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INTRCDUCYICN

Thiz report is the text of an introductory seminar on optimal control

held by the author for LURATOM personnel at CETIS in April 1963.

After the first IFAC-Congress held in Moscow in 1960, a growing interest
in optimal control has been noticed throughout the world. liany contri-
butions in this field originated in some very important papers presented
at the congress, especially those by Pontryagin, Bellman and their

respective co-authors.

In this report we are concerned with the mathematical theory developed

by the Fontryagin team and which is better known as the Maximum Principle.

As an introduction we tried to give a gynthetic ctatement of the theorems
on the Maximum Principle and to discuss its relations to other optimization
techniques (chapters 1 and 3). Cur main point of interest however is the
synthegis of optimal control and particularly its computational aspects.
As, as yet this is an ungolved problem we tried to give a general outline
of present possibilities and future hopes (chapters 2, 3 and 5). Some
original work of the author on penalty functions and generalized gradient

techniques has been included (cfr. chapter 3 and 4).

However, since progress is very quick in this field new important develop-
ments have been published after April 1663. This was particularly the case
at the second IFAC-Congress held in Basle in September 1963, where optimal
control was the m2in topic in the theoretical section. Some problems we
referred to in this report are already solved now, for instance the
synthesis of linear optimal control and some theoretical difficulties

in connection with penalty functions.

On the other hand new experience concerning the computational aspects of
optimal control in general and some applications in nuclear reactor
control in particular, have been obtained in CLTIS. Results will be
published as soon as possible. Most svecialists in optimal control now
agree that progreses in computer synthesic i¢ intimately related to

progress in technology of hybrid computation.
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CHAPTER 1 THE MAXIMUM PRINCIPLE

1.1.

1.

Statement of the fundamental Problem

We consider x (t) to be the state vector x (t) = (x1 (t)y + o oy
x (t)y « « «, xX* (t) ), belonging to a region G of the n-dimen-
sional state space and whose evolution is described by a system

of differential equations

e [x (), w (] SR

dt
With f = (f1’ e o oy fn). In this System u (t) = (u1 (t), o o 0y
uw® (t) ) is a control vector whose range is in a subset U of the

r-dimensional control space., The subset U is usually defined hy

at (u) €0 1 =1y « « oy s ( 2)

and the region G is usually defined by

(3)

g’ (x) 0 j

i
=

In relations ( 2 ) and ( 3 ) the inequality sign is optional.

The initial condition x (to) = x_ and the final condition x (t1) =
X, of the system belong respectively to the sets SO and S1 which
are smooth manifolds in G of arbitrary dimension (but less than n).
Among all admissible controls ugU which transfer the point x from

xoeSo to x1€S1, it is asked to find one for which the functional

t

J=t;ffo[x(t),u(t)]dt (4)

takes on the least possible value.

Discussion

Ve propose to comment on the general aspects and the restrictions
of the problem as stated in § t¢1., in order to evaluate the power
of the mathematical optimization theory proposed by the Pontryagin

team.
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1.2.1. The system of dynamical constraints

The set of equations ( 1 ) covers a very general class of
dynamical systems and probably is the most general one which
is possible to program on an analog computer. It consists of

n ditferent firgt order ditfferential equations of the type

1 2 i n 1 T
= f (x, x7, .. 9 X'y o o oy X3 W,y o 0 ey U )

It can easily be shown that an n-order differential eguation can

be written as a set of n first order differential equations.

lixmple: x + Z:Iboox +a)<D X = cC is equivalent to

2
dx
at

c - 2:gcuox2 —(L%2X1

with x2 = i and x1 = X

It should be remembered that even a partial differential
equation corresponds to the formulation ( 1 ), but then

with n =00, The approximation by finite differences however,
which is a common technique for solving partial differential
equations on analog and digital computers, automatically fits

in with ( 1 ) since n has been given a finite number.

The vector eguation ( 1 ) itself may be the subject of a finite

difference approximation with respect to time

x (3 +4t) = x () + £ x (1), u (2)] &'+ (5)

with S =At
i=1, ¢ « oy n
J=1y ¢« « +, N
This formulation is useful for digital computers and for

iterative techniyues with analog computers.
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The-set ( 1) generally represents the model of a dynamical
system such as a space engine, a nuclear reactor or a power
generating system. We would draw attention to the importance
of the simplicityvand validity of such a model with respect

to the physical system. Without simplicity and especially
without a reasonably low number of equations the optimization,
even with large electronic computers, becomes a heavy, risky
and even an impossible task. On the other hund a lack of
knowledge about the validity and the regions of validity of

a simplified model may'lead to solutions which are completely

unrealistic from a physical point of view.

The control variables

The essential difference hetween the state variables and
the control variables is that the latter are completely
free from dynamical constraints. At every instant they can

be chosen anywhere in the control region U.

If some variable, subject of a dynamical constraint were
considered as a control variable, the optimization would

take place ignoring that constraint. This generally gives
rise to surprising and very unrealistic results. It may be
dangerous, for instance, to ignore the inertia and the trans-
fer function of the control system itself, even if at first
sight its quality would suggest their unimportance. This
again points out the problem of the validity of the dynami-

cal model.

For the mathematical statement of the problem,U could be
an arbitrary set, but in technical problems U is always a

closed set. Some particular types of control regions are

- the hypercube g (u) ’ ull -1€0 ( 6)

L]

i=1, * u,n

(w, u) =107 (7)

1l
m
o
[}
~—
no
!
-
i

- the hypersphere q (u)

£=1
The number of control variables r, especially when compared

with n, is evidently a very important characteristic of the

control possibilities of the system.

+
) By (a, b) we mean the scalar product of the vectors a and b.
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In some problems time appears explicitly in fi (x, u, t),
£° (x, u, t) or gj (x, t), making the whole system non-
autonomous. In such a case we consider time as a new state
variable x° * = t wherever it appears explicitly, while

a new differenti-l equation ax™ ¥ 1/dt = 1 is added to the
system, In this way we obviously satisfy once more the ge~

neral definition of ( 1 ).

Algebraic relations between state variables of the type
Lf(x) = 0 are more difficult to handle. In most cases

\f (x) = O can be solved for one state variable as a function
of the others xd= e (x1, . e ey xo‘_ 1, xd;1,

. . . i
which can be introduced in all f~ wherever x appears. Such

r
coe e, XD,

a substition is surely the "cleanest" method. Sometimes how~
ever this technigque is not desirable beéause of programming
difficulties. This is particularly true if several nonlinear
algebraic relations have to be treated. Therefore a second
possibility is to consider LF(x) = 0 as a relation of type ( 3 ),
for which Lagrange multipliers have to be introduced, as will

be shown by the theorems of Pontryagin.

Sometimes no system of dynamical constraints has been given,
but the time derivative x of the state variable x has to be
chosen in order to minimize the given functional. In this
case it should not be forgotten that system ( 1 ) takes the
form

dxi i

aTt—-—-u 1=1,.-

Although egquations of the type

et [x (t), x (t.—’t'1), x (0 -T), « v oy u (t).}

are not accepted by the definition of system ( 1 ) some
generalizations of the theorems of Pontryagin are possible,

enabling them to be included (cfr. ref. [1], ch. IV, § 27).
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Restricted state variables

The control vector ugU has to be chosén such that x stays
in the interior of G. We already know from ( 3 ) that G may
be defined by inequality or equality constraints. We also
noticed that the last case offers the possibility of in-

troducing algebfaic relations of the type‘*>(x) = 0O,

Sometimes additional equations of type (-1 ) are necessary
for the definition of G. We take the example of integral

constraints: .
t
(x,u) dt’ A
ftg(,) 9
o

Then we introduce the additional eguation

n + 1

&H_: e B Ty, W) = P(x, u)

+ 1

such that G can be defined by x° - A< 0.

According to the application, g (x) may be the maximum
altitude of an aircraft, a mechanical stop in a servo- _
mechanism, the maximum operating temperature of an electric
motor, a given disposable income budget or an integral con-
straint such as the charge of an accumulator or an available

quantity of fuel.

The functional J

Introducing the definition

dx:t t . fo[x (t): u (t)] with x° (to) = xg ( 8 )

we see that J = x? - xg and the problem reduces to finding
u (t) such that x° (t1) takes on the least possible value.
Ivery maximal problem can be changed into a minimal problem
by inverting the sign of £° (x, u). Equation ( 8 ) can be
added to the set of equations ( 1 ) increasing the order

of the system by one. It has to be observed, however, that

. o] . . (o]
none of the functions f or f contains the variable x .
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Some special cases are of particular interest. Taking

£f% (x, u) = 1 we have J = t, - t ) representing a time-

optimal problem. This alrea;y shows that neither to nor

t1 necessarily has to be given by the problem. They can

be part of the solution. It may equally happen that

J="F (x1) -F (xo) is a function only of the initial

and final conditions of the state variables, which implies
£° (x, u) = dF/dt = (DF/Ox, f). Both cases will be studied

later (cfr. § 1.7. and chapter 4).

Some authors prefer the expression f° (x, X, t). It can
easily be shown that this is a special case of our defi-
nition £f° (x, u). We only have to consider t as a new
state variable (cfr. § 1.2.1.) and to substitute all x
by the corresponding f (x, u) of the equations ( 1 ).

