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The second method uses a multiplication factor for the mean power which
is defined by the ratio « number of delayed neutron emitters formed during
one power pulse to the number of delayed emitters decaying during one power
pulse ».

The inhour equation obtained by the second method shows the influence
on the inhour equation of the time intervals during which the reactor is sub-
critical. For the cases where the influence of these time intervals is negligible
the equivalence between the two methods of derivations is shown.
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THE KINETIC THEORY OF A FAST REACTOR
PERIODICALLY PULSED BY REACTIVITY VARIATIONS

I — INTRODUCTION

The powcr of a fast reactor can be pulsed by increasing the multiplication factor
above the prompt critical value for a short time interval. In a periodically pulsed fast reactor
the multiplication factor is above the prompt critical value only for a short time interval, and
is subcritical during the largest part of the period. The first periodically pulsed reactor has been
constructed and operated in the USSR [1]. Bondarenko and Staviskii [2] have established the
kinetic theory of a periodically pulsed reactor for the stationary state, i.e. for the state in
which the reactor produces power pulses with amplitudes independent of time, and for the
nearly stationary state.

These authors have derived a condition for the stationary state in establishing the
kinetic equations for the time variation of the mean power and by determining the condition
for which the mean power does not vary. According to this condition the stationary state
of a pulsed reactor can only be realized for one pulse frequency by one single value of the
prompt critical reactivity e;,.

M(esmo)
T

I-1

B=1

For a chosen reactor the function M is proportional to the energy developed during
one power pulse and depends on the reactivity e;. In the case the prompt critical reactivity
deviates from the equilibrium value ey, the time variation of the mean power is described
by a system of equations

M(em)

I-2.1 All) = 1 —— Thiei(t)
T
d .
1.2.2 el + 2 g
~ dt T

where 7i(t) and ¢;(t) are values of the density of the neutrons and the density of the delayed
neutron emitters averaged over one period.

7 is the mean lifetime of the prompt neutrons, 8;, A;, and B have the usual signification.
Bondarenko and Staviskii have remarked that the time variation of the mean power of a
periodically pulsed fast reactor is comparable to the time variation of the power of an ordinary
reactor if a fictive value Bpyised is introduced for the fraction of the delayed neutrons.
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Stiévenart has shown in 1962 (') that the assumption of exponential solutions for the
cquations I-2 for 7ii and ¢é; give for the exponcents the equation

M(em) — Memo) _ . P
. M(en) Bowd+ N

(O]

The ratio M(e;,)/M(epo) is the ratio between the energy developed in one pulse for the
reactivity e, to the energy developed in one pulse for the reacticity ey, which corresponds
to the equilibrium value. If the variation of M is reduced to a variation of =, by developing
the function M around the stationary value e, and by defining the Ppuisea value, the inhour
equation for a periodically pulsed reactor is similar to the equation of an ordinary reactor.

M(em) Aey, Bi: o

Bpuised = 7o _— = =
(@) Bpulsed B wd N
Oem €mo :

The valuc B,u1seq 15 not a coustant of the rcactor but depends on certain parameters
of the rcactor, and varies with the prompt reactivity and the pulse frequency.

A ncw method of derivation (Chapter II, Part A) of the inhour equation of a periodically
pulsed fast reactor is given by writing the usual kinetic equation for the power averaged over
one period and defining a mean multiplication factor k which is the ratio :

number of neutrons produced during one period

number of neutrons absorbed during one period

The derivation in Chapter 1I.A uses like the derivations by Bondarenko and Staviskii
and by Stiévenart the assumption that the time variation of the density of the delayed neutron
cniitters is constant during one period and can be replaced by the mean value.

Taking into account the formation of delayed neutron emitters during the power pulse,
and the decay during the timc interval between two power pulses, an inhour cquation is
derived in Chapter II Part B by using the property of a periodically pulsed fast rcactor that
the total number of fissions during one pulse and the power averaged over one period is
proportional to the source strength of the delayed emitters at the beginning of the pulse
(Chapter IT, Part B). By this proportioua]ity a multiplication factor x for the mcan power is
introduced which is the ratio

number of delayed neutron emitters produced during one period

number of delaycd neutron emitters decayed during one period

The roots « of this inhour equation show the influence of the time interval when the
reactor is subcritical. For small deviations from the stationarily pulsed state and for pulse
periods in the order of 0.1 sec or smaller, the exact inhour equation gives the inhour equation
which has bcen derived by assuming that the density of the declayed emitters is constant
during one period.

