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The second method uses a multiplication factor for the mean power which 
is defined by the ratio « number of delayed neutron emitters formed during 
one power pulse to the number of delayed emitters decaying during one power 
pulse ». 

The inhour equation obtained by the second method shows the influence 
on the inhour equation of the t ime intervals during which the reactor is sub-
critical. For the cases where the influence of these t ime intervals is negligible 
the equivalence between the two methods of derivations is shown. 
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THE KINETIC THEORY OF A FAST REACTOR 

PERIODICALLY PULSED BY REACTIVITY VARIATIONS 

I — INTRODUCTION 

The power of a fast reactor can be pulsed b y increasing the mult ipl icat ion factor 

above the p r o m p t critical value for a short t ime interval . In a periodically pulsed fast reactor 

the mult ipl icat ion factor is above the p r o m p t critical value only for a short t ime interval , and 

is subcrit icai dur ing the largest pa r t of the period. The first periodically pulsed reactor has been 

constructed and operated in the USSR [1]. Bondarenko and Staviskii [2] have established the 

kinetic theory of a periodically pulsed reactor for the s ta t ionary s ta te , i.e. for the s ta te in 

which the reactor produces power pulses wi th ampli tudes independent of t ime, and for the 

near ly s ta t ionary s ta te . 

These authors have derived a condition for the s ta t ionary s ta te in establishing the 

kinetic equat ions for the t ime variat ion of t h e mean power and by determining the condition 

for which the mean power does no t vary . According to this condition the s ta t ionary s ta te 

of a pulsed reactor can only be realized for one pulse frequency by one single value of t h e 

p r o m p t critical react iv i ty zmo. 

1-1 ^ ) β = ι 

For a chosen reactor the function M is proport ional to the energy developed during 

one power pulse and depends on the react ivi ty zm. I n the case the p r o m p t critical react ivi ty 

deviates from the equilibrium value zmo the t ime var ia t ion of the mean power is described 

b y a sys tem of equations 

1-2.1 ñ(t) = τ — — Σλια{ή 
*■ i 

dc,- β,· 
1-2.2 —' = - X,c,(í) + ^ ñ(t) 

\ dt τ 

where ñ(t) and C{(t) are values of the densi ty of the neutrons and the densi ty of the delayed 

neu t ron emit ters averaged over one period. 

τ is t h e mean lifetime of the p rompt neutrons , ßi, Xi, and β have the usual signification. 

Bondarenko and Staviskii have remarked t h a t the t ime var ia t ion of the mean power of a 

periodically pulsed fast reactor is comparable to the t ime var ia t ion of the power of an ordinary 

reactor if a fictive value ßpuised 1S introduced for the fraction of the delayed neut rons . 



Stiévenart has shown in 1962 (*) t h a t the assumption of exponent ial solutions for the 

equations 1-2 for ñ and Ci give for the exponents the equat ion 

M(ero) — Μ(εΜβ) _ ßi ω 

Μ(ε,„) ß ω + Xi 

The rat io M(eTO)/M(emo) is the rat io between the energy developed in one pulse for the 

react ivi ty zm to the energy developed in one pulse for the react ici ty zmo which corresponds 

to the equilibrium value. If t he var ia t ion of M is reduced to a var ia t ion of zm b y developing 

the function M around the s ta t ionary value zm and by defining t h e ßpuised value, the inhour 

equation for a periodically pulsed reactor is similar to the equat ion of an ordinary reactor. 

Μ(ε,„.) àzm ßi ω 
Impulseci — /„ , ,> r — — ¿ - ——-

8M\ ßpuised ρ ω + Xi 

8zm nm 

The value ßpuised l S n ° t a constant of the reactor bu t depends on certain paramete rs 

of the reactor , and varies with t h e p rompt react ivi ty and t h e pulse frequency. 

A new method of derivation (Chapter I I , P a r t A) of the inhour equat ion of a periodically 

pulsed fast reactor is given by writ ing the usual kinetic equat ion for the power averaged over 

one period and defining a mean multiplication factor k which is the rat io : 

number of neutrons produced during one period 

number of neut rons absorbed during one period 

The derivation in Chapter I L A uses like the derivations b y Bondarenko and Staviskii 

and by St iévenart the assumption t h a t the t ime variat ion of the densi ty of the delayed neu t ron 

emitters is constant during one period and can be replaced b y the mean value . 

