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The main object of this paper is to present a novel approach to the theory 
of the pulsed neutrons technique, when applied to fast neutron subcriticai 
multiplying assemblies. One takes advantage of the fact that in such a system 
an increase of neutron energy can only be the result of a fission, and that in such 
a process the spectrum of the emerging neutrons is independent of the energy 
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of the incident neutron. This makes it possible to study independently the 
evolution of the neutrons in each generation, which is similar to that in a non 
multiplying medium, and which is easier to treat since the energy of the neutron 
can only decrease. Transfer functions are then obtained which can be combined 
to obtain the overall evolution of the neutron population in the multiplying 
system. This theory is then applied to some practical examples and particularly 
to Godiva for which experimental results are available. I t is also briefly men­
tioned that a similar approach can be used for the analysis of static problems, 
particularly the exponential experiment. 
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CONTRIBUTION TO THE THEORY OF THE PULSED NEUTRONS 
TECHNIQUE APPLIED TO FAST MULTIPLYING SYSTEMS 

1 — PURPOSE AND PROBLEMS OF PULSED EXPERIMENTS 

Pulsed experiments can be used for measuring integral quantities which are of direct 
interest, such as β/Ζ or the reactivity. They can also be used as clean and flexible integral expe­
riments which, by comparison with theoretical predictions, can be used as a check of funda­
mental nuclear data or of methods of calculation. In all cases one is interested in the measure 
of quantities which are characteristic of the fundamental decay mode, such as its decay cons­
tant y. or the corresponding spectrum. Unfortunately this fundamental decay mode can be 
obtained only asymptotically in time, since initially it is obscured by transient modes. In 
some cases one cannot even define a fundamental mode. A main purpose of this theory is to 
determine whether a fundamental mode exists and, if it exists, to find out if it can be experi­
mentally separated from the transient modes. 

2 — VARIOUS TYPES OF TRANSIENT MODES 

We limit ourselves in this paper to the treatment of bare systems. Assume a burst 
of finite duration but of arbitrary spectrum and spatial distribution. Since the system is 
linear there is no loss of generality if we assume the burst to be a delta function in time. Since 
the spatial and spectral distributions of the burst neutrons are arbitrary and in general differ 
from the fundamental ones, spatial and spectral transient modes will be excised. 

If it can be assumed that the flux always vanishes at the same extrapolated boundary 
for all energies, the spatial problem can be treated in a straightforward manner : the spatial 
distribution of the burst can be developed into the discrete set of spatial eigenfunctions of the 
system, each component of this development exciting the corresponding flux eigenfunction. 
The problem being linear the eigenfunctions can be treated independently. From now on we 
thus limit ourselves to one spatial mode, for example the fundamental one. 

Foi each mode one has then : 

0 (r, E, t ) = / i f ) 9 ( E , t ) (1) 

where ƒ (r) satisfies the equation : 

Af(r)+B*f(r) = 0 (2) 

B2 being the geometric buckling for that spatial mode. 
The spectral problem can thus be described by the function ψ (Ε, ί) which no longer 

contains the spatial variable. 
In small fast assemblies the assumption that the extrapolation length is independent 

of energy is not very justified. One can as a first approximation take the energy dependence 
of the extrapolation length into account by using an energy dependent buckling, as suggested 
by Inönu [1]. 



3 — BASIS OF T H E METHOD 

Let us assume t h a t the problem is solved for a non-mult iplying medium. When a burs t (*) 
of arbi t rary spectrum is injected in such a medium one can then calculate φ (Ε, ί) for t ha t 
case. We show now t h a t the solution for a mul t ip lying medium can be simply derived from it. 

When a burs t is injected in a mult iplying medium, we choose to look first a t t he first 
geneiat ion of neut rons , i.e. a t those neutrons coming directly from the burs t , not via a fission. 
In this « non-mult iplying » process one can calculate the evolution of the flux φ (Ε, ί) and 
thus the source of first fissions : 

ƒ CO 

o ν (Ε) Σ , (Ε) φ (E, ή dE (3) 

S-L (ί) is of course dependent on t h e spectrum of the burs t . Delayed neutrons are always 
neglected. For a burs t having the fission spectrum χ (E), one has similarly a par t icular case 
of the function Sx(i) which we denote by Κ (ί). 