The equivalence of the two methods of derivation is shown in Chapter III. The result
of numerical calculations of the multiplication factor and the roots » of the two inhour
equations are given in Chapter IV,

(1) Internal report of Belgonucléaire, Brussels.



II — DERIVATION OF THE KINETIC EQUATIONS OF A PERIODICALLY PULSE
FAST REACTOR - - o

II-A. — Derivations of the kinetic equations for the mean values of the neutron density and
of the delayed emitters (1)

The kinetic behaviour of a periodically pulsed reactor — like that of any other
reactor — is described by the equations :

dn _ K(H)(1—p)—1

I-1.1 = T
dt - n+ p iCt
dc; k

11-1.2 —_—= 7\1;61 + Bi -n
dt T

Now the multiplication factor is a periodic function of time
k() = E(t —T)

By integrating the equations over one period T, permuting the order of integration and
differentiation and by dividing by T, the following kinetic equations for the mean values are
obtained :

di k(1 —p)—1

II-2.1 — = ——— 7+ XMy
de T
I1-2.2 e e - B b
-2, —_—= — C -n
ar 1Ct (e
Here the mean values are defined by the relations
1
I1-3.1 i) = = \ n(s)ds
T Ji—1
1 t
I1-3.2 cilt) = — S ci(s)ds
T le—71
. 1t n(s)
11-3.3 k(e :—\ k(s) —= ds
O =7)_ ) 50

With the definition ‘
11-3.4 s F—1
. P=7
and the kinetic equations for the mean values the inhour equation for the mean reactivity is
obtained :

- wT [5]
11-4 R ey

(1) This derivation of the kinetic equations for the mean values was given by V. Raievski in an internal
report ISP-202R printed in 1962.



The equations (II-2) can be given another form if one notes that for a fast reactor
is very small. The integrated power (number of fissions) over one period is given by

(IL-5) =

from which it follows that

d
Thus in eq. {II-2) we find that all terms are 0 (1) cxcept the term ;,: which is 0 (7).

If, therefore, one neglects the lifetime © as compared with the timne scales encountered in the
normal operation of the pulsed fast reactor one obtaines instead of the eq. (II-2.1) the eq.

B1—p)—1

T

(11-6.1) 0= i+ 2Ny

while the eq. (II-2.2) remains unchanged.
The inhour equation that follows from eq. (II-2.2) and (II-6.1) is

(11-6.2) p= X

which differs from eq. (II-4) by the absence of the small term f‘])_f as was to be expected sincc
e

we neglected terms of order .

For the calculation of the mean multiplication factor k(t) equation II-1.1 is solved over
one period with the approximation that the mean density of the delayed neutron emitters is
constant during the period and corrcsponds to the value at the time (t — T).

dn  «(s) .
11-7.1 — = —n+ Znei(t—T) t—T =s =1t

ds =
¢(s) is defined by the equation
e(s) = k(s) 1 —B) — 1

Without assuming a special function for the change of the reactivity the solution of the
equatiop II-7.1 can be written

11-7.3 n(S) = Z)\ici(t —_ T) 'q(s)
. 1 -
11-7.4 ‘f}(S) - %C + \ e_; f e(s)ds dS% e_;J e(s)ds

With the solution of this equation the multiplication factor L and the reactivity for the mean
power can be written

. 14 n(s
11-8.1 B = 5 \l_Tk(s E%)) ds
Lo ()



The physical meaning of k is given by the ratio .

number of neutrons produced during one period

I-C:

number of neutrons absorbed during one period

¢ k(s)n(s) ds
t—T T

since the numerator of this ratio is given by S while the denominator is

o nls)

ds.

simply

Je—T 7T

II-B — Derivation of the kinetic equation for the mean neutron density of the delayed
emitters (1)

The kinetic equation for the neutron density II-1.1 is intcgrated over one period, under
the approximations that the density of the delayed emitters during the pulse is copstant and
equal to the value at the beginning of the pulse, and that in the remaining interval of the
period each group of delayed emitters decays with its own decay constant. The number of
delayed neutron precursors which have been formed during the power pulse are added to
the density which has been present at the beginning of the power pulse, and this sum forms
the initial condition for the time interval where the multiplication factor is below 1. For the
p-th pulse which occurs during the time pT-f, to pT+¢, the following equations are obtained
for the time dependence of the neutron density n(s), the number Ac¢;(I;) of precursors formed
in each group during the power pulse, and the mean neutron density during a period 7i(pT)

