EUR 551.e

REPRINT

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THE THERMAL NEUTRON CAPTURE CROSS-SECTION AND THE RESONANCE CAPTURE INTEGRAL OF 124Xe

by

M. BRESESTI, F. CAPPELLANI, A. M. DEL TURCO and E. ORVINI

1964

Joint Nuclear Research Centre Ispra Establishment - Italy Materials Department Nuclear Chemistry Laboratory

Reprinted from

JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY

Vol. 26 - 1964

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM).

Neither the EURATOM Commission, its contractors nor any person acting on their behalf:

- 10 Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or
- 2º Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

The authors' names are listed in alphabetical order.

This reprint is intended for restricted distribution only. It reproduces, by kind permission of the publisher, an article from "JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY", Vol. 26 - 1964, 9-14. For further copies please apply to Pergamon Press Ltd. - Journals Department - Headington Hill Hall, Oxford (England).

Dieser Sonderdruck ist für eine beschränkte Verteilung bestimmt. Die Wiedergabe des vorliegenden in "JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY", Vol. 26 - 1964, 9-14 erschienenen Aufsatzes erfolgt mit freundlicher Genehmigung des Herausgebers. Bestellungen weiterer Exemplare sind an Pergamon Press Ltd. - Journals Department - Headington Hill Hall, Oxford (England), zu richten.

Ce tiré-à-part est exclusivement destiné à une diffusion restreinte. Il reprend, avec l'aimable autorisation de l'éditeur, un article publié dans le « JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY », Vol. 26 - 1964, 9-14. Tout autre exemplaire de cet article doit être demandé à Pergamon Press Ltd. - Journals Department - Headington Hill Hall, Oxford (England).

Questo estratto è destinato esclusivamente ad una diffusione limitata. Esso è stato riprodotto, per gentile concessione dell'Editore, da « JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY », Vol. 26 - 1964, 9-14. Ulteriori copie dell'articolo debbono essere richieste a Pergamon Press Ltd. - Journals Department - Headington Hill Hall, Oxford (England).

Deze overdruk is slechts voor beperkte verspreiding bestemd. Het artikel is met welwillende toestemming van de uitgever overgenomen uit "JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY", Vol. 26 - 1964, 9-14. Meer exemplaren kunnen besteld worden bij Pergamon Press Ltd. - Journals Department - Headington Hill Hall, Oxford (England).

EUR 551.e

REPRINT

THE THERMAL NEUTRON CAPTURE CROSS-SECTION AND THE RESONANCE CAPTURE INTEGRAL OF 124Xe by M. BRESESTI, F. CAPPELLANI, A.M. DEL TRUCCO and E. ORVINI.

European Atomic Energy Community - EURATOM
Joint Nuclear Research Centre
Ispra Establishment - Italy
Materials Department
Nuclear Chemistry Laboratory
Reprinted from "JOURNAL OF INORGANIC AND NUCLEAR
CHEMISTRY" Vol. 26 - 1964 - 9-14 pages

The thermal neutron capture cross-section of $^{124}\mathrm{Xe},$ its resonance capture integral (from 0.5 eV to ∞) and its effective capture cross-section in a reflector position of the Ispra 1 reactor have been found to be 111 \pm 11 barns, 3600 \pm 500 barns and 135 \pm 13 barns respectively.

These values have been determined by irradiating natural Xenon and measuring the activity of ¹²⁵I, the decay product of ¹²⁵Xe.

EUR 551.e

REPRINT

THE THERMAL NEUTRON CAPTURE CROSS-SECTION AND THE RESONANCE CAPTURE INTEGRAL OF ¹²⁴Xe by M. BRESESTI, F. CAPPELLANI, A.M. DEL TRUCCO and E. ORVINI.

European Atomic Energy Community - EURATOM
Joint Nuclear Research Centre
Ispra Establishment - Italy
Materials Department
Nuclear Chemistry Laboratory
Reprinted from "JOURNAL OF INORGANIC AND NUCLEAR
CHEMISTRY" Vol. 26 - 1964 - 9-14 pages

The thermal neutron capture cross-section of $^{124}\mathrm{Xe},$ its resonance capture integral (from 0.5 eV to ∞) and its effective capture cross-section in a reflector position of the Ispra 1 reactor have been found to be 111 \pm 11 barns, 3600 \pm 500 barns and 135 \pm 13 barns respectively.

