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of the incident neutron. This makes it possible to study independently the
evolution of the neutrons in each generation, which is similar to that in a non
multiplying medium, and which is easier to treat since the energy of the neutron
can only decrease. Transfer functions are then obtained which can be combined
to obtain the overall evolution of the neutron population in the multiplying
system. This theory is then applied to some practical examples and particularly
to Godiva for which experimental results are available. It is also briefly men-
tioned that a similar approach can be used for the analysis of static problems,
particularly the exponential experiment.
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CONTRIBUTION TO THE THEORY OF THE PULSED NEUTRONS
TECHNIQUE APPLIED TO FAST MULTIPLYING SYSTEMS

1 — PURPOSE AND PROBLEMS OF PULSED EXPERIMENTS

Pulsed experiments can be used for measuring integral quantities which are of direct
interest, such as 3/l or the reactivity. They can also be used as clean and flexible integral expe-
riments which, by comparison with theoretical predictions, can be used as a check of funda-
mental nuclear data or of methods of calculation. In all cases one is interested in the measure
of quantities which are characteristic of the fundamental decay mode, such as its decay cons-
tant « or the corresponding spectrum. Unfortunately this fundamental decay mode can be
obtained only asymptotically in time, since initially it is obscured by transient modes. In
some cascs one cannot even define a fundamental mode. A main purpose of this theory is to
determine whether a fundamental mode exists and, if it exists, to find out if it can be experi-
mentally separated from the transient modes.

2 — VARIOUS TYPES OF TRANSIENT MODES

We limit ourselves in this paper to the treatment of bare systems. Assume a burst
of finite duration but of arbitrary spectrum and spatial distribution. Since the system is
linear there is no loss of generality if we assume the burst to he a delta function in time. Since
the spatial and spectral distributions of the burst neutrons are arbitrary and in general differ
from the fundamental ones, spatial and spectral transient modes will be excited.

If it can be assumed that the flux always vanishes at the same extrapolated houndary
for all energies, the spatial problemn can be treated in a straightforward manner : the spatial
distribution of the burst can be developed into the discrete set of spatial eigenfunctions of the
system, cach component of this development exciting the corresponding flux eigenfunction.
The problemn being linear the eigenfunctions can be treated independently. From now on we
thus limit ourselves to one spatial mode, for example the fundamental one.

For each modc onc has then :

@ (F E, 0)=f(Fo(E,1) (1)
where f (7) satisfies the equation :
Af(r) + B (r) =0 (2)

B2 being the geometric buckling for that spatial mode.

The spectral problem can thus be described by the function ¢ (E, f) which no longer
contains the spatial variable.

In small fast assemblies the asswinption that the extrapolation length is independent
of energy is not very justified. One can as a first approximation take the energy dependence
of the extrapolation length into account by using an encrgy dependent buckling, as suggested

by Inénu [1].



3 — BASIS OF THE METHOD

Let ns assume that the problem is solved for a non-multiplying medium. Whea a burst (*)
of arbitrary spectrum is injected in such a mediun one can then calculate ¢ (E, 1) for that
case.  We show now that the solution for a multiplying mediumn can be simply derived from it.

When a burst is injected in a multiplying medium, we choose to fook first at the first
generation of neutrons, i.c. at those neutrovs coming directly from the burst, not via a fission.
In this « non-multiplying » process onc can calculate the evolution of the flux ¢ (E, ¢} and
thus the source of first fissions

S0 = [ v (B) X () o (8,0 a1 3)

o

5, (t) is of course dependent on the spectrum of the burst. Delayed neutrons are always
neelected. For a burst having the fission spectrum y (E), one has similarly a particular case
of the function S;(t) which we denote by K (1),

This function K (#) allows us to calculate the nt generation fission source in terms of
the (n-l)"‘ generation fission source :

Sy (1) = f@ Sy (YK () de! 4)

In Laplace notation this becomes

sn(p) = su_1(p) k(p) (5)

Clearly k (p) is the transfer function linking (prompt) fission sources of successive gene-

rations, and
o)
k(o) = f K (¢) dt = kert, p (6)

P refers to prompt neutrons.

The total fission source is given by
S (1) = S, (1) + So () + S, () + - o)

and its Laplace transformm by

s(p)=s:(P)[L +k(p)+kalp)+...]=

s(p) = -2 (8)
— kAP

wherc s; and k have been obtained using the theory of a non-multiplying medium, plus of
course the simple integration (3).

(8) is a generalization of the expression giving the amplification of a static source in a
subcritical assembly.

(*) We always assume a burst with total intensity normalized to unity.
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The flux can of course be obtained from the total source (including the initial burst)
in a straightforward manner.

Having solved the multiplying problem in terms of the non-multiplying one, we now
have to solve the latter, and investigate its implications for the former.

4 — MULTIGROUP TREATMENT OF THE NON-MULTIPLYING PROBLEM

Using the n-group treatment the n-component flux vector ¢ (t) will behave as

s= 5 Ko o)
i=1
The y's can be obtained by setting equal to zero the determinant of the multigroup
matrix, where they appear in each diagonal element. The advantage of the non-multiplying
system lies in the fact that the matrix is then triangular (no up-scattering) and that the deter-
minant reduces simply to the product of the diagonal elements. The n values of y are then
obtained by setting equal to zero each diagonal element. We thus have :

a refers to absorption and r to removal by scattering to other groups. In (10) we also define %;.
The Laplace transform of the flux vector has poles at p = vy;, and the A ’s are the cor-
responding residues. Only the magnitude of the A ’s depends on the spectrum of the burst, and

not their « direction ». In this paper we are mainly interested in the poles ; the residues can be
found in a classical manner.

5 — MULTIGROUP TREATMENT OF THE MULTIPLYING MEDIUM

Consider equation (8). Both s, (p) and k (p) have the same poles at v;, given by (10),
where X,; includes the fission cross-section. Since these functions appear respectively in the
numerator and in the denominator, the function s (p) does not have poles at the v ’s. The poles
of s(p) are given by the n solutions

o; of 'k(p):l( (11)

This equation can he solved very easily. One could have also found the «; ’s by looking
directly for the eigenvalues of the complete matrix corresponding to the multiplying system,
but this last method is much more involved. Another advantage of equation (11) is that it
gives a better insight into the localization of the o; ’s.

Indeed let us look at fig. 1, which shows a plot of k (p) versus real values of p, as cal-
culated with eleven groups for a 93 9 enriched sphere of uranium having a diameter of 16,3 cm.
k (p) tends to zero when p tends to 4 o0 or —0, and becomes infinite at its poles v; = — v; X,
which are the decay constants for the non-multiplying system. In this particular case there are
n-1 values of o;, one between each pair of poles v;, and the last o, is well separated. ¢, is on the
right of all the poles y;, and hence of all the other o; 's. It is negative or positive depending
on whether k (0) = keqp. p is smaller or larger than unity.

It is clear that «; corresponds to the fundamental or persistent mode. If the number
of groups increases the number of ¥’ s and «’ s increases accordingly. The v’ s, and consequen-
tly also n-1 values of « bunch up closer and closer together, while o, does not change signifi-
cantly. Of course when the groups become very narrow the medium can no longer be considered
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« weakly absorbing », and our multigroup model does no longer hold. One can show that in
that casc v; tends in absolute value to an upper limit v;X,;, where ¥; is the total cross-section,
unless the linear dimensions of the assembly are small compared to the mcan free path.
The multigroup treatment is of course not very suitable to an extrapolation to a conti-
nuous cnergy model, but by inference from what has been said one can expect that in the rea-
listic continuous energy model one would have only one true mode, corresponding to o,, while
the sum of all the other modes has to be replaced by an integral over « continuum » modes.

Going hack to the multigroup model, let us look how v; varies with energy. Fig. 2 shows
a plot of —y; = v;Z; as a function of i in an eleven group model, for similar spheres but with
diameters of 13 and 17.6 cm. One can see that the smallest values of v;3; come from the lowest
energies, essentially because of the factor v. Hence it is clear that the transient « which is
closest to o4, is of the order of - v;X; for the lowest energy neutrons.

Looking at fig. 3, which shows a plot of k (p) for a sphere of 13 cm diameter, one sees
that o, is practically equal to vy,, the decay constant for the lowest energy group. Obviously
this calculated value of y,, and hence of «,, is very scnsitive to the group structure which
has been chosen. Hence this value of «, is practically meaningless. We will show now that in
some cases some other a; may correspond to a measurable and meaningful « pseudo »
persistent mode.

Imagine a pulsed assembly in which one can show that only a very small fraction of the

neutrons — say one in 109 — ever slows down below some energy — say 10 ev. Imagine further
that an adequate group structure has been chosen, extending down to only 10ev, such that
no group is too wide, particularly at energies just above 10 cv. Assume that one has calcula-
ted an ¢; well on the right of all the v’ s, and hence of all the other = 's. One can expect that
this o, corresponds to a true persistent mode, and that its value is quite insensitive to a change
in the group structure. If one whishes to take into account the very few neutrons whieh slow
down below 10 ev, one may want to add another group below this energy. Assume that for
this new group the vy, = —v, X, is on the right of the previously obtained o,. If we denote the

new o 's by primed quantities, we show now that :

I
0y = Yn

o'y X oy (12)

Indeed as a result of the addition of this new group, k (p) has a new pole at p = vy,
but the corresponding residue is very small since only a very small fraction of the neutrons is
involved. Thus the function k (p) is appreciably modified only when p is very close to v,. The
new pole gives rise to a new value o,, very close to v, (as is the case on fig. 3), and the old o',
Leing far enough from vy, remains unchanged, but since it is now the second one it becomes 5.
Looking now at the function s (p) as given by (8), we see that the residue at any pole #;, which
gives the intensity of the corresponding mode, is given by :

sy (o)

rog) =—-:

[dk (p)] B (13)
dap [P
dp

At the pole o', which we just considered the denominator is very large, while the nume-
rator is not large, except if the burst spectrum is very poorly chosen. If for example the initial
burst spectrum is the fission spectrum, the numerator is s, (2;) = k () = 1. Thus we see that
the residue at «, is very small, and thus that this mode, even though it decays slower than
the mode corresponding to o'y & o, has a very small amplitude. This could be expected since

very few ncutrons slow down to energics which excite this mode.
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energies between the thermal and resonance regions, where ¢X has a minimum but where
almost no neutrons are present., The caleulation of the pseudo persistent o would best he done
by using a group structure with a lower bound somewhere at the lower edge of the resonance
region. For more concentrated systemns, such as the 93 9 enriched uranium sphere, having
a harder spectrum, this lower bound should be chosen at a higher energy. If the « parasitic »
modes give trouble in the experiments, they could probably be minimized by the addition
of a poison having a large capture cros-section for the « parasitic» neutrons.

Figures 4 to 7 further illustrate what has just been discussed.

Fig. 4 shows k (p) for three different group structures and for 2 assembly diameters.
The data for cach assembly have been normalized so as to give the same k (o) = kegy, 5. For
the 13 cm diameter case, we see that the six group model gives a pole o) with a large residue,

dk

since — - is small. The three group model gives a different o) because it does not give
P/ P =%

a good cnough description of the process. The eleven group model gives an a'; with a very

dk

small residue, since- |-~ | p = ¢'; & o0 and an o', identical to the ¢; of the six group model,

dp
and of course with the same residue. This seems to indicate that the cleventh group, exten-
ding from 0 to 9.1 kev, gives rise to a parasitic mode. Fig. 5 shows «; as a function of diameter
for the three group structures. The cireles indicate experimental values of the persistent «
for Godiva. Except for some inaccuracies in either calculations or experiments it secems that
using more groups does not always yield better results, if these groups are poorly chosen.
The interpretation is easy with the help of fig. 6. For diameters larger than 14.5 em, o, is suffi-
ciently on the right of v, for the eleventh group (denoted by —vy (0-9.1 kev) on fig. 6) to be
a true persistent mode with a large residue. (Example D = 17.6 cm of fig. 4 or D = 16.3 em
of fig. 1). For smaller values of D (D = 13 em of fig. 3 and 4) the « pseudo »-persistent « is
on the left of v, and oy &~ v, corresponds to a parasitic mode with a very small residue. The
six and three group models approximate better the experimental results, but a still better
approximation could be obtained by wsing more and better chosen groups. Fig. 7 shows a-curves
for the same system for another 11-group set. Because the residues are very small for the last
few groups, the corresponding #-curves practically line up to give a curve approximating
the psecudo-persistent «. Such a curve could be obtained directly as an o, curve by choosing

a different group structure (for instance no groups helow 9.1 kev)
As a conclusion to this part of the paper we can say that :

1 — Il ¢, is well on the right of the minimum value of »X for all energics down to thermal
it indieates a true persistent mode. This condition however is satisfied only for assemblies

which are not suberitical by more than a few pereent.

2 — If it is desired to extend the pulsed teehnique to less reactive systems one can probably
define and measure pseudo-persistent modes.

3 — For very small or very subcritical systems, diserete modes probably no longer exist.
The same is true for non-multiplying systems whatever their size, except in the thermal
range where the upscattering caused by thermal agitation plays a role similar to the

fission process.

We have given some qualitative considerations suggesting that there is a range in which
pseudo persistent modes can be defined, as was said under 2. However we have not proven
and henee we are not sure that what we denoted by pseudo persistent mode corresponds to
a true discrete mode. This problem should be tackled using a continuous energy model, proba-
bly with approximate analytic functions to represent the energy dependence of the cross-

sections. We suspect that the existence of a discrete pscudo-persistent mode requires a sharp
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Obviously «; corresponds to a parasitic mode (*), but we think that o, (about
— 2.10% sec.™"), which is accompanied by a large residue probably corresponds to a measurable
and discrete pseudo-pevsistent mode for neutrons above the fission threshold and for the fis-
sions themselves. The neutrons below the fission threshold will decay slower and not according
to discrete modes, just as in a non-multiplying medinm. Thus we have here a very intcresting
case where neutrons ahove some energy may decay according to a discrete mode (plus transient

« continuum » modes) and where neutrons below that energy have no discrete modes at all.

When we compare the case of pure U-238 to the case of natural uranium which was
just discussed, we see that the former, at least above the fission threshold, probably allows
adiserete mode while the latter does not, even though it is slightly more reactive. The reason
san he found qualitatively by looking at inequality (15). Even though (1-kp) is slightly larger for

. . U (2(1 + DBZ) . .
pure U-238, the ratio ,,,,,(7‘?),,,,_“,,,, s much smaller, because of the much narrower range
"= min

of energies involved in the fission process. However even for pure U-238 the (vX), ;0 18 small
enough to give rise to a parasitic mode. A better caleulation of the pure U-238 case should

be performed with a finer group strueture just above the fission threshold.

7 — CONCLUSION

The theory of the pulsed technique applied to fast neutron multiplying assemblies is
difficult, primarily beecause it is impossible to describe simply the variation of cross-sections
with encrgy. We have used the multigroup approach which can to some extent describe this
variation but which is only approximate at hest. We think that the method introduced in
this paper, besides yielding a rather easy caleulational proeedure to determine the eigenvalues,
gives a better insight than the conventional method into the localization of these eigenvalues
with respeet to known quantitics, and hence a better understanding of the problem. More
work should certainly be done with the multigroup model, and an attempt should be made
at solving some simplified continuous energy models. It should be stressed that the basis
of our method could still be used with a continuous energy model, so that the results obtained
for a non-multiplying system could be used as an essential step towards solving the case of
a multiplying system.

As was briefly mentioned in the summary we are presently using a similar method
for the analysis of exponential experiments on fast neutron multiplying systems. Here again
one has transicnt niodes of two kinds : spatial and spectral. In the analysis of the latter we also
develop the theory of multiplying systems from that of non-multiplying systems. It turns out
that X . rather than (¢X

is the important quantity for this experiment. It will then be

min )miu

possible to determine the appropriate experiment for each case, considering the existenee of
asymptotic modes and other important factors sueh as the required inventory of fissionable
material, instrumentation problems and hardness of the asymptotic spectrum, which for a
same medium is mueh softer in a pulsed experimment.
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