Taking into account the formation of delayed neu t ron emit ters during the power pulse, 

and the decay during t h e t ime in terval between two power pulses, an inhour equat ion is 

derived in Chapter I I P a r t Β by using the p roper ty of a periodically pulsed fast reactor t h a t 

the to ta l number of fissions during one pulse and t h e power averaged over one period is 

proport ional to the source s t rength of the delayed emit ters a t the beginning of the pulse 

(Chapter I I , P a r t B). By this proport ional i ty a mult ipl ication factor κ for the mean power is 

introduced which is the rat io 

number of delayed neutron emitters produced during one period 

number of delayed neut ron emit ters decayed during one period 

The roots ω of this inhour equation show the influence of the t ime interval when t h e 

reactor is subcritical. For small deviations from the s tat ionari ly pulsed s ta te and for pulse 

periods in the order of 0.1 sec or smaller, t he exact inhour equat ion gives the inhour equation 

which has been derived b y assuming t h a t the density of the delayed emitters is constant 

dtiring one period. 

The equivalence of the two methods of derivation is shown in Chapter I I I . The result 

of numerical calculations of the multiplication factor and the roots ω of the two inhour 

equations are given in Chapter IV. 

(1) Internal report of Belgonucléaire, Brussels. 
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I I — DERIVATION OF THE KINETIC EQUATIONS OF A PERIODICALLY PULSED 

FAST REACTOR 

II-A. — Derivations of the kinetic equations for the mean values of the neutron density and 

of the delayed emitters (χ) 

The kinetic behaviour of a periodically pulsed reactor — like t h a t of any other 

reactor — is described by the equations 

τ ι τ τ dn fc(0(l-P)-l , y i 11-1.1 — = η + ¿iXiCi 
at τ ι 

det k 
U-l.2 — = — ΜΗ + β< - n 

dt τ 

Now the mult iplication factor is a periodic function of t ime 

k(t) = k{t — T) 

By integrat ing the equations over one period T, permut ing the order of integrat ion and 

differentiation and by dividing by T, the following kinetic equations for the mean values are 

obtained : 

dñ k(t)(l - β) - 1 _ . 
II-2.1 — = η + ZiXtd 

dt τ 

dc ' k 
II-2.2 — = — XÍCÍ + ßi - ñ 

dt τ 

Here the mean values are defined by the relations 

1 
II-3.1 ñ(t) = - \ n(s)ds 

Τ J i -T 

II-3.2 Ci(t) = - Ci{s)ds 

1 Γ' nie) 
II-3.3 ¡¡(t) = - \ k(s) ^ ds 

With the definition 

II-3.4 ρ 

T ¡ι — T 

1
 i' 

k —l 

k 

and t h e kinetic equat ions for thè mean values the inhour equation for the mean react ivi ty is 

obtained : 

ωτ „ 6) 
II-4 ρ = Ύ + Σβ« k ω + Xi 

(!) This derivation of the kinetic equations for the mean values was given by V. Raievski in an internal 
report ISP-202R printed in 1962. 



The equations (II-2) can be given another form if one notes that for a fast reactor τ 

is very small. The integrated power (number of fissions) over one period is given by 

1 1 Γ' 1 kñ 
(II-5) W = - - \ k(s)n(s)ds = Τ 

ν τ Ji —τ ν τ 

from which it follows that 

1 W 
ñ = fe-vTT = ° (T ) 

dñ 
Thus in eq. (H-2) we find that all terms are 0 (1) except the term — which is 0 (τ). 

dt 

If, therefore, one neglects the lifetime τ as compared with the time scales encountered in the 

normal operation of the pulsed fast reactor one obtaines instead of the eq. (II-2.1) the eq. 

Ml — β) — 1 
(II-6.1) 0 = - ñ + Σλίδί 

τ 

while the eq. (II-2.2) remains unchanged. 
The inhour equation that follows from eq. (II-2.2) and (Π-6.1) is 

(II-6.2) ρ = Σβί - ^ ~ 
ω + Xi 

ωτ 
which diners from eq. (II-4) by the absence of the small term -— as was to be expected since 

k 
we neglected terms of order τ. 