These values have been determined by irradiating natural Xenon and measuring the activity of $^{125}\mathrm{I},$ the decay product of $^{125}\mathrm{Xe}.$

EUR 551.e

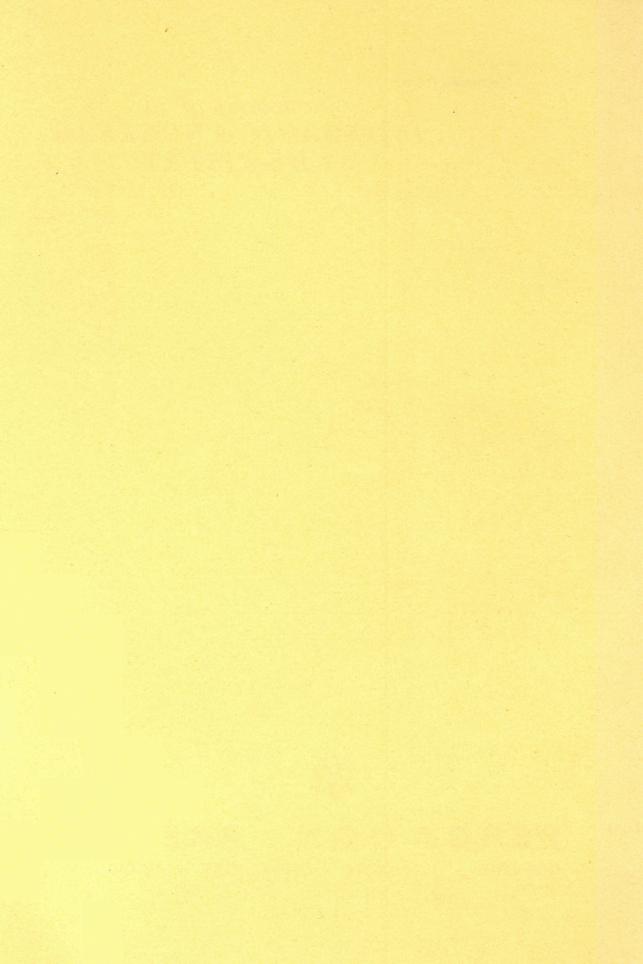
REPRINT

THE THERMAL NEUTRON CAPTURE CROSS-SECTION AND THE RESONANCE CAPTURE INTEGRAL OF 124Xe by M. BRESESTI, F. CAPPELLANI, A.M. DEL TRUCCO and E. ORVINI.

European Atomic Energy Community - EURATOM
Joint Nuclear Research Centre
Ispra Establishment - Italy
Materials Department
Nuclear Chemistry Laboratory
Reprinted from "JOURNAL OF INORGANIC AND NUCLEAR
CHEMISTRY" Vol. 26 - 1964 - 9-14 pages

The thermal neutron capture cross-section of $^{124}\mathrm{Xe},$ its resonance capture integral (from 0.5 eV to ∞) and its effective capture cross-section in a reflector position of the Ispra 1 reactor have been found to be 111 \pm 11 barns, 3600 \pm 500 barns and 135 \pm 13 barns respectively.

These values have been determined by irradiating natural Xenon and measuring the activity of ¹²⁵I, the decay product of ¹²⁵Xe.



Journal of INORGANIC & NUCLEAR CHEMISTRY

PERGAMON PRESS

OXFORD . LONDON . NEW YORK . PARIS

THE THERMAL NEUTRON CAPTURE CROSS-SECTION AND THE RESONANCE CAPTURE INTEGRAL OF 124Xe

M. Bresesti, F. Cappellani, A. M. Del Turco and E. Orvini* Nuclear Chemistry Laboratory—C.C.R. EURATOM—Ispra

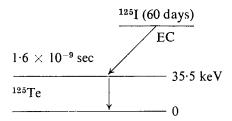
(Received 13 May 1963)

Abstract—The thermal neutron capture cross-section of 124 Xe, its resonance capture integral (from 0.5 eV to ∞) and its effective capture cross-section in a reflector position of the Ispra 1 reactor have been found to be 111 ± 11 barns, 3600 ± 500 barns and 135 ± 13 barns respectively.

These values have been determined by irradiating natural Xenon and measuring the activity of ¹²⁵I, the decay product of ¹²⁵Xe.