The right definition of the optimization criterion is of
course the crucial point of the problem. It can be the

mean square error in a servomechanism, the consumption

of fuel of a missile or an aircralt, some maximal distance,
minimal time, minimal cost in a production process, mini-
mal xenon poisoning during the shutdown of a nuclear reactor,

etc.

Finally, it may happen that the function £° (x, u) is not
given explicitly, but has to be measured while optimizing.
This new restriction imposes special technigues, which will

not be discussed.

Initial and final conditions

The fact that So and S1 are sets implies that X, and X,

are not necessarily given points. Their choice as elements

of SO and 81 is indeed a part of the solution of the problem.

In a time-optimal problem for instance,vt is not given and

1

the same is true for some ,or all,the components of X, in a

maximun distance problem,



- 15 -

An interesting case is where every instant t is considered
as a to,of an optimization process ending at t1 =t + T,
After having solved the problem for t £ t'€ t + T, the
initial decision u (t) is taken and this brings the system
to the time t + 4t where the whole optimization process
has to be repeated for to =t +4t. In this way we have a
continuous sequence of optimization processes of which the
initial decisions describe a time trajectory. Some aspects

of this problem are studied in chapter 4.

1.3. The Maximum Principle and the Theorems of the Pontryagin Team

We shall restrict ourselves to a very condensed statement of the
theorems concerning the maximum principle. ¥or more mathematical
detalls as well as rigorous demonstrations we refer to ref. [1].

Three cases have to be distinguished.

1.3.1. The optimal trajectory lies in the interior of G

We assume the functions f£= (x, u) (1 = 0, 1, +.., n) to be
defined and continuous together with their partial deri-
vativesibflﬁbxq', A= 1y ¢evy n, on G x U, Admissible

controls u (t)EU have to be piecewise continuous.

In order to formulate the maximum principle we consider in
addition to the system ( 1 ) another set of differential
equations in the continuous non~zero variables ’V@,‘?ﬁ, ooy

3‘n, called the ad joint system.

i ¢
dyi _ZM (9)

Introducing the definition
N a :
XF % w0 - Yt () (10)
a
q/.-:o

system ( 1 ) and ( 9 ) can be rewritten as a Hamiltonian

system.
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dt .a_vi i = O, 1, seoe 9 n (11)
d

&-—:—a;,e{ i-O, 1’ oo ’n (12)
dt 9x

Theorems

Necessary conditions for optimality of the problem
stated in § 1.1., with the above mentioned restrictions and

definitions, are

1. Maximum ocondition
At every instant t, u(t) has to be chosen such that &
attains its least upper bound

m(w’ x) = sup X(IP" X, u) (13)

uweblU

2. Terminal conditions

Yo (t)<0 WW(t1), x(t1)]=- 0 (14)

3. Transversality conditions

'\If(to) has to be orthogonal to a tangent plane of S5 in

the point xoeso.

W(t1) has to be orthogonal to a tangent plane of S, in
the point x1€S1. p

If these three conditions are satisfied it results that 'llfo

is constant and m(lp yX) = O at any time t, t. <t <t

and not just at t

0 1?
1.

Whenever wo is different from zero, which is true for
nearly all possible applications, we can take 'LFO = -1,

since the adjoint system (9) is homogeneous in llf.

The optimal trajectory lies on the boundary of G

Necessary conditions are piecewise smooth boundarigs for
U and G, while u(t) itself has to be a piecewise smooth

time function.
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We shall formulate the optimizing conditions for G and U
defined respectively by ¢ (x) & O and q (u) € O instead of
the set of relations ( 2 ) and ( 3 ). The theorems, however,
can ecasily be generalized for values of m and 1 bigger than

onece.

Let us introduce the notations

p (2, u) «(RBLE | ¢ (x, w) ) (15)

m

=Z_,D—ﬁ‘—-(-%l fo((x, u)
=1 /7>x

For an optimal trajectory lying entirely on the boundary

g (x) i1t is obviously necessary and sufficient that g (xo) =0
and p (x, u) = 0 for t &t &t
The approach is now to introduce Lagrange multipliers >\(t)
and ¥ (t) for g (x) and q (u) and to apply the maximum
principle as stated in § 1.2.1. Because of the Lagrange
multipliers the maximization ofi%othen has to be changed
into relation ( 18 ), linked to additional conditions indi-

cated below.

Theorem +)

Necessary conditions for optimality of the
problem stated in § 1.1. with the restrictions of § 3.2.1.
and & 3.2.2. and with the definitions ( 10 ), ( 11 ) and
( 15 ) are:

dY, ;“bg{

—P i =
I ®£L+Abf i=0, 1y veesn ( 16)

+ v . : .
) The theorem is only true for "regular'" optimal trajectories. The
rigorous definition and the discussion of this requirement would
lead us too far from a synthetic statement of the theorem. For

more details we rofer to ref. [1] ch. VI p. 265.
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p(x,u) = O and g(xy) = 0 (17)
age-_xbzuvia__q' Jm oy eee y T ~(18)
Du’ Ou’ D u’

m('qj’x) = W(l\f,x,u) = 0 (19)
VY,(t) = constant < 0 (20)

QS(tO) is different from zero and a tangent to the boundary

g(x), which generally means

[W(tg)s erad g(x)]= 0 (21)

This condition is only necessary in order to eliminate
trivial solutions of the type {f+V grad g (Y is arbi-
trary)

if dA/dt exists, (d\/dt) grad g(x) is directed towards

the interior of G or else in zero. (22)

The optimal trajectory partly lies in the interior of G and part-
ly on the boundary of G

For parts of the optimal trajectory in the interior of G the oon-
ditions of § 1.3.1. are valid. For parts of the optimal trajectoxy
on the boundary of G, the conditions of § 1.3.2. have to be applied.
As yet missing is a junoction condition, which every pair of adjoin-
ing sections satisfies, This condition is called a jump condition
for the vector 1P(t) at the junction time T .

Without going into details we point out two important possibilitiess

a) The trajectory reaches and then follows the boundary of G. The
vector Qp(t) changes discontinuously with an amount
flgrad g(x) such that (21) can be satisfied.

b) The trajectory lies on the boundary of G and leaves it for the
interior. No change is imposed on ﬂ5(T ).

In both cases the optimal trajectory remains smooth at the junoction

points,
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1.3.4. Remarks

The theorems of Fontryagin only give necessary conditions
for optimal control. Nothing is said about the existence

and the uniqueness of the solution.

A straightforward application of the theorems can give
serious computational complications in connection with
the calculation of the Lagrange multipliers and the cri-
terion indicating the instant when the trajectory has to

leave the boundary for the interior.

For this reason we refer to the technique of implicit com-
puting of Lagrange multipliers. This technique only approxi-
mates to the solution of the problem, but has the advan-

tage of bypassing a lot of complications which for this
reason have not even been mentioned in the preceding para-—
graphs. The technique of implicit computing of Lagrange
multipliers is related to the theory of the penalty functions

which will be discussed in chapter 3.

1.4, The Principle of Cptimality and its Rclation to the Maximum Principle

It is our aim to show in a formal way how the maximum principle

could be deduced from the principle of optimality of Bellman
(cfz. [3] pp. 56 - 59 and [1] »pp. 69 - 73).

1.4.1. The principle of opitimality

"An optimal policy has the property that whatever the initial
state and the initial decisicn are, the remaining decisions
must constitute an optimal policy with regard to the state

resulting from the first decision" (Bellman).

This means that whatever be the initial state (all x and

not only xo) the first decision (u (%) and not only u (to) )
can be determined only if we know the optimal trajectories
(and the corresponding returns) starting from all the states

which could be reached by our first decision (cfr. Fig. 1.1.).
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Remarking that we have by definition

D) L (44) - 2° ()]
D x° D x (t)

it is possible to write ( 25 ) as follows

Hax “DJ A
1i£U [Qxdf (x,u)]:O

(26)

Relation ( 26 ) coincides with the maximum principle and

the relations ( 10 ), ( 13 ) and ( 14 ).

The .o’nly point

which should be cleared up is the equivalence of ?J/‘()x

and "f In other words we want to know if70I7D el

well satisfies the Hamiltonian system.

The Hamiltonian system

e introduce the notations

Max (M’BJ fq’ 1| 22 () _ Ax)
uevu Zﬁévo{ Dx X X ‘/5 x
ad=1 %" )

asg

(27)

We mean that =zt every instant of the optimal trajectory

the maxinmization gives a u[x (t)] , such that 1
become s for[x, )\.)} = f'o( (x) (synthesis problem).

(xy u)

is in this sense that the partial derivatives ~Of q(/'ax

have to be understood in this paragraph.

Calculating )ﬁ(x)/@ x* = O we have
m n ‘

g a4 AN D31 e’

N 20 9. .
yARRr P L 2x% O
d=0 o

which is the same a.(s :()_{ , )

M
LR SN

at .t %x
At the same time we see that

D
g__ i /DM (/’-T; ’ X)
iz (X)) = 2 [DDXJ )
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Bquations ( 28 ) and ( 29 ) clearly constitute the Hamil-
tonian system we were looking for. loreover we identified

1DJ/1)X1 as the variables'ﬁki of the adjoint system.

1.4.4. Renmarks

1. We showed how some relations of Fontryagin could be
deduced from the principle of optimality of Bellman.
Ve should not forget houwever that the principle of
Bellman is valid for a much more general clais of

problems than the one we defined in & 1.1,

[V

2., Cn the other hand the deduction of relation ( 26 ) was
only possible on condition that J (x) was twice different-
iable. This regtriction is not necessary for the theorems
of Pontryugin and is not even realized for the first de-
rivative,fa J/?)xi, in many current applicationsg, parti-

cularly bang-bang problems.

