








context of a multigroup model under the assumption that the scattering of
neutrons is spherically symmetric in the L system.

The critical radii for bare spheres, calculated by using the j, approximation
in combination with a one-group model, are compared with those obtained
from the Sy method and the exact values. In addition, by fixing the radius,
the values of kerr and the asymptotic time-constant (or the so-called Rossi-a)
are calculated and the flux distributions corresponding to these two calcula-
tions are compared with each other. For a subcritical system, the flux obtained
from the time-constant calculation decreases more slowly as the radial co-
ordinate increases than that obtained from the k.., calculation. In order to
give a numerical illustration of the multigroup model, calculations are per-
formed on two fast neutron critical assemblies, Godiva and Jezebel, and the
results are compared with those of the S, approximation and experiment.

It can be seen from these results that the j; approximation gives a com-
parably accurate result to the S, calculation for all bare systems of interest.
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Summary

The j,, approximation to the solution of neutron transport problems has
emerged in the course of developing the multiple collision method, which is
based on the random walk approach. By means of this new method, transport
problems for a multiregion spherical reactor, where the total neutron cross-
sections are independent of the spatial region (position), are treated in the

context of a multigroup model under the assumption that the scattering of
neutrons is spherically symmetric in the L system.

The critical radii for bare spheres, calculated by using the j,. approximation
in combination with a one-group model, are compared with those obtained
from the S; method and the exact values. In addition, by fixing the radius,
the values of k,.;, and the asymptotic time-constant (or the so-called Rossi-q)
are calculated and the flux distributions corresponding to these two calcula-
tions are compared with each other. For a subcritical system, the flux obtained
from the time-constant calculation decreases more slowly as the radial co-
ordinate increases than that obtained from the k., calculation. In order to
give a numerical illustration of the multigroup model, calculations are per-
formed on two fast neutron critical assemblies, Godiva and Jezebel, and the
results are compared with those of the S, approximation and experiment.

It can be seen from these results that the j; approximation gives a com-
parably accurate result to the S, calculation for all bare systems of interest.
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1., Introduction

By means of the multiple collision method developed by the author, neu-
tron transport probloms for a homogeneous slab have been solved with
reasonable accuracy, the solution applying equally to large and small
systems (Asaoka et al.,, 1964), This method is an analytical approach
based on a viewpoint different from that of Boltzmann equation, namely,

the life-cycle in contrast to the neutron-balance viewpoint,

As was shown in the previous paper, the essential point of the method
lies not only in the adoption of a viewpoint different from the usual
transport equation, but also in the introduction of discontinuity fac-
tors with which one can easily take into account the finiteness of the
system and fix the point of measurement. As a result, problems for a
finite system can be dealt with in a similar manner to those for an in-
finite system, In addition, it has been shown that the application of
the method is greatly simplified by the appropriate employment of ex-
pansions in spherical Bessel functions. When this expansion is trunca-

ted beyond the N-th order spherical Bessel function, the resulting

Jags
N
approximation has been called "the jN approximation' .
It was shown in the previous paper that these mathematical techniques
arising from the life-cycle approach can be used to solve problems

based on the neutron-balance viewpoint more easily.

The present work is concerned with a further development oi the mul-
tiple collision method., By applying the above-mentioned mathematical
techniques directly to an equation governing the balance of neutrons,
a theory valid for spherical systems is obtained. A part of this work,
connected with the critical condition and flux distribution for a

bare sphere (in the constant cross-section approximation), has already

been presented in a EURATOM report (Asaoka et al,, 1963).

Manuscript received on November 5, 1965.



2, General Formulations

We consider here, within the context of a multigroup {G energy-groups)
model, a multiregion (M regions) spherical reactor in which the neu-

tron scattering is spherically symmetric in the L system,

Let Y be the radial co-ordinate, /M the cosine of the angle between
the neutron velocity and direction of )’ , Z} and "Vz} the macroscopic
total cross-section and speed of the neutrons in the J—th energy
group respectively and C(j/-z*g) the mean number of secondary neu-
trons produced in the 3-th group as a result of a collision in the

g/—th group.

/
The number of neutrons which, due to collisions in the ?—th group,
are born in the ?-th group with directions in the range 9“,/(1’4&() ,
positions in the spherical shell of volume 4—)[T’2dY’ around Y/ and

/
at times in the interval di" around ’[‘-—t is given by

C—(tﬂzy Uy (V) AV A

Assuming that Zj and 1% are constant and independent of the spatial
region, the probability that these neutrons travel for a time ‘t with~-
out further collision is -WP('—'Z}”U(‘#') and the radial co-ordinate after

this time is expressed by the relation:
2
VA=Y (%) +2Y’1%f//u )

Hence, the number of neutrons in the 3-th group in the spherical shell

4_7LT1dY around Y at time 't can be written as
R; t 1
o r, 40Py = 5 vy | 44 Zut’
¢’ F) ) 2 2y
- ’

(1)
xZC P EE) ST+ S,



where RJ' and R are the inner radius and outer radius of the J -th

region, respectively, %(Z—)Z) stands for C(?——??) for this J ~th
region and S’ JY’Z'!‘(’Vz't y +2Y"V3t/ll.