Although the nuclear reaction 124 Xe(n,γ) 125 Xe is used for the preparation of 125 I, decay product of 125 Xe, the capture cross-section of 124 Xe is known only imprecisely.

Tobin and Sako⁽¹⁾ evaluated this neutron capture cross-section by the measurement of the intensity of the 0·190 MeV γ -ray of ¹²⁵Xe. They obtained a value of 74 barns in a reactor spectrum of unspecified epithermal content. Moreover the incertainty in the value of the neutron flux was about 25 per cent. Harper⁽²⁾ found in preliminary measurements that the cross-section may even be a factor of 2 or 3 higher than the value previously reported. Mann *et al.*⁽³⁾ have measured the total neutron cross-section of xenon from about 1 eV to about 200 eV. Irradiating various isotopic mixtures of xenon, they attributed to ¹²⁴Xe a resonance peak at 5·16 \pm 0·06 eV. For the resonance analysis a radiation width of 90 \pm 20 meV was assumed.


In the present work the neutron capture cross-section is determined from the activity of ¹²⁵I formed through the following nuclear reactions:

$$^{124}\mathrm{Xe}(n,\gamma)^{125}\mathrm{Xe} \xrightarrow{\mathrm{EC}} ^{\mathrm{EC}} \xrightarrow{^{125}\mathrm{II}} \frac{\mathrm{EC}}{^{60}\mathrm{\;days}} \xrightarrow{^{125}\mathrm{Te}} (\mathrm{stable})$$

The neutron capture reaction can also produce ^{125m}Xe . This isotope, never observed in the neutron irradiation of ^{124}Xe , has been studied only as a decay product of ^{125}Cs . Since ^{125m}Xe decays to ^{125}Xe by isomeric transition with a 55 sec half-life it is correct to evaluate the neutron capture cross-section of ^{124}Xe , without taking into account the production of ^{125m}Xe .

- * Student from Nuclear Chemistry Institute of Pavia University.
- (1) J. M. TOBIN and J. H. SAKO, J. Appl. Phys. 29, 1373 (1958).
- (2) P. V. HARPER, Proc. 5th C.N.R.N. Nuclear Congress-Vol. II, 245 ROME (1960).
- (3) D. P. MANN, W. W. WATSON, R. E. CHRIEN, R. L. ZIMMERMAN and R. B. SCHWARTZ, *Phys. Rev.* 116, 1516 (1959).
- (4) H. B. MATHUR and E. K. HYDE, Phys. Rev. 95, 708 (1954).

The decay scheme of ¹²⁵I is the following:

The data reported in literature on the electron capture and the internal conversion of the 35.5 keV transition, are summarized in Table 1.

Table 1.—Data on electron capture and internal conversion in $^{125}\mathrm{I}$ per 100 disintegrations.

Type of decay	Ref. (5)	Ref. (6)	Ref. (7)
K electron capture	77 ± 8	81 ± 2	
L electron capture	23 ± 8	19 ± 2	
K internal conversion	- "		8 0 ± 5
L internal conversion			11 ± 2
M internal conversion			2 ± 0.4
Unconverted γ-ray			7 ± 2

On the basis of the data of Table 1, using the intensity ratio and the fluorescent yield reported in the *Nuclear Spectroscopy Tables*⁽⁸⁾ the number of $X_{K\alpha}$, $X_{K\beta}$ and unconverted γ -rays has been calculated (Table 2).

Table 2.—Number of $27\cdot4$, $31\cdot2$ and $35\cdot5$ keV photons per 100 disintegrations of ^{125}I .

Electron capture		
K capture 80%	$X_{K\alpha}$	56.3
1	X_{Keta}	12.1
35.5 keV transition	1-	
Unconverted y-ray		7
K conversion 80%	$X_{K\alpha}$	56.3
	$X_{K\beta}$	12.1
		
$X_{K\alpha}$ total number		112.6
$X_{K\beta}$ total number	*	24.2
Unconverted γ-ray		7
Total number of photons		
per 100 disintegrations		143.8

⁽⁵⁾ G. FRIEDLANDER and W. C. ORR, Phys. Rev. 84, 484 (1951).

⁽⁶⁾ E. DER MATEOSIAN, Phys. Rev. 92, 938 (1953).

⁽⁷⁾ J. C. Bowe and P. Axel, Phys. Rev. 85, 858 (1952).