3. The Hamiltonian system ( 28 ) - ( 29 ) has been formu-
lated for the already maximiszed M-function. This obvicusly
makes the system unpractical for optimizing purposes since

it considers u (%) as a known function.

4. The given decductions from the nrinciple of optimality are
interesting for a good understanding of the more general
maximum principle. Ve have to keep in mind that if
OJ/Dx" exists it is the came as the'ﬁki variable c¢f the
ad joint system,

1.5+ The Calculus of Variaticns and its Relations to the Maximum Principle

1.5.1.3urvey

The problem of the calculus of variations is a particular case
of the problem stated in § 1.1. The problem of Lagrange for
instance is equivalent to the latter if the control region U
is an open set cf the r-dimensional control space BT, It
generally coincides with L. For this reason the maximum
condition can be satisfied by relations of the type

D¥/Du = 0 and the Weicrstrass
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criterion, following equally from the maximum principle
for U being an open set. When U is a closed set the Weier-

strass condition is false (cfr. [1] p..256).

A still more special case ig the elementary problem of ILuler
in the calculus of variations, corresponding to the problem

of § 1.1. if fi = ui, G and U coinciding with the n-dimension-
al state-space and an n-dimensional control space (r = n).

The well-known Euler equations and the Legendre condition

immediately follow from the maximum principle.

This short survey points out the importance of the maximum
principle as a generalization of the classical problem of
variations. This more general theory is indispensable for
the very important class of applications where the optimal
trajectory corresponds to control variables partly or completely

lying on the boundary of the closed control region.

2. An example — Analytical mechanics as an optimal process

e want to derive the basic equations of mechanics in the
form of an optimal trajectory for a Lagrange mechanical
system. This problem could be solved by the calculus of
variations, but we shall apply the maximum principle in

order to illustrate the method. [4] '

For one physical point with mass m in a potential field

r‘) h
U (11, xL, xj) the problem is characterized by

dxl/dt =" = u i=1, 2,3 ( 3¢ )
o 2 m {ii}2 1 2 3
<
f=Z o —U(X’K’x) (31)
c=1

It immediately follows that
3 - K iy2
VA (u}) A 4
%:—. Z. }L'ul —Z — + U (X1’ x, XJ) ( 32
i 2
(=1 c=1

Maximization of gﬁ gives

Y L i ax
3 ui = 7, -m o= 0 or /}Ai =m I { 33 )

S’
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Relation ( 12 ) gives

i 2

i
dt = _’Dxl ( 34 )
Combining ( 33 ) and ( 34 ) we have
2 i
m d P = _/B o ( 35 )

dt ) ’bag

which is nothing else than the Newton equations for a

potential field.

Finally, we want to draw attention to the meaning of<3?= 0
fox‘ﬂf= FZJYbe:in variational calculus and especially in
theoretical phyéics. Indeed this partial differential
equation corresponds to the Hamilton-Jacobi equation and
is connected by the Heisenberg_unéertainty relations to

the well-known Schrddinger equation.

It is the custom to write the partial derivative'?bJ/th
explicitly in the Hamilton-Jacobi, the Schrdodinger and
even in the Bellman equation ( 2% ). As we considered time
appearing explicitly as a state variable our relations

(13 ), ( 14 ), ( 26 ) are general as well (cfr. § 1.2.1.).

1.6. An illustrative Exercise

We take the example examined in ref. [1] y P 23, which because
of its simplicity will be useful for later discussion of the

computational aspects.

We conslder the equation d2x/dt2 = u which can be rewritten in
the form of the following 'system (x1 = X and x2 = i)
1
dx 2
at - * (36 )

dx2

at Y ( 37)
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The control variable u is constrained by the condition 'uf £1
while G coincides with the two-dimensional state space.

The problem consists of getting to the origin (0, 0) from a

e e 2y . .
given initial state x = (xl, xo) in the shortest time.

The function%has the form

H -2, u- (38)

The adjoint system is given by the equation ( 12 )

—_—= 0 —_—

dq# : d%ﬁ _

of which the solution is given by ’yL (t) = }&

1 1
Yo=Yy - 1)

(to) and

The maximization of theé%?—function gives

u = sign d%; (t) ( 40 )

It follows that the control variable is a piecewise constant
function taking the values + 1 or - 1. 3ince 1%; is a linear

time function u changes its sign only once.

Introducing relation ( 40 ) in the combined system of original
and ad joint differential equations, the solution of the system
st111 depends upon the initial conditions /y% (to) and ’Y; (to)
of the adjoint system. Considering them as parameters we have
a family of optimal trajectories, from which we have to pick out
the one which ends in the point (x1 “ = 0). We do this by

1 1
choosing the appropriate values of ’Yﬁ (to) and ’V; (to). This is

=0, x

the essence of the so-called two-point boundary problem.

Having solved the maximization problem and the two-point boundary
problem for all possible values of X, Wwe can represent the solutions

by Fig. 1.2.
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and the adjoint system is given by
d% L+
dt=—A’V’ o (4a3)

where A* is the transpose of A.

Obviously,g%?attains its maximum simultaniously with (1/, Bu).
This implies, and it can be demonstrated, that u is piecewise

conétant and that its values are vertices of U.

It can be demonstrated also (ref. [1] pp. 123 - 135) that the
solution of the linear time-optimal problem exisfs and is unique.
Up to now, such theorems have not heen demonstrated for the

fundamental problem of § 1.1,

An interesting special case is where the control region U is an

r-dimensional cube

[uklé1' K= 1, eesy T ( 44 )

Then we have that the maximization of

w5 T (45)

reduces to the maximization of ﬁa;hbo; the terms
m . _
_Z/\/ibl];u k=1, eiay T ( 46 )
L=1
Hence we obtain
m . »
u = sign Z /)&i blic k=1, veey T ( 47 )
(=1

These results have been formulated also by La Salle [5] and
Feldbaum [6] and they are known as the '"bang-bang principle".

It follows, for instance, that if all the eigenvalues of the
matrix A are real, u has not more than n - 1 switchings, where
n is the order of systein, .

is can be verified, this confirms the results of the example of
£

5 1.6, Indeed, for this second order system we have one switching

line. Cnly if X, is on this switching line is there no sign inversion
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of u. For a third order system it would be possible to have two

switching surfaces, and so on,

The construction of switching (hyper-) surfaces implies that the
synthesis problem has been solved. This, as we know already, is
impossible'without solving the corresgponding two-point boundary

problem,
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As we know by relation (1.4C) the maximiéation ofézpcan be simulated
by a simple relay feeding the constant values + 1 or - 1 to the x-
model, depending upon the sign offyé. The simple second order x-model
has given initial conditions xg and xl, while the initial conditions
3*10 and 20 of the second order adjoint system have to be qalculated
by the two-point boundary problem solver. Up to now the theorems of
Pontryagin give no ready information about the structure of this last
system. Pontryagin himself suggests (ref. [1] p. 181) a trial and

error approach,

0f course, in the simple base of our example it is also possible to )
find the solutions x (t), e (t),)"1 (t) ahd"fz (t) analytically,
and for that reason the two-point boundary problem can be solved
analytically as well, The result is the synthetizing diagram of

Fig. 1.2. Consequently, the computing diagram of Fig. 2.2. should be
considered only as an illustration and not as the best method for

the particular case we have taken as an example.

. The Original and Adjoint Systems

The computer representation of the combined x —Wk-model poses no

new difficulties. Indeed, it consists of a set of ordinary differential

equations with u = (u1, ey ur) as input variables and with initial
conditions which are partially given and partially determined by the

two-point boundary problem solver.

The x-model is not influenced by the 70- variables. In general, the
reverse is not true. The adjoint system is independent of the original
system only if the partial derivatives'~bfl/7>xf( do not contain x

. i . .
any more., This if the case where all f  are linear expressions of x.

For solving ordinary differential equations analog computers are in-
dicated. For digital computers a discrete representation is necessary

(efr. ( 1.5 ) ).

The Lagrange Multipliers

The presence of constraints on the state variables seriously compli-

cates the computing diazgram.



5o

e e

- 32 -

We know by the theorems and the discussions of §1.3.2. and § 1.3.3.
that whenever the optimal trajectory reaches the boundary of G the
ryy_ nodel has to be replaced by a new one which comprises the La-
grange multipliers for that boundary. These Lagrange multipliers have
to be calculated continuously such that the itrajectory moves along
the boundary. The Lagrange multipliers influence as well the maxi-
migation of‘iﬁf y since the trajectory has to be optimal with the

given boundary conditions.

On the other hand one has to observe whether at some instant the
optimal trajectory has to leave the boundary for the interior of G.
At that instant the «f— model has to be meodified once more. At every
junction point new initial conditione for the next 4%— model have to

be introduced in order to satisfy the jump conditions of § 1.3.3.

It i3 obvious that the straightforward application of the theorems
of Fontryagin for restricted state variables requires a2 logically
comnlicated computer seit-up. For this reason we attach great wvalue
to the technicue of implicit computing of Lagrange multipliers, by
wvhich the mentioned commusational difficulties are bypas:cd. This
technique is mathenatically related to the coﬁcopt of "penalty
function".