For the calculation of the mean multiplication factor k(t) equation I I - l . l is solved over 
one period with the approximation that the mean density of the delayed neutron emitters is 
constant during the period and corresponds to the value at the time (t — T). 

dn z(s) 
II-7.1 — = ~ n + Σ λ ^ ί — T) t — T ^ s ^ t 

ds τ 

z(s) is defined by the equation 

z(s) = fcf» (1 - β) - 1 

Without assuming a special function for the change of the reactivity the solution of the 
equation II-7.1 can be written 

II-7.3 n{s) = Σλίθί(ί — Τ) η(β) 

II-7.4 η(5) = j C + f e " ' S ,W* ds I £ J ^ 

With the solution of this equation the multiplication factor k and the reactivity for the mean 
power can be written 

1 f' r(s) 
11-81 m = = H') 4 ds 

1 J í - T η(ί) 
Π-8.2 ρ = ¿ Ι Γ [k(s) - 1] Μ dt 

lc(t) Τ J « - τ η(ί) 



The physical meaning of k is given by the ratio 

. number of neutrons produced during one period 
le == — · 

number of neutrons absorbed during one period 
, , · . . . , f' k(s)n(s) since the numerator of this ratio is given by I ds while the denominator is 

J i - T τ 
Γ n{s) 

simply \ ds. 
J t - Τ τ 

11-Β — Derivation of the kinetic equation for the mean neutron density of the delayed 
emitters (x) 

The kinetic equation for the neutron density I I - l . l is integrated over one period, under 
the approximations that the density of the delayed emitters during the pulse is constant and 
equal to the value at the beginning of the pulse, and that in the remaining interval of the 
period each group of delayed emitters decays with its own decay constant. The number of 
delayed neutron precursors which have been formed during the power pulse are added to 
the density which has been present at the beginning of the power pulse, and this sum forms 
the initial condition for the time interval where the multiplication factor is below 1. For the 
p-th pulse which occurs during the time pT-t0 to pT-\-t0 the following equations are obtained 
for the time dependence of the neutron density n(s), the number Acj(Ip) of precursors formed 
in each group during the power pulse, and the mean neutron density during a period η(ρΎ) 

II-9.1 n(s) = Σλί^ρΤ— io)r/(s) (during the pulse) 

II-9.2 n{s) = ~Σλί\ο{(ρΊ_) + Ac¿(Ip) i e-'
Als (after the pulse) 

II-9.3 Act(lp) = βίΜΣν»(ρΤ_) 

I r + io 
II-9.4 M = ι k{s)r,(s)d is 

II-10.1 S(pT) = τ ~ + - 1 Σλ|Ει(ρΤ_) 
( Τ ε0) i 

In a periodically pulsed fast reactor the production of delayed neutron emitters in each 
group is split in two terms, one term is the production during a power pulse, and the second 
term is the production in the time interval between two power pulses. 

-o / 
II-10.2 (2) -Í = — XjCj,+ β ; - Σλίφ) + ΜΣΧίΣοί(ί)δ(ί — mT) ¡ 

dt [ r 

i1) The derivation of the kinetic equations taking into account the formation and decay of the delayed 
emitters was given by R. Misenta in an internal report (ISPRA-453) printed in 1963. 

(2) By formal solution over one period the differential equation (11-10.2) can be transformed into a 
difference équation linking the densities of delayed emitters at corresponding time. This procedure is of advantage 
for a numerical treatment of the kinetics of a pulsed reactor. 



Assuming exponential functions as solutions 

for the differential equat ion 11-10.2 gives the equation 

II-11.2 ωΑ^ω« = — IjAje^t + β,· j - ΣΐίΑίβω^ + ΜΣλ /ΣΑ ίβω<δ(ί — mT_) [ 

by integrat ing this equat ion over t from 0 to the t ime p T _ jus t preceeding the ρ th pulse and 
performing the summat ion over m, a system of 6 homogeneous equat ions is obta ined : 

11-11.3 [ω + λ, (1 — β;Β)] Α;· — β ;Β Σ X£A¡ = 0 

kfí Μ ωΤ 
Π-11.4 Β = - Η 

ε0 Τ e"T — 1 

The condition t h a t the de te rminan t of this system is zero, gives an equat ion for ω 

fc0 Μ ωΤ 
Π-12 1 = <-5 Η Σβί 

ìz0 Ύ e^—1) i 
_λί__ 

ω + Xi 

This equat ion is the inhour equat ion for a periodically pulsed reactor taking into account 
the formation of the delayed neu t ron emit ters dur ing the power pulse and the decay of the 
emit ters in the t ime in terval between two power pulses. 

For the discussion the two cases are considered t h a t the deviat ion from the s ta t ionar i ly 
pulsed s ta te is small, and t h a t the mult ipl icat ion factor in the t ime interval between two power 
pulses is small compared to one. 