Rep1a01ng/u by S'Z , rewriting G (5‘2$Y) in the form of the Fourier

representation:

z S
)2 (Pl

/
and performing the integration over 53 from IY/—’Vj‘t/l to Y/+'Vj't ,

we get:

o0
4

Ri _t
/ 7
Y"'ﬁnz(Y/t) Z\(SAT +5dr )JTELTZ}Y dz 2
J' RJ— 0 : Zoo

) 'V"t:'?i.z,"'v"tle,/ / I g
x%[m%_g_2£ JYE} ek Técl(}az)zjmz,r ns,(r,’c t,

(2)
where the definition of /n?(Y/t) has been extended to Y< O by put-
ting ’n}(—Y,t)z'ng(ht) . Equation (2) can be written in the form:

=1 {d2 ;Zpr2 d;t ~Ziy P
CYNIAOR mj Es ¥ sin (2t
AR 2§
xZ(jdr%Jdrf) 7R ,_ (39})2’ ,V,Y’ﬂJ,(Y tt),
J (3)
5
zt
Next, by taking the Laplace transform of Vj’ﬂ}(Y,‘t)l , we get:

LZ(Y 4)= rjdu*’tha(r )t

_{dQ—QZ}ZY (_Xﬁsz_)g F(z_yj ), "

4 Z”V+Z’aa



where

R‘ . ,
F(‘jﬁa 4,4)= Z (SdY’-rSAY/) Z'?YC}(jL);)Z}/T’Lj/(Y,/A)
R Ky
Rm ,
= Cy(§>] )Za/ja(r’r o 51Y)(r.4)
._RM

. (5)
R
’ ¢y
(959)-Coq (35D T \dr 2™ AY;
.*:}%:M—lfcj(j P64 3)]2,3de r< L3 r4).

Tt
It follows from equations (4) and (5) that the function 4FY}L93,?},4>

satisfies the following integral equation:

F1 34,0)= fﬂ (e

X { M>FIZRy }o[ ZRu(Y-2)]

v (G- G PPIER, 7R 2)]}§ Fppsee), o

=

where Jﬂ(x> is the 71~th order spherical Bessel function,

If F(jé’g,‘j,xj) is now expanded in spherical Bessel functions:

>97 _5 J >97 ' {
FAP10 4, 8)=2 A PO bR, ™)

L2, M1 ox M,

’n?(Y[t) can be transformed into the following form derived from equa-

tion (4):

wmrjfrza(mr,t)f“"Jr

) Y at XVZ
=20 ) 25 Y Z)MLr ds £ —zwz,"v )Z 4 (7"7 *‘)

—0o p-coo



The asymptotic behaviour of ’fla(ht) as 1->00 can thus be written:

TV 'ﬂz(Y,’C) Z_V,(J 1)t2: Bj’(j 'A'):Zlf,gdz-tﬂlz LZ’YIZJ,L(Z%R 2) €9)

~00

where

, v,
Zregrlerng], HRCERIEeTE ]

and 4=ZV;4, is a pole of the quantity Bm(‘iA) ,2%49,,(793 4)

which has the largest real part and Bm('j A, ) is the re51due at 4=ZV, 4, .
As is easily seen from equation (9), only the terms with odd values of M
remain on the right hand.side because Y’n}(r,‘t) is an odd function of Y .
The explicit expression for the integral (on the right side of equation

(9) ) with odd values of M is shown in the Appendix.

According to equation (7), a relation between the coefficients -1?,{(}”?",,6)

with different values of d, can be obtained in the form:
51 p=omnZ 451, HTpmm) |
m 7 j,'d)—(:!m =0 n 3 j)“) J%( rm ) (10)

where 00
1;&mm>-—-—‘§%$dﬂ,é“&% hit)

(ﬂsnﬂw e amrmet-NH!! (ﬂ)ﬂ
=0 o2+ (B 1\ o

omn %= Olg, =M and MN=even,
=< _{ (o() )R- 2/

(V2| oy ﬁ(mﬂlﬂ)n(l'lﬂ-j)! }U(“Jk)

0= 0, M=N and MiN=even,

\ 0, otherwise,



in which ({g and u} stand for ZﬁRk and EQR} respectively (the
function Ij&(m,n) is independent of 2, and when Xi=0p , that
is, k=% , the expression reduces to S(ﬂtﬁnggmt+1) ). Now, by
applying Gegenbauer®s addition theorem:

D)= Z D @

to the kernel on the right side of equation (6) and using the ortho-
gonality relation for spherical Bessel functions, the following in-
finite set of linear equations satisfied by the E%i(}/znﬁA,) can

be derived

] ( o0 & / , i ,
T B (82040~ 2 Ev (2 DBAE 204, an

where

Enj (1P = > g, 2 APl T )
+£§':H (&3>~ ucgog )]%%i GpHEpHOLpm )L ] )IJ’%( PR,
(12)
in which
@G2§=SG>4)] 1441 )%% | (13)

/ _.Z,R/.w i iyt /
5 0= sy Tt ]
(14)



/
The explicit expressions for the J-u (rZ) with f and %é 7 have
been given in the appendix of a previous paper (Asaoka et al., 1964),

Sinc/e J'Z;(r,z)z]'w/(zlr) , it follows from equation (12) that En;;j(g’»])
=E7mj(3"’§).

The condition that B,fl(z, Z:'V/J,) should diverge beyond all bounds is
thus

det

7.351.2,6 for m,m=1,3,5,, (15)

J

(2am+1 )Em/ﬂ(j (7572)— Sj?Smnl =0

which gives a relation between the physical properties of a reactor
(as contained for example in the parameter C ), geometrical dimension

R and asymptotic time~constant J‘—f (see equation (9) ).

For a critical reactor, _d, must be equal to unity and equation (15) with
.J,=1 therefore gives the critical condition, that is a relation bet-
ween the physical properties and geometrical dimension of a critical re-
actor. In order to obtain the value of the effective multiplication fac-
tor -Z,# for a given reactor, Ciz(?”'?') is divided into two parts; the
scattering part C4&(3—>3/)=Z4%(7->3’)/Z} and the fission part C’j—&(j—)j’)

:XZ,())Z})}/ZZ o« Using this separation the value of g,ﬂ is obtained
by solving equation (15) with J,=1 and

CJ&‘T’Z’)= gg(ﬁj/)ﬂﬂ(?—;g/)/g % .

The ratios between the Bﬂ{(jizfv;d,)'s can now be determined by the use of
equations (11) and (15) for any of the above-mentioned problems, that
is, the evaluation of the time~constant, ‘critical condition or the value
of 1@,% . Having thus obtained the B,,,J,_’ *s, the flux distribution or

neutron spectrum can be obtained from equation (9) for each problen,.
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3. Numerical Results for a Bare Sphere and Discussion

For a bare sphere (M = 1), equations €9), (11) and (15) reduce to

Zy, 4t | (dz 4 -1, ~5VE| (5l
YUy (v, ) %oqu,A,) 2,,;_0021;,,12 £ (ZRE), o)

ﬁﬂB,,l(3,2.154,)=§o§‘c’(gsg)j?’,(mm)B,,(j’,z,w,))
(11%)

det

(mﬂ)c’(;’»p]‘gf(mm)—Sz,zgm,n‘:o, m’:,,g’...,e foy m,m=1,3,5,-- (15%)

In a one-group model (G = 1), these equations reduce even further to the

following results respectively:

Dt S I - XY
N (r AT By | Fanz £ JnZRE).

"
ﬁBm(ZVA.F%C’I (M m)B,(Zv4,) )
' (11")
det (2m+l)C/]/(m,’n)—Sm,n|:0’ mmn=1,3,5,- , (15™)

which for a critical system (.d4,=! ) have already been derived in a pre-

vious report (Asaoka et al., 1963),
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3.1. Numerical results in a one-group model

The numerical values of ¢ for critical bare spheres with various values
of R between 0,005 and 50 are given in Table 1, Even the results of the
j3 approximation (containing just two terms on the right hand side of
equation (9"))have shown that the difference between Carlson's result
and ours is indistinguishable on a figure (Asaocka et al,, 1963), By
using a quadratic trial function in the single-iteration moments method,
Carlson calculated the critical radius for various values of & between
1.1 and 3.0 (Carlson, 1949), In Table 1 are also shown the values of
the so-called extrapolation distance d , the distance between the
boundary and the point at which the asymptotic neutron flux expressed

in the form.AhtEIK/zR+d)]/ﬁ' would extrapolate to zero. These are

calculated from the following equation (see Asaoka, 1961):

JL
Zd: eI
oo 2R (16)
In the j3 approximation, the asymptotic expressions for these quantities
are
_5_ S+J57 VX — 2 1226 — 2 {
4 (15157 )X ’7’(”::?75\‘ o, X<,
i
<) 2.1 (17)
l"l‘xzfz-?f—o‘;‘g) 0(771)
L (- 3H/I
U 5154233”)0(, K<<1,
Zd~
~(1- 2 )y + L 257
where K=2ZR '. For large (X , the corresponding expressions in the

j5 approximation are as follows:
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o T .
Sd~ - T 111-41y5 (19)
d~-(1- J30-%5 )DHJs'o—?m 12 :

=-0.00029288x+0.7080)717.