The concept of penalty function is not new (cfr. ref [7] p. 213).
Tet no computational experience and even no rigorous mathematical

treatment in cornnecticn with the fundamental problem of Pontryagin

exists. A more detalled discussion will be found in Chapter 3.

The Naximization of oF

The maximization of §W(%P, ¥, 1) corresponds to a new optimization
problem for which the wvariables xﬁand x have to be considered as
paramcterc, while the control vector u becomes the new state vector.
In fact,g?tmcomes an object function of the type I (x'), with

constraints in state-cpace which are given by the definition of U,

Trhis xind of problem belongs to the well-known domain of nonlinear,
or if we are fortunate, lirear programmirg. In both cases analog

and digital technicues exist and are competitive.
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1

If for gome rcason it is necess&ry to put the x —}k-model on an
anzlog computer while a digital computer maximizes:é?, some kind

of linkage between the two computers has to be provided. In this
case the computing time for the maximization<xf2{becomes an im-
portant point. Indeed, since the maximization process has to be
accomplished at every instant,the computing time must be negligible
or else the analog computer has to be put to HCLD at discrete time

intervals.

Taking account of the fact that the computing time of analog techniques
for the optimization of F (x) can be made very small, it seems to be
advisable to solve the fundamental problem entirely on the analog

computer whenever it is possible,

A fruitful idea is to consider the maximization problem ofgeiwself
as a particular case of the fundamental problem of Pontryagin. A
feasible formulation of this new problem in terms of § 1.1. would be

as follows:

1. Consider the control vector u as a new state vector x', such
thaté% can be written in the form [; F (x'ﬂ .

2. The optimizﬁtion criterion is defined by

; t+aol
I (x') = F[x' (4 +44)) - F[x' (8)] - / £ (x, ur) dv!
with o . ¢
£ (z', u') = fji@_&g:)_ f q/(x', u')

/7>X.CY
o'=1
and 4t arbitrarily small.

3. The contrcl region U of the original problem corresponds to G

in the new problem.

4. The new dynamical constraints are defined by

=u' i=1, ...,I‘

where u' is the control vector of the new problem with a new

control region U' defined by the relation
(A Lo
a(u)= ) (whH?-rgo
=1
representing a hypersphere with radius R. R can be chosen in
orier to male the computing time of the optimization process

small.
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The complete discussion of this problem is referred to chapter 4.

It will be shown that it corresponds to the well-known gradient
technigue. Cf course, this method has the dicadvantage that the
optimization process may stop at a local maximum of‘gfas well as

at a global cne. This is not so serious as it might appear, because
Le glohal maximum oféy.is zero and so 1t can always be distinguished

from a local optimun.

Finally, we should not forget that general discussion abouti%?is
interesting only for a very swall proportion of real problems. In

- . . < .
most cases the maximization of<x reduces to a very simple and sone-

times o trivial proccss. Let us consider some special cases.

In control protlems, for instance, the number of control variables

ie generally very omall with respect to the number of state variables.
They intervene in very few equations and very often in a simple,
sometimes linear way. In addition the control region U can have

some gimple geometrical definition such as a hyperparallelopiped.

all this means that in a considerable number of applications the
control variables only switch hetween constant values depending

upon the sign of some function. Cur exercise of § 1.6. and $ o.e.

iz a good illustration of what happens in this case. It results

that very often the maximization can be done by a szimple combination

of relays on the analog computer.

Cther gimplifications are pogsible whea U coincides completely with

the r-dimensional control space., Then it is possible to write

(cfr. § 1.5.2.)
¥
D

In this way the maximization ofé%)reduces to the solution of a set

fOI‘i= 1’ sey r

cf algebraic equationc., Sometimes this set can be solved immediately,

gsometinecs matrix theory is helpful.

The Two-Yoint Boundary Froblem

Cbviousgly, for this problem a solution by trial and error is possible
only if very few initial conditions (maximum three) have to be hundled.

In a2 more general way the mrohlem can be solved by iteration or some
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kind of invariant imbedding. The last method is only applicable in.
connection with the dynamic programming approach to the fundamental
problem (efr. § 2.7.).

The iteration method is the best adapted to be used with the maximum
principle technique. Chapter 5 will discuss the method in detail.

The cessence is that the two-point boundary problem can be formulated
once more as a special case of our fundamental problem of § 1.1. The

result is an iterative version of a gradient technique.

Dynamic Programming

The dynamic programming technique introduced by Bellman (ref. [2]
and [3] ) is based upon the principle of optimality written as a
recurrence relation (cfr. § 1.4.1.). ¥hen applied to our funda-
mental problem of § 1.1. this recurrence relation takes the form
of equation (1. 23}). In this way dynamic programming,as well as
the maximum principle technique,is able to solve the fundamental

problem. The computational aspects however are essentially different.

It would lead us too far to expose the dynamic programming technique
in detail (cfr. ref.['2] and vref. [3},ch. V), but some remarks and

comparisons are useful.

Because of the structure of the recurrence relation, requiring the
logical organization of a large memory, dynamic programming refers

egsentially to the digital computer.

The basic idea is not to regard the fundamental problem as an isolated
problem for given initial and final conditions, but instead to imbed
it within a family of optimization processes, corresponding to a large
set of possible initial and final conditions. Dynamic programming only
needs the recurrence relation and the discrete version of the dynamic
constraints, which are both handled in a simple and standard way,

vhatever may be the special characteristics of the given problem.

The advantages of such an overall standard technique are obvious.
The two-point boundary problem, for instance, is completely bypassed.
We have only to choose the solution with the right initial and final

conditions as a member of the family., At the same time we have for this
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solution a complete sensitivity analysis with the boundary con-
ditions as parameters. If dynamic programming guarantees the global
optimum it is interesting to note that the same technique can be
used to obtain the second, third, etc. best solution, if they
correspond to local optima., Non-analycity imposes no difficulties
for dynamic programming and paradoxically,constraints simplify

the computational part. Indeed, constraints make the family of

solutions smaller and for this reason call for a smaller memory.

The unique but severe difficulty with dynamic programming is the
dimensionality of the prdblem, requiring large memories and long
computing times for the digital computer. Bellman himself states

(ref. [}] p. 1C0):

"..., control problems involving one state variable can be treated
in a very simple fashion and require a negligible time. GQuestions
involving two state variables are within the power of modern digital
computers but can require computiné times of the order of magnitude
of ten or twenty hours. Questions involving three state variables
can be treated on a few machines now available, and will be amenable
to a number cf machines that are now in the planning or production

tage, but may require even longer amounts of time,

Q

Barring any unforeseen developments of a radical nature, we must,
however, acknowledge the fact that at no time in the foreseeable
Tuture do we expect to possess machines that will handle problems

involving ten or twenty state variables in any prosaic fashion'.

Conclusions

ie can conclude that the weakness of dynamic programming coincides
with the sirength of the maximum principle. Just because of the
standard organization of dynamic programming it is difficult to
exploit the particularities of a given problem. With the maximum
principle this is possible because of the rather complicated ana-
lytical structure of the theorems of Fontryagin. There is no standard
technigue, but a family of special techniques, corresponding to the
rossible simplifications of the problem. In this way it should be
possible to solve problems, even if the number of state variables

exceeds twenty.
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On the other hand our discussions have illustrated the possibilities
of analog computers in solving optimization problems. The consequence
is a considerable reduction in computing time due to the simpler

treatment of differential equations on the analog computer.

llowvever, it would he too early to conclude that maximum principle
techniques refer principally to analog computers. More experience
with practical problems should indicate up to what point some kind

of linkage with the digital computer would be useful,
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Chapter 3 PENALTY FURCTIONS

3.1,

rS

Introduction

The theory of penalty functions gives the possibility of bx:pnssing
the fundumental complications which are connected to a straightior-
ward application of the theorems of Tontryagin for restricted state
variables. Some essential difficulties concerning this subject have

boen mentioned already in & 2.4.

The basic idea of the theory of penalty functions is to approximate
to the fundamental problem with restricted state variables with a
modified problem without restricted state variables, called the
penalty problem.

The modification consists principally of the definition of a new

o

P
problem. The definition of f; (x, u) is such that some penalty has

£° (x, u), which i1s called the penalty function f_ for the original
to be added to £° (x, u) whenever the state constraints are violated.
e expect that the optimization process itself will keep these
penalties small, forcing the optimal irajectory to stay in the in-

terior of G.

Although it ig not always necessary, the same can be done with

recpect to the constraints of the control region U.

The concept of penalty functicn is not new. It has already been
studied by Couran+t and Moser (ref. [7] r. 213, ref. [8] , ref. [b] )
for ordinary minimum problems with object functions of the type I' (x)
and conctraints of the type gl (x) £ 0. Yhat we shall try to do is
to generalize the method for the fundamental problem of Pontryagin
(ctr. §1.1.).

o

Statement of the Pennlty Froblem

Ye consider again x (t) %o be the state vector x (t) = (x1 (t), csey
i i
2 (), ..., ¥ (%) ), belonging to the n-dimensional state space

and wheose evolution is described by a system of differential equations

e EAD IO (1)
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with f = (f1, vers £7). In this system u (t) = (u1 (£)y oees

r . s s . .
u- (t) ) is a control vector whose range is in the r—dimensional

control space.

The initial condition x (to) = x  and the final conditicn x (t1) = X,

of the system belong respectively to the sets So and 51 which are

smooth manifolds of arbitrary dimension (but less than n).