ωΤ 
case 1 : ωΤ <ξ 1 ; 

o 0 
case 1 : ^ 

eM« — 1 

fc„ Μ ωΤ 

Τ e"T — 1 

In the first case the inhour equat ion can be wri t ten 

Un M ) Xi 
1 = - + - Σ β ί — 

f ε0 1 ) co + Xi 

For ω = 0 the condition is obtained 

IM fej 

By subt rac t ing β on each side and wi th the definitions 

- t ë + tyi « = — 
( Τ ε0 ) κ 

the relation is obtained 

ßi ω 
II-13.2 R = Σ 

β ω + Xi 

10 



In the second case the equation can be written 

For ω = 0 th 

and with the 

II-14.1 

c condition 

definition 

is obti lined 

κ = 

Τ 

M 
= Τ 

6 ω Τ 

M 

Τ 

β 

β = 1 

R 

ω + λ« 

. — 1 

the inhour equation is given by 

ßi ( ω λ,· 
II-14.2 R = Σ - _ Q (ωχ) 

β ( ω — Xi ω + X¡ 
rr\ 

ΙΙ-14.3 Q ( t 0 T ) = — ^ 1 

The significance of the multiplication factor κ is seen by inserting the relation 

II-9.3 M = Act{lp) 

βίΣλί^(ρΤ_) 

into the relation II-14.1 for the multiplication factor 

Ac 
Σα(ΡΎ_)}ΗΎ 

The multiplication factor κ is the ratio 

number of delayed neutron emitters formed during one pulse 
number of delayed emitters decaying during one period 

if the production of delayed neutron emitters in the interval between two power pulses is 
neglected. Taking into account this production, as it is done in the relation 11-13.1 the 
significance is obtained 

number of delayed neutron emitters formed during the period 
number of delayed neutron emitters decaying during one period 

The multiplication factor κ for the mean power of a periodically pulsed reactor is 
introduced because the average power of one period is proportional to the source strength 
of the delayed emitters Σλίθ{(ρΤ_) at the beginning of one period. 

This proportionality shows itself also in the inhour equations 11-13.2 and 11-14.2. The 
k ι 

reactivity ρ = in the inhour equation of an ordinary reactor (as well as the mean 
fe 

reactivity ρ entering in eq. II-6.2) 

ρ = Σβ 
ω + Xi 

11 



tends against β for co -> oo, Hm ρ = β. The limit for the reactivity R in the inhour equation 
ω = ce 

for a periodically pulsed reactor is 1, lim R = 1. This difference is due to the proportionality 
ω = co 

of the average power of one period to the source strength of the delayed emitter at the 

beginning of the period and the fact that a distinction which corresponds to prompt and 

delayed neutrons docs not exist for the delayed emitters. 

I l l — EQUIVALENCE OF THE TWO DERIVATIONS (*) 

Starting from the kinetic equation I I - l , two different definitions of a mean multiplication 

factor of a periodically pulsed reactor have been given 

II-3.3 k(t) = -~7 A Γ k(s)n(s)ds 

l)i(t) J i - T 

and 

Μ β 

II-13.1 κ = - β + i 
ι ε0 

The multiplication factor k(t) is based on an average of the ordinary multiplication factor 

weighed by the ratio n(s)jñ(t), instantaneous power to mean power. The multiplication factor κ 

is based on the ratio production to decay of delayed neutron emitters during one period. 

Together with the corresponding kinetic equation for the mean power II-2 and 11-10, the two 

different inhour equations are obtained 

II-6.2 ρ = Σβ4 - £ -
ω + Xi 

an d 

II-13.2 R = Σ Ι ' ω 

β ω + X¿ 

To show the equivalence between the two derivations equation II-6.1 is re-written in 

the from 

III-3.1 7i = —-. Σλίο; 
k{l — β) — 1 

II-3.2 k = - — . i X j C j 
β — ρ 

Using equation II-5 equation I1I-3.2 can be written 

W τ 
III-3.3 — ντ = Σλίδι 

Τ β - ρ 
or 

/W 
ΙΙ-3.4 — _ ν 

ΣλίοΛΤ / β —ρ 

(ι) The equivalence of the results obtained by the two methods of derivation was. shown by G. Blässer 
in an internal report (ISPRA-439) printed in 1963. 