Table 2 shows the numerical values of the flux distribution in critical
spheres with 2R = 0,005, 0.5 and 10, For large R , the results ob-
tained from elementary diffusion theory by using >id = 0.71 show good
agreement with ours except in the region within about a mean free path
from the boundary. The asymptotic expressions for the flux distribution

in the J3 approximation are given by
— +3V57
- -EREIEY 5wt
3
4t

(21-1?’7)0&25—4(‘1-\!5"1)[%%#@4‘—'] 5,

- e, e,
2

%’a“‘g‘z(h‘%?), 51, 01, -

20

120( 30(%5., X‘*‘Z)E, 505, 00>,

where §=ZY and h’ ig the Euler-Mascheroni constant. For large O( ,
the asymptotic expressions in the jsapproximation can be written in the

forms:

189V5-140 _ 34090-4881y5 _3155-490 2
53 33720 2@ UrEEY),

31,

235-47y5 , 155 ¢ 23-1y5 :
‘}‘HXJ— TSR e E R AS

21 R

(21)
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Furthermore, the extrapolated end-point, that is, the distance beyond
the boundary of the medium at which the asymptotic flux (due to the
pole Z =0 in equation (9") ) vanishes (see Appendix), takes the
value (3+J/5)/7 = 0,7480 in the j5 approximation for infinite ( , this

being measured in units of the total mean free path.

As can be seen from the above-mentioned results, the infinite series
on the right hand side of equation (9") converges faster for smaller
'R and hence the results obtained from the j3 approximation can be
regarded as accurate for the smaller values of Xk . On the other hand,
for large EZR , the infinite series does not converge very quickly but
the js approximation will give a sufficiently accurate result for prac-

tical purposes,

Additional test calculations with a one-group model were performed on
several bare spheres and the results were compared with the exact ones
and with those of the SN calculations., In Table 3 are shown the results
for bare spheres with C equal to 1,02, 1.2 or 1.8, The exact critical
radius }ZE} is given in the first column of the table and the critical
radius obtained from the SN approximation with various values of N is
shown in the second column. The deviation from the exact result is shown
in parenthesis, All these values are obtained from a paper by C.E. Lee
(1962). In the third column are shown the critical radii obtained from
the jN approximation with several values of N, the deviation from the
exact result being given in parenthesis, It will be noted from these re-
sults that the j3 approximation gives a reasonably accurate result while
the j5 approximation is exact for all systems of interest. In the fourth
and fifth columns of Table 3 are shown respectively the values of the
time-constant 4,—1 {see equation (9") ) and '@%% for a fixed value of

the radius., These were calculated by means of the jN approximation,

The asymptotic expressions for the critical radius “c::Z:RE are, in

the js approximation,

J

6(15-{57) _ 1153457 \ l05454
35¢ ['Jr(' 208715 )1531250J, 7l

\/IZ‘}C 257Jlj—] =<K, (22)
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and in the j5 approximation,

10-3y5 (,_ 1881-4505 — 0 (23)
-t = 1232410~ 3\15‘1I ] -1, _

In addition, the asymptotic expressions in the 33 approximation for the

time-constant and %‘ﬂ of a sphere with a radius X=.(1+€) with [€]
<1 are

32éll71375( 115

2236912594 \ T 2087[EV5T )cE=1.55033bcE, e,
At (24)
20eE[1-2E (2 )+ 2(c1)(bE) +FC1F ]
Cc-1 <<I)

c>>1,

< _105#56 /. 1153{5T N 1+€
‘C"—‘f[HE T 153125\ 208775 )E ]

e
28Dl Fe-BhE T ase)- 4l -4y Te)
_LeTH513 77, 43
3‘*56000\/7“‘15)/2“8%0—%)], e,

where (C—j)C/Cf can be rewritten in terms of “szvz’f/za in the
form:

(e 1)——c%—
For small (-1 , the asymptotic expression for ‘7@% in the j5 approxima-
tion is:

\‘g% 1"/28(C—I)C [l 3‘8 I‘Q,J%—Jj—%—(l-ge)

~24195-40923(5,, 4250130143456 (26)
Ay (Te)Fe)- m?zsowz ;{J‘( 4y +2€—"—( b
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while the expression for A‘—i in the 35 approximation is the same

as the second of equations (24).