Among all admissible controls u which transfer the point x from

' x €S, to x,€8,, it is asked to find one for which the functional

3. 3.

&
Jp=[f;[x(t),u(t)] at (2)

(-]
takes on the least possible value.

The function f; [x (t), u (tﬂ- called "penalty function" takes
the form

(5 w) = 2 (5, W+ 3k [ 0 (x5 w) 2+§1[q @] % (3

n
Dg (x) f
with p (x, u) = £ (x, u) (4)
L. a
ey

o

and
k=¢C for ¢ (x) € 0 (5)
k = large and positive for g (x) > C
l1=¢ for ¢ (u) g€ C

1 = large and positive for ¢ (u) » O
It is essential that g (x) and q (u) have the same meaning as in

§ 1.1. (relations (1.2.) and (1.3.) ).

The fact that the penalty problem has been defined for only one
g (x) and one q (u) is not restrictive. The introduction of more
constraints of type (1.2.) and (1.3.) with 1 =1, «.., n and

J=1, vesy misg always possible.

Formal Application of the laximum Principle to the Penalty Problem

Since no closed control region U and no closed state region G exists,
a straightforward application of the maximum principle gives the

Yollowing relations:



(o

H. (¥, 5, Z Y a’+-;-“7‘ [k (2)2 + 1 (a)2] (1)
For%=—1andd(j_’y/ X, Zf}éf

we have _
H, ¥ 1]x @2 o1 7] (8)

We suppose that the maximization of i%?P is guaranteed Dby the

conditions
D u?

S0 we have

f7>8%) ==;\<32—3-+ Y 0 4 1,

Dw T 2w 1T Co

with A=k p (x, v ( 10 )
Y = 1a (u) (11)

The Hamiltonian system is given by

df';bgﬂP=fi(x u) ( 12)

dt fbxki ?

F, ¥, DX o, s

dt /D Xl ’b Xl Dxl
This formal development immediately shows the correspondence bhetween

the fundamental problem and the penalty problem, especially in

connection with the relations (9) and (13) (efr. § 1.3.2. relations

(1.18) and (1.16) ).

. 4 second Version of the Penalty Prodblem

£ gecond possible version of the penalty problem would be where no

penalties for the control cornstraints are introduced.

}—b
o]
N
I
o
SN
]
}—b
@]
N

3’-’1-1)'*";“1{[1:)(3{’11)]2 (3|)
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In this case the original definition of admissgible controls ueU

has to be maintained.

The ng-function

Ko -X -1 (r? (8 )

has to be maximized for ueé U, taking account of the functions

ql (u) € O. This implies that relation ( 9 ) is no longer true.

In the case however where gf is maximized by some gradient technique
the termsrb%fb u'j and )\) p/’b uJ would appear again when using this
technique (cfr. § 3.7.).

Discussion

First of all we want to mention some positive points in favour of

the formal application of § 3.3.

Indeed, for parts of the optimal trajectory lying in tke interior

of G (k = 0 imposing A = 0 = cfr. ( 10 ) ) the solution of the
penalty problem is identical with the solution of the fundamental
problem (cfr. § 1.3.1.). If the optimal control u belongs tc the
interior of the control region U (q (u)< O), we have 1 = O which
includes ¥= 0 (cfr. ( 11 ) ). In this case the condition OX/D w -0
is obviously necessary for the maximum principle. However, if for

some reason u leaves the interior U, a penalty (%-lqut) has to be
paid. Ve expect that by the optimization process this penalty will

be minimized together with £f° (x, u). This means that if u leaves U

it will be kept near the boundary g (u) = O and that the larger we
take the value of 1, the smaller will be the constraint violations

qa (u) = ‘9/1 2 0. In this way 9 itself is an approximation by implicit
conputing to the Lagrange multiplier'for the boundary of U. This
proves to be all right since equation ( 9 ) (with X\ = 0) corresponds

exactly &o the necessary condition for u lying on g (u) = C.

If now, in the described conditions, the optimal trajectory itself
at)

~
[

violates the state constraint, g (x) & 0, a new penalty (%-k P
has to be paid. Once more the optimization system will keep the
constraint violations small by apprqximating implicitly the Lagrange
multiplier A\ for the boundary of G. Again relation ( 9 ) corresponds
to relation (1.16) of § 1.3.2. while relation ( 10 ) shows how p tends
to zero for increasing k, which is exactly what is required by relation

<

(1.17) of £ 1.3.0. TOr the discontinuous change of k from zero to a
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large value when the state constraint is violated, jump oonditions,
which are different from those mentioned in § 1.3.3., have to be

satisfied (see ref.[1] 9.302 and p.311).

In addition to this rather intuitive description of the proposed
technique we can state that as far as our experience goes the com-
putational results (see also § 3.6. and § 3.7.) confirm the vali-
dity of the arguments.

However, we should not pass over some mathematical objections of
cruxial importance, The fact that the final equations proved to be
in agreement with the general theory is not at all convincing. In-
deed, this correspondence can be demonstrated only for the limit
case of the penalty problem for all 1 and XK increasing to infinity,
and we do not know anything about the convergence of the approxi-
mation of the solution for that limit case. Finally, for the jump

conditions, it is not clear how they become identical with those

of § 1.3.3.

As far as the stability and the existence of the solution are con-
cerned, aspects which have not had a rigorous discussion even for
the fundamental problem, analysis of them become st%ill more em-—
barrassing because of the functions k and 1 taking alternatively
large and zero values. Even if the proposed technique proved to be
legitimate these difficulties can make some applications impracti-

cable,

Computational Aspects

The computational difficulties of the penalty function technique

- are intimately related to the theoretical ones, The implicit com-

puting of Lagrange multipliers by definition requires closed loop
computing circuits. Those loops have essentially a high gain cha-
racter due to the large values of the k's and 1's, and nonlinear
aspocts due to the discontinuous change to zero values of those

variables.
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Let us consider the consequences for analog computers. The strongly
accentuated high-gain and nonlinear aspects make immediately apparent
the high-frequéncy errors of the computing elements and the imper-
fections of diode circuits. In particular the putting of a mechanical

relay in series with high-gain amplifiers causes a difficult problem.

At the present moment, experience in the development and use of -the
technologically best computing circuits is extremely limited. New
researéh has to be started in order to compare the possible alter-
natives for the computing diagram; the optimal values for the k's and
1l's, the best time scale, etec. Introducing additional damping forces
for g (x) > O or nonlinear functions instead of constant k's for

g (x) > C may be very useful, but their influence upon the accuracy

of the optimal trajectory still has to be examined carefully.

Generally the modified statement of the penalty problem discussed

in § 3.4. gives less technological complications. Indeed, since u (t)
can move in U without friction and without inertia the stability
problems for the Lagrange multipliers Y = 1q (u) are very difficult.
For this reason a2 straightforward simulation of U ty limiters, eli-
minating the 1's, may be very practical. This is especielly true if

U isg a parallelopiped.

In spite of all the computational difficulties mentioned, the technique
of penalty functions proves to be relatively simple and well adapted
fer programming on analog computers because of the continuous repre-

sentation of variables on the computer.

For digital computers it seems that the convergence problems of the
solution due to the finite difference representations of the variables
are much rnore complicated than the stability problems due to high-
ffequency errors in analog computers. Yet, it is not excluded that
even 7Tor digital computers the implicit computing technigue of the
penalty functions still has advantages with respect to the dircct
computation of the Lagrange multipliers by the Pontryagin theorsns

for restricted state variables.
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3.7. Dxample

Ve take ogain the example of § 1.6., adding a constraint for the

p

state variables x1 and x
g (x, x°) = x' -z° —140 ( 14)

The problem will be gsolved on an analog computer.

Applying the technique of the penalty functions, we have
Xp:’)ﬁx2+’)p2u—1—%k(p)2 (15)

with

p (%, u) = + x2 -u ( 16 )

The adjoint variables are now given by

d"f1

dt

Y,
Tat

T RO AN (17)

- 4f1 + k (+ % - u) ( 18 )

Suppose we maximize 3€P by a gradient technicue (cfr. chapter 4)

than we have

%,:1{2%1):1([% +k(+x2—u)1 ( 19 )
u 2

Since this maximization process has to be finished thecretically
at every instant t, its computing time must be negligibly small
with respect to the time constants of the original dynamical
system (relations (1.36.) and (1.37.) ). This can be done by
taking K very large (high-gain amplifier). On the other hand u
has to be kept within the region [=- 1, + 1]. We do this by

connecting a limiter to the amplifier representing u.

