

