Equation III-3.4 is used as definition of ρ in terms of the mean number of neutrons 
per period 

_ /W \ 1 
N = - ν 

III-4.1 

Τ / Σλ^ί 

By arranging equation III-3.4 the mean reactivity is obtained as function of Ñ 

- Νβ — ι 

ΠΙ-4.2 Ρ = β ^ 
* Νβ 

comparing the definition II-9.4 of M and the definition of W the equivalence is obtained 

III-5.1 W = - M -i- - ι ΣλΜρΎ) 

_ M L· 
III-5.2 Ν = - + -

ι ζ0 

With the definition II-13.1 for κ the relation for the mean reactivity can be written 

p = ß R 

The inhour equation II-4 

can be written 

R 

ρ = Σβ,: — £ _ 
ω + X¡ 

ßi ω 
R = Σ ' 

β ω + Xi 

which is identical with the inhour equation 11-13.2. 

By the way this equivalence has been obtained it can be summarized that the kinetic 

behaviour of a periodically pulsed reactor can be either described by the equation 11-10 with 

the definition II-9.4 for M or by the system of equations (χ) 

III-3.1 ñ = -^- Σλ{δι 
1 - 4 ( 1 - β ) 

(!) It can also be shown that the two equations III-3.1 and II-2.2 for the mean neutron density and 
the mean density of the delayed emitter lead together with the definition II-3.3 of the mean multiplication 
factor î t o a similar system of equations as the system 1-2 given by Bondarenko and Staviskii and to the 
same inhour equation. By inserting the definition II-3.3 of the mean multiplication factor into the equation 
III-3.1 and II-2.2 the equations 

η = τΣλί'Η i ( l - ß ) £ + l j 

-y = — λ««ί + ßi τ ΣλΜ 
at ί { 

13 



d ci k 
Π-2.2 — = — XiCi + ßi - ñ 

dt τ 

1 1 Γ' 
Π-3.3 h = — - - \ fe(s)n(s)rfs 

ñ(t) Τ . U - T 

κ — 1 
Π-13.1 k = 1 + β 

κ 

and 

Μ β 

ο 
κ =

 τ β + ε, 

1 (·+"> 
Π-9.4 Μ = - \ λ(«)η(β)& 

where the function r¡(s) is t he solution of the differential equat ion II-7.1. 

IV — MULTBPLICATION FACTOR, STATIONARITY CONDITION, 

AND INHOUR EQUATION OF A PERIODICALLY PULSED REACTOR 

In Chapter I I the mult ipl icat ion factor κ for t h e mean power of a periodically pulsed 

reactor 

Μ β 
Π-13.1 κ = - β + -

ι ε0 

1 Γ+"> 
Π-9.4 Μ = - \ k(s)rì(s)ds 

τ J — «ο 

has been derived. I n order to evaluate the mult ipl icat ion factor numerical ly, i t is necessary 

to solve equat ion II-7.1 for a given react iv i ty shape. As reac t iv i ty shape three different 

functions have been used : 

a rec tangular function, a t r iangular function (St iévenart , p r iva te communicat ion) , and a 

parabolic function (Bondarenko and Staviskii [2], S t iévenar t (x). The paramete rs which 

characterize these funtions and the obtained analyt ical expressions for M are given below. 

are obtained with the definition 

1 r' ι r' 
A = - k(s)r¡(s)ds 

τ J,— τ 

The function r¡(s) is the solution of the differential equation II-7.1 normalized to the source. Exponentila 

function as solutions lead immediately to the inhour equation 

A 

A ; β ω + λί 
- β * Η 

Τ Η 

Α 
The equivalence between — β and κ is evident from the definition of A and the definition II-13.1 of κ. 

(!) Internal report Belgonucléaire, 1962. 
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Rectangular function 

IV-1.1 

IV-1.2 

Triangular 

IV-2.1 

IV-2.2 

function : 

*(>) = 

Parabolic function : 

IV-3.1 

IV-3.2 

z(s) = zm 0 ¿S s =ÊS δ 

Μ(ε„) = —2 exp fe δ) 

ƒ | 
, εο ~Γ zm, 

Ι £m Η r « — δ 
1 ° 
Ι ε0 + zm f em s 0 

o 

Míe ì - S cxn ί S £rø2 

m \ t m j exp ^ 

Φ) = ¿m — B2S2 

Β = α*» 

« e X P Ì 3 B 7 
M — τ- -r» 

Βε„, 

In order that the reactor works in a stationarilly pulsed state, i.e. the state in which 

the amplitudes of the power pulses are independent of time the multiplication factor κ for 

the mean power must be equal to 1, or the reactivity R must be equal to 0. 

