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Introduction

The activation measurements of the threshold detectors are frequently
used for the in-pile neutron spectra determinationj this technique

has the following advantages:

The threshold detectors are not sensible to the high gamma fluxes

of the reactors

The small volume of the detectors prevent any neutron flux deformation

No connection with the outside of the reactor is required

The activation measurements are easy and not very expensive.

The experimental measurements may be expressed as Aj; numberss they
indicate the reaction probability per second for one nucleus of the
i-th isotope, when immersed into the unknown neutron flux. It follows
thats

(1) /csa e) c:(&)d fC/()xn\(’t)O\E

where($t5> is the differential neutron cross-section of the i-th
igotope for the reaction in question, and C?LE) is the fast neutron
differential flux (n/cm2 . sec . Mev). The integration range may be

reduced from (0,o7) to (E;, ™) as
\T\, (E) =0 <f‘r)r E < E;

When the A: are known, a procedure has to be established for solving
the system of equations (1). Many methods have been proposed to attain
this solution [ 1], [2] . This work is a study of the group of methods
known as '""polynomial" and "orthonormal" methods. This set has been

chosen for the following reasons:

1) It seems to be the more suitable for the neutron spectra description,

even if it is not reactor generated.

2) A development is possible which allows the activation data inter-
pretation, even if the detectors have not completely linear inde-

pendent oross-sections.

Generally this second fact prevented the use of these methods with

any set of threshold detectors.



2. The Polynomial and Orthonormal Methods

In the polynomial method, introduced by Uthe [3] s the spectral
shape is assumed to be a polynomial in energy, with as many terms
as détectors used, multiplied by a chosen weighting funotion. This
method is an extension of the simple polynomial method, in which

l“. -
) .
(2) CF(E) = ;i,; a, E (n = number of detectors)
o
in fact the suggested form iss
< v
(3)  ¢ple)= w(E) zzacav; €
. 0

where W(E) is a suitable weighting function. Originally the actual
meaning of (3) was a deformation of the fission spectrum W(E) by a

polynomial.

The method using a series expansion of orthonormal functions has
been suggested indépendently by Trice [4] and Hartman et al.‘:S] o
Here (f (E) is given bys

@ ple)= }?; a; i (€)

The system of orthonormal functions is obtained using the Schmit's

orthogonalization method, beginning from the cross section functions

G (B).

Brownell et al. [6] proposed the following variation of the above

mentioned methods

-CF(E) is assumed to be described by
(5)  <ple)= wle) 2, beyile)

where W(E) has the usual meaning and the set of\*ﬁ functions is

obtained by the same procedure used by Hartman and Trice.

~ Many different solutions ¢'(E) are obtained by random deviation
of the input activation data.
- The resulting curves are then linearly averaged, neglecting the

occasional negative values.



The last considered method, due to Laming and Brown [7] , has been
recongidered inth]. Cf(E) is assumed to be described bys

(6 ple) = wie). 301 X LE)

where the ,X; y 1-degree polynomial, are an orthonormal set of

functions, orthogonal, in the (0,E, . ) range to W(E).

Series Expansion Methods Generalization

From the above, 1t is easy to see that all the described methods may
be unified in one class where Lf (E) is expanded in the following

series of linearly independent functionss

Q cols) = wle) gia; Wi l€)

By a suitable interpretation of the weighting function W(E) and of
the system of finctions L‘V;(E), the expressions (2), (3), (4), (5), (6)

may be obtained.

This generalization appears trivial, however it 1s possible to state
only one procedure for the solution of the system of equation (1).
The appropriate W function and the system i%h(E) may be selected on
the basis of parameters. In fact, by introducing the expression (1)

in the equations (1), one obtainss

o)) 2o EJ4E = 2, 0,55

1
E .

v

1]

(8) A;

where

(9) S

m .

3 G‘;kE)W\&)‘*})jLC) 4t
=

The solution of the linear equation system (8) gives univocally the

]

coefficents of the expansion (7).



3.1+ Input Data for numerical tests

3.2

c.

s

The orthonormal methods have been tested by the following

reaction datas

1) Np = 237 (n, £)

2) U - 238 (n, f)

3) Th - 232 (n, f)

4) 8 - 32 (n, p) P~ 32

5) Ni - 58 (n, p) Co - 58
6) Al - 27 (n, p) Mg - 27
7) Fe - 56 (n, p) ¥n - 56
8) Al - 27 (n,4) Na - 24

The cross section was taken from literature [8] .

'Two sets of activation data Ai have been tested:

- a "test" set, derived from the assumed J; by a "test" neutron

\
~-035 E ~ o5+,
5 ]_ e O.5¢+E

spectrum: ~ .2.3E
wle)=|e + D.03 ¢

- an "experimental' set obtained from Ispra 1 Reactor in the PHJ

position IB] .

The Weighting function

A series of numerical tests have been performed in order to
determine the influence of the weighting function when using

the orthonormal methods.

The test results show clearly that a good choice of the W(E)
function is very important. The fig. 1 shows the results
obtained from a set of ¢ threshold deteotor "test" activation

date by three different weighting funotions:

- L E e |
I:C y < : , < ¢ pemh JZE (V"/A'h fission srzxﬁrum)

Other similar resulte have been obtained from experimental data.
For neutron thermal pile spectra the more sulitable weighting

function seems to be e = (see also [7] /-

In all the tests performed with W(E) = 1 no good results have
been obhtaineds for this reason expansions of (f (E) according

to (2) and (4) can not be used.