From equations (24) and (25), the mean lifetime j of neutrons can be

obtained in the following form by using the relation /[:(.ﬂlﬂ_l)/levul_‘)]-_

| |o5456 los+sé - 1153457 105%56 , 1953/57 ~ 1+
0¢s 153125 (208775 )[”5—51; 5375 (- e ) EE |

_ 0.6450214 +€
e [|+£%}—o.é4502148"7]) c>1,

I B BN I
ZVCf/C[I+1£(’ 6€)- %-4% P _,_(, £)- 33 1 (I._J_X] 4_)
A~ { 27)

~2ete00-36) - JIRIE (-7 B (-1 +2652(- )

e -0 5123 0-6)- L5905 (- £)(1-5,)

~20(-E)-%€)-2. 62537483 (1-£)24- ). 16878 c(1-¢ )3/2+25%£("'E)]
§

!
-1,

and the expression for small I—VC in the j5 approximation is given by

e L 11145 _ 49195~40923/5
£ Zvcf/C[ ) - 345" - (-e)-2 71:7';524?323‘}5('-%)("%)

~2c(I-L)-L ). 2250130143956 W5 L32 M-S ey
c)Xi-2¢€)- 6397201035 (¢ WA= ct-&3”

C,
+28‘4(%(|' %-)]

(28)

— [ &, e S
vz;&,,/c{'*l(' 6€) o.37035061jn—é(u—g)—o,7/424/57(,_%)(,_%)

~20(FEX1-5€)-0.832 -1y &
2£)70.§3270777 (1-&) +0.TpoTol22¢ (1- &) +35€4€_§(,-l?)].

The expressions for |-l{<< 1 show that, as expected, jmwvz'a)

for an infinite system,
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Tables 4 and 5 show the flux distributions in spheres calculated by
means of the j3 and j7 approximations respectively, In each case, C
takes on the values 1,02 and 1.8 and the flux is evaluated three
times on the basis of criticality, time-constant and —g% calcula-
tions., An interesting feature to be seen from these tables is that
calculation
the flux obtained from the time—consta.nt/\with a negative value of
_4,—1 (subcritical system) decreases more slowly as the radial
co-ordinate increases than that obtained from the ﬁ% calculation,

This tendency can be demonstrated analytically for large (=XR
by using equation (20) or (21).

The flux distribution in the time-constant calculation is given by
equation (20) or (21) by replacing (X and 5‘ by ()(’:(X[H-(A,—D] and
§’=5[|+u‘—1)] , respectively, while that in the 1@4‘ calculation
is given by the unmodified equation, Hence, in the time-constant cal-
culation the ratio of the flux value at the outer boundary of the

sphere with a large radius (X to that at the centre is given by

23 [ 4 . . L
|+ ] in the j_ approximation,
- +(4r1 3
nw 300 (14D SXO1+(47D)

_182/5-158 [ 143+15%12(5 ]
H3X (1 (41) 181720( (1+4rD)

n the 35 approximation,

This means that, for large (X , the ratio in the time-constant calcula-
tion is obtained approximately by dividing that in the 12% calculation
by a factor of 1+(4-1) . On the other hand, for small (X , the
first term of the asymptotic expression for this ratio is a constant,
(1+3J'57)/64 = 0,36952349, in the j, approximation (see equation (20) )
and hence the flux distribution stays nearly the same independently of
whether the distribution is obtained from the time-constant or -@,ﬁ cal-

culation,
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3.2, Numerical examples in a multigroup model

As numerical examples of a multigroup model, calculation. were performed
on two fast neutron critical assemblies, Godiva and Jezebel, The numeri-
cal results are summarised in Table 6, For all these calculations, the
18-group (104Mev-therma1) set of cross-sections of LASL (Mills, 1959) is
adopted in the transport approximation, A 10-group model has been con-
structed by extracting just the higher 10 energy-groups outa the 18
groups. Since the contribution & slow neutrons to the reactor behaviour
can be neglected, it is better to reduce the number of energy-groups G
by cutting out the lower energies so that the rounding error in the
evaluation of a determinant of order G (N+1)/2 can be reduced (see

equation {15%) ), N being the order of jN approximation,

Since the radii of these assemblies are equivalent to 2-3 fast neutron
mean free paths, the S4 approximation will overestimate ,%# slightly
while the j3 approximation should give an accurate value with a very
slight underestimation (see Table 3). Although this tendency cannot be
seen clearly from the results shown in Table 6 because of the transport
approximation and the rounding error in the jN approximation (the trans-
port approximation has resulted in an overestimate of the number of se-
conhry neutrons per collision C(;??/) ), 2ll the calculated values
except those of the jl approximation agree quite well with the experi-
mental results (Hansen, 1958 and Jarvis et al,, 1960). The mean life-
time of prompt neutrons in the jN approximation was calculated by using
the formula ’[=(4a%—12/tznnL¢—1)] (see equation (9') ), while
that in the S4 approximation is given by the total importance divided

by the rate of destruction of importance (see Goertzel, 1955),

In Table 7, our results for the number of leakage neutrons (the total
number of fission neutrons produced inthe reactor has been normalized
to unity) are compared with those of the S4 calculation and with the
experimental values (Stewart, 1960), The experimentally observed total
number of leakage neutrons with energies between 3 and 0,4 MeV has been