I1-9.1 n(s) = Ehei(pT — to)n(s) (during the pulse)
i
I1-9.2 n(s) = TS %ci(pT_) + Aci(Ip) % e (after the pulse)
€ i
11-9.3 Aci(Ip) = PME2ei(pTo)
1 (t
11-9.4 M= § k(s)n(s)ds
T J=1
M =<
11-10.1 A(pT) — %T gl "% She(pT)
T &)

In a periodically pulsed fast reactor the production of delayed neutron emitters in each
group is split in two terms, one term is the production during a power pulse, and the second
term is the production in the time interval between two power pulses.

de k

11-10.2 (3 A = — Ajcj+ Py % F—O 2.:7\1;Ci(t) + MZExZe;()3(t — mT)

<0 i i m

(1) The derivation of the kinctic cquations taking into account the formation and decay of the delayed
emitters was given by R. Misenta in an internal report (ISPRA-453) printed in 1963.

(3) By formal solution over one period the differential equation (II-10.2) can be transformed into a
difference equation linking the densities of delayed cmitters at corresponding time. This procedure is of advantage
for a numerical treatment of the kinetics of a pulsed reactor.
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Assuming exponential funetions as solutions
c; = Aje®

for the differential equation 11-10.2 gives the equation

k
11-11.2 oAt = — WAt + 3 0 SnAEet 4 MXENXA;e®d(t — mT_)
<0 i

H m

by integrating this equation over t from 0 to the time pT_ just preceeding the p th pulse and
performing the summation over m, a system of 6 homogeneous equations is obtained :

11-11.3 ‘ [0) —|— 7\:,' (1 — ﬁjB)] AJ — B:,BZ 7\L'A,; =0
it
kk, M  oT

11-11.4 B= "4 —
g T eT—1

The condition that the detecrminant of this system is zero, gives an equation for o

.12 1 Sko n M T v M
- _(50 T T —1 i‘J’Lm—l— A

This equation is the inhour equation for a periodically pulsed reactor taking into account
the formation of the delayed neutron emitters during the power pulsc and the decay of the
emitters in the time interval between two power pulses.

For the discussion the two cases are considered that the deviation from the stationarily
pulsed state is small, and that the multiplication factor in the time interval between two power
pulses is small compared to one.

wT
case 1 : ol €1; — =1
et —1
kk M oT
case 2 : B
gg T T —1

In the first case the inhour equation can be written

1—%kO+M§ZG 7\1'
- gg T o+ N

For & = 0 the condition is obtained

LELSP
2 T g v
By subtracting £ on cach side and with the definitions
M Kk w—1
11-13.1 */_:§ -_|_J’g(3; R=""_7"
\ T €9 7.

the relation is obtained

11-13.2 Rl ©



In the second case the equation can be written

M T ;
I L ML
T T —1 o+ N
For & = 0 thc condition is obtained
M 4 =1
T P=
and with the definition
11-14.1 _M rR"*"!
. = T {3 = .
the inhour equation is given by
o Pi © A
11-14.2 R=Y7— _ T
8 leo— m+xiQ(°’)
11-14.3 Q(wT) oT 1
' o= T 1

The significance of the multiplication factor x is seen by inserting the rclation

Acy(Ip)

T BT Ne(pT)

11-9.3

into the relation II-14.1 for the multiplication factor

Ac
“ 7 Se(pTONT

The multiplication factor » is the ratio

number of delayed neutron emitters formed during one pulse

number of delayed emitters decaying during one period

if the production of delayed neutron emitters in the interval between two power pulses is
neglected. Taking into account this production, as it is done in the relation II-13.1 the
significance is obtained

number of delayed neutron emitters formed during the period

number of delayed neutron emitters decaying during one period

The multiplication factor x for the mean power of a periodically pulsed reactor is
introduced because the average power of one period is proportional to the source strength
of the delayed emitters X2;¢;(pT_) at thc beginning of one period.

This proportionality shows itself also in the inhour equations II-13.2 and II-14.2. The

reaetivit = " in the inhour equation of an ordinary rcactor (as well as the mean
Yy e | Yy

reactivity o entering in eq. 11-6.2)
)

0+ N

p =2

11



tends against # for & — o0, lim ¢ = B. The limit for the reactivity R in the inhour equation
w=
for a periodically pulsed reactor is 1, lim R = 1. This difference is due to the proportionality
=™
of the average power of one period to the source strength of the delayed emitter at the
beginning of the period and the fact that a distinction which corresponds to prompt and

delayed neutrons docs not exist for the delayed emitters.