The complete computing diagram of the problem will be found on
Fig. 3.1. Curves made by the computer for several different initial
conditions of x = (x1, x2) and the corresponding values 1%? (to)
and Tf; (to), satisfying the two-point boundary conditions, are
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3.8. Conclusions

The technique of penalty functions éurely is a very promiging one

but a lot of mathematical and computational difficulties still have

to be stuvdied. Regearch in this field requires at the same time a
good mathematical background, experience in programming and sufficient

knowledge of computer technology.
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CHAPTER 4 - The Generalized Gradient

4.1, Introduction

e consider the problem of minimizing a given function F (x1, ooy
xl, vesy xn) where the variables x  are subject to constraints of

the form:

j 1 i n .
gJ (X, ...,X,...,X)$O J=1’ ono,m

Cne pc sible technique for this kind of problem is based upon the
construction of a set of differential equations of the steepest
descent type for the variables xi. Pyne [10] has done this for
linear programming problems on the analog computer, but his
method is equally valid for nonlinear objective functions and
constraints. Representing the whole set of variables xi by the
vector x = (x1, ceey xi, csey xp) the steepest descent equations

can be written as

m
%% = -k [grad F (x) + ;E kj gy (x) grad g9 (x)] (1)
J=1
with k= O if gd (x) €0
; (2)
k. = large and positive if g” (x) > o

J

An additional aspect of these equations i1s the implicit computation
of the functions k., gj (x) as approximations of the Lagrange multi-
pliers for gj (x) = 0. This is related to the theory of the pe-—
nalty functions studied in chapter 3. Indeed, relation ( 1 ) could
have been written as

dx

X . -k grad P (x) (3)

where P (x) is a penalty function,

PGP ()5 2ry [ ]2 ()
J=1

which has to be minimized without additional constraints. The approxi-

mation is the better the more kj tends to infinity for gj (x) > 0.
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It is obvious that the set of equations ( 1 ) and ( 2 ) or ( 3 ),
(4 ) and ( 2 ) is not the only possible one describing trajectories
of x (t) ending at (at least a local) minimum of F (x). This means
that additional constraints and even additional criteria with
respect to the optimal trajectory could be satisfied before it is
uniquely determined., These latent degrees of freedom make some
generalizations possible. The maximum principle and other theorems
of the Pontryagin team [1] will permit us to analyse a related but
more general problem and to define the concept of generaligzed

gradient.

Statement of the Problem

T (x1, cees xi, vee, X) is a given function which has to be guided
to its (local) minimum at some time T , taking account of following
syetem of constraints.

We consider x (t) to be a state vector x = (x1, ceey xi, ceey xp),
belonging to a closed subset G of the n-dimensional state space and
whose evolution is described by a system of ordinary differential

equations

S (x0), e 0] (5)

dt
with £ = (f1, . fl, ey fn). In this system the control vector
u = (u1, seey ur) has to be chosen as an element of the closed
subset U of the r-dimensional control space. The subset G is defined
by
g’ (x) £ 0 =1y ceeym (6)
and the subset U is defined by

ql(u)$o 1=, s (7)

We shall show that the minimizing F (x) by generalized gradient

corresponds to minimizing the functional ELT
+

5 (x) =¥ [x(t+T)] -7 [x ()] - /f° (x, ) at*  (8)

with ¢ :
n

£° (x, u)=2f>j)—;§—§L fd(x, u) (9)

q9=1
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The initial condition X of the optimal trajectory reduces to one
point. At every instant x_ = x (t). The final condition X, = X (t + 1)
belongs to the set of all possible x, reachable at thc time T aftéer i,

with adnissible u€U. Ve call this set R, (t) and its boundary

f)[x (t+ + -T)] - o.

4.3. The Generalized Gradient as a Special Case of the Maximum Princigle

4.3.1. The optimal trajectory completely lies in the interior of G

Requiring that u (t) is piecewise continuous and that all fi

and all Of/Dx  are defined and continuous on G X U to-
gether with their partial derivatives, we can apply the
maximum principle for the problem defined in § 4.2. By
definition we have

m 9 ’
3f=zy.f Z('}”"}L Ey ¢t ( 10 )

. i ° A% i

The vector functlon 7L— ﬁf «# ...,A*k) of the adjoint

system is given by the Hamlltonlan system

a¥, ”baf =
at - ’V/dt F)"Zy ’}LrDF 217
a=1

B“Dx

Knowing that‘\po is negative and constant this relation can

be reduced to

"
g_r\f _ +’BF”B£
at ’yi ‘2x ;g;(jé }# Fb:fv) Dt

. F ! .
Calling n%ﬂ Ayt);? ='7Ai we can write the Hamiltonian
x

system as follows
e Z%f

axt ’33?_ i
T

(7S 4 e
- =5 e
1
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This formulation obviously corresponds to another problem,
which has the same fi (x, u) as the original one of § 4.2.,
but with a different adjoint system (¥, ;!Yi') and with £'°=0.
Such a problem has a trivial solution. All admissible u€vU
satisfjing the boundary conditions are optimal. Thig is
possible i£ = 0, by taking ’Y;'= 0, independantly of U,
initial or final conditions. For this reason we can take

’Y’i=;—%—§’- Y--1 =0 (1)

x

In contrast to most other applications, the control variable

is not determined by the maximum principle.

4.3.2. The trajectory partly lies in the interior of G and partly

on the boundary of G

Introducing the Lagrange multipliers for the boundary of G
and the Jjump conditions for qp at the junction points where
the optimal trajectory reaches or leaves the boundary of G,
we apply the maximum principle for restricted state coordi-
nates. A reasoning similar to that of § 4.3.1. leads to the
relations ( 12 ) and ( 13 ). For simplicity we took m = 1

in relation ( 6 ).

’Y‘.:f}?’dr,\lﬁ ’)/=-1 X = ( 12 )

1 ’D xl ’Dxl o

):O for g (x) < © (13 a)

for g (x) = 0 (13b)

Relation ( 13 b ) satisfies the boundary condition
(3L, grad g) = O for g (x) = O,
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Whenever x (t + T) lies on the boundary f = 0 of Ry (t),
the trajectory can be determined by ( 15 ), the definition
of P:: 0 and the equations ( 7 ) giving the boundary of U.
Indeed these relations determine u (t) ang/b . Lxamples
will be given in § 4.4. and § 4.6.

Whenever x (t + T) lies in the interior of RT (t) the
trajectory is not uniquely determined unless T = 4+t

is arbitrarily small. Indeed, the trajectory is composed
of a sequence of initial conditions x (t) of an opti-
mization problem for t € t' € t + T of which only the
final condition is given by our optimization criterion

( & ). In this case we propose a new optimization criterion.
E+T
J = P (x) dat’ ( 16 )
¢

The problem will be subject of further study. ileanwhile
the difficulty will be bypassed by taking T arbitrarily
small, which eliminates the optimization between t and |

t + T,

It should be noticed that the evolution of the system only
takes account of the direction of the vector (grad T +)\ grad g)
and not of its magnitude. The speed of evolution is more
closely related to the system of dynamical constraints ( 5 )
and the boundary of U ( 7 ).

Vhile optimizing we have to take account of the values of

P (x) only for x in the interior of R (t). Outside this
region F (x) is completely ignored. It looks as if the
optimizing system has a limited "horizon" of information
around the moving point x (t) and which is defined by RT (t)°
If the trajectory stops at a local optimum, the optimizer
never finds a possibly higher optimum if this lies outside
its horizon. The probability of staying at a local optimum
obviously grows with decreasing T and becomes a certainty
for T arbitrarily small, The concept of the horizon of an
optimizing system seems to be realistic. Indeed, the ability
of predicting and interpreting all possible events within
some time period T is linked to a degree of complexity which
is limited Tor most technologically realizable optimizing

srstems.

o



4-4*-

F g
’(Dxi +)\D:{i)x (t+ +41) =/{'

- 55

The Steepest Descent as a Special Case of the gGeneralized Gradient

We consider the problem of § 4.2. with the following restrictions:
T =4t = arbitrarily small

fi'—'-'ui i=1,oo.,n (17)
M Q] ’

1 (@)= W)¥-150 (18)
c=1

By ( 18 ) U is represented by a unit hypersphere in the n-dimensional
state—space._lt follows immediately that RAt (t) too is a hyper-
sphere with radius At and that for x (t +4t) on the boundary

P: 0 we have

ZD%% )y (t +4t) 2/4[:{1 (+ +47) - xi(t)]

(2/¢At) ot

Ynowing that for x (t+ +41t) on ?: 0, uis on q {u) = O we can
) n

calculate . -

2/¢At= Zul(’bl.“+,\\'bg)

£=4 /b xl ’bxl

Since/¢ is negative for a minimizing problem we have the following

final solution:

%GE= 0 for grad P + X\ grad g = O ( 19 )
%—if—:—k(gradF+>\gradg) ( 20 )

wvith A= (13 a ) and ( 13 b )

’“ . - 1/2
SN TR T
;ﬂ (=1

Relations ( 19 ) and ( 20 ) obviously are equivalent to ( 1 ) for

m = 1. The only points meriting some comment are k and }\ . As st'a.ted
already in the introduction kj g (x) (j = 1) is nothing but an
approximation of the Lagrange multiplier>\ , generated by implicit

computing. is far as k is concerned, in relation ( 20 ) it has been

talken for the highest possible speed of x up to the endpoint. At the
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endpoint however, ( 19 ) is necessary since ( 20 ) Dbecomes undeter-
mined. In relation {( 1 ) k has not yet been specified. The only im-
portant restriction on k is that it is a scalar, which is the case

in ( 1) as well as in ( 20 ).

To resume, it has been shown that for the steepest descent not only
qfi but also dxl/dt is directed along (grad F + X erad g). This is
true because T = 4 t and ? [x (t + 4 t)] = 0 is a hypersphere,

Computational Aspects of the Generalized Gradient

On condition that grad F (x) and grad g (x) have sufficiently simple
analytical expressions (or some simple enalytical approximation,
preferably linear, quadratic or third order polynomials) the equations
( 1) can be programmed without difficulty for analog and digital
computers. In most cases the same is true for the generalized gradient
if we take T = A t. lispecially when the set of equations ( 5 ) con-
stitutes a complicated, high order, non-linear dynamical system the

choice of an analog computer is indicated.