IV-4,1 κ = 1, R = 0 

Using the expression II-3.1 for the mean multiplication factor, the stationarity 

condition can be written 

IV-4,2 βΜ(ε„ίο) = T ( l - 1 
\ -o 

This stationarity condition relates to each period T0 one and only one value of the 
prompt critical reactivity zmo which the reactor works in the stationarily pulsed state. If the 
reactivity zm is larger than the reactivity zm , the multiplication factor is larger than 1. Fig. 1 
shows κ as a function of the reactivity zm and the reactivity R as a function of the difference 
(zm — zm ) for a parabolic reactivity wave and the set of parameters : 

τ = 2 X IO-8 sec, fc0 = 0.9744 or ε0 = 5β, α = 7 Χ 10~4 cm"2 and ν = 314 m/sec, 

for the two pulse frequencies Ν = 10 sec -1 and Ν = 100 sec-1, 
If the multiplication factor is larger than I, the reactor deviates from the stationarily 

pulsed state according to the following relation 

ñ(p) = - κΣλΐΣα,„βω™(ί>Τ-(0) 
Ρ i' //; 

The exponents ω are solutions of the inhour equation 
ßi ( ω Xi / ωΤ 

Π-14.2 R = Σ 
i β (ω —λ» ω + λί \ β ω Τ — 1 
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and the coefficients a.m allow the adjus tment of the solution to the initial condit ions of the 

reactor . For small deviations of the react ivi ty from the s ta t ionar i ty value the react iv i ty R for 

a parabolic react ivi ty signal can be developped : 

IV-5.1 
δκ 

δε»; 
ß W

2
- . * 

' εηιο
 v

 " O 

Thus the inhour equat ion can be wri t ten 

B-

IV-5.2 
δκ 

dzm 

y ßi «_ 
• Azm = Σ '~ 

i β ω + Xi 

IV-5.3 

wi th the definition 

IV-5.4 

Δε„, ßi ω 

ßpuised ¡ β ω + Xi 

Hpulsed — 
δκ 

δε™ 

In wri t ing the inhour equation IV-5.2 in the form 

IV-5.5 β 
CA 

}>ì
 ' ετηη 

fp 

δε,, 
Σβ« 

ω + Xi 

it corresponds to the inhour equation of an ordinary reactor . Bu t t h e left h a n d side shows 

t h a t a periodically pulsed reactor is, for the same deviat ion Δε,,, of the ordinary mult ipl icat ion 

factor from the s ta t ionary value, more sensitive by a factor β(δκ/δε?η)Ειπ . 

I n the table the react ivi ty zm , t he sensitivities (δκ/8ε,„) and β(8κ/8εΜ) are given. 

The sensit ivity β(δκ/δεΜ) has the value 20.4 for 10 pulses/sec and 12.6 for 100 pulses/sec. 

In order to see the influence of the pulsing period on the kinetics, t he inhour equat ion 

II-14.2 has been solved for reactivities between —1 and + 1 , for one case in which the t e r m 

Q(o)T) has been set equal to 0, and for a second case with the exact equat ion for a pulse 

period Τ = 1 sec. Fig. 2 shows the influence of the pulse period on the rootes ω. 

In fig. 3 the t ime dependence of the mean power of a periodically pulsed reactor is 

given for a value of the mult iplication factor κ of 2.0 corresponding to the react ivi ty R = 0.5. 

The multiplication factor κ = 2 corresponds to a deviat ion of zm from the s ta t ionar i ty value 

zm by Δε,„ = 18 χ I O - 5 for 10 pulses/see, and b y Azm 26 χ I O - 5 for 100 pulses/sec. 

Ν see" 1 

10 

100 

Sm0 

1.53 χ 1 0 - 3 

0.89 X IO"3 

\c&ml εηιο 

3.3 χ 103 

2.0 X IO3 

\ c e m/sm 0 

20.4 

12.6 

Δε » (κ = 2) 

18 χ IO- 5 

26 χ IO"5 

TABLE. — The reactivity zma, the sensitivity (?Ύ./ΐζίη)ειηα and the deviation of the reactivity 
Δεηι = Zm — Zjti0 f° r X- = 2 for the pulse frequencies Ν = 10 and 100 sec -1. 

The values have been used with a parabolic reactivity shape and the parameters τ = 2 x 10 -8 sec, 
k0 = 0.9744 or ε0 = 5 β, α = 7 X IO"'1 cm~2, υ = 314 m/sec. 
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Fig. 2. — Roots ω of the inhour equations. 
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