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TWO THEOREMS IN THE APPROXIMATION OF
FUNCTIONS OF TWO VARIABLES BY POLYNOMIALS
OF THE BERNSTEIN-TYPE (%)

Pol V. LAMBERT
( University of Louvain, Seminarium Prof. Florin)
[. INTRODUCTION

This paper studies the approximation of functions of two varia-
bles in the triangle

S = {(x,)); 0<x,0<y,x+ys 1}
by two-dimensional polynomials of the Bernstein-type.
For every positive integer 1, we consider the trinomial weights
defined for every (x, y) in S by

n! ) o
sl""’“”’”(x’ y) = k'm!(n—k—m)! ki (L= )

(1.1.1) ?kzO, l,...n; m=0,1,...,n; k-+m< n.

It is known that for every point (x, y) in S

(1.1.2) 0< Pn,k.m(x, y) < L, Z 1)71,k,m(x> y) = 1.
O<ktmsgn
This probability distribution over the points(%, ’:—Z> of S has
similar convergence propeities (for 7 — <c) as the one-dimensional
Bernoulli distribution given for every x in [0, 1] by

n!

Pl = T
cfr [1] pp- 3-4.

(1.1.3)

Xk (l—x)nk

(1) This research was sponsored by the Euwropean Commission for Atomic
Energy under contract 011/61/1 DOB.
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Over the set of functions f defined and finite in S we define
for every positive integer » the linear operator B, such that

(1.1.4) Bul f(x,y)] = z f(%, %) . Duke,m(X, »).
O<ktmsn

A convergence theorem (cfr. theorem 3.1) is given in [1] p. 51.
Our aim is to prove first an estimation formula of the approximation
degree and afterwards an asymptotic relation for functions with
2nd derivatives which generalizes Woronowskaja’s result to the
two-dimensional case.(*)

II. LEMMAS

We need first some estimation formulae which are similar
to the one-dimensional case because of equality-relations existing
between the moments Py,s(x, y) and Q,,s(x, y) defined by

Pos(x.y) = z (k—nx)*. pn,k,m(x, )
O<k+msn

2.0.1) .
On,s(x,y) = Z (m—ny)s.pu,k,m(x,y) s=0,1,2,....
O<ktmsn

and the one-dimensional moments T,s(x) defined by
n
(2.02) Tus(x) = > (k—nx)*. pn(x); 0< x< 1.
=0
We have indeed :

LemMMma 2.1

For every s=0, I, ..., Py,s(x, ) is independent of y, Qu,s(x, y)
is independent of x and :

(2-1-1) Pn,s(X, _}’) = Tn,s(x); Qn,s(x, y) = Tn>s(y).

(*) This study was part of the author’s dissertation requirements to
acquire his academic degree at the University of Louvain, Belgium, and he
expresses his deepest feelings of gratitude to Prof. H. FLorIN, Dr. M. NEUTs
and Dr., THE TJOE TiE for valuable comments.
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Proof :
We only need to examine Pg,s(x, y). We have :

Pus(x, y) = Z (k—nx)* pnk,m(x, y) =
_ O<k+m<n
%(k nx)s _oont
,é/:() k! (n—k)!
Z m'(n k m)' E(I=x=)" -

But

ik

2 < - )-ym-(l—x—y)”"“’" =+ A—x=)"* =

=0

" = (l—x)*Fk,
This yields the result.

COROLLARIES :

We now recall (6) p. 15 in [1], i.e
(22.1) 0< Tpas(x) < A(s) . n%; 0< x< 1 s=0,1,2,...,
A being a constant depending only on s. So by (2.2.1) and lemma
2.1 follows
(2.2.2) 0< Pnyas(x,y) < A(s) . n%; (x,)) €S s=0,1,2,...,
and similar results for Qu,2s(x, ¥).