Whenever grad F (x) and grad g (x) have no simple analytical ex-
pression all hope should not be lost. llodern perturbation technigues
and sensitivity analysis are often very useful and eaéily pro-—
grammable tools for estimating complicated gradients. This is
especially the case for iteration procedures of the gradient type
for solving two point boundary problems and parameter optimizations

(cfr. chapter 5).

We draw special attention to the implicit computing of the Lagrange
multipliers or the technique of the penalty functions, whose compu-

tational aspects have been discussed in § 3.6.

Time-dependant optimizing functions and constraints, making the
whole system non-autonomous, do not affect the generality of the
proposed technigues. As stated in § 1.2.1. it is sufficient to
consider time, wherever it appears explicitly, as a new state
variable x° 7 1. t and to add a new equation of type ( 5 )

ax’ T 1/dt = 1.
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4.7. Application Fields

The most importént class of engineering applications probably is

the optimization of industrial production processes for which the
glow variation oif the properties of the process constitutes a system
of dynamical constraints of type ( 5 ), and for which a certain
profit function corresponding to the quality of the final product,

the production costis or some other criterion can be fixed [51].

Another interesting field would be the study of macro-economic
structures. Indeed, the generalized gradient opens the possibility
of integrating the laws of economic growth and economic optimization

in one model.
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Chapter 5 TJ0-POINT BOUNDARY PROBLLEMS AND PARAMETIR OPTIMIZATION

-

Hels

Intreduction

Refering to chapter & @nd particularly to § 2.6., we want to comment
on the gencral computing diagram of & 2.1. in connection with the

initiazl conditions of the x— F--system.

The fact that the transversality conditions of § 1.3.1. give some
boundary conditions for t = to and others for t = t1, while the
conputing diagram for the xJV—fwﬁtem requires the complete set of
initial conditions, congtitutes the essential difficulty of what

generally is called the two-point boundary problem.

Je propogse tc solve this sub-problem of the fundamental problem of
Pontryegin by an iterative version of a gradient technigue, which it-
gelf can be considered as a upecial application of the maximum

principle (cfr. chapter 4).

The two-point boundary problem not only occurs in connecticn with

our fundamental optimization problem but concerns a much more general
class of problems. In additioh, parameter optimization problems have
the same fundamental structure. For this reason we prefer to state
the problem with a terminology independant of the one introduced in
chapter 1, such that the same symbols can have a different meaning

in both chapters. The original x—,‘fl and u~-variables, for instarce,
will be considered all as state variables x with respect to the two-

point boundary problem,

The Two-Icint Boundery Problem as an Cptimization Problem

e consider x (1, xo) to be the state vector

1 i '
% (t, x) = [x (By %)y eeny 5 (5, %), eeey & (4, xo)]

o o}
telenging to the n-dimensional state space and vhose evolution is

desecribed by 2 gysicm of differential equations

TD x (t, XO)
_— - F [x (t, xo)] (1)
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with £ =[f1, ey fn] , and by a point of the n-dimensional initial
condition space
i n

. 1
X, = X (to, xb) = (xo, coey Xy eeey X

By definition the final value of x (t, xb) is given by

1 ‘ i n
x1=x(t1’ Xo)=(x1,'..., X1, ceey x1
Suppose that a set of final conditions of the type
gq. (x1)=o q=1, ...,I‘ ( 2)

has to be satisfied, then it will be asked to find some X, for
which the function ~

\ T2

F(x) = D [6% (x))] (3)

=1
takes on the least possible value. Obviously, this minimum has to

be zero.

Stated in this way the problem is of the same type as the one defined
in § 4.2. and it can be solved by the corresponding gradient techniques.
A steepest descent version, for instamce, would describe a trajectory
as a function of a new independant variable T, ending at the optimal

value of x_ (cfr. § 4.4. and relation (4.20) with \N=0).
don “OF (x1)
T = e k j = 1, =sey n ( 4 )
aq CEXE

It has to be noticed that F (x1) does not depend on t. Nevertheless

it is true that, if t is represented by real time on an analog com-—

puter, some finite computation time t, - to is necessary before

1

r [x (t1, xOX] can be evaluvated as a function of X . Therefore,

only a discrete version of relation ( 4 ) is practicable. A fortiori,

this discrete version is necessary when applied with a digitzl com-

puter. Consequently, the method takes the form of an iterativz techmicue.
",

(7L D) - (aw) = (5)

v

j=1, ...,n

1, 2, 3, s e
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Steepect descent iteration hasg a very wimple logic and iterative
analog conputers (efr. ref. [16] ) are indicated for this job. The
only difficulty is the calculation of the gradient of I’ with respect

to the initial conditions xg.

e can write
DT (:r.1 = DF x1) Ys (tyr x,)
“Dx Dx :E; D x ) xoj

o i=1

(6)

’bF/’Dx]{ can be found immediately by differenciating definition ( 3 )
of ¥ (x1). The quantitiesfjbxi/,bxba, however, have to be computed

as the final values of the time dependant initial condition influence

coefficients.
.. ,~>:x t, X, ) i
g (t)=—_\;"———— (7)
x
o
ij 13 f)x
s} = s = ( 8)

%c

These variables g9 (t) are the solutions of the so-called sensitivity

erquations.,

5.3. Sensitivity Equations

Considering the definiticn (7) of the initial condition influence
coefficients le (t) and the systcem of differential ecuations of

relation ( 1 ), the sensitivity equations for a given x, necessarily

take the form o m _
astd (+) i‘bfl (x) &3 (y) (9)
at 4 /qu’

-
1]

1y saey N
j,= 1, ;--,n
By definition the initial] conditions of the sengitivity equations are

) =gt () =0 if i g j

( 10)
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It would lead us too far to discuss the theory of sensitivity -

equations and we refer to the literature available on that subject
(ctr. rerur [13], [14], [15], [17], [18] , [19] 5 .[20] )

A few remarks however are important for the applications in which

we are interested.

First of all we would draw attention to the similarity between the

sensitivity equations and the adjoint system of Pontryagin.

d__iﬁzm D q(y)
at = > =¥ S
o=1

dt

N
dyi _ 7 ’}lq/
fb i

=4
They have a related structure, but we should not forget that the
same symbols refer to different objects. Indeed, the adjoint system
follows from the dynamical constraints of the original state vector,
while the sensitivity equations for the two-point boundary problem
apply simultaneocusly to the original state vector x and the adjoint
vectoxfyb, linked together by the control vector u. This means, for
instance, that if the original state vector is n-~dimensional, (2n)
lifferent sensitivity equations are necessary, each of them having
(2n) different sets of initial conditions, such that in totzal (2n)2
initial condition influence parameters are available for the “two-point

boundary optimization.

The definition of the sensitivity equations requires the differentia—
bility with respect to all x* of the functions fq’(x) of system ( 1 ).
In connection with the fundamental optimization problem of § 1.1. this
requirement very often gives rise to complications due to disconti-

nuities in the functions fal(x), as applied to the x—?*Lu—model.

These difficulties may origiﬁate in the special characteristics of
the maximization process 01‘36(14, X, u), very often behaving like
a switching circuit, or in the fundamental discontinuities of the

penalty functions (cfr. chapter 3).

At the present moment neither a rigorous discussion of the mathematical
consequences of this problem, nor a general method for handling it, is
available. In particular cases however, as will be shown in §$ 5:5.2.
and %.6., some gpecial tricks may give satisfactory computational

results.
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5.4. Parameter Optimization

We consider x (t, p) to be the state vector

x (6, 2) = [ (8, 2)y ey & (6, 8), oon & (2, D) ]

belonging to the n-dimensional state space and whose evolution is

described by a system of differential equations

Dx (%, p) -t [ x (%, 0] (1)
Dt
with f = (f1, cevy fn) and by a point of the r-dimensional parameter
space p = (p1, vesy D ). The initial conditions of system ( 11 ) con-

stitute a given set of n numerical values.

1 n
Xo = X (to, p) = (Xo 9 oeoey Xo )

By definition the final value of x (t, p) is given by
1 n '
x; = x (5 2) =[x (45 8y wuuy 2 (3, ) ]
It is asked to find a point p in parameter space such that some
given function F (x1) takes on the least possible value.

Obviously, this problem is essentially identical with the two-poinc
boundary problem, as it was solved in § 5.2. To eliminate any possible

doubt, it would be sufficient to introduce r new equations of the type

i
dx
—2 =0 (12)
dt
with initial condition
x, (t,) = p (13)

and to add these r equations to the system ( 1 ). In this way any
possible parameter optimization problem can be converted into an

initial condition problem.

Of course, some differences may occur between the particular defi-
nitions of the object function F (x1). With the two-point boundary
problem some given final conditions have to be satisfied by minimizing
relation ( 3 ). For parameter optimization a much more general class

of possible criteria exists, but many of them can be written in one



A

way or another as some least squares error minimization, where the
error & by a suitable definition is considered as a function of the

state variables E[Jc(t, p)]l. Then we have

7]
F=f(e)2dt' | (14)
' to L
and the parameter iteration takes the form
- s LV
)Y (1) - (or) R (15)
| “>pJ |

with

. ti ' m /} ’}
/) E xi 3
/3—;?:2[2[}{ (t, p)] (x) {8y P} gy - (16)
(-4

. “dx dpd
(=1 .
where the parameter influence coefficients gd =fb xi/‘b p'.’ are

one more given by the sensitivity equations ( 9 ).