IIT — EQUIVALENCE OF THE TWO DERIVATIONS (1)

Starting from the kinetic equation II-1, two different definitions of a mean multiplication
factor of a periodically pulsed reactor have been given

't

] 1
11-3.3 k() = —-

Tﬁ(i) vz_Tk(s)n(s)ds
and
I1-13.1 % = 1\—/[ g+ e
T gy

The multiplication factor k() is based on an average of the ordinary multiplication factor
weighed by the ratio n(s)/fi(t), instantanecus power to mean power. The multiplication factor »
is based on the ratio production to decay of declayed neutron emitters during one period.
Together with the corresponding kinctic equation for the mean power I1-2 and TI-10, the two
different inhour cquations are obtained

_ I8
11-6.2 — 3R,
° . (O] + 7\1'
and
11-13.2 R_xhi_©
f ot
To show the equivalence hetween the two derivations cquation 1I-6.1 is re-written in
the from
I11-3.1 L P S
" Ml —py—1 "
or
11-3.2 i — SnG
L—p

Using equation II-5 equation I11-3.2 can he written

W

111-3.3 AL
T P—ep

or

11'3.4‘ ml (W V) = 1 =
E)\iél T (ﬂ —p

(}) The equivalance of the results obtained by the two methods of derivation was. shown by G. Blisser
in an internal report (ISPRA-439) printed in 1963.



Equation III-3.4 is used as definition of g in terms of the mean number of neutrons

per period
N — (W ) 1
AT Y 2Ny

By arranging equation III-3.4 the mean reactivity is obtained as function of N

- Np—1
111-4.1 p = &:— ;
. N :
- NEg —1
111-4.2 o= 20 11(3_—
NP
comparing the definition II-9.4 of M and the definition of W the equivalence is obtained
1 T
I11-5.1 = - M - —¢ Zne(pT)
v g
or
- M K
I11-5.2 N=_4+2
T g

With the definition I1-13.1 for » the relation for the mean feactivity can he written

=R
where
R — x—1
¥
The inhour equation II-4
_ w
- 36, -
Pt
can bhe written
Re % @ Lo
B o4+ N

which is identical with the inhour equation II-13.2.

By the way this equivalence has been obtained it can he summarized that the kinetic
behaviour of a pcriodically pulsed reactor can be either described by the equation II-10 with
the definition 11-9.4 for M or by the system of equations (%)

-

[
II1-3.1 = ——a— XNG
1—k1—p)

(1) It can also be shown that the two equations III-3.1 and II-2.2 for the mean neutron density and
the mean density of the delayed emitter lead together with the definition 1I-3.3 of the mean multiplication
factor k to a similar system of equations as the system I-2 given by Bondarenko and Staviskii and to the

same inhour equation. By inserting the definition II-3.3 of the mean multiplication factor into the equation
II1-3.1 and II-2.2 the equations

A
n=TtXNc 3(1—3)‘ + 1%
i T
dec; _ A

_d% =—Ner+Bi 7 127\1%

13



11-2.2 des A b
-2. E__ @cz—{—ﬂz’;n 3
1 1 (¢
I-3. k= — ~ S k d
11-3.3 “ AT l_r (s)n(s)ds
or
. x—1
11-13.1 k=148
and
M )
* = T B+ c
1 + to
11.9.4 M= - g E(s)n(s)ds
T J—to

where the function %(s) is the solution of the differential equation II-7.1.

IV — MULTIPLICATION FACTOR, STATIONARITY CONDITION,
AND INHOUR EQUATION OF A PERIODICALLY PULSED REACTOR

In Chapter II the multiplication factor x for the mean power of a periodically pulsed

reactor
11-13.1 = M P
=19. n= T e+ ;0
1 + to
T1-9.4 M— - \ k(s)n(s)ds
T J—1q

has been derived. In order to evaluate the multiplication factor numerically, it is necessary
to solve equation II-7.1 for a given reactivity shape. As reactivity shape three different
functions have been used :

a rectangular function, a triangular function (Stiévenart, private communication), and a
parabolic function (Bondarenko and Staviskii {2], Stiévenart (!). The parameters which
characterize these funtions and the ohtained analytical expressions for M are given below.

are obtained with the definition

1 t
A=- f k(syn(s)ds
TJy—T

v

The function 7(s) is the solution of the differential equation II-7.1 normalized to the source. Exponentila
function as solutions lead immediately to the inhour equation

A 1
TB w

© + Aj

_z®
p i

A
The equivalence between T B and x is evident from the definition of A and the definition I1-13.1 of x.