⁽⁸⁾ A. H. Wapstra, G. J. Nijgh and R. Van Lieshout—Nuclear Spectroscopy Tables—North-Holland Publishing Company, Amsterdam (1959).

The ¹²⁵I activity was evaluated by measuring the intensity of the 35.5 keV γ -ray, 27.4 keV $X_{K\alpha}$ and 31.2 keV $X_{K\beta}$.

EXPERIMENTAL

(a) Irradiations

High purity natural xenon, containing 0.096 per cent of ¹²⁴Xe, supplied by "Air Liquide", was sealed in silica ampoules. Each ampoule was filled at a pressure of about 1 atm with an amount of xenon exactly measured in a high vacuum line. The samples, closed in rubber capsules, were irradiated by a pneumatic carrier in the graphite reflector, close to the heavy water tank, of the Ispra 1 reactor. The irradiation time was about 2 hr.

To evaluate the epithermal activation some xenon ampoules were enclosed in 1 mm thick cadmium boxes. In the irradiations under the cadmium silica ampoules had a volume of about 2 ml, in the other ones the volume was about 4 ml.

In all the irradiations a 1 mm in diameter wire of Al/Co alloy (1 per cent Cobalt) was added to the sample to evaluate exactly the neutron flux.

(b) Chemical separation

The ampoules were opened in a glove-box 10 days after the end of the irradiation, when 125 Xe had totally decayed to 125 I.

About 80 per cent of ¹²⁵I activity was recovered from the walls of the ampoule by washing with CCl₄. This fraction of ¹²⁵I is presumably present in the elementary form. The remaining 20 per cent was recovered by a NaI aqueous solution.

The main impurity present on the walls of the ampoule was ¹³⁷Cs, daughter of ¹³⁷Xe produced by ¹³⁶Xe neutron capture. The whole ¹³⁷Cs activity was found in the aqueous solution. To eliminate ¹³⁷Cs and to obtain ¹²⁵I in iodide form, suitable for the preparation of the sources, the following procedure was adopted: a few milligrams of NaNO₂ and one drop of concentrated HNO₃, added to the aqueous solution, oxidize the iodide to iodine that is separated by repeated extractions with 1 ml fractions of CCl₄. The whole ¹³⁷Cs activity remains in the aqueous fraction. The CCl₄ fractions are added to the carbon tetrachloride used for washing the capsule. By adding to the whole solution 1 ml of alkaline solution of Na₂SO₃, obtained by dissolving 30 mg of Na₂SO₃ and 10 mg of NaOH in 10 ml of water, elementary iodine is reduced to iodide that is separated by repeated extractions with 2 ml fractions of water. The aqueous solution is utilized for the preparation of the sources on aluminium discs.

Losses of ¹²⁵I in the purification process have been controlled and corrections have been introduced.

(c) Counting methods

The chemical separation of 137 Cs and the purity of the final solution of 125 I were tested by γ -spectroscopy using a 3 in \times 3 in NaI(Tl) crystal and a multichannel pulse analyser.

Due to the short irradiation periods (2 hr) no trace of 126 I, produced by (n, γ) reaction on 125 I, was found, although the neutron capture cross section of 125 I seems to be of several hundred barns from measurements in progress.

The quantitative analysis of ¹²⁵I was performed by a proportional counter filled with an argon + 10 per cent methane mixture. The efficiency curve of the proportional counter was previously determined in the energy range of our interest. A typical spectrum of ¹²⁵I is shown in Fig. 1. By assuming the total number of $X_{K\alpha}$, $X_{K\beta}$ and 35·5 keV γ -rays equal to 143·8 for 100 disintegrations as reported in Table 2 the following values were obtained: $X_{K\alpha} = 114\cdot8$; $X_{K\beta} = 24\cdot0$; $\gamma = 5\cdot0$.

The data for the $X_{K\alpha}$ and $X_{K\beta}$ intensities agree very well with those of Table 1 while the value for the 35.5 keV γ -ray is quite different. However, this value which is within the experimental error indicated by Bowe, seems to be more reliable for the better resolution of the proportional counter.

The 60 Co intensity of the flux monitors was determined by a 3 in \times 3 in NaI(Tl) crystal which had been calibrated previously.