3,3, General Remarks

The use of the above methods suggest the following observationss

1 — The expansion term number is conditioned by the number of
the detectors used and vice-versa.

2 - The cross—sections T (E) must be linearly independent
functions: if this condition is not satisfied the matrix
of the system coefficients is singular. The system becomes
i1l conditioned if the ¢: functions are quasi-linearly

dependent,

In the considered sample the couples Th, U and Si, Ni appear

to have similarly shaped cross-sections. It follows that the

use of the whole set is not always possible (fig. 2); this is

true particularly when real problems are considered, because

the Al and (TQ(E) values are affected by experimental errors,
both absolute and relative to one another. This difficulty appears
more evident in the methods where the orthonormal functions are
generated starting from the cross—sections (see expansions (4)

and (5) ).

Many numerical tests have been performed on "test'" and "expserimental'
values (8 detectors), using the above mendioned method with

W(E) = o~ and the following type of polynomialss

a) Simple polynomial.

b) Orthonormal polynomials over (O, Epm,x) Trange, relative to
the specified W(E).

c) Orthonormal polynomials generated by the T3 functions

d) Laguerre polynomials.

The fig. 2 and 3 show the results respectively obtained with the
"test" and "experimental" data. They are completely different
from one another and general conclusions are not possible. The
most of them are not goods the only reliable results appear to
be the ones obtained by simple and Laguerre polynomials from
"test" data, despite the fact that they show some deviations

above 8 MeV from the "test" spectrum.



4.
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The evidenciated troubles could be overcome by the choice of a
suitably reduced number of detectors. Numerical tests of this type

have been performed:

By using suitable sets of six detectors chosen from the eight
available, as suggested by the previous considerations, all the
methods have given reliable results. Unfortunately the spectrum
shapes are not the same for different choices of detectors sets

as shown in fig. 4. Ths pronounced differences observed are a con-
sequence of the experimental errors of the Ai and C (E) values.
There is no significant difference in the results obtained from
the test problem using different detectors sets, when the Ai and
(I;(E) ars error free . Since for different sets of experi-
mental data (relative to the same experience) different neutron
shape speotra are obtained, the problem arises of selecting a

repregentative spectrum.

The above reported remarks suggested a more general formulation of

the problem by taking into account the following statements:

1) All the available activation data, independently from the oross-
section shape, must have the possibility to be used.

2) The solution must approximate the Ai values in the best possible
waye.

3) The results are desired to be independent from the particular

choice of the %/ functions.

Relative Deviation Minimization Method R D M M

Suppose the searched flux may be expanded in the series:
o
= ) I o BN 'kEi)
(10) ple) = Wig) 2 ac Y
the best aproximation E?m(E) tC)C?(E) is assumed to be the one

minimizing the guadratic forms:

il . <o s
() Qo) =5 As_fa.t?cmemc

where:
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"

(12) ?Pm'(e) = W &) Zb a. WilE)
' (M\. &M = nvmber of o\e‘\’e.c:"or_g)

The quadratic form (11) represents the sum of the squares of the
relative devigtion of the Ai and, according to the Legendre least
square postulate, the obtained solution gives, in the sense of
least square, the best aproximation to the exponential data.

The search of the minimum of Q, once m is fixed, is performed by

the Gauss Method.

The requirement of the minimum of @ imposes the conditionss

ag - k=4 ... Mm
(13) 2= - s
oa
and hence leads to the linear system in the m unknowns 84y 85 oo
’
a 3
m
(14) STSa-sTe
wheres
a :(Q.i'a,_’..-. o“’hv)
e (4,4, ..... i)
S = {Scl} (:‘:‘1/"“.”;3:11"“%')

S = -/l\.; J;;" (e) (,V/(E)LVJ lE)dE

ST indicates the transpose of the matrix S. Among the solutions
ZFi’ EF; """EEMu’ the one that gives the minimum value of Q

is chosen.

When m = q;his metheod is acthually equivalent to the collocation

method.[9] y where the simple system S a = e is solved. The last
one is the method used in all the procedures described in eect. 3,
that may be regarded as particular casesof rhe RDMM, once imposed

m = n.
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56 R D M M Results and Discussion

In order to carry out the data processing by the RDMM a FORTRAN
code for the standard IBM—~7090 has been prepared.This code has
been used to process the "experimental" and "test" data with

di fferent choices of polynomial expansions. In all the tests

~E
performed the weighting funotion W(E) = e =~ was used.
The more significant results are shown in fig.s 4 to 6.

The spectra obtain®sd by using the reduced sets of detectors

(with the collocation method: see 3.3), as well as a spectrum
obtained by the complete set of deteotors are shown in fig. 4.

The comparison of these curvs indicates that the spectrum obtained
by the RDMM may be regarded as an average between the ones obtained
by the collocation method.

The fig. 5 shows the results obtained from "experimental™ data
(complete set of 8 detectors) by the RDMM using the polynomials
a), b), d) of sect. 3.3 and the Chebyshev pdlynomials. Significant
differences exist for experimental data only at high energy values
of spectrum. These differences do not appear when "test" data are
used. This fact indicates that the RDMM results may be considered
indipendent{from the partiocular choice of the l+1 functions.

In the test performed with 8 detectors the values fo the gquadratic
form Q (11) were not very different from each other when m = 5,6,7,
This faot results in very similar spectrum shapes, as may be smeen
in fig. 6. This figure shows the curvesz?; 'y Fo ,E?; obtained by

using the lLaguerre polynomials.
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