We now have the following estimation formula for every
6> 0and (x,y) in S:

< A(s) *
(2.2.3) k’;mwpn,k,m(x, NS gm0
]k/n—:c];d

. . k .
In order to prove this, we first notice that ‘E — x‘ > 6 implies-

(k—nx) # 0. Then by (1.1.2) and (2.2.2) we get :

= < (k—nx)?
Pnk,m(X,y) = 5 Pokml(%.Y)
Osk%nsn Oslg;nsn(k_nx)zs
\kin—x|z0 (kin—zx|=6
. K
&) |k/n—x] means [— —x|.
n
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1
S n2s _ §2s - z (k—nx)® . Pie,m(X, )

Osk+msn

lk/n—z)20
Py as(x,y) A(s) . us . A(S)
< 1n2s 82 < nes . 928 ps . 928 g.e.d.

For s=1, since Pna(x,y) = Ppa(x) = nx(1—x), (2.2.3)
yields

< nx(l—x) 1
224 > pukm(ry) < < :
( ) 0<k:;n<npﬂ:k,7)l(\ ») nZ 52 4562
{k\/n—xl;d

Now for a fixed £ > 0, we can find a positive integer s and a
real number « in the open interval (0, 1/2) satisfying the relation
s(1 —2a) = k. Then for 6 =n—* (2.2.3) implies :

A(s C (o, k
(225) Z pn,k,m(x,y) < ;18(1£2)zx) — Ezk )

O<k+ms<n
E/n—x|=n—%

By starting from the moment Q,,2s(x, y) similar results can
of course be obtained where m and y take the place of k and x.

III. MAIN THEOREMS

We state first a known result ([1] p. 51).

THEOREM 3.1

Let fand B,/ be defined in S. Then
(3.1.1) lim By[/(x, )] = f(x, y)

in every point (x, y) of S where f is continuous. The convergence
is uniform if f'is continuous in S.

DEFINITIONS

1) For afunction f'defined in S, we use the following oscillation
(01> 0,02 > 0)
(3.1.2) @ (01, 0g) = sup X y) — fx )

|Z—2’ | <01, ly—y’|<d2
(Z,9)eS,(x',y")eS
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2) We now denote as in [1] p. 20 A(x1, x2, ) as the greatest
|x1 — Xl

6 ’
2(¥1, y2. ). We are now able to prove the following estimation
theorem.

integer contained in 6 > 0. Similar definition for

THEOREM 3.2

Let fand Byf be defined in S. Then for every point (x, y) of S
we have :

(3.2.1) Bul/(x, )] — f(x. )] <

- o(nl2, pml2)

[NSTNON]

Proof
We have by our definitions and by (1.1.2)

(322 IBulfx )] — . 3)] <

7 (5. 2) = )] prntz ).

n n

Any interval [lg x} can be divided into [l (l—;, X, 61> + 1}
subintervals the length of each being less than d;. Let
[A <f—: X, 61> + 1} = N and call xy-1, xy-2,..., x1 the interior

subdivision points. In the same way let[l (1’711, ¥, 62> + 1} =M
and call yar1, yar-e, ..., y1, the interior subdivision points of an
interval [”7—:, y] Let us now take te case N> M. (Thecase N < M

would be similar). We then have :

}f [;ﬁz, ”n_l} — f(x, y)‘ < ‘f (% %) — fxev—1, ym)| +
4+ | f(xva, yar—1) — f(xv-2, yar2)| + ... +

| fxnv—m+15 Y1) — f(xn—m V)| + | f(xnv—m15 ¥) — fOev—pr—1, Y)| +
4+ oo F 1 fx1, ¥) — )]

where some terms can vanish,
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This means that in every case (N> M or N < M) we have :

623 (% %) —fte )<

< [max [}. (—S, X, (31) LA <’ZI—1, ¥, (32>:| —|— 1:| . (1)((31,(32)

Let Ag,m(x, y) = max [/1 <Li X, 61), A(% ¥, 62)} . Then
(3.2.2) and (3.2.3) imply :

(3.2.4) |Bn[f(x, )] — f(x, V)| < (1, 02) .