(1) Internal report Belgonucléaire, 1962,
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Rectangular function :

IV-1.1 ‘ e(s) = em 0=s=3

1V-1.2 M(en) = - exp (Ein 8)
Em® <
Triangular function :
sm—f—;o_;sms —8 =s=0
Iv-2.1 e(s) = -
| o otem 0=s =3
)
3 S et
Iv-2.2 M(ep) = exp % P %
em + g T em + g
Parabolic function :
z(s) = gy — B2s?
IVv-3.1
B = oy
34 8m‘/2 g
exp § = ——
3 Bz
1v-3.2 M=rx
Be,y,

In order that the reactor works in a stationarilly pulsed state, i.e. the state in which
the amplitudes of the power pulses are independent of time the multiplication factor » for
the mean power must be equal to 1, or the reactivity R must be equal to 0.

V4.1 , x=1, R=0

Using the expression II-3.1 for thc mcan multiplication factor, the stationarity

condition can be written

B
IV-4.2 BM(em,) = T (1 — L)

o

This stationarity condition relates to each period T, one and only one value of the
prompt critical reactivity e, which the reactor works in the stationarily pulsed state. If the
reactivity e, is larger than the reactivity ey , the multiplication factor is larger than 1. Fig. 1
shows % as a function of the reactivity ¢, and the reactivity R as a function of the difference
(em — em,) for a parabolic reactivity wave and the set of parameters :

=2 X 108 sec, ky = 0.9744 or ¢y = 5B, a =7 X 10~1em~? and v = 314 m/sec,
for the two pulse frequencies N = 10 sec™ and N = 100 sec™,

If the multiplication factor is larger than 1, the reactor deviates from the stationarily
pulsed state according to the following relation

T
i(p) = - w T SapeempT—1)
i m
The exponents w arc solutions of the inhour equation

) . T
11-14.2 Roshy © N ( ol 1);
i Blo—n o+ n\e®T—1

15



and the cocfficients «,, allow the adjustment of the solution to the initial conditions of the
reactor. For small deviations of the reactivity from the stationarity value the reactivity R for
a parabolic reactivity signal can he developped : :

0; 2em, 1
V-5.1 (*i) _ (1 — 9) (Eﬂ _ __)
Oep ento Eh) Bt Emy,
Thus the inhour equation can bhe written
0> O]
IV-5.2 (_i) ey =3
Gem emp i (3 ©+ N
or

A&m _ 2 Bi [}

IV-5.3 =
Bpulsed i B © 4 N

with the definition

Ozp,

IV-5.4 Bpulsed = T
(o)

In writing the inhour equation IV-5.2 in the form

- o 2 ©
I1vV-5.5 Bl.— = = 3f; ——
857), emy 857/1 cmy i w + A

it corresponds to the inhour cquation of an ordinary rcactor. But the left hand side shows
that a periodically pulsed reactor is, for the same deviation Aey, of the ordinary multiplication
factor from the stationary value, more sensitive by a factor B(@x/&sm)EMD.

In the table the reactivity <, , the sensitivities (0x/de;) and P(0x[0en) are given.
The scnsitivity [(3(0x/ds,;) has the value 20.4 for 10 pulses/sec and 12.6 for 100 pulses/sec.

In order to see the influence of the pulsing period on the kincties, the inhour equation
11-14.2 has been solved for reactivitics betwecen —1 and 1, for one case in which the term
Q(»T) has been set equal to 0, and for a second case with the exact equation for a pulse
period T = 1 sec. Fig. 2 shows the influence of the pulse period on the rootes w.

In fig. 3 the time dependence of the mean power of a periodically pulsed reactor is
given for a value of the multiplication factor x of 2.0 corresponding to the reactivity R = 0.5.
The multiplication factor » = 2 corresponds to a deviation of e, from the stationarity value -

em, by Aey = 18 X 1075 for 10 pulses/sec, and by Ae;, 26 X 1075 for 100 pulses/sec.

o% o%
N sec_l €7n0 (,\ ) B (,\ As',n(y. = 2)
CEm [emg CEM Jemg
10 1.53 x 1073 3.3 x 103 20.4 18 x 10-3
100 0.89 x 10-3 2.0 x 103 12.6 26 x 105
TABLE. — The reactivity €, the sensitivity (€%/0€m)eym, and the deviation of the reactivity

Aegy = e — €, for » = 2 for the pulse frequencies N = 10 and 100 sec™1,

The values have been used with a parabolic reactivity shape and the parameters T = 2X 10-8 sec,
kg=0.9744 or g = 50, 0. = 7 X 10~% em~2, y = 314 m/sec.
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