normalized to the value of the S4 calculation and the error shown is
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estimated from the values given by Stewart as a result of counting
statistics alone, The experimental values are approximately extra-
polated to 10 MeV and to 0.1 MeV (for Godiva) by the author, though
the observed upper limit was about 9 MeV and the lower limit was
0.2 MeV (for Godiva), As is seen from this table, the jN results
coincide quite well with those of the S4 calculation for both the
agsemblies, In addition, they agree satisfactorily with the observed
values in the case of Godiva, though the calculated values depend
on the adopted nulcear cross-sections., For Jezebel, the calculated
values for the highest energy-group are too small but the agreement
is, on the whole, reasonably good (the j5 approximation has failed
to give satisfactory values because of the rounding error arising

in the course of calculating the flux distribution (see Table 8) ),

Table 8 shows the calculated neutron spectra (the total number of
fission neutrons produced being normalized to unity) at the centre
of the assemblies ( 774? = Q) and near the boundary ( YR =0.95).
It is seen here again that the jN results coincide very well with
those obtained from the S4 calculation, if we exclude the j5 values

for Jezebel as mentioned already.

4. Conclusion

The neutron transport problems for a spherical reactor dealt with in
this report have been solveu satisfactorily by the jN approximation
(or the multiple collision method). In particular, it has been shown
that the j3 approximation (keeping just first two terms of expansions
in spherical Bessel functions) gives results (critical condition, %%q,
mean lifetime of neutrons, neutron spectrum etc.) comparable in accu-

racy to the S, approximation of transport theory.

4



The computer code which has been used is designed to obtain the re-
sults of an (up to) 18 energy-group model in (up to) the j5 approxi-
mation for a bare sphere, As will be clear from the formalism pre-
sented above, this code calculates, in coatrast to the SN code, first
the eigenvalue (that is the critical radius, —%4{ or time-constant)
and then the flux distribution (or neutron spectrum) corresponding

to this eigenvalue, A typical running time on the IBM-7090 is nearly
15 min. to obtain all the three eigenvalues by the use of the j3
approximation and 18-group model. The «@4% and the corresponding

flux calculations take about 10 min,

A computer code for a two-region sphere is now under test running
which seems to show that the infinite series in spherical Bessel
functions converges rather slowly in this case, Later, it is hoped

to extend the method to more general problems,
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Appendix

=i .
Explicit expression for }'[Sdiz —‘32 —AJ&—ZIL—Z-JJM” (0{2)
<00
Reforming the integration, we get:
Sdzz‘f""f‘”‘z (%)
il
<00
L3I i)z Jan'2 ]
= LR{(l ) }2m+l 2=0

50(2(‘(0{92 4a+r)2)}m“( a)

where

[ s .2 _.2
(2)= )¢ 2 g
szH 2m+|( )L +}2'm+l( )2

(note that (2)—‘-. (—2%)
2| 2mH )

and &E (§(2)>?=0 stands for the residue of f(ﬁ) at Z =0,

Hence, the explicit expression can be obtained in the following form

by introducing the abbreviation FEn= En(%-35)-En(%+5), where En(X)=

oQ
5&21— 12
]
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When (X is small, these expressions can be reduced to the following

asymptotic formulae:
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Furthermore, the asymptotic expressions for small ; are:
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Table 1 Mean number of secondaries per collision and extrapolation distance for critiecal spheres of radius R?

Radius Mean number of secondaries, C Extrapolation distance, ZRl
>R
33 approx. 35 approx, j7 approx, j3 approx. 35 approx, j7 approx,

0.005 256.0795 256.0748 256.,0727 1.8124 1.8124 1.8124
0.05 26,1915 26,1909 26 .1907 1,7995 1,7995 1,7995
0.25 5.77735 5,77764 5,77759 1,7446 1,7446 1,7446
0.5 3.23740 3.23729 3.23728 1.6818 1.,6818 1,6818
1 1.988696 1.,988413 1.988391 1.5724 1.,5726 1,5726
2 1.396344 1.395896 1.395876 1.4045 1.4059 1.4059
5 1.096470 1,095779 1.095763 ) 1.1149 1.1350 1.1355
10 1,028710 1.028160 1,028150 0.8572 0.9598 0.9616
50 1.001342 1,001279 1.001278 -0,4602 0.7506 0.7607




Table 2 Scalar flux distribution in critical spheres of radius, R (normalized to unity at the centre, T = 0)

Radius R = 0,005 7R = o.5 ZR =10
174 Ig I 3 35 I 3 Difs, Ig I 3
(0] 1 1 1 1 1 1 1 1 1 1

0.2 0,97282 0,97211 0.97127 0.96962 0.96843 0.96787 0.9436 0.96142 0.94670 0,94261
0.4 0.89270 0.89032 0.88795 0.88323 0.87872 0.87713 0.7859 0.84572 0.79480 0.78298
0.6 0.76379 0.76000 0,75732 0.73651 0.72990 0.72815 0,5581 0,65315 0.56838 0,55480
0.8 0.59244 0.58892 0.58743 0.54740 0.54144 0,54052 0.3042 0,38588 0,30713 0.30177
0.9 - - - - - - 00,1821 0,22857 0,.18022 0,17847
0.96 - - - - - - 0.1136 0,13120 0.10880 0.10731
1 0,36879 0,36722 0.36611 0.30810 0,30579 0.30515 0.0705 0,06528 0.05698 0.05571