_/\:: {1 +/‘{k,m(x, y)] . Pok,m(X,))
O<ktmsn

< (01, 02) [1 + D> Tm(x, y)-Pn,k,m(x’J’):|<

lk,mzl
k 2
o )
< (0(61, 52) . [1 + Z sz - pn,k,m(x, )’) +

O<ktmsgn 1
|k/n—z|=0,

+ > L_y)z

Lo 52
O<kimsn 2
|m/n—y|=0,

1 1
< (1)((31, (32) . [1 + 7127 . Pn,Z(X, y) + W . Q?L,‘Z(X, )’):| <
1 2

. Puk,m{X, J’)}

< (I)((Sl, (32) . [1 + ! + L ] .

4}1621 4713%
If we now let 41 = 02 = n71/2, we get (3.2.1), g.e.d.

Remark :

This theorem implies as a particular case the 2" part of
theorem 3.1.

We now give the asymptotic formula mentioned in the intro-
duction and its proof.

127



THEOREM 3.3

Let f be defined and bounded in S. In each point (x, y) of S
where f has a 2nd-order differential we have

2
(3.3.1) Balf(x, )] = f(x,)) + —5— x(l 2 57{ T
1 — 02 d n :
P2 T st e lmen = 0

If all the 274-order partial derivatives of f are continuous in .S,

then :
lim o, = 0, uniformly in S.

Proof : o

a2f _ &f

oxoy  oyox

630 S(E D)o + (o —x) Et (=) B
e ()
i) (2-7) 5

2
+(P1<k J’> (l—(—x> —i—(Pz( ,xy> (ﬂ—y> +
n n
k m k m
+ (p3<—;1—, 7,x,y> . (E——x> . (7—y>, where

(3.3.3) Iim ¢1 = 0; llm pe=0; lim g3 =0.
kin-z k/n-x

n-y

By our assumptions

min-y

If we recall the identities
I Ppi(x, y) = Qnalx, y) = 0;

(3.3.4) \ Pra(x, y) = nx(1—x); Qua(x,») =ny(l—y);
) > (k—nx) . (m—ny) . purm(x,y) = —nxy
Osmnsn

it follows from (1.1.4) and (3.3.2) that :

_ x(l—x) &
(3.3.5) Bulf(x, )] = f(x,)) + s P Y +
y(—y &f xy 08

2n " oy n 8x6y+ rn, Where

_|_
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- 2
(3.3.6) o= Puk,m(X, V). [(l—( — x) Al (lﬁc x,y) +
n

n
m 2 m
-+ <~_J’> . P2 <7, x,y> -+

k m kK m
) ) ol 2]

Since f and hence B, fare bounded in S and the partial deriva-
tives are finite at the point (x, y), we have |¢il < H,i=1.2,3,

. ¢ . k
uniformly whenll—: and % vary in S. We also have ’l_; — x" < 1 and
|%Z — y} < | everywhere in .S. On the other hand by (3.3.3) given
e > 0, there is a 0 > 0 depending only on & and (x, y) such that

lpil < e,i=1,2,3, Whenever%lg—x < ¢ and i%-—y‘ < 0. All

this and the identities (3.3.4) imply :

.

3

pel mx(l —x)+ny(l—y) +nxy] +

ral <

+ 3H . ( Z Pn,k,m(x, J’) + Z Pok,m(x, }’))
Osk+msn O<k+msn
tk/n—ziz0 Im/n—y|=06

Let 6=n2% 0<a« <12, o fixed; then ¢ depends on »n and
Hm e(r)=0.

n—w

By now using (2.2.5) with &k > | we get

3
—e(m) + C(n)
fin)—+6H. Clwnk) 4

il <
’111 - .
T4 g nk R

where lim (1) = 0. This proves the first part of the theorem.
7n -0

When the 2n9-order partial derivatives are continuous everywhere
in S, and hence bounded, the number H can be chosen the same
everywhere in S. On the other hand, given ¢ > 0, we can now also
choose the same ¢ for all points (x, ) of S. This implies that the
estimation of r, becomes uniform in S, and so proves the 2nd part
of the theorem.
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General remark

All the results of this paper can easily be generalized to func-
tions of » variables (n == 1,2, 3,..)).
June 1961
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