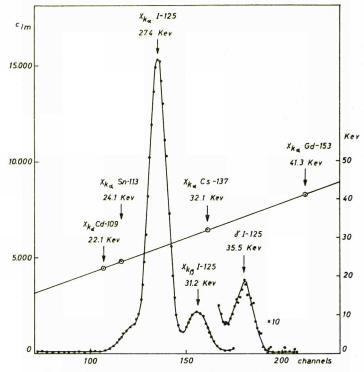


Fig. 1—125I photon spectrum by the proportional counter.

CROSS-SECTION AND RESONANCE INTEGRAL CALCULATION

The results were calculated following the procedure of Eastwood *et al.*, (9) based on the convention described by Westcott *et al.* (10)

The data for ⁵⁹Co used in the calculation of the conventional flux were taken from Westcott⁽¹¹⁾ and are the following:

$$\sigma_0 = 37.3 \text{ barns}$$
 $RI = 75 \text{ barns}$
 $s_0 = 1.736$

No self-shielding correction had to be applied to the thermal and epithermal activities induced in ⁵⁹Co.

The general expression for calculating the effective cross-section from the ¹²⁵I activity is the following:

$$A_{t} = \frac{Nnv_{0}\hat{\sigma}}{\lambda_{1} - \lambda_{2}} \left[\lambda_{1}e^{-\lambda_{2}l}(1 - e^{-\lambda_{2}l_{0}}) - \lambda_{2}e^{-\lambda_{1}l}(1 - e^{-\lambda_{1}l_{0}}) \right]$$

(9) T. A. EASTWOOD, A. P. BAERG, C. B. BIGHAM, F. BROWN, M. J. CABELL, W. E. GRUMMITT, J. C. ROY, L. P. ROY and R. P. SCHUMAN, Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958 Vol. 16, p. 54. United Nations (1959).

(10) C. H. WESTCOTT, W. H. WALKER and T. K. ALEXANDER, Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958 Vol. 16, p. 70 United Nations (1959).

(11) C. H. WESTCOTT, Report, AECL-1101 (1960).

where

 $A_t = {}^{125}I$ activity at time t after the end of the irradiation

N = number of ¹²⁴Xe atoms

 $nv_0 = \text{conventional flux}$

 $\hat{\sigma} = \text{effective cross-section}$

 $\lambda_1 = \text{decay constant of }^{125}\text{Xe}$

 $\lambda_2 = \text{decay constant of }^{125}\text{I}$

 $t_0 = irradiation time$

t =time after the end of the irradiation

In the present experiment, the irradiation time was 2 hr and the ¹²⁵I activity was measured about 10 days after the end of the irradiation. Under these conditions the term $\lambda_2 e^{-\lambda_1 t} (1 - e^{-\lambda_1 t_0})$ can be neglected and the expression simplifies to

$$A_t = Nnv_0 \hat{\sigma} \frac{\lambda_1}{\lambda_1 - \lambda_2} e^{-\lambda_2 t} (1 - e^{-\lambda_2 t_0})$$

The reaction rates for ¹²⁴Xe and ⁵⁹Co measured without cadmium cover are reported in Table 3. These reaction rates are conventionally defined (9,10) as $R = nv_0\hat{\sigma}$.

The data utilized for the calculation of the conventional flux nv_0 and the results obtained have been assembled in Table 4. The average value for R_{59C0} reported in

Table 3.—Reaction rates of ¹²⁴Xe and ⁵⁹Co without cadmium cover

Experiment	$rac{R_{124}_{ m Xe}}{({ m sec}^{-1})}$	R ₅₉ C ₀ (sec ⁻¹)
1	2·93 × 10 ⁻⁹	8·18 × 10 ⁻¹⁰
2	2.98×10^{-9}	8·24 × 10 ⁻¹⁰
3	2.98 × 10 ⁻⁹	8.35×10^{-10}
Average value	2·96 × 10 ⁻⁹	8.26×10^{-10}

TABLE 4.—CONVENTIONAL NEUTRON FLUX MEASURED WITH COBALT MONITORS

Experiment under cadmium	Rss _{Co} (Cd) (sec ⁻¹)	CR59Co	$r\sqrt{\left(\frac{T}{To}\right)}$	∂₅₅₀ (barns)	nv ₀ (neutron cm ⁻² sec ⁻¹)
4	1·17 × 10 ⁻¹¹	70.6	0.0066	37.73	2·19 × 10 ¹³
5	1·17 × 10 ⁻¹¹	70.6	0.0066	37.73	2·19 × 10 ¹³
6	1.16×10^{-11}	71.2	0.0065	37.72	2·19 × 10 ¹³
7	1·04 × 10 ⁻¹¹	79.4	0.0059	37.68	2·19 × 10 ¹³
8	1·09 × 10 ⁻¹¹	75.8	0.0061	37.70	2·19 × 10 ¹³

Table 3 has been utilized in the calculation of the Cadmium Ratio CR_{59Co} . R_{59Co} (Cd) is the reaction rate of 59 Co under cadmium, $\hat{\sigma}_{59Co}$ the effective cross-section.

The calculated values of the effective cross-section $\hat{\sigma}_{1^{24}\text{Xe}}$, of the thermal cross-section σ_0 and of the resonance integral RI are assembled in Table 5. The average

Experiment under cadmium	ớ₁₂₄χe (barns)	$R_{^{124}\mathrm{Xe}}(\mathrm{Cd})$ (sec^{-1})	CR124 Xe	S ₀ 124Xe	σ ₀ (barns)	RI (barns)
4	135-2	5·95 × 10 ⁻¹⁰	4.97	37.6	108	3810
5	135-2	5·40 × 10 ⁻¹⁰	5.48	33-3	111	3470
6	135-2	4·73 × 10 ⁻¹⁰	6.26	28.7	114	3060
7	135-2	4·96 × 10 ⁻¹⁰	5.97	33.6	113	3590
8	135-2	5·87 × 10 ⁻¹⁰	5.04	40·2	109	4050

TABLE 5.—CAPTURE CROSS-SECTION AND RESONANCE CAPTURE INTEGRAL OF 124Xe

value of $R_{^{124}\text{Xe}}$ reported in Table 3 has been utilized in the calculation of the Cadmium Ratio $CR_{^{124}\text{Xe}}$ and the effective cross-section $\hat{\sigma}_{^{124}\text{Xe}}$.

We have made a liberal estimate of possible errors, mainly systematic errors in the evaluation of the ¹²⁵I activity and of the neutron flux, as ± 10 per cent for $\hat{\sigma}$ and σ_0 and as ± 15 per cent for the resonance integral RI. This error does not take into account the uncertainties in the decay scheme of ¹²⁵I and in the values of σ_0 and RI for ⁵⁹Co.

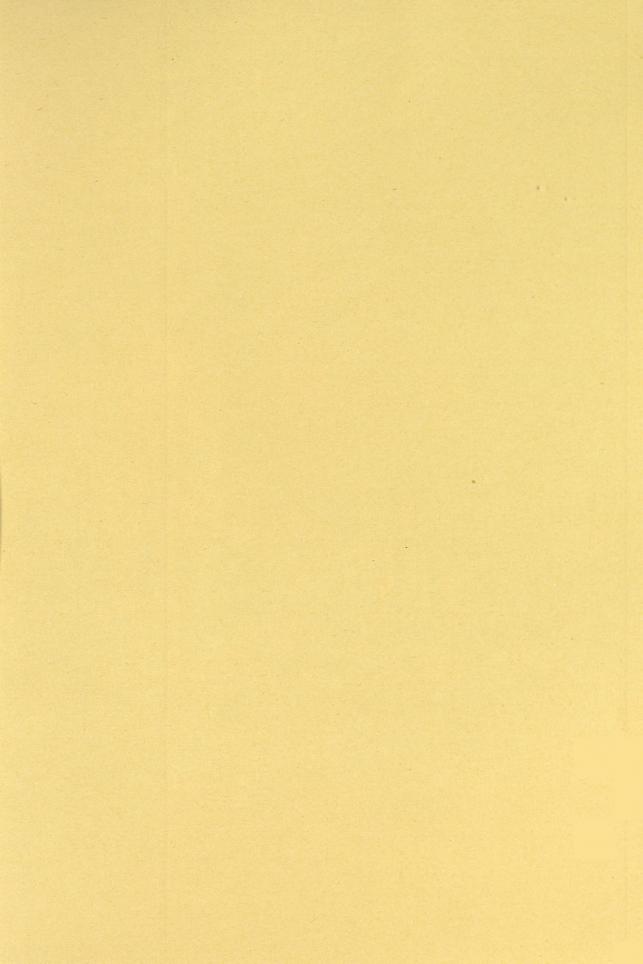
The average of the five determinations, including the estimated errors, gives values of $\hat{\sigma} = 135 \pm 13$, $\sigma_0 = 111 \pm 11$ and $RI = 3600 \pm 500$ barns.

The value obtained for the resonance integral is in good agreement with the value calculated from the expression

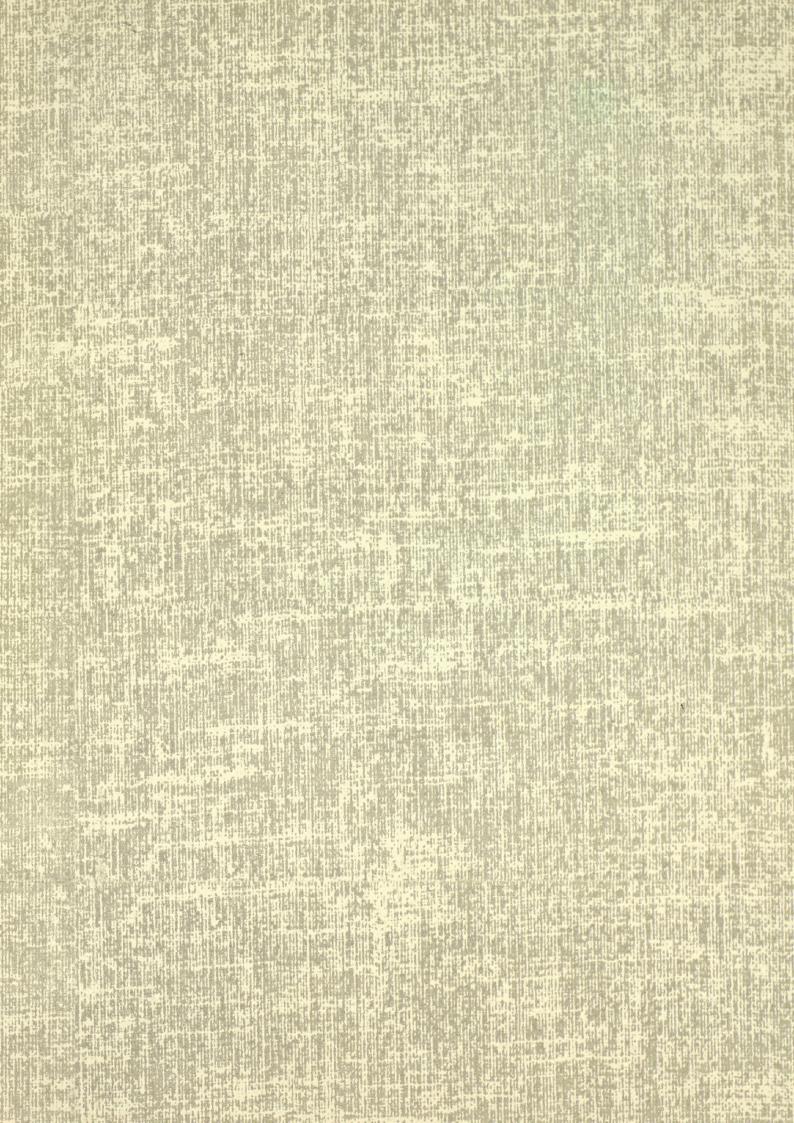
$$RI = 2\pi\sigma_0 E_0^{1/2} E_r^{1/2} / \Gamma$$

where σ_0 = thermal cross section (111 barns)

 $E_0 = 0.0253 \text{ eV}$


 E_r = resonance energy of ¹²⁴Xe (5·16 eV)

 Γ = radiation width (90 meV)


Taking into account the uncertainty of the radiation width, the value obtained is $RI = 2800 \pm 600$ barns.


The expression reported above is valid when the epithermal activation is almost exclusively due to a single resonance with the following parameters: $\Gamma \ll E_r$; $E_r \gg E_{\rm Cd}$. This enables us to conclude that the epithermal activation of ¹²⁴Xe is mainly due to the resonance at 5·16 eV.

Acknowledgements—The authors wish to thank Prof. G. Bertolini of this Laboratory and Prof. A. M. Rollier of the Nuclear Chemistry Institute of PAVIA University for the helpful discussions.