This function K (f) allows us to calculate the η generation fission source in te rms of 
the (n-1) generation fission source : 

ƒ co 
S„_x (t-t>) K (t') dt' (4) 

In Laplace nota t ion this becomes 

sn (p) = % - i (p) k (Ρ) (5) 

Clearly k (ρ) is the transfer function linking (prompt) fission sources of successive gene­
rat ions, and 

Λ CO 

k{o) = K (f) dt = keit¡ ρ (6) 

ρ refers to p rompt neut rons . 

The tota l fission source is given by 

S (t) = S, (t) + S2 (t) + S., (t)+ . . . (7) 

and its Laplace t ransform by 

s (ρ) = «ι (Ρ) [1 + k (ρ) + Α­2 (ρ) + . . . ] = ~ ~ ] ~ 
1 — k (ρ) 

We thus have the desired result for a mult iplying medium : 

(8) 

where sx and k have been obtained vising the theory of a non­mult iplying medium, plus of 

course the simple integration (3). 

(8) is a generalization of the expression giving the amplification of a stat ic source in a 

subcriticai assembly. 

(*) Wc always assume a burst with total intensity normalized to unity. 
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The flux can of course be obtained from the total source (including the initial burst) 
in a straightforward manner. 

Having solved the multiplying problem in terms of the non-multiplying one, we now 
have to solve the latter, and investigate its implications for the former. 

4 — MULTIGROUP TREATMENT OF THE NON-MULTIPLYING PROBLEM 

Using the η-group treatment the w-component flux vector φ (t) will behave as 
η 

φ (ί) = Σ Ät eYí' (9) 
i = 1 

The Y'S can be obtained by setting equal to zero the determinant of the multigroup 

matrix, where they appear in each diagonal element. The advantage of the non­multiplying 

system lies in the fact that the matrix is then triangular (no up­scattering) and that the deter­

minant reduces simply to the product of the diagonal elements. The η values of γ are then 

obtained by setting equal to zero each diagonal element. We thus have : 

γι = —vt (Bi B2 + Σαί + Ση) = —Vi Σ; (10) 

a refers to absorption and r to removal by scattering to other groups. In (10) we also define Σ{. 
The Laplace transform of the flux vector has poles at ρ — y¿, and the A 's are the cor­

responding residues. Only the magnitude of the A 's depends on the spectrum of the burst, and 

not their « direction ». In this paper we are mainly interested in the poles ; the residues can be 

found in a classical manner. 

5 — MULTIGROUP TREATMENT OF THE MULTDPLYING MEDIUM 

Consider equation (8). Both sx (p) and k (ρ) have the same poles at y¿, given by (10), 

where Σ«; includes the fission cross­section. Since these functions appear respectively in the 

numerator and in the denominator, the function s (ρ) does not have poles at the γ 's. The poles 

of s (ρ) are given by the η solutions 

of k(p) = l (H) 

This equation can be solved very easily. One could have also found the a¿ 's by looking 

directly for the eigenvalues of the complete matrix corresponding to the multiplying system, 

but this last method is much more involved. Another advantage of equation (11) is that it 

gives a better insight into the localization of the a; 's. 

Indeed let us look at fig. 1, which shows a plot of k (ρ) versus real values of p , as cal­

culated with eleven groups for a 93 % enriched sphere of uranium having a diameter of 16,3 cm. 

k (ρ) tends to zero when/) tends to -\-co or —co, and becomes infinite at its poles γ(· = — v¿ Σ;, 

which are the decay constants for the non­multiplying system. In this particular case there are 

n-\ values of α{·, one between each pair of poles γι, and the last ax is well separated. ax is on the 

right of all the poles y¿, and hence of all the other a¿ 's. It is negative or positive depending 

on whether k (o) = /ceff · ρ is smaller or larger than unity. 

It is clear that αχ corresponds to the fundamental or persistent mode. If the number 

of groups increases the number of γ ' s and α' s increases accordingly. The γ ' s, and consequen­

tly also 71­1 values of α bunch up closer and closer together, while ax does not change signifi­

cantly. Of course when the groups become very narrow the medium can no longer be considered 
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« weakly absorbing », and our multigroup model does no longer hold. One can show that in 

that case γ,; tends in absolute value to an upper limit «¿E(j, where E(¿ is the total cross­section, 

unless the linear dimensions of the assembly are small compared to the mean free path. 

The multigroup treatment is of course not very suitable to an extrapolation to a conti­

nuous energy model, but by inference from what has been said one can expect that in the rea­

listic continuous energy model one would have only one true mode, corresponding to a15 while 

the sum of all the other modes has to be replaced by an integral over « continuum » modes. 

Going back to the multigroup model, let us look how γ/ varies with energy. Fig. 2 shows 

a plot of —-{i = νιΣι as a function of i in an eleven group model, for similar spheres but with 

diameters of 13 and 17.6 cm. One can see that the smallest values of «jEj come from the lowest 

energies, essentially because of the factor v. Hence it is clear that the transient α which is 

closest to a1? is of the order of ­ ν {Li for the lowest energy neutrons. 

Looking at fig. 3, which shows a plot of k (ρ) for a sphere of 13 cm diameter, one sees 

that ocj is practically equal to γ,„ the decay constant for the lowest energy group. Obviously 

this calculated value of γ η , and hence of ax, is very sensitive to the group structure which 

has been chosen. Hence this value of ax is practically meaningless. We will show now that in 

some cases some other a¿ may correspond to a measurable and meaningful « pseudo » 

persistent mode. 

Imagine a pulsed assembly in which one can show that only a very small fraction of the 

neutrons — say one in 109 — ever slows down below some energy — say 10 ev. Imagine further 

that an adequate group structure has been chosen, extending down to only lOev, such that 

no group is too wide, particularly at energies just above 10 ev. Assume that one has calcula­

ted an <*! well on the right of all the γ ' s, and hence of all the other α "'s. One can expect that 

this ax corresponds to a true persistent mode, and that its value is quite insensitive to a change 

in the group structure. If one whishes to take into account the very few neutrons which slow 

down below 10 ev, one may want to add another group below this energy. Assume that for 

this new group the γΗ = —νηΣη is on the right of the previously obtained a.v If we denote the 

new α 's by primed quantities, we show now that : 

a'l & Yn 

(12) 

Indeed as a result of the addition of this new group, k (ρ) has a new pole at ρ = γ„, 

but the corresponding residue is very small since only a very small fraction of the neutrons is 

involved. Thus the function k (ρ) is appreciably modified only when ρ is very close to γ.„. The 

new pole gives rise to a new value ax, very close to γ„ (as is the case on fig. 3), and the old a.\ 

being far enough from γΗ remains unchanged, but since it is now the second one it becomes a'2. 

Looking now at the function s (ρ) as given by (8), we see that the residue at any pole a;, which 

gives the intensity of the corresponding mode, is given by : 

, λ
 s

i(
a
¿) 

r («0 = ­ ΓΐΓΤΧ-i (13) m Ρ 

At the pole a'x which we just considered the denominator is very large, while the nume­
rator is not large, except if the burst spectrum is very poorly chosen. If for example the initial 
burst spectrum is the fission spectrum, the numerator is sx (ax) = k (ax) = 1. Thus we see that 
the residue at ax is very small, and thus that this mode, even though it decays slower than 
the mode corresponding to α'2 «s ax, has a very small amplitude. This could be expected since 
very few neutrons slow down to energies which excite this mode. 
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More work should be done in this field, including numerical evaluations of residues 

involving the adjoint fluxes, but we feel that pseudo persistent modes could be defined and 

measured, which decay faster than other « parasitic » modes which are too small to be mea­

surable. These last modes would probably be excited for dilute systems by neutrons with 
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energies between the thermal and resonance regions, where νΣ has a minimum but where 

almost no neutrons arc present. The calculation of the pseudo persistent α would best be done 

by using a group structure with a lower bound somewhere at the lower edge of the resonance 

region. For more concentrated systems, such as the 93 % enriched uranium sphere, having 

a harder spectrum, this lower bound should be chosen at a higher energy. If the « parasitic » 

modes give trouble in the experiments, they coidd probably be minimized by the addition 

of a poison having a large capture cros­section for the «parasitic» neutrons. 

Figures 4 to 7 further illustrate what has just been discussed. 

Fig. 4 shows k (ρ) for three different group structures and for 2 assembly diameters. 

The data for each assembly have been normalized so as to give the same k (o) = fceff, ρ- For 

the 13 cm diameter case, we see that the six group model gives a pole <x1 with a large residue, 

¡dk\ 
since — I ) is small. The three group model gives a different ax because it does not give 

\dpl ρ = ej 

a good enough description of the process. The eleven group model gives an a'x with a very 

small residue, since­1— ρ = a.\ «a co and an a'x identical to the ax of the six group model, 
\dp) 

and of course with the same residue. This seems to indicate that the eleventh group, exten­

ding from 0 to 9.1 kev, gives rise to a parasitic mode. Fig. 5 shows αχ as a function of diameter 

for the three group structures. The circles indicate experimental values of the persistent α 

for Godiva. Except for some inaccuracies in either calculations or experiments it seems that 

using more groups does not always yield better results, if these groups are poorly chosen. 

The interpretation is easy with the help of fig. 6. For diameters larger than 14.5 cm, ax i.­> suffi­

ciently on the right of γ.Η for the eleventh group (denoted by —γ (0­9.1 kev) on fig. 6) to be 

a true persistent mode with a large residue. (Example D = 17.6 cm of fig. 4 or D = 16.3 cm 

of fig. 1). For smaller values of D (D — 13 cm of fig. 3 and 4) the « pseudo »­persistent α is 

on the left of γΗ and ax «a γΗ corresponds to a parasitic mode with a very small residue. The 

six and three group models approximate better the experimental results, but a still better 

approximation could be obtained by using more and better chosen groups. Fig. 7 shows α­curves 

for the same system for another 11­group set. Because the residues are very small for the last 

few groups, the corresponding α­curves practically line up to give a curve approximating 

the pseudo­persistent a. Such a curve could be obtained directly as an a.1 curve by choosing 

a different group structure (for instance no groups below 9.1 kev) 

As a conclusion to this part of the paper we can say that : 

1 — If αj is well on the right of the minimum value of c Σ for all energies down to thermal 

it indicates a true persistent mode. This condition however is satisfied only for assemblies 

which are not subcriticai by more than a few percent. 

2 — If it is desired to extend the pulsed technique to less reactive systems one can probably 

define and measure pseudo­persistent modes. 

3 — For very small or very subcriticai systems, discrete modes probably no longer exist. 

The same is true for non­multiplying systems whatever their size, except in the thermal 

range where the upscattering caused by thermal agitation plays a role similar to the 

fission process. 

We have given some qualitative considerations suggesting that there is a range in which 

pseudo persistent modes can be defined, as was said under 2. However we have not proven 

and hence we are not sure that what we denoted by pseudo persistent mode corresponds to 

a true discrete mode. This problem should be tackled using a continuous energy model, proba­

bly with approximate analytic functions to represent the energy dependence of the cross­

sections. We suspect that the existence of a discrete pseudo­persistent mode requires a sharp 

12 
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Fig. 4 — λ·(ρ) for two 93 % enriched U spheres, using three different group structures 

drop of ('Σ by going down from the energy range where most of the fissions occur to the range 
where νΣ reaches a minimum. 

The existence of a pseudo-persistent mode was also envisaged by G. de Saussure [2] 
in the case of thermalization in a moderating medium. There also a sharp variation of cross-
section was invoked. M. Nelkin [3] also investigated this problem and remarks that observed 
decay constants which exceed the minimum collision rate « presumably do not correspond 
to proper fundamental mode solutions of the transport equation ». 
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0 experimental results 

We feel it is essential to settle this question if t h e pulsed technique for fast neutron 
multiplying systems is not to be restr icted to very slightly subcritical assemblies. 

In order to have a rough idea of the range of /ceff, ρ for which | α χ | < (ι'Σ)ηπ·„ we use 
the approximate expression 

1 - L· (1 - kp) ν (Σα + DB2) (14) 

14 
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where the bar represents some average over the energy. The desired range is thus given appro­

ximately by 

π »■ ^ v ( Σ " + D B 2 ) ι (1 — kp) . — i 
(«S)m|.B 

For any energy ι»Σ > ν (Σ σ + DB2) 

(15) 

(16) 

but unfor tunate ly the numera to r refers to an average value while the denominator refers to a 

minimum value. 

As a guide to the in terpre ta t ion of the previous figures, figure 8 shows a plot of fceff p 

versus diameter for 93 % enriched assemblies. 

15 
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6 — F U R T H E R ILLUSTRATIONS OF T H E METHOD 

Figures 9, 10 and 11 show eleven group plots of k (ρ) for three natural uranium spheres 
of different diameters . As can be seen ΊΛ for these very highly subcriticai (*) systems is ideuti-

(*) The value of k^a „ can be read from the graph by extrapolating k(¡>) to ρ = Ü. 
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Fig. 8 — 93 % enriched U sphere 
A'effp = fe(0) versus D, using ANL 11 group set 

cal to γ„ , and the. corresponding residue is negligible. I t of course does not correspond to a 
persistent mode, and we doubt t ha t one could define a pseudo persistent mode for such systems. 
Here again a be t te r group s t ructure should be tr ied. 

The interest ing feature of these plots is the fact t h a t the residue a t some poles of k (ρ) 
is negative. 

As a result of this , one has in some cases two values of α in an interval between two 
successive values of γ , and no α in an adjacent interval . On fig. 9 this happens twice, all α 's 
being real. On fig. 10 the curve A; (p) is at one point t angen t to k (ρ) = 1, and this leads to a 
double root. On fig. 11 one has two complex conjugate α 's . Thus modes appear which t end to 
zero in a damped oscillation. I t cannot be said at this t ime whether such oscillations could 
actually occur in a pulsed assembly or whether they arc introduced artificially by the mult i -
group model . 

Fig. 12 shows a plot of A- (p) for a 112.2 cm diameter sphere of pure (7-238, using the 
same eleven group model . Because of the fission threshold, only three groups appear in the 
calculation of k (ρ) , which thus exhibits only three poles. 

17 



I kc?) 

.10 JO8 p( s-' ) -107 

Fig. 9 — NAT U sphere (D = 52,08 cm) ANL 11 group set 

.10" 



ι β ^Ρ) 

-10° -10' 

Kig. 10 — NAT IJ sphere (1) 71,0 cm) ANI, Il group sel 

P(s') -1Cf 



íkp) 

ts3 
O 

a J; 
$ 0 
In 

Γ 

*l 
ír 
i. m 
­ η 

r t; 

JO
9 JO» J O 7 

Fig. 11 — NAT U sphere (D = 112,2 cm) ANL 11 group set 

_10° 



1 fe ¿ρ) 

+1 

-10 P(s-') -10
6 

Fig. 12 ­ Pure U­238 sphere (I) ■--= 112,2 em) ANL 11 group set 



Obviously α­j corresponds to a parasitic mode (*), but we think that a2 (about 

— 2.108 sec. ­ ' ) , which is accompanied by a large residue probably corresponds to a measurable 

and discrete pseudo­persistent mode for neutrons above the fission threshold and for the fis­

sions themselves. The neutrons below the fission threshold will decay slower and not according 

to discrete modes, just as in a non­multiplying medium. Thus we have here a very interesting 

ease where neutrons above some energy may decay according to a discrete mode (plus transient 

« continuum » modes) and where neutrons below that energy have no discrete modes at all. 

When we compare the case of pure U­238 to the case of natural uranium which was 

just discussed, we see that the former, at least above the fission threshold, probably allows 

adiscrete mode while the latter does not, even though it is slightly more reactive. The reason 

can be found qualitatively by looking at inequality (15). Even though (1-kp) is slightly larger for 

ιΓ(Σ„"+ DB2) . 
pure U­238, the ratio is much smaller, because of the much narrower range 
1 (υΣ) ■ B 

of energies involved in the fission process. However even for pure U­238 the (ί'Σ) · is small 
enough to give rise to a parasitic mode. A better calculation of Lhe pure U-238 case should 
be performed with a finer group structure just above the fission threshold. 

7 — CONCLUSION 

The theory of the pidsed technique applied to fast neutron multiplying assemblies is 
difficult, primarily because it is impossible to describe simply the variation of cross-sections 
with energy. We have used the multigroup approach which can to some extent describe this 
variation but which is only approximate at best. We think that the method introduced in 
this paper, besides yielding a rather easy calculational procedure to determine the eigenvalues, 
gives a better insight than the conventional method into the localization of these eigenvalues 
σ IT σ 

with respect to known quantities, and hence a better understanding of the problem. More 
work should certainly be done with the multigroup model, and an attempt should be made 
at solving some simplified continuous energy models. It should be stressed lhat the basis 
of our method could still be used with a continuous energy model, so that the results obtained 
for a non-multiplying system could be used as an essential step towards solv ing the case of 
a multiplying system. 

As was briefly mentioned in the summary we are presently using a similar method 
for the analysis of exponential experiments on fast neutron multiplying systems. Here again 
one has transient modes of two kinds : spatial and spectral. In the analysis of the latter we also 
develop the theory of multiplying systems from that of non-multiplying systems. It turns out 
that ΣΠ1Ι-Π rather than {νΣ)ηιίη is the important quantity for this experiment. It will then be 
possible to determine the appropriate experiment for each case, considering the existence of 
asymptotic modes and other important factors such as the required inventory of fissionable 
material, instrumentation problems and hardness of the asymptotic spectrum, which for a 
same medium is much softer in a pulsed experiment. 
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