_gz..
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Table 3 Critical radius, time-constant and "ﬁ;ﬁ by the ‘jN approximation

and the comparison with the SN and exact results

SN approximation

‘jN approximation

N | critical radius | N | Critical radius | Time-const. —)@,ﬂ
7R (% error) ZR (% error) _,Jl——1
2 | 11.9168(¢-0.916) for XR = 15.0

C=1.02 4 | 12,0203(-0,056)

Cy= 0.82 6 | 12,0310¢+0.033) | 1 | 38.2852(+218.3) | -0.0326058 | 0.86014
(Cf 0.2 ) 8 | 12.0334(+0.053) | 3 | 12.1821(¢+1.290) | 0.0064922 | 1.03314
ZR,=12.0270 | 12 | 12,0345(+0.062) | 5 | 12,0291(+0.017) | 0,0068721 | 1.03515

16 | 12.0346(+0.063) | 7 | 12.0266(~0,003) | 0,0068786 | 1.03518
2 3,0606(-3.512) for ¥R = 3.3
= 1,2 4 | 3,1426(-0,927)

C4= 0.8 6 | 3.1591(-0.407) | 1 | 4.3831(+38,181) | -0.0807481 | 0.83841
(Cf= 0.4 ) 8 | 3.1639(-0,255) | 3 | 3.1783(+0.199) | 0.0126375 | 1.02909
ZR.= 3.1720 |12 | 3.1679¢-0,129) [ 5 | 3,1722(+0,006) | 0.0133343 | 1,03071

16 | 3.1695(-0.079) | 7 | 3.1719(-0,003) | 0.0133546 | 1.03076
2 1,1173(-5.578) for XR =1.15

4 1.,1622(-1,783) | 1 1.33370(+12,710)| -0,177468 | 0.89668
6 1,1732(-0,854) | 3 1.18369(+0,033) | -0,038497 | 0.97755

C=1.8 8 | 1,1767(-0.558) | 5 1,18334( - ) |-0.038117 | 0.97777

Cy= 0.5 12 1.1796(-0.313) | 7 1.18332¢( - ) |-0.038090 | 0.97779
(c,= 1.3 ) 16 1.1809(-0.203) for R =1.10
ZR.= 1.1833 1 - -0.237721 0.86668

3 - -0.101117 | 0.94352
5 - -0.100767 | 0.94372
7 - -0.100747 | 0.94374




Table 4 Flux distributions obtained from three different j3 calculations

(normalized to unity at the centre of the sphere, 1 = 0)

-tz -

C 1.02 1.8
Radius TR 12,1821 15.0 1,18369 1.10
17@2 Critical |41=0.0064922 -£%=1.03314 Critical [4-1=-0.101117 1€ﬂ=°‘94352
0] 1 1 1 1 1 1
0.2 0.96127 0.96110 0.96111 0.96655 0.96729 0.96684
0.4 0.84509 0.84441 0.84442 0.86796 0.87092 0.86912
0.5 0.75797 0.75689 0.75692 0.79583 0.80044 0.79763
0.6 0.65154 0.64994 0.64998 0.70986 0.71645 0.71245
0.7 0.52596 0.52361 0.52367 0.61153 0.62035 0.61501
0.8 0.38181 0.37821 0.37829 0.50260 0.51379 0.50704
0.9 0.22160 0.21548 0.21562 0.38462 0.39807 0.39000
0.95 0.13831 0.13016 0.13037 0.32171 0.33607 0.32749
1 0.05509 0.04559 0.04584 0.24811 0.26307 0.25418




Table 5 Flux distributions obtained from three different j7 calculations
(normalized to unity at the centre of the sphere, Y = 0)
C 1.02 1.8
Radius ZR 12,0266 15.0 1.18332 1.10
Y/R Critical [4-1 =0.0068786 —EI# =1,03518 Critical [4;1==0.100744 1€% =0.94374
(0] 1 1 1 1 1 1
0.2 0.94149 0,94049 0.93960 0.95990 0.96304 0.96263
0.4 0.77887 0.77506 0.77249 0.84768 0.85754 0.85578
0.5 0.66880 0.66312 0,66009 '0.77042 0.78327 0.78041
0.6 0.54698 0.53933 0.53643 0.68262 0.69744 0.69323
0.7 0.41932 0.40989 0,40777 0.58637 0.60209 0.59638
0.8 0.29139 0.28071 0.27976 0.48275 0.49878 0.49161
0.9 0.16792 0.15690 0.15686 0.37118 0.38782 0.37955
0.95 0.10892 0.09829 0.09833 0.31101 0.32819 0.31959
1 0.04685 0.03772 0,03773 0.23978 0.25706 0.24829
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Table 6 Numerical results obtained from the JN

- 29 -

approximation

and the comparison with S4 and experimental values

Godiva

Jezebel

Core Composition U(93.8% U-235) | Pu(4.5% Pu-240)
Density (g/cms) 18,75 15,66
Observed critical Mass (kg) 52,04 U 16.28t0.05 Pu
core for ideal Radius (cm) 8.717 6,284
homog. sphere Volume (/f) 2.774 1,040
S4 1,0046 0.9916
18-group iq 1.0037 0.9935
Calculated ’Ezﬂ ‘
jl 0.8490 0.8824
10-group j3 0.9934 0.9965
. 0.9933 0.9973
s
18-group j3 0.001000 -0.004198
Calculated time- Jl -0.03687 -0.04340
constant {1 10-group j3 -0.002071 -0.002135
j5 -0,001812 -0.002143
Experiment 0.60 0.298
Mean lifetime of S4 0.588 0.358
18-grou ]
prompt neutrons & P g 0.632 0.324
-8
/((10 sec)
Jl 0.707 0,567
10-group j3 0.547 0.342
Jg 0,642 0.264
S4 8.669 6,346
Calculated crit- 18-group j3 8.680 6.340
ical radius (cm)
J 11,014 7 .406
1
10-group j3 8,788 6,323
j5 8.770 6.320




Table 7 Leakage spectra obtained from the jN

approximation and the comparison with S

4

and experimental results

Godiva

Jezebel

S, Jg Jg Experiment S, g ig Experiment
Energy group 18-group 10-group 10~group 18-group 10-group 10-group
1 10-3 MeV 0.07861 0.07928 0.07900 0.0812+15% 0.11036 0.11439 - 0.1455+17%
2 3-1.4 0.14450 0.14574 0.14539 0.1391+ 8% 0.19179 0.19860 - 0.1945+ 9%
3 1.4-0.9 0.,09012 0.09096 0.09094 0.0902t 5% 0.10686 0,.11033 - 0.0987f 7%
4 0.9-0.4 0.14631 0.14763 0.14793 0.1516+ 4% 0.13541 0.13929 - 0.1407+ 6%
5 0.4-0.1 0.09181 0.09232 0.09268 0.1042+ 4% 0.08669 0.08861 - -
6 100-17 keV 0.01052 0.01050 0.01056 - 0.01198 0.01220 - -
7 17-3 0.047665 0.047704 0.047816 - 0.041472 0.041489 - -
8 3-0,454 0.062786 0.062782 0.062832 - 0.071726 0.071745 - -
9 454-61.44 eV 0.094301 0.094290 0.094545 - 0.0114991 0.0123297 - -
10 61,44- 0.0123196 - - - 0.0143049 - - -

—o&-
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Table 8 Neutron spectra at the core centre and near the core boundary

obtained from the jN and S4 calculations
Godiva Jezebel
Energy
BT S4 j3 j5 } S4 j3 j5
18-group 10-group 10—-group 18-group 10-group 10-group
1 0.036232 0.036140 0.035553 1 0.001278 0.001377 0.001518
‘ 2 0,0011713 | 0.0011520 0,0010500{ 0.002257 0.002428 0.002632
3 0.037377 0.037239 0.036705 0.001280 0.001370 0,001400
Spectrum 4 0.0012554 | 0.,0012258 | 0.0011625 0.001718 0.001823 0.001713
at the 5 0.039783 0.039460 0.039150 0.001292 0.001351 0.001119
core 6 0.031426 0,031374 0.031322 0.032130 0,032214 0.031874
centre 7 0.051244 0.051190 0,051182 05063096 0.063129 0.061815
(YVq?:(7) 8 0.085575 0.085303 0.085340 0.093946 0.093907 0.091876
9 |0.0™1135 | 0.0*°1078 | 0.0"%1084! 0.0"%1636 | 0.0"%2604 | 0.0*%2874
10 0.0131130 - - 0.0169648 - -
1 0.031708 0.031685 0.031695 0.034154 0.034146 -
2 0.033178 0.033134 0.033156 0.037271 0.037265 -
3 0.031996 0,031965 0.031982 0.034086 0.034089 -
Spedwunl 4 0.033323 0.033261 0.033294 0.035306 0.035327 -
meay the oy 5 0.032315 0.032272 0.032297 0.033632 0.033674 -
boundaxy 6 0.0:3059 0.0:3000 0,023042 0.0:5434 0.0:5517 8—
(Y/R=0ﬁ5) 7 0.092390 0.092339 0.092373 0.012021 0.012212 0.214778
8 0.0 9892 0.0 9633 0.0 9756 0.0" 8352 | 0.0 8594 | O, 9405
9 0.0111908 0.0111839 0.0111889 0.0133132 - -
10 0.0141846 - - 0.0161740 ~ -
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