Automatic mean squares error minimization is of great importance in
adaptive control gstudies and we refer to the literatare available
on that subject. Ref. [13] y for instance, discusses in detail the
technique of which we have given only a general outline in this

paragraph.

General Discussion and Computational Aspects

5.5.1. Convergence Problems

Strictly speaking, no convergence problems would exist if
relation ( 4 ) could be used instead of the discrete version

( 5 ). The larger we take the finite intervals &, the quicker
the iteration process goes, but the more we risk having con-—
vergence difficulties., Indeed, taking finite steps we ignore
the finer structure of F[.x (t1, xbﬂ between two subsequent
values of X and this may lead even to divergent series of

larger and larger steps taking X, away from the optimum.

The difficulty is that the convergence not only depends upon
the value of 46", but also upon the characteristics of the
problem and the way the factor k has been defined. As we know
already by § 4.4., k can be chosen in order to assure a con-
stant speed of iteration (cfr. relations (4.17), (4.18) and
(4.20) with >s= 0), but this is generally not the best solution
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for a rapid and safe convergence. Taking k constant and
congidering (k.AO‘) as one coefficient is already a better
proposal, but it should not exclude other solutions to he

studied in the future.

Finally, we should not forget that the steepest descent
approach we are discussing now, is not the only gradient
technique which is able to solve the problem. Cf course,

since we are interested only in the final result, no parti-
cular dynamical constraints for the iteration process are
given, and in these conditions the steepest descent eguations
(cfr. § 4.4. equation (4.18) ) are the simplest we could
imagine. lowever, nobody knows if for some problems other
iterative congtraints have better convergence characteristics.

Then perhaps the generalized gradient technigue may be helpful,

It may happen with a parameter optimization (rarely with a two-
point boundary problem) that the pafameters (respectively initial
conditions) have to belong to some given set P. This restriction
does not complicate the theoretical solution. The condition

p€P is completely equivalent to x€G in terms of the state-
ments of § 4.2. Consequently the Lagrange multipliers for the
bovndary of P have to be introduced. For the steepest descent
the relations have been deduced in § 4.4. (cfr. equations
(4.2¢), (4.13 a), (4.13 &) and (4.21) ). Just as before the
convergence problems are linked to the discrete version of

thece relations and now the difficulties are particularly
important because of the discontinuous change of the Lagrange

multipliers on the boundary of P.

Lecal and global optima

Another cmbarrassing point is the choice of the first value
of the series of initial conditions iterating to the solution

of the two-point boundary problem.

We know that the global minimum of It (x1) is zero (cfr. re-
lation ( 3 ) ), but as steepest descent techniques can never
distinguish global from local minima, the success of the

iteration process entirely depends on the initial value of X
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Sometimes common sense indicates which values will be
successful. In many other cases only a limited number of
alternatives has to be tried. Intuitively one would expect
that the general solution of the problem has to be found by
some logical decision process, but at the present moment no
systematic approach has been formulated. Everything still

has to be done in this field.

Sensitivity and discontinuity problems

In connection with what already has been said about this
problem in § 5.3., we want to indicate a possible solution

for particular cases.

A frequently used discontinuous relatiorn, resulting from

the maximization of Jf (efr. § 2.5.) is of the type

u = sign LP | (17 )

where u is one of the control variables to be fed to the
X—~system and‘e is some function of the state variables x
and the adjoint variablesqf. Deriving the sensitivity
equations, relation ( 17 ) hasvto be differentiated with
respect to some initial condition or some parameter, which

we shall call/&u.

/9" d @ /'b/o |
This immediately poses the problem of the existence of what
we formally called d (sign (-P)/d*p Even considering it to
be a Dirac-fuwction g‘(Q’), we are still left with the

difficulty of representing this function on a computer.

One way out is the direct integration of the sensitivity
equations having ’buZé/L as input. Suppose that these

equations are of the type

4 ib_ﬁ) = f (=X giu) ( 19 )
at (’D/,_ /7 |
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where £ (D x/0 4 sDWD M4 ) is a linear function of Dufdk .

- Then the following system would be programmed.

1° for 5874 0 nolve the equation

i "D 3
Z—ﬁ(,-;jfhf(;b?‘g,o) (20)
2% for Q7= 0 ndd the instantaneous value of the linear part of
f (7 :c/% ,’5‘10 /’9&; ) to the variable @x/y .

The exercise of § 5.6. gives an illustration of this

possibility.

In the cases where f (fbxéea. , u(zyz) is non-linear,
la e

perhaps some other partic rities make a similar trick
possible, However, more . investigation concerning the
validity and the restrictions of the method, the necessary

conditions tor the influence coefficients of the type

fD({ /?;/b (continuity etc.) and in general a rigorous mathe-

matical baclkground is strongly recommended.

Itcrative analog computers

The technigue exposed in this chapter can easily be pro-
grammned on an analog computer, on condition that some
digital control logic is provided. Indeed, the automization
of the iteration process 1s only possible using some special
zind of hybrid computer which is.already known in literature

as the iterative analog computer.

In fact, what we need is that the modes of the computer,
INITIAL CCHWDITICN, HOLD and OPuRATE can be changed auto-
matically by the computing diagram itself and that the

initial conditions for cach run are automatically imposed

by some function of the final values of the preceedins run.
This is possible with the so-called complementary integcrators
used as memories., Complementary integrators are in the CPBRATE
mode when the normal integrators are in the INITIAL CONDITICN

mode, and vice-versa., for more details we refer to ref. (16],
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where one of the possible technical realizations of such an
iterative computer is discussed. Most constructors of analog
computers have their own slightly different systems, and even
classic analog computers are not so difficult to modify so
that they have some primitive but very useful iterative
control possibilities. It is in this way that the problem

of § 5.6, has been programmed and that technological research

on the system is continued in our laboratories (ref.[.21:] ).

5.6. The Illustrative Exercise of § 1.6. and § 2.2.

Considering once more the very simple problem of § 1.6. we want to
illustrate the iterative technique for the two-point boundary

problem by completing the computing diagram of Fig. 2.2. (§ 2.2.).

After all, the application is nearly a trivial one. By the structure
of the equations (cfr. relations (1.39 .) and (1.40) of § 1.6.)

it is obvious that only one of the two initial conditions Wﬁ (t,)
and.?é (to) has to be optimized, since the right instant at which
’Yz (t) has to change its sign depends only on the ratio ’Vé (to)/3/1(to).
For this reason, the proposed technique is of little interest in such a
gimple case, where trial and error gives the solution as well and
probably in less time. However, we consider it as a good example of

how the method works.

Taking,yﬁ (to) =ﬁ¥:10 constant we have to optimize (yg (to) =1¢;0

such that at some +time t1 the function

P (x) = (x)° + (x°)° (21)

will take on its least possible value, which is zero and which corres-

ponds to the final conditions x: = 0 and xf = 0.

The recurrence relation for 'Véo is given by
/)L'\’*-‘/ Y "bF (X1) v
)

20 = T - ( ,?>7§;;;; 4 C (22)

The constant value 4 has to be sufficiently small to avoid convergence

difficulties (cfr. § 5.5.1.).



- 70 -

At the same time we have

OF 17 x1 2 . "o x2
o P T AP e

hele the initial condition influence coeff1c1entsfbx:/b}% and
/33‘ are given by the sensitivity equations

Dl L DL - x

d -~

(3% ) = oE o - ° (ea)
2

4 19:x Fb u ' /7>Xb

i (2%, ) " R¥,, SE, " ° (25

Q)

u r2§3£2
m g(y‘z)@vz—o (26 )

a 9742 £X< . @’%20—1 ( 27)
ax _7_ 2% DY

il

According to the remarks of § 5.5.3. equations ( 25 ), ( 26 ) and

( 27 ) can be rearranged as follows:

/bxz "}4'

S>E " O before sign inversion of > ( 28 )
20
iz%%i— = 1 after sign inversion 01“14 ( 29)

Another difficulty consists in the fact that for every iterate
’?DFVFD 50 has to be computed for a time instant t1, which is
unknown up to now and which has to correspond to the minimal time
t1 -~ to after having solved the problem. By common sense it has
been decided to consider t1 for every iterate as the point where
F‘[x:(t)J arrives at a minimum after the first switching. For this

reason ve have to compute

-2 2% (' +u) ( 30 )
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The complete computing diagram (Fig, 5.1.) has been made for the
case where the starting point xo of the trajectory lies on the
right of the switching line (cfr. Fig. 1.2.). This specification
is connected to the choice of the first value of (yéo (v==0}

and the difficultics discussed in § 5.5.2. When dF/dt goes from

2 negative to a positive value after the switching of u from -~ 1

to + 1, a mechanical relay stops the computer run, and the quantity
(DI"/VO VQO)A iz added to the value ’Yj y which was put into

ELY,
20

the complementary memory-ﬁ and imposed as the initial condition

a memory I during the run ? . The sum is memorized by

of ’Y; for the next computer run, which starts automatically at
< y .

thisz moment. The first value of ’VZO (Y = 0) comes from a potentiometer

to be switched off immediately after the start of the iteration pro-

- .

cegs. Ile. 5.2, gives two familieg of curves, A and B, corresponding

to iterations with two different tirst values